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1. INTRODUCTION

A need presently exists for better low-frequency noise

reduction techniques. The fundamental methods for noise

attenuation ,such as transmission..loss or absorption are

good for high frequency noise but provide limited success

at reducing low-frequency noise. Analytical approaches to

noise control also prove more effective for evaluating high

frequency noise than low frequency noise. In order to

better evaluate and attenuate low frequency noise, new

analysis techniques are needed.

A low frequency noise problem that often confronts

noise control engineers in the transportation industries is

cavity 'boom.' Cavity 'boom' is characteristic of an acous-

tic resonance condition. The resonance occurs primarily as

the result of acousto-structural coupling between the cav-

ity and a compliant portion of the enclosing structure.

The structure by its motion excites one or more of the low

order acoustic modes. The source of the excitation is

r inherently difficult to identify and evaluate.

Although the frequencies of the resonant modes in an

acoustic cavity are determined by spectral analysis tech-

niques, the character of the acoustic mode shapes is not

a	 currently obtained experimentally. For example, the two-

microphone intensity method is ineffective for measurement

in reactive fields. A knowledge of the mode shapes, in

i
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F^
	 particular in terms of the particle motion, is advantageous

in selecting an optimum noise attenuation solution.

The primary objective for the research presented here

is the development of a procedure whereby the acoustic

modal parameters, natural frequencies and mode shapes, in

the cavities of transportation vehicles are determined

experimentally. Furthermore, it should be possible to

describe the acoustic mode shapes in terms of the particle

motion.

The well-known structural modal anlaysis techniques

have long been adapted to mini-computer based dynamic

analysis systems. A secondary objective for this study is

to tailor the acoustic modal analysis procedure to existing

mini-computer based spectral analysis systems. 	 J

r
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2. ACOUSTIC THEORY

i

3

2.1 Dynamic System Identification
s

a:

t

2.1.1

Harmonic excitation is often encountered in engineer-

ing systems. Although pure harmonic excitation is less

likely to occur than periodic or other types of excitation,

understanding the behavior of a system undergoing harmonic

excitation is essential in order to comprehend how the sys-

tem will respond to more general types of excitation. Har-

monic excitation may be in the form of a force or displace-

ment at some point in the system.

The frequency response method is a harmonic analysis.

A sinusoidal excitation is applied to a system and its

steady-state response is examined over a frequency range of
	 r

interest. For a linear system, both the excitation and the

system response are sinusoidal of the same frequency. For

a simple example, consider a damped, single degree-of-

freedom system subject to harmonic excitation, Figure 1.

f (t) l ^ m ^^
Figure  1.

X(t)
Single DOF System with Forcing Function
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The second -order linear differential equation of motion is

written as (1).

mx(t) + cx (t) + kx(t)	 f(t)	 2.1

where the forcing functs , on is given by

f(t) - F oejwt	 2.2

The excitation frequency, w, is sometimes referred to

as the driving frequency. By substituting equation 2.2

into equation 2 . 1 and dividing by m, the equation of motion

becomes

x•t +2Ct +w2x()	 F e st 	1— wt
	 2.3( )	 wx()n	 n	 m o 

where

wn ^Im = undamped natural frequency	 2.4

and

C	 2mc = damping factor 	 2.5
n

If a particular solution to equation 2.3 is assumed to be

of the form

x(t)	 Xe^wt	2.6

an expression for the response is found to be}

—	 Folk	 _;m

r`

I

r



t 5
r^tyy9ipa ^A/^	 pp f^dt	

t

OF POOR QUALITY 

k,

where

Fo/k
X -	 2.82{[1-(w/wn)2]2 + (2Cw/wn) 2 ) 1

and

-1	 2Cw/wn
tan	 2	 2.9

1-((J/wn)

represent displacement amplitude and phase angle.

The excitation its given by the real part of f(t) 	 [2].

Then, the response is given by the real part of x(t).

Therefore, the response will be regarded as the real part

of the complex quantity satisfying equation 2.3. 	 Thus, the

., steady-state res ponse is shown to be

F
° 
ejwt/k

x(t)	 = ReI
	

2.10

(w/wn)2 + 32Cw/wn`1-

By evaluation of equation 2.10, it is seen that the

response, x(t),	 is proportional to the force, 	 f(t).	 The

proportionality factor expressed in the frequency domain is

given by

H(w)

	

	
1/k	

2.11

1-(w/wn) +j2Cw/wn

Equation 2.11 is known as the complex frequency response.

The freq%:ency response represents the ratio of the response

to the excitation under steady-state conditions. Frequency

response method is a mathematical mechanism for character-

izing a dynamic system. It is noteworthy from equation

I

t

^o
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2.11 that if the driving frequency is near the natural fre-

quency, the magnitude of the frequency response is limited

only by the damping factor.	
L1

Detailed analysis of the frequency response for a 	 r

damped, single degree-of-freedom system appears in the text

and will not be addressed here (3].
r	 ^

2.1.2 Transfer Function

A fundamental concept employed by engineers for the
I

purpose of characterizing a dynamic, linear system is that

of system identification. As represented by the 'black

box' analogy, the engineer by subjecting a system to a

known input and recording the response can characterize the

system. The mathematical model defining the input-output

relationship of a physical system is termed the transfer

function.

By transforming the system excitation and system

response to a complex domain, denoted by the subsidiazy

f	 variable s, an exact expression for the transfer function

is obtained. Tf the system has a single input and single

output, the transfer function can be represented by means

of a block diagram as shown in Figure 2. When expressed it!

equation form,

X(s) - H(s)F(s)	 2.12

the transfer function can be defined as an operator.

k
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4.	 x	 Transformed

	

Transformed
Transfer

	

Input	 Function .._._^ Response

	

F(s)	 H(s)	 X(s)

	Figure 2.	 Bloch Diagram for a Transfer Function

In order to demonstrate the transfer function method

for system characterization, consider the system defined in

the previous section. If equation 2.3 is transformed to

the Laplace domain, the following expression results:

s 2X(s) + 2CwnsX(s) + w2X(s)	 m F( s )	 2.13
i

The system transfer function is found by rearranging equa-

tion 2.13 to the form	 f
r

{	 1

H(s) = p ( S )	 2	
m	

2	 2.14
s + 2Cwns + wn

c
By substituting j w for s in equation 2.14 and rearranging,

the following expression is obtained,

H(w) -

	

	 l/k	 2.15	 i
1-(w/wn ) +j2Cw/wn

It is noteworthy that comparison of equations 2.15 and

equation 2.11 prove them to be identical, the complex fre-

quency response.

