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ABSTRACT 

In the continuing e f fo r t  t o  simulate discharges seen dur ing  geomagnetic 

substormss the charging and discharging character is t ics  of an e l ec t r i ca l ly  

isolated solar  array segment are being studied. A solar  array segment i s  

floated while bombarded w i t h  monoenergetic electrons a t  various angles of 

incidence. 

monitored u s i n g  Trek voltage probes, t o  maintain e lec t r ica l  isolat ion.  A 

back plate  i s  capacitively coupled t o  the array t o  provide information on 

the character is t ics  of the transients accompanying the discharges. 

The potentials of the array surface and of the interconnects are 

Several modes of discharging of the array were observed a t  re la t ively 

low different ia l  and absolute potentials ( a  few ki lovol ts)  e 

s low discharge response i n  the  array was observed, discharging over one second 

w i t h  currents of nanoamps. 

which lasted a few hundredths o f  a millisecond and w i t h  currents on the order 

of microamps. 

sion process associated w i t h  the arcs. 

A re la t ively 

Two types of f a s t e r  discharges were also seen 

Some observations are reported which indicate an electron emis- 
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I e INTRODUCTION 

Analytical predictions of sol ar array potenti a1 s i n  geomagnetic sub-  

storm environments have indicated tha t  solar cell  cover s l ides  are  a t  a posi- 

tive potential w i t h  respect t o  the interconnects ( r e f s .  1 , 2 ) .  

called the inverted gradient mechanism ( r e f .  3 ) .  Since the distances between 

them are small i t  i s  believed that  such voltage distributions can give r i s e  

t o  breakdowns, which could produce the spacecraft charging anomalies observed 

i n  s a t e l l i t e s .  

p laus ib i l i ty  of this mechanism. 

tron beam, i t  was thought tha t  the amount of different ia l  charging could be 

varied, and information obtained about arc conditions could be used t o  evalu- 

ate the  inverse gradient mechanism. 

this report  has been presented ea r l i e r  ( r e f .  4 ) .  

T h i s  has been 

The i n i t i a l  purpose of t h i s  work was t o  evaluate fur ther  the 

By varying the angle o f  incidence of the elec- 

Some of the information presented i n  

Discharges have been generated i n  laboratories i n  the past by i r rad ia t ing  

sol a r  arrays w i t h  electron beams. 

been either grounded ( re fs .  5,6), biased (ref. 3 ) ,  or floated on a large res i s -  

tor ( r e f .  7 ) .  Each of these techniques has yielded useful information, b u t  

these t e s t  resu l t s  may have been influenced by the t e s t  arrangement w h i c h  

affected the amount of charge on the interconnects. 

However, the interconnect c i rcu i t s  have 

T h i s  work represents another step i n  attempting t o  simulate environment- 

al l y  i nduced di  scharges . A small sol a r  array segment i s e lectr ical  ly  f 1 oated 

and i r radiated by a monoenergetic electron beam. Since the array is now iso- 

The . la ted the progress of the discharge can be watched through a back plate. 

plate on the back of the array mounting i s  used as a capacitively coupled 

probe, t o  monitor the changing array potential as charge leaves the array 

dur ing  discharges. 

stored on i t  and i t s  capacitance. 

determined eas i ly  by the fraction of the  voltage change. 

age i s  ref lected by a change i n  the back plate  potential. 

The voltage o f  the array i s  determined only by the charge 

The f ract ion of the charge lo s t  can be 

The change i n  volt- 

T h i s  i s  simpler than 
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t ry ing  t o  catch a l l  the charge. 

In t h i s  report, the deta i l s  of the tes t  apparatus are described, the 

surface voltage profiles as a function of beam angle of incidence are dis- 

cussed and the discharge t ransient  characterist ics are presented. 

from the biased array are presented t o  provide a comparison w i t h  f loat ing 

array results.  

