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ABSTRACT

The stability of the nonlinear dynamical system of two
GRAVSAT-type satellites was investigated. The investigation was con-
ducted by performing several numerical experiments which provide the
simulations of the relative motions characteristics between the two
satellites for various specified time intervals. The simulations
ineclude the relative range, range-rate, and the relative acceleration

magnitude.

These simulations were generated with respect to appropriate
initial orbital elements which were obtained such that the instantaneous
separation distance between the two satellites has small fluctuations
from a specified constant separation distance. The simulation results
indicate that the behavior of the relative motions is very sensitive to
the 1initial orbital elements of the satellites and that for a specified
time interval of interest, a stable behavior can only be achieved with
the ~use of an appropriate set of initial orbital elements compatible

with the gravity field used to derive them.
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CHAPTER 1

INTRODUCTION

Over the past few years, observation of the relative motion
between two satellites has gained a potential value for the study of our
own planet., There are many geological and geophysical applications such
as the study of the structure of the crust and the upper mantle, and
accurate determination of the geoid heights in the analysis of the
instantaneoﬁs and average shape of the sea surface [US Nationsl Academy

of Sciences, 1979].

In the concept that is currently proposed, the accuracy of the
coefficients which describe the gravity field of the earth could be
improved by a simple analysis of the direct observations of the relative
motions between two 1low altitude satellites separated by a specified
distance in the same near-circular polar orbits, The relative motions
which have been suggested for this analysis include range, speed and
acceleration magnitude. In addition, the proposal would enable not only

improved ’coefficients, but the determination of a more complete

'representation of the gravity field, including the anomalous potential.

Thie history of this concept is attributed to Wolff [1969], who
proposed .a pafticular Satellite~-to-Satellite Tracking (SST) configura-

tion, known as the "low-low" system. In his proposal the relative speed

along the line of sight between two satellites, as a first



approximation, is the difference in anomalous potential sensed by the
respective satellites, Therefore, as the Earth rotates, this pair would
eventually cover the whole planet with observations of the gravity
field. Since this original proposal, research efforts have been

directed toward clarifying the theory behind SST.

In the mid 1970's, the idea of a dedicated gravitational
satellite mission based on the SST principle began to develop and
becane known as the Gravity Satelli‘e (GRAVSAT). In order to achieve
the mission objective, it is essential that the satellites be made
drag-free so that only gravitational forces act wupon them, For this
reason, a drag-compensatiQi technique has been proposed in which two
proof-masses, one inside of each spacecraft, will be unaffected by sur-
face forces through periodic activation of thrusters which would offset
the sensed surface forces acting on the spacecraft enclosing the proof-
mass. Such a system has been constructed by Stanford University,
referred to as the Disturbance Compensation System (DISCOS) [Pisacane et
al., 1981). This drag-compensation system of satellites would be capa-
ble of remaining in low altitude orbit for a nominal mission lifetime of
up to six months. As long as the drag-compensation mechanism is oper-
able, the atmospheric resistance forces will be effectively eliminated
and the satellites will move in orbits governed by gravitational forces.
Without such a mechaﬁism. the large drag forces would quickly decay the
orbits and make the desired determination of the gravity field far more

complicated.



The line of sight measurements between the two satellites
would be made by an extremely accurate radar interferometric technique
developed at the Applied Physics Laboratory of John Hopkins University
[Pisacane et al,, 19817, The range-rate precision is expected to be on

the order of +1 um/sec between the two satellites,

The general low-low configuration system along with the
desired mission characteristics are shown in Figure 1. The proposed
configuration includes a separation of 300 km between the satellites at
an altitude of 160 km. Although it is desirable in some cases for the
respective satellite orbit planes to coincide, they are illustrated as

noncoincident for the genéral case,

In the following section, descriptions of the major approaches

for some of the recent studies, conducted under the use of simplifying
assumptions, are presented, These studies provide the motivation for

this investigation.,

1.1 Motivation for this Study

Basically, an analysis of data for the improvement of geopo-
tential knowledge consists of three major sections, which can be stated

as follows:

i. Develop observation equations in order to relate the measurements

to the anomalous potential of the Earth.
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ii. Process the data,
iii, Determine the accuracy of the results.

Of course, the accuracy of the observations and the overall modeling

will determine the accuracy of the results.

In general, any globally consistent solution for a degree and
order 180 gravity field in terms of spherical harmonic coefficients by
least-squares techniques must solve for approximately 32,000 parameters,
Consequently, features of the gravity field with 100-200 km in
wavelength can be determined [Pisacane and Yionoulis, 19801, To avoid
the massive matrix inversion computations, associated with such a large
nunber of parameters, different methods have been proposed. For exam-
ple, Colombo [1981] takes advantage of the orthogonality properties with
respect to latitude of the spherical harmoniecs. Also, Kaula [1982] pro-

posed the use of Fourier analysis for each revolution of the satellites.

Some ccmmon simplifying assumptions have been made in studies
by Colombo [1981], Gaposchkin [1980] and Kaula [1982]. A collection of

these assumptions are summarized below:

1. Both satellites describe coplanar, circular, polar orbits with the

same geocentric radius.

2, The satellites are separated by a constant distance and the separa-

tion distance has small fluctuations.
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3. The plane of the orbits is fixed in inertial space, and fluctua-

tions in the geocentric angle between the two satellites are small,

These simplifying assumptions lead one to ignore the actual perturba-
tions of the orbits in the radial, transverse, and normal directions

which are produced due to the effects of the anomalous potential.

The study of the validity of these assumptions and to deter-
mine the extent and rate at which the satellites might drift apart over
various specified time intervals was the primary objective of this

investigation,

1.2 Desecription of the Present Study

In this study, attention has been focused on the relative
motion of the satellites, and basically, the stability of this dynamic

system as far as the separation distaiice was concerned. To support The

objective of this study, a set of initial orbital elements for each of

the satellites was found so that the instantaneous separation distance
(or geocentric separation angle) has small fluctuations from a specified
constant separation distance. Therefore, a clear prospective of whether
the ’stated approximations are valid can be concluded. A brief deserip-
tion of the material presented in this investigation is given as fol-

lows.

Chapter 2 presents the derivation of the equations of motion

considering only the gravitational forces acting upon the satellites.




In addition, a rotating coordinate gystem attached to the trailing

satellite was chosen so that the relative motion between the two satel-

lites can be discussed qualitatively.

Chapter 3 provides the mathematical formulation of an optimi-
zation technique wused to solve for the initial orbital elements of the
satellites. In this method the initial orbital elements of the trailing
satellite are specified. Then the orbital elements cf the lead satel-
lite are determined such that the relative range between the two satel-

lites is nearly constant over a specified time interval.

Chapter 4 includes the numerical simulations of the relative

motions between the two satellites,

Finally, in Chapter 5, based upon the analysis of the nuneri-

cal simulations, the conclusions of this investigation are summarized.



CHAPTER 2

DYNAMICAL MODEL

This chapter presents the differential equations which
describe the motion of two satellites orbiting the Earth under the sole
influence of the earth's gravitational field. Section 2.1 includes the
gravity field models used in this study. Section 2.2 provides the rela-
tionships between the different coordinate systems used in this investi-
gation and the equations of motion are presented in Section 2.3. Sec-
tion 2.4 provides an analytical definition of the relative range-rate
between the two satellites and a satellite-centered coordinate system is

introduced. In Section 2.5, an observation equation which relates the
line of sight acceleration magnitude and the gravity potentials is

obtained such that no simplifying assumptions have been used,

2.1 The Geopotential Models

The gravitational field of the Earth as measured from above
its surface can be represented by a potential, U, which satisfies

Laplace's equation:

2

veu = 0 (2.1)

The solution to Eq. (2.1), using the spherical harmonics

representation, is given by the following infinite series [Kaula, 19661



assuming an origin located at the center of mass:

GMI . N ;é-n
U = -+ 1 - 2 - Jn Pn(sin¢) (2.2)
n=2 S
N n .EAWn
+ -2 ? TJ an(sin¢) (C  cosmi + Snmsinmx}
n=2 m=1 i .
where
G = Universal gravitational constant
M = mass of the Earth
a, = equatoriai radius of the Earth
r = radial distance from the center of the Earth
) = geocentric latitude with respect to the equator
A = angle of longitude with respect to the Greenwich
meridian, measured eastward
Pn(.) = Legendre polynomials
an(.) = associated Llegendre functions
In
- = . spherical harmonic coefficients
S
nm

n =  order of the spherical harmonics
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m = degree of the spherical harmonics

The first term on the right hand side of Eq. (2.2) represents
the central body potential and the remaining terms are due to the non-

sphericity of the Earth,

Eq. (2.,2) is an approximate model of the geopotential where N
denotes the truncation order of the geopotential model. For most
approximations, N is some finite integer. The spherical harmonic coef-
ficients have been estimated from various data sets. A brief descrip-

tion of some recent determinations are as follows:

e Goddard Earth Model (GEM) 9 [Lerch, et al., 1979] 1is a gravity

model based solely on optical, laser, and electronic observations
taken on 30 satellites. It has harmonics complete to degree and

order 20 (20x20) with selected higher degree terms.

