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ABSTRACT

The stability of the nonlinear dynamical system of two

GRAVSAT-type	 satellites	 was	 investigated.	 The investigation was con-

ducted by performing several numerical	 experiments	 which	 provide	 the

simulations	 of	 the	 relative	 motions	 characteristics between the two

satellites	 for	 various	 specified	 time	 intervals.	 The	 simulations

include	 the	 relative	 range, range-rate, and the relative acceleration

magnitude.
YI

x
These simulations were generated with respect 	 to	 appropriate

initial orbital elements which were obtained such that the instantaneous

separation distance between the two satellites 	 has	 small	 fluctuations

from	 a	 specified constant separation distance.	 The simulation ,-esults

indicate that the behavior of the relative motions is very sensitive 	 to
r

j

the	 initial orbital elements of the satellites and that for a specified r

time interval of interest, a stable behavior can only be 	 achieved	 with

the	 use	 of	 an	 appropriate set of initial orbital elements compatible i

with the gravity field used to derive them. x i
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CHAPTER 1

INTRODUCTION

Over the past few years, observation of the relative motion

between two satellites has gained a potential value for the study of our

own planet.	 There are many geological and geophysical- applications such

.	 as	 the	 study	 of	 the structure of the crust and the tipper mantle, and -•	 r

I
accurate determination of the geoid	 heights	 in	 the	 analysis	 of	 the

instantaneous	 and average shape of the sea surface [US National Academy '.

of Sciences, 19797•

In the concept that is currently proposed, the accuracy of the 4

coefficients	 which	 describe	 the	 gravity	 field of the earth could be

improved by a simple analysis of the direct observations of the relative

motions	 between	 two	 low	 altitude satellites separated by a specified r

distance in the same near-circular polar orbits. 	 The	 relative	 motions a

which	 have	 been	 suggested	 for this analysis include range, speed and

acceleration magnitude.	 In addition, the proposal would enable not only x'
l

improved	 coefficients,	 but	 the	 determination	 of	 a	 more	 complete

representation of the gravity field', including the anomalous potential.

Me history of this concept is attributed to Wolff [ 19691, who =.	 f

proposed	 a	 particular Satellite-to-Satellite Tracking (SST) configura-

tion, known as the "low-low" system. In his proposal the relative	 speed

along	 the	 line-	 of	 sight	 between	 two	 satellites,	 as	 a	 first

1

}•

r^
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approximation, is the difference in anomalous pota tial sensed by the

respective satellites. Therefore, as the Earth rotates, this pair would

eventually cover the whole planet with observations of the gravity

field.	 Since this original proposal, research efforts have been 	 `1
f

directed toward clarifying the theory behind SST.

In the mid 1970 0 3, the idea of a dedicated gravitational

satellite mission based on the SST principle began to develop and

became known as the Gravity Satelli oe (GRAVSAT). In order to achieve

the mission objective, it is essential that the satellites be made

drag-free so that only gravitational forces act 	 upon	 them.	 For	 this j

_ reason,	 a	 drag-compensatiQr	 technique	 has been proposed in which two

proof-masses,, one inside of each spacecraft, will be unaffected by 	 sur-

face	 forces through periodic activation of thrusters which would offset

the sensed surface forces acting on the spacecraft enclosing the 	 proof-

`' mass.	 Such	 a "system	 has	 been	 constructed	 by Stanford University,

referred to as the Disturbance Compensation System (DISCOS) [ Pisacane et

w al.,	 19$11.	 This drag-compensation system of satellites would be caps- _,r

ble of remaining in low altitude orbit for a nominal mission lifetime of

up	 to	 six	 months. As Long as the drag-compensation mechanism is oper-
^s

able, the atmospheric resistance forces will be 	 effectively	 eliminated

and the satellites will move in orbits governed by gravitational forces.

Without such a mechanism, the large drag forces would quickly decay 	 the

 orbits	 and make the desired determination of the gravity field far more 7^
complicated . }

f
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t:

The line of sight measurements between the two satellites

would be made by an extremely accurate radar interferometric technique

developed at the Applied Physics Laboratory of John Hopkins University

CPisacane et al., 19811. The range-rate precision is expected to be on

the order of *1 um/sec between the two satellites,

The general low-low configuration system along with the

desired mission characteristics are shown in Figure 1 7he proposed

configuration includes a separation of 300 km between the satellites at

an altitude of 160 km. Although it is desirable in some eases for the
3

	respective satellite orbit planes to coincide, they are illustrated as
	

t

noncoincident for the general case.

In the following section, descriptions of the major approaches

for some of the recent studies, conducted under the use of simplifying

assumptions, are presented. These studies provide the motivation for
x

this investigation.

1.1 Motivation for this Study
	

i

x

	

Basically, an analysis of data for the improvement of geopo- 	 1
e

tential knowledge consists of three major sections, which can be stated

as follows:

i	 Develop observation equations in order to relate the measurements

to the anomalous potential of the Earth.

I
i

4

^S
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ii. Process the data.

iii. Determine the accuracy of the results.

Of course, the accuracy of the observations and the overall modeling

will determine the accuracy of the results.

In general, any globally consistent solution for a degree and

order 180 gravity field in terms of spherical harmonic coefficients by

least-squares techniques must solve for approximately 32,000 parameters.

Consequently,	 features of the gravity field with 100-200 km in

wavelength can be determined [Pisacane and Yionoulis, 19801, 	 To avoid

the massive matrix inversion computations, associated with such a large

number of parameters, different methods have been proposed. 	 For exam-

ple, Colombo (19811  takes advantage of the orthogonality properties with

respect to latitude of the spherical harmonics. Also, Kaula [19821 pro-

posed the use of Fourier analysis for each revolution of the satellites.

Some common simplifying assumptions have been made in studies I

by Colombo [1981], Gaposchkin [1980] and Kaula [1982]. A collection of
`,I 4

these assumptions are summarized below:gg

1. Both satellites describe coplanar, circular, polar orbits with the

R same geocentric radius, 	 r

2. The satellites are separated by a constant distance and the separa-

tion distance has small fluctuations.

i4t
k`
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3.	 The plane of the orbits is fixed in inertial	 space,	 and	 fluctua-r

tions in the geocentric angle between the two satellites are small.

These simplifying assumptions lead one to ignore 	 the	 actual	 perturba-

tions	 of	 the	 orbits	 in the radial, transverse, and normal directions =	 i

which are produced due to the effects of the anomalous potential.

The study of the validity of these assumptions and 	 to	 deter-

mine	 the extent and rate at which the satellites might drift apart over

various specified time intervals 	 was	 the	 primary	 objective	 of	 this

investigation,

f z
1,2	 Description of the Present Study

3

In this study, attention has	 been	 focused	 on	 the	 relative

motion	 of	 the satellites, and basically, the stability of this dynamic

' system as far as the separation distance was ce.)ncerned .	 To support	 The

objective	 of	 this study, a set of initial orbital element:, for each of

the satellites was found so that the instantaneous 	 separation	 distance
t

(or geocentric separation angle) has small fluctuations from a specified

constant separation distance.	 Therefore, a clear prospective of whether

the 	 stated approximations are valid can be concluded. 	 A brief descrip- R

r^
tion of the material presented in this investigation is 	 given	 as	 fol-

E

lows.

f

Chapter 2 presents the derivation of the equations 	 of	 motion

x

considering	 only	 the	 gravitational forces acting upon the satellites.

w. s

. 	r
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in addition, a rotating	 coordinate	 system	 attached	 to	 the	 trailing

satellite	 was chosen so that the relative motion Between the two satel-

lites can be discussed qualitatively. j

Chapter 3 provides the mathematical formulation of an	 o ptimi-
i

zation	 technique	 used to solve for the initial orbital elements of the

satellites.	 In this method the initial orbital elements of the trailing
:a

satellite	 are	 specified.	 Then the orbital elements of the lead satel-

lite are determined such that the relative range between the two	 satel-

lites is nearly constant over a specified time interval..

Chapter 4 includes the numerical simulations of 	 the	 relative q

motions between the two satellites.

Finally, in Chapter 5 	 based upon the analysis of the 	 nuneri-

r,
cal simulations, the conclusions of this investigation are summarized.

`t

1
 i }

1

1

a

r..



CHAPTER 2

DYNAMICAL MODEL

This chapter presents the differential	 equations which

describe the motion of two satellites orbiting the Earth under the sole

influence of the earth' s gravitational field. Section 2.1 includes the

gravity field models used in this study. Section 2.2 provides the rela-

tionships between the different coordinate systems used in this investi-

gation and the equations of motion are presented in Section 2.3. Sec-

tion 2.4 provides an analytical definition of the relative range-rate

between the two satellites and -a satellite-centered coordinate system is

introduced. In Section 2.5, an observation equation which relates the

line of sight acceleration magnitude and the gravity potentials is

obtained such that no simplifying assumptions have been used.

2.1 The Geopotential Models'

	

The gravitational field of the Earth as measured from above 	
r	

^,

its surface can be represented by a potential, U, which satisfies

Laplace's equation:'
4	

`I

p2 U = 0	 (2.1)
	 l:

The solution to Eq. (2.1), using the spherical harmonies

representation, is given by the following infinite series [Kaula, 19661

8

s

v
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U	 =	 GM N
1 -

a

r

n

i Pn{ sink)	 (2.2)
r t^

n
n_2

N	 n n

+	 2

[arl
Pnm(sin^)	 { Cnmcosma + Snm sinmX) i

n=2 m=1

where
;+!F	 t

G	 = Universal gravitational constant

M	 _ mass of the Earth
e

ae equatorial radius of the Earth

r	 _ radial 'distance from the center of the Earth

geocentric latitude with 'respect to the equ,tor

fix:.	 l

angle of longitude with respect to the Greenwich

meridian, measured eastward

s

Pn ( .)	 _ Legendre polynomials

pnm^' )	 =
associated Legendre functions

J n ;'	 1
.#

Cnm	= spherical harmonic coefficients

S
s

nm
L

n	 = order of the spherical harmonics
k

w

r
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y^

m	 degree of the spherical harmonics

The first term on the right hand side of Eq. (2.2) represents

the central body potential. and the remaining terms are due to the non-

sphericity of the Earth.