I1 EXPERIMENTAL APPARATUS 

The resul ts  

This work was conducted in one of the large vacuum chambers (2.1 m x 1.05 m 

diameter) a t  NASA LeRC. The chamber i s  an ion pumped system. During these 

t e s t s  the pressure was typical ly  1.5 x 

filament t o  produce electron densit ies of up t o  15 nA/cm over an area of 

300 cm , a t  energies up t o  10 KeV. 

Pa. The electron gun used a hot  
2 

2 

An unexpected side e f fec t  of working in the ion pumped system i s  the 

existence of a h i g h  res is tance electrical  connection t o  ground, i . e . ,  the 

t a n k  walls. This has a pressure dependence and i s  probably due t o  a weak 

plasma produced by the ion pump. A t  1 x 

t h i s  resistance as 3 x 10” ohms. 

plasma, which may interact  w i t h  the array along w i t h  the electron gun. 

fac t  has t o  be remembered when deciding whether the arcing observed was due 

solely t o  an electron beam interaction. 

Torr an electrometer measures 

T h i s  indicates the existence o f  a residual 

This 

The solar array segment ( f i g .  1 )  used for  these experiments was from the 

SPHINX s a t e l l i t e ,  and has been used in similar testing before ( ref .  3).  

constructed from 24, 2 cm square solar ce l l s  connected in series t o  form a 

6 x 4 matrix. The interconnects are a s i lver  mesh, and the cover sl ides are 

0.15 mm thick, fused s i l i c a ,  

i s  0.5 t o  1 mm wide. 

t u r n  i s  attached t o  a 0.16 mm fiberglass printed c i rcu i t  board. A 2.5 cm 

radius copper disk has been etched on the back o f  the board near the center of 

I t  i s  
. 

The gap between the ce l l s  for  the interconnects 

This assembly i s  attached t o  a sheet of Kapton which i n  



5 

the array, and covered w i t h  Kapton. 

coupled probe (65 pF) w h i c h  i s  used t o  monitor the time dependence of d i s -  

charges on the array. 

T h i s  back plate  serves as a capacitively 

The array i s  mounted on a rotatable  platform ( f i g .  2 ( a ) )  so tha t  the 

angle of incidence of the electron beam can be varied. T h i s  provides a method 

of attemptingto vary the e lec t r ica l  potential p rof i le  of the array. 

The potentials along the array were measured using a noncontacting Trek 

e lec t ros ta t ic  voltage probe. 

probe was located above the array and was capable of moving along a column of 

ce l l s .  I t  obtained profiles of the surface potential along tha t  column. The  

second probe monitored the potential of the array interconnects. 

cable ran from the interconnects t o  the probe which was located outside the 

vacuum system. A t e s t  was made u s i n g  the probe inside the vacuum system t o  

monitor the interconnects t o  ensure tha t  u s i n g  a probe outside the system 

would have no effect  on the character is t ics  of the discharges. 

were r u n  w i t h  this connection immediately behind the array inside the system 

(shielded from direct interactions w i t h  the beam). 

ble t o  connect a power supply t o  the interconnects t o  evaluate the behavior 

of the array w i t h  the interconnects biased negative w i t h  respect t o  the cover 

s l ides .  

Two probes were employed i n  this work. One 

A shielded 

These tests 

In addition, i t  was possi- 

To evaluate the electr ical  character is t ics  of the back plate/array capa- 

c i to r ,  a square voltage pulse was applied t o  the interconnects of the array. 

. The back p la te  was connected t o  an oscilloscope w i t h  a 1 megohm i n p u t  imped- 

ance. The decay observed i n  Fig.  2 ( b )  i s  consistent w i t h  an RC discharge w i t h  

w i t h  

the 

onal 

a time constant of 0.7 milliseconds. 

w i t h  the i n p u t  pulse t o  w i t h i n  a tenth of a microsecond. 