¢ GEM-10 [Lerch, et ai., 1979] is a combination solution containing
a global set of 5 degree surface gravity anomalies along with the
data in GEM-9, It has harmonies complete to 22x22 with selected

higher degree terms.

e GEM=10B [Lerch, et al., 1981] is a gravity model that combines the
GEM-10 data set with those obtained from altimeter data of the
GEOS-3 geodetic satellite. GEM-10B represents a significant

improvement over GEM-9 and GEM=10, It consists of a field com-

plete to 36x36 in harmonics.
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Among the above gravity models, the GEM=9 and GEM-10B were used in  the

nunerical analysis of this investigation.

2.2 Coordinate Systems

Several different coordinate systems were used in the
mathematical formulation of the dynamical system for this investigation,
Figure 2,1 illustrates these coordinate systems., For simplicity, the

precession, nutation, polar motion and changes in rotational speed of

the earth have been ignored, The coordinate systems are defined as fol-

lows.

The nonrotating, inertially fixed rectangular coordinate sys<
tem with the origin at the Earth's center of mass denoted by {X,Y,2},
has the X-axis directed along a fixed direction (e.g., the mean Equinox)
and the Y-axis 1is in the equator, All of the differential equations
which describe the motion of the satellites are expressed in this iner-

tial reference system.

A rotating, Earth~fixed rectangular coordinate system with the
origin at the Earth's center of mass is present to account for the
Earth's rotation and the description of the gravity field coefficients,
This System, denoted by {x,y,z}, is a right-handed system with x-y plane
coinciding with the equatorial plane of the earth, Therefore, it
rotates about the Z-axis with the angular velocity of the Earth. The

magnitude of this rotation angle at any instant can be computed by

ISR S & - S
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@ = O s, (b=t ) (2.3)

where we is the magnitude of the Earth's rotation about the Z-axis, and
o, 1is the initial angle at the time to. The angle 0. is measured east-
ward from the X-axis to the Greenwich meridian, Thus, the components of
any vector in the inertial coordinate system can be transformed into the

Earth-fixed system by the following transformation matrix:

cos 0 sind O
T = -sino  cosa O (2.4)
0 0 1
Of course, T is an orthogonal matrix, therefore the relation T'1 =z TT

can be used for the inverse transformation.

Finally, the gravitational field of the Earth as defined in

Eq. (2.2) is represented in an Earth-centered spherical coordinate sys-
tem denoted by {(r,$,A}. The coordinates of any point on a satellite's
orbit in this reference frame is related to the Earth-fixed rotating

coordinate system by the following relations:

X = Tr cosp cosp
y = r cos¢ sin) ; (2.5)
z = r sin¢

where r is the radial distance from the center of mass of the Earth, ¢
is the angle of latitude from the equator, and A is the angle of Iongi-

tude measured eastward from the Greenwich meridian.
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In addition to the above coordinate systems, a rotating refer-
ence frame attached to the trailing satellite is introduced in Section
(2.4). Tis system is used for the theoretical discussion of the rela-

tive motion between the two satellites.

2.3 Equations of Motion

In this section, differential equation which describe the
relative motion of the two satellites considering only the gravitational

forces are presented.

Assume that the mutual gravitational attraction between the
two satellites is negligible compared with the earth's gravitational
forces acting on them. Therefore, considering the satellites as point
masses, the total inertial accelerations of the satellites subject to

the Earth's gravitational field are given by

Ry (L)

T U, (2.6)

ﬁé(t)

v U,(t) (2.7)

wnere the numerical subscripts 1 and 2 denote the trailing and the 1lead

satellite respectively; R is the acceleration vector: 7 is the gradient

operator; and U is the gravitational potential of the Earth defined by

Eq. (2.2).

Now, with the use of appropriate transformations, the carte-

sian components of the acceleration of each of the satellites can be
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obtained by the following equations:
}E = g% (2.8a)
Y- & (2. 8b)
7. Y (2.80)

The three second-order differential Equations (2.8a) through (2.8¢c) can

- be converted to six first-order differential equations as follows:

R(t) V(t) (2.9)

T(t) V u(t) (2.10)

where R(t) and V(t) are the position and velocity vectors, respectively.

Given a set of initial components of position (xo'YB’Zo) and velocity

(io.Yb.Zo) vectors for each of the satellites, Equations (2.9) and
' (2.10) can be numerically integrated to provide the rectangular com-
ponents of position (X,Y,Z), and velocity (i.&.i) vectors at any time
for each respective satellite, Then, the relative range vector (P) can

be obtained by

p - R2 - R1 (2011)

where the subscripts 1 and 2 denote the trailing and the lead satellite
respectively. So, the relative range between the.two éatellites (p) can

be computed by

= v 32 42 2 1/2



16

Differeatiating Eq. (2.11) twice with respect to time and
using Eqs. (2.6) and (2.7) ylelds

where p is the relative acceleration between the two satellites,
expressed in the inertial system. Eq. (2.13) is a nonlinear differen-
tial equation which describes the relative motion between the two satel=
lites, It should be noted that if the initial orbital elements of the
satellites are not chosen properly, an irregularly secular behavior in

the separation distance between the two satellites could result.,

2.4 Definition of the Relative Range-Rate

The relative velocity vector (5) is the time derivative of the

relative range vector. Therefore, differentiating Eq. (2.11) yields

5 = F -X (2.14)

in the inertial system.

The relative range-rate between the two satellites () 1is
mathematically defined as the projection of the relative velocity along
thé line of sight between the two satellites. In other words, it is the
time rate of ¢hange in the distance between the two satellites. = Accord-

ingly,

) | (2.15)

D.
[} ]
o
.
ol .
1}
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where 5 1s a unit vector along the line of sight, and }’E[I is the rela-
tive range given by Eq. (2.12). Thus, it is of importance to note that

p= |IBl| but pis not the same as the magnitude of p. Now, by sSubsti-

tution of Eqs. (2,12) and (2.14) in Eq. (2.15), and using the rectangu-

lar components of p in the inertial coordinate system, the range-rate

can be computed from

(X2-X1)(X2-X1) + (Y2-Y1)(Y2-Y1) + (22-21)(22-21)
p - - (2016)
2 2 2 71/2
[sz-xp s (1t 0% 4 (2,2)) ]

Assume a relative reference frame is attached to the trailing
satellite with one axis directed along the line of sight toward the
leading satellite as shown in Figure 2.2 (more detail on this reference

frame will be given in Section 2.5), then the relative velocity vector

in this reference system (Er) can be obtained by

P, = P - 8xp (2.17)

where § is the total angular velocity of the satellite-centered rotating

coordinate system, and p is the relative velocity vector expressed in
the inertial reference frame given by Eq. (2.14). Taking the dot pro-
duct of p with Eq. (2.17) results in the following equality:

Pror T Pt = op (2.18)
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Satellite-Centered Orthogonal Coordinate System

Trailing Satellite ‘Lead Satellite

—ue [ine of Sight

Direction



AR R T R

19
SO(EZ-XB):EE-(EXS):T)..

Notz that Eq. (2.18) yields again the relative range-rate., Therefore,
it can be concluded that the relative range-rate can be defined as the
projection of the relative velocity‘in either the inertial or the rotat-

ing reference frame along the line of sight.

2.5 Definition of the Relative Acceleration Magnitude

In the following discussion an observation equation is
presented in which relative range, relative range-rate, and the line of
sight relative acceleration are directly related to the inertial com-
ponents of the position, velocity, and the acceleration vectors of the
satellites, This equation was originally developed by Shao [1982]. In
deriving this equation, it should be noted that the line of sight meas-
ured quantities are different from the inertial components of the vec-
tors, This equation is of significance due to its generality and that
no simplifying assumptions or approximations have been made. In addi-
tion, the coordinate system used in the derivation of this equation is
identical to the one described in Section 2.4, This choice of reference
frame is important because it is inherent to the dynamics of the system,
and furthermore the rotation of the lead satellite about the trailing
satellite is described by the angular velocity of this reference frame.
Further details about the properties of this relative reférence frame

are given in the following discussion.
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The unit vector 5 is defined to be a unit vector along the

line of sight, so its time rate of change can be obtained from

po= x5 + b (2.19)

Since 5 is a unit vector, its time derivative in the rotating frame does

not change; in other words, 5. = 0. Thus Eq. (2.19) reduces to
Pr

F = Qxp . (2.20)

However, a constant length vector is perpendicular to its time deriva-

tive. Therefore,

(2.21)

V)
-

Ty
i
(@]

In addition, by the use of vector algebra equalities, it can be shown

that § is perpendicular to 5} The proof is as follows:

0>
=2
]
.
D
>
©

Since § x o =0, the above equation reduces to

6 . 5 = o. (2.22)

Equations (2.20), (2.21), and (2.22) represent necessary and sufficient

~

| conditions for X 5, ahd‘ 5 to be mutually perpendicular; conse-

quently, they form an orthogonal basis for the pfeviously described
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satellite-centered reference frame.