Eq. (2.2) is an approximate model of the geopotential where N

denotes the truncation order of the geopotential model. For most

approximations, N is some finite integer. The spherical harmonic coef-

ficients have been estimated from various data sets. A brief descrip-

tion of some recent determinations are as follows:

'^ a Goddard Earth Model (GEM) 9	 [Lerch, et al.,	 19791	 is	 a	 gravity
;i

model	 based solely on optical, laser, and electronic observations 3".

taken on 30 satellites.	 It has harmonics complete to 	 degree	 and

order 20 (20x20) with selected higher degree terms.`
e „-

• GEM-10 [Lerch, et al.,	 19791 is a combination solution	 containing

a	 global set of 5 degree surface gravity anomalies along with the

data in GEM-9.	 It has harmonics complete to 22x22	 with	 selected

A ' higher degree terms.
h

• GEM-10B [Lerch, et al., 	 19811 is a gravity model that combines the

GEM- 10 	 data	 set	 with	 those obtained from altimeter data of the
f

GEOS-3	 geodetic	 satellite.	 GEM-10B	 represents	 a	 significant y

improvement	 over	 GEM-9	 and GEM -10. 	 It consists of a field com-

plete to 36x36 in harmonics.

` i
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11-

Among the above gravity models, the GEM-9 and GEM-10B were used in the
' r

numerical analysis of this investigation.

2.2 Coordinate Systems

Several different coordinate systems were used 	 in	 the

mathematical formulation of the dynamical system for this investigation.

Figure 2.1 illustrates these coordinate systems. 	 For	 simplicity,	 the

precession,	 nutation,	 polar	 motion and changes in rotational speed of

r

.*

the earth have been ignored. 	 The coordinate systems are defined as fol-

lows
♦ 	 +Y

t

The nonrotating, inertially fixed rectangular coordinate	 sys-

tem	 with 	 the	 origin at the Earth's center of mass denoted by {}(,Y,Z} ,

has the X-axis directed along a fixed direction (e.g., the mean Equinox)

and	 the	 Y-axis	 is	 in the equator.	 All of the differential equations

which describe the motion of the satellites are expressed in this	 iner-

tial reference system.

A rotating, Earth-fixed rectangular coordinate system with the i

origin	 at	 the	 Earth's	 center	 of 	 mass is present to account for the -`	 f

Earth's rotation and the description of the gravity field 	 coefficients.

{This system, denoted by {x,y,z} , is a right-handed system with x-y plane

_coinciding with the	 equatorial	 plane	 of	 the	 earth.	 Therefore,	 it
4

rotates	 about	 the	 Z-axis with the angular velocity of the Earth. 	 The
-'	 1

magnitude of this rotation angle at any instant can be computed by

xw

z

.,_.x
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a 2 aQ + w^ , ( t - tc )	 (2.3)

where we is the magnitude of the Earth's rotation about, the Z-axis, and

a  is the initial angle at the time t 0 The angle a is measured east-

ward from the X-axis to the Greenwich meridian. Thus, the components of

any vector in the inertial coordinate system can be transformed into the

Earth- fixed system by the following transformation matrix.

cos a sina 0
T	 -sing cosa 0	 (2.4)

0	 0	 1

of course, T is an orthogonal matrix, therefore the relation T-1 o TT

can be used for the inverse transformation.

Finally, the gravitational field of the Earth as	 defined	 in

' Eq.	 (2.2) is represented in an Earth-centered spherical coordinate sys-

17,

tem denoted by {r,^,h}	 The coordinates of any point on a	 satellite's ^rr.

i
orbit	 in	 this	 reference	 frame is related to the Earth-fixed rotating

a

° coordinate system by the following relations;'

X	 =	 r cosa cosh v

y	 _	 r cosh sinA (25) I

Z	 -	 r sink

where r is the radial distance from the center of mass of the 	 Earth,

is	 the angle of latitude from the equator, and X is the angle of longi-

tude measured eastward from the Greenwich meridian.

j

M
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In addition to the above coordinate systems, a rotating refer-

enoe frame attached to the trailing satellite is introduced in Section

(2.4). This system is used for the theoretical discussion of the rela-

tive motion between the two satellites.

2.3 Equations of Motion

	In- this section, differential equation which describe the
	 i^

relative motion of the two satellites considering only the gravitational

	

forces are presented. 	 r^ }

Assume that the mutual gravitational attraction between the

two satellites is negligible compared with the earth+s gravitational

forces acting on them. Therefore, considering the satellites as point

masses, the total inertial, accelerations of the satellites subject to

the Earth' s gravitational field are given by

R 1 (t)	 U1(t)	 (2.6)

	

T2 (t) = 0 U2(t)	 (2.7)	
az

;

f

where the numerical subscripts 1 ` and 2 denote the trailing and the lead

satellite respectively; If is the acceleration vector, p is the gradient

operator; and U is the gravitational potential of the Earth defined by

Eq.-(2.2).
{

Now, with the use of appropriate transformations, the carte-

sian components of the acceleration _ of each of the satellites can be
r

._	 e
i

r



f	 w rw
	

1

15

(2.8a)

(2.8b)

(2.$c)

obtained by the following equations:

.X _	
au

_ 5X

,•
Y

au= r

au_ 
azZ

The three second-order differential Equations (2.8a) through (2.8c) can

be converted to six first-order differential equations as follows:

.
7(t)	 V(t)
	

(2-9)

)
V(t)	 =	 P U(t)	 (2.10) ~*

where R(t)	 and V(t) are the position and velocity vectors, respectively.i

Given	 a	 set	 of initial components of position (Xo 
'YO

,Zo )	 and velocity

(Xo ,Yo ,Zo )	 vectors for each	 of	 the	 satellites,	 Equations	 (2.9)	 and

(2.10)	 can	 be	 numerically	 integrated to provide the rectangular com-

ponents of position (X,Y,Z) , and velocity (X, Y, Z)- vectors 	 at	 any	 time

for	 each respective satellite.	 Then, the relative range vector	 can t

be obtained by

P	 =	 R2`- R
1	(2.11)'

a

where the subscripts 1 and 2 denote the trailing and the lead	 satellite

respectively.	 So, the relative range between the two satellites (p) can

be computed by

I

]1/2
P	 =	 C(X2_X 1 ) 2 + ( Y 2-Y 1 ) 2 + (Z2-Z i

)
?_	.	 (2.12)

4,	 .
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Differentiating Eq. (2.11) twice with respect to time and

using Eqs. (2.4) and (2.7) yields

A	 q U2 17 U 1 	(2.13)

..

where p is the relative acceleration between the two satellites,

ex pressed in the inertial system. Eq. (2.13) is a nonlinear differen-

tial equation which describes the relative motion between the two satel-

lites.	 It _should be noted that if the initial orbital elements of the

satellites are not chosen properly, an irregularly secular behavior in

the separation distance between the two satellites could result.

2.4 Definition of the Relative Range-Rate

The relative- velocity vector (p) is the time derivative of the

relative range vector. Therefore, differentiating Eq. (2.11) yields

p	 ^i2 - 1F 1 	(2. 14 )

in the inertial system.
m^

The relative range-rate between the two satellites (P) is
-

mathematically defined as the projection of the relative velocity along
x

the line of sight between the two satellites. In other words, it is the

time rate of change in the distance between the two satellites. , Accord -

ingly,

P _ A A	 L.L^	 (2.15)
11P1(
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vector along the 1.ne of sight, And tfptj is the rela-

tive range given by Eq, ( 2.12). Thus, it is of importance to note that

P _	 p, but p is not the same as the magnitude of p . Now, by substi -

tution of Eqs. (2,12) and (2.14) in Eq. (2.15), and using the rectangu-

lar components of p in the inertial coordinate system, the range-rate

can be computed from

.
(X2-X 1 )(X2-X 1 ) + (Y2-Y 1 )(Y2-Y 1 ) + ( Z2-Z 1 )(Z2 Z1)

p	 (2.16)
(X2^X1) 2 + (Y2-Y 1 ) 2 + (Z2-Z1)2 11/2

Assume a relative reference frame is attached to the trailing

satellite with one axis directed along the line of sight toward the

leading satellite as shown in Figure 2.2 (more detail on this reference

frame will be given in Section 2.5) , then the relative velocity vector

in this reference system (pr) can be obtained by

pr = P - 7 x p	 (2.17)

s ,
$	 ,s

where SZ is the total angular velocity of the satellite-centered rotating$,
w_

coordinate system, and p is the relative velocity vector expressed in

the inertial reference frame given by Eq. (2.14). Taking the dot pro-

duct of P ;eth Eq. (2.17) results in the following equality:

P	
Pr	

P	
P	 P	 (2.18)

since

Al

t^

_.
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P	 {xp) =	 (pxp) = 0

Note that Eq. (2.18) yields again the relative range-rate.	 Therefore,

it can be concluded that the relative range-rate can be defined as the

projection of the relative velocity in either the inertial or the rotat-

ing reference frame along the line of sight.

2.5 Definition of the Relative Acceleration Magnitude

In the following discussion an observation equation 	 is

presented in which relative range, relative range-rate, and the line of

sight relative acceleration are directly related to the inertial com-

ponents of the position, velocity, and the acceleration vectors of the

satellites. This equation was originally developed by Shao [19821. In

deriving this equation, it should be noted that the line of sight meas-

ured quantities are different from the inertial components of the vec-

tors.	 This equation is of significance due to its generality and that
r	

no simplifying assumptions or approximations have been made. 	 In add i-

	

tion, the coordinate system used in the derivation of this equation is 	 a

s	 identical to the one described in Section 2.4, This choice of reference

frame is important because it is inherent to the dynamics of the system,

and furthermore the rotation of the lead satellite about the trailing

satellite is described by the angular velocity of this reference frame.

Further details about the properties of this relative reference frame

are given; in the following discussion.

S
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line of sight, so its time rate of change can be obtained from

P 	 =	 x p	 +	 pr (2.19) r
1

Since P is a unit vector, its time derivative in the rotating frame does

not change; in other words, Pr = 0. Thus Eq. (2.19) reduces to
rt

e

P 	 =	 SZ x P- 2.20) f
r

However, a constant length vector is perpendicular to its	 time deriva-

tive.	 Therefore,

P	 p	 0 (2.21)
2

i

In addition, by the use of vector algebra equalities, it ' can be	 shown
s

thatp is perpendicular to	 The proof is as follows;,

A	 °	 (	 x p

P	 (	 x	 ) .

Since	 x	 =0, the above equation reduces to

P	 e	 0. (2.22)`

Equations (2.20): (2.21), and	 (2.22) represent necessary and sufficient

conditions	 forP,	 P.	 and to be mutually perpendicular; conse-
x

quently, they form an orthogonal basis	 for	 the	 previously` described

E	
_

The unit vector A is defined to be a unit vector along the
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r satellite-centered reference frame.