The voltage of the back p la te  rises 

T h i s  determines 

f a s t e s t  signal that  can be followed. 

capacitances between the cable and i t s  shield (700 pF). The capacitance 

The  loss i n  s igna l  was due t o  addit  
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between the back p la te  and the interconnects was found t o  be 65 pF, from the 

loss i n  s ignal.  Comparisons of the signal loss fo r  different  cables verified 

this. 

peak voltage (charge l o s t )  and the r i s e  time. 

the current i s  voltage/lM ohm. 

111. RESULTS 

A. Potential Along the Array 

For f a s t  discharges ( t  << R C )  the currents can be calculated from the 

For slow discharges ( t  >> R C )  

The intention of this  work was t o  produce an inverted potential gradi- 

ent (the interconnects more negative than the glass)  i n  the vicinity of the 

interconnect by increasing the secondary yields  of the cover slides. 

could produce an intense e l ec t r i c  f i e ld  a t  the cover slide/interconnect bound- 

T h i s  

ary, and m i g h t  allow charge t o  escape from the interconnects via a f i e ld  emis- 

sion mechanism. 

angle of incidence between the sample and the electron beam. 

yield should make the equilibrium potential of the glass more positive. 

metals typically have lower yields than insulators ( less  than one) and should 

remain a t  nearly the  beam potential .  

I t  was assumed that  this could be done by increasing the 

Increasing the 

Clean 

T h i s  process should have served t o  en- 

hance the difference between the metal and glass potentials.  However, t h i s  

d i d  not happen. 

Figure 3 demonstrates the angular dependence of the surface potentials on 

the angle of incidence f o r  a 5 Kev electron beam. 

cover slides reached a potential of about -3  KV. 

potential of -1 KV, substant ia l ly  more posit ive than expected from the second- 

ary yield of metals. 

A t  normal incidence, the 

The interconnect was a t  a 
. 

T h i s  was probably due t o  capacitive e f fec ts .  

The back plate-solar cell-cover s l i de  system may act l ike  a capacitive 

voltage divider. Since the interconnects have a small exposed surface area 

they have a large e f fec t ive  resistance t o  the plasma. 

ductor" area i ncl udes the semiconductor o f  the solar  cell  s t h i  s capacitance 

Yet since the "con- 
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i s  comparatively h i g h .  

appears t ha t  the floating interconnect acts as a voltage d i v i d e r ,  and main- 

ta ins  a potential between the cover s l ides  and the back plate.  

However, from this capacitance argument i t  would be expected t h a t  the 

There i s  a capacitance t o  the back plate  also. I t  

interconnects would be closer t o  the cover s l ide potential than t o  the back 

plate. The current collection mechanism from the plasma may also have an 

important contribution t o  the determination of the equilibrium potential .  

Increasing the angle of incidence forces the cover slides more positive 

as expected from the e f fec t  of angle of incidence on secondary yields .  

the interconnect potential does not approach the beam energy as anticipated. 

This may be due t o  e i ther  of two reasons. The beam may be deflected by the 

e lec t r ic  f ields a t  the edges and does not reach the interconnects d i s r u p t i n g  

the charge collection mechanism, or  the interconnects may have secondary yields 

significantly different  from those fo r  pure si lver.  

and coworkers ( re f .  8) have noted tha t  the secondary yield f o r  aluminum on 

Kapton tends t o  look more l ike  aluminum oxide than aluminum. 

onnects i n  this case may have contaminants on the surfaces, increasing 'the 

secondary yiel  ds  e 

However, 

In recent work, Hoffman 

The  silver inter-  

Another interesting feature i n  the potential profiles i s  the negative 

peak a t  the edge of the cover slide. T h i s  feature i s  consistent w i t h  an edge 

effect  generated by Reeves and Balmain ( re f .  9 )  i n  a two dimensional charging 

model of an electron beam imping ing  on a dielectric mounted on a metal. 

