
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



PREPRINTK-4,.Qaappear in SIAM Journal on Scientific and Statistical Computing

o	 "'	 r

Y

QUASICONFORMAL MAPPINGS

AND GRID GENERATION*

u. W. Mastin and J. F. Thompson

Mississippi State University

Mississippi State, MS. 39762

ABSTRACT

A finite difference scheme is developed for constructing quasiconformal mappings

for arbitrary simply and doubly-connected regions. Computational grids are

generated to reduce elliptic equations to canonical form. Examples of con-

formal mappings on surfaces are also included.
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1, Introduction

The motivation for constructing quasiconformal mappings lies in their
3

application to the generation of curvilinear coordinate systems. Quasicon-

formal mappings may be used to reduce any second order linear elliptic partial

differential Equation to canonical form (i.e., the principal part of the

differential operator reduces to the Laplacian). Consequently, if one is

solving an elliptic boundary value problem, an appropriate quasiconformal

mapping could be used to simultaneously fit the boundary contours with coordi-

nate lines and simplify the original partial differential equation. The equation,

in canonical form, could possibly be solved more efficiently or by methods

which would not be applicable to the original equation in cartesian coordinates.

A related application of quasiconformal mappings is in the construction of con-

formal mappings on surfaces. Although they have been studied extensively by

complex analysis, very little work has been done on the numerical construction

of quasiconformal mappings. Of the methods which have been proposed, that of

Belinskii et al. [2] uses a fixed boundary correspondence which determines

the mapping parameters, and the method of Mastin and Thompson [4] would be dif-

ficult to implement on arbitrary regions. A finite element version of the

latter method developed by Weisel [9] appears promising. However, the class of

mappings and the type of regions presented in the examples are very limited.

In recent years a finite-difference method for constructing conformal

mappings developed by Allen [1] has been used by Mobley and Stewart [5], Pope [6],

and Yen and Lee [8] in the construction of orthogonal coordinate systems.

Although all of these authors use essentially the same numerical method, there

are differences in the way the boundary values and the conformal module of the
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region are computed. This method is not as accurate or efficient as other
q

conformal mapping methods using integral equations or series expansions, but
n

it does have the advantage of simplicity since the module of the region, the

boundary correspondence, and the interior grid points are determined in

a single iterative procedure. Modeling this conformal mapping procedure, it

will be shown how quasiconformal mappings can be constructed and applied to

the reduction of elliptic equations to canonical form and the construction

of conformal mappings on surfaces. Except for the method of Godunov and

Prokopoy [3], this appears to be the only conformal mapping method which can
t

be easily adapted to handle the problem of constructing quasiconformal map-

pings,

2. Boundary Value Problem for uasiconformal Mappings

Let D be a bounded simply-connected region in the xy-plane whose boundary

C is a simple closed contour. Let z l , z2 , z 3 and z4 be distinct boundary

points ordered by the orientation on C. There exists a unique quasiconformal

mapping of D onto the interior of a rectangle such that the points z i map to

the vertices which are also ordered by the orientation of the rectangle. The

ratio of the length to the width of the rectangle is a quasiconformal invariant

called the module of D and will be denoted by m. The quasiconformal mapping of

the region D onto a rectangular region can be obtained by constructing the

mapping of D onto a square region S which satisfies the linear system

9x = m(cny + b nx)

^y - -m(a nx + bny)

t
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where ac - b 2 = 1. On setting (u,v) = (C,mn), it is obvious that u and v,

as functions of x and y, satisfy the Beltrami system and hence we arrive at

the desired quasiconformal mapping (see [4] for further details).

It is easily shgwn that x and y, as functions of g and n, satisfy

ax cc
2sxgn + yxnn J2(a x + by)

ay 	 2Rygn + Y
ynn = J 2 (bx + c y )

where

a = ayn	n n- 2bxy + cx2

s = ay 9yn - b ( x Cyn + xny ) + cxExn

-y = ay  - 2bx y + cx2

J = xEyn - xnyC.

At each boundary point of 0 one of the functions, g or n, is constant

while the other satisfies an oblique derivative condition. This implies that

the condition S = 0 must be satisfied by x and y at each boundary point of

S (except for vertices). Note that in the solution of (1) we would have

s = 0 throughout S. Thus the computed value of S can serve as a test of the

accuracy of our solution. It also follows from (1) that m = Y'a—/y. Therefore,

the equations (2) can be written as

m2x99 + xnn = mJ(ax + by)

M2  += mJ(b + c )

u

(2)

n

^T	 1

i

(3)
ynn	 x	 y 

i
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The same procedure is used for doubly-connected regions with a periodicity

r condition applied on two opposite sides of S.

