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SUMMARY

A Real-Time Self-Adaptive (RTSA) controller has been used as the

framework in developing a computerized generic active controller that can be

used to alleviate helicopter vibration by closed-loop implementation of higher

harmonic control. This generic controller gives the capability to readily

define many different configurations by selecting and tuning one of three

different controller types (deterministic, cautious, and dual), one of two

linear system models (global and local), and one or more methods of applying

limits on control inputs. The algorithms associated with these controller

types have been refined, evaluated, and compared as a step toward selecting

the best active controller for alleviating helicopter vibration.

The helicopter simulation used to evaluate these alternative configura-

tions is a nonlinear aeroelastic vibration computer analysis (G400) that
models the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test

Apparatus (RTA) which represents the fuselage. A representative baseline

configuration is defined for each of the three controller types. After proper

tuning, all three baseline controllers provide more effective vibration

reduction and converge more quickly and smoothly with smaller control inputs

than the initial RTSA controller (deterministic with external pitch rate-

limiting) similar to the best configurations studied by the United

Technologies Research Center in an earlier investigation. Excellent

controller performance is demonstrated throughout a range of steady flight

conditions representing moderate to high flight speeds and thrust values.

Reduction in vibration from 75 to 95 percent is achieved with amplitudes of

higher harmonic control (3, 4 and 5 per rev) of less than one degree. Also,

good transient performance and vibration alleviation is exhibited in transient

maneuvers involving a sudden change in collective pitch; however, some
retuning is required.

Predicted results at several different flight conditions indicate that

higher harmonic control can have a significant effect on rotor blade stresses

and performance. However, the existence of multiple higher harmonic control

solutions for low vibration indicates the potential for the selection of

control inputs that reduce the impact on blade stresses and performance.

The results of the current investigation indicate no definite advantage

to any of the three basic controller types. When a configuration is properly

defined and tuned, any of the three controller types can provide excellent

performance at the flight simulations considered in this study. It is demon-

strated that internal limiting of the control imputs significantly improves
the overall performance of the deterministic controller. For the transient

maneuvers considered, the global system model provides significantly better

performance than the local system model. For all steady flight conditions

considered, the behavior exhibited by both the global and local models is very
similar.
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INTRODUCTION

In order for the coming generation of helicopters to reach their full

potential, significant reductions in vibration response must be accomplished.

Commercial passenger acceptance of the helicopter as a viable alternative to

other means of transportation will largely depend upon the perception of low

vibration and a "jet-smooth" ride. Commercial utilization of the helicopter

is directly impacted by maintenance costs and cruise velocity. Thus, increas-

ingly stringent vibration requirements coupled with the desire for high speed

aircraft have made vibration alleviation one of the prime objectives of the

helicopter industry.

Many advancements in the reduction of vibration have been achieved in

recent years, but the need for further improvements is readily apparent in not

only the significant amount of research currently being conducted, but also in

the diverseness of the vibration control approaches being pursued. References

i and 2 represent the renewed interest in understanding the fundamental

sources of vibration. By desensitizing the blade to vibratory rotor airloads,

it is possible to passively minimize the excitation forces transmitted to the

fuselage with a resultant decrease in vibration throughout the aircraft.

Recognizing that there will always be some residual level of vibration

transmitted to the fuselage, Ref. 3 formulates a method for optimizing more

conventional procedures that use passive devices, such as vibration absorbers

and isolators, to desensitize critical points in the fuselage to excitation

forces transmitted from the rotor. The potential limitation of these methods

is that they may not result in vibration alleviation over an extensive range

of flight conditions.

In contrast, the use of higher harmonic control in conjunction with

optimal control theory potentially allows vibration reduction to be achieved

throughout the flight envelope and during transient maneuvers as well.

Reference 4 presents an excellent review of past helicopter higher harmonic

control work. The alternative algorithms presented for real-time self-

adaptive active vibration controllers represent the state-of-the-art. In this

vibration control approach, higher harmonic blade root cyclic pitch is used to

modify blade airloads which in turn reduce harmonic blade forcing. The higher

harmonic blade pitch can be mechanically input through the standard helicopter

swashplate configuration. The effectiveness of higher harmonic control in

reducing vibration was verified experimentally by open-loop wind-tunnel model

testing in Refs. 5 through 7. In Ref. 8, the loop was closed and vibration

was reduced by actively adjusting multicyclic pitch amplitudes to minimize
vibration based on off-line identification of the relationship between

vibration and control inputs. References 9 through Ii successfully'combined



the concepts of higher harmonic control with optimal control theory to

actively reduce vibration in real-time with on-line Kalman filter identifica-

tion of system parameters. References 9 and I0 present the results for a

numerical simulation using a nonlinear aeroelastic helicopter vibration

analysis, while Ref. 11 presents results for experimental testing of a model
articulated rotor in a wind tunnel.

Both Refs. 9 and II formulated the overall vibration control approach in

much the same manner. This approach is characterized by the assumption that

the helicopter can be represented by a linear, quasi-static transfer matrix

(T-matrix) relationship between the harmonics of vibration and the harmonics

of the multicyclic control inputs. In order to account for changes in the

T-matrix due to system nonlinearities and variations in flight condition, the

Timatrix is identified and tracked on line by a real-time Kalman filler

identification algorithm. Higher harmonic control is updated on the order of

once every rotor rev based on the results of a real-time minimum variance

control algorithm used to minimize a weighted mean square sum of harmonic

vibration and control inputs. This is the fundamental approach taken in most

of the research being done today.

The major differences in the approach taken by these two references is

the controller type and system model used to develop the computer control

algorithms. The active controller implemented in Ref. 9 was based upon a

deterministic control approach, which assumes that all system parameters are

explicitly known, and a local system model with external rate-limiting of

control inputs. Reference 11 experimentally tested both a deterministic con-

troller with external rate-limiting and a cautious controller with no limiting

other than that due to the stochastic caution term which reflects the degree

of uncertainty in the estimation of identified system parameters. Both of the

controllers studied in Ref. II were based upon a linearized global system

model. The results of Ref. Ii indicated that the performance of the cautious

controller was significantly less erratic than the deterministic controller

with external rate-limiting.

Reference 12 extended the investigation of Ref. Ii and again concluded

that the cautious controller exhibited smoother performance than the exter-

nally limited deterministic controller. In addition, Ref. 12 also proposed

bu_ did not test the performance of a new algorithm involving a stochastic

learning term. It was suggested that the inherent system probing caused by

this learning in the resultant "dual" controller would enchance system identi-

fication and, thus, would enable the dual controller to achieve lower

vibration levels than otherwise possible. At the time of this reference, the

performance of the dual controller had not been verified either experimentally

or theoretically on a helicopter vibration simulation.



Reference 13 considered the influence of errors in the T-matrix estimate

on controller stability. Reference 13 also proposed algorithms for varying

certain Kalman filter covariances as a function of steady aircraft accelera-

tion in order to reflect changes in the system and/or the level of noise. In

Refs. 14 and 15, the effects of system nonlinearities on controller per-

formance are considered. Reference 14 compares the performance of both the

deterministic controller with internal rate-limiting and the cautious

controller, but uses an arbitrary nonlinear simulation model that has not been

derived from a helicopter simulation. In Ref. 15, a nonlinear analytical

system mode! has been developed from data obtained from a nonlinear aero-

elastic vibration analysis (G400 computer simulation). This model has been

used to analytically consider the effects on controller performance and Kalman

filter stabililty. Reference 16 develops a linear multivariable system model

based on wind tunnel results. This mathematical model, which is dependent

upon flight condition, was used to evaluate the performance of the deter-

ministic controller. The effect of measurement noise, inaccurate initial

estimates of model properties, and varying flight speed on overall controller

performance were considered. This study is the first study to look at the

performance of the deterministic controller with internal rate-limiting of

control inputs for a model derived from helicopter response data. _ile this

study showed that internal rate-limiting improved the performance of the

deterministic controller, no comparison is made to the cautious controller.