. is  related t o  the focusing o f  the beam a t  the edge. 

this was a feature of the interconnect geometry, the probe was moved t o  an 

adjacent column where the geometry is reversed. The peak stays on the edge of 

the glass facing the beam, rather than follow the interconnect geometry. This 

tends t o  increase the e l ec t r i c  f i e l d  near the interconnect region. T h i s  edge 

effect  provides an inverted gradient, bu t  there i s  insufficient charge stored 

I t  

To check whether or  not 
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on the edge t o  account f o r  the observed discharges. 

i s  clearly not the so le  c r i t e r i a  for  the occurrence of discharges. 

The inverted gradien t  

The attempt t o  create  an inverted potential gradient a t  the interconnect 

was unsuccessful. I f  the inverted potential gradient i s  the dominant arc 

mechanism, discharges should not  have occurred. However, discharges were 

observed. 

B. Discharges - Floating Array 

Several forms of discharge are seen on the f loat ing array. First, the 

slow discharges will be discussed (Table I )  a 

process than an arc .  

These are more of a de-charging 

Then the f a s t  discharges will be discussed (Table 11).  

The results i n  Table I and I1 were obtained from a ser ies  of runs t o  

determine the dependence of the discharges on beam energy, current density and 

angle of incidence. 

of incidence. 

held constant fo r  about 1000 s, or u n t i l  a reasonable number of discharges 

were observed, before increasing to  a larger current. 

lower currents was not c lear ly  separated from those a t  higher currents, the 

discharge ra tes  a re  given as a function of energy and angle only. The ra te  i s  

given as a r a t i o  of the number of discharges observed to  the time tha t  i t  took 

t o  r u n  the test .  Thesedata should not be taken as particularly reproducible 

since the interconnect potential obtained a t  the end of t h i s  process disagreed 

w i t h  t h a t  obtained a t  the beginning.  In addition, conditions which ori.ginally 

produced discharges on this solar ce l l  array, no longer do. 

1. Slow Discharges. 

These tables were obtained by choosing an energy and angle 

Beginning a t  a low beam current density, the beam current was 

Since the charging a t  

. 

Table I i l l u s t r a t e s  how these slow arcs depend on various conditions. 

In the beam current range 

A t  

low current densi t ies  discharges were not seen. 

of 2-5 na/cm , slow repe t i t ive  discharges occurred. 

t i e s ,  

2 A t  higher current densi- 

Then an equilibrium array could discharge slowly b u t  not recharge. 
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potential closer t o  ground would be maintained. 

array i n i t i a l l y  charged i t  charged t o  a relatively low value, rather than 

dropping t o  i t .  

potential i s  noisy, as i s  the signal from the back plate. 

charging appears t o  be related t o  the "zenering" (dropping t o  a less negative 

potential ) observed by Inouye and Sellen ( r e f .  7 ) .  

A t  other times, as the 

Once t h i s  low potential i s  reached, the interconnect 

This mode of d i s -  

Figure 4 shows this relat ively slow, sometimes repet i t ive discharge. 

Dur ing  a discharge the potential of the interconnect would drop over a time 

scale  of milliseconds t o  seconds. I t  would then rise, recharging t o  nearly 

the nominal potential over something on the order of 10 sec. before discharg- 

i n g  again. The change i n  potential d u r i n g  the discharge indicates tha t  about 

10% of the charge on the array i s  lost .  Up t o  half of the charge may be lo s t  

a t  the i n i  t i  a t i  on of zeneri ng . 
Because these discharges could not be reproduced rel iably,  the conditions 

So f a r ,  the follow- necessary f o r  t he i r  existence a re  d i f f i cu l t  t o  establish.  

i n g  have been observed: 

1 )  

2)  

There is a dependence on beam current density. 

These discharges have not been seen a t  beam energies of 3 KeV or 

less, breakdowns are more frequent a t  higher beam energies. 

The incident beam angle also appears t o  influence this discharge 

mode, since these discharges have not been seen a t  a normal angle 

o f  i nci dence. 

3 )  

. 2. Fast Discharges. 

