
NASA Contractor Report 172434

ICASE REPORT NO. 84-39 NASA-CR-172434
19840025041

ICASE _. _.2_(L .... .... : :- _'-'_" "_

s'

-j

NUMERICAL SOLUITONS OF ACOUSTIC WAVE

PROPAGATION PROBLEMS USING EULER

COMPUTATIONS

S. I. Hariharan

Contract No. NASI-17070

August 1984

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and LANGLEYRESEARC_,3kr'_TER
Space Administration LIBRARY,r_IASA

Langley Research Center HA,_,_PTON,VIRGINIA
Hampton.Virginia 23665





NUMERICAL SOLUTIONS OF ACOUSTIC WAVE PROPAGATION

PROBLEMS USING EULER COMPUTATIONS

S. I. Hariharan*
University of Tennessee Space Institute

Tullahoma, Tennessee 37388
and

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center, Hampton, VA 23665

Abstract

This paper reports solution procedures for problems arising

from the study of engine inlet wave propagation. The first

problem is the study of sound waves radiated from cylindrical

inlets. The second one is a quasi-one-dimensional problem to

study the effect of nonlinearities and the third one is the study

of nonlinearities in two dimensions. In all three problems Euler

computations are done with a fourth-order explicit scheme. For

the first problem results are shown in agreement with

experimental data and for the second problem comparisons are made

with an existing asymptotic theory. The third problem is part of

an ongoing work and preliminary results are presented for this
case.
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I. Introduction

A considerable amount of work has been done in the past to

understand acoustic wave propagation problems. They occur in

several situations such as sound radiation from engine inlets,

exhausts and underwater acoustics. In this paper we are

primarily interested in the problems arising from engine inlets,

but the methods we develop here have the applicability to

underwater acoustics problems too. These type of problems have

two parts. The first one is the inlet wave propagation and the

other is the radiation. Both have complex wave structures due to

nonlinearities. One likes to calculate the sound pressure field

both inside the inlet and in the atmosphere. This can be

accomplished by solving both parts together, which becomes

computationally complex, or by a coupling procedure by solving in

the inlet and then in the atmosphere separately. A great deal of

engineering literature exists on this subject, in particular for

linear problems. This paper is intended to report a sequence of

successes of Euler computations of both linear and nonlinear

acoustic wave propagation from inlets. It turns out this is a

natural way of doing these calculations, since the field

equations are obtained from Euler equations.

The difficulties in this approach are mostly attributable to

treatment of boundary conditions. Particularly, the difficulties

arise when one wants to prescribe boundary conditions

numerically. It is known in linear wave propagation problems

that it is difficult to prescribe farfield boundary conditions
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numerically. The corresponding asymptotic conditions are

Sommerfeld's radiation conditions which guarantees no reflections

in the far field. In reference 2 the asymptotic behavior of the

outgoing waves was used to extract a family of higher-order

conditions. This holds in time domain as well as in frequency

domain. In the frequency domain farfield conditions can be

simulated by several methods. One such method is to combine

integral equation solutions which is obtained in the farfield and

solve acoustic equations in the near field. 7 An exact version of

a similar procedure in the context of nonlocal boundary

conditions is available in reference 9. There is another idea in

which the numerical scheme follows the wave pattern and is called

the wave envelope method. I In the time domain the work of

reference 2 seems appropriate. A first-order method from the

family of the radiation conditions of this work is implemented

for the problem of sound radiation from cylindrical inlets which

is discussed in Section III. This problem we considered in the

linear context, but we solved the problem inside the inlet and in

the atmosphere simultaneously.

As far as nonlinear problems are concerned, we considered

models of the inlet and solutions subject to the fact that the

sound does not reflect at the open end of the inlet. The goal

here is to examine if one can attenuate sound at the exit section

subject to area variation of the inlet, mean flow Mach number and

the sound source strength. A combination of these three

parameters can be used to reduce noise from engines and these
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facts were demonstrated in the last two decades experimentally.

