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Abstract

The Kuramoto-Sivashinsky equation arises in a variety of applications,

among which are modeling reaction-diffusion systems, flame-propagation and

viscous flow problems. It is considered here, as a prototype to the larger

class of generalized Burgers equations: those consist of quadratic

nonlinearity and arbitrary linear parabolic part. We show that such equations

are well-posed, thus admitting a unique smooth solution, continuously

dependent on its initial data. As an attractive alternative to standard

energy methods, existence and stability are derived in this case, by

"patching" in the large short time solutions without "loss of derivatives".
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Administration under NASA Contract No. NASI-17070 while the author was in

residence at the Institute for Computer Applications in Science and
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Introduction

The equation referred to in the title is of the form

_ 2,
8-_+ [V_I + A_ + A2_ = 0.

This equation was independently advocated by Kuramoto [2], in connection with

reaction-diffusion systems, and by Sivashlnsky [4], modeling flame

propagation; it also arises in the context of viscous film flow [5] and

bifurcating solutions of the Navler-Stokes equatlons. (I)

In this paper we study the well-posedness question associated with the

one-dlmenslonal version of the Kuramoto-Sivashinsky equation (abbreviated

hereafter as the K-S equation)

(I.I) 8--t Bx 8x4

It is shown that the Cauchy problem connected with (I.I) is well-posed: the

K-S equation admits a unique smooth solution, continuously dependent on its

initial data. In fact, all the results quoted below equally apply to the more

general equation

3"-{+ <3xj + P _ = 0,

(1)G. Sivashinsky,privatecommunication.
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3
with a linear part, strongly parabolic of arbitrary order v > _ ,

(l.2b) Re P(i_) >__Const-l_l _', I_I + "-

Existence and stability results given here, are obtained by modifylng Taylor's

recipe, [6, p. 96], for treating the existence question in the special case of

Burgers equation, P(i_) = _2. According to that recipe, roughly speaking,

dissipation is used to compensate nonlinearity, so that short time solution

can be constructed without running into the familiar phenomenon of "loss of

derivatives". Coupled with an L2-decay estimate, short time solutions are

then being "patched" together, in the large. A study along these lines is

carried out in Section 2 below, where existence and stability questions are

treated in connection with the K-S equation. The existence and uniqueness in

this case, were previously proved by energymethods, e.g., Aimar and Penel

[I], Nicolaenko and Scheurer [3]. The technical details are avoided in

Section 2: these are postponed to Section 4, all proved by virtue of a single

standard estimate on the linear dissipative part 6f the equation, given in

Section 3.

The above study thus suggests itself, with handling arbitrary linear

dissipative parts. In Section 5 we conclude by quoting the corresponding

results to such generalized Burgers equations.
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2. Existence and Stability

We start by putting the K-S equation in a conservative form: we

differentiate (I.I), obtaining that the new decayed variable

u _ u(x,t;n) = e-nt __-_x' n > 0, satisfies

(2 la) _u nt _(u 2) + nu +--_2u +--_4u = 0;
• _--_+ e _--_--- _x2 _x4

a solution for the initial value problem (2.1a) is sought, u(t), t > 0,

subject to initial condition

(2.1b) u(x,t=0) = f(x).

Both the pure Cauchy problem, -_ < x < _, and the periodic problem, say

- _/2 _ x _ _/2, are discussed• We explicitly treat the first infinite case

by means of Fourier expansion; the somewhat simpler periodic case can be

likewise handled, using Fourier series instead.

If we let P(i_) _ P(i_;n) = n-_2+_ 4 denote the symbol associated with

-tP(i_;n)
the spatial linear part of (2.1a) and let Q(_,t) _ Q(_,t;_) = e be

its transformed solution operator, then by Duhammel's principle (2•1) admits

the following integral representation

t

(2•2) u(t) --Q(t;n)*f + JenT.Q(t-T;n) * _x u_ 2(T))dr
0

Abbreviate the right-hand-side of (2.2) by J [u;f]; to simplify notations, we

will occasionally supress the explicit dependence on the initial data, thus

writing
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t _ 2
(2.3) J[u] _ J[u;f] ffiQ(t;n)*f + JenT.Q(t-_;n)*_x u (_)IdT .