Recall that the relative motion between the two satellites was

given by Eq. (2.13) or

»
-
.

.

.
-

ol

where U1 and 02 are the potential functions evaluated at the respective
satellite positions., Note that the left hand side of Eq. (2.23) is the
relative acceleration vector in the inertial coordinate system, and it

can also be expressed in the relative reference frame as follows:

gel !
11}

S (7))

d | - - -
il ( Pp * 2xp)

(po+Rxp.) + (Qxp+Txp)

Substitute 5+ Qxp for p in the term 0 X p, then it follows that

e e . .

Ezpr+2(ﬁx-6r)-ﬂ26+§xa (2-2”)

Forming the dot product with 5 and both sides of Eq. (2.24) yields

-— ~
.

P = BB o+ 2P.(TxB) (2.25)
R 2 - R - -

Note that each term on the right hand side of Eq. (2.25) simplifies to
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ﬁ-.E.,. - (2.262)
25.(9x;.r>=2§.<;.,,x5) = 0 (2.26b)
5. Cg%%) = %o (2.26c)
5-‘52:*'5) =$2;'(5"5) = 0 (2.26d)

Substitution of Equations (2.26a) through (2.26d) in Eq., (2.25) results
in

= p-0°p (2.27)

0
Using Eq. (2.23) and also rearranging the terms, Eq. (2.27) can be writ-

ten in the form

. 2 Ty -y ~
p = 2 p + (R =R ) .}H
or
p o= 9%p + (FU,-Tu ).p (2.28)

Eq. (2.28) is the observation equation where p is the line of sight

relative acceleration, p is the relative range, and  is the magnitude

of the angular velocity of the rotating relative reference frame, which
can be computed in terms of inertial components of position and velocity

of the two satellites as follows.

MR~ e s AR
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Taking the cross product of § with both sides of Eq. (2,20)

yields

Using the following vector algebra equality
Ax(BxCT) = BCX.T) -~ T(R.B)

then Eq. (2.29) can be written as

x5 = a(pxp) - pCp.T). (2.30)

Since p is perpendicular to §, Eq. (2.30) reduces to

- 3. (2.31)

RoP )
>
DI .

—_ 2
Therefore, 2 is defined by Eq. (2.31), and Q" can be computed from

= (Bxp) . CHxp) (2.32)
Using the following vector algebra equality
( AxB).(CxD) = (AT BD) - (KD BT)
then Eq. (2.32) can be rewritten in the form of
Q2 = (RpICEp) = (ppICpp) (2.33)

ot LR DAL T e R A SR ANNEE R - s S R et IR
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Note that 5 is perpendicular to §, thus §.5 = 0. 'Then, Eq. (2.33)

reduces to

Q° = p.p = (A . (2.34)

p is the ftime rate of change of 5, and can be obtained as follows

~

7?5 (3)

Dy o
1]

da , P

ol
ol

(2.35)

Finally, 92 can be computed by substitution of § in Eq. (2.34), as fol-

lows:
. 2
92 = o] O;;D P
- L 02('5)2-29292+p292]
o L
= L @2 - p2 ] (2.36)
p = .

where P is the relative range-rate given by Eq. (2.16), and

—.2 _ ; il > 2 . L] 2 . . 2
B = Ky X%+ (G = ¥)7 4 (Zy - 2% .

L e e s e : M

i b
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Note that @ in general is time dependent and a function of
position and velocity of the satellites. And in particular, if the
coplanarity, circularity, and constant relative separation orbital
assumptions are made, then T would be constant with a fixed direction

perpendicular to the orbital plane.

Now, using Eq. (2.36) for substitution of Q2 in Eq. (2.28),
then P can be obtained in terms of the rectangular components of the
position, velocity, and acceleration of the s3atellites in the fixed

coordinate system as follows:

p:%-('ﬁ)2-p2~ $ (TU,-FU, ) .5 (2.37a)
o =] -0 | s+ (B .0b (2.37b)
o L J
r * 0
[ -;- @2 -02+7.7 ] (2.37¢)
e - 1 r L ] (] 2 [ ] L] 2 [ 2 . 2 .2
Po= - (X=X )%+ (Y=Y )% + (=207 - P (2.37d)

+ RpK ) (KpoXy) + (Upm N (Upm¥p) & (220 (ZyZ)) ]

From any of the above equations, it can be concluded that the

line of sight relative acceleration is different from. the magnitude of
the relative inertial acceleration. Furthermore, their difference is

not a constant quantity.
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In summary, the set of equations required to -<calculate the
relative motions between the two satellites are as follows. The state
of each of the satellites is calculated by integration of Eqs. (2.9) and
(2.10) for the respective satellite. Then, the relative range is com-
puted by Eq. (2.12), the relative range-rate by Eq. (2.16), and the

relative acceleration magnitude by Eq. (2.37d).



CHAPTER 3

DETERMINATION CF APPROPRIATE INITIAL ORBITAL ELEMENTS

In the previous chapter, it was shown that the relative motion
between the two satellites is governed by the nonlinear accelerations

produced due to the earth's gravitational field,

The stability of the present nonlinear dynamical system has a
direct dependency on the initial orbital elements of the satellites. As
it will shown in Chapter 4, a simple numerical simulation of the rela-
tive range between the two satellites, with any arbitrarily selected
initial conditions, will illustrate a secular behavior in the separation
distance with oscillations of large amplitude, Therefore, in order to
obtain a stable behavior in the relative motion, and to maintain small
fluctuations between the two satellites, a method is developed to obtain
appropriate initial orbital elements. In this method, the initial orbi-
tal elements of one of the satellites is specified., Then, using the
principle of least squares, the initial orbital elements of the other
satellite are numerically obtained to minimize the sum of the squares of
the changes in the separation distance from a desired constant distance,
The formulation of this problem is presented in Section 3.1, and the
solution is obtained by using an iterative method which is introduced in
Section 3.2. Finally, a computational algorithm is sunmarized in Sec-

tion 3.3.

27
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3.1 Problem Formulation

Having described the dynamical system represented by the sys-
tem of Eqs. (2.6) and (2.7), the differential equations describing the

state (position and velocity) of the satellites, X, and fé, can be writ-

1
ten in the form of

X1(t) = F1(X1.t) (3.1
Xz(t) z F2<x2.t> (3.2)

waere ?1(.) and ?E(.) are nonlinear functions of Y1 and Yé respectively.

Let the initial components of position and velocity of one of

the satellites, say the trailing satellite, be fixed and denoted by")'('1 .
‘0

Then, it is desired to solve for the appropriate initial components of
the position and velocity of the lead satellite as arranged in the esti-

mation state vector

X, = X Y. z. X. Y. z (3.3)
2, [20 2, “2, "2, "2 20],

Let CE be the desired constant separation distance between the
two s3atellites. Then, at any instant of time t during a specified time

interval, the change in the separation distance is defined by
r = P-P (3.4)

where p is the relative range which can be computed by Eq. (2.12) and r
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is referred to as the residual.

The optimal solution is obtained by solving a deterministice
optimization problem for which the performance index is the sum of the
square of the residuals, In this approach, the commonly defined perfor-

mance index can be expressed as

<t

£ 2
t
o)
where
P = the function to be minimized
to =z the initial time

t. = the specified final time

First variations of P with respect to the components of the

estimation state vector are obtained by

T
e
9 | = pr2 -a-?-_-"- P} dt (3.6)
3X2 to X2
O (o)

In order to minimize P, first variations of P must vanish, Hence, six

nonlinear equations are produced which are

tf ™~ 5 7

T 50— |rta = o0 (3.72)
to ] 20 J

b po -

f

$U | 52—]rta = o0 (3.7b)
t;(:) 20
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. ~ -
£
SO [=2—rrae =0 (3.7¢)
tO 20

_ _
te T )
J —3-9-— r}ydt = o (3.7d)
to 3X2°
te [ 7
J -i.p-—- r}ldt = 0 (3.7e)
t, oY,
te [ .
J 1 ,Ja.p rydt = 0 (3.76)
Y szo

_ -

Equations (3.7a) through (3.7f) can be put in a matrix form as follows:

T
tf
- 9p -
r = 7 { e rl}ldt = O (3.8)
1"o sz '

o

and if the following definition is introduced,

H = 8'; (3.9)
X
20
Eq. (3.8) then can be expressed in terms of H matrix by
ot . |
f = J{H r}dt = 0. (3.10)
t B

o
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Thus, the problem reduces to solving the six nonlinear equations of T in

terms of six unknown components of the estimation state vector of 72 .
(o]

3,2 Solution Method

A very frequent computational problem is to find some or all
of the solutions of a system of n simultaneous nonlinear equations. One
approach to solve such system of equations is to generalize to n dimen-
sions one of the iterative processes used for solving a single equation:
see for instance Forsythe, et al. [1977]. There are several methods
available from which the system of equations defined by Eq. (3.10) can
be solved., However, the Newton-Raphson iterative method was chosen and

the solution is obtained as follows.