It is evident that the transfer function method is

another technique to evaluate the frequency response data	 j

f.
t
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of a system. The transfer function of a complex system can	 r'

be determined from experimental data. Thue, ;a system can
k

be identified by data from a frequency response test.

2.2 Modal Analysis

An alternative method for characterizin g; a system's

dynamic behavior is by defining each of the system's com-

ponent modes of vibration. A discrete dynamic system has

as many natural frequencies and modes of vibration as

degrees of freedom. The general motion of the system can

be described by the superposition of the modes of vibra-

tion.

Modal analysis is dieffined as the process of character-	 r
izing the dynamics of a system in terms of its modes of

vibration. Each mode, is described in terms of three modal 	
T

parameters: an undamped natural frequency, a measure of

energy dissipation, damping, and a characteristic deflec-

tion shape, mode shape. A mode shape is a unique deforma-

tion shape that the system would acquire if excited solely

at the frequency associated with that mode. Determination

of the three modal parameters for the modes of a system is

s the task of modal analysis.
`f

'w

2.2.1 Analytical Modal Analysis

In order to mathemtically interpret the modal parame-

terse a simple structural model is analyzed. Consider a

linear, undamped system of n degrees of freedom represented

t
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by the differential equations of motion in matrix form [4]r

[m](^- (t)) + [k](x(t)) - (0)	 2.16

If solutions to the equation are assumed to be of the form

x i (t) - uieXt	 2.17

and

x'i(t) - X
2uie Xt - X2xi(t)	 2.18

then by substituting into the equations of motion and rear-

ranging, the following equation results:

(X 2 (m] + [k]](u) - (0)	 2.5.9

Equation 2.19 is a set of simultaneous algebraic equations

in u, the unknowns being the u's and X 2 . For a nontrivial

solution, (u) 0 0, the determinant of the coefficients must

equal zero. The determinant of the coefficients is a poly-

nomial in X
2
. The roots of the polynomial are called the

eigenvalues. If the eigenvalues are imaginary, then the

modulus of the eigenvalues are equal to the natural fre-

quencies of the system.

z
The solution vector, (u), corresponding to a particu-

lar eigenvalue is termed an eigenvector. The eig.envectors

are also referred to as modal vectors and represent physi-

cally a deformation pattern of the structure for a natural

frequency of vibration. Since equation 2.19 is homogene-

ous, the solution for the eigenvectors is not unique. The

vectors are unique only in the sense that the ratio between

t

.:.^•̂ -!r =^	 y ^:r -rte•
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any two elements in the vector is constant. Hence, the
N	

shape of the natural modes is unique, but not the ampli-

tude. The process of adjusting the elements of the natural

mode to render the amplitudes unique is normalization, and

the resulting vectors are referred to as normal modes.

The natural modes satisfy a property called ortho-

gonality. The statements of orthogonality with respect to

the mass and stiffness matrices are as follows:

(u)r(m](u)s - (0)	 2.20

and

(u)r[k](u)s M (0)	 2.21

where r and n speci_r"y ei genventors of different eigenvalue

solut k+*^.i. The proof of the orthogonality of the modal vec-

6.
,

tote appears in the text and will not be demonstrated here

[5].

The orthogonality property serves a useful purpose by

allowing the equations of motion to be decoupled. For

example, the modal matrix can be formed fzom the modal vec-

tors in the form

[u] - [(ull{u12 ... (u) n ]	 2.22

v
The modal matrix functions to transform the mass and stiff-

ness`	 ness matrices to the generalized mass and stiffness

matrices,

[u]t[ml[ul - [ M l	 2.23

p

G

t
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and

<re [u]t[k][u] - [K] 2.24

The general.ed mass and stiffness matrices are both diago-

nal matrices due to the transformation.

If a new coordinate system is defined by the transfor-

mation

W _ [u]{q}	 2.25

then, substituting into equation 2.16, the equations of

motion take the form

[m][u]{q	 }	 +	 [k][u]{q}	 -	 {0}	 2.26

Pre-multiplying equation 2.26 by [u] t and substituting from

equations 2.23 and 2.24 reduces the equations of motion to	 TM

^. [M]{q	 }	 +	 [K]{q}	 -	 {0}	 2.27;

Since the general mass and stiffness matrices are diagonal,

the coordinate transformation has completely decoupled the	 k

equations of motion. 	 Each equation in equation 2.27 is

' equivalent to a single degree of freedom and is easily

solved by the method of Section 2.1.1.

The process of reducing a set of coupled system equa-f

tions to an uncoupled set by coordinate transformation and

performing analysis in the modal space from an nalytical

lI sense is known as modal .nalysis.	 The same mathematical

principles can be applied to systems with forcing functions

or damping.	 When the damping is proportional to mass and

yr
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stiffness, the resulting coordinate transformation results	 `s

*#6 in a set of uncoupled force response relationships exactly

of the form of equation 2.3.

2.2.2 Experimental Modal-,Analysis

With thn advent of the digital computer and the intro-

duction of an efficient Fourier integral algorithm in 1965,

experimental modal analysis has evolved into a frequently

used and important engineering analysis tool. The theory

governing structural modal analysis will be briefly 	 F

reviewed as background for application to acoustical modal

analysis.

Recalling the damped, single degree of freedom system
v
i

from Section 2.1, it can be demonstrated that the transfer

function, equation 2.14, can be rewritten to the form
n
ii

H(s) -

	

	
1/m *	

2,28
(s-d)(s-d )

where d represents the pole of the transfer function and is

given by

d - Cwn	 jwnX1l- C 2 	 2.29

and * is the complex conjugate operator (6]. Expanding

equation 2.28 in partial fraction form results in	 g

R	 R
H(s) .	 lam *	

^^-d) +
	 2*	 2.30

( s-d) (s-d )	 ( s-d )
The residues of the transfer function are defined by the

constants R1 and R2 . The residues are directly related to

k-

-	 k
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' the amplitude of the response function. 	 It is found by

solving equation 2.31 that Rl and	 R2 are a complex conju-

gate pair.	 Thus, equation 2.30 becomes

,r
y(s)	

(sRd)	
+	 R)	 2.31

(s -d*)

The concepts of poles and residues associated with a

transfer function, are integral to experimental modal

i
analysis and will be recalled later.