Reference 17 presents the results of the first successful flight test

with active higher harmonic control. The results of both open- and closed-

loop testing of higher harmonic control are presented for low to moderate

forward velocities and fairly moderate transient maneuvers. The closed-loop

results are based upon a cautious controller.

While the research outlined above has verified the feasibility, both

theoretically and experimentally, of reducing vibration with closed-loop

higher harmonic control, little work has been done in terms of refining

algorithms or directly comparing the overall performance of the best con-

troller configurations in an attempt to develop an "optimum" algorithm. While

Refs. i0 and ll compared the performance of the cautious and deterministic

controllers, external rate-limiting was used for the deterministic controller.

Reference 14 compared the performance of both when internal rate-limiting was

used in the deterministic controller, but an arbitrary nonlinear simulation

was used. Reference 4 thoroughly develops and evaluates the characteristics

of almost all the viable algorithms in use today. However, the discussion of

these algorithms is fundamentally based on the analysis and numerical simula-

tion of single-input and single-output system models. The first recommenda-

tion of this reference is that the results should be verified or modified for

the multivariable case.



Therefore, the lack of systematic evaluation and comparison of

alternative controllers is not indicative of there being a lack of necessity.
Rather, it is most likely due to the difficulty of developing mathematical

models to adequately simulate the system Idynamics of helicopters. For this

reason most of the work done has been experimental wind tunnel tests in which

it is expensive and time consuming to fully evaluate alternative algorithms.

The purpose of this investigation is to study, evaluate, and compare the
alternative controller configurations thatl,based on previous individual

studies, have been shown either theoreticallly or experimentally to have the

potential for providing effective vibration alleviation. The major objective

of this study is to refine and evaluate existing controller configurations in

order to more fully understand their capabilities and limitations as well as

the effect that various control parameters within the algorithms can have on
controller performance.

In this report, many different alternative controller configurations are

evaluated and compared at a baseline high speed (150 kt) flight condition.

The helicopter simulation used is a nonlinear aeroelastic helicopter vibration

computer analysis (G400) that models the H-34 rotor mounted on the NASA Ames

Rotor Test Apparatus (RTA) which is representative of a generic helicopter

fuselage. Three primary controller types will be investigated: deterministic,

cautious, and dual. Each of these types have been identified in previous

studies as having the potential to provide effective vibration control.

Configurations based on both a local linear system model and a global linear

system model for each of these controller types are evaluated and compared.

The effect of both external and internal limiting is studied. Internal rate-

limiting is studied extensively for the deterministic controllers, since much

of the past work that led to conclusions that cautious control is much better

than deterministic control was based on an externally limited deterministic
controller.

Configurations based upon the three controller types are optimized, and
the effect of their internal controller parameters are evaluated at the

baseline flight condition. One of the best configurations for each controller

type is designated as a baseline controller for evaluation and comparison at

several different flight conditions. These conditions include alternate

forward velocities and rotor thrusts as well as several simple transient
maneuvers involving sudden changes in collective pitch.

The results of this study should be directly applicable in at least two

ways to a future proof-of-concept wind tunnel test conducted to refine and

develop an "optimum" active vibration controller configuration. First, a few
of the best configurations in terms of overall performance have been

identified for possible inclusion in such a test. Second, extensive testing



of the effect of various internal control algorithm parameters have been

performed. These results should not only provide some guidance in what direc-

tion wind tunnel tests might take, but should prove helpful in tuning con-

trollers selected for further development for maximum effectiveness. Finally,

potential problem areas such as increased blade stress and degraded rotor

performance have been identified and recommendations for future studies have

been made. It should be noted that extensive documentation of significant

results has been included in this report with the hope that they will prove

useful to the practical application of the configurations studied or other

alternative algorithms. For the reader more interested in overall results, the _

following sections should be of primary interest.

• Controller Performance at Baseline High Speed Flight Condition (p. 47)

• Internal Rate-Limiting--Deterministic Controller(p. 63)

• Deterministic Controller Summary--Baseline Flight Condition (p. 79)

• Cautious Controller Summary--Baseline Flight Condition (p. 87)

• Dual Controller Summary--Baseline Flight Condition (p. 92)

• Effect of Forward Velocity on Controller Performance (p. 93)

• Effect of Rotor Thrust on Controller Performance (p. 97)

• Controller Performance During High Speed Transient Manuevers (p. 113)

• Conclusions (p. 130)

• Recommendations (p. 134)
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ANALYTICAL SIMULATION OF CLOSED-LOOP

ACTIVE VIBRATION CONTROL

The vibration control approach is much the same as that documented in

Refs. 9 and i0, and consists of three distinct components: (1) a method for

mechanically implementing higher harmonic blade pitch; (2) an active con-

troller to calculate and then command the required higher harmonic pitch; and

(3) a set of fixed system sensors to provide inputs to the active controller.

Together these three components form a closed-loop control system which will

minimize vibration of the helicopter. A schematic of the active vibration

control system as it is integrated into the rotorcraft is shown in Fig. I.

Each of these components will be discussed separately.

Mechanical Implementation

The vibration control approach uses higher harmonic blade root cyclic

I pitch which modifies the blade airloads to minimize harmonic blade forcing.

As shown in Fig. 1, the higher harmonic pitch is mechanically input through

the standard helicopter swashplate configuration. By harmonically oscillating

the primary servos (actuators) that support the non-rotating swashplate, har-

monic blade pitch motions are induced as the blade pitch links follow the

motion of the rotating swashplate.

In order for all the rotor blades to have the same harmonic pitch ampli-

tude and phasing, there is a limitation on the frequency of swashplate oscill-

ation in the non-rotating system. In order to ensure that all blades on an N-

bladed rotor are performing the same harmonic pitch oscillations as they

travel around the azimuth, the harmonic frequency of oscillation of the swash-

plate must be N or some integer multiple of N. For example, on a four-bladed

rotor, the frequency of swashplate oscillation must be 4/rev or some integer

multiple of 4. In the present study, 4/rev swashplate oscillation is used on

a four-bladed rotor to create 3, 4 and 5/rev harmonic blade pitch in the

rotating system. The 4/rev blade pitch results from symmetric oscillation of

the swashplate while the 3 and 5/rev blade pitch results from cyclic oscilla-

tion of the swashplate (still at 4/rev) about two orthogonal axes. Reference

18 provides a thorough discussion of the transfer of control inputs from non-

rotating to rotating systems.

In summary, the higher harmonic cyclic pitch concept was implemented on a

four-bladed helicopter model by oscillating the non-rotating swashplate at

4/rev in collective and cyclic motions to create blade cyclic pitch at 3, 4,

and 5/rev. Implementing higher harmonic cyclic pitch in this manner provides

maximum utilization of the present swashplate control system.



Sensors

The purpose of the sensors is to provide information to the active con-

troller so that it can calculate and then command the required higher harmonic

control inputs. The sensors can be thought of as measuring outputs of the

helicopter as it responds to higher harmonic control inputs.

While the controller computer code has been reformulated (as will be

discussed later) to allow measured parameters such as rotor torque or blade

stresses to be included in addition to vibration measurements, the sensors

used in the present study are all linear accelerometers that measure vibration

in the fixed system. Since the vibration is measured in the fixed system, the

output is predominately 4/rev for the four-bladed rotor, with some 8 and

12/rev content.

In the present study, the aeroelastic simulation is based on a four-

bladed H-34 rotor mounted on the Rotor Test Apparatus (RTA) used for testing

full scale rotor systems in the NASA-Ames 40' x 80' wind tunnel. The RTA is

the structure used to simulate the helicopter fuselage and its coupling to the

rotor system. A photograph of a rotor mounted on the RTA in the wind tunnel

is shown in Fig. 2(a), while a diagram of the NASTRAN model of the RTA and

wind tunnel support structure is shown in Fig. 2(b). The aeroelastic

simulation of the coupled rotor and RTA will be discussed in a later section.