Recall that the relative motion between the two satellites was

given by Eq. (2.13) or

p	 =	 P U2 - 9 U 1 	 R2 -	 1	 (2.23) t

where U
1 

and U2 are the potential functions evaluated at the 	 respective }

satellite	 positions,.	 Note that the left hand side of Eq. (4.23) is the

relative acceleration vector in the inertial coordinate system, 	 and	 it
x

can also be expressed in the relative reference frame as follows:

P	 =	 p
^,	 t

)d
dt ( Pr +0xP )

(pr +xpr )	 +	 (SZxp+	 xp') ;M^z

Substitutepr + 0 x P	 for	 p in the term p x p, then it follows that
f	 ."	 1

S

Y

P	 -	 pr + 2( Q x pr ) - 
02 P + SZ X p	 (2.24)

M

1

I
j Forming the dot product with p and both sides of Eq. (2.24) yields- v

p	 P	 =	 A	 •' Pr	 +	 2	 (	 x pr )	 (2.25) R:

p( 2 p)	 +	 p(xp)

1

s

Note that each term on the right hand side of Eq. (2.25) simplifies to
r,

n=

^Y	k
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r =	 p (2.26a)^

2 P	 ( 0 x pr )	 c	 2 cZ	 ( p r x p)	 =	 0 (2.26b)
f

P	 ( 2 p )	 =	 S22 p (2.26c)

P , (	 x p )	 =	 . (p x P )	 _	 0 (2.26d) ,r
•

Substitution of Equations (2.26a) 	 through (2.26d) in Eq. (2.25)	 results .^

in

P. p	 A - 02 p (2.27) y

;^	 t

Using Eq. (2.23) and also rearranging the terms, Eq. (2.27) can be writ-

ten in the form

I
{	 •.	 2

P	 =	 p ( R2 - R^ )	 p

or

k	 p	 2p +	 (V 	 U	 ) .p2	 1
(2.28)

Eq. (2.28) is the observation equation where p 	 is the	 line	 of	 sight I

relative	 acceleration, ` p is the relative range, and Q is the magnitude

of the angular velocity of the rotating relative referencefra,^,2,	 which`

Y	 can be computed, in terms of inertial components of position and velocity

of the two satellites as follows.

1

Lys	 .	 fi.

4

_
.	

1.

^ I
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Taking the cross product of p with both sides 	 of Eq. (2.20)

yields
I

*'*P x P	 Px(	 xP). (2.29) i

Using the following vector algebra equality

Ax (fix)	 =	 of A.^)	 —( . g ) t
e

then Eq. (2. 29) can be written as
t	 A

a:

• e

px A 	=fpx P )	 -	 P (	 P )• (2.30)

Since P is perpendicular to 	 Eq. (2.30) reduces to

P x 
P (2.31)

Therefore, SZ is defined by Eq. (2.31), and Q2 can be computed from

p2	 11	 x	
112

A	 P w

f Pxp")	 (	 Px p) (2.32)
1

Using the following vector algebra equality r

(	 KX'g	.(	 cxI5)	 —	 ( —A.-C ) f B.T))	 ( —A.15 ) f -g .-C )

then Eq. (2.32) can be rewritten in the form of
i

2=	 ( ")(`"." 	)	 -	 (	 "."	 )f	 ".")P'P	 PP	 PP	 PP (2.33)

a	 ..	 t

i'	 `I



ORIGINI
OF POO

Note that 
P 

is perpendicular to p"",	 thus	 A.p"	 0.	 Then,	 Eq. (2.33)
1

r;

red Lie es to

k

^2
=	 p p"	 _	 (p) 2 (2.34) j

P is the time rate of change of p", and can be obtained as follows E

K i
I

A
=

(	

P'

1
r

=	 d

'

(7) f
P^

•
_	 P P A P (2.35) E

A`

l

Finally, sit can be computed by substitution of	 in Eq. (2.34), as fol-

lows:
E
t

2 .,

S12 P A - A P

1 A2	 p^,2	 - •2 A 2 A 2 	 +	 p2 
P2 ;`	 1

F
A

-	 1

— 2
(	 P (2.36)

2
A

where p is the relative range-rate given by Eq. (2.16), and

z

5

(P) 2 = (X 2 -X 1 ) 2 + (Y 2 - Y 1 )2 + (Z2 - Z1)2
y

F
, 	 a

^""i_r.;r.. .
	 -._	

- - w7rlTr.^F.I 	 VxI 	 .,. M	 ► "tom.. ^	 ^ ...,	 w.....	 _ ¢...
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Note that S2 in general is time dependent and a function of a,
position and velocity of the satellites. And in particular, if the 	 x}

coplanarity, circularity, and constant relative separation orbital	 ~^

assumptions are made, then 37 would be constant with a fixed direction

perpendicular to the orbital plane.

Now, using Eq. (2.36) for substitution of p2	 in	 Eq,	 ( 2.28),

then	 A	 can	 be	 obtained in terms of the rectangular components of the

position, velocity, and acceleration of 	 the	 satellites	 in	 the	 fixed

coordinate system as follows; '	 t

,p = A (7)2 _ A2 +	 (d U 2 -	 U 1	)	 p	 (2.37x) •^

..	
1

P	 =
2	 '2(p)	 - P +	 (A	 )	 •	 P	 (2.37b)

A

;f

'̀ . ..

p	 =
2	

2	
2	 .2

(X2-X 1 )	 + (Y 2-Y ^)	 ^)+ CZ.Z Z
	 - R	 (2.37d)

P` {s.

t,.

+ (X2-X l ) (X2-X^) +	 (Y2-Y 1
)(Y 2-Y1 ')	 +	 (Z 2-Z l ) (Z-Z 1 ) i

.$

From any of the above equations, it can be concluded that	 the 4"
t^

line	 of	 sight relative acceleration is different, from the magnitude of ;~

the relative inertial acceleration. 	 Furthermore,	 their	 difference	 is^w
not a constant quantity.

t
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In summary, the set of equations 	 required	 to calculate	 the
,i

relative motions	 between the two satellites are as follows. The state
.`	 a

of each of the satellites is calculated by integration of Eqs. (2.9) and g	 ^^
{

(2.10) for	 the respective satellite.	 Then, the relative range is com-

puted by Eq. (2.12), the relative range-rate	 by	 Eq.	 (2.16), and	 the
t

relative acceleration magnitude by Eq, (2.37d) ,
J

t

4

4

i

}

t

i
i.

I'

}



CHAPTER 3

DETERMINATION OF APPROPRIATE INITIAL ORBITAL ELEMENTS

In the previous chapter, it was shown that the relative motion

between	 the	 two	 satellites is governed by the nonlinear accelerations
ri

produced due to the earth's gravitational field.

The stability of the present nonlinear dynamical system has	 a

direct dependency on the initial orbital elements of the satellites. 	 As

it will shown in Chapter 4, a simple numerical simulation of 	 the	 rela-

tive	 range	 between	 the	 two satellites, with any arbitrarily selected

initial conditions, will illustrate a secular behavior in the separation

distance	 with	 oscillations of large amplitude. 	 Therefore, in order to

obtain a stable behavior in the relative motion, and to	 maintain	 small

fluctuations between the two satellites, a method is developed to obtain

appropriate initial orbital elements. 	 In this method, the initial orbi-

tal	 elements	 of	 one	 of the satellites is specified. 	 Then, using the

principle of least squares, the initial orbital elements	 of	 the	 other

satellite are numerically obtained to minimize the sum of the squares of

the changes in the separation distance from a desired constant distance.

The	 formulation	 of	 this	 problem is presented in Section 3-1, and the

solution is obtained by using an iterative method which is introduced in

Section	 3.2.	 Finally, a computational algorithm is summarized in See-

tion 3-3.

27
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3.1 Problem Formulation

Having described the dynamical system represented by the sys-

tem of Eqs. (2.6) and (2.7), the differential equations describing the

state (position and velocity) of the satellites, X 1 and X2, can be writ-

ten in the form of

X1(t) = F1 (X 1 It)	 (3- 1)

X2(t) = 72 (72't)	 (3.2)

	

wnere F1 (.) and 72 (.) are nonlinear functions of R 1 and X2 respectively.	 a;^
t

i

e

	

Let the initial componen ts of position and velocity of one of 	 .”

the satellites, say the trailing satellite, be fixed and denoted by X
10

t Then, it is desired to solve for the appropriate initial components of

the position and velocity of the lead satellite as arranged in the esti-

mation state vector

T	
s

X2	 X2 Y2	 Z2 X 2	 Y2	 Z2	 (3.3)
o	 0	 0	 0	 0	 0	 0	 1

F	
,

	

Let pc be the desired constant separation distance between the	 }.	
^	 a

two satellites. Then, at any instant of time t during a specified time
E

interval, the change in the separation distance is defined by

r	 p _P	 (3. 4)

	

where p is the relative range which can be computed by Eq. ( 2.12) and r	
i

is
r
Al

r
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ev

is referred to as the residual.

The optimal solution is obtained by solving a deterministic

optimization problem for which the performance index is the sum of the

square of the residuals. In this approach, the commonly defined perfor-

mance index can be expressed as

tf

P	 f t r2 ) dt	 (3.5)

t
0

where

P	 the function to be minimized

to r	 the initial time F
f	

/^

tf -	 the specified final time ^=

First variations of P with respect to the	 components	 of	 the
E„

estimation state vector are obtained by

T;
t f t

DP =	 f	 {	 2 `
ar r }	 dt (3i6)

a X2 t 
axe

0	 0 ,

In order to minimize P, first variations of Pmust -vanish.	 Hence,	 six

nonlinear equations are produced which are

t

t f_

f { aX2 r } dt	 _	 0 (3.73)
O o

s

tf

S {
ap

ay r } dt	 =	 0 (3.7b)-
0 0
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f
t,

z

^

S tt a z
2

r}	 dt	 = 0 (3.7c)
o 0

tf

f { — a= r }	 dt	 = 0 (3.7d) i
t

Q ax
20

}	 t f
f{ — a=—	 r} dt w 0 (3.7e)

t '	 to a Y2
0

s;
y

tf
f {

ap r }	 dt	 _ 0 (3.7f)

r	
t0 Z2o

Equations (3.7a)	 through (3.7f) can be put in a matrix form as follows:

T

tf
f	 = f { 8p

r } dt = (3.8)
to a xz

0

x	 and if the following definition is 'introduced

°
H	 = ap

(3.9)
;	 t

a x2
I

O

Eq.	 (3.8) then can be expressed in terms of H matrix by

tf
f	 = ^'	 { HT r } dt	 =	 0 . (3.10)

to
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Thus, the ;problem reduces to solving the six nonlinear equations of 7 in

terms of six unknown components of the estimation state vector of 12
0

3.2 Solution Method {

A very frequent computational problem is to find some or all

of the solutions of a system of n simultaneous nonlinear equations.	 One

approach to solve such system of equations is to generalize to n	 dimen-

sions one of the iterative processes used for solving a single equation;

see for instance Forsythe, et al. 119771. 	 There	 are	 several	 methods

available	 from	 which the system of equations defined by Eq. (3.10) can

be solved.	 However, the Newton-Raphson iterative method was chosen	 and

the solution is obtained as follows.