F
An alternate method for determining the mode shapes

w from the eigenvalue problem of the previous section is by
[

the use of an adjoint matrix [7].	 If.. equation 2.19 can be

reformulated to the expression given by

f(k]-1[m]-?2[I]] fu) 	 {0}	 2.32

then an additional matrix is defined by

LB(X)]_
	 L[k]-lLm]	 -	 X 2 [I]]	 2.33

LFrom the identities

LB(^)]LB(^)] - 1 	 [I] 2.34

and

l jBC^)l 2.35
Where [(C(X)]	 is the adjoint of matrix	 [(B(X)], the eigen-

value problem for solution, r, takes the form

[B(Xr)][C(Xr)] -	 i B ( X r ) IL I ] 2.36

; 7 If Xr	 a root of the characteristici s equation 2.32,	 then

E



14

IB(X r )I M 0	 2.37

and equation 2.36 becomes

[B(Xr)][c(xr)] - [ 0 ]	 Z.38

Rewriting equation 2.38 using only the J-th column of

MY]] yields the equation
[B(xr)] {C(xr)}j - {0}	 2.39

Equation 2.39, like: equation 2.32, represents a set of

homogeneous equations in u which determine each value to

within an arbitrary constant. Thus, vector {C(a r )} j and

{u} are proportional and represent the mode shape associ-

ated with the eigenvalue r determined from the characteris-

tic equation.

Similarly, consider the Laplace transform of equation

2.16 with the addition of forcing functions

[[M]82 + [k]]{X(s)} - (F(s))	 2.40

By substituting

[B(s)] = 1[m]s 2 + [k]J	 2.41

into equation 2.40, the equations of motion become

[B( s) ] {X(s) } - {-F(s))	 2.42

where [B(s)] is referred to as the system matrix. Pre-

multiplying equation 2.42 by [B(s)] -1 yields

[B(s)]-1{F(s)) = {X(s)} 	 2.43

By specifying the relationship between the transfer

^

f

g
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` function matrix and the system matrix, r'

n^
CH(s)]	 (B(s)] -1 ' 2.44J B (s^^

the system responses are related to the system forcing

functions through the transfer function matrix. 	 Evaluati,.g

the adjoint matrix for the eigenvalues determined from the

characteristic equation, it is apparent that the transfer

function matrix contains both the eigenvalues and the

eigenvectors to a proportionate constant.

The method for uncoupling the equations of motion by 6'

the adjoint matrix when applied to systems with propor-

tionate damping results in the same adjoint matrix as for

the undamped system.	 The poles of the characteristic equa-

tion are no longer the undamped natural, frequencies, how- 1!

ever, and are given in the form of equation 2.29.

The transfer function matrix is represented in the I'

form (S]

H11(s)	 H21 (s)Hrl(8)
(s)H

22 (s)	 Hm2(s)	
2.45

12

H1m (s)	 H2m (s)	 H	 (s)

where m is the number of degrees -of-freedom.	 Substituting

equation 2.45 into equation 2.43 and multiplying through

yields

H1l(s)Fl(s) +...+ H lm (s)Fm (s) - Xl (s)	 2.46

7
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Hml (s)F l (s) +...+ Hmm(s)Fm(s) - Xm(s)

If in equations 2.46 all forcing functions are set to zero

except F l (s), then the individual transfer functions become

Xl( s)
Hll(s)	 Fl(s)x.47

X2(s)
H21 (s) = Fl(s)

Xm(s)
Hml (s)	 F1(s)

Thus, the first column of the transfer function matrix

relates the response at all m degrees-of -freedom to an

excitation at degree -of-freedom 1. It is noteworthy that

all the individual transfer functions have the same chara-

teristic equation.

Each of the transfer functions in equation 2.45 can be

represented as the sum of the transfer functions for single

degree-of-freedom systems in the form of equation 2.31,

n	 R (a,b)	 R*(a,b)
Hab (s) = E	 s-d	 + r *	 2.48

r=1 (	 r)	 (s-dr)

where Hab ( s) relates the response at degree -of-freedom a to

an excitation at degree -of-freedom b, and n is the number

of roots to the characteristic equation. Thus, any of the

transfer functions in equation 2.47 can be used to find the

complex poles of equation 2.48. The transfer function

matrix is now expressed in the form

.,,r., .^.3^+."^—S•y::^.̂^:.+ ,mac . ^;—	 ,^. ^ ^.
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n	 [Rr ]	 [Rr ]
[H( s )]	 E	 (s-d ) +	 *	 2.49

r-1	 r	 (s-d * )

Comparing equation 2.49 and equation 2.44, it is apparent

that the residue matrix is equivalent to the adjoint

matrix. From the definition of the system adjoint matrix,

the residue matrix, [Rr ], evaluated at the natural frequen-

cies is proportional to the mode shapes by the relationship

[g,r ] - acr ( ur )(ur ) t	2.50

Thus, each column of the residue matrix evaluated at the

natural frequencies is proportional to the eigenvectors.

The three modal parameters , wr , C r,, and ur , are found from

a single row or column of the transfer function matrix.

2.3 Acoustical Modal Analysis

2.3°.1 Literature Surve

The analytical and experimental study of reactive

acoustic fields and resonant modes has progressed, and

record exists in the literature. A survey of recent

developments will contribute to defining the direction of

this research.

	

`	 In some early work, Gladwell applied variational prin-

ciples to formulate certain acoustical and structural con-

figurations [ 9]. Later, Craggs considered variational
^a

statements in the context of finite element representations

	

t	 for the coupled structural -acoustic problem [10]. A

comprehensive structural -acoustic theoretical model was

0

r

^(J)
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developed for interior sound fields using modal procedures
f^

	

by Dowell, Gormp.,tin, and Smith (11] . The sound fields which

are created by arbitrary wall motions were modelled using 	
n

Green's Theorem. Petyt, Lea, and Koopmann developed a fin-

ite element method for determining the acoustic modes of

irregular cavities (12]. In the same time period, Wolf,

Ne£ske, and Howell combined Dowell's modal procedures with

both structural and acoustic finite element analysis to

study automobile passenger compartments (13J.

The finite element method lends itself readily to the

acoustic problem, and many engineering problems are being

analyzed by this method. Finite element modeling does,

however, suffer two major disadvantages. Most acoustic

finite element computer programs are very large in size,

and thus require large computers with ample memory in which 	 li
!F

to operate. In order to obtain the required accuracy,

models containing several thousand degrees-of-freedom are

not uncommon. A second disadvantage of finite element

modeling is the error due to the use of an inadequate

number of elements or unrealistic boundary conditions.

It is particularly true in structural analysis that

frequency response can be closely approximated using a

truncated set of the total set of modes (usually the lower

frequency modes). By using the procedures of equations

2.24 through 2.28, a significantly smaller approximate

model can be developed. Thus, modal analysis where

k..
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acoustic and/or structural modes are found either experi-

mentally or analytically and coupled to build an overall

structural-acoustic modal model are very popular. 	
ri

The technology for experimental modal analysis of

acoustic fields is lagging both finite element modeling and

experimental structural modal analysis. The majority of

the research performed has been for the one-dimensional

problem. Ibrahim and Mikulcik devised an experimental

technique by which standing wave parameters in gas piping 	 e
systems could be identified in the time domain [14]. Two

pressure taps were made in an impedance tube. The tube was

closed at one and and excited by a sweeping sine wave at

the opposite end. The modal parameters were computed from

the decay rates and amplitude ratios between the micro-

phones. Experimental results agreed well with the theoret-

ical results obtained from the undamped, plane wave equa-

tion.