The sensors are placed at six locations in the RTA and close to the hub in the

fixed system as shown in Table I. The locations of the sensors in the RTA are

shown schematically in Figure 3. This schematic is a simplified version of

the NASTRAN mathematical model of the RTA and is used only to illustrate
sensor locations.

TABLE I

LOCATION OF ACCELEROMETER SENSORS

Rotor Test Apparatus

Nose Lateral
Vertical

Cross-Beam Longitudinal
Vertical

Tail Lateral
Vertical

Hub (Fixed System) Vertical
Lateral

Longitudinal
Pitch

, Roll
Yaw

Note: Angular accelerations are obtained by combining signals from

appropriately placed linear accelerometers.



Active Controller

Three different adaptive controllers (deterministic, cautious, and dual)

are implemented in the vibration control approach for achieving minimum vibra-

tion in the present study. Furthermore, the exact algorithm used for each of

these controllers depends upon which one of two system models is used (local

or global). Therefore, six basic controller configurations are considered in

this study. The Real-Time-Self Adaptive (RTSA) controller used in Refs. 9 and

I0 was based on the deterministic controller and the local system model.

Regardless of which one of the basic controller configurations is imple-

mented, there are three fundamental characteristics of the overall active

controller approach used in this study:

(I) The approach is based upon an assumed quasi-static linear transfer

matrix relationship, termed the T-matrix, between the vibration

response and the higher harmonic control inputs.

(2) The transfer matrix is identified and tracked on-line by a real-time

algorithm to account for changes in the transfer matrix due to non-

linearities or transient maneuver conditions.

(3) Higher harmonic control inputs are updated on the order of once

every rotor revolution on a full-scale rotor system.

The active controller consists of three primary interrelated algorithms:

(I) a real-time minimum variance controller for vibration minimization; (2) a

real-time identification algorithm for identifying and tracking system param-

eters such as the T-matrix relating input HHC to vibration response; and (3) a

harmonic analyzer for obtaining real-time harmonic components of measured

vibration. A simplified diagram of the active controller as it is implemented

in the digital computer simulation in this study is shown in Figure 4. Each

of the three primary algorithms will be discussed subsequently. It should be

noted that the exact form of the minimum variance control algorithm and the

real-time identification algorithm both depend upon the controller configura-

tion used; however, as will be discussed later, the modifications are such

that each of the primary algorithms can be programmed in one subroutine with

the appropriate modifications made according to the value of only two param-

eters which indicate the system model and the controller type to be used.

System Model

As indicated above, it is assumed that a quasi-static linear transfer

matrix relationship can be defined for the ith rotor revolution (or time step)



between the higher harmonic pitch and the vibration response. The fo_ of

this matrix relationship between the inputs and outputs depends upon the

system model used to represent the rotorcraft. Both a local and global system

m_el were considered in this study.

The transfer matrix relationship between inputs and outputs for the local

model is

Zi = T(O i- ei_1) + Zi_1 (i)

This is the same system assumed in the RTSA controller of Ref. 10. In

Eq. (I), T is the n x m transfer matrix (T-matrix) relating output vibration

response (Ziand Zi_ I) to input higher harmonic control angles (0i and ei_1).

In the present study, Z is a vector of harmonics of vibration (both cosine and

sine components) and e is a vector of the harmonics of multicyclic control in

the rotating system (both cosine and sine components of 3, 4, and 5/rev

harmonic blade pitch). Note that ei is defined relative to the initial
value of higher harmonic control, which is usually zero. Thus, the total

magnitude of the higher harmonic blade pitch is the sum of ei and the

initial value. The system model represented by Eq. (I) is termed the local

model to indicate linearization of the system T-matrix about the current

control point. The control angle is expressed in terms of an incremental

update so that the total higher harmonic control angles are the sum of the A@

inputs for all rotor revolutions up to the ith revolution, assuming an initial

value of zero.

In contrast, the global model linearizes the system T-matrix about a zero

higher harmonic control input. The matrix relationship between inputs and

outputs for the global system model is

Zi = T 0i + Zo (2)

Here Zo is the uncontrolled vibration level for zero higher harmonic
control.

The choice of the system model to be used in the active controller

affects the form of both the minimum variance control algorithm and the real-

time identification algorithm. The local model in the present study is based

on Eq. (i) and uses the identification algorithm to identify the T-matrix



only. Thus, the minimum variance control algorithm for the local model is

based on an estimate of the T-matrix and the actual output parameters from the

last rotor revolution. The global model in this study is based on Eq. (2) and

uses the identification algorithm to identify both the T-matrix and Zo.
Thus, the minimum variance control algorithm is based on an estimate of the

T-matrix and an estimate of the uncontrolled vibration level. The minimum

variance control algorithm and the real-time identification algorithm will be
discussed in more detail in the next two sections.

Minimum Variance Control Algorithm

The required change in the higher harmonic control inputs for minimum

vibration response in the ith rotor revolution is shown in Figure 4 to be

calculated by a minimum variance control algorithm. The minimum variance

control algorithm is based upon the minimization of a performance index that

is the expected value of a weighted sum of the mean squares of the input and

output variables. The expected value is used to account for the uncertainty
in system parameters. "

The minimum variance controller is obtained by minimization of the
criteria:

J : E {(Z i- Zopt)TWz(Zi- Zopt ) + 6_W66i + A6_WA6A6il (3)

where

J is the performance index (a scalar)

E{ } denotes expected value

Z is the vector of output parameters including harmonic coefficients of
vibration

Zop t is the vector of prescribed optimum or desired output (vibration)
parameters

WZ is a diagonal weighting matrix on output (vibration) parameters

O is the vector of higher harmonic control inputs

W 0 is a diagonal weighting matrix that constrains the amplitude of
control

i0



A0 is the delta higher harmonic control vector

WAO is a diagonal weighting matrix that constrains the rate of change of
control inputs

Superscript T denotes vector or matrix transpose (e.g., vector transpose

results in a row vector)

Subscript i denotes the ith rotor revolution

The performance index J includes not only the measured output parameters

but also the higher harmonic control inputs. Therefore, each output parameter

and control input can be individually weighted to make it more or less impor-

tant than the other elements. Typically the cosine and sine components of a

given phasor_ _quantity are weighte-d-equally._ Note that the difference between
the vector of output variables and a vector of optimum or desired values of

the output variables has been included in the performance index. This is to

enable the use of output variables in the performance index such as thrust or

propulsive force which are not to be minimized but driven to a particular

value if possible. Furthermore, the output parameters Z can include scalars

as well as phasor quantities having two harmonic components. In the present

study, only the harmonic coefficients of tbe vibration response from selected

sensors in the fixed system were used as output parameters; thus, Zop t was a
zero vector.

The form of the minimum variance control algorithm is determined by the

controller type and the system model used. The effect of controller type will

be discussed below for each of the three different controllers used in this

study. The fina] form of the minimum variance control algorithm is also

affected by the system model used. However, the approach used for obtaining

the minimum variance control algorithm is the same for any particu]ar con-

troller configuration with a given controller type and system model. The form

f the performance index must be established by taking the expected va]ue, as

indicated in Eq. (3), according to the underlying assumptions of the control-

]er type being considered. For the dual controller, the performance index

must also be modified to include the additional term used for system probing.

Once the performance index to be minimized has been established, the appro-

priate expression is substituted for Zi. For the local model, the expres-

sion in Eq. (I) is used. The expression in Eq. (2) is used for the global
model.

The minimum variance control algorithm is then obtained by taking the

partial derivative of the resulting expression for J with respect to ei, and
setting it equal to zero.

ii



_J

- 0 (4)30.
1

The result can be solved for 0i*. The superscript * denotes the optimal

higher harmonic control input required for minimum variance. An expression

AS_ can be determined by substituting 8i=A_i + 8i_1 into the expression for
8i • Alternatively, the expression for A8i can be solved for directly, as

indicated in Ref. I0, by first substituting for 8i and setting _J/_ASi=0 .