Assume that the partial derivatives of the functions 	 f 	 with

respect	 to the components of X2 	can all be computed.	 'then, let J(XZ)
O	 0

represent the Jacobian matrix whose (i ,j) th element is defined by
t

of
J i 	(X)	 _ --	 (3.11)23 0 	ax 2

O^

As in the case of one dimension, the Newton idea is	 to	 start	 with	 an E i

arbitrary	 X	 say V	 Then, the function f can belinearized at )P-
20 	20 x'

0

by expanding '? into a Taylor series which by using the above' definition

it can be written in the form of i

f{X2 )	 =	 f( z) +; J (2) , (X2 - 2) +	 (3- 12) 
0	 0	 4	 00
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Now, keeping only the terms of degree Q and 1, the	 first approximation

to	 the	 solution of Eq. (3.10) can be obtained by solving the	 following'.

equation for
2 0

I

'(^) +	 (R°)	 f	 - R° >	 - (3.13)
O	 0	 o	 P 1

and the first, approximate solution 7 _ k	 is obtained which is2
o	 O

t

i

X1 	 X°	 -	
J .1 (X)	 f(X

20	 20	 `o	 zo
1

Of course, in the general step of the iteration, if 7k	 is the	 solution
o

obtained	 at	 the	 kph iteration, the next approximation to the solution

can be computed by

.-k+1	 -k_1X2 	r	 X2 	-	 J	 ( K2 ) f (X2 ) ( 3.14)

{

y;

) Ip — k 	 o Xk
2	 2

o

Note that the second term on the right hand side of Eq, -(3.14)

represents	 the	 correction to the approximate initial state of the lead

f{
l'. satellite.	 And if the correction at each iteration is denoted by 8(72)

o t

then Eq. (3.14) can be written in the form of
t

X2
+1	

X2	 - S (XZ) (3.15)
0	 0	 0 !

where
i

X 	 _	 J-1 (X	 )d (2o)	
20 f (1

2 )

IX k
(3_. 16)0Xk

20 20
4
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Existence of the Solution

Ap

Convergence of the solution using Newton's method	 depends	 on

the	 initial	 guess	 of	 the state vector which is required to start the ^!

iteration process.	 in other words, suppose .X2	 is n nominal solution of
0 1

f = 0.	 Then, if the initial guess( 2 3 is sufficiently "close" to 720	 0

the Newton iteration will converg e, and t
t

X2	 ->	 Z	
as	 k -> oo

0	 0 n

Moreover, high-speed convergence willstart when X^ 	 gets	 sufficiently
o

close	 to X2 .	 Although, it should be noted that as soon as the differ-
o

ence between the obtained solution at the kth iteration and the	 nominal

solution defined by s

ek	 X2	
- X2

O	 O

reaches to the order of 	 the	 distance	 between	 nearby	 floating	 point

numbers,	 the granular structure of the number system makes it no longer
F

j

possible to continue the iteration.

the other criteria which should	 also	 be 	 satisfied	 at	 each

iteration	 is that the Jacobian matrix be non-:jingular se that it can be
n	 ^h

converted in order to compute the correction 3(_X2 )
O 1

i

^ 	 r
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Computation of the Jacobian Matrix (J)

The Jacobian matrix ( 6x6) was defined by Eq. ( 3.11) and can be

computed	 as	 follows.	 Using	 Eq. (3.8) for substitution of T into Eq.

(3.11), it then follows:

T
tf

a	 ap
J(X2 )	 = .	 f {	 -- r ) dt (3.176)

o	 a X2 	 to	 a X2
O	 O

T

tf

a^
=	 f { ate..._	 aaP

r } dt (3.17b)
to 	X2 0 20

T

tf

J.
+	 {

ap
ap

} dtt
O a	 2 a 2

o O

f Neglecting the small terms ( second partial derivatives of p with respect

' to	 the	 components of X2 ) which are associated with the first term on
F 0

the right hand side of Eq. (3.17b) , and also using the definition of Eq'.

(3.9).	 J(72 ) can then be computed approximately by
p

t f :.
J(X2 ) f { HT H }	 dt	 (3.18)

...; ,, O t0

f IS
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J is a symmetric matrix and along with T in Eq. (3.10),  both

are expressed in terms of H which can be obtained as in the following.

Computation of H Matrix

	

The components of the H matrix (1x6) are not an explicit func-
	 R

tion of the components of 72	 Therefore, using the chain rule, the H
0

matrix can be written in the form of
F

6

^ a p ap
a Xa_

r	 r

H	
__

^^^
_
_

(3.19)

aX2 972 a X2

p
P P M1--

R	 And, if the following definitions are introduced,

apK	 - (3.20)

t ax2
F

a X2
s

0(t,t0 )	 = (3.21)
Xa 2 1

O

then Eq. (3.19) can be expressed in terms of H, and as

H	 _	 H (3.22) a

Components of the H matrix can be obtained by taking the	 par-
P

tial	 derivatives	 of p, defined by Eq.	 ( 2.12), with respect; to the com-

ponents of the state of the lead satellite 12 at some instance of	 time.

^	 f.^	 r

rI



+	

^ x

OF POOR QUALMI
rtials are:

X 2 	X
-	

1
=

2	 p

(3.23x)

Y	 Y 122 =	 P
(3.23b)

aQ	 _	 Z 2 — Z1
- (3.23e)a Z	 p2

_ ap 	 p
i

(3.234)
8X2

p (3,23c)
a Y ,^r2

aP =
O (3.23e) -

a Z 2 ,k

Collecting the partials from Eqs . (3.23a) through (3.23e) , the H	 matrix

is then computed by
$^ f

x

X 2_X 1 Y 2-Y 1	 Z2-Z
1

a

H_ 0 0	 Q (3. 24)
P P	

p

}

The State Transition Matrix

f

The state transition matrix,, is	 defined	 by	 Eq.	 (3.21).

Based	 on Eq. (3.2) which represented the nonlinear dynamics of the lead

satellite, assuming that 72 (t)	 is a nominal solution of Eq. (3.2), 	 then	 -

the	 deviation	 of	 X2 from the "true" solution X2 (t) at any instance of

time is defined by

to A
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x2 (t)	 =	 X2 (t) - —X * t)
,

'i

Furthermore, assuming that X
2 
(t)	 is sufficiently "close" to X2 ( t) , then

..	 ,

the function F2 can be linearized about X2 by expanding F2 into a Taylor i

series.	 Keeping only the terms of degree 0 and 	 1,	 and	 provided that =;

A(t) matrix is obtained from F2(.) by the following definition;
^y

aF
2A( t)

	
---

r

( 3.25) E
axe x*

x

'c then it can be shown that the following linear system of	 equations are

satisfied [Brogan,	 19741: I

72 (t)	 =	 A(t) 72 ( t) (3.26) r

and that the state transition matrix satisfies the 	 following	 differen-

tial equations

N t to )	 o	 A(t)	 0(t,tp) I	q) (to ,to ) _	 =	 I (3.27)
t

{

where I is an identity matrix. 	 Thus, the state transition matrix can be j

computed by numerical integration of Eq. (3.27) from to' up to t.

^Iff
Summarizing,	 in	 order	 to	 minimize	 the	 performance index

pl

defined	 by	 Eq.	 (3.5), the following differential equations need to be

simultaneously integrated to result in the appropriate 	 initial	 orbital
F

felements of the lead satellite:



X1	
r1	 '	 X1(to)	 X1

0

(3.28)

_.,	 t	 ,.^,:..	 r	 (	 ;^, ,.	 1111; """^yA:"•'+Pe	 4
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I
• Six equations of motion for the trailing satellite given by

• Six equations of motion for the lead satellite given by

x

X 2	=	 F2	. X2(to) 	 Xz (3.29)

A
_F

*^ f

a Six equations for the elements of 6x1 function f given by

'E

Tf	 _	 H	 r f(to) = 0 (3.30)
}

• Thirty—six equations for the elements of the 6x6 Jacobian	 matrix

given by
3

J	 HT H	 , J(to)	 = 0 (3.31)
6

• Thirty-,six equations for the elements of the 6x6 state	 transition

matrix given

J

by

• 3
t

A	 , ( to'to)	 =	 I (3.32) ,^
1

• One optional equation may also	 be	 integrated	 to	 determine	 the

effect of the convergence of the solution on the value of the per-

formance index which can becomputed by integrating the	 following ._

differential equation;

P	 =	 r2 P(to)	 =,0 (3.33)

'i r
t

s
'r
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a.

3.3 Computation Algorithm

In this section a batch type computational algorithm [Tapley,

19731 is presented which requires the integration of 91 first-order dif-

ferential equations summarized by Eqs. (3.28) through (3.33). The fol-

	

lowing steps lead to the iteration process of the estimation of the 	 t

appropriate initial orbital elements for the lead satellite, X2

a	 s

0. Initialize the state vectors, X1 (to )	 X^ and X2 (to)	 2	 Set o c	;`

to the desired constant separation distance.

	

-k 	 -o1. Set the iteration number ke1 and X2 _ X2

	

O	 0

2. Initialize the matrices, ( 6x1) f_0, ( 6x6) J_0. (6x6) (D: I, and P_0.	
-1

S

3. Set i_1 and ti = to.
;r

4. Compute the A matrix -at ti .

5. Compute the H matrix at ti,

6. Compute the H l^

7. Compute r =	 2` t i ), - X ( ti ) )1 - pc.
z:

8. Increment time: ti _ ti + At.	 a

9. Cheek: if t i > tf , then go to Step 10. Otherwise,

AW

,^	 s

."
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• Integrate the equations of motion to get}f2(t i ) , and 2(ti ) .
1

• Integrate the state transition matrix to get (D at ti.
i

• Integrate 7 = H T r
i

	

• Integrate J	 HT H.

^,	 t
• Integrate the performance index, P = r2 (optional)

• Go to Step 4.

10. Compute the correction gk at t f , $ k J -1 f.

11. Compute 3(2+1 	X2 - k.
O	 O

12. Cheek the convergence. If 	 k> tolerance, then:	 a
f'

• Increment k: k _ k+1.

I	 • Replace X2 by X2	 go to Step 2 for the next iteration.

