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ABSTRACT

Spectrophotometric observations of emission line intensities over the

spectral range 1400 &. to 9600 A have been made in five positions in the planetary

nebula NGC 3242. In two of the positions, both the weakness of the A1548.1550 C

IV resonance lines and the steepness of the Balmer decrement suggest the

possibility of internal dust in the nebula; this possibility should be further

investigated. The electron temperature measured from the [0 III] lines varies

little from the average value of 11,100 K, which is in reasonably good agreement

with the less accurate value of 12,900 K measured from the Balmer continuum. As

2+
in the previous studies in this series, the A4267 C II line implies a C

abundance that is much higher than that determined from the A1906.1908 C III]

lines. This discrepancy decreases with increasing distance from the central

star, again suggesting that the excitation mechanism for the ̂ 426 7 line is not

understood. Standard equations used to correct for the existence of elements in

other than the optically-observable ionization stages give results that are

consistent and in agreement with abundances calculated using ultraviolet lines

and with those found by Aller and Czyzak. The logarithmic abundances (relative

to H=12.00) are: He=10.96, 0=8.64, N=7.96, Ne=8.04, C=8.41, Ar=6.15, and S=6.51.

The He, and, to some degree, 0, N, Ne, and C, abundances are somewhat lower than

those measured in NGC 6720 and NGC 6853, suggesting that less (perhaps no) mixing

of processed material occurred in the progenitor to NGC 3242. The S, and, to some

extent Ar, abundances also appear to be somewhat low, perhaps implying that the

progenitor to NGC 3242 formed out of metal-poor material.
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I. INTRODUCTION

The four previous papers in this series (Barker 1980; 'Barker 1982; Barker

1983; and Barker 1984; hereafer, Papers I, II, III, and IV, respectively)

analyzed optical and ultraviolet observations of different positions in the

planetary nebulae NGC 6720, NGC 7009, and NGC 6853. The idea behind these

studies is to measure optical and UV emission line intensities in the same

nebular positions using similar entrance apertures. Since the ionization

frequently changes drastically with position in an extended nebula, this

procedure is almost essential in order to make a meaningful comparison between UV

and optical measurements. The ultimate goals are (1) to observe elements in more

stages of ionization than is possible from optical spectra alone; this provides a

check on optical ionization correction procedures, which are still useful for

nebulae that are too faint to observe with the International Ultraviolet Explorer

(IUE) satellite, (2) by averaging measurements made in different parts of the

nebula, to get particularly accurate total abundances so that small differences

between nebulae will become apparent; such differences can be sensitive tests of.

theoretical predictions regarding CNO processing and mixing in the progenitors of

planetaries, and (3) to further investigate the discrepancies found in Papers II,

III, and IV between optical and UV measurements of the abundance of C; these

discrepancies need to be understood before we can have confidence in optical

measurements of that important element.

I chose NGC 3242 as the next planetary in this series primarily because it

has a high surface brightness and so can be observed with reasonable exposure

times using the smaller of the two IUE entrance apertures. In addition, it has

measurable He II UV and optical emission in even the outermost positions,

facilitating the difficult task of combining the UV and optical observations.
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Finally, Aller and Czyzak (1983, hereafter AC) found a rather large discrepancy

2+
between the optical and UV measurements of the C abundance; I felt that it

would be interesting to see if this discrepancy is correlated with position in

the nebula, as I found in Papers II, III, and IV.

II. Observations

Spectra of five positions in NGC 3242 were obtained on a total of 13

different nights between 1982 January and 1984 April using the IUE satellite and

three different optical instruments at Kitt Peak National Observatory. Nearly

all the important emission lines in the spectral range 1400-9600 A were measured

one or more times.

- a) Optical Observations

Preliminary observations were made with the Intensified Reticon Scanner

(IRS) at Kitt Peak in 1982 January using the No. 1 90 cm telescope. The primary

goal was to select positions with a wide range of ionization, but these

measurements also provided useful checks on subsequent ones. The bulk of the

optical observations were made in 1983 December and 1984 March, using the 2.1 m

telescope and the intensified image dissector scanner (IIDS). Spectra were

obtained through a 3.4" diameter aperture using two grating settings covering the

range 3400-5100 R and 4600-7200 A5 with resolutions of about 10 i (FWHM). The blue

spectral region was observed on three different nights and the red on two.