The system (2) or (3) may be solved using an iterative procedure with

(i) the right-hand sides of the equations, (ii) the boundary values of x and

y, and (iii) either «,	 y, or an approximation of m, re-evaluated at each

iteration. As in the previously discussed conformal mapping methods, both

4	
(2) and (3) have performed equally well in numerical examples.

3. Reduction of E1j îpti c Equations to Canonical Form

The application of quasiconformal mappings in the solution of elliptic

equations is well-known. An elliptic equation of the form

auxx + 2buxy + cuyy = f(u,ux) uy ), ac - b2 = 1

transforms to an equation of the form

m2 u	 + 
u
nn = g(u,ug,un)

under the transformation defined by (l). This transforniation^ will make'the

solution of many problems much easier. For example, if a, b, and c are con-

stants and f = 0, then it can be shown that g = 0 and we need only solve

m 2 
U + un,n = 0 on a square region. This is efficiently done by separation

of variables or a direct numerical method. Computational grids for solving

this problem on a simply and doubly-connected region are given in'Figure 1.

The practicality of using quasiconformal mappings , in solving elliptic

equations will be further examined in the following example. The function

u = cos(x - y) is a solution of the partial differential equation

uxx + uxy + uyy + cos(x - A = 0.

w
6

b
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We will solve this equation numerically for 0 < x, y < w with Dirichet boundary

conditions prescribed by the known solution. In terms of curvilinear coordi-

nates, this equation can also be written as

m2u99 + unn + Um cus(x - Y) = 0.
VT

The quasiconformal grid for solving (5) is illustrated in Figure 2. For the

purpose of assessing the influence of the error in the iterative solution of

(2) on the error in the solution of (5), the iteration was stopped occasionally

and the solution of (5) was computed. A comparison of a normalized value of

S with the error in the solution of (5) is plotted in Figure 3. Note that

S has been normalized so that for the construction of conformal mappings

(a = c = 1, b = 0), the value, along the abscissa would represent the degree of

nonorthogonality. Equation (4) was also solved on a uniform rectangular mesh

with the same number of grid points. The error in this solution serves as an

approximation of the discretization error which would result in solving (5) with

the exact quasiconformal mapping. It also serves as a test of our method against

the traditional method for solving (4). Figure 3 indicates a nearly linear re-

lation between the plotted variables. This is to be expected since the major

part of the truncation error for larger S, is due to the omission of the mixed

derivative term, which is a linear function of s.

A few remarks concerning the numerical solution of (2) and (5) will be made.

The system (2) was solved using point SOR in the same way one would construct

a conformal mapping (see j7]). For the condition S = 0 on the boundary, a

form of one-side "upwind" differencing was necessary to maintain convergence

for the value of b = 1/ VY in this example. The elliptic equation (5) was solved

using a direct elliptic solver (see j.7]). After 35 iterations of (2) the

r

r
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maximum error in the solution of (5) was within 125 per cent of what we

estimated to be the maximum discretization error. At this point the value of

(sl was still decreasing, but at a very slow rate. The exact value for m

in -this example is 1 due to symmetry. The computed estimate, which was

the root-mean-square value of vl'a—/y, was 1.00006 after 35 iterations.

This example does not illustrate an efficient use of quasiconformal

mappings. The method would be very efficient when one had to solve an

elliptic equation with many different boundary conditions or inhomogeous

terms. In that case the quasiconformal mapping would only have to be con-

structed once.

4. Conformal Mapping on Surfaces

A second area of application of quasiconformal mappings is in the con-

struction of conformal (isothermal) coordinates on a surface. Let M be

a smooth bounded surface in xyz - space which is defined by the parametric

equations

x = x4,e), y = y 4o), z = z(m).

The parameter region ^n the ^e - plane may be an arbitrarily shaped simply or

doubly-connected region but it is assumed that the boundary is composed of

simple closed contours and the mapping from the parameter region to the sur-

face has a nonvanishing Jacobian.

A conformal mapping of M onto a rectangular region can be constructed by

constructing a mapping from a square region of the gn - plane onto M which

sati fi es

P^	 Pn = 0 and miP E I = 1P 71	
t
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where P = (x,y,z) and m is the module of the surface M. If these equations

i

are written in terms of the parametric variables 	 and e, we conclude that

e

and e satisfy
a

s

me c = ben - c4,n

M^^ = aen - bin

where

a = IPel2/d

b = P 	̂ P e /d

C	
IP^I2/d

i

x
	 d= I 

	 PeI

f	 u

However, this is equivalent to (1) with (x,y) replaced by (^,e). In this case

the quantity which corresponds to 5/vCy would be the cosine of the angle be-

tween a E = constant and a n = constant coordinate line on the surface M.

