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Abstract

A Chebyshev collocation spectral method, applied to hyperbolic

systems is considered, particularly for those initial boundary value

problems which possess only solutions tending to zero at large times.

It is shown that the numerical solutions of the system will also vanish

at infinity, if and only if, the numerical solution of a scalar equation

of the same type does. This result is then generalized for other

spectral approximations.
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In [I] the authors studied the spectrum of the Chebyshev collocation

operator for the heat equation, proving that it shares certain

properties with the spectrum of the corresponding differential

operator. Here we present similar results for spectral discretization

of hyperbolic systems.

Assume that the differential system, under given boundary conditions

has only solutions which decay in time to zero. To test whether the

numerical solutions behave in the same way, it is sufficient to check

the corresponding scalar problem with zero inflow:

I = u in Ixl < i, t > 0

ut x
(i)

u 0 at x = 1 .

If all the numerical solutions of (I) decay, so will the solutions of

the general system, provided that the spectral approximation contains an

even or odd forcing polynomial (to be subsequently defined).

In order to prove this statement we require the following two

lemmas:

Lemma I. Le____tp(x) be a real Hurwitz polynomial (i.e._ having only

roots with nesative real parts), and let _ be a complex number, less

than one in masnitude. Then the polynomial

q(x) = p(x) + Cp(-x)

is also Hurwitz.



-2-

Proof. Let us first recapitulate a few facts about positive

pairs. Two polynomials g(x) and h(x) are said to form a positive

pair if:

a. they have positive coefficients and real, negative and distinct

roots

b. their degrees are equal, or degree(h) = degree(g) -I

c. their roots interlace:

0 > u I > vI > u2 > v2 etc.,

where ui are the roots of g and v% the roots of h. The basic

theorem states that the polynomial f(x) is Hurwitz, if and only if,

f(x) = g(x 2) + xh(x2)

with g and h forming a positive pair.

Without loss of generality, let p have real positive coefficients;

write p using a positive palr as:

p(x) = g(x 2) + xh(x2) •

The polynomial q is Hurwitz, if and only if, Q(x) = lq(x) l2 is.

For Q we have the expression:

Q(x) = (pCx) + gp(-x)) (p(x) + _ p(-x))

= (I + 2 Re _ + Icl2)g2(x 2) + (I - 2 Re _ + l_12)x2 h2(x2)

+ x(2(l - l_12)g(x2)h(x2))
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and all its coefficientsare positive. Thus we must prove that:

G(x) = (I + 2Re g + Icl2)g2(x) + (I - 2Re g + l_12)xh2(x)

and

H(x) = 2(I - Igl2)g(x)h(x)

form a positive pair. After simplifying positive factors, it is enough

to show that

G+(x) = A2 g2(x ) + xh2(x)

and

H+(x) = g(x)h(x)

form a positive pair, where A2 = (I + 2Re g + Ig12)/(l - 2Re € + I_12).

As g and h form a positive pair and A is positive, the polynomial

Ag(x 2) + xh(x 2) is Hurwitz, and so is its square:

(Ag(x 2) + xh(x2)) 2 = A2 g2(x2 ) + x2 h2(x) + xI2Ag(x2)h(x2)).

By examining the last formula we recognize G+ and H+, which form a

positive pair, as required.
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Lemma 2. Let _(x), B(x) be polynomials of degree M. Then the

solution of

u = ± u + a(t)B(x) in t > O, Ixl < _

t x

(2)
u(x,t=0)= .(x)

is

t

(3) u(x,t) = ¢(x + t) + f a(e)B(x + 8)d6.
0

Proof. Take the Laplace transform

f(t) -------+_(T) = f e-Tt f(t)dt.
0

Then:

z_- € = _x+_B •

Since _ and B are polynomials in x one may invert formally the

operators (3 ±_x ) to obtain:

_(x,T) = _ (_l)k B(k)(x) "_(T) + _ (±l)k ¢(k)(x)k+l k+l
k=0 T k=0

k!B(k) (x) k__J__! _(k) (x) (±l)k
= _ _(z) k! (±l)k k+l + k! k+----_"

T k=0 T

k! is the Laplace transform of tk, we recognize the transform ofAs k+----_
T

the Taylor series for B(x ± t), _(x ± t). We can write:
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(4) U--(X,T)= a B(x _ t) + _(x± t)

and finally obtain (3) by interpreting the product above as the

transformof a convolution. Remark that the solution u(x,t) is itself

a polynomialof degree M in x, with time dependentcoefficients.

Considernow the first order hyperbolicsystem:

--u I fl

a. ut x

in x <I, t>0

b. v = -v
t x

(5)

I c. u = Rv at x = 1d. v = Lu at x = -I .

Here u, v are column vectors of dimensions m and n

respectively. These variables are coupled only in the boundary

conditionsvia the two constantmatrices L and R, of dimensions

m x n and n x m.

We shall study this system and its spectraldiscretizationsto prove

that if all the solutionsof (5) tend to zero for large times,so do the

numericalsolutions.

First, remark that there is decay in time, if and only if, both

matrices LR and RL are contractions,i.e.,
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flLRxll< llxl[,IIRLx]I< Ux]I

for all x _ 0, in some suitable norm. This is obvious if L and R

are interpreted as reflection coefficients, since u and v are

transported without change on characteristics between x = 1 and

x = -I.