Assume that the partial derivatives of the functions fi with
respect to the components of'iéo can all be computed. Then, let J(?éo)
represent the Jacobian matrix whose (i,j)th element is defined by

_ Sfi
Jij(xzo) = -5-—)(2;— (3.11)

J

As in the case of one dimension, the Newton idea is to start with an

arbitrary Xé , Ssay Xg . ‘Then, the function f can be linearized at §S

(o] (o] 0

by expanding'T'into a Taylor series which by using the above definition

it can be written in the form of

y = FRCY) +JF@) (X o)+ ... (3.12)
o 20 20 ‘20 20

£(X,
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Now, keeping only the terms of degree 0 and 1, the first approximation
to the solution of Eq. (3.10) can be obtained by solving the following

equation for‘ié :
0

TXG) +3(3) (X, -%3) = T (3.13)
0 4] o

(o]

and the first approximate solution Ré = Y’ 1s obtained which is:

o 2O

T s - TN®@y TR
0 Q 0 (&)

Of course, in the general step of the iteration, if’Yg is the solution
)

obtained at the kth iteration, the next approximation to the solution
can be computed by

EKH

20 (o] (o]

T(X

) (3.14)
20

yk YK
Xé Xé

o 2]

Note that the second term on the right hand side of Eq. (3.14)

represents the correction te the approximate initial state of the lead
satellite. And if the correction at each iteration is denoted by G(XS )
(o)

then Eq. (3.14) can be written in the form of:

=K+1 -k = oK .
20 20 20 :
where
T K -1,7 (% |
S(X2 ) = J (X2 ) f(X2~) (3.16)
. 0 (o] Yk o Yk o '
2 2
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Existence of the Sclution

Convergence of the solution using Newton's method depends on

the initial guess of <the state vector which is required to start the

e
iteration process, In other words, suppose Y, is o nominal solution of

20

T = 0. T™en, if the initial guess (ig ) is sufficiently "close" to Y; ’
o "o

the Newton iteration will converge, and
=k -
xa -> x2 as k -=> oo
o o

Moreover, high-speed convergence will start when

XK  gets sufficiently

2o
close to Y; . Although, it should be noted that as soon as the differ=

o)

th

ence between the obtained solution at the k iteration and the nominal

solution defined by

- - -
ek k X

reaches to the order of the distance between nearby floating point
nunbers, the granular structure of the number system makes it no longer

possible to continue the iteration.

The other criteria which should also be satisfied at each

iteration is that the Jacobian matrix be non-singular so that it can be

converted in order to compute the correction S(Yg ).
()
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Computation of the Jacobian Matrix (J)

The Jacobian matrix (6x6) was defined by Eq. (3.11) and can be
computed as follows., Using Eq. (3.8) for substitution of T into Eq.

(3.11), it then follews:

. 1
s | dp
IXy ) === | f { |=—=—] r ldt (3.17a)
° 8x2 t’o axa
o ' o
| -
- -
T
t
f 9 ap
= S — r} dt (3.17b)
to 872 axz
o 0
- T
t
f
+ { 30 Gl } dt
t, 33'('2 9%,
o o

Neglecting the small terms (second partial derivatives of P with respect

to the components of -)—(2 ) which are associated with the first term on
0

the right hand side of Eq. (3.17b), and also using the definition of Eq.

(3.9), J(T;('2 ) can then be computed approximately by
)

tf .
J(Y?_ ) I J‘ { H" H} dt _ , (3.18)
o ’to ‘
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J is a symmetric matrix and along with T in Eq. (3.10), both

are expressed in terms of H which can be obtained as in the following.

Computation of H Matrix

The components of the H matrix (1x6) are not an explicit func-

tion of the components of 7é . Terefore, using the chain rule, the H
o

matrix can be written in the form of

90X

d 3 2
H = a"p = == e (3.19)
x2 3X2 9 X2

& o

. i
M - |2 (3.20)
ax2
[‘éi;
ot ) = | — (3.21)
oX
2
o
then Eq. (3.19) can be expressed in terms of ﬁ. and ¢ as

H = Hg (3.22)

Components of the H matrix can be obtained by taking'the par-
tial derivatives of p, defined by Eq. (2.12), with respeck to the com-

ponents of the state of the lead satellite ﬁé at some instance of time,
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These partials are:

ap _ X2 - %4

_Te = —-—p-—— (3'233)
3p _ Yp - ¥y

5T, = 5 (3.23b)

Z, -2

2o . 2 1 (3.230)
3 22 p
20 . (3.23d)
3X,,
L2 o (3.23¢)
3Y,
—B;L = 0 (3.23e)
22,

Collecting the partials from Eqs. (3.23a) through (3.23e), the H matrix

is then computed by

X Z,-1

2 2 1 2 "1
P P p

-X1 Y, -Y

o
1
o
o
o

(3.24)

The State Transition Matrix .

The state transition matrix,¢, is defined by Eq. (3.21).

Based on Eq. (3.2) which represented the nonlinear dynamics of the lead
—# :
satellite, assuning that Xa(t) is a nominal solution of Eq. (3.2), then

=¥ -
the deviation of )(2 from the "true" solution X2(t) at any instance of

time is defined by

i
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T (b - - ¢
xz( ) = Xz(t) - X2( )

Furthermore, assuming that Yg(t) is sufficiently "close" to ié(t). then

- — -
the function Fé can be linearized about X2 by expanding Fé into a Taylor
series, Keeping only the terms of degree 0 and 1, and provided that

A(t) matrix is obtained from ?E(.) by the following definition;

an
At) = —= (3.25)
09X, |o%
2 |X,

then it can be shown that the following linear system of equations are
satisfied [Brogan, 19741]:

xz(t) = A(t) xa(t) (3.26)
and that the state transition matrix satisfies the following differen-

tial equations:
Q(t.to) = A(t) ¢(t,to) ’ @(to.to) = I (3.27)

where I is an identity matrix. Thus, the state transition matrix can be

computed by numerical integration of Eq, (3.27) from to up to t.

Summarizing, in order to minimize the performance index
defined by Eq. (3.5), the following differential equations need to be
simultaneously integrated to result in the appropriate initial orbital

elements of the lead satellite:
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Six equations of motion for the trailing satellite given by

X1 = F1 ' X1(to) 5 x1 (3.28)
o
Six equations of motion for the lead satellite given by
x2 = F2 ’ Xg(to) z x2° (3.29)
Six equations for the elements of 6x1 function T given by
- T - -
f = H'r , f(to) = 0 (3.30)

Thirty-six equations for the elements of the 6x6 Jacobian matrix

given by
H , J(to) =0 (3.31)

Thirty-six equations for the elements of the 6x6 state transition

matrix given by
P = AO ’ @(to.to) = I (3.32)

One optional equation may also be integrated to determine the
effect of the convergence of the solution on the value of the per-
formance index which can be computed by integrating the following

differential equation:

; =r ’ P(to) = 0 ' (3.33)

e

i ae et e
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3.3 Computation Algorithm

In this section a batech type computational algorithm [Tapley,
1973] is presented which requires the integration of 91 first-order dif-
ferential equations summarized by Eqs. (3.28) through (3.33). The fol-

lowing steps lead to the iteration process of the estimation of the

appropriate initial orbital elements for the lead satellite, §; .
0

= =0
. and Xz(bo) = Xzo. Set e,

0, Initialize the state vectors, ?1(150) z i‘1

to the desired constant separation distance.

1. Set the iteratinn number k=1 and ig = fg .
0 o
2. Initialize the matrices, (6x1) f=0, (6x6) J=0, (6x6) ®=I, and P=0,
3. - Set i=1 and ti = to.
4, Compute the A matrix-at ti.
5. Compute the H matrix at ti.

~

6. Compute the H = H &.

- =k =k
7. Compute r = ||X3t) - X3t || - oy
8. Increment time: t; = t; + At.

9. Check: if ti > tf. then go to Step 10. Otherwise,

I

—

o op wa e i KAl v+
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Integrate the state transition matrix to get ¢ at ti.

e Integrate T = HT r.
e Integrate J = HT H.
® Integrate the performance index, P = r2 (optional).

@ Go to Step 4.

10. Compute the correction 8% at Eos sk o g1 7,

11. Compute Yg"‘ = X% 5K,

2
o o
12. Check the convergence, If ”Ek“ > tolerance, then:
e Increment k: k = k1.

e Replace ')le‘ by '}E;”, go to Step 2 for the next iteration.

o o
|
13. Otherwise, the final approximate solution x2 is obtained which
o

the same as 7;”.
0

4o

Integrate the equations of motion to get T(?(ti) , and fg(ti) .

is



CHAPTER 4

SIMULATIONS OF THE RELATIVE MOTIONS

In this chapter, the relative motion characteristics between
two GRAVSAT type satellites have been numerically investigated. The
investigation includes the analysis of the changes in the relative
motions produced due to the effects of the earth's gravity field models

which were deséribed in Section 2.1.