	

O	 O	
{

i	 - 13. Otherwise, the final approximate solution X2 is obtained which is	 f
O

Y

	

the same as 3{2+ 1 .	 '.
0

i

Y

1



CHAPTE R 4

SIMULATIONS OF THE RELATIVE MOTIONS

In this chapter, the relative motion 	 characteristics	 between I

two	 GRAVSAT	 type	 satellites	 have been numerically investigated. 	 The t

investigation includes the analysis 	 of	 the	 changes	 in	 the	 relative

motions	 produced due to the effects of the earths gravity field models

which were described in Section 2.1.`°

.Several numerical experiments were performed in order to	 pro-

vide	 the	 simulations	 of	 the	 relative motions which are the relative

range, range-rate, and acceleration magnitude.	 The	 equations	 used	 to

compute	 the	 relative motions were derived in Chapter 2, where they are
F	 w

given by Eqs. ( 2.12), (2.16), and	 (2.37d), respectively.

The estimation algorithm which was developed 	 in	 Section	 3.3 {

been used extensively to obtain the appropriate initial orbital ele- Ehas

ments of the lead satellite for several different time	 intervals.	 The ';	 t

software	 program	 developed	 to	 perform	 the	 numerical experiments is ^'t

briefly described in Section 4.1.

The constant parameters and the set of	 initial	 orbital	 ele-

ments	 of	 the trailing satellite __ which are held constant throughout the

simulations are specified in Section 4.2. `.-j
r

z

41
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The other sections of this chapter are devoted to 	 the	 objec-

t^

tives of this investigation which are as follows:

1.	 To establish a stable behavior in the relative	 motions	 under	 the

influence of GEM-10B gravity field model (see Section 4.3).

f; 2.	 To determine the variations in the relative motion produced due 	 to

P the	 effect	 of	 slight changes in the second degree zonal harmonic

coefficient of the GEM-10B gravity field model (see Section 4.4).

e

3.	 To determine the level of variations produced due to the effects of
"q	 h

gravity	 field	 model	 error	 which is assumed to be the difference
}

between the GEM-10B and the GEM-9 models (see Section 4.5.)

The first objective is directly related to	 the	 investigation

of	 the	 "stabilitylt	of	 the separation distance betwa pn the two satel-

lites, wherein the GEM-10B gravity field model is assumed 	 to	 represents

the	 "best"	 approximate	 model	 representing	 the earths gravitational ,.

field. i

The second and the third objectives are investigated 	 in	 con- f

nection	 with	 the	 fact that in the actual mission the satellites would r.

sense the real effects of the	 earth's	 gravitational	 field	 which	 are

expected	 to	 differ from the effects resulting from the a priori model.

Therefore, it has been attempted to demonstrate the 	 variations	 in	 the

relative	 motions	 which	 would be "similar" to those in the actual mis-

sion.

^
f,
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4.1 Software Description

The software created to perform the numerical experiments of

this investigation was designed to be implemented on the Control Data

Corporation ( CDC) Dual Cyber 170/750 computer system.	 The primary

objective of the program was to perform the numerical optimization of

the problem discussed in Chapter 3. Various software packages were also

incorporated which were developed at the University of Texas at Austin.

For example, the normalized harmonic coefficients of the geopotential

expansion were processed by routines of UTOPIA ( University of Texas

Orbit Processor Incorporating Statistical Analysis) developed by Schutz

and Tapley [19801, and the numerical integration of the equations of

motion and the other differential equations required for the optimiza-

tion algorithm were performed by using the DELIB software package writ-

ten by McKenzie [ 19781.

DELIB is a collection of six separate integration packages

t
	 useful for the numerical solution of ordinary differential equations.

>	 Two of these integration packages are called ODE and ABFS, which are

useful for solving a system of first -order differential equations. ODE
s^.

`	 uses the ' variable-mesh multistep method of Shampine and Gordon 119751,

whereas ABFS uses fixed-order, fixed-mesh Adams method developed by

Lundberg [19811. The results of the numerical integrations using the

1	
ODE package were more accurate compared with the use of the ABFS pack-

age. However, the computation time efficiency was greatly improved by

the use of the - ABFS package due to the fixed- step Adams method with

^I
f

....
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Eminimal overhead cost. 	 In addition, both of the packages use	 the	 PECE

(Predict Evaluate Correct Evaluate) technique where two function evalua-

tions are made at each integration time step. 	 Therefore,	 a	 remarkable

computer	 execution	 time	 efficiency	 was	 also	 achieved by the use of
J
I

psuedo function evaluations where	 only	 the	 two-body	 and	 the	 second

degree	 zonal harmonic contributions to the accelerations of the satel-

lites were reevaluated when the second function evaluation of	 the	 PECE *'

technique was made.

4.2	 General Specifications

e
In the numerical simulations, there 	 were	 several	 parameters

which, for simplicity, were held constant.	 These parameters are:
r
i

1.	 The epoch time (to) and the angle of	 longitude	 of	 the	 Greenwich

Meridian	 (a)	 at epoch which were set to be equal to zero. 	 Hence,
.Y

all of the simulations are generated with respect to,
,

t	 o 0, ando .

o - 0.
i

2.	 The constants which describe the	 physical	 and	 dynamical	 charac-

teristics	 of	 the earth are specified in Table 4.1; wherein, Re is

the equatorial radius, GM is the gravitational coefficient, and	 W
e

is the mean magnitude of the earth's rotation about the Z-axis. t

Y
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Initial Orbital Elements of the Trailing Satellite

The particular set of initial orbital elements of the trailing

satellite which are used for all of the numerical simulations are chosen

according to the configuration which is shown in Figure 4.1. This con-

figuration suggests that the trailing satellite starts from the ascend-

ing node of its orbit which is located at the altitude (h) of 160 kilom-

eters on bite X-axis. The initial circular speed assigned to the satel-

lite is computed as follows 	 a
5

1/2

V=	 R G+ ^ 	=7 808.034 m/see.
e

u:^	 a

The respective initial orbital elements (Keplerian or the

inertial components of the position and velocity) are computed which are

given in Table 4.2. These initial orbital elements of the trailing

satellite_ are held constant, regardless of the various time intervals,	
}}

for which the simulations are generated. }

t

x.

i

1
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Tab. 1^	
^1

t.
Constants of the Earth

G14 ( m3/sec2 ) -	 0.398600614 E+15

Re (m)	 -	 63781145.0
we ( Pad /see) =	 0.72921151 E-04	

` t

Y

Table 4.2

Initial Orbital Elements of the Trailing Satellite
Used for all of the Numerical Simulations

Inertial
Orbital

Rectangular
Elements

Keplerian*
Orbital Elements

X W = 6538115.000 a (m) -	 Re + 160000.0

Y (m)	 = 0.0 e =	 0.0

Z (m)	 = 0.0 i (deg) _	 90.0

X (m/ s) 	= 0.0 w (deg) _	 0.0

Y (m/s) _ 0.0 0 (deg) =	 0.0

Z (m/s) = 7808.034 M (deg) =	 0.0

Keplerian orbital elements are defined by;

a = Semi-maj or axis

e = Eccentricity

i = Inclination

w = Argument of perigee
}

Q = Longitude of node
v	 .

M = Mean anomaly 1

r.

Wr

a,

s

. 

a

GS
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e»

4.3 General Behavior of the Relative Motions Characteristics

The behavior of the relative motions between 	 the	 two	 satel-

lites	 is	 generally	 dependent	 on	 the initial orbital elements of the

satellites.	 In this section, it is	 attempted	 to	 establish	 a	 stable

behavior in the relative motions for a 12-day arc length, or time inter-

val.	 All of the relative motion simulations are obtained with 	 the	 use

of	 the	 GEM-10B	 gravity	 field	 model	 which has harmonics complete to
f

degree and order 36.	 The numerical experiments which are 	 performed	 to

provide the simulations are as follows.

s fi

A set of initial orbital elements for the lead 	 satellite	 are

chosen	 such that both of the satellites are Located in the same orbital

plane with equal circular speeds and radial distances from the center of

the	 earth.	 Thus, having specified the initial orbital elements of the

trailing satellite, the same initial orbital elements are used 	 for	 the

lead	 satellite	 except	 for	 a mean anomaly difference of 2.629 degrees

which gives approximately an initial separation distance of 300 	 kilome-

ters.	 The	 respective inertial components of the position and velocity

r'
rK.

of the lead satellite as computed are given in Table 4.3.	 Using	 these

initial set of orbital elements, the equations of motion for each of the

satellites are numerically integrated to generate the simulations of the

relative	 motions for	 a 1-day are length which are plotted as shown in

Figures 4.2a through 4.2c ( Case A. 1) . 	 Note that in Fig. 4.2a	 only	 the j
rl

relative	 range	 variations	 from 300 km are shown. 	 These plots clearly

r demonstrate the unstable behavior of the relative motions in	 the	 sense 3

4	
w L
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of linearly increasing displacements with time. As can be seen in Fig-

ures 4.2a through 4.2c there exists a 10 km decrease in the relative

range, +1 m/s oscillations in the range-rate, and fluctuations in the

relative acceleration magnf Dude which range from -0.002 to 0.001 m/s2.

Table 4 .3

Initial Orbital Elements of the Lead Satellite
Used for the Case A.1

Inertial Rectangular
Orbital Elements

X (m)	 = 6531262.314
Y {m)	 = 0.0

Z (m)	 - 299921.040
x (m/s) = -358.174
Y (m/s)	 _ 0.0

Z (m/s)	 = 7799.815

Keplerian
Orbital Elements

a	 (m) =	 Re + 160000.0

e =	 0.0

i	 (deg) =	 90.0
w (deg) =	 0.0

SZ	 (deg) _	 0.0

M (deg) =	 2.629

bx•
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Figure 14.2a

Relative Notions Characteristics for 1-Day Are Length
with Arbitrary Initial Orbital Elements

Gravity Model: GEM-10B

Case A.1

Relative Range Variations from 300 km (Ap) vs. Time
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Figure 4.2b

Case A.1 (Continued)

Relative Range-Rate (p) vs. Time
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The apparent periodic oscillations in the simulations can be

explained as follows. The initially selected circular orbits change to

elliptical orbits due to the perturbations of the gravity field, but

assuming that the satellites follow each other in the same orbit, the

I ead satellite starts to slow down continuously alter passing through

perigee at a higher rate than the trailing satellite. Consequently, the

separation distance decreases until the apogee location where it reaches t
i

r	
the minimum value.	 However, an opposite behavior occurs after they pass

the apogee location where the lead satellite starts speeding 	 up	 faster

than	 the trailing satellite, hence resulting an increase in the separa-

tion distance until the next perigee location where the maximum
	

separa-

tion occurs.	 Thus, it can be concluded that during each 90 minute revo-

lution of the satellites the separation distance goes 	 through	 a	 cycle

with a maximum and a minimum value corresponding to the perigee and apo-

gee locations, respectively.