Finally, intensities of the near-infrared A9069 and X9532 [S III] lines relative

to several stronger visual lines were measured on two nights in 19S2 January

using the Harvard sequential scanner (see Paper I) and a 4.4" diameter entrance

aperture.

b) Correction for Interstellar Reddening

The amount of interstellar reddening can be estimated by comparing the
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observed and theoretical intensities of the H lines (the "Balmer decrements").

Positions 3-5 have decrements consistent with a reddening parameter, c, of 0.15,

in reasonably good agreement with values found by other observers (see the

summary by Koppen, 1983). Position 1, and, to a smaller degree, position 2, have

somewhat steeper decrements that are more consistent with c=0.35 and c=0.25,

respectively. Condal e_t. al.. (1981) also found evidence for larger Ha/Hg ratios

at approximately these positions and attributed the effect to dust within the

nebula. The weakness of the C IV lines in these positions also suggests that

there may be dust in the nebula (see § IVe). It would clearly be worthwhile to

explore this possibility further, perhaps by using high dispersion

spectrophotometry to compare the intensities of the Balmer lines at the near

(blue shifted) and far (red shifted) sides of the nebula. This method has been

tried for some planetaries (Osterbrock 1974, Doughty and Kaler 1982) but not NGC

3242. Note, however, that infrared measurements by Hoseley (1980) as analyzed by

Natta and Panagia (1981) indicate that NGC 3242 has an unusually low amount of

internal dust. In view of this and the rather small differences in the Balmer

line intensities, I do not feel that the evidence for a steeper decrement for

positions 1 and 2 is conclusive. In addition, a larger value of c than 0.15

would give even poorer agreement between the predicted and observed A1640 Be II

fluxes in position 1 (see § lie). I therefore adopted a value of c » 0.15 for all

five positions. A larger value for positions 1 and 2 would have very little

effect on the conclusions of this paper.

The intensities listed in Table 2 have all been calculated by multiplying

the observed intensities by 10 * ; the values of f(X) are also listed in

Table 2. Note that there is generally very good agreement between the observed

and theoretical (Brocklehurst 1971) intensities of Ha, H$, Hf, Hg, H9, and H10
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(285, 100, 46.9, 25.9, 7.3, and 5.3, respectively). The intensities of the [0 II]

lines at X3727 listed in Table 2 have been corrected for blending with other

lines as described in Paper III. This correction resulted in the observed

intensities being multiplied by factors of 0.38, 0.49, 0.62, 0.86, and 0.58, for

positions 1-5, respectively.

c) Ultraviolet Observations

The ultraviolet observations were made with the small (*»3.2" diameter)

entrance aperture of the IUE satellite in 1982 July. Table 1 lists the offsets

with respect to the central star, the IUE exposure numbers, and the exposure

times. The offsets were made under the assumption that the center of light

position measured by the IUE fine error sensor coincided with the central star.

As a check, exposures were taken with the small aperture centered on the assumed

position of the central star. The observed stellar continuum was about as strong

as in exposures obtained by other observers through the large IUE entrance

aperture, and it therefore seems probable that the IUE observations were made

within l"-2" of the indicated positions. The data were reduced in 1983 January

at the IUE Regional Data Analysis Facility at Goddard Space Flight Center using

the 1980 May calibration (the same calibration used in Papers II, III, and IV).

No emission lines could be observed by both the IUE and optical telescopes,

but several methods can be used to put all the observations on the same intensity

scale. One method is to directly compare absolute flux measurements, after

correcting for the (small) difference in the areas of the entrance apertures. A

check on this method is that, for the physical conditions of NGC 3242 (see

fill), IO1640) should then equal 6.6 I(X4686) (Seaton 1978). The predicted and

observed fluxes (uncorrected for interstellar extinction) are compared in Table

1. The agreement is only fair for position 1, and, as discussed above, it would
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have been even worse if a larger value of c had been assumed. Positions 2, 3,

and 4 agree extremely - perhaps fortuitously - well in view of the uncertainties

inherent in this method. I attribute the disagreement at position 5 to the fact

that He II emission varies drastically near the outer parts of the nebula.