A technique for experimental modal analysis of cavi-

ties involving Fourier analysis was proposed by Smith [15].

Evaluation of a one-dimensional tube with a small volume

velocity source as the input showed that the response sound

pressure is in-phase with the source volume velocity only

at a cavity resonant frequency. Smith determined the

acoustic pressure mode shapes by measuring transfer func-

tions for several microphone locations and plotting the

magnitude and phase at each resonant frequency.

t

0
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In the results of a recent study, Mehl contended that

background noise in pressure mode shape measurements was

significant [16]. Mehl described numerical techniques for

eliminating the effects of background noise in precise

measurements of normal mode frequencies and damping.

Resonant standing wave measurements were fitted to theoret-

ical resonance formulas.

Neiter and Singh describe an acoustic modal analysis

experiment employing existing software for structural modal

analysis [17]. They describe the inherent characteristics

of the acoustic system in terms of an acoustic impedance

matrix, Z, by the relationship,

{p(s)) - [Z(s)](Q(s))	 2.51

where Q is the complex volume velocity source and p is the

complex pressure response.. By curve-fitting the measured

impedance matrix to a frequency response function similar

to equation 2.48, the modal parameters were extracted. The

experimental results agreed well with a theoretical model

Possessing no damping.

In a report for research performed at Ray W. Herrick

Laboratories, Byrne describes a procedure for experimen-

tally determining, in terms of particle motions, the shapes

of the low-order acoustic modes in three-dimensional enclo-

sures (18]. Transfer functions were measured relating

acoustic pressure response at an array of points in the

rro
14

"77

13

t1t

j r{

16
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IS	 enclosure to a volume velocity source. The pressure mode

shapes were described discretely by the peak amplitudes

extracted from the transfer functions. A differentiable

function was curve-fit to the discrete pressure amplitudes.

The gradients of each approximate pressure mode function

i	 are determined and related to particle motion by the invis-

cid force equation,

po at . -op	 2.52 a

Thus, Byrne was able to describe the acoustic mode shapes

in terms of particle motion.

2.3.2 Research Di.regtion

The primary objective for the research presented here

is the development of a procedure by which the three-

dimensional modal response of an acoustic cavity is deter- 	 !
i'

mined experimentally. It is advantageous to describe the

acoustic mode shapes in terms of particle motion for exci-

tation source identification. In light of the research

survey presented in the previous section, the existing
a

technology founded on the theory of modal analysis will be

applied to the objectives. In this section, the research

direction for application to the objectives is outlined.

A method for extracting the modal parameters of a

mechanical system from the complex frequency response

AWA
Me matrix is outlined in the first two sections. The system

displacement response is related to the forcing functions

k,

f
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.,	 by the system matrix as given in equation 2.42. The analo-

gous acoustical relationship for determining the complex

pressure response due to a volume velocity source is

expressed by equation 2.51. By assuming a

system, decoupled modes, and no background

vectors are obtained directly from the res

measured frequency response functions.

The frequency response method assumes

ter system with a modal vector element for

lightly damped

noise, the modal

idues of the

a lumped parame-

each degree of

freedom. The mode shapee associated with the natural fre-

quencies of a continuous system, however, are waveforms.

For an acoustic system the waveforms correspond 'to standing

waves. When the frequency response method is applied to

continuous systems, the modal vectors become a discrete

representation of the waveform deflection shapes. A func-

tion which approximates the mode shapes is obtained by per-

forming a curve-fit procedure to the modal vectors. In

acoustics, if the approximate pressure mode shape function

is differentiable in spa ,;e, then the mode shapes can be

described in terms of particle motion by the inviscid force

equation, equation 2.52.

In order to satisfy the objective for the development

j	 of an acoustic modal analysis procedure, the directions for

TJ	 research are outlined. The structural modal analysis sys-

tems commonly in use are all-inclusive mini-computer based

ARM
	 systems. An additional research objective to be considered

tt	 y
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is to tailor the acoustic modal analysis procedure includ-

ing the curve-fit technique and graphic display to a mini-

computer based spectral analysis system. The objective is

accomplished by minimizing computation and storage space.

Thus, the development of the acoustic modal analysis pro-

cedure will be performed on an existing spectral analysis

system.

2.3.3 Theoretical Model

A theoretical model provides a reference for develop-

ing and verifying the acoustic modal ,analysis procedure.

The model is obtained from solutions to the well-known

acoustic wave equation, expressed in vector notation in

terms of acoustic pressure as follows C19):

72p^ 18^	
2.53c2 at2

Equation 2.53 i s the linearized, losslees wave equation for

the propagation of sound in fluids. The general harmonic

solution to the wave equation is of particular intere3t.

If a solution in three-dimensional Cartes^An coordinates of

the form,

p(x,y,z,t) - F(xt y , z ) eXt	2.54

is substituted into equation 2.53, then by a separation of

variables procedure the s,:lition is found to be (20)

p(x,y ► z,t) - X(x)Y(y)z(z)eXt
	

2.55

where

.

i,	 i
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i

X(x)	 A cos k x x + B sin kxx	 2.56

X(y)	 C cos kyy + D sin k 
y 
y

Z(z) - E cos k z z + F sin k z z

In order to model,an acoustic cavity, it is necessary

to specify the domain boundary conditions. 	 Acoustic cavity

xezonances are indicative of boundaries of relatively high
r,
►
k

acoustic impendance.	 For the free response problem, the

acoustic cavity is assumed to be of dimensions

Lx by L 	 by L 	 with orthogonal boundaries of infinite

acoustic impendance located on ' the major axes and at

Lx , Ly , and Lz .	 By fundamental acoustic principles at the

boundaries,

^!d

4 
n'u x 0	 2.57

n'op = 0	 2.58

F

Thus, the boundary conditions bec one

(x
8 - 0	 2.59

x-0,Lx
i

(y)y-o,Ly r 0

 0
(AR )alz=0 ► Lz

When the boundary conditions are applied to the general

harmonic solution, the following expession results

laxm_Y	 n7rz	 ? mnt ,
Plmn(X ► Y ► z ► t)	 Plmncos E-- cos L	 cosL	a	 b,. so

x	 y	 z
r

t	 k"y
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The symbol X represents the eigenvalues, and the coeffi-

cient, Plmn, is complex. The absolute value of imaginary

eigenvalues are equal to the natural frequencies and are

given by the relationship

Wlmn - c7'[(L1 ) 2 + (Lm ) 2 + (Ln ) 2 1 1/2	 2.61
X	 y	 z

where 1, m, and n are the respective mode numbers.