Clearly, the resulting expressions for the local model will depend upon

the measured vibration level from the previous rev, Zi_ I. The resulting
expression for the global model will depend upon an estimate of the uncon-

trolled vibration level, Zo, which is identified along with the T-matrix.

The actual algorithms for both the local and global models are discussed belo_

for all three controller types (deterministic, cautious, and dual).

Deterministic Controller

The deterministic controller is based upon the assumption that all systel

parameters are explicitly known and ignores the fact that only estimates for

the T-matrix (and Zo for the global model) are available from the identi-

fier. With this assumption, the performance index in Eq. (3) becomes

JDet = (Zi- Zopt)TWz(Z i- Zop t) + 8_W08 i + ASTWAsA0 i (5)

For the local model, the solution for the deterministic controller
becomes:

8i* = D [(TTWzT + WAB ) 8i_1 - TTWz(Zi_I _ Zopt)] (6)

or

A0i = -D [WsOi_1 + TTWz(Zi_l - Zopt)] (7)

12



where

D = (TTWzT + Wo + WAO) -I (8)

The algorithm given by Eqs. (7) and (8) is the same as the RTSA control

algorithm applied in Ref. I0 if We and WAe are set equal to zero.

For the global model, the solution for the deterministic controller
becomes:

* - TTWz(Zo - Zopt)] (9)ei = D [WAeei_1

or

A0i* = -D [(TTWzT + We) ei_I + TTWz(Zo - Zopt)] (I0)

where D is again defined as in Eq. (8).

Cautious Controller

While the deterministic controller is based on the assumption that the

system parameters are all explicitly known, the cautious controller uses a

stochastic approach which recognizes that some of the system parameters areo

only estimates. The cautious controller accounts for these parameter uncer-

talntles when taking the expected value of the performance function and

ad]usts_the control solution accordingly. This type of controller formulation
I

was suggested and experimentally evaluated in Refs. Ii and 12.

In the cautious controller formulation, it is assumed that 0 is expli-

citly known. Thus, the only parameter uncertainties in the performance index

occur in the^output parameters Zi. As can be seen by Eq. (i), the uncer-

tainties in Zi for the local model are due to uncertainties in the identified

T-matrix and measurement noise in Zi_I. However, the cautious controller
formulation only accounts for the uncertainties in the identified T-matrix

when taking the expected value in Eq. (3). The measurement noise is not

inciuded] Thus, the performance index to be minimized by the cautious
controller becomes for the local model:

13



Jc = (Zi- Zopt)TWz(Zi - Zopt) + A0i(P i" [ WZj j) A0i
J

(11)

T AS_WABA8 i+ oiweei +

The only difference between this form of the performance index and that

for the deterministic controller is the second term involving Pi, which is

the covariance of the jth row of the T-matrix. As will be discussed later,
Pi is assumed to be the same for each row of the T-matrix and is calculated

by the Kalman filter identification algorithm. Recall that a covariance is a

matrix of statistical parameters that are indicative of the relative uncer-

tainty in an associated set or vector of random variables. Thus, this addi-

tiona] term in the performance index is clearly dependent upon the uncertainty

in the identified T-matrix. As Pi (which is indicative of the uncertainty.

in the T-matrix) goes to zero, this term vanishes, and the performance index

reduces to that for the deterministic controller. The expected effect of this

term is similar to the effect of the term involving WA0. That is, this term

also places a constraint on the rate of change of control; however, the rate-

limiting effect due to this term will depend upon the uncertainty in the

identified T-matrix. As the covariance of the T-matrix increases, the rate
of change in control allowed by the cautious controller is reduced.

The minimum variance control solution for the cautious controller with

the local model can be obtained by setting BJ/B0i=O , where J is given in

Eq. (II). However, this solution can be obtained more simply, since Eq. (11)

can be rewritten in the same form as Eq. (5) by defining an effective WAft that

includes the term Pi Z WZjj" Thus, by replacing WAO by

WA0ef f = WAB + Pi' Z WZjj (12)
J

in Eqs. (6) through (8), the optimal control solution for the local model of
the cautious controller becomes:

Bi* = D [(TTWzT+ WAe + _ Pi" ! WZjj) ei-l- TTWz(Zi-1- Zopt)] (13)
]

or

14



Aei* = -D [W6ei_1 + TTWz (Zi_I- Zopt) ] (14)

where

D = (TTWzT+ W0 + WAO + _ Pi" [ WZjj)-I (15)
J

In these equations, note the introduction of the arbitrary constant lc which
can be used for modification of the control algorithm. This constant can be

thought of as an indicator of how much caution is introduced by the cautious
controller. As _c goes to zero, the cautious controller reduces to the

deterministic controller with no caution or modification of control to account
for parameter uncertainty.

In the global model, the uncertainties in the output parameters Zi are
due to _-ncertainties in the identified estimate of both the T-matrix and the

uncontrolled vibration level Zo. The cautious controller formu]ation

accounts for both of these sources of uncertainty when taking the expected

value of the performance index in Eq. (3). The new performance index to be

minimized by the cautious controller becomes for the global model:

T 1)(Pi.[ ) (Jc = (Zi- Zopt)TWz (Zi- Zopt) + (8i WZj j
J

(16)

T beT WA8_8+ %i W8%i +

As for the local model, the only difference between this form of the

performance index and that for the deterministic controller is the additional

term involving Pi. However, the additional term here involves 8i rather

than A8i. Furthermore, Pi must be defined slightly differently:

PTT PTZ 1= L (17)
Pi P_Z PZZ i
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Here, PTT is the covariance of the jth row of the T-matrix. PTZ is the cross-

covariance of the jth row of the T-matrix and the jth element of Zo. PZZ is
the covariance of the jth element of Zo. Again, Pi is assumed to be the

same for each row of matrix Eq. (2) and is calculated by the Kalman filter
identification algorithm for the global model.

This additional term is again dependent upon the uncertainty in identi-

fication of system parameters. As Pi (which is indicative of the uncer-

tainty in system identification) goes to zero, this term vanishes, and the

performance index reduces to that for the deterministic controller. One of

the expected effects of this term is similar to the effect of the term involv-

ing W6. That is, this term also places a constraint on control magnitude.

However, this limiting of total e due to this term will depend upon the
uncertainty in system identification.

The minimum variance control solution for the cautious controller with

the global model can be obtained by setting _J/_ei=0 , where J is given in
Eq. (16):

0" =

i D [WAefli_1 - TTwz (Zo- Zopt) - %_ PTZ" Z WZjj] (18)
J

or

Ae_ = -D [TTwZ T + Wo + _.c PTT" WZjj) 6i-1
J

(19)

+ TTWz (Zo- Zopt) . _ PTZ" _ WZjj]
J

where

D = (TTwZ T + W6 + WA0 + %. _ )-ic PTT" WZjj (20)
J

As for the local model, an arbitrary constant %c has been introduced to

allow flexibility in modifying the cautious controller if desired. By

comparing Eqs. (18) through (20) to Eqs. (8) through (I0) for the global

deterministic controller, it can be seen that two differences occur. First,

16



W 0 has been replaced everywhere that it occurs in the optimal control solu-

tion for the deterministic controller by an effective W0

we : wo + (21)
elf c PTT" WZjjJ

Thus, the global model of the cautious controller applies a constraint (as

discussed above) on the magnitude of total control angles required, and this

constraint is proportional to the covariance of the T-matrix. Second, a

constant term appears in the solution which is proportional to the cross-

covariance PTZ"

In summary, the cautious controller accounts for parameter uncertainties

by modifying the form of the performance index when taking the expected value

and adjusting the optimal control solution accordingly. The new terms that

arise in the performance index for both the local and global models depend

directly upon the covariances calculated by the Kalman filter identification
algorithm. If these covariances, which are indicative of the uncertainty in

system identification, were to go to zero, these terms would vanish. The

overall effect of these new terms is to slow down the controller,__or introduce

caut-i0n due to parameter uncertainty. In the local model, a constraint is

applied to the rate of change of control. In the global model, a constraint _

is applied to the magnitude of control. Note that the cautious controller

does not directly improve identificatlon. The impact on identification is

indirect through effectively slowing down the controller and allowing more

iterations or Kalman filter estimates before reaching a given level of

control.