(I(x4686) is 6 times greater at position 4 than position 5, for example, even

though the two positions are at the same angular distance from the central star.)

Indeed, SWP 18740, taken in 1982 December, gave F(\1640) nearly 10 times greater

than SWP 17424. (SWP 18740 was supposed to be on position 5, but there was some

difficulty in pointing the satellite during this exposure, and it may have been

in error by 3-4".) In the end, for positions 1, 2, and 3, the DV intensities were

put on the same scale as the optical ones by requiring that I(A1640)=6.6

I(A4686). For positions 4 and 5, where the He II emission is much more variable,

the normalization was done by comparing absolute fluxes. The validity of the

latter method is supported by the fact that, despite the discrepancy in the He II

A1640 fluxes between SWP 17424 and SWP 18740, their A1906.1909 C III] fluxes

differed by only 20%. Finally, the SWP and LWR intensities were combined by

assuming that the small LWR aperture has an effective area of 0.83 times the

SWP's (Harrington, Seaton, Adams, and Lutz 1982); this is close to the value of

0.79±0.05 that I measured by comparing Xl906,1909 emission line intensities on

the SWP and LWR spectra.

One check on the normalizing procedure is the ratio of the UV and optical

0 III lines, I(3133)/I(3444), which should be 2.51. The observed ratios are 4.07,

2.26, 2.22, and 12.8 for positions 1, 2, 3, and 5, respectively. I again

attribute the discrepancy for position 5 to the sensitive dependence of He II

emission on position in the outer parts of the nebula; this will have a drastic

effect on the 0 III lines, since they result from the Bowen fluorescent
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2+mechanism. Another check is the 0 abundance measured from the X1661,1666 0

III] line, compared to that from the A5007 line (Table 4).-The agreement is only

fair, but this is not surprising in view of the faintness of the UV lines. In

summary, I feel that the VV/optical ratio of line intensities is good to "20% for

positions 2, 3, and 4, and to ~50% for positions 1 and 5.

d) Observational Errors

Aside from possible systematic errors discussed above, the ultraviolet

intensities are judged to be accurate to within a factor of 2 for the faintest

lines (less than 20% of Hg), to~40% for those of intermediate intensity (between

20% and 80% of Hg), and to~20% for the strongest lines. While these errors may

seem high, errors in electron temperatures generally have a greater effect on the

accuracy of the abundances (discussed in § III) than do those in line

intensities.

Based on a comparison between the IRS and IIDS results, and between IIDS

measurements made on different nights, the intensities of the strongest optical

lines are judged to be accurate to r»10%, those weaker than half of Hg to be

accurate to *-20%, and even the faintest lines to be accurate 10̂ 30%. The X3727

line intensity is good to only a factor of 2 for positions 1, 2, 3, and 5 because

of the large corrections for blending these (see § lie). The intensity of the

A9532 line and, to a lesser degree, of the X9069 line, were affected by

terrestrial H.O absorption as discussed in Paper III and are good to only

~50%. Finally, intensities in Table 2 labeled with colons are uncertain by

approximately a factor of 2.

An additional source of error in the optical observations results from the

large zenith distance of NGC 3242 at the latitude of Kitt Peak. Although it was

observed only within an hour of the local meridian, the air mass was as high as
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1.6. Because of atmospheric refraction, somewhat different parts of the nebula

were therefore sampled in different regions of the spectrum, an effect which is

most serious for positions 4 and 5, where the ionization changes the most

drastically.