In this case we face a different nature of boundary conditions

problem. We desire no reflection of acoustic waves at the exit

section of the inlet. The field equations are nonlinear and the

author is not aware of any nonlinear condition that will dictate

no reflection for our model at the open end. The procedure for

this class of problems discussed in Sections IV and V are due to

linearization of the equation near the open of the inlet. In

these linearized equations one can obtain incoming and outgoing

characteristic variables and on the open end the incoming

variable will be simply set to zero to obtain an approximate

condition. Such a procedure becomes equivalent to specifying an

impedance condition. We consider in Section IV a quasi-one-

dimensional model and in Section V a strictly two-dimensional

model.

In all three classes of problems discussed here we used a

fourth-order accurate scheme which is discussed in the next

section. This scheme provided better results than other methods

that we tried. In particular for the quasi-one-dimensional model

(Section IV), a spectral method with Chebyshev polynomials that

we tried became very expensive. This was due to the fact that

the Chebyshev points are concentrated near the end points of the

inlet and as a result the calculations were inaccurate because

the essential nonlinearities are at the center of the inlet.

Multidomain technique is an alternative, but it is cumbersome in

our situation to implement. Hence, we believe that the fourth-

order method is superior for this class of problems.
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The plan of the paper is as follows. In Section II we give a

description of the fourth-order method and its usage in higher

dimensions. Sections III, IV, and V contain the description of

each problem under consideration. Finally, in Section VI we

present some numerical calculations.

We omit derivations of the field equations that we solve in

our discussions and we refer readers to references 4 and 5. The

derivation of field equations of the problem V will be reported

in a forthcoming paper.

II. Numerical Scheme

As stated in the introduction the scheme used here is an

extended version of MacCormack's method and is developed in

reference 3. To provide a brief description let us consider a

single equation of the form

ut + fx = h. (2.1)

Let xj (i ( j (N) be equally spaced nodes in the computational

domain. Define forward and backward flux difference operators by

P_.(f)= 7f. - 8fjeI + fj£2" (2.2)3 3

Then the scheme has four steps. From a time nat to (n+_2)At

it has a backward predictor and a forward corrector
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(i) = un ap-(fn) + 8h(n)
uj J - 3 J

(2.3)

Un+I/2= 1/2 Uj jj + + aP f + 8h .

In the next At/2 time-step it is changed to a forward predictor

and a backward corrector stage as follows:

u!l) = un+ 1/2 + ap+ fn+ 1/2 + Bhn+ i/_J J J 3

(2.4)

where a = At/6Ax, 8 = At/2 and the superscript (i) denotes

predicted values. The other subscripts have the usual meaning of

values evaluated at the indicated time step. From (2.2) one must

notice that the fluxes are not defined at the end points, namely

at j = 0,i and at j = N+I, N+2. There one can use suitable

extrapolations. In all problems discussed here we used a third-

order formula as follows:

fj = 4fj+l - 6fj+2 + 4fj+3 - fj+4' (j =0, -i)

(2.5)

fj+l = 4fj - 6fj_1 + 4fj_2 - fj-3' (J = N, N+I)
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In more than one dimension we use operator splitting

technique. Let us consider the following two-dimensional system:

wt + F + G = H. (2.6)--x --y --

If Lx(At/2) and Ly(At/2) denote symbolic solution operators to

the one-dimensional equations

W t + F x : H 1

(2.7)

w t + Gy = H2.,

in which H I and H2 are suitable decomposition of H, then we

solve (2.6) by

n+ 1/2 n
w = Lx Ly w

(2.8)

n+l wn+ 1/2w = L L
-- y x --

It must be noted that the operators Lx and Ly change their

form for each At/2 interval according to (2.3) and (2.4). The

above splitting is known to preserve second-order accuracy in

time and does not change the spatial accuracy of the scheme. The

stability criteria is chosen in such a way that it is common for

both equations in (2.7).