Dual Controller

The last controller type to be considered in the present study is an

active adaptive formulation of the controller (Ref. 19), als__okno__lnas a dual

controller (Ref. 20).- This formuiation Of the controller has been proposed in
Ref. 12. Both the deterministic and cautious controllers discussed above are

passive adaptive controllers that make no use of the fact that the control

loop will remain closed in the future. While passive adaptive controllers can

acc---0untfor parameter uncertainties as in the cautious controller above, they z

do not directly affect identification. An actt_ada_ve controller, on the "

other hand, attempts to imProve long term system identification by actively

probin the s stem while at the same time providing good control.

17



Optimal dual controller solutions are generally so complex and involve

such a large number of variables for practical problems that computer memory

and computational requirements make implementation in real time impractical

(Refs. 4 and 21). Therefore, the dual controller used in this study is a sub-

optimal approach taken from Ref. 20. In this approach, the performance index

of Eq. (3) is modified to include a term that is a function of the estimation

error and acts as a perturbation signal that allows the controller to actively
probe the system. The new form of the performance index is

det Pi-]
JD = J - %D (22)

det Pi

Here det refers to the determinant of a matrix. The reasoning behind this

form of the performance index is that the controller attempts to provide good

control by minimizing the first term, and attempts to make Pi small relative

to Pi-1 -- that is improve identification -- by minimizing the second term.

Thus, the arbitrary constant %D provides a compromise between good short

term control and the rate of learning as measured by the decrease in size of

the parameter covariance matrix (Ref. 20). Typically, the value of %D would

be selected through trial and error in order to achieve an acceptable
tradeoff.

In Ref. 20, it is shown that the second term in Eq. (22) is equivalent
to

detPi[T ]-%D I _ %D 1 + Yi Pi-IYi (23)
det Pi R

where _i=Aei for the local model and yi=(6T i)T for the global model As willi

be discussed later, R is the covariance of the measurement noise used by the

Kalman filter identification algorithm. Note that, when the step of setting

_J/_6i=O is performed, the learning term in Eq. (23) is also quadratic.

This allows the minimum variance control solution to be readily found. This

is the convenience for using this simple formulation for the dual controller.

By using Eq. (23) in Eq. (22) with Yi=AOi, the performance index for
the dual controller and local system model becomes
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JD = (Zi- Zopt)TWz (Zi- Zopt) -ID" AST Pi-1 A8iR

(24)

T + AeT A8i+ 8i W8 ei was

Note that the first term on the right-hand side of Eq. (23) (constant %D

term) has been dropped since it does not affect the minimum variance control

solution obtained when setting 3J/_8i=0.

By noting the similarity between Eqs. (5) and (24), the dual controller

solution for the local model can be written immediately by replacing WA8 in

Eqs. (6) through (8) by an effective WAe

Pi-1 (25)
WASef f = WAS - _D" R

The dual controller solution for the local model becomes

8i = D T + WAe - %D" 8i_I- TTWz (Zi_I- Zop t) (26)

or

ASi* = -D [W88i_ I + TTw z (Zi_ I- Zopt)] (27)

where

(D = TTWzT+ W8 + WAS - lD. (28)

Clearly, the overall effect of the learning term in the local model is a

reduction in the constraint on the rate of change of control proportional to

the covariance of the estimated T-matrix. This is the exact opposite effect
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to that of the cautious controller with an effective WA@ given in

Eq. (12). Whereas the cautious controller penalizes the control for poor

identification by an increase in rate-limiting, the dual controller increases
control by a reduction in rate limiting.

T
By using Eq. (23) in Eq. (22) with yi=(8i I)T, the performance index for

the dual controller and global system model becomes

JD = (Zi- Zopt)Tw Z (Zi- Zop t) - %D" (6T i) Pi-1 (O.)i " _ 11
R

(29)

+ 8T Woei + A8T A8I WAS i

By noting the similarities between Eqs. (16) and (29), the dual controller

solution for the global model can be written immediately as

8i* = D WA66i-1 - TTWz (Zo- Zopt) - %D" Z (30)

or

A$i = -D TTWzT + We - %D" R / i-1

+ TTWz (go- Zopt) %D" _ I (31)
where

P T
D = + W8 + WA0 - %D" -- (32)

The covariance p is again defined as in Eq. (17)

It can be seen, by comparing the solution in Eqs. (30) through (32) for

the dual controller to that in Eqs. (8) through (i0) for the deterministic

controller, that two differences occur. First, a constant term of the form

D'%D" PTz/R appears in the solution. Second, W8 has been replaced everywhere

it appears in the deterministic controller so]ution for the global model by an
effective W8
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W6ef f = W6 - %D" PTT/R (33)

Thus, the learning term in the global model effectively reduces the constraint

on control magnitude. Again, this is the exact opposite effect to that of the

cautious controller. Whereas the cautious controller reduces control magni-

tude when identification is poor, the dual control probes the system by

increasing control magnitude.

In summary, the dual controller is an active adaptive controller formula-

tion that attempts to improve long term system identification by actively

probing the system while at the same time providing good control. In order to

do this, a new term is added to the performance index in Eq. (3). The exact

form of this learning term depends on whether the local or global model is

used; however, in both cases, the learning term depends upon the ratio of the

system parameter covariance matrix and the covariance of measurement noise.

The overall effect of the dual controller when compared to the deterministic

controller is a reduction in the constraint on control. For the local con-

troller, this occurs through a reduction in the effective WA9 and reduced

rate-limiting. For the global model, this occurs through a reduction in the

effective W 6 and increased control magnitude. These effects are the oppo-
site to those for the cautious controller. It is the reduction in constraints

on control that allows system probing.

General Active Controller Algorithm

Three different control approaches were considered in the present study.

In the above discussion of these different approaches, many similarities in

the controller solutions were noted. In fact, all three controllers can be

programmed into the same algorithm. The appropriatate controller is then

im-plemented by setting a parameter 6 to an appropriate value.

The controller solution for all three controller types can be written for

the local system model as

Ae i ---D [We 6i_ 1 + TTWz (Zi_ I- Zopt)] (34)

where

= (TTWzT + We + W&8 + 6 " % " Pi-l" _ WZjj)-I (35)
D

J

21



When 8 is set to zero, the controller solution reduces to that given for the

deterministic controller in Eqs. (7) and (8). When B is set to a value of I,

the controller solution reduces to that given for the cautious controller in

Eqs. (14) and (15) except that Pi-I is shown here rather than Pi" This is due
to the fact that Pi is not available from the Kalman filter identification

algorithm until after the solution for A6 i has been obtained. Thus, Pi-1 is
used as an estimate for the covariance of the T-matrix for the ith rev. This

is also true of the other system parameters estimated by, the Kalman filter.
As discussed in Ref. 4, the controller solutions for Ae i should be based upon

the estimated T-matrix for the ith rev. However, this estimate is not avail-

able from the Kalman filter identification algorithm until after A6 i has

been implemented and the resulting Zi measured. Thus, in practice, the T-

matrix identified in the (i-l)th rev is used in the controller solutions as

the best estimate available. Finally, when B is set to (-I/R _ WZjj) ,
the controller solution reduces to that given for the dual controller in

Eqs. (27) and (28). A summary of the minimum variance control algorithm for

the local model is shown below, along with a summary for the global model.