III. TEMPERATURES, DENSITIES, AND IONIC ABUNDANCES

Calculations of the electron temperature (T ), electron density (N ),

and ionic abundances in the different positions were made using the same methods

and atomic constants as in Paper III. The results for N and T aree e

summarized in Table 3. The [S II] lines are faint and so the values of N
e

measured from them are rather uncertain. The [Ar IV] lines are also faint. In

addition, a weak He I line blended with X4711 will lead to a slight underestimate

in N (primarily in the lower ionization positions where He I emission is

strongest), while other evidence (Czyzak e_t_ al.., 1980) suggests that errors in

3+the Ar constants may lead to overestimates in N . Even so, the agreement

between the two indicators (in positions 3 and 4) is reasonably good, and the

adopted values are similar to those found by others (see Koppen 1983 for a recent

summary). Fortunately, only the 0 , and, to a lesser degree, the S

abundance calculations are sensitive to the assumed N .e
2+Of the three indicators for T , the 0 ratio is by far the most

accurate, and this value was therefore adopted for all five positions. There is

2+very litle variation in the 0 T , consistent with the T map by Reay

and Worswick (1982), who found "a fairly even distribution at 11000 K." These

T measurements are also consistent with those found by other observers

2+(Koppen 1983). The S determinations are much less certain for reasons

described earlier, but at least they indicate that there is no evidence for a

significantly lower T in regions of lower ionization as is sometimes the case
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(e.g., Paper IV). The Baimer continuum T was measured by extrapolating the

shortward and longvard continue to the Baliner limit, and dividing the difference

i( A3646~)-i( A3646 ) by l(Hg). This ratio was converted to T by using

Equation (1) from Barker (1979). This method is extremely sensitive to errors in

c, uncertainties in estimating the continuum, and uncertainties in the

instrumental calibration in this wavelength region. The agreement with the

2+
0 T 's must therefore be considered reasonably good. There is certainly

no evidence that T 's measured from the Balmer continuum are lower than the
e

2+0 T 's, as has been claimed for some planetaries (see Barker 1979 for a

discussion). In summary, the electron temperature for NGC 3242 is quite constant

across the nebula and has apparently been measured quite accurately.

The ionic abundances using the values of T and N given at the bottom

of Table 3 are listed in Table 4. In NGC 3242, most of the elements are in stages

2+ 2+of ionization that are similar to 0 , so the 0 T should be

appropriate for them.

IV. TOTAL ABUNDANCES

Total abundances may be found by simply adding together all the ionic

abundances or by using only optically measured ionic abundances and correcting

for the presence of elements in optically unobservable stages of ionization. The

former procedure would appear to be the more reliable, but unfortunately

relatively small errors in T will result in very large errors in abundances

determined from UV lines. At the very least, however, this method serves as a

valuable check on the second procedure, which is often the only one possible when

no UV data are available. Both methods were used whenever possible, and the

results are summarized in Table 4. The abundances labeled "optical" have been

calculated by multiplying the optically measured ionic abundances by the listed
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values of i f, the ionization correction factor; the equations used to

calculate i f values are given in Paper III. The abundances labeled "UV +

optical" are simple sums of all the ionic abundances.

Except for He, the errors assigned to the abundances are based on the errors

estimated for T , N , and the line intensities. In most cases, the errors

in T dominate over other sources.e

- a) Helium

The three different He I lines agree very well, and the average He /H

abundance given in Table 4 for each position is a straight sum of the three

measurements; the total He abundance is the sum of the He and He

abundances. Since He II emission is present in even the positions of lowest

ionization, little if any He is expected to be in the form of He°. The

constancy of the total measured He abundance bears this out.

b) Oxygen

The X1661,1666 0 III] lines are rather faint, so, as mentioned in § lie, it

is not surprising that the agreement between the optical and UV measurements of

2+the 0 abundances is only fair. No A1403,1409 0 IV] emission was detected in

the IUE spectra, consistent with the rather small values of i f determined

from the optical lines. The total calculated 0 abundance agrees fairly well for

the different positions, but the range in ionization in NGC 3242 is too small for

this agreement to be considered a meaningful confirmation of the validity of the

method used to calculate i , for 0.