The solutions to the theoretical model, gi ,,^en by equa-

tion 2.60, represent three-dimensional standing waves in a 	 F

rectangular cavity. In order to characterize the system by

modal analysis techniques, the response is expressed as the

sum of the individual.pressure mode shapes in the form

	

00	 00	 ao	 i

	p(x ► y ► z ► t) - E	 E	 E P wcos 1nx
1-0 m-0 n-0 lmn	 Lx

i

^	 t
cos L--1-' cos Lnz 

a lmn	 2.62
y	 z

By determining the gradient of the individual, pressure

mode functions with respect to the three coordinate direc-

tions, the particle acceleratior, associated with the

respective pressure mode is found via the inviscid force	 F

equation, equation 2.52. The gradient operator in Carte-

sian coordinates is given by

o - ax	 y + az	 2.63

The partial derivative of the pressure mode function, equa-

tion 2.60, with respect to the x coordinate is found to be

k
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-L

a (17X) glmn in Lx
cos LMMY 

cos Mr— 

^
a 

lmnt
	

2.64

y	 z

The partial derivatives of the pressure mode function with

respect to the y and z coordinates are found similarly.

n
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1

3. CURVE-FIT TO THREE-DIMENSIONAL DISCRETE DATA

From the frequency response method presented in the previ-

ous section, the modal vectors are obtained directly from

the residues of the frequency response functions. The

modal vectors resulting from the acoustic modal analysis

procedure established in Section 2.3.2 discretely represent

three-dimensional pressure standing waves. Functions which

approximate the acoustic mode shapes are obtained by per-

forming a curve-fit in space to the modal vectors. In this

section a procedure for fitting a function to three-

dimensional discrete data is developed.

An objective for the acoustic modal analysis procedure

is to describe the acoustic mode shapes in terms of parti-

cle motion. From the previously cited inviscid force equa-

tion, it was established that the acceleration of a gas

particle is given by the negative of the gradient of the

pressure field at the location of the particle. Therefore,

the particle acceleration mode shapes are obtained if the

acoustic pressure mode shapes are described by a differen-

t	 tiable function. An objective for the curve-fit procedure

s is to derive an approximate pressure mode function which is
1

differentiable with respect to the spatial coordinates.

The character of the acoustic mode shapes in an enclo-

sure is directly dependent on the dimensional shape of the

cavity and the surface boundary conditions. Thus, the most

0
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that can be assumed concerning the pressure function

describing an acoustic mode in an enclosure is that the

shape is sinusoidal in space, due to the physical nature of 	 n

sound. In addition, each data point in the modal vector is

subject to experimental error which, for acoustic measure-

ment, may be relatively large in magnitude. It is inap-

propriate to match an interpolating function exactly at the

data points since no implicit assumption can be made con-

cerning the accuracy of the data. The pressure mode func-

tion, therefore, must be assumed arbitrary. Thus, the

objective is to find the 'best' curve which represents data

that are subject to error. The criterion for goodness of

fit is to some degree arbitrary, although the .least squares

criterion is most common and will be applied to the acous-

tic problem. The least squares procedure offers the bene-

fit of a polynomial interpolating function which is numeri-

cally differentiable.

3.1 Least Squares Procedure

In order to define a three-dimensional acoustic

domain, the Cartesian axes system is specified for this

study. Thus, the function describing the acoustic pressure

field associated with the r th acoustic mode in an enclosure

is pr (x,y,z). The procedure objective is to derive an

approximate function to p r (x,y,z) which is differentiable

with respect to the spatial coordinates. If the approxi-

mating function is specified to be h r (x,y,z), then th:?

k.
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following relationship holds

pr (x,y,z) - hr (x,y,z) + e(x,y,z)	 3.1

The term e(x,y,z) represents error associated with the fit.

The least squares procedure developed by Gauss can be

stated verbally as, 'the sum of the squares of the residu-

als of the differential equations should be minimum at the

correct solution' (21]. The least squares error norm

expressed mathematically for a function in three dimensions

is as follows (22]

Ile 112 = fffe(x,y,z) 2dxdydz	 3.2

where from equation 3.1

e(x,y,z) - pr (x,y,z) - hr (x,Y,z)	 3.3

It is now necessary to expand the approximating function

into a series of interpolating functions and constants

hr (x,y,z) - c 1o l (x,y,z) +...+ c i (P i (x ► y,z)	 3.4

where i represents the order of the function. The error

term is now given by

e(x,y,z) - p r (x,Y,z) - c 1O 1 (x,y,z) -...

- c i O i (x,Y,z)	 3.5

and the least squares error norm becomes

H12	 1111Pr - clo l -...- ci(Pi] 2dxdydz	 3.6

In order to complete the least squares procedure and

minimize the error associated with the curve fit, the

M

Y

i.

r>
n

6

o

1
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partial derivative of equation 3.6 with respect to each

constant is determined and set to zero

a 
llell/acl - 0 - fff2 [ pr - c 101 	ci(pil (-Ol)dxdydz 3.7

a llell/ac,	 0 - fff2[ pr - cl(Pl	 ciPi] (-(Pi)dxdydz

Equation 3.7 can be reduced to the form

fffpr ml dxdydz - cl fff(bidxdydx +...+ cifff6lOidxdydz 3.8

f f f pr mi dxdydz = clfff(bi'oldxdydz +...+ c i f f f(bidxdydz

Equations 3.8 are rearranged to matrix form as

fff 4bidxdydz fff(l (P
i dxdydz	

cl	 fffproldxdydz

x	 x	 x	 =	 x	 3.9

fff(b i (P ldxdydz	 fff(b idxdydz	 ci	
fflpr^idxdydz

By solving equations 3.9 for the constants and substituting

those valves into equation 3.4, the function, h r (x,y,z) ,

has been determined which 'best' approximates the curve of

the discrete data with respect to the least squares error

norm.

3.2 Legendre Polynomials

i

^^	 J

I^

F

i

A critical element in the least squares procedure is

specifying the interpolating function to approximate the

acoustic pressure mode function. In order to select the

type of function most appropriate to the application, it is

necessary to consider some important criteria:

t

3. •^ .•r^ .A3'Y',i.gJjf•Î...^ ^R .s' -^ ^ 'tom • +k, w..
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a. The accuracy of the approximation is directly

dependent on how well the polynomial function can
r

approximate acoustic data as evaluated by some
1'	 a

error norm. It is noteworthy that acoustic

phenomena are sinusoidal in nature.
i

E	 b. In order to solve the matrix equations for the
E

constants of the polynomials, the polynomial

function must be integrated with respect to the
^	 o

spatial coordinates. The ease at which the

integration is performed becomes a key element of

the procedure.