The controller solution for all three types can be written for the globalmodel as ---

Ae_ = -D [(TTWzT + W 0 + 8 • I • PTT" [ WZjj) 8i-I
J

(36)

+ TTw Z (Zo- Zop t) + 8 • I • PTZ" [ WZjj]
J

where

D = (TTWzT + W6 + WAe + 8 • _ • PTT" [ WZjj)-I (37)
J

The same values for 8 as those given above are required to obtain the appro-
priate controller solutions. When 8=0, the controller solution reduces to

that given for the deterministic controller in Eqs. (8) and (I0). When 8=I,

the controller solution reduces to that given for the cautious controller in

Eqs. (19) and (20). Finally, when 8=(-I/R [ WZjj) ' the controller solution
reduces to that given for the dual controller in Eqs. (31) and (32). As

discussed above for the local model, the values of the covariances and identi-

fied parameters (T and Zo) actually used in the controller solutions are

those estimated in the (i-l)th rev since they are the best estimates avail-

able. A summary of the minimum variance control algorithm for the global
model is shown below.
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Summaryof MinimumVariance ControlAlgorithms
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In summary, three different control approaches are to be considered in

this study as an alternative approach to the RTSA controller used in Ref. 10.

The first approach to be considered is a deterministic controller which is

based upon the same assumptions as the RTSA controller. However, certain

modifications have been introduced. The first modification is the availabili-

ty of a deterministic controller based upon the global system model as well as

one based on the loca] model used in the RTSA controller. Both system models

are also used as the basis of algorithms for the other two controller types.

However, the anticipated advantages and disadvantages of both system models
are primarily related to identification and will be discussed in the next

section. The second modification of the deterministic controller is the addi-

tion of 8 and &e to the performance index. While the RTSA controller had A8

in the performance index, WAe was always set to zero, and the capability

of internal rate limiting was never utilized. It is anticipated that the use

of WA8 and Wo wi]1 improve control over that provided by external limit-
ing for reasons that will be discussed later.

The second control approach to be considered is that of a cautious

controller that accounts for parameter uncertainties by modifying the form of

the performance index by taking the expected value of the performance index

and adjusting the optimal control solution accordingly. The net effect is to

constrain control and proceed more cautiously than the deterministic control-

ler. It is anticipated that adding caution to the RTSA controller will

improve controller performance by smoothing convergence. As discussed above,

the cautious controller should provide somewhat the same effect as adding A8

or 8 to the performance index. The addition of caution will not improve

identification directly. Indirectly, it may improve identification in much

the same manner as W&e and W e by s!owing down the controller with inter-

nal limiting, which allows more time for Kalman filter identification. On the

other hand, controller turn-off may be a problem as discussed in Ref. 21. If

identification suddenly deteriorates with a large increase in P, the con-

troller will make very small control changes which may not provide enough

system excitation to allow the identifier to improve its estimate. Further

deterioration in identification could cause smaller and smaller control inputs

and effectively shut down the controller. This is a potential problem for
systems with rapidly time-varying system parameters.

The last control approach to be considered is that of a dual controller.

In contrast to both the deterministic and cautious controllers, the dual con-

troller attempts to improve system identification by actively probing the

system while at the same time providing good control. This probing action

excites the system if identification is poor and should avoid the turn-off

phenomenon discussed above for the cautious controller. This might be very

important if system properties, which are dependent on flight condition, are
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very rapidly time-varying. However, as discussed in Ref. 21, the two tasks of

trying to improve system identification and of trying to provide good control

are, in general, contradictory. Good identification may require large control

inputs, while good control may require small control inputs. Thus, the dual

controller must be tuned to compromise between these two tasks. It is antici-

pated that short term control may be compromised.

Since all three control types have their anticipated advantages and

disadvantages, they will all be considered in this study. It should be

recalled that all three controller types are based upon a linear system model,

regardless of whether a local or global model is used. The nonlinear varia-

tion of the T-matrix, as well as variations due to time-varylng flight condi-

tions, is accounted for by treating the T-matrix as a time-varying matrix with

changes identified and tracked by a real-time identification algorithm. All
three controllers use the same Kalman filter identification algorithm, which

is discussed in the next section.

Kalman Filter Identification Algorithm

Accurate identification of the T-matrlx as well as Zo for the global

model is-important for good vibration reduction, since the minimum variance

control algorithms all depend explicitly upon thePestimates of these para-

meters. The method used for estimating and tracking the T-matrix for the

local model is exactly the same as that used in the RTSA controller presented

in Ref. i0. The method used for the global mode! need be modified only

slightly to allow Zo to be identified as well. The identification is based

upon an approach analogous to the Kalman filter for linear multistage pro-

cesses presented in Ref. 19. The Kalman filter formulation will be discussed

below for the local model, followed by a brief discussion of the modifications

necessary for the global model.

The Kalman filter formulation for the identification problem is obtained

by considering each row of Eq. (I) as a separate identification problem and

rewriting this equation in appropriate form. For instance, consider the jth

row which can be written as

AZji = A9T TTi (38)

where T.i refers to the jth row of the estimated T-matrix Ti, and Zji refers
to the _th element of the output vector Zi. The subscript i refers to the
ith rotor revolution. One can now define a state vector for each row of the

T-matrix as
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Using this state vector representation, Eq. (38) can be rewritten as

AZji = HiXji + q (40)

where

Hi = ACT (41)

In Eq. (40), q is zero mean white Gaussian measurement noise.

The state vector defined in Eq. (39) represents a row in the T-matrix,

and has dimensions m x 1. The state vector is assumed to be a time-varying
quantity which must be identified and tracked. It is further assumed that the
variations in the T-matrix can be represented by

Xji+1 = Xji + Wji (42)

where Wji is assumed to be a zero mean discrete white random sequence corres-

ponding to the jth row of the T-matrix. Wji is considered to be a random
forcing vector which conveys to the mathematical formulation that the T-matrix

varies with flight condition. The Kalman filter solution to Eqs. (40) and

(42) provides an algorithm for identifying and tracking the T-matrix. The

Kalman filter solution for this formulation, as taken from Ref. 19, is:

A

Xjl = Xji-i + Ki(aZji- HiXji-l) (43)

T -i
Ki = PiHi Ri (44)
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Mi = Pi-I + Qi-1 (45)

Pi = Mi- M'HT(HiM'HTIi l + Ri)-i HiMi (46)

where superscript ^ denotes estimated value and subscript i refers to the ith

rev.

Before pointing out the very slight modifications required for the global

system model, it is appropriate to briefly discuss the parameters contained in

this algorithm that have not been defined previously. The scalar quantity R

is the covariance of the measurement noise, q. The matrix Q (m x m) is the

covariance of forcing vector W, which accounts for changes in state. Matrices

M and P (m x m) are both covariances of the state vector Xj and are there-

fore a measure of the uncertainty in the estimate of the jth row of the T-

matrix. The matrix M is the covariance before measurement while the matrix P

is the covariance after measurement. Thus, M is dependent only upon the

covariance of state from the last revolution and the covariance of changes in

state, Pi_land Qi-l' respectively; whereas, P is also dependent upon the
covariance of measurement noise R. The covariances M, P, Q and R have all

been assumed to be the same for each state vector. Thus, these variables

require no subscript j in Eqs. (43) through (46), which have been written for

the jth row of the T-matrix. Furthermore, P is a measure of the uncertainty

in the estimate of the entire T-matrix.

Equation (43) is a model of the system defined in Eq. (42), with a

correction term that is proportional to the difference betwen the measured

change in vibration (AZji) and the predicted change in vibration (HiXji_ I)
corresponding to the change in higher harmonic control (Agi). The propor-

tionality constant or Kalman gain K (defined in Eq. (44)) is essentially the

ratio between the uncertainty in the estimated T-matrix and the uncertainty in

the vibration parameters. This can be seen by inspection of Eq. (44) where P,

the covariance of the state vector, appears in the numerator and R, the covar-

iance of measurement noise, appears in the denominator. When R is large

and/or P is small to reflect more confidence in the estimate of the T-matrix

than in the measurement of vibration, the state vector (X) will change propor-

tionately less even though there may be a difference between measured vibra-

tion and predicted vibration. This demonstrates that the important parameters

are P/R and ultimately Q/R, rather than the individual magnitudes. If the T-

matrix is a good estimate of the actual T-matrix, then P will essentially be
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equal to Q by Eq. (45), and the Kalman gain will be directly proportional to
the ratio of Q to R.