c) Nitrogen

Almost all (>99.7% for position 1) of the N in NGC 3242 is in the

optically-unobservable states of N and N , so this planetary provides a

good check on the validity of the i , for N. Unfortunately, both the 0
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abundance (which is used to calculate i ,) and the N abundance (whichcr

depends on the intensity of the A6583 line, which is.faint and partially blended

with HQ), are quite uncertain. I believe that most of the scatter in the

optically-measured N abundances is due to these factors. I attribute the large

discrepancy for position 4 to telescope guiding errors;as discussed previously,

the ionization is very sensitive to position in positions 4 and 5. Excluding

position 4 gives the (unweighted) averages N/H (optical) = (0.91*0.11) X 10~

and N/H (UV + optical) = (1.5*0.4) X 10 ; considering the huge i 's, I

feel that this agreement is a rather strong confirmation of the validity of the

optical technique.

d) Neon

The weakness of 1(3426) relative to 1(3444) indicates that most or all of

1(3426) is due to X3429 0 III rather than A3426 [Ne V]; the NeA+ abundance is

2+therefore negligible. Note that the total Ne abundance inferred from the Ne

2+abundance is reasonably consistent with that found by summing the Ne and

3+Ne abundances. In addition, the total measured Ne abundance is constant and

not overestimated in the outer positions (as in Papers I and IV); in NGC 3242, as

in NGC 7009, the ionization is so high that there is little 0 and so the

different efficiencies of the 0 and Ne charge transfer reactions are not

important (see Paper I and references therein).

e) Carbon

As in NGC 6720, NGC 7009, and NGC 6853 the C3+ abundance in the inner

positions inferred from the A4267 line is much larger than that found using the

UV Al906,1909 lines. The ratio of the two measurements is 5.3, 2.5, 3.4, 2.2,

and 1.2 for positions 1-5, so the discrepancy is worst nearest the central star,

as was the case with the other planetaries. I know of no observational error
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that could cause this discrepancy. In particular, although combining the DV and

optical observations can lead to systematic errors (see § lie), using the 0 III

rather than He II lines to do this would given an even -worse discrepancy (8.5)

for position 1. The A4267 line intensity is weak, but the mean error in it (based

on three nights of observing) is smaller than 20% for each position. In

addition, AC, using different observational material, also found a large

discrepancy (a factor of 8). Finally, although a large (̂ 3000 K) overestimate in

T could also explain the discrepancy, such an error is highly improbable in

view of the apparent accuracy of the T measurements discussed in § III.

These and other possibilities were discussed in Paper II; there still seems to be

no satisfactory explanation for this phenomenon.

Another interesting result for C is the behavior of the 1̂548,1550 CIV

resonance lines. These lines are generally weaker in planetaries than model

calculations predict, and NGC 3242 seems to be an extreme case. Koppen

(1983; "model A") predicts that these lines should be about twice as strong as

the Xl906,1909 C III] lines when averaged across all of NGC 3242, but, as shown

in Table 2, the observed ratio is never greater than 0.23. This discrepancy is

particularly pronounced in position 1, where no C IV emission is observed,

despite the fact that this is the position of highest ionization, where one would

expect the highest C IV/C III] ratio. A similar, but much less pronounced effect

was found in NGC 6720 (Paper II) and was attributed to preferential absorption of

the C IV resonance lines by internal dust in the nebula. Koppen and Wehrse
-»

(1983) claim that the effect is generally too great in planetaries to be

explained by reasonable quantities of dust, and they and Koppen (1983) show that

the presence of a large central cavity could explain it more satisfactorily.