Next we introduce the spectral approximation for system (5). Define

the Chebyshev points

x. = cos(_j/N) 0 _ j _ N
3

and collocate at the interior points Xl,X2"'',XN_l. This means that

the numerical solutions UN,V N are polynomials in x of degree < N,

subject to the boundary conditions (5c-d), which also satisfy the

differential equations (5a-b) at x = xj, 0 < j < N. Since the

polynomial TN'(X) vanishes at exactly these points and is of degree

N - I, we find that the spectral solutions satisfy:

_uN _uN

a. _t - _x + =(t)T_(x)

_VN _ _VN

b. _t _x + 8(t)TN(X)(6)

uN = RvN at x = 1

d. vN = LuN at x = -I



-7-

(we assume that the time evolution is not discretized). Using Lemma 2

we can solve (6a-b) in the form:

_(l+t) + c T_(l+t) = RI_(l-t ) + _ T_(l-t))

_(-l-t) + B TN(-I-t) = LI_(-l+t ) + c TN(-I+t))

or

m l B _

Im T_(l+t) -R T_(l-t) R_(l-t) - _(l+t)N

d_f A = _ r .def

-L T_(-l+t) In r_(-l-t) L_(-l+t) + _(-l-t)B
B w

(I m and I n are identity matrices of the corresponding dimensions.)

Since A and r are rational functions of T (as transforms of

polynomials) it is clear that _ and _ will be rational. This means

that the original functions a,B must be of the form:

%kt

(7) _ e Pk(t)
k

for some polynomials Pk; moreover the exponents %k are precisely the

poles of _ and _. These poles may be values where det IAI = 0, or

poles of the right-hand-slde. However, we have the expansion:

1 (A0 + A1 T + ...)A = .--g
T
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1

r =--_ (r0 + rI T + .--)
T

with M <N, since the degree of the coefficients is exactly N - I,

while the degree of r is < N. Thus T = 0, which is the only pole of

the rlght-hand-side cannot be a pole of _ or _ and we only have to

discuss the zeros of det [A[. Finally, since a function of the form

(7) decays, if and only if, ReXk < 0 for all k, we are left to prove

that the determinant of A vanishes only in the open left half of the

complex plane.

Introduce the polynomials of degree N - 1 p(T) and q(T), defined

by:

I

T_(l+t) =--_ p(T)
T

• I
TN(I-t ) ----ffq(T) .

T

It is easily checked that q(_) = P(-_)(-I)N-I; moreover T_ is even or

odd, satisfying

(8) T_(1) = (-I)N-I T_(-I) .

Using these symmetry properties, det [AI = 0 implies that

I pCT) -RpC-T)
m

(9) det = 0 .

-Lp(-_) I p(T)
n
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Then, the matrix identity

\-Lp(-T) InP(T)/\ 0 I \--Lp(T)p(--T) I p2(T) -- LRp2(-T)n n

shows that the solutions of (9) may be found among the solutions of

p(T) = 0 and the solutions of

det IP2(T)I n - p2(-T)LRI = 0.

This last equation simplifies to:

(I0) p(T)± _p(-_)= 0

where X is any elgenvalue of LR. We know that IXI < I, since LR

is a contraction. Moreover, in [2] it was shown that the polynomial

p(T) is Hurwitz. Using Lemma I, we conclude that the solutions _ of

(I0) have negative real parts, and = and B tend to zero at large

time, decreasing exponentially. This is sufficient to make all

solutions of (6) vanish as t - > _. Indeed, let u and v solve (5)

with polynomials of degree < N as initial values. Then the

differences u - UN, v - vN satisfy the equation (2) with _ = 0, and

the explicit formula (3) shows they decay; since u and v also decay,

by assumption, our assertion is proved.
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The proof we presented hinges on two facts:

a. p(_) is Hurwltz - exactly the required property for the

scalar equation (I).

b. formula (8) - a symmetry property of T_ .

Many other spectral approximations are possible - using different

sets of orthogonal polynomials, or Galerkln and z-methods instead of

collocation. All of them will replace (5) by an equation similar to

(6), the only difference being that T_ must be changed to another

polynomial (e.g., TN for the _- method). This polynomial is known

explicitly for any given spectral method and we shall call it the

forcing polynomial, since it appears as an inhomogenous term in (6). If

the forcing polynomial has the correct symmetry and the corresponding

scalar problem has only decaying solutions, the method of proof readily

extends to the general spectral method. We should also remark at this

point that the most usual Chebyshev dlscretlzatlon for ut = ux,

collocating at the interior points and at the outflow, has the forcing

polynomial (x+l)T_ (x), which is neither odd nor even, and thus is not

covered by our theory.

In conclusion, we summarize our results in the following

Theorem. Let the solutions of (5) decay to zero in time. Consider

a spectral approximation for (5) possessln_ an even or odd forcing

polynomlal_ such that the numerical solutions obtained by this method

applied to (I) tend to zero as time increases. Then the numerical

solution corresponding to the system (5) also tends to zero as time

increases.
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