C. Recalling the objectives from the introduction,
r

the acoustic modal analysis procedure should be
fi

tailored to mini-computers. Therefore, computa-

tion efficiency is greatly desired.

After a review of the available polynomial shape func-

tions conducive to the least squares procedure, Legendre

polynomials are 6elected for approximating the acoustic r

data. With reference to the aforementioned criteria, the
.	 w

selection was made on the following premise:

.	 a. All complete interpolating polynomial families of

sequential nth order will approximate a
r.

a	 sinusoidal function with equivalent accuracy.

Thus, no accuracy is sacrificed by the use of

Legendre polynomials over another interpolating

polynomial.
t
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1

b.	 Legendre polynomials are separable with respect

to the three spatial coordinates.	 Therefore, the

polynomial, elements are integrated with respect

to the associated spatial coordinates rather than

being integrated over a unit volume element.

c.	 Legendre polynomials are orthonormal in the range

from -1 to 1.	 The significance of this charac-

teristic is that if all functions of interest to

the least squares procedure are defined on the

region -1 to 1, then all off-diagonal terms of

the left-side matrix become zero.	 Thus, a con-

siderable reduction in computation time has been

attained. ^I

The Legendre polynomials are listed as follows [23]:
. I1p

S o (u)	 = 1	 S3(u)	 = 1/2(5u3-3u)

S 1 (u)	 = u	 S4(u)	 = 1/8(35u 4_, 30u 2 +3)	 3.10
l

S 2 (u)	 = 1/2(3u 2 -1)	 S 5 (u)	 = 1/8(63u5-70u3+15u)

nnl Sn
Sn(u)	 _ 2n-1 usn

-1 (u)	 -2(u)

..
In order to approximate a function of three- ,

dimensions,	 it is necessary to create shape functions which

are a product of three Legendre polynomials in the form

(P i(x1 y ► z )	 - Slx(x)Smy(Y)Snz(z)	
3.11

G
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where l,m,n represent the polynomial order in the respec-

tive directions. The maximum order required for the Legen-

dre polynomials in the three directions is an important
 A

consideration and will be addressed in a subsequent sec-

tion. The order of the shape function, i, is dependent on

the order of the three Legendre polynomials and becomes a

matter of bookkeeping when programmed in FORTRAN.

Recalling that Legendre polymonials are orthonormal in
4

the region -1 to 1, the three dimensional acoustic domain

must be mapped to a 2 x 2 x 2 cubic element in the C, n, C

domain. As a result of the Legendre polynomials being

separable with respect to the three coordinate directions,

and since the acoustic domain is defined on an orthogonal

axes system, the map reduces to merely a scaling in each of

4 the three directions. The scale factors only become impor-

tant when determining the gradient of the approximation
5

function. The matrix equation, equation 3.9, is now

transformed to

1 1 1 2

	

I I I o l (C,7?,^)dCd77d^ 	 o	 cl	 c
-1-1-1

T`	 1 1 1 2	 x	 -
0	 I 11 i

0 (C,v ,C)dCdndC	 c.
-1-1-1	 i

1 1 1F	
I I I p o (C,v,C)dCdndC
-1-Z-1 r 1

k	
Y

x	 3.12

M,	 1 1 1
I I I proi(C ► ^,C)dCd^ldE
-1-1-1

kl

..	 f
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Computation can be further reduced by modifying the

left side matrix in order to create the identity matrix.

By obtaining the identity matrix from the left side of the

equation, the constants, c i , are solved for directly.	 An

analysis of Legendre polynomials reveals that if the square

of the polynomial is integrated exactly over the limite -1

to 1, a number results with a value directly associated

with the order of the polynomial

1
f sn (u) 2du	 2/2n+1	 3.13
-1

Thus, a series of constants can be defined to compliment

the respective shape functions

f f f O.dCdnd^ = f f f [S a C(C)sbn(^)ScE(4)) dCdndC^,..1- 1-1 -1-1-1
i

(2/2a+1)(2/2b+1)(2/2c+1)	 = p i	 3.14 i

When both sides of the matrix equation 3.12 are divided by

the constants, p i , the left side matrix becomes the iden-

tity matrix, and the right side vector acquires the

reciprocal of the normalizing constant
F

1 1 1

1	 0	 cl	 l/Plf f f pr0l(C, n,^ )dCdn dE

x	 x	 x	 =	 1 1 1	 3.15

0	 1	 C 	 1/P iflflflpr0i(C,n,C)dCdndC
` 1

3.3 Numerical Integration

The matrix equation derived by the least squares pro-

cedure has now reduced to a series of integral equations:

s

Y

..	 ••.1 sr:.rA^' ^^	 owryo/^i^
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1 1 1

c 	 llplf f f pro,(CtntE Cdvdt	 3.16
-1-1-1

1 1 1

0 	 11pif f f pr`Pi(C,n,4)dCdVd^
1-1- 1

The constants that yield the best curve fit with respect to

the least squares norm can be solved for directly by per-

forming the required integration. In order to adapt the

curve fitting procedure to a computer, the computing struc-

ture requires that the integration be performed numeri-

cally. Several numerical integration methods are in

existence. The criterion for the method of integration is

again accuracy and efficiency of computation.

Consideration of the existing numerical methods of

integration results in the selection of the Newton-Coates

numerical integration formulas. The Newton-Coates integra-

tion equations have the general form (24]

xn
f f (x)dx - Knh(wOnf O + wlnf l +...+ wnnf n )	 3.1,7

X0

where

K  - the n-point scheme constant

h - the distance between points

f = the value of the function at the points

w = the weighting constants of the function valves

V

k.
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The accuracy of the integration can be maximized by apply-

ing the point scheme equation that coincides exactly with

the number of recorded values of the function being
i

integrated. Alternatively, a combination of Simpson's 1/3

rule, 3/8 rule, and the trapezoidal rule can be applied for

integration over any number of points.

7

By applying the Newton-Coates formula, equations 3.16

become

i

nC nn of
C l ` 1/p, 

a
wE 
l b

E l c-E1prabc0l(Ca1n0 c )wawbwc	 3.18^ 

nC nn nE
c i = 1/p i 

a
E 
1 b

E
=7 

E 
7.
Prabc0i(Ca1n b16c)wawbwc

^	 ^= i
The numerical integration can now be performed, and the

constants of the approximation polynomial function are

solved for directly. The structure of the mathematical

procedure lends itself readily to FORTRAN or BASIC program-

ming on a mini-computer.