This idea is somewhat supported by the fact that the effect is present in NGC
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6720 (the Ring Nebula), which does have a central cavity, and NGC 3242, which has

a double shell structure, but not in NGC 6853 (the Dumbell Nebula; Paper IV),

which has a very different geometry* On the other hand, as discussed in § lib,

the Balmer decrements in NGC 3242 suggest that there may indeed be some internal

dust in positions 1 and 2. It would clearly be worthwhile to search for this dust

observationally, as suggested in § lib. It would also be interesting to see if

the central cavity model of Koppen (1983) can reproduce the positional variation

of the C III] and C IV lines given in Table 1.

f)Argon

There is no measurable X7005 [Ar V] emission, so presumably most of the Ar

2 + 3 +is in the form Ar and Ar . Note that the calculated total Ar abundance

2+ +is very constant across the nebula. The equation Ar/H=1.5 Ar /H (see

Paper I), which is a useful approximation for faint planetaries where only the

A7135 [Ar III] line is observable, gives an average Ar/H ratio of 0.65 X 10 ,

about half the measured value of 1.4 X 10 (see Table 5).

g) Sulfur

The total calculated S abundance is fairly consistent at the different

positions, but, since most of the S is predicted to be in the form of S , it

would clearly be very valuable to have infrared observations of the 10.5ym [S IV]

line at these positions.

V. DISCUSSION

The total abundances in the first row of Table 5 are unweighted averages of

measurements made in the different positions. Except for C, only optical

measurements were used because they are less sensitive to errors in T and

because of the uncertainties inherent in combining the UV intensities with the

optical ones. For the reasons discussed in § IV, only positions 1, 2, 3, and 5
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were used for N. Note that the errors listed in Table 5 come from comparisons

between the different positions and do not allow for systematic errors such as

those introduced by uncertainties in the atomic constants.

It is interesting to compare the abundances with those found by AC, who used

different UV and optical data and a different analysis that involved the use of

theoretical models. Considering these differences, the agreement is remarkably

good.

In general, the abundances in all the objects in Table 5 are quite similar,

but there are some interesting differences. First, the S abundance in NGC 3242

(and NGC 6853) appears substantially lower than in the others. Although the S

abundance measured in both planetaries is somewhat uncertain (see Paper IV and §

IVg), Beck e_t. a^. (1981) measured the S abundance directly and found a

similar total S abundance (4.9 X 10 ) in NGC 3242. This S abundance is about

60% lower than the average for the 18 planetaries they observed, similar to the S

deficiency implied by Table 5. A similar statement can be made for Ar; Beck et

al. measured an abundance of 1.6 X 10 , in good agreement with the value

given in Table 5 and about 35% lower than the average for their other

planetaries. There is fairly good evidence, then, that NGC 3242 is somewhat

underabundant in S and Ar relative to other planetaries, H II regions, and the

Sun. Since some arguments (see Barker and Cudworth, 1984, and references

therein) suggest that S and Ar may be better indicators of heavy element

abundances than are lighter elements, it is possible that the progenitor to NGC

3242 may have formed out of material that is more metal poor than did the other

objects listed in Table 5.

A second feature of Table 5 is the low He abundance in NGC 3242. I believe

that the abundance really is this low because the agreement with the measurement
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by AC is BO good and because the internal agreement (see Table 4) is also

excellent. It therefore appears likely that NGC 3242 has experienced

significantly less (perhaps no) enhancement of He-rich material compared to the

other planetaries in Table 5. This idea is supported by the fact that the N, Ne,

and, to some extent, 0 and C, abundances are also low, especially compared to NGC

6853 and NGC 6720, where some mixing of processed material has clearly occurred

(see Papers I and IV).

VI. CONCLUSIONS

In summary, NGC 6853 is another planetary nebula for which total abundances

can apparently be estimated from optical data alone. The one element for which

this is not true is C; the X4267 line again gives a higher abundance than the UV

lines. This discrepancy is greatest nearest the central star, implying that the

X4267 line may be excited by processes other than pure recombination. The good

internal agreement of the abundance measurements and the excellent agreement with

the measurements by AC indicate that the abundances in NGC 3242 are known to

quite high accuracy. The low S and Ar abundances suggest that the progenitor to

NGC 3242 may have formed in somewhat metal-poor material. The low abundances of

the lighter elements, especially He, suggest that there was little or no mixing

of processed material into the outer layers of the star before it became a

planetary nebula. Finally, there is intriguing circumstantial evidence for the

presence of dust in NGC 3242. It would clearly be worthwhile to make a direct

observational test for dust using a technique such as that described in § lib.
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I am grateful to the IUE and Kitt Peak staffs for their assistance in

obtaining the measurements. Some of the Kitt Peak 2.1m observations were made
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especially grateful to the developers of this system.
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o ' e r V O O N * c o v o o t o v o c n ' v j

' *

C n t - i C n t o O ' C O t O t o . O • M • • • (-•

a* cr i- ON « co «o co

• £ - • £ - * * . £ »
VO 00 "^4 ^J
Cn ON -t> H1

VO M O I-1

1— 1 fT] f— 1 1 1

O T» >• J>
H H

H M M

. • .