Despite the large magnitude of the periodic 	 oscillations,	 it

is 	 the	 secular	 change	 in	 the	 separation, distance which essentially i
influences the stability of the 	 system.	 The	 existing	 secular	 trend

(Fig.	 4.2a) is produced due to the presence of time dependent nonlinear

t'	 terms- which would appear in a series expansion of 	 the	 relative	 motion

between the two satellites.	 The effects of such terms can be eliminated

by selecting initial orbital elements which tend 	 to	 set	 the	 non-zero_ ^+
}

coefficients of the nonlinear terms to very small, values or even ideally

to zero.	 The selection of such initial orbital elements is accomplished

by	 utilizing	 the optimization method which was developed in Chapter 3.
y

ti
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The procedure for this action is as follows.

The initial guess for the orbital elements of the lead satel-

lite required for the Newton-Ra hson iteration method are chosen to be 	
f

9	 P	 r

the same as those used for the previous simulations (Case A.1). 	 Then,	 j

following the steps of the estimation algorithm presented in Section

3.3, several iterations are performed. The resulting initial state of

the lead satellite at each iteration are summarized in Table 4.4, and

the converged solution is given in Table 4.5. It should be noted that

since the satellites were originally set in the inertial XZ orbital

plane, the corrections made to the components of the position and velo-

r4city of the lead satellite are mostly in the Y-direction. And, if the 	 f

initial orbital elements had been chosen in the YZ plane, the correc-

tions should have been made largely in the X-direction, which was vali-

dated by other experiments.
ry

The significance of the resulting initial, orbital elements is

clearly reflected in the simulations which are generated again for a 1-

day are length as shown in Figures 4.3a through 4.3c (Case A.2).	 These

simulations,_ compared with the simulations of Case A.1, show that the

secular trend in the relative range has completely been removed, and

that a remarkable reduction in the amplitude of the oscillations has

also been achieved, where now only +60 meters variations are present in

the relative range simulation (Fig. 4.3a) .
r

a

ON



Table 4.4

Results of the Iteration Process to Obtain the Appropriate
Initial Orbital Elements of the Lead Satellite for 1-Day

55
ffi

r

1

Are Length with the Use of the GEM-10B Gravity Model

f

y

i

Table 4.5

Appropriate Initial Orbital Elements of the Lzad Satellite 	 d

Obtained for 1-Day Are Length with the Use of the GEM-10B Gravity Model
}

Iter.
No.

X
Vim)

Y
(m)

Z
(m)

X
(m/s)

Y
(m/ s)

MWONEMCCZ

Z
(m/s)

0 6531262.314 0.000 299921.040 mm-358.174 0_.000 7799.815
1 6531244.565 -26134.483 300101.156 -358.839 10.763 7799.772
2 6531251.981 -10383.628 300209.453 -358.962 6.452 7799.763
3 6531253.126 2051.539 300214.241 -358.966 6.582 7799.759
11 6531251.485 -631.542 299977.100 -358.687 21.843 7799.762
5 6531252.199 1154.880 299967.175 -358.674 16.729 7799.760
6 6531252.237 1778.375 299960.775 -358.667 16.091 7799.760
7 6531252.238 1800.673 299959.994 -358.666 16.100 7799.760
8 6531252.238 1800.544 299960.014 -358.666 16.100 7799-•761

Inertial
Orbital

Rectangular
Elements

Keplerian
Orbital Elements

X (m)	 _ 6531252.238 a (m) _	 Re + 159959.107
Y (m)	 = 1800.544 e =	 0.569137 E-04
Z (m)	 - 299960.014 i (deg) =	 89.881
X (m/s)	 = -358.666 Us (deg) _	 97.700
Y (m/s) - 16.100- 42 (deg) _	 0.010
Z (m/s) _= 7799.761 M (deg) =	 264.936

'A



Figure 4.3a

Relative Motions Characteristics for 1-Day Are Length
with Appropriate Initial Orbital Elements

Gravity Model: GEM-108

Case A.2

Relative Range Variations from 300 km (Ap) vs. Time
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Figure 4.3b

Case A.2 (Continued)
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Relative Range-Rate (p) vs. Time
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Figure u.3c

Case A.2 (Continued)
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Relative Acceleration Magnitude (P) vs. Time
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In order to demonstrate the effects of the GEM-108 gravity

field model for a longer time period, the obtained initial orbital ele-

ments for Case A.2 are used to generate the simulations for 3-day are
i

length which are shown in Figures 4.4a, b, a (Case A.3). Obviously, the 	 i

stable behavior is only present for the first day of the simulations and

after that a divergent type behavior is developed where a 400 m decrease

in the relative range is produced ( Fig. 4.4c) .	 However, using the	 same

procedure	 as	 followed	 for	 Case	 A.2, an appropriate initial state is

obtained which provides stable behavior throughout the 3 -day arc length.

7	
The initial state used for the iteration process of this ca-4 Q (Case A.4)' 1

is chosen to be the one obtained for	 the	 1-day	 are	 length,	 and	 the _=

resulting	 initial	 orbital elements	 are given in Table 4.6.	 The gen-

erated simulations for this case are shown in Figures 4.5a, b, 0.	 Note
t

again	 the considerable reduction in the Level of fluctuations which are
s

achieved by the use of appropriate initial orbital elements. t
a

Table 4.6

Appropriate Initial Orbital Elements of the Lead Satellite
Obtained for 3-Day Are Length with the Use of the GEM-10B Gravity Model

1 1

Orbital
Inertial .Rectangular

Elements
Y.eplerian

Orbital Elements

X (m)	 _ 6531248.413 a (m) -	 Re + 159958.499
Y (m)	 _ 3635.284 e _	 0.540248 E-04
Z ( m)	 = 299944.<245 i ( deg) =	 89.884
K ( m/s)	 = -358.630 w (deg) =	 97.454

Y (m/s) = 15.602	 _ 9 (deg) =	 0.027

Z (m/s)	 = 7799.768 M (deg)-= 265.181
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Figure 4.4a

Rela ll lv !t Motions Characteristics for 3--Day Arc Length
wi th the Initial Orbital Elements of Case A.2

Gravity Model: GEM-10B
Case A.3

Relative Range Variations from 300 km (.'.) vs. Time
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Figure 4.5a

Relative Motions Characteristics for 3-Doy Arc Length
with Appropriate Initial Orbital Elements

Gravity Model: GEM-10B
Case 4.4

Relative Range Variations from 300 km	 ) vs. Time
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Figure 4.4b

Case Ae3 (Continued)
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Case A.4 (Continued) r
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Figure 4,4c

Case A•3 (Continued)
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Case A.4 (Continued)
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The prediction of the relative motions characteristics was

carried	 out for 6-day and 12-day are lengths.	 Following identical pro-

cedure as was done for Case A.4, appropriate	 sets	 of	 #::'^ ` al	 orbital

elements	 were obtained for 6 -day and 12-day are lengths which are given
g

I

in Tables 11.7 and 4.8, respectively.	 The generated simulations 	 for	 6- ,s

day are length using the obtained initial orbital elements for 3-day and
* t

6 -day are lengths are plotted as shown in Figures 4.6a, b, c ( Case	 A.5)

and	 Figures	 4.7a,	 b,	 c ( Case A.6) respectively.	 Also, the generated

simulations for the 12-day are length using the obtained initial orbital

elements	 for 6-day and 12-day are lengths are shown in Figures 4.8a, b, .*

c (Case A.7) and Figures 4.9a, b, c (Case A.8), respectively.	 Note	 the

successive	 reduction in the levels of variations in the simulations for
k

equal are Lengths.	 For example, comparing the simulations obtained	 for

Case A.8 with Case A.7, a 50% reduction in the order of magnitude of the

F	 oscillations are achieved. * x

The initial components of the position 	 and	 velocity	 of	 the

`	 lead	 satellite obtained for various are lengths are tabulated in Tables i4

4.9a and 4.9b respectively.	 Note	 the	 consistent _differences	 between

each	 set	 of	 initial	 orbital elements.	 For longer t me intervals the
t

i	 obtained initial states have a larger components for the position and 	 a

smaller _ components for the velocity in the inertial Y-direction. 	 These
a

x

initial orbital elements obtained for the lead satellite 	 compared	 with

the	 ones specified for the trailing satellite (Table 4.2) clearly indi-

cate that the satellites move on very close orbits but not the same one.

^• xr

i

v,

W
" ' te
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Table 4.7

Appropriate Initial Orbital Elements of the Lead Satellite
Obtained for 6-Day Arc Length with the Use of the GEM-10B Gravity Model

Inertial
Orbital

Rectangular
Elements

Keplerian
Orbital Elements

X (m)	 = 6531233.103 a (m) -	 Re + 159958.528

Y (m)	 = 6495.894 e =	 0.485553 E-04

Z ( m)	 _ 300078.439 1 ( deg) =	 89.901

X (m/s) -358.753 w (deg) =	 96.741
Y (m/s)	 _ 13.198 St (deg) =	 0.052
Z (m/s)	 = 7799.775 M ( deg) _	 265.895

r

#

Table 4 .8

Appropriate Initial Orbital Elements of the Lead Satellite
Obtained for 12-Day Are Length with the Use of the GEM-10B Gravity Model x3 	 ^

to	 _

Inertial
Orbital

Rectangular
Elements

Keplerian
Orbital Elements

X (m)	 = 6531193.906 a (m) =	 Re + 159958.501

Y (m)	 - 7170.572 e =	 0.401601 E-04

Z' (m)	 = 300266.230 i (deg) =	 89.943

X (m/s)	 = -358.912 w ( deg) =	 91 . 094

Y (m/s)	 = 7.382 Q (deg) =	 0.060

Z (m/s) ; = 7799.811 M ( deg) =	 271.543

r.
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Figure 4.6a

Relative Motions Characteristics for 6-Day Are Length

with the Initial Orbital Elements of Case A.4
Gravity Model: GEM-10B

Case A.5
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Figure 4-7a

	Relative Motions Characteristics for 6-Day Arc Length 	 WI

with Appropriate Initial Orbital Elements
Gravity Model: GEM-JOB

Case A.6

Relative Range Variations from 300 km (Ap) vs. Time
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Figure 4.6b	 j

Case A.5 (Continued)

Relative Range-Rate (p) vs. Time
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Figure 4.60

Case A.5 (Continued)

Relative Acceleration Magnitude ( P) vs. Time
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Figure 4.7c