0

The question of existence of solution for (2.1) is now transformed into that

of a fixed point solution for J [u]. Fixing T, T > 0, we seek a fixed point
n

solution for J [u] in L_[[0,T],L2J equipped with the standard norm
q

Uull= sup lu(.;t)l " (2) The existence of such a fixed point solution is
0<t<T

guaranteed, at least for a short time, as a consequence of

Lmma 2.1. (Short Time Contraction).

v, w i._.n_nL_[[0,T],L2_ and Jn[. ] = Jn[.,f] as
Given in (2.3). Then,

there exists a constant no _ 0, such that for n _ _0 we have,

(2.4a) I1J[v] -J[w]ll < M(T;n).(nvll+ llwll).nv-wll.

Here,M(T;n) is givenby,

(2.4b) M(T;n) = 2enT.TI/8 .

By virtue of Lemma 2.1 we find

(2)We adopt the notation of single bars to denote spatial norming; for

lWlHs ffi[J(l+l_12jSlw(_)12d_)I/2.' Similarily, double bars are
example,

reserved to space-time norming; for example, Hw_ = sup lw(.,t)l . In
. _._1/_ s 0<t<T Hs

particular, ffiIWlH° [jw2(x)dxJ 'L , ,wn= ,wU0. --
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Corollary 2.2. (ShortTlme Boundedness).

Se____tT = TI,T1 > O, such that

(2.5a) 4M(Tl;n).If [ < I.

Then, for n _n o we have,

(2.5b) jj[n][f]!< 21fl n = 0,I,....

_[n][f] remain inside the origin
Thus, the fixed point iterations, JR

centered ball of radius 21f ]. Hence u since by Lemma 2.1 JR[.] contracts

inside that ball, having a Lipschltz constant 4M(Tl;n).If I < I -- the

existence of a fixed point solution for J [u] follows, at least for a short
n

time interval, 0_ t _T I. Furthermore, the length of that existence

interval, TI, depends on no higher than the initial L2-norm. This latter

fact, plays a central role In the forgoing analysis; in particular, it enables

the local solution just constructed, to be continued to a global one, with the

help of

Lemma 2.3. (Large Time Decay).

Let u(t;n) _ u(x,t;n) be a solution of (2.1). Then_ there exists a

constant no _ 0, such that for n _ no we have,

-(R-n 0)(t2-t I)

(2.6) lu(t2;n)l d e -lu(tl;n) l, 0 _ tI d t2 d T.

[
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Verification of Lemma 2.3 is a straightforward one: multiplying (2.1a) by

u(x,t;n), integrating by parts while noting the vanishing contribution of the

nonlinear term(3), we find

i/2dlu(t) 12 2 _u 2 %2°-nl_(t)l + I-_-_(_t)l-I t)l ;
3x

invoking Parseval relation, the last equality yields

_/2_lu(t)l2<__._[-_(i_;n)).l_(t)l 2,

and integration finally leads us to (2.6) with nO =I/4. We remark that in

the periodic case, - _ _ x _ _ , one can invoke instead, Poincare's

inequality,

leading, in a similar way, to (2.6) with nO = 0. Observe that in general,

the exponential growth bounded nO, may depend on the period.

(3)With the infinite pure Cauchy problem, u(x,t) is required to vanish at

x = • _; indeed, lu(t)IHl < _ according to Theorem 2.6 below.
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To conclude the existence of solution in the large, we now fix

n, n _ no, with appropriately chosen no in either the finite or infinite

case; then, short time solutions -- constructed according to Lemma 2.1 --

can be sucessively "patched" together, over time intervals which -- according

to Lemma 2.3 -- are of a fixed (nonshrinking) length TI. Integrating, we

obtain a global solution for the K-S equation, _ = _(x,t); the solution so

obtained is -- up to integration factor -- unique. Thus we finally arrive at

Theorem 2.4. (Existence)

The K-S equation (i.i), with prescribed initial data _(t=0) i_n_nHI,

admits a unique solution, _ = _(x,t), which satisfies,

8_ t) en0 T. 8_(27) I _< I t=o)l, 0< t< <-.