The last aspect we consider here is the addition of

artificial viscosity to resolve shock waves for the problems
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considered in Section IV. The equations considered there are of

conservation forms of the nature

w t + f(w) x = 0. (2.9)

The artificial viscous term added to (2.9) is of second-order and

is of the form

where _ = 0(i) and p is the density. The difference form of

this is

" _-_ IPj+1 - pjll_j+l - _j)

Pj - Pj-II(_j - _j-l)] "
I

This is a second-order formula. Thus we settle for less accuracy

in the presence of shocks to obtain sharper shocks.

III. Problem of Sound Radiation From Unflanged Cylindrical Inlets

The problem studied in reference 4 is presented here. The

same problem has been studied experimentally15 and analytically

using Wiener-Hopf techniques.13 The goal here is to calculate

radiated sound in the atmosphere subject to a given acoustic

pressure field inside the inlet. Euler computations for this



-8-

problem were done only in the absence of mean flow. With mean

flow, which simulates flight situations, results are available in

reference 7. Here we present the equations and approximate

boundary conditions for sound radiation for an incident spin mode

'm' (m)0) of sound pressure wave at the left end of the inlet

which is cylindrical (see Figure i). The field equations in this

case are

_p + v + imw_ 0
8--_+ Uz + Vr r

Du 8P = 0
"FE + %-£

(3.i)

_v _p _
%-£ + %-f - 0

8w im
8--_+ _---p = 0

where (u,v,w) are components of acoustic velocity in (z,r,8)

coordinates and p is the acoustic pressure. For the plane wave

case m = 0 and w = 0.

The problem here then is to solve the system (2.1) subject

to an incident field of the form

i£mZ ikt
p " e JmIlm(r/a))e (3.2)

together with hard wall conditions on the inlet (duct) wall and

radiation condition in the atmosphere. In (3.2) lm are the

zeroes of the Bessell function J'(z) and a is the radius ofm
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the duct and £m are related to the wave number ka by

£m = /(ka)2 - 12 (3 3)m "

By considering the reflected waves travelling in the -z direction

at the left end of the inlet (3.1) and (3.2) give the following

inflow conditions

z (r)tP + _m u t = -2ike m Jm Im e (3.4)

8v Im J'mIlm (r/a) 1

8--t+ a JmIlm(r/a) ] ' p : 0. (3.5)

On the wall of the inlet

8P - 0 (3 6)8r

which is the standard rigid wall condition. The conditions on

the axis takes different forms depending on the incident spin

mode number. They are

v = 0 on r = 0 (m = O)

v + iw = 0 on r = 0 (m I) (3.7)

v = O, w = 0 on r = 0 (m) 2).
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Figure 1

In the atmosphere the sound radiates without reflection. Thus

one needs a nonreflective condition to be imposed at far

distances. As we mentioned in the introduction several families

of such boundary conditions for model problems are presented in

reference 2. To apply such boundary conditions one needs a

finite computational domain at distances larger than the region

where one desires directivity measurements. See Figure 1 again

for this purpose. Then at each point on these farfield

boundaries of computational domain one can construct locally a

circle of radius R from the origin (which is taken at the open

end of the duct and on the center line) and apply radiation

conditions of reference 2 at each point of the boundaries

71, 72 and 73. This condition can be shown for this

situation to be

_--_SP- (u cos u + v sin u) + p = 0, (3.8)



-ii-

where a is the angle measured from the z-axis to a point on

YI' Y2 or Y3"

With the above formulation and with the scheme given in the

last section the solution was started at a state of rest to

achieve a steady time-harmonic state. Time increments are

supplied from the inflow conditions. The solution for this

problem will approach the solution of Helmholtz's equation times

eikt. (It is immediate from (3.1) upon taking Fourier transform

with respect to time that one obtains the Helmholtz equation.)