Case A.6 (Continued)

Relative Acceleration Magnitude (P) vs. Time
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Figure 4 .9 a

Relative Notions Characteristics for 12-Day Arc Length
with the Initial Orbital Elements of Case A.5

Gravity Model: GEM-10B
Case A.7

Rela tive Range Vari at ions fr om 300 km (.,;) vs. Time
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Figure 4.9a

Helative Notions Characteristics for 12-Day Arc Length
with Appropriate Initial Orbital Elements

Gravity Model: GEM-10B
Case A.8
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Figure 4.$b

Case A.7 (Continued)

Relative Range-Rate (..) vs. Time
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Case A.$ (Continued)
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Figure 4.1c

Case A.7 (Continued)

Relative Acceleration Ma g nitude 0)) vs. Time
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Are Length X
(m/s)

Y
(m/s)

Z
(m/s)

v
(m/s)

1-Day -358.666 16.100 7799.761 7808.020

3-Day -358.630 15.602 7799.768 7808.024

6-Da y -358.753 13.198 7799.775 7808.032
12-Day -358.912 7.382 7799.8 1 1 7808.068'

71

Table 

Appropriate Inertial Position Components of the Initial State
of the Lead Satellite Obtained for Various Time Intervals

with the use of the GEM-108 Gravity Model

j

1

a

s5

1
Table 4.9b

Appropriate Inertial Velocity Components of the Initial State
,r	 of the Lead Satellite Obtained for Various Time Intervals	 t

with the use of the GEM-10B Gravity Model

Are Length X
(m)

Y
(m)

Z
(m)

r
(m)

1—Day 6531252.238 1800.544 299960.014 Re + 159991.971

3-Day 6531248.413 3635.284 2.99944.245 Re + 159988.189

6-Day 6531233.103 6495.894 300078.439 Re + 159981.270

12-Day 6531193.906 7170.572 300266.230 Re + 159951.441
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4.4 Effect of Error in the Second Degree Zonal Harmonic Coefficient

The second degree zonal harmonic coefficient of the geopoten-

tial expansion, given by Eq. (2. 1), is denoted by J 2 , The motion of a

satellite is dominantly perturbed by the effect of the J2 which

represents	 the	 earth's	 oblateness.	 Therefore, in this section the J2

coefficient of the GEM..-10B gravity 	 model	 is	 purposely	 altered	 by	 a

slight	 amount in order to demonstrate the produced effects in the rela-

tive motion simulations due to this change.	 The simulations	 procedures

are as follows.

The normalized J2 coefficient of the GEM-10B gravity model has #	 t
^

the value of -0.48.41655 E-03 and was increased by 1.0 E-08 for the simu-

lation to produce the effect of an error in the coefficient. 	 The	 ini-

tial	 orbital	 elements	 of	 the lead satellite, which were obtained for

Case A.2, were used to simulate the relative	 motions.	 The	 difference x

between	 the	 obtained simulations for this case (Case B.1) and the ones:
r

obtained for Case A.2 are shown in Figures 4. 110a through 4.10c.

The same initial orbital	 elements	 were	 used	 to	 obtain	 an

F	
appropriate set of initial orbital elements for the lead satellite which

I

remove the small secular trend	 in	 the	 separation	 distance	 which	 is

apparent	 in	 Fig,	 4.10a.	 This	 was accomplished by applying the same

optimization method as before. 	 The obtained initial state of 	 the	 lead

satellite	 for this case ( Case- B.2) is given in Table 4. 10.	 Once again,

the simulations obtained for this case are differenced`with the 	 simula-

tions	 of -Case A.2 and the results are plotted as shown in Figures 4.11a

^^	 r

r



Inertial
Orbital

Rectangular
Elements

Keplerian
Orbital Elements

X (m)	 = 6531252.184 a (m) =	 Re + 159959.107

Y (m} 1813.933 a 0.568937 E-04
Z (m)	 = 299960.613 1 (deg) _	 89.881

X (m/s)	 _ -358.667 w (deg) =	 97.698

Y ("nf s)	 = 16.080 0 ( deg) _	 0.010
Z ('m/s)	 _ 7799.761 M (deg) =	 264.938

3
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h 4.11e. These simulations compared with the simulations of Case

ndicate a well-behaved periodic oscillations which represent the

icance of the obtained initial orbital elements.
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Table 4 .10

Appropriate Initial Orbital Elements of the Lead .Satellite
Obtained for 1-Day Are Length with the use of

I$	 Gravity Model: GEM-10B + A J2
f	 ,	 y
w
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Figure. 4.10a

Relative Motions Perturbations Due t) ''.J :10-8
of the GEM-10B Model for 1-Day Arc Lingt^ with

the initial Orbital Elements of C3se A.2
Case B.1

Relative Range Perturbations (60) vs. Tine
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Figure 4.11a

Relative Motions Perturbations Due to -,J,)=10-3
of the GE'1-10B Model for 1-Day Arc Lertgth
with Appropriate Initial Orbital Elements

Case B.2

Relative Range P•^rturbations (60) vs. Time
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Case B.2 (Continued)
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Figure 4.10b

Case B.1 ( Continued)
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4.5	 Effects of the Gravity Model Error

So far in this chapter it has been assumed	 that	 the GEM-10B

gravity model represents the most accurate model of the earth ' s gravita-

Y	
tional field and all of the relative motions simulations 	 were obtained

^

with the use of GEM -10B model. In addition, a special case was also
r

treated in Section 3.4 where a set of simulations were provided in order

to	 demonstrate the effects of a possible error in the J 2 coefficient of
1

the GEM-JOB model ( Cases B.1-2) . 	 However, in this section	 the	 effects

of	 a	 full gravity model error in the relative motions are demonstrated

in which the GEM -9 model which has	 harmonics	 complete	 to	 degree	 and .^

order 22 is assumed to represent the "true" gravity model of the earth.
""	 f

The initial orbital elements of the l ead satellite which	 were

obtai .neJ	 for	 Case	 A.2	 (given	 in Table 4.5) are used to simulate the f

relative motions under the influence of the GEM -9	 gravity	 model.	 The x

resulting	 simulations	 are	 plotted	 as	 shown in Figures 4 . 12a through t
t	 'ti

4.12c ( Case C.1) and the differences between these simulations 	 and	 the

ones	 obtained	 for	 Case	 A.2	 are shown in Figures 4.13a through 4.13c`

(Case C . 2),	 !Vote that because of the	 different	 energy	 of	 the	 GEM-9 Y
f

model,	 the	 stable behavior of the relative motions in Case A.2 is com-

pletely changed to an irregularly secular behavior- in which _ a 600 meters

error in the separation distance is produced ( Fig. 4. 13a) .

x
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Relative Motions Characteristics for 1-Day Are Length
with the Initial Orbital Elements of Case A°3
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Figure 4.12b

Case C.1 (Continued)

Relative Range-Rate (p) vs. Time
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Figure 4,13b

Case C.2 (Continued)
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Figure 4,12c

Case C.1 (Continued)

Relative Acceleration Magnitude (p) vs. Time
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Figure 4,13c

Case C.2 (Continued)

Relative Acceleration Magnitude Differences (S G) vs. Time
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The same initial orbital elements are used to obtain appropri-

ate	 set of initial orbital elements such that the generated simulations

best fit the simulations of Case A.2 in a least squares sense. . This 	 is

accomplished	 by minimizing the performance index which can be expressed
t	 I

as

1-day
P	 -	 `^	 { pGEM-10B ,- PGEM-9)	 dt

0 ."
i

where P	 represents the relative range between the two 	 satellites
GEM-10B

computed	 at	 some instant of time with the use of GEM-9 model; whereas, r

PGEM-10B represents the corresponding relative 	 range	 computed	 at	 the
3.,.

same	 instant	 of	 time with the use of GEM-10B gravity model. 	 The pro-

cedure to minimize the above function is 	 basically	 the	 same as	 that

presented	 in	 Section	 3.3•	 Therefore, after performing several itera-

tions, the final adjusted initial orbital elements for the 	 lead	 satel-

,tite	 are	 obtained	 which	 are given in Table 4.11.	 Then, the obtained

irAtA-111 orbital elements are used to generate the simulations 	 with	 the .'

use of GEM-9 model. 	 These simulations as well as their differences with

the simulations obtained with the use of the GEM-10B model are shown 	 in .V	 '

Figures	 4.14a through 4.14c (Case C.3), and	 Figures 4.15a through 4.15c;
L

( Case C.4) respectively. 	 Note the obtained +16	 meters	 error	 in	 Fig.

4.15a	 as	 compared with the previously existed 600 meters error in Fig.

4.13a.

.r

x,

,e

1



Table 4.11

Appropriate Initial Orbital Elements of the Lead Satellite	 :}
Obtained for 1-Day Are Length with the use of

Gravity Model: GEM-9j

Inertial
Orbital

Rectangular
Elements

Keplerian
Crbital Elements

X (m)	 _ 6531251.338 a ( m) _	 Re + 159962.234
Y (m)	 _ 1826.607 e =	 0.574876 E-04
Z (m)	 = 299945.957 1 (deg) -	 89.881
X (m/s) _ -358.655 w ( deg) _	 96.936
Y (m/s) _ 16.081 0 (deg) =	 0.011

Z (m/s)	 _ 7799.765 M ( deg) =	 265.700
Al

f

Having obtained the appropriate initial orbital elements,	 the

 error	 in	 the	 relative motions is predicted for six days.	 The simula-

tions for a 6-day are length using the GEM -9 model are shown in	 Figures

4.16a	 through	 4.160	 (Case C.5),	 and their differences with the ones

obtained with the use of the GEM-108 model are shown	 in	 Figures	 4.17a

through	 4.170	 ( Case	 C.6). Note	 again	 the	 600 meters error in the

separation distance which is produced during the additional five days of

the simulations.
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Figure 4.14a

Relative Notions Ciaracterist.ies for 1-Day /Ar c Length
with Appropriate Initial Orbital Elements

Gravity Model: GEM-9
Case C.3

Relative Range Variations from 300 km (U) vs. Time
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Figure 4.1^)a

Relative Notions Differences between GEM-10B and GEM-9 Models
for 1-Day Arc Length with Appropriate Initial

Orbital Elements Used for each Model
Case C.4

Relative Range Differences (SP = "GEM-10B - "GEM-9) vs. Time
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Figure 4.14b

Case C.3 (Continued)

Relative Range-Rate ( P) vs. Time
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Case C.4 (Continued)

Relative Range-Rate Differences (6 vs. Time

r
cS P = PGEM-10H PGEM-9

_•	
Y

1	 ^	 Yjt

UU	 1	 S	

f^

14 0 ^^	 &	 "^'	 t 	
r

E

'	 tl	 t7 20 	 il, C0	 0, p 0	 1. LU

TIME PAST EPOCH (DAY)

Mi

,



of

U KttatN I L pt1fi^ I
7F POOR QUAL17Y.