Several numerical experiments were performed in order to pro-
vide the simulations of the relative motions which are the relative
range, range-rate, and acceleration magnitude. The equations used to
compute the relative motions were derived in Chapter 2, where they are

given by Eqs. (2.12), (2.16), and (2.37d), respectively.

The estimation algorithm which was developed in Section 3.3
has been used extensively to obtain the appropriate initial orbital ele-
ments of the lead satellite for several different time intervals, The
software program developed to perform the numericsl experiments is

briefly described in Section 4.1.

The constant parameters and the set of initial orbital ele-
ments of the trailing satellite which are held constant throughout the

simulations are specified in Section 4,2,

41
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The other sections of this chapter are devoted to the objec-

tives of this investigation which are as follows:

1« To establish a stable behavior in the relative motions under the

influence of GEM-10B gravity field model (see Section 4.3).

2. To determine the variations in the relative motion produced due to
the effect of slight changes in the second degree zonal harmonic

coefficient of the GEM-10B gravity field model (see Section 4.4).

3. To determine the level of variations produced due to the effects of

gravity field model error which is assumed to be the difference

between the GEM-10B and the GEM-9 models (see Section 4.5.)

The first objective is directly related to the investigation
of the "stability" of the separation distance betw2en the two satel-
lites, wherein the GEM-10B gravity field model is assumed to represent
the "best" approximate model representing the earth's gravitational

field.

The second and the third objectives are investigated in con-

~nection with the fact that in the actual mission the sabellites would
sense the real effects of the earth's gravitational field which are
expected to differ from the effects resulting from the a priori model.
Therefore, it has been attempted to demonstrate the variations in the
relative motiohs which would be "similar" to those in the actual mis-

sion,
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4.1 Software Description

The software created to perform the numerical experiments of
this investigation was designed to be implemented on the Control Data
Corporation (CDC) Dual Cyber 170/750 computer system. The primary
objective of the program was to perform the numerical optimization of
the problem discussed in Chapter 3., Various software packages were also
incorporated which were developed at the University of Texas at Austin.
For example, the normalized harmonic coefficients of the geopotential
expansion were processed by routines of UTOPIA (University of Texas
Orbit Processor Incorporating Statistical Analysis) developed by Schutz
and Tapley [1980], and the numerical integration of the equations of
motion and the other differential equations required for the optimiza-
tion algorithm were performed by using the DELIB software package writ-

ten by McKenzie [19781].

DELIB is a collection of six separate integration packages
useful for the numerical solution of ordinary differential equations.
Two of these integration packages are called ODE and ABFS, which are
useful for solving a system of first-order differential equations, ODE
uses the variable-mesh multistep method of Shampine and Gordon [19751],
whereas ABFS uses fixed-order, fixed-mesh Adams method developed by
Lundberg [1981]. The results of the numerical integrations using the
ODE package were more accurate compared with the use of the ABFS pack-
age., However, the computation time efficiency was greatly iﬁbroved by

the use of the ABFS package due to the fixed-step Adams method with
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minimal overhead cost. 1In addition, both of the packages use the PECE
(Predict Evaluate Correct Evaluate) technique where two function evalua-
tions are made at'each integration time step. Therefore, a remarkable
computer execution time efficiency was also achieved by the use of
psuedo function evaluations where only the %two-body and the second
degree zonal harmonic contributions to the accelerations of the satel-

lites were reevaluated when the second function evaluation of the PECE

technique was made,

i,2 General Specifications

In the numerical simulations, there were several parameters

which, for simplicity, were held constant., These parameters are:

1. The epoch time (to) and the angle of 1longitude of the Greenwich
Meridian (a) at epoch which were set to be equal to zero. Hence,

all of the simulations are generated with respect to,
t =0, and
a = 0.

2. ~ The constants which describe the physical and dynamical charac-
teristies of the earth are specified in Table 4,1; wherein, Re is
the equatorial radius, GM is the gravitational coefficient, and w,

is the mean magnitude of the earth's rotation about the Z-axis.
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Initial Orbital Elements of the Trailing Satellite

The particular set of initial orbital elements of the trailing
satellite which are used for all of the numerical simulations are chosen
according to the configuration which is shown in Figure 4.1, This con-
figuration suggests that the trailing satellite starts from the ascend-
ing node of its orbit which is located at the altitude (h) of 160 kilom-
eters on the X-axis. The initial circular speed assigned to the satel-

lite is computed as follows

1/2
y = [ GM ] = 7808.03% m/sec.

Re+h

The respective initial orbital elements (Keplerian or the
inertial components of the position and velocity) are computed which are
given in Table 4,2, These initial orbital elements of the trailing
satellite are held constant regardless of the various time intervals,

for which the simulations are generated.
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Figure U.1
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Table 4.1

Constants of the Earth

GM (m3/sec?)
Re (m)
we (rad/ sec)

0.39860064 E+15
6378145.¢
0.72921151 E-04

Table 4,2

Initial Orbital Elements of the Trailing Satellite
Used for all of the Numerical Simulations

Inertial Rectangular Keplerian*

Orbital Elements Orbital Elements
X (m) =  6538145.000 [ a (m) = R_ + 160000.0
Y (m) = 0.0 e = 0.0
Z (m) = 0.0 i (deg) = 90.0
X (w/s) = 0.0 W (deg) = 0.0
Y (w/s) = 0.0 Q (deg) = 0.0
é (m/8) = 7808.034 M (deg) = 0.0

Keplerian orbital elements are defined by:

Semi-major axis
Eeccentricity

Inelination

Argument of perigee

a
e
i
W
Q = Longitude of node
M

Mean anomaly
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4.3 (@General Behavior of the Relative Motions Characteristics

The behavior of the relative motions between the two satel-
lites 1is generally dependent on the initial orbital elements of the
satellites., In this section, it is attempted to establish a stable
behavior in the relative motions for a 12-day arc length, or time inter-
val. All of the relative motion simulations are obtained with the use
of the GEM-10B gravity field model which has harmonics complete to
degree and order 36, The numerical experiments which are performed to

provide the simulations are as follows.

A set of initial orbital elements for the lead satellite are
chosen such that both of the satellites are located in the same orbital

plane with equal circular speeds and radial distances from the center of

‘the earth. Thus, having specified the initial orbital elements of the

trailing satellite, the same initial orbital elements are used for the
lead satellite except for a mean anomaly difference of 2.629 degrees
which gives approximately an initial separétion distance of 300 kilome-
ters. The respective inertial gomponents of the position and velocity
of the lead satellite as computed are given in Table 4.3. Using these
initial set of orbital elements, the equations of motion for each of the
satellites are numerically integrated to generate the simulations of the
relative motions for a 1-day arc length which are plcﬁtea és shown in
Figures u.éé through 4.2c (Case A.1). Note that in Fig. 4.2a oniy the
relative range variatiohs from 300 km are shown. These plots clearly

demonstrate the unstable behavior of the relative motions in  the sense
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of linearly increasing displacements with time. As can be seen in Fig=-
ures 4.2a through 4,2¢c there exists a 10 km decrease in the relative
range, +1 m/s oscillations in the range-rate, and fluctuations in the

relative acceleration magnitude which range from -0.002 to 0,001 m/sz.

Table 4.3

Initial Orbital Elements of the Lead Satellite
Used for the Case A.1

Inertial Rectangular Keplerian
Orbital Elements Orbital Elements
';-'?;> = 6531262, 314 a (m) = Re + 160000.0l

Y (m) = 0.0 e = 0.0
Z (m) = 299921.040 i (deg) = 90.0
X (m/s) = -358.174 w (deg) = 0.0
9 (n/s) = 0.0 Q (deg) = 0.0
Z (ws) = 7799.815 | ¥ (deg) = 2.629
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Figure 4 .2a
Relative Motions Characteristics for 1-Day Arc Length
with Arbitrary Initial Orbital Elements
Gravity Model: GEM=-10B
Case A.1
Relative Range Variations from 300 km (Ap) vs. Time
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Figure 4.2b
Case A.1 (Continued)

Relative Range-Rate (p) vs. Time
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Relative Acceleration Magnitude (p) vs. Time

Figure 4.2¢c
Case A.1 (Continued)
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The apparent periodic oscillations in the sinulations can be
explained as follows. The initially selected circular orbits change to
elliptical orbits due to the perturbations of the gravity field, but
assuming that the satellites follow each other in the same orbit, the
lead sabellite starts to slow down continuously after passing Lhrough
perigee at a higher rate than the trailing satellite. Consequently, the
separation distance decreases until the apogee location where it reaches
the minimumn value. However, an opposite behavior occurs after they pass
the apogee location where the lead satellite starts speeding up faster
than the trailing satellite, hence resulting an increase in the separa-
tion distance until the next perigee location where the maximum separa-
tion occurs, Thus, it can be concluded that during each 90 minute revo-
lution of the satellites the separation distance goes through a cycle
with a maximum and a minimum value corresponding to the perigee and apo-

gee locations, respectively,.