The philosophy behind this procedure is known among

mathematicians as the limiting amplitude principle. The

advantage of doing this problems in time domain is that one does

not encounter the problem of resolving or calculating the

interior eigenvalues in the inlet.

IV. Quasi-One-Dimensional Model

In this section we describe a simplified nonlinear situation

which has been popular in analyzing the nonlinear wave

phenomena. We summarize the work appearing in references 5 and

6. This model is depicted in Figure 2. The duct corresponds to

the inlet situation and it has a constriction at the center.

There is a steady flow from right to left and the sound

propagates from a source upstream of this flow. The derivation

of field equations used here are available in reference 5. They

are
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qt + lUsq + qsu + Uq)x = 0 (4.1)

ut + UsU + + Cs --_--qq x = 0,

where q = Ap with A = A(x) in the area variation of the duct

u and p are acoustic velocity and density respectively. The

quantities with subscript s denote the steady mean flow

components and cs is the local sound speed in the flow. The

problem is then to solve (4.1) subject to

u(0,t) = f(t) (4.2)

B(q,u) (l,t) = 0 (4.3)

Acoustic
Source Termination

• . • • •-I 0 _ N.I N+2

I I I I I

0 0.25 0.5 0.75 1.0
Axial Position,x/L

Figure 2
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where in (4.2), f(t) denotes a source which varies in time. In

(4.3) B is a linear operator which will give no reflections at

the exit (i.e., at x = i). As mentioned in the introduction (4.3)

is derived upon linearization of (4.1). This process yields

(q)t+ A = 0 (4.4)
U X

where

(usA =

Cs2/qs

The eigenvalues of this matrix are

u + c and u - c
s s s s"

The first one is positive and the other is negative. These signs

give the characteristic directions of propagation. We form the

matrix T from the eigenvectors so that T-I A T is diagonal.

Then the characteristic variables are

(vl)= T-I . (4.5)

v2

This gives
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_ q + u
Vl qs cq

(4.6)

_ q + u
v2 qs Cs

where vI corresponds to the positive eigenvalue and v2 to the

negative one. At the right boundary vI is the inflow variable

which is set to zero to obtain the nonreflective boundary

condition (4.3), i.e.,

B(q,u)(l,t) - q u _ 0.
qs Cs

We remark here that for the fully two-dimensional problem

discussed in the next section a similar procedure is used to

obtain this type of boundary condition.

As far as the source term is concerned it is driven with a

harmonic input

f(t) = A cos t

where A is the amplitude of the source.

Once again the numerical procedure described in Section II

is applied to get accurate smooth solutions. For high Mach

numbers and high source strengths the artificial viscosity which

was discussed in that section was added to obtain solutions.

As mentioned in the introduction the goal in this class of

prob/ems is to study the attenuation of sound pressure level at

the exit section. It was experimentally observed that high
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source strengths and Mach number of the mean flow are possible

reasons. This is being demonstrated in this numerical solution

and a discussion is available in Section VI.

Using full Euler equations with different numerical scheme

(lower order) is available in reference 14. Their treatment of

boundary conditions are different from ours.

V. Two-Dimensional Model

The results obtained in the work described in the last

section motivated us to seek two-dimensional effects of

nonlinearities in duct wave propagation. This is part of our

ongoing work. Complete details of the solution procedure will be

reported elsewhere. Similar situations using a combination of

asymptotic theory and numerical solutions has also been studied

recently in reference 12. Our solution procedure is similar to

the one in the last section. The physical configuration of this

situation is depicted in Figure 3.

We begin here with the field equations we use to simulate

the nonlinear situation. These equations are derived from the

Euler equations of the perturbed flow and then subtracted from a

given mean state. Let u, v, p and p denote acoustic x

component velocity, y component velocity density and pressure

respectively. Let a subscript 's' on the quantities denote the

corresponding mean flow. Then the field equations are given

(5.1). The pressure field is determined from isentropic relation
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as given in (5.2).