Figure 4.14c

Case C.3 (Continued)

Relative Acceleration Magnitude (P) vs. Time
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Figure 4.16a

Prediction of the Relative Motions Characteristics for 6-Day
Are Length with the Initial Orbital Elements of Case C.3

Gravity Model: GEM -9
Case C.5

Relative Range Variatio n s from 300 km (Ap) vs. Time
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Figure 4.17a
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Prediction of the Relative Notions Differences between
GEM-10B and GEM -9 Models for 6-Day Are Length with

the Initial Orbital Elements of Case C.4 a,
Case C.6

Relative Range Differences (S P = pGEM-10B - pGEM -9) vs. Time c
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Figure 4.16b

Case C.5 (Continued)

Relative Range-Rate (0) vs. Time
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Figure 4.17b

Case C.6 (Continued;
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4	 Figure 4.160

i	
Case C.5 (Continued)

Relative Acceleration Magnitude (p) vs. Time
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Case CA (Continued)
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CHAPTER 5

g^
CONCLUSIONS AND RECOMMENDATIONS

5.1	 Summary
i

This preliminary study was conducted	 by	 performing	 ntinerous

numerical	 experiments	 which	 provided	 the simulations of the relative r

motion characteristics between the two	 low	 altitude	 satellites.	 The

ii
simulations	 demonstrated	 the effacts of two complete GEM-10B and GEMS-9 iy	 }

_	 gravity field models. 	 Furthermore, there were various intervals of time
^a

(arc lengths) for which the simulations were generated. '' z

.r

Throughout the numerical experiments, 	 the	 method	 which	 was

developed in Chapter 3 was usedto determine appropriate seta of initial
1

}

orbital elements for the lead satellite whereas the initial orbital ele-

ments of the trailing satellite were held constant.	 The initial orbital

elements of the lead satellite were obtai .oed such that	 the	 two	 satel-

lites	 would sense the same enprka y during the -ntdre length of the simu-

lation time.	 Consequently,	 In	 t*he	 getnerated	 simulations,	 only	 the

minimum	 level	 of variations of the relative motions were demonstrated.'

In thi p• manner, the ability of	 the	 method	 was	 well	 acknowledged	 in
-^	 t

Chapter 14 wherein a maximum of 12-day simulation time was considered.
z

i
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5.2 Conclusions

From the analysis of the numerical simulations provided in

this investigation, the following conclusions can be made.

The simulations provided in ^section 4.3 (Cases A.1 through

A.8) demonstrated the fact that the stability of the system of two

satellites is very sensitive to the initial orbital elements of the

satellites.	 In the various cases which were considered, the stable

behaviors were only possible to obtain with the appropriate selection or

ff

	
certain accurate set of initial orbital elements corresponding to the

desired interva s of time. Moreover, it was also shown that the initial

orbital elements obtained for an specified interval of time would no':
x^

necessarily promise an stable behavior for a longer simulation time. In

other words, an appropriate set of initial orbital elements were

required in order to establish stability for the additional portion of

the simulation time. Therefore, it can be concluded that in the actual
	

1

mission it may be very difficult to hold the separation distance to

small fluctuations; consequently, periodic adjustments to the orbits of

f	 the satellites may be required.

In addition, the simulations provided in Section 4.4 and 4.5

demonstrated the level of perturbations in the relative motions which

Jy

	

	 were produced due to the effects of gravity field model error. 	 Of

course the level perturbations were also greatly reduced by the use of

appropriate set of initial orbital elements which counteracted the

effects of the error in the gravity field model.

r Al



Given that the GRAVSAT mission is expected to provide an accu-

rate	 recovery	 of the geopotential model and that in the actual mission s'r

precise initial	 orbits	 for	 the	 satellites	 can	 not	 be	 practically
;a

cY

achieved, it is essential that in the derivation of accurate observation ,lI

equations ('required for processing the actual data) which determine 	 the

quality	 and	 precision of the results, a considerable caution should be

taken whenever a simplifying assumption is used or an 	 approximation	 is }
`i

made. r

5.3	 Recommendations
-i

The	 following	 recommendations	 are	 suggested	 in	 order	 to j

improve	 the	 precision of the computed relative motions characteristics
=,tea

d

and the realism of the simulations.

The level of variations of the relative motions 	 can	 be	 com-

puted	 more	 accurately by converting the current single precision coded T

software program into double precision.
ri^

The only forces acting on the satellites	 considered	 in	 this

study	 have	 been the central body gravitational forces. 	 However, it is

of importance to include the perturbations which will be produced due to

other	 forces	 such as the effects of polar motion, direct and reflected ^.

solar radiation pressure and other non-gravitational 	 forces.	 -However,

the	 drag compensation mechanismproposed for GRAVSAT should accommodate j

I:	 all surface' forces, including radiation pressure.	 It	 should	 be	 noted ?

that	 by	 including any of the above improvements the computer execution

16	 r

r

s

f	 {
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t	 ^

time of the already considerable time consuming process will be

increased.

It is suspected that the simulations of the components of the

relative motions in the radial, transverse or along-track, and normal. or

cross-track directions can be more descriptive of	 the	 relative	 motion

characteristics as compared with the simulations along the line of sight xt
between the two satellites.

f

Finally, as mentioned previously, the simulations provided 	 in
4

this	 study	 were	 obtained	 with respect to an arbitrary set of initial

orbital elements for the trailing satellite 	 which,	 regardless of	 the

.various intervals, of time, were held constant. 	 However, it is suggested f

that for further studies these initial orbital elements be selectea such

that	 for	 any	 given interval of time and gravity field model, when the
r

orbit of the trailing satellite is determined, it best fits the	 one	 in

j	 which only the two-body forces are modeled. 	 This can be accomplished by
j

using the same m inimization method except that the	 constant	 separation t
:.I;

distance	 should be set to zero. 	 It is expected that the simulations of
s	 y

the relative motions obtained with the use of such initial orbital-	 ele-

ments	 will	 demonstrate	 smoother	 behavior in the relative motions and

that the fluctuations will be distributed more evenly along the 	 simula-

tion time.

i

s
r

f,



REFERENCES ri
rt'

I
I

t

r

r

r

:f

r

Brogan, W. L., Modern Control Theory, Quantum Publishers, Inc., New
York, N. Y., 1974•

Colombo, 0. L., Global Geopotential Modelling from Satellite-to-

Satellite Tracking, Department of Geodetic Science and Surveying,

the Ohio State University, Columbus, Ohio, Report No. 317, October

1981.

Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, Inc., Englewood Cliffs,

N. J., 1977.

i

Gaposchkin, E. M., "Global Gravity Field to Degree 	 and	 Order	 30	 from	 ?

Geos-3	 Satellite Altimetry and other Data," Journal of Geophysical

Research, Vol. 85,	 No. B12, pp. 7221-7234,	 December 1980.

Kaula, W. M., Theory of Satellite Geodesy, Blaisdell Publishing Company,
$n

Waltham, Massachusetts, 	 1966.

Kaula, W. M.,	 "Inference	 of	 Variations	 in	 the	 Gravity	 Field	 from	 114

7,

'	 Satellite-to-Satellite	 Range-Rate,"	 Department	 of	 Earth & Space	 t'

Sciences,	 University	 of	 California,	 Los	 Angeles,	 California,

December 1982.
Y

Lerch, F. J., S. M. Klosko, R. 	 E.	 Laubscher and C. A.	 Wagner,	 "Gravity

r	 Model	 Improvement Using Geos-3 (GEM-9 and 10), 11 Journal of Geophy-

sical Research, Vol. 84, 	 No. B8, pp. 3897-3915,	 1979.	 --

E
Lerch, F.	 J.,	 C.	 A. Wagner,	 S. M. Klosko,	 R.	 P.	 Belott, R.	 E.	 Laubscher

and W. A. Taylor, "Gravity Model Improvement Using Geos-3 Altimetry
(GEM-10 and 108), 11 Marine Geodesy,	 1981.

Lundberg, J. B., "Multi-Step 	 Integration 	 Formulas	 for	 the	 Numerical
Integration of the Satellite Problem," Institute for Advanced Study

in Orbital Mechanics, the University 	 of	 Texas	 at	 Austin,	 IASOM

TR81-1 ,	 April 1981

92
r

f

_. 
._



a
I '

. 	Y

#	 F	 w rw

,- r

93

McKenzie, R. E. and K. Sepehrnoori, "Implementation of an Eighth-Order
Runge-Kutta-Fehlberg Method," Institute for Advanced Study in Orbi-
tal Mechanics, the University of Texas at Austin, IASOM TR78-6,
December 1978.

National Academy of Science (USA), Applications of a Dedicated Gravita-
tional Satellite Mission, Report of the Workshop on a Dedicated
Gravitational Satellite Mission, Washington, D.C., 1979.

Pisacane, V. L. and S. M. Yionoulis, Recovery of Gravity Variations from

Satellite-to-Satellite Tracking, Applied Physics Laboratory, Johns

Hopkins University, Baltimore, Report No. SDO-5583, 1980.

Pisacane, V. L., J. L. MacArthur, J. C. Ray, and S. E. Bergson-Willis,
Description	 of the Dedicated Gravitational Satellite Mission

(GRAVSAT), Int. Geosci. & Remote Sensing Symp., Washington, 1981.

Schutz, B. E. and B. D. Tapley, "UTOPIA: University of Texas Orbit Pro-
cessor," Institute for Advanced Study in Orbital Mechanics, the
University of Texas at Austin, IASOM TR80-1, 1980.

It

Shampine, L. F. and M. K Gordon, Computer Solution of Ordinary Dif-

ferential Equations, the Initial Value Problem, W. H. Freeman and

Co., San Francisco, California, 1975.

Shao, R., Private Communication, 1982.

Tapley, B. D., "Statistical Orbit Determination Theory," Recent Advances
in Dynamical Astronomy, Ed. by B. D. Tapley and V. Szebehely, D.	 k
Reidel Publishing Com pany, Dordrecht Holland	 '

g	 P	 ^	 , PP • 396-425, 1973.

Wolff, M., "Direct Measurements of the Earth's Gravity Potential Using a

Satellite, Pair," Journal of Geophysical Research, Vol 14, pp.
x

5295-5300, 1969.
1

5

t

^wrk

I
J

rt

xj

z

1

. Ŷ	 S
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