In fact, _(t), t > 0, belongs to HI: a further L2 estimate needed here, is

discussed in Section 4 below.

The global solution referred to in Theorem 2.4, is constructed by patching

together short time solutions, using a single L2 a" priori estimate. Such a

patching procedure differs from existence proofs via standard energymethods,

e.g., [i], [3], where higher a" priori estimates are called for. Instead, we

rely here on having a derivatives-free Lipschitz contraction factor, so that

short time solutions can be constructed, without running into the familiar

phenomenon of "loss of derivatives". We note that solving the integro-

differential equation (2.2) by fixed point iterations, results in the
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existence of a solution satisfying the original differential equation (2.1),

in a weak sense. Concerning the existence of such a solution under a stronger

topology, one observes that equation (2.1a) contains two dlstabillzing

sources: the focusing effect ("loss of derivatives") caused by the nonlinear

term, and the exponential divergence of the second order dissipative term. It

is the balance of these two terms by the fourth-order dissipation, which leads

us to the important derlvatlves-free Lipschitz contraction factor in this

case. Making a finer study of that balance, we are able to conclude that the

solution constructed above is, in fact, smooth enough to be interpreted as a

classical one. To this end, we sharpen Lemma 2.1, stating

Lemma 2.5. (Short Time Contraction).

Given v,w i___nL_([0,T],H s) s _ 0, and Jn['] = Jn[';f] as in (2.3).

Then, there exists a constant nO _ O, such that for n _ no we have,

(2.8) IJ[v]-J[W]Us+2 < + ).Iv- I8 S S

Thus, each fixed point iteration gives us a smooth correction. In particular,

setting s to be zero, we find on account of Corollary 2.2 that

{J_n][f]}n>0_ form a Cauchy sequence in the L_([0,Tl],H2)--orlgin centered

ball of radius 21f I. Hence, the fixed point iterations j[n][f] converge to
n

a unique, short time solution, u = u(x,t) in L_([0,TI],H2).
Thanks to the

L2,decay estimate in Lemma 2.3, such short time solutions can be patched in

the large as before, integrated once and yielding
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Theorem 2.6. (Existence).

The K-S equation (I.i), with prescribed initial data $(t=0) in H3,

admits a unique solution, $ = $(x,t), which satisfies,

(2.9) t)[H 2 < _ e • t=0) IH2, _ _ _

Finally, we turn to examine the question of stability: allowing the

initial data to vary as well, we have the final extension to the short time

contraction lemma, which now reads

Lemma 2.7. (Short Time Contraction).

Given v,w i__n_nL_[[0,T],HSJ with f = v(t=0), g = w(t=0) i__n_nHs+2.

Then, there exists a constant nO _ 0 such that for n _ _0 we have,

gJn[v;f] - Jn[w;g]ns+2

(2.10)

< If -glHs+ 2 + 2S-M(T;n).[llvll + Ilwll l._v- wn .
-- S S S

Now let v(t) = Jn[v(t);v(t=0)], w(t) = Jn[w(t);w(t=0)] be two different

fixed point solutions of equation (2.1a), whose initial data f = v(t=0)

and g = w(t=0) are assumed to be in H2; according to Theorem 2.6, u(t)

and v(t) belong to H2 later on, t > 0, and as a consequence of Lemma 2.7

with s = 0, we have short time stability

I Iv(t=0)- w(t=0)l2. 0 < t < TIIv(t)- w(t)IH2 _ l_M(Tl;n).(ifl+igl) _ _
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Successive application of the last inequality yields the desired stability

result, which we state as our final

Theroem 2.8. (Stability).