1
O O O O

o o o o
CO O CO 4^

CO \-> -> Cn

VO O ON I-1

• •

** M CO J>

>vl O Cn M
» »

JS (-* IO CO

M O 00 Cn

J> (-> CO -̂

!-• 0 H1 . H"

J> M CO *» •

Irt ^^ -t̂  K.N

' ' .^

H

D3
r1

n
to
n
o
3
rt
3



Page 21

TABLE 3

ELECTRON TEMPERATURES AND DENSITIES

QUANTITY

Ne

N
e

Te

Te

*e

(cm )

(cm'3)

(K)

(K)

(K)

ION RATIO

S+ 1(6731/1(6717)

Ar3+ 1(4740)71(4711)

S2+ 1(9069)71(6312)

02+ 1(5007)71(4363)

H+ I(Bac)/I(Hg)

N (adopted)

Error

T
e
(adopted)

1

5400

9200:

11400

11500

5400
±2500

11400
±500

2

4800

8200:

11000

16100

4800
±2000

11000
±500

POSITION

3

2100

3300

1400:

11100

13900

2500
±800

11100
±500

4

950

1600

20000:

11100

10300

1200
±400

11100
±500

5

3300

14500:

10500

12500

3300
±1500

10500
±500
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Eŵ
(̂
^5a

o
M
ca

g
fH

M

Cn



Page 25

REFERENCES

Aller, L.H., and Czyzak, S.J. 1983, Ap.J.Suppl.. 51, 211 (AC).

Barker, T. 1979, Ap.J.. 227, 863.

. 1980, Ap.J.. 240, 99 (Paper I).

. 1982, Ap.J.. 253, 167 (Paper II).

. 1983, Ap.J.. 267, 630 (Paper III).

. 1984, Ap.J.. 284 (Paper IV; in press).

Barker, T., and Cudworth, C. 1984, Ap.J.. 278, 610.

Beck, S.C., Lacy, J.H., Townes, C.H., Aller, L.H., Geballe, T.R., and

Baas, F. 1981, Ap.J.. 249, 592.

Brocklehurst, M. 1971, M.N.R.A.S.. 153, 471.

Condal, A., Pritchet, C., Fahlman, G.G., and Walker, G.A.H. 1981, P.A.S.P..

93, 695.

Czyzak, S.J., Sonneborn, G., Aller, L.H., and Shectman, S.A. J980,

Ap.J.. 241, 719.

Doughty, J.R., and Kaler, J.B. 1982, P.A.S.P.. 94, 43.

Harrington, J.P., Seaton, M.J., Adams, S., and Lutz, J.H. 1982,

M.N.R.A.S.. 199, 517.

Hawley, S.A. 1978, Ap.J.. 224, 417.

Koppen, J. 1983, Astr. Ap.. 122, 95.

Koppen, J., and Wehrse, R. 1983, Astr, Ap.. 123, 67.

Moseley, H. 1980, Ap.J.. 238, 892.

Natta, A., and Panagia, N. 1981, Ap.J.. 248, 189.

Osterbrock, D.E. 1974, P.A.S.P.. 86, 609.

Reay, N.K., and Worswick, S.P. 1982, M.N.R.A.S.. 199, 581.

Ross, J.E., and Aller, L.H. 1976, Science. 191, 1223.



Page 26

Seaton, M. 1978, M.N.R.A.S.. 185, 5P,



Page 27

Timothy Barker

Department of Physics and Astronomy

Wheaton College

Norton, Massachusetts 02766