In the above identification algorithm, the parameters Ki, Mi, and Pi are
calculated automatically once the controller has been started. If the esti-

mate of the T-matrix is good, p will be small. Conversely, if the estimate of

the T-matrix is poor, P will be calculated to be large. On the other hand,

covariances Q and R must be assigned. The magnitude of the elements of Q

should be set in direct proportion to the variability of the actual T-matrix

from update to update. If the actual T-matrix varies widely and rapidly, the

elements of Q should be large. The magnitude of R should be set proportional

to the noise-to-signal ratio. Once Qo and Ro are assigned, Q and R may be

held constant or varied according to some algorithm. In the RTSA controller

used in Ref. i0, the covariance Q was held constant and the covariance R was

varied according to a simple algorithm involving the performance index from

the (i-1)th and ith revs. Due to system nonlinearities and transient response

to control inputs, it may be necessary to provide additional algorithms

describing the covariances Q and R as variables in order to achieve optimum

vibration a11eviation. Several alternative algorithms are provided for both Q

and R in the active controller configuration used in this study. These algor-
ithms will be discussed in a later section as potential improvements to the

active controller configuration. For most of the present study, these

algorithms were not activated, and covariances Q and R were held constant.

The above identification algorithm was developed for the local system

model. Only a few minor modifications are required for the global system

model in order to identify the uncontrolled vibration level Zo as well as

the T-matrix. For the global system model, the jth row of Eq. (2) can be
rewritten in the same form as Eq.(38)

Zji = e_ TI Tji + Zoji (47)

where the total control input ei is now used. The state vector to be
identified now becomes

XJ i Tj (48)
Zoj i
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Equation (40) becomes

Zji = HiXji + n (49)

where

Hi = [0T I ii i (50)

With these changes, the Kalman filter identification algorithm of Eqs. (43)

through (46) can be used to identify both the T-matrix and Zo with on]y one

slight change. Eq. (43) now becomes

A

Xji = Xji-1 + Ki(Zji- Hi XJi-l) (51)

to reflect the difference between Eqs. (40) and (49).

The covariances Q, M and P are now of dimension (m+l) x (m+l) correspond-

ing to the (m+1) x I dimension of the state vector to be identi[ied. As

already shown in Eq. (17), the covariance P can be written as

= IPTT PTZ 1 (52)

 zzj
Here, PTT is the covariance of the jth row of the T-matrix. PTZ is the cross-
covariance of the jth row of the T-matrix and the jth element of the Zo.

PZZ is the covariance of the jth element of Zo. As for the local model, all
covariances are assumed to be the same for all rows of the matrix equation in

Zq. (2).

The primary advantage expected of the global system model over the local

system model is better identification for small changes in control input

between updates. This is because the identification algorithm for the local

system model is dependent upon A6 instead of total 0, as is the case for the

global system model. This can be seen by comparing Eqs. (41) and (50). Thus,A

the Kalman gain becomes smaller and the error signal used to calculate a
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better estimate of state vector X becomes weaker for small Ae in the local

system model. On the other hand, the local system model may give better con-

trol for very nonlinear systems since it linearizes locally about the current

control point. Furthermore, the global system requires the identification of

another parameter Zo. Although this can be readily done by the Kalman

filter, a measurement is considered better than an estimate, so the minimum

variance control algorithms may be less accurate for the global system model.

Both alternative system models are included in the active controller

configuration and the performance based on both models will be compared in the
present study.

Regardless of which system model is used, the Kalman filter identifica-

tion algorithm requires only the current vibration measurements and error

c0variances to identify the required system parameters. Therefore, the proce-

dure can be carried out recursively with information from only the present rev

and the previous rev. The importance of this characteristic is that implemen-

tation can easily be carried out in real time. This is especially important

inlthe control of vibration during transients and maneuvers.

Harmonic Analyzer

As previously mentioned, the sensors used to supply information to the

controller are assumed to be accelerometers located in the fixed system.

These sensors provide a time history of the vibratory response to the control-

ler. For a four-bladed rotor, the vibration measurements are predominately

4/rev with some 8/rev and 12/rev in a steady state flight condition, provided

that all four blades are executing the same motions. The active vibration

control system seeks to minimize the 4/rev fuselage motions. A harmonic

analyzer is used to extract the 4/rev harmonic coefficients from the analog

sensor. In the present study, the controller uses the same harmonic analyzer

used in G400. G400 is the nonlinear aeroelastic rotorcraft simulation used in
this study and will be discussed later.

Limitin$ of Control Inputs

The last function performed by the active controller (shown in Fig. 4) is

the external limiting of control inputs before implementation in the rotor-

craft simulation. This limiting function is performed every control update

after the optimal minimum variance control solution is obtained.

The purpose of control limiting is to constrain both the total amplitude

of higher harmonic control implemented and the rate of change of higher har-
monic control from update-to uD--_-tate There -
..... -f_-[_________ Pa___. 1 are several-reasons for limiting

control inputs ra-_er--th_i_le-me--_ing the optimal control solution required
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by the minimum variance control algorithm. In an actual rotorcraft, limiting

will be required to keep the rate of change of control inputs and the total

amplitude of control inputs within the capability of the actuators used to

implement higher harmonic control. The total amplitude of control inputs

would also be constrained to satisfy possible mechanical stress and safety

considerations.

Beyond the practical aspects of limiting higher harmonic control inputs,

rate-limiting was also found in Ref. i0 to be very important to controller

performance. This capability is required--for starting the recursive control-

ler procedure to enhance controller stability and smooth controller conver-

gence, since parameter estimates may be poor when the controller is started.

Rate-limiting may also be required to maintain controller stability and aid in

system identification if the system is highly nonlinear.

The limiting of higher harmonic control inputs can be performed in two

ways, externally and internally. Limiting can be performed externally (as

shown in Fig. 4) with the optimal control solution requested by the minimum

variance control algorithm arbitrarily limited to satisfy total magnitude and

rate-limiting requirements. This is referred to as external limiting since

the limiting of control inputs is done outside the minimum variance control L

algorithm, which is an unconstrained optimization algorithm, and without

regard to optimality. The limits placed on incremental changes in vector

magnitude are applied to each control input separately. If the vector

magnitude of the incremental change in a control input exceeds the rate limits

placed on that input, the cosine and sine components are reduced proportion-

ately in order to maintain the same phase while satisfying rate-limiting

requirements. While different rate limits can be applied to each control

input, equal rate limits are usually applied. After rate-limiting, the

external limiter checks the total magnitude of each control vector and limits

the cosine and sine components proportionately in order to maintain the same

phase on the input vector while satisfying total magnitude requirements.

Again, different limits can be placed on the total magnitude of each input,

but usually are applied equally.

It is the externally limited control updates Ae rather than the "optimal"

updates AS* calculated by the minimum variance control algorithm that are

implemented in the rotor system. These limited updates and the rotorcraft

response to these updates are used as the basis for Kalman filter estimates of

system parameters. No information on the optimal updates before limiting is

passed to the identifier.

As indicated in the discussion of the minimum variance control algorithm,

limiting of higher harmonic control can also be performed internally by plac-

ing quadratic terms involving 8 and A8 in the performance index, as shown in

Eq.(3). In E_q. (3), the weighting matrix WA6 constrains the rate of change
of control inputs by weighting Ae more or less heavily. Large elements in WAe
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result in more highly constrained rates of change for the corresponding con-

trol inputs. The weighting matrix W e constrains the total amplitude of

control inputs. Again, large elements of We result in more highly

constrained total amplitudes for the corresponding control inputs. Typically,

both cosine and sine components of a given harmonic are weighted equally by
WA0 or W e.

In Refs. 9 and I0, the RTSA controller used external limiting exclusively

to limit control inputs since WAS was set to zero. While external rate-limit-

ing was found to be important to controller performance in Ref. i0, it is

anticipated that internal rate-limiting will further improve controller

performance by taking the desire to constrain Ae or 6 into account at the time

the optimal control solution is determined rather than arbitrarily limiting

individual control angles after the optimal control solution has already been

determined. By externally limiting the control inputs, the characteristic of

the control inputs implemented may be different than that required by the

minimum variance control algorithm. For instance, the mix of 3, 4, and 5/rev

inputs may change, especially if one input is more highly limited than the

others. This effect could be especially important for highly nonlinear sys-

tems or systems that-are quite sensitive to the mix Of 3, 4 and 5/rev inputs.