Faster discharges were also seen on the floating array (F ig .  5 ) .  The 

These discharges conditions under which they occur are shown in Table 11. 

are less  frequent than the slower discharges and, since the interconnects 

maintain a constant potential between discharges, are  essent ia l ly  single events. 

Dur ing  these single discharges, the  interconnect potential drops 100 to  2000 
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volts (both minor and major events occur). 

on the back plate,  the discharge l a s t s  a few tenths of a millisecond (the 

r i s e  time i n  figure 5). 

micoamp. The change i n  voltage, obtained by mult plying the peak of the back 

plate signal by the r a t io  of cable capacitance t o  back plate capacitance, 

indicates t ha t  the voltage change i s  about 50 t o  00 \I, consistent w i t h  the 

change i n  interconnect potential seen by the Trek probe. Such a minor d i s -  

charge accounts f o r  4% of the total  charge on the array. A major discharge 

can result i n  a 90% loss of charge. 

too h i g h  fo r  the instruments t o  measure. 

During a minor transient observed 

The current from the array i s  on the order of a 

The current d u r i n g  these discharges was 

Only the major discharges are  vis ible .  These produce a dim flash of 

l i g h t  over a l l  of the solar ce l l s .  

when the cover s l ides  are bombarded w i t h  an intense electron beam. T h i s  i n d i -  

cates t ha t  the en t i r e  array i s  involved i n  the discharge. 

dit ions which i n i t i a t e  the discharge, may be an as ye t ,  unknown local effect .  

The intensi ty  is  comparable t o  the glow 

However, the con- 

However, from Table II the following conclusions are drawn: 

1. 

2. 

Fast discharges are more easily produced a t  higher beam energies. 

Large discharges are associated w i t h  more normal angles o f  inci-  

dence and lower beam current densities. 

3. Small discharges are associated w i t h  higher angles of incidence 

and h i  gher beam current densit ies . 
One major conclusion can be drawn from these observations. The inverse 

-potent ia l  gradient i s  n o t  a fundamental prerequisite for discharges. However, 

further conclusions must  be tentative.  I t  is not c lear  whether the discharges 

are due t o  an interaction w i t h  the electron beam or  w i t h  a weak plasma gener- 

ated by the ion pump o r  even gas ionized by the electron beam. 

In work conducted a f te r  the above resul ts  were obtained Leung (ref. 10) 

was able t o  generate the fast  discharges on a s ta in less  steel  plate  w i t h  cover 
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s l ide  glass attached. 

metry of the interconnect region. We believe that  the f a s t  arcs are  related 

t o  the arcs seen on biased arrays, and those seen i n  plasma. 

Therefore the f a s t  arcs are not caused by the local geo- 

Leung d i d  not see the slow discharges. T h i s  de-charging process might  

If the be due t o  a mechanism coupling the interconnects t o  the pumps/wall. 

mechanism which allows access t o  the h i g h  resistance caused by the ion pump can 

be switched on and of f ,  i t  m i g h t  resu l t  i n  these discharges. 

C. Biased Array 

The solar array interconnects of this f loat ing array can be biased nega- 

t i ve  t o  produce an inverse potential gradient and explore i t s  relationship t o  

discharges. 

the interconnects biased t o  -2 KeV (Fig. 6 ) .  

monitor changes i n  the interconnect voltage as the power supply becomes over 

loaded and the potential of the interconnects f a l l s .  

by the increase i n  the back plate  voltage. 

Discharges were observed on the array using the back plate  w i t h  

The back plate  may be used to  

T h i s  i s  shown i n  F ig .  6 

An electron beam energy of 2 KeV incident on the array a t  an angle o f  

The power supply keeps the 45 degrees, pushed the cover s l ides  t o  -800 V. 

potential of the interconnects constant, until i t  becomes overloaded dur ing  a 

discharge. After the pwwer supply over 

from the array of 10 mA, estimated from 

and assuming a capacitance t o  ground of 

due t o  the cable between the power supp 

oads the back p la te  sees a current 

the r a t e  of increase of the voltage, 

500 pF. 

y and the array. 