Let _,_ be two different solutions of K-S equation (I.I), with initial

data _(t=0), _(t=0) lying in H3. Then, there exist constants C and

8 _ 0 (both may depend on l_x(t=0)]+l_x(t=0)l) , such that the following

estimate holds,

3_ -@_xt)lH2_ l_x(t=0)- I 0 < T < _.(2.11) l_x t) < C.e St. 3_ 3_(t=0) < t
H2' -- _ _

3. An Estimate om the Dissipative Kernel

The following classical estimate is in the heart of the matter.

Lemma 3. I.

Given m(x) i___n_nWm,p, l<p<2, and real r, r'>l12 - I/p. Then, there

exist constants, C = Cp,r and q0 _ 0, such that for n _ no we have,

1 1

e-(n-n0)t.- _(r- _ + _)
(3.1) ]Q(t;n)*_lHm+r_C. t .lmlwm,p

Remark. We adopt here the standard notation, Wm,p, to denote the LP-type

Sobolev space of order m, consisting of those functions whose derivatives up

to order m belong to LP. (Although not specifically referred to,

fractional Sobolev space with nonlntegral m, should be interpreted as Besov
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space: to comply with notations, we therefore restrict attention to integral

orders, with the understanding that final results can be interpolated into

Besov space.)

For completeness, we include here a short calculation verifying (3.1):

1 1

- P and let _" be its conjugate, _ +7= I, then Holdersetting _ 2-p

inequality yields

1

e_2_t(___Z+_4)d_] _
IQ(tln)*_lHm+r _ [__f[l+l_12J _r

(3.2)
1

x [ 7[l+l_12]_'ml_(_)12_'d_] "i_" .

Since by the Hausdorff-Young inequality the Fourier transform is of type

(2_',(2_')" = p), the second factor on the right of (3.2) -- I_Iwm,2v- --

does not exceed

1 1_!

(3.3) [! [l+l_12J"°ml;(_)12_'d_] _" < (2_)_ P .l_]wm,p.

Next, we split the first factor on the right of (3.2),

1 i
oo

-nt[ 2jvr e-2pt(_4-_2)d_]_- = e-nt[ f + _ ... ]_-_e - J[1+l l ;

the first of the two integrals admits a pessimistic bound of

_t

It If<,_ [1+1_121_r e-2_t(_4-_2)d_ < 2_-_ 3Br e-_ ,
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while the second one, is estimated by

2_r+l

< 2_r+l f _2Br -_t_ 4 2_r-I _,2Br+l_ 4e d_ = i[---_j (_t) .
_=0

Added together, we find that the first factor on the right of (3.2), does not

exceed

1

[ f[l+] 12Je-2Bt(n-_Z+_4)d_]_

(3.4)

_(n_no)t 2_r+l8u
•e -t no =i/4Bp,r , ,

with Stlrling'sformulagivingus a bound of

I r 1 1
D

= (4_e) 2_ 32 _J P .Bp, r [r + I r _ +

Recalling that (2U')" = p, (3.2), (3.3) and (3.4) yields the required
1 1

estimate (3.1) with C = (2_)_--p.B .
p,r p,r

Remark I. In the infinite case under consideration, an exponential growth

bound, n0 =I/4 , was found. In general, _0 may depend on the period, in the

spirit of an earlier remark; for example, no = O, in the _-perlodlc case.
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Remark 2. For future reference, we quote here the constants Cp, r in two

special cases: as can be readily verified, C2, 0 = 1 (indeed, such an

estimate also follows by a straightforward integration by parts, essentially

contained in the verification of Lemma 2.3 above); also, by sharpening the

above pessimistic bounds, on finds CI, 2 < 8.

4. Proof of Main Results

We first study the operator J [-;.] introduced in (2.3), whose fixed
n

point solutions are sought. Equipped with Lemma 3.1, we are able to derive

the following summary stability estimate

-(n-n0)t

[J[v(t);f] - J[w(t);g]IHS+ 2 _ e "If - gins+ 2

(s)

+ 2s+l-e_t.t I/8. sup Iv(z) + w(T) I s" sup Iv(T) - w(T)IH s0<T<t H 0<T<t

To verify (S) m assuming the quantities on the right are finite and

q _ nO m we consider the difference

J [v(t);f] - J[w(t);g] = Q(t;n)*(f - g)q

t
2

+ JenT-Q(t-T;n) * -_[v (T) - w2(T)JdT,
0

so that after taking norms on both sides we have

[
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IJn[V(t);f] - _[w(t);g]IHS+ 2 _ IQ(t;n)*(f- g)lHS+2

t
2

+ fenT'IQ(t-T;n)*0_xv (T) - W2(T))IHS+ 2 d_.