Despite the large magnitude of the periodic oscillations, it
is - the secular change 1in the separation distance which essentially
influences the stability of the system. The existing secular  trend
(Fig. 4.2a) is produced due to the presence of time dependent nonlinear
terms which would appear in a series expansion of the relative motion
between the two satellites. The effects of such terms can be eliminated
by selecting initial orbital elements which tend to .set the non-zero
coefficients of the nonlinear terms to very small values or even ideally
to zero., The selection of such initial orbital elements is accomplished

by wutilizing the optimization method which was developed in Chapter 3,
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The procedure for this action is as follows.

The initial guess for the orbital elements of the lead satel-
lite required for the Newton-Raphson iteration method are chosen to be
the same as those used for the previous simulations (Case A.1). Then,
following the steps of the estimation algorithm presented in Section
3.3, several iterations are performed. The resulting initial state of
the lead satellite at each iteration are summarized in Table 4.4, and
the converged solution is given in Table 4,5, It should be noted that
since the satellites were originally set in the inertial XZ orbital
plane, the corrections made to the components of the position and velo=
city of the lead satellite are mostly in the Y-direction. And, if the
initial orbital elements had been chosen in the YZ plane, the correc-
tions should have been made largely in the X-direction, which was vali-

dated by other experiments.

The significance of the resulting initial orbital elements 1is
clearly reflected in the simulations which are generated again for a 1-
day arc length as shown in Figures 4.3a through 4.,3c (Case A.2). These
simulations, compared with the simulations of Case A.1, show that the
secular trend in the relative range has completely been removed, and
that a remarkable reduction  in the amplitude of the oscillations has
also been achieved, where now only +60 meters variations are present in

the relative range simulation (Fig. 4.3a).



Table U.,4Y

Results of the Iteration Process to Obtain the Appropriate
Initial Orbital Elements of the Lead Satellite for 1-Day
Arc Length with the Use of the GEM=10B Gravity Model
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[l

Iter. X Y Z X Y Z
No, (m) (m) (m) (m/s) (m/s) (m/8)
0 6531262.314 0.000 | 299921.040 | -358,174 0. 000 7799.815
1 65312u44,565 | -26134, 483 | 300101, 156 | -358.839 | 10.763 7799.772
2 6531251.981 | -10383.628 | 300209,453 | -358,962 6.452 7799.763
3 6531253. 126 2051.539 | 300214.241 | =358.966 6.582 7799.759
] 6531251.485 -631.542 | 299977.100 | =358.687 { 21.843 7799.762
5 6531252. 199 1154.880 | 299967.175 | -358.674 | 16.729 7799.760
6 6531252, 237 1778.375 | 299960.775 | -358.667 | 16.091 7799.760
7 6531252,238 1800.673 | 299959.994 | =358.666 | 16.100 7799.760
8 6531252.238 1800.544 | 299960.014 | -358,666 | 16,100 7799.761
Table 4.5

Appropriate Initial Orbital Elements of the L2ad Satellite

Obtained for 1-Day Arc Length with the Use of the GEM-10B Gravity Model

Inertial Rectangular
Orbital Elements

Keplerian

Orbital Elements

X

Y
z
X
Y

Z

(m)
(m)
(m)
(m/s)
(m/ s)
(m/s)

6531252.238
1800.544
299960.014
-358.,666
16.100

7799.761

a {(m)

i (deg)
w (deg)
2 (deg)

M (deg)

89.881
97.700
0.010
264.936

]
Ry + 159959.107

0.569137 E-04
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Case A.2 (Continued)
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In order to demonstrate the effects of tpne GEM-10B gravity
field model for a longer time period, the obtained initial orbital ele-
ments for Case A.2 are used to generate the simulations for 3-day arc
length which are shown in Figures 4.4a, b, ¢ (Case A.3). Obviously, the
stable behavior is only present for the first day of the simulations and
after that a divergent type behavior is developed where a 400 m decrease
in the relative range is produced (Fig. 4.4c). However, using the same
procedure as followed for Case A,2, an appropriate initial state is
obtained which provides stable behavior throughout the 3-day arc length.
The initial state used for the iteration process of this casa {Case A.4)
is chosen to be the one obtained for the 1-day arec length, and the
resulting initial orbital elements are given in Table 4,6. The gen=
erated simulations for this case are shown in Figures 4.5a, b, c. Note
again the considerable reduction in the level of fluctuations which are

achieved by the use of appropriate initial orbital elements.

Table 4.6

Appropriate Initial Orbital Elements of the Lead Satellite
Obtained for 3~-Day Arc Length with the Use of the GEM-10B Gravity Model

Inertial Rectangular VV : Keplerian

Orbital Elements 1 Orbital Elements
X m = 6531248.413 | a (m) = R, + 159958.499
Y (m) = 3635, 28U e = 0.540248 E-04
Z (m = 299944, 245 i (deg) = 89.884
X (m/s) = -358.630 w (deg) = 97.454
1:{ (w/s) = 15,602 | Q (deg) = 0.027
Z (w/s) = 7799.768 M (deg) = 265,181
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Figure 4.4a
Relativ» Motions Characteristies for 3-Day Arc Length
with the Initial Orbital Elements of Case A.2
Gravity Model : GEM-10B
Case A.3
Relative Range Variations from 300 km (o) vs. Time
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The prediction of the relative motions characteristics was
carried out for 6-day and 12-day arc lengths. Following identical pro-
cedure as was done for Case A.H4, appropriate sets of .uir-ial orbital
elements were obtained for 6-day and 12-day arc lengths which are given
in Tables 4.7 and 4.8, respectively. The generated simulations for 6=
day arc length using the obtained initial orbital elements for 3-day and
6-day arc lengths are plotted as shown in Figures 4,6a, b, ¢ (Case A.,5)
and Figures U4.7a, b, c¢ (Case A.6) respectively. Also, the generated
simulations for the 12-day arc length using the obtained initial orbital
elements for 6-day and 12-day arc lengths are shown in Figures 4.8a, b,
¢ (Case A.7) and Figures 4.9a, b, ¢ (Case A.8), respectively. Note the
successive reduction in the levels of variations in the simulations for
equal arc lengths. For example, comparing the simulations obtained for
Case A.8 with Case A.7, a 50% reduction in the order of magnitude of the

oscillations are achieved.

The initial components of the position and velocity of the
lead satellite obtained for various arc lengths are tabulated in Tables
4,9a and 4.9b respectively. Note the consistent differences between
each set of initial orbital elements. For longer time intervals the
" obtained initial states have a larger components for the position and a
smaller components for the velocity in the inertial Y-direction. These
initial orbital elements obtained for the lead satellite compared with
the ones specified for the trailing satellite (Table 4.2) clearly indi-

cate that the satellites move on very close orbits but not the same one.
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Table 4.7

Appropriate Initial Orbital Elements of the Lead Satellite
Obtained for 6-Day Arc Length with the Use of the GEM-10B Gravity Model

Inertial Rectangular Keplerian
Orbital Elements Orbital Elements

X (m) = 6531233. 103 a (m) = R, + 159958.528
Y (m) = 6495, 894 e = 0.485553 E=04
Z (m) = 300078.439 i (deg) = 89.901

X (w/s) = -358.753 | w (deg) = 96.741

Y (m/s) = 13.198 Q2 (deg) = 0.052

Z (w's) = 7799.775 | M (deg) = 265.895

Table 4.8

Appropriate Initial Orbital Elements of the lLead Satellite
Obtained for 12-Day Arc Length with the Use of the GEM=-10B Gravity Model

Inertial”Rectangﬁlar , Keplerian
Orbital Elements Orbital Elements
X (m) = 6531193.906 a (m) = Re + 159958.501

Y (m) = 7170.572 e = 0.401601 E-04
Z (m)y = 300266.230 i (deg) = 89.943
X (w/'s) = 2358.912 | w (deg) = 91.094
Y (ws) = 7.382 | Q (deg) = 0. 060
Z (w's) = 7799.811 | M (deg) = 271.543
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Figure Y4 .6a

Relative Motions Characteristics for 6-Day Arc Length
with the Initial Orbital Elements of Case A,H4
Gravity Model : GEM-10B
Case A.5

Relative Range Variations from 300 km (AP) vs. Time
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Figure 4.6b
Case A.,5 (Continued)

Relative Range-Rate (p) vs. Time
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Figure 4 .6¢
Case A.5 (Continued)

Relative Acceleration Magnitude (pP) vs. Time
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Case A.6 (Continued)
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Relative Motions Characteristics for 12-Day Arc Length
with the Initial Orbital Elements of Case A.6
Gravity Model: GEM-10B
Case A.7

Relative Range Variations from 300 km (Ap) vs. Time
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Relative Motions Characteristics for 12-Day Arc Length
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Gravity Model: GEM-10B
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Table 4 .9a

Appropriate Inertial Position Components of the Initial State
of the Lead Satellite Obtained for Various Time Intervals
with the use of the GEM-10B Gravity Model