T h i s  capacitance i s  primarily 

The power supply 

. can handle only 5 mA. The instrumentation d i d  not have the range t o  see the 

top of the curve. The decay of the transient is  the RC time constant fo r  the 

back plate/cable since the power supply takes several milliseconds to  recover 

from the overload. 

After the discharge the cover s l i de  potential i s  nearly equal t o  the 

interconnect potential ,  so a t  l eas t  some of the charge i s  b e i n g  redeposited 

on the surface of the cover s l ides .  No attempt was made t o  locate a precursor 
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i n  the  back plate signal,  which could have indicated charge being deposited 

on the cover s l ides .  

Though t h i s  experiment supplies some information on the conditions fo r  

discharge, the character is t ics  of the array breakdown are swamped out by the 

additional charge supplied by the power supply. The i n i t i a l  stages of the 

discharge cannot be sensed because the power supply replenishes the charge 

lo s t  through the discharge. 

amount o f  charge available f o r  the discharge, through the large cable capaci- 

tance, the discharges are more violent than they might otherwise be. 

Also, because the power supply increases the 

2 

If  the 

However, some interest ing features were observed by us ing  the four 10 cm 

beam current sensors located about 3 cm from each corner of the array. 

electron beam i s  turned off a f t e r  charging the cover sl ides,  the beam sensors 

continue t o  detect a small current on the order of 1 nA (compared t o  a beam 

current of 10 nA) .  

(These numbers are from a specif ic  example and are included t o  g ive  an idea of 

the s ize  of the e f fec t ,  rather than t o  indicate the reproducibility of the 

e f fec t . )  

saw currents of up t o  5 microamps, even t h o u g h  the electron gun was off .  

i s  happening is  not understood, b u t  i t  looks as if charge i s  being emitted from 

a s i t e .  T h i s  emission increases u n t i l  something gives and the discharge occurs, 

perhaps related t o  a thermal run-away mechanism. 

beam sensors detect no current. 

This increases t o  2.1 nA over 500 s when a discharge occurs. 

Before some discharges, the grounded shield g r i d  of the electron gun 

What 

After the discharge the 

The mechanism could be related t o  plasma 

-generated by the ion pumps. The h i g h  resistance indicating the plasma's exis t -  

ence could provide the mechanism for the i n i t i a l  emission. 

drawn from t h i s  observation i s  that  conditions which produce emission are a 

prerequisite fo r  d i  scharges I) 

The conclusion 

Photographs o f  the discharges indicate several s i t e s  associated w i t h  each 

discharge. A f lash usually occurs a t  a solar  cel l  edge, e i ther  the 
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interconnect or another edge. In some photographs a second f lash appears a t  

the in t e r io r  of a cover s l ide,  or on the Kapton surrounding the array, or a t  

the grounded clamps used t o  hold the array. 

IV. SUMMARY 

T h i s  experiment allows the study of discharges from an e lec t r ica l ly  

floating array. 

a monoenergeti c electron beam a t  various angles of i nci dence. However, these 

discharges are not caused by having the interconnect potentials more negative 

than the cover s l i de  potentials.  

Discharges can be stimulated by i r radiat ing the array w i t h  

Various modes of discharge were seen. A re la t ively slow, repet i t ive dis- 

charge i s  seen a t  low electron densi t ies  whichlas t sa  few milliseconds t o  

seconds. 

Single, f a s t e r  discharges are also seen which release currents on the order 

of microamps, for a few tenths o f  a millisecond. 

4% of the charge, while major discharges emit about 90% of the charge stored 

i n  the array. 

These discharges release about 10% of the charge on the array. 

Minor discharges emit about 

The slow and f a s t  minor discharges are smaller than the discharges i n -  

duced by biasing the interconnect negative w i t h  respect t o  the cover s l ides .  