Now applying Lemma 3.1 with respect to both terms on the right of the last

inequality: the first term with (r,p,m) = (2,2,s), and the second one with

(r,p,m) = (3,l,s-l); recalling the earlier quoted constants C2, 0 = I and

CI, 3 < 8, we find

-(n-no)t
[dn[v(t);f] - _[w(t);g][HS+ 2 _ e ,If - g]Hs+ 2

t -(n-n0)(t-T)
+ 8._ enr- _ 2 w2 dT.e "(t-'>-7/8"I_(')- _'))I___

0 wI

The last integral, bounds the interaction between the linear dissipative part

of the equation, and the nonlinear differentiated quadratic term; the loss of

derivative due to the latter is compensated here by dissipation, weighted with

the L1 topology. In order to return to the usual L2 setup, we apply

Leibnitz rule and Cauchy-Schwartz inequality to find

2
I-_-_v(_>-w2(_>)Is-,-<2s+*'lv(_)+w(_>ls.lv(_>-w(T)lHs

WI

Inserted into the last integral and carrying out the integration, we end up

with the required estimate (S).
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We now turn to prove the results in Section 2, starting with

Short Time Contraction. (Lemma 2.1, Lemma 2.5, Lemma 2.7).

Taking supremum over both sides of the (S) estimate with varying t,

0< t<T, and equipped with the notation of

M(T;n) = 2enT.TI/8

in (2.4b), we find

|J[v;f]- J[w;g]ns+ 2 < If- glHs+2 + 2S.M(T;n).IIvl + lwl ).Iv- w!
S S S '

so that Lemma 2.7 follows. Taking the special case f = g proves Lemma 2.5,

and further setting s = 0, yields Lemma 2,1,

IJn[v] - J[w]! < IJ[v] - Jn[w]12 < M(T;n)-(Dvl + lwH)-Iv - wl.

(Observe that in the case of Lemma 2.1, where no gain of derivatives is

involved, one can in fact improve the contraction factor M(T;n) to be

2 enTT7/87 ")

An immediate consequence of Lemma 2.1, is the following

Short Time Boundedness. (Corollary 2.2).

Setting v = j[n-l][f] and w = 0 in Lemma 2.1, we findn

IJ[Jln-l](f)]| < nJn[v;f] - jn[w=0;f]! + uJn[w=0;f]!

< M(T;q)-Ij[n-l][f]! 2 + !Q(t;n)*f!.
- n
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We now consider a temporal interval of length T1 such that

4M(Tl;n).If I < I: assuming nJ[n-l][f]ll < 21f I in that interval then

together with Lemma 3.1 taking (r,p,m) = (0,2,0), we obtain

,j[n][f],< 4S(T1;n)lf[.lfI + lfl< 21f[

and Corollary 2.2 follows by induction.

Owing to the last two results in the small, one may construct fixed point

solutions, u(t), as local solutions over time intervals [TN,TN+I]

N = 0,1,2,..-, such that 4M[TN+I-TN;n)-IU(TN) [ < 1. Thanks to the large L2-

estimate in Lemma 2.3, the local solutions just constructed can be patched in

the large, over fixed length time intervals, TN = NT I,

N = 0,I,-.-, obtaining

Existence. (Theorem 2.4, Theorem 2.6).