B-_ %-_ Psu + UsP + pu + _ psv + VsP + pv = 0

2 0sU2 )_-_ psu + UsP + pu + -_ 2PsUsU + Usp + + 2UsPu + p

+ -_ PsVsu + PsUsv + UsVsP + Psuv + UsPV - VsPU = 0

(5.1)

_-_ psv + VsP + pv + @@--_PsUsv + PsVsu + UsVsP

+ PsUV + UsPV + VsPU )

@ ( v v + 2 + psV2 + 2v pv + p) = 0+ _-y 2ps s Vsp s

P = c2[Is + /_ (P/Ps)IP (5.2)

where c2 = yps/Ps is the local sound speed in the flow. The

system (5.1) has the form

@8 @F @G

@--_+ _-_+ @--_= 0. (5.3)

where _ = (81, 82 , 83 ) and
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81 = P

82 = psu + UsP + pu

B3 = psv + VsP + pv

u,v and p are determined by

82 - us 81
U =

Ps + B1

(5.4)

83 - vs 81V =
Ps + B1

and

P = 81 •

YJ

Inlet Wall
Inflow _ y= d(x) / i....--Termination

Boundary_ I Boundary

I Two-Dimensional

AcousticWaves IL._ MeanFlow

._L! _--x

I
I
I

Figure 3
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The area variation (see Figure 3) is included as follows. Let

the contour of the area variation be given by

y = d(x).

We introduce new variables

= X

y
n= , (5.5)

so that n = 1 will be the surface of the inlet. This change of

variables allows us to do the computation in a rectangle, but the

system (5.3) takes the form

-_ (dS) + -_ (dF) + -_ (G - _Fd') = 0. (5.6)

This system is solved together with an inflow condition and a

nonreflective condition at exit plane. On the axis the y

component of the velocity is set to zero and on the wall normal

component of the velocity is zero. To derive the nonreflective

condition at the exit plane we considered the variation of (5.6)

only in the x direction, i.e.,

(d_8)+ _ (dF) = 0. (5.7)
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This equation is then linearized to obtain characteristic

variables as indicated in Section IV. The nonreflective

condition that comes out of this procedure is

• 82 - (cs + us)81 = 0. (5.8)

For the source plane wave incident conditions are used which

means the pressure is prescribed. Upon linearization of (5.2) we

have

_ p(O ,y,t)
P 2

C
S

or

81 = p(0,y,t) (5.9)2
c
s

This completes the statement of the problem. Again the

numerical scheme described in Section II is applied to get a

sample solution reported in the next section.

VI. Discussion of Results

For the sound radiation problems discussed in Section III

the computations were performed on a Cyber-203 machine. The

typical grid sizes were 115 × 35. The source boundary was kept

at eight diameters (diameter of the cylinder) away from the

origin. The sound pressure levels were calculated on a circle at

distance 10 diameters away from the open end. The farfield
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boundary was chosen to enclose this circle. We compared our

results with a result of reference 12 which was done using

Wiener-Hopf technique. An experimental study to simulate this

situation is available in reference 15. In this experiment a

spinning mode synthesizer was used to produce both plane and

spinning mode waves. A sample result comparing our results with

both results of references 12 and 15 is presented in Figure 4.

0
-5

-I0(

-15
-20

-25

dB, Level -30 0 ExperimentalData(ref 15)
-35 [] SavkarTheory(ref 13)
-40 0 Numerical
-45

ka= 3.370
-50 Mode= 2
-55
-60
-65 I I I I I I I I I

0 I0 20 30 40 50 60 70 80 90
Angle,deg

Figure 4

This comparison was made for a wave number ka = 3.37 and for

the spinning mode number m = 2. In this result theoretical, ex-

perimental and numerical results are in good agreement, except
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near the origin for the experimental results. This is due to the

fact that in the experiment it is difficult to completely control

other modes and plane waves. For more comparisons we refer

readers to reference 4.