The power supply and the associated cable provide additional charge which 

a1 1 ows much more intense d i  scharges . 
The potential gradient a t  the interconnect i s  not the sole c r i t e r i a  for 

discharges t o  occur. In the f loat ing array the interconnect potentials are 

. s l igh t ly  posit ive w i t h  respect t o  the cover s l ides .  However, there is  a 

region a t  the edge of the cover s l ide  which i s  more negative than the center 

o f  the cover s l ide .  This work has produced data showing how charge i s  deposi- 

ted on the  array by an electron beam. 

An observation was reported which indicates tha t  electron emi ssion takes 

place on the biased array. This emission may be a prerequisite fo r  the f a s t  
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discharges, and may be the mechanism f o r  the slow discharges. 

Further study i s  needed t o  determine more precisely the threshold con- 

The angle of incidence effects ,  current den- d i t i o n s  fo r  these discharges. 

s i t y ,  and electron beam energy ef fec ts  need to  be determined. 

i n  reproducing discharge conditions indicate that  the history of the array may 

be important, and that  contamination of the surfaces may influence the con- 

di t ions fo r  i n i t i a t ing  these discharges. 

The d i f f icu l ty  

Preliminary calculations w i t h  the NASCAP program indicate tha t  portions 

of the system studied here could be usefully modelled, employing secondary 

electron yield resul ts  obtained a t  CWRU on similar surfaces. More detailed 

calculations could provide further understanding of the processes involved. 
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Table I .  Slow Discharges 

8 KeV Beam 
Angle o f  Incidence 

Current 
Densi tj 
(nA/cm 0 20 40 55 

2.5 None 3/500s 
3.0 None 
3.5 None 1 /600s 10/300s 
4.0 
4.5 None 
5.0 
6.0 
7.0 
8.0 

>10.0 

2/600s 
None 
None 

6 KeV Beam 

2.0 
2.5 
3.0 
3.5 
4.0 
5.0 
6.0 

8/0 
>8.0 

None 

70 

None 

None 

3/2100s 
1 / 2000s 

None 
None 
None 

10/300s 
None 1 /400s 1 /500 
None 8/400s 

None 
None 7/600s 

9/600s 
2/600s 

None 
3.200 

13/400s 

None 

None 

None 
None 
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Table 11. Fast Discharges 

8 KeV Beam 
Angle o f  Incidence 

Current 
Densi tt 
(nA/cm 1 

2.5 
3.0 
3.5 

4.0 
4.5 
5.0 
6.0 
7.0 
8.0 

>10.0 
f a s t  
discharge 
r a t e  

6 KeV Beam 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

5.5 
6.0 

>8.0 
r a t e  
4 KeV Beam 

2.0 

2.5 
3.0 

4.0 
5.0 
7.0 
8.0 

r a t e  

0 20 40 55 
1 arge 1 arge 

1 arge noisy small 

small 

1 arge 

1 arge noisy 

1 arge 
1 arge small 
smal 1 

1 arge 
small 

7/3000s 9/8OOOs 8/1200s 1 /2400s 

none 
none 

noisy 
1 arge 

both 

small 

small 

2/22OOs 6/5000s 

small 

smal 1 

none 

1 arge 
small 

small 

small 
3/ 2 7 50s 

none 
none 
none 
none 
none 
none 

O/6000s 

70 
none 

none 

smal 1 

small 

2/4000s 

none 

none 

small 
small 

small 
2/700s 3/3300s 

none 
small 

none 
none 

small 

2/19OOs O/2800s 1 
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D. B. Snyder, "Environmentally Induced Discharges on a Solar Array", 

IEEE Transaction on Nuclear Sciencep - NS-29, 1607 (1982). 

Personnel 

During the g ran t  period, D. B. Snyder was a Research Associate a t  Case 

Western Reserve University carrying o u t  some aspects of the material character- 

ization a t  CWRU while using one o f  the large ion pumped vacuum systems a t  NASA 

LeRC as well as the computing capabilities available w i t h  NASCAP there. 
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