Given the initial data _(t=0) in HI
, we set f = (t=0) for the

initial value problem (2.1); let u(t), t > 0, be its global solution,

constructed according to the above recipe. Integrated once, we obtain a
x

solution for the K-S equation, _(x,t) = fu(_,t)d_, which satisfies

choosing n = _0 in Lemma 2.3

i t)l_<e 0T 0)l, 0_<t_<T

- _ possesses a certainThis proves Theorem 2.4. In order to show that u - _--_

degree of smoothness, at least that of the initial data, we appeal to the

short time contraction estimate in Lemma 2.5 with s = 0:
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flJ[v] - J[w]H 2 < M(T;n)'(UVI' + flwl')'nv- wg.

Consider first the time interval [0,T=T I] and let u = Jn[u] the fixed

point solution there; choosing v = u and w = 0, we find

aull2 --llJn[u]ll2 < M(Tl;n)fluH2 + llQ*fll2.

Using Lemma 2.3 and Lemma 3.1 with (r,p,m) = (0,2,2), we end up with

nun2<__M(T1;n)]fi2+ Ill2<__]fi2"

Successive application of the last inequality over the accumulated patching

intervals, implies

]u(t;n)]H2< [_)tlTl+l_ "lfiH2 •

Choosing n = nO , Theorem 2.6 now follows with c = nO + £n[_I,

]H2 5 =T D_I t) <_e l_xt0>I 0<t<T<_
-- H2 ' _ _

Remark. We note that the above solution _ = _(x,t) lies, in fact, in

the same Sobolev space the initial data belong to, Hs, 0<_s<2. This follows

from a complementing L2-estimate which we now derive: multiplying (I.I) by

and integrating by parts, we find
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Id 2 bxt)2 bt 2-f_--_l_(t)l < -I t)l + I_(t)l =" •
ax L

We interpolate in a somewhat nonstandard way, I.I=_<_I.I+c'_-1"l.xl,so
L

that by appropriately choosing _ --y" latext)1-2, the last inequality implies

I d 12 2 y-I_ _-_l_(t) < Y" l_(t)l + K,

with K = K[ la_--_t)lJ.Thanks to Lemma 2.3, we can control

Ktla!_t>IJ<Ktl-_-(_t=O>IJ,

and L2-boundedness now follows

l.(t)l<Jt-[l_(t=o)l+Y-I.K[l_--_(t=o)l]],

with arbitrarily small exponential growth factor y,y > 0, Regarding the

periodic case, -_/2 _ x _ _/2, one may substract the average

_12
T(t)=± J +(x,t)dx,

-_/2

so that by invoking Poincare's inequality for @(t) - T(t) rather than

interpolating, we find

a_t=o I/2l.(t)- _(t) I <__I_P(t--o)- T(t=o)I+ K[l-_-(x )lJ.t •
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5. A Generalized Burgers Equation

The results of the last sections were so organized, in order to emphasize

that the only a" priori estimate required for the proofs, concerns the linear

dissipative part of the equation, see Lemma 3.1. Hence, the following

generalization can be easily worked out.

We consider the generalized Burgers equation

(5 la) _u + _'u2"fl+ P(-__)u_= 0
• _t _x

whose linear part, _ + P(_-_),is assumed strongly parabolic of order _,

(5.1b) Re P(i_) >__Const'l_[ ?, [_] + _.

-t[n+P(i_))
Regarding the corresponding kernel, Q(t;_) = e , we have, in analogy

with Lemma 3.1,

1 !)

-(n-n0)t.t- _(r- ½ +

(5.2) IQ(t;n)*_IHm+ r ! C.e P "Im[wm, p.

In particular, considering Q(t;_) operating from L1 to HI+s , it is found
3

-
to have an operator norm with an integrable singularity, t

provided s < v - 3/2. Arguments similar to those introduced in Section 2,

then leads us to
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Theorem 5.1. Let u,v be two different solutions of the generalized

Burgers equation (5.1), with initial data lying in Hs, s < _ - 3/2. Then,

there exists constants, C and 8 _ 0 (both may depend on lu(t = 0) J

+ Jv(t = 0)I), such that the following estimate holds,

(5.3) [u(t) - v(t)JHS _ C.eSt.[u(t=0) - v(t=0)JHS.

We end up noting that the above recipe suggests itself, in studying the

all important question regarding the long time behavior of solutions for

equation (5.1).
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