For the quasi-one-dimensional nonlinear model an attempt to

compare with an experimental result (reference 8) was made. The

comparisons were not so good. This is one of the reasons we are

interested in the two-dimensional model. However, comparisons

were made with the asymptotic theory of reference I0. The

procedure discussed in Section IV was applied to a particular

geometry called Crocco-Tsien duct. A detailed description of the

contour of the duct is available in reference ii. This contour

is designed in such a way that the mean flow accelerates linearly

to Mach number one at the throat. In particular for the examples

and comparisons given here the entry Mach number was -.50 and at

the throat -.90 (Mt). For this configuration the steady ohe-

dimensional gas dynamic equations satisfied by Ps and us can be

solved explicitly. The Euler computations are compared with the

asymptotic theory developed in reference I0. Since the typical

nonlinear situation arises at higher sound pressure levels and

Mach numbers approaching one in this theory the asymptotic

parameter was chosen on (i - IMtl), where Mt is the throat

Mach number. A comparison is shown in Figure 5 for a throat Mach

number -.90 and for a 140 dB source with a frequency 452 Hz.

Solid lines are the results of our computations. The others are

the asymptotic results at the station x/L = .75 and at

x/L = 1.00 respectively where L is the length of the duct.
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[] Asymptotictheory (ref 10), x/L = 0.75

-8 O Asymptotictheory(ref 10), x/L = 1.00

FiniteDifference

-4

u

(l_lMtl_Zo

%4

-.8 I I I I
7T/2 _T 3zr/2 27T

Time,t

Figure 5

Shock results are also in good agreement (see reference 6). As

far as the sound reduction at the termination section is

concerned a result for a higher sound pressure level (156 dB) for

the source is presented in Figure 6. In this case acoustic

shocks occur and cause energy loss and we can see at 5 dB sound

pressure level drop at the termination section.

Mt = O.90
180 -

Sound 170 -
Pressure

Level,dB 160

150 I
0 0.25 0.50 0.75 1.00

AxialDistance,x/L

Figure 6
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Around this source pressure level (156 dB) Figures 7 and 8 for

absolute value of throat Mach numbers increasing from .70 to 90

we have shown that the pressure level reduction is increasing and

the wave forms starting from a smooth stage and ultimately

becomes steeper showing the shock phenomena. Figure 7 shows

acoustic suppression and Figure 8 shows the distortion of wave

form. This validates the experimental suggestion that the

increase in the Mach number attenuates sound at the termination

or the exit section.

180 - MachNo.(Throat)
.70
.80

//_ .85
170 - .90

SPL

160

I50

140 I I I I
0 0.2.5 0.50 0.75 1.00

Axial Position, xlL

Figure 7

[
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3.0 - MachNo.(Throat)
30
.80
.85

1.5 - .90

\ !\

AcousticVelocity 7 ..
0 ;t / -. _.k__..l__- ..--;--j;

L, /

--//
-1.5

-3.0 I I I I
0 M2 _" 3;T/2 27r

Time,t

Figure 8

For the two-dimensional model we discussed in Section V we

needed a two-dimensional flow. To simulate a situation we

considered again the one-dimensional flow solution us and Ps

but we introduced the y component of the velocity according to

d'(x)
Vs(X,y) = _ y • (6.1)

This is valid (see reference 12) provided the variation of d(x)

is small. For the two-dimensional case the shocks were predicted

at low Mach numbers (reference 12). Here we present a sample

result that for a throat Mach number -0.85 and a 135 dB source.

Here we observed a i0 dB sound pressure with reduction on the
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axis at the termination section. The same pressure level

reduction was observed in an experimental study conducted at NASA

Langley (reference 8). As we mentioned before the full results

will be reported in our forthcoming paper.
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