Arc Length X Y / r
(m) (m) (m) (m)
1=Day 6531252.238 1800, 544 299960,014 Re + 159991.971
3-Day | 6531248.413 | 3635.284 | 299944.245 | R_ 4+ 159988. 189
6=Day 6531233.103 6495 .894 300078, 439 R‘e + 159981.270
12-Day [ 6531193.906 | 7170.572 | 300266.230 | R 4+ 159951. k1

Table 4.9b

Appropriate Inertial Velocity Components of the Initial State
of the Lead Satellite Obtained for Various Time Intervals
with the use of the GEM=-10B Gravity Model

Arc Length X Y z v
(m/ 3) (/s (n/s) (n/'s)
. e
1-Day | ~-358.666 | 16.100 [ 7799.761( 7808.020
3-Day | -358.630| 15.602 | 7799.768| 7808.024
6-Day | -358.753| 13.198 | 7799.775| 7808.032
12-Day | -358.912| 7.382 | 7799.811| 7808.068
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4,4 Effect of Error in the Second Degree Zonal Harmonic Coefficient

The second degree zonal harmonic coefficient of the geopoten.-
tial expansion, given by Eq. (2.1), is denoted by Jz’ The motion of a
satellite is dominantly perturbed by the effect of the J2 which
represents the earth's oblateness., Therefore, in this section the J2
coefficient of the GEM=-10B gravity model 1is purposely altered by a

slight amount in order to demonstrate the produced effects in the rela-

tive motion simulations due to this change, The simulations procedures

are as follows.

The normalized J, coefficient of the GEM-10B gravity model has

2
the value of =0,4841655 E-03 and was increased by 1.0 E~08 for the simu=
lation to produce the effect of an error in the coefficient. The ini-
tial orbital elements of the lead satellite, which were obtained for
Case A.2, were used to simulate the relative motions. The difference

between the obtained simulations for this case {Case B,1) and the ones

obtained for Case A.2 are shown in Figures 4.10a through 4§.10¢c.

The same initial orbital elements were used to obtain an
appropriate set of initial orbital elements for the lead satellite which
rémbve the small seculaf trendb in the separation distance which 1is
apbarent in Fig., 4.10a. This was accomplished by applying the same
optimization method as before. The obtained initial state of the 1lead
satellite :for this case (Case B.2) iS given in Table 4.10., Once again,
the simulations obtained for this case are differenced with the simula-

tions . of Case A.2 and the results are plotted as shown in Figures 4,11a
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through 4,11c. These simulations compared with the simulations of Case
B.1 indicate a well-behaved periodic oscillations which represent the

significance of the obtained initial orbital elements,

Table 4.10

Appropriate Initisl Orbital Elements of the Lead Satellite
Obtained for 1-Day Arc Length with the use of
Gravity Model: GEM-10B 4-AJ2

Inertial Rectangular ) Keplerian

» Orbital Elements Orbital Elements

PR T g — o o
X (m) = 6531252, 184 a (m) = Ry + 159959.107
Y (m) = 1813.933 e = 0.568937 E-04
Z (m) = 299960.613 i (deg) = 89.881
X (m/8) = -358.667 w (deg) = 97.698
Y (m/s) = 16.080 2 (deg) = 0.010
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Figure 4.10b
Case B,1 (Continued)
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4,5 Effects of the Gravity Model Error

So far in this chapter it has been assumed that the GEM-10B

gravity model represents the most accurate model of the earth's gravita-
tional field and all of the relative motions simulations were obtained
with the use of GEM-10B model. In addition, a special case was also
treated in Section 3.4 where a set of simulations were provided in order
to demonstrate the effects of a possible errvyr in the J2 coefficient of
the GEM-10B model (Cases B,1-2)., However, in this section the effects
of a full gravity model error in the relative motions are demonstrated

in which the GEM=9 model which has harmonics complete to degree and

order 22 is assumed to represent the "true" gravity model of the earth.

The initial orbital elements of the lead satellite which were

obtained for Case A.,2 (given in Table 4.5) are used to simulate the
relative motions under the influence of the GEM~9 gravity model, The
resulting simulations are plotted as shown in Figures 4,12a through
4,12¢c (Case C.1) and the differences bietween these simulations and the
ones obtained for Case A.2 are shown in Figures 4,13a through 4, 13c

(Case C.2). Note that because of the different energy of the GEM-9

model, the stable behavior of the relative motions in Case A.2 is com=-
pletely changed to an irregularly secular behavior in which a 600 meters

error in the separation distance is produced (Fig. 4.13a).
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The same initial orbital elements are used to obtain appropri-
ate set of initial orbital elements such that the generated simulations
best fit the simulations of Case A.2 in a least squares sense. This is
accomplished by minimizing the performance index which can be expressed
as

1=day 2

P = ~g L PoEM-108 ~ PgEM-g! 9t

where pGEM-IOB represents the relative range between the two satellites
computed at some instant of time with the use of GEM<9 model: whereas,
pGEM-1OB represents the corresponding relative range computed at the
same instant of time with the use of GEM-10B gravity model. The pro-
cedure to minimize the above function is basically the same as that
presented in  Section 3.3, Therefore, after performing several itera-
tions, the final adjusted initial orbital elements for the lead satel-
1ite are obtained which are given in Table 4.11. Then, the obtained
initiyl orbital elements are used to generate the simulations with the
use of GEM-9 model. These simulations as well as their differences with
the simulations obtained with the use of the GEM-10B model are shown in
Figures U4.14a through 4. 14¢ (Case C.3), and Figures 4.,15a through 4, 15¢
(Case C.Y4) respectively. Note the obtained +16 meters error in Fig,

4,15a as compared with the previously existed 600 meters error in Fig,

4,13a.
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Table 4§ .11

Appropriate Initial Orbital Elements of the Lead Satellite
Obtained for 1-Day Arc Length with the use of
Gravity Model : GEM-=9

Inertial Rectangular Keplerian
Orbital Elements Crbital Clements

X (m) = 6531251.338 a (m) = R, + 159962.23nl
Y (m) = 1826.607 e = 0.574876 E-04
Z (m) = 299945.957 i (deg) = 89.881

X (w/s) = ~358.655 | w (deg) = 96. 936

Y (w/'s) = 16.081 | © (deg) = 0.011

Z (w/s) = 7799.765 | M (deg) = 265,700

Having obtained the appropriate initial orbital elements, the
error in the relative motions is predicted for six days. The simuia—
tions for a 6-day arc length using the GEM-9 model are shown in Figures
4,16a through 4.16¢ (Case C.5), and their differences with the ones
obtained with the use of the GEM-10B model are shown in Figures 4,17a
through 4,.17c (Case C.6). Note again the 600 meters error in the
separation distance which is produced during the additional five days of

the simulations.
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Case C,3 (Continued)
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Figure 4.16b
Case C.5 (Continued)
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Figure 4.16¢

Case C.5 (Continued)
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS
5.1 Summary

This preliminary study was conducted by performing numerous
nunerical experiments which provided the simulations of the relative
motion characteristics between the two low altitude satellites. The
simulations demonstrated the effects of two complete GEM-10B and GEM-9
gravity field models, Furthermore, there were various intervals of time

(are lengths) for which the simulations were generated.

Throughout the numerical experiments, the method which was
developed in Chapter 3 was used to determine appropriate sets of initial
orbital elements for the lead satellite whereas the initial orbital ele-
ments of the trailing satellite were held constant. The initial orbital
elements of the lead satellite were obtained such that the two satel-
lites would sense the same energy dwing the ontire iangth of the simu-
lation time. Consequently, in +the generated simulations, only the
minimunm level of variations of the relative motions were demonstrated.
‘In this manner, the ability of the method was well acknowledged in

Chapter 4 wherein a maximum of 12-day simulation time was considered.
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5.2 Conclusions

From the analysis of the numerical simulations provided in

this investigation, the following conclusions can be made.

The simulations provided in “ection 4.3 (Cases A.1 through
A.8) demonstrated the fact that the stability of the system of two
satellites is very sensitive to the initial orbital elements of the
gatellites, In the various cases which were considered, the stable
behaviors were only possible to obtain with the appropriate selection of
certain accurate set of initial orbital elements corresponding to the

desired intervais of time., Moreover, it was also shown that the initial
orbital elements obtained for an specified interval of time would n¢}
necessarily promise an stable behavior for a longer simulation time. 1In
other words, an appropriate set of 1initial orbital elements were
required in order to establish stability for the additional portion of
the simulation time. Therefore, it can be concluded that in the actual
mission it may be very difficult to hold the separation distance to
small fluctuations; consequently, periodic adjustments to the orbits of

the satellites may be required.

In addition, the simuiations provided in Section 4.4 and» 4.5
demonstrated the level of perturbations in the relative motions which
were produced due to the effects of gravity field model error. of
course the level perturbations were also greatly reduced by the use of
appropriate set of 1initial orbital elements which counteracted the

effects of the error in the gravity field model.