Conformal grids have been constructed for several simply connected sur-

faces. Three surfaces are listed below. In the first two cases, the parametric

region was the projection of the surface onto the xy - plane.

i. Paraboloid: z	 1 - x2 - y2 , x2 + y2 < 1

ii. Bicubic: z = x 2y3 , - 1 < x,y < 1

iii. Torus: x = (2 + sin¢) cos e

z - (2 + sin¢) sin e,

_w/2<^<w/2,0 <e <7

s	 I J-11
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The plots of these surfaces appear in Figure 4. It is difficult to visualize

the orthogoisality from the plots, but the departure from orthogonality was

less than one degree except near vertices on the boundary where the ortho-

gonality condition was not imposed.

The advantages of conformal coordinates are well-known. Problems in-

volving heat conduction, ideal fluid flow, and electric fields can be so,^ed

as easily on the surface as they can on a rectangular region in the cartesian

plane.

6. Conclusions and Discussion

f,

A finite difference method, which has been widely used for the construction

of conformal mappings, has been generalized to construct quasiconformal mappings.. 	 j

This cevelopment will increase the class of problems which can be solved using
f

the currently available fast elliptic solvers developed by Swarztrauber and

Sweet [7]. Even when iterative methods are required, the absence of a mixed
w
f	

4

derivative and a rectangular region both would tend to give faster convergence

especially when optimal iteration parameters are known.

We will conclude this report with an open problem. It is known that if

a = c = 1 and b = 0, then the solution of (2) which satisfies s = 0 on the

boundary of the square S will also satisfy the system (1), and hence determines

a conformal mapping. This follows directly once it is noted that the quotient

n  

+ inx	

F

y + i gx

is an analytic function. Here it has been assumed, and numerical results tend

to verify, that the same result holds for arbitrary quasiconformal mappings.

However, no proof has been found.

C

_	 --	 _	 . . . ...... - 	 it



f

A6
^	 W

t

	
1

REFERENCES

1. C. N. de G, Allen, Relaxation Methods Applied to Conformal Transformation,

Quart. J Mech.	 Math. 15 (1962), 35-42.

2. P. P. Belinskii, S. K. Godunov, and I, K. Yanenko, The Use of a Class of

Quasiconformal Mapping: to Construct Difference Nets in Domains with

Curvilinear Boundaries, USSR Comp. Math. Math. P; s. 15 (1975), 133-144,

3. S K. Godunov and G. P. Prokopov, On the Computation of Conformal Trans-

formations and the Construction of Difference Meshes, USSR Comb.  Math.

Math. Phys. 7 (1967), 89-124.

4. C. W. Mastin and J. F. Thompson, Discrete Quasiconformal Mappings, Z.

An ew. Math. Phys. 29 (1978), 1-11.

5; C. D. Mobley and R. J, Stewart, On the Numerical Generation of Boundary -

Fitted Orthogonal Curvilinear Coordinate Systems, J. Comp. Phys. 34 (1980),

124-135.

6. S. B. Pope, The Calculation of Turbulent Recirculating Flows in General

Orthogonal Coordinates, J. Comp. Phys.  26 (1978), 197-217.

7. P. N. Swarztrauber and R. A. Sweet; Efficient, Fortran Subprograms for the

Solution of Separable Elliptic Partial Differential Equations, ACM Trans.

Math. Software 5 (1979), 352-364.

8. S. M. Yen and K. D. Lee, Design Criteria and Generation of Optimum Finite

Element Meshes, in Lecture Notes in Physics 90, pp. 579-586, Springer-

Verlag, Berlin, 1979.

9. J. Weisel, Numerische Ermittlung Quasikonformer Abbildungen mit Finiten

Elementen, Numer. Math. 35(1980), 201-222,

a

i

F

s

x



ORIGINAL PACs ^1'

OF POOR QUAI-1*9

0

110)

0

Figure 'I	 Quasiconformal grids for simply and doubl y-connected regions,
a = I, b	 1/2, c = 5/4.

Figure 2. Quasiconformal grid for 'the solution of elliptic equation.
a	 c - 2 / v73-, b--1/Y'-3 .
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Figure 4. Conformal grids on subsets of a paraboloid, torus, and bicubic surface.
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