3.4 Error Analysis

•	 i

An important consideration for the .development and 	 t

evaluation of the modal analysis procedure is the accuracy

with which the computed pressure mode function approximates
y	

the discretely measured pressure mode shapes. Recalling

that the pressure mode shapes are sinusoidal in space,

three questions concerning accuracy of fit should be

addressed:

AI

t; I
k	 w

II-..
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a. What is the minimum polynomial order that suffi-	
c

IS
ciently approximates a sine function of a given

number of wavelengt-.!js? 	 (`

b. How many data points per wavelength are required

to adequately describe a sine function?

c. What is the error associated with a numerical

integration?

An analysis of the curvo-fitting procedure with respect to

the three points of question will allow for the design of

an optimal configuration.

In order to evaluate the accuracy of the numerical
s

procedure, a known function is approximated and an error

criterion is established. After consideration of the vari-

ous error norms, a standard deviation error criterion was

choser ► for judging accuracy. This error norm was chosen due

to the discrete nature of the data and ease of evaluation.

The error norm expressed in equation form is (25]

1/2

n ( p (i)-hr(i))2
r

^I e I ( _
	 E

r
n	 319-1

i=1 t

3.4.1	 Polynomial Order

In order to evaluate error a(a a function of polynomial

order, the error due to a polynomial approximation must be

segregated from error due to other variables.	 By assuming

a function, pr , and performing an exact integration of

ti
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equation 3.16, the approximate function, hr , is computedr

independent of numerical integration error or number of

data points.

Recalling from the theoretical model, the pressure

mode shape for the ideal case in one dimension will be of

the f orm

pr(x) - cos lnx/Lx 3.20

Equation 3.20 represents the one-dimensional pressure mode

shapes defined for the domain 0 4 x 4 Lx . In order to com-

pute the coefficients of the approximation. function, L x is

set to 2 and Equation 3.16 is modified such that the limits

of integration are 0 and 2. Sv substituting ( u-1) For a in j

the Legendre polynomials, equation 3.10, the limits of
r

integration can be adjusted appropriately. With substitu-

	

tion of equation 3.20 and the modified Legendre polynomials	 Pf

into equation 3.16 and exact integration, the approximation

function can be found.

The approximation function was computed for the first

four modes, 1 = 1,2,3,4, with approximation functions of up

to and including eighth-order polynomials. The error asso-

ciated with each case is evaluated for eleven sample points

via equation 3.19, and the results are presented in Table

1. The results show that in the absence of integration

error, the approximation improves with increasing polyno-

mial order.

t.
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Table 1. Approximation Error Using an Exact Integration

Mode

Number

Polynomial Order

1st

.775

2nd

.117

3rd

.117

4th

4.7e-3

5th

4.7e-3

6th

3.e-5

7th

' 8.e-5

8th

1st 7.5e--7

2nd .775 .775 .283 .283 .033 .033 .0017 .0017

3rd .775 .754 .754 .454 .454 .091 .091 .0088

4th .775 .775	 1 .71 .71 .607 .607 .173 .173

P

f,F:4
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3.4.2 Numerical. InteggrAt^, ion

The coefficients for the approximation function result

from the numerical integration in equation 3.18. In order
	

n

to perform the computation, the pressure mode function for

T'	 one-dimension, equation 3.20, is described in terms of

discrete values distributed evenly along the x-axis. It is

intuitively obvious that the approximation error will

approach zero as the increment between points decreases and

the integration app.loaches an exact integration as dis-

cussed in the last sE-ction. A study of the error as a

function of the number of integration points for an ideal-

ized case, however, illustrates the sensitivity of the

approximation technique to integration error. 5u.h error
k

° 	 may lend insight into the design of later experiments.

Therefore, rather than assume to minimize increment between
C	 i

points which increases data collection time, computation,

and data storage space, the number of data points is a

variable in the analysis.

An inverse relationship between error and polynomial 	 `I1
6

order was proven for an exact integration approximation.

The polynomial order for the curve-fitting procedure must

be limited, however, to the benefit of computation time.

In addition, a polynomial approximation of a sine wave may

behave peculiarly for low order polynomials due to numeri--

cal integration error. The polynomial order, therefore, is

an important variable in the error analysis..

k
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The coefficients of the approximation functions

corresponding to each combination of data points, polyno-

mial order, and wave number is computed via equation 3.18.

The error assoc^<,ated with each approximation is determined

for eleven points in equation 3.19. The results are

recorded and tabulated in Tables 2, 3, 4, and S.

The accuracy of the approximations are, in general,

satisfactory. Certain trends in the error tables, however,

are worth noting. The error is unacceptable for the cases

of the polynomial order exceeding the number of integration

points. A minimum of eleven integration points is required

to adequately approximate a cos 1 1/2 wave (3rd mode). In

addition, in order to approximate a cos 2 wave (4 th mode),

greater than eleven integration points are required.

Further evaluation of the error tables is performed for the

design of the experiments.

3.5 Approximation Function Gradient

Resulting from the curve-fit procedure are polynomial

functions which approximate the pressure fields associated

with the acoustic modes in enclosures. From the inviscid

force equation, equation 2.52, the acceleration of a gas

particle is given by the negative of the gradient of the

pressure field at the location of the particle. Thus, in

order to describe the acoustic mode shapes in terms of par-

ticle motion, the gradient of the approximate pressure

function must be determined.

k..
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Table 2. integration Error for a One-Half Cosine Wave

Number of

Data Points
Polynomial Order

1st 2nd 3rd 4th 5th 6th 7th 8th

3 .775 .151 .151 1.312 1.312 2,857 2.857 5.083

4 ,775 .112 .112 .460 .460 2,428 2.428 3.629

5 .775 .118 .118 .122 .122 1.078 1.078 2.866

6 .775 .117 .117 .068 .068 .535 .535 2.178

7 .775 .116 .116 .004 .004 .161 .161 1.382

8 .775 .116 .116 .0038 .0038 .096 .096 .763

9 .775 .116 .116 .0048 .0048 .007 .007 .242

10 .775 .116 .116 ,0048 .0048 .0045 .0045 .151

11 .775 .116 ,116 .0047 .0047 .0001 .0001 .012

i

1?
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Table 3. Integration Error for a Full Cosine Wive