C -
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Given that the GRAVSAT mission is expected to provide an accu-
rate recovery of the geopotential model and that in the actual mission
precise initial orbits for the satellites can not be practically
achieved, it is essential that in the derivation of accurate observation
equations (required for processing the actual data) which determine the
quality and precision of the results, a considerable caution should be
taken whenever a simplifying assumption is used or an approximation 1is

made.

5.3 Recommendations

The following recommendations are suggested in order ¢te
improve the precision of the computed relative motions characteristics

and the realism of the simulations.

The level of variations of the relative motions c¢an be com-
puted more accurately by converting the current single precision coded

software program into double precision.

The only forces acting on the satellites considered in this
study have been the central body gravitational forces. However, it is
of importarice to include the perturbations which will be produced due to
other forces such as the effects of polar motion, direct and reflected
solar radiation pressure aﬁd other non-gravitational forces., However,
the drag compensation mechanism proposed for GRAVSAT should accommodate
all surface forces, including radiation pressure. It should be noted

that by including any of the above improvements the computer execution
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time of the already considerable time consuming process will be

increased.

It is suspected that the simulations of the components of the
relative motions in the radial, transverse or along-track, and normal or
cross-track directions can be more descriptive of the relative motion
characteristics as compared with the simulations along the line of sight

between the two satellites.

Finally, as mentioned previously, the simulations provided in

this study were obtained with respect to an arbitrary set of initial
orbital elements for the trailing satellite which, regardless of the
various intervals of time, were held constant., However, it is suggested
that for further studies these initial orbital elements be selectes such
that for any given interval of time and gravity field model, when the
orbit of the trailing satellite is determined, it best fits the one in
which only the two-body forces are modeled. This can be accomplished by
using the same minimization method except that the constant separation
distance should be set to éero. It is expected that the simulations of
the relative motions obtained with the use of such initial orbital ele-
ments will demonstrate smoother behavior in the relative motions and
that the fluctuations will be distributed more evenly along the simula-

tion time,



REFERENCES

Brogan, W, L., Modern Control Theory, Quantum Publishers, Inc., New
York, N. Y., 1974.

Colombo, 0. L., Global Geopotential Modelling from Satellite-to-
Satellite Tracking, Department of Geodetic Science and Surveying,
the Chio State University, Columbus, Chio, Report No. 317, October

1981.

Forsythe, G, E., M, A, Malcolm, and C, B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, Inc,., Englewood Cliffs,

N. J., 1977.

Gaposchkin, E. M., "Global Gravity Field to Degree and Order 30 from
Geos-3 Satellite Altimetry and other Data," Journal of Geophysica;
Research, Vol, 85, No. B12, pp. 7221-7234, December 1980.

Kaula, W. M., Theory of Satellite Geodesy, Blaisdell Publishing Company,
Waltham, Massachusetts, 1966.

Kaula, W. M., "Inference of Variations in the Gravity Field from
Satellite-to-Satellite Range-Rate," Department of Earth & Space
Sciences, University of California, Los Angeles, California,
December 1982, )

Lerch, F. J., S. M. Klosko, R. E. Laubscher and C. A, Wagner, "Gravity
Model Improvement Using Geos-3 (GEM-9 and 10)," Journal of Geophy-
sical Research, Vol. 84, No. B8, pp. 3897-3915, 1979.

Lerch, F. J., C. A, Wagner, S. M. Klosko, R. P. Belott, R. E. Laubscher
and W. A, Taylor, "Gravity Model Improvement Using Geos-3 Altimetry
(GEM-10 and 10B) ," Marine Geodesy, 1981. '

Lundberg, J. B., "Multi-Step Integration Formulas for the  Numerical
Integration of the Satellite Problem," Institute for Advanced Study
in Orbital Mechanics, the University of Texas at Austin, . IASOM
TR81-1, April 1981. |

92

e .

e -



*

1

. -
gu
¥
-

93

McKenzie, R. E. and K. Sepehrnoori, "Imnplementation of an Eighth-Order
Runge-Kutta-Fehlberg Method ," Institute for Advanced 3tudy in Orbi-
tal Mechanics, the University of Texas at Austin, TIASOM TR78-6,
December 1978,

National Academy of Science (USA), Applications of a Dedicated Gravita-

tional Satellite Mission, Report of the w&;kshop on a Dedicated
Gravitational Satellite Mission, Washington, D.C., 1979.

Pisacane, V. L. and S. M. Yionoulis, Recovery of Gravity Variations from
Satellite-to-Satellite ‘Tracking. Applied Physics Laboratory, Johns
Hopkins University, Baltimore, Report No. SDO-5583, 1980.

Pisacane, V. L., J. L. MacArthur, J. C. Ray, and S. E., Bergson-Willis,
Description of the Dedicated Gravitational Satellite Mission
(GRAVSAT), Int. Geosci. & Remote Sensing Symp., Washington, 1981,

Schutz, B. E, and B. D. Tapley, "UTOPIA: University of Texas Orbit Pro-
cessor," Institute for Advanced Study in Orbital Mechanics, the
University of Texas at Austin, IASOM TR80-1, 1980.

Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary Dif-
ferential Equations, the Initial Value Problem, W, H. Freeman and
Co., San Francisco, California, 1975.

Shao, R., Private Communication, 1982,

Tapley, B. D., "Statistical Orbit Determination Theory," Recent Advances
in Dynamical Astronomy, Ed. by B. D. Tapley and V. Szebehely, D.
Reidel Publishing Company, Dordrecht, Holland, pp. 396-425, 1973.

Wolff, M., "Direct Measurements of the Earth's Gravity Potential Using a
Satellite Pair," Journal of Geophysical Research, Vol. 14, pp.
5295-5300, 1969.




	GeneralDisclaimer.pdf
	0013A02.pdf
	0013A03.pdf
	0013A04.pdf
	0013A05.pdf
	0013A06.pdf
	0013A07.pdf
	0013A08.pdf
	0013A09.pdf
	0013A10.pdf
	0013A11.pdf
	0013A12.pdf
	0013A13.pdf
	0013A14.pdf
	0013B01.pdf
	0013B02.pdf
	0013B03.pdf
	0013B04.pdf
	0013B05.pdf
	0013B06.pdf
	0013B07.pdf
	0013B08.pdf
	0013B09.pdf
	0013B10.pdf
	0013B11.pdf
	0013B12.pdf
	0013B13.pdf
	0013B14.pdf
	0013B14_.pdf
	0013C01.pdf
	0013C02.pdf
	0013C03.pdf
	0013C04.pdf
	0013C05.pdf
	0013C06.pdf
	0013C07.pdf
	0013C08.pdf
	0013C09.pdf
	0013C10.pdf
	0013C11.pdf
	0013C12.pdf
	0013C13.pdf
	0013C14.pdf
	0013D01.pdf
	0013D02.pdf
	0013D03.pdf
	0013D04.pdf
	0013D05.pdf
	0013D06.pdf
	0013D07.pdf
	0013D08.pdf
	0013D09.pdf
	0013D10.pdf
	0013D11.pdf
	0013D12.pdf
	0013D13.pdf
	0013D14.pdf
	0013D14_.pdf
	0013E01.pdf
	0013E02.pdf
	0013E03.pdf
	0013E03_.pdf
	0013E04.pdf
	0013E04_.pdf
	0013E05.pdf
	0013E05_.pdf
	0013E06.pdf
	0013E06_.pdf
	0013E07.pdf
	0013E08.pdf
	0013E09.pdf
	0013E10.pdf
	0013E10_.pdf
	0013E11.pdf
	0013E11_.pdf
	0013E12.pdf
	0013E12_.pdf
	0013E13.pdf
	0013E14.pdf
	0013E14_.pdf
	0013F01.pdf
	0013F01_.pdf
	0013F02.pdf
	0013F02_.pdf
	0013F03.pdf
	0013F04.pdf
	0013F04_.pdf
	0013F05.pdf
	0013F05_.pdf
	0013F06.pdf
	0013F06_.pdf
	0013F07.pdf
	0013F07_.pdf
	0013F08.pdf
	0013F08_.pdf
	0013F09.pdf
	0013F09_.pdf
	0013F10.pdf
	0013F10_.pdf
	0013F11.pdf
	0013F11_.pdf
	0013F12.pdf
	0013F13.pdf
	0013F14.pdf
	0013F14_.pdf
	0013G01.pdf
	0013G01_.pdf
	0013G02.pdf
	0013G02_.pdf
	0013G03.pdf
	0013G03_.pdf
	0013G04.pdf
	0013G04_.pdf
	0013G05.pdf
	0013G05_.pdf
	0013G06.pdf
	0013G07.pdf
	0013G07_.pdf
	0013G08.pdf
	0013G08_.pdf
	0013G09.pdf
	0013G10.pdf
	0013G10_.pdf
	0013G11.pdf
	0013G11_.pdf
	0013G12.pdf
	0013G12_.pdf
	0013G13.pdf
	0013G13_.pdf
	0013G14.pdf
	0014A01.pdf
	0014A02.pdf
	0014A03.pdf
	0014A04.pdf
	0014A05.pdf