Number of

Data Points

Polynomial Order

1st 2nd 3rd 4th 5th 6th 7th 8th

3 .888 .888 1.157 1.157 1.425 1.425 4.687 4.687

4 .801 Ml .403 .403 1.511 1.511 2.480 2.480

5 .772 .772 .276 .276 .704 .704 1.8 1.8

6 .773 .773 .255 .255 .260 .260 1.35 1.35

7 .775 .775 .295 .295 .336 .336 1.047 1.047

8 .775 .775 .290 .290 .201 .201 .472 .472

9 .775 .775 .282 .282 .032 .032 .510 .510

10 .775 .775 .282 .282 .025 .025 .304 .304

7-11
.s75 .775 .282 .282 .035 .035 .076 .076

5

S



~i

44

Table 4. Integration Error for 1 1/2 Cosine Wave

Number of

Data Points

Polynomial Order

1st 2nd 3rd
N

4th 5th 6th 7th 8th

3 .775 .862 .862 1.081 1.081 2.874 2.874 5.078

4 .775 .775 .775 1.433 1.433 1.433 1.433 3.998

5 .775 .850 .850 .765 .765 1.33 1.33 1.58

6 .775 .788 .788 .480 .480 .870 .870 1.913

7 .775 .745 .745 .436 .436 .757 .757 1.330

8 .775 .748 .748 .395 .395 .261 .261 1.116

9 .775 .755 .755 .515 .515 .780 .780 1.502

10 .775 .754 .754 .489 .489 .466 .466 .604

11 .775 .753 .753 .447 .447 .145 .145 1.267

e

+^	 C



;.	 A

45

as

aw

Table S. Integration Error for a Double Cosine Wave

Number of

Data Points

Polynomial Order

1st 2nd 3rd 4th 5th 6th 7th 8th

3 1.225 1.225 1.225 1.225 2.646 2.646 3.338 3.338

4 .801 .801 1.007 1.007 1.421 1.421 2.527 2.527

5 .938 .938 .848 .848 1.604 1.604 1.042 1.042

6 .820 .820 .755 .755 1.088 1.088 1.401 1.401

7 .770 .770 .913 .913 1.002 1.002 .974 .974

8 .769 .769 .778 .778 .617 .617 .731 .731

9 .778 .778 .705 .705 .733 .733 1.252 1.252

10 .777 .777 .702 .702 .529 .529 .437 .437

11 .774 .774 .717 .717 .851 .851 1.763 1.763
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The approximate pressure function results from substi-

tuting the constant values obtained ' in equation 3.18 into

the following equation:

hr (Cr71r	 c101(C,n,C) +...+ c i o i (C,n,C)	 3.21

It is noteworthy that the approximate pressure function is

defined in the C, n, C domain. In order to obtain the par-

ticle acceleration for the original acoustic domain,

defined in x, y, and z, the gradient of equation 3.21 with

respect to x, y, and z must be computed. The partial

derivative of equation 3.21 with respect to the x coordi-

nate is found by the application of the chain rule as fol-

lows

ahr (C'n C )	 ahr a^ + ahr a'1 + ahr a4 3 .22
ax	 a^ ax	 an ax	 a 	 ax

Since both the x, y, z domain axes and the C, V, C domain

axes are orthogonal, x is not a function of n or C . Thus,

an and aX are zero. Furthermore, the term 
ac is merely the

constant ratio of the domain length along the C axes, 2, to

the length of the acoustic domain in the x direction, Lx.

The same properties hold true for the partial derivatives

of equation 3.21 with respect to the y and z coordinates.

The variable terms resulting from the application of

the chain rule to equation 3.21 represent the gradient of

	

Sri►	 the approximate pressure function with respect to the

	

j	 and C coordinates. In order to compute the gradient, the

iiE

.1 
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c	 r4,
O

derivatives of equations 3.10, the Legendre polyno,itals,

with respect to u are determined. By substituting equation

3.11 and equation 3.21 into equation 3.22, an expression

for the partial 3erivative of the approximate pressure

function results

ah (C ► 7l ► f)	 i	 as	 (C)
	r ax	 .	 E c 	 a c	 SmW ( ^ )Snf (f) [2/Lx]	

3.23
j-1

where 1, m, and n represent the Legendre polynomial orders

associated with the shape function order, j. Expressions

for the partial derivatives of equation 3.21 with respect

to the y and z coordintes are found similarly to be

ah (C ►► f)	 i	 as	 ('7)

	

r a'?
	

-	 E c,SlC(C) e-	 Snf(f) [2/Ly ]	 3.24
Y	 j=l J

and

ah 
r	

'n(C ►► f)	 i	 as	 (f)
az	

jE1cjS1C(C)Sm7J(71)	 of	 [ 2 /Lz]	 3.25

Substitution of equations 3.23, 3.24, and 3.25 into the

inviscid force equation yields an expression for the acous-

tic mode shapes in terms of particle acceleration. The

numerical operations in the three equations are conducive

to FORTRAN or BASIC programming.

i^
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•
4. CONCLUSIONS

k

The primary objective for the research presented here, as

stated in the introduction, is the development of a pro-

cedure for experimentally determining the modal parameters

associated with resonance conditions in the cavities of

transportation vechicles. It is desirable for noise con-

trol diagnostics to describe the mode shapes in terms of

particle motion. The acoustic modal analysis procedure
f

should be adapted to function on existing computer based

spectral analysis systems.

In general, the objectives for the research are satis-

fied. A procedure is developed whereby the acoustic mode 	 I

shapes associated with the cavity resonances in an enclo-

sure are determined experimentally and described in terms

of particle motion. While not currently implemented on a

mini-computer system, the modal analysis procedure includ-

ing the curve-fitting program is constructed for use on

small computer systems.

The curve-fitting program performed satisfactorily for

the modal analysis experiments by approximating the pres-

sure mode functions discretely described by the modal vec-

tors. Several improvements to the curve-fitting procedure

d
	 are suggested, however. The procedure is limited due to

the error resulting from fitting to a relatively few

points. The program should be expanded to accomodate a

ti
t

-.
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larger number of data points. Furthermore, excessive error

can result from extrapolating a polynomial function approx-

I	 imation of a sinusoid beyond the measurement domain.

Either the acoustic pressure must be measured to the

enclosing surfaces, or a shape function which approximates

the harmonic acoustic pressure function beyond the measure-

ment field should be introduced in the curve-fitting pro-

gram. Finally, the requirement for equally spaced, orthog-

onal input data to the curve-fitting program hampers meas-

urements in irregular shaped domains.

The task of data acquisition for the necessary number

of points to adequately describe the acoustic modes in a

typical transportation vehicle is long and tedious.

Improved data collection techniques are a necessity. Two

recommendations are for a microphone array attached to a

multiple input spectrum analyzer or a stepper motor con-

trolled point collection device.

6
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