In fact, external limiting could be potentially destabilizing for a highly

nonlinear system with the resulting controller convergence being very
oscillatory.

The external limiting function shown in Fig. 4 may still be required even

if internal limiting is found to be better suited to adapting the controller

to hardware limitations of the mechanical control system and also for smooth-

ing controller response. The reason for this is that the effect of WAe and
Weis somewhat depend_ent upon the level of vibration present. If the vibra _

tion level is high, a given value of WA0 or We will not result in as highly a

constrained control inputs as it would for low level vibration due to the form

]! of the performance index. Thus, external limiting may be required as a safety
! check to ensure that safety requirements are satisfied.

Further Potential Improvements to Active Controller

The primary modifications to be made to the RTSA controller and evaluated

in the present study have already been outlined. These modifications include

the availability of two different system models, local and global; three

different controller types, deterministic, cautious, and dual; and internal

limiting using WAe and W e . Two other modifications to be considered and

evaluated in this study as potential improvements to the controller configura-

tion are algorithms for a variable output parameter weighting matrix and

algorithms for variable Kalman filter covariances Q and R. These modifica-

tions are briefly discussed below and conclude the specification of the poten-
tial active controller configuration.
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Variable Output Weighting Matrix

In Ref. I0, it was found that the vibration weighting matrix Wz can

have a significant impact on local vib--rationlevels and overall vibration

alleviation. Furthermore, the sensor weighting configuration may also have a

significant impact on the solution of the controller. These effects are

especiallysignificant if the system is nonlinear and/or the controller
achieves substantial vibration reduction in the RTA via vectorial modal

cancellation as well as a general reduction in the magnitude of modal excita-

tion. Since nonlinear systems are directionally sensitive, a change in sensor

weightings can change the directional sensitivitY such that it is possible to

a_ieve at least two completely different controller convergent solutions by

changing sensor weightings. If vectorial modal cancellation plays a signifi-

cant role in the vibration reduction achieved by the active controller, then a

change in weighting can also change the phasing of rotor hub loads required

for vibration reduction in the more heavily weighted sensor locations. Thus,

it may be possible to achieve further vibration reduction at the more heavily

weighted sensor locations, but at the possible sacrifice of higher vibration

at the less heavily weighted locations.

It may be possible to use this characteristic of the sensor weighting

configuration to advantage by implementing a variable weighting matrix to

perturbate the controller away from a local optimum. Such a variable weight-

ing algorithm may also be useful in maximizing controller performance at all

flight conditions. A variable weighting matrix may be a function of time or

of controller performance. Two similar algorithms were considered in this

study for varying the diagonal sensor weighting matrix Wz as a function of

controller performance. Both algorithms calculate a new vibration weighting

matrix based upon the current vibration level with a gain factor that is

indicative of the uncontrolled vibration level.

Neither algorithm provides any improvement in controller performance at

the baseline flight condition. Furthermore, both cause very oscillatory

behavior at the high thrust flight condition. It may be that an appropriate

algorithm can be defined to provide better performance in terms of the final

solution, but these algorithms are too sensitive to changes in vibration. No

results will be presented for these algorithms.

Variable Kalman Filter Covariances

As indicated in the discussion of the Kalman filter identification

algorithm, Kalman filter covariances Q and R must be assigned in order to

com__e t_ identification algorithm description. In the RTSA controller,
the covariance Q was held constant, and the covariance R was varied according
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to a simple algorithm involving the performance index. Due to system non-

linearities and transient response to control inputs, it may be necessary to

provide algorithms describing covariances 0 and R as variables in order to

achieve optimum vibration alleviation.

Ideally, R should be varied according to changes in the noise to signal

ratio or other factors influencing measurement accuracy. Likewise, 0 should

be varied according to the variability of the actual T-matrix due to non-

linearities or changing flight conditions. Since it is usually very difficult

to numerically describe such phenomena in a practical system, algorithms based

upon variables such as aircraft acceleration, rotor thrust, or performance

index are usually prescribed, with the hope that these variables are indica-

tive of measurement noise and/or parameter variation. In the present study,

several alternative algorithms based upon the performance index are considered

for varying either Q or R. All of these algorithms attempt to achieve

basically the same behavior in the ratio of 0/R which is indicative of the

relative uncertainties in system identification and vibration measurement. If

J increases, Q/R is increased to reflect degraded controller performance and

relatively more uncertainty in system identification than vibration measure-

ment. If J decreases, Q/R is reduced to reflect good controller performance,

good system identification, and relatively more uncertainty in vibration
measurement.

In this investigation, it has been found that all of these algorithms are

very sensitive to the selection of several different internal parameters

required to completely define the algorithm. Each algorithm has been imple-

mented in the deterministic controller at the baseline flight condition, and

none improve controller performance, even after several attempts to tune them.

In fact, they all tend to have detrimental effects on performance. The use of

these algorithms did point out the difficulty of trying to define variable Q

and R algorithms based on the performance index. It may be more worthwhile to

consider algorithms based upon thrust or some other parameter that is indica-

tive of flight condition. Since these algorithms were so unsuccessful, they

were deactivated for most of the present investigation, and covariances Q and

R were held constant. No results will be presented for these algorithms.

Controller Initialization

An important characteristic of the active controller configuration

defined above is that it operates recursively and, after being initialized and

activated, is completely independent of theoretical predictions of helicopter

res--ponse or flight test measured helicopter response to higher harmonic

control. No such information is stored in the computer. The controller must

identify and track the response to higher harmonic control and then calculate

and command the required control inputs. Once the controller is activated, it
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performs its calculations and update functions once every rotor revolution

based upon the information from the present rev ith, and the previous rev,

(i-1)th. However, this recursive characteristic of the controller requires

that the controller be initialized at the time it is activated in order to

satisfy the last rev information requirement.

For a given controller configuration, the initialization process consists

of zeroing the A0 vector; defining Qo' Ro and Po in the identification

algorithms; and initializing the T-matrix for rev zero. For a production

heli____ccopter,the controller will normally be initialized and activated in

hover; however, in the present analytical study, the controller is initialized
and activated at some steady forward flight condition with the expectation

that the controller will converge to a steady set of higher harmonic control

inputs. The latter method would probably also be used in a wind tunnel test.
In either case, the main concern is to keep the controller stable until new

measurements are obtained to update the estimate of parameters.

A value for the initial T-matrix can be obtained from open-loop perturba-

tions-of higher harmonic control inputs. This approach was used in the Ref.

iO -study of the RTSA controller and represents a good estimate of the initial
T-matrix even if the system is nonllnear. However, as will be seen, the T-

matrlx need-_-beso-well defined, Since the controller will identify and

track the T-matrix. Thus, the only criterion for defining the initial T-

matrix is that it maintain stability and not generate vibration when the con-

troller is activated. In the present study, the initial T-matrix determined

from open-loop perturbation at the baseline (150 kt) flight condition is used
for all other flight conditions.

The initial values of covariances P, Q, and R must be selected to match

the system. The initial value of P (the covariance of the T-matrix estimate)

can be set to a large value to reflect uncertainty in the estimates of the T-

matrix. The Kalman filter identification algorithm will then automatically

calculate a new value of P each update. The initial value of Q (the covari-

ante of changes in the T-matrix) should reflect the best estimate of how

rapidly and widely the T-matrix changes with flight condition as control in-

puts are made. In other words, if the system is quite nonlinear, then the
initial value of Q must be made large. In the controller algorithms, this

reflects increased uncertainty in parameter estimates which increases the

Kalman gain in the process of making new estimates. The initial value of R,

the covariance of measurement noise, should reflect the uncertainty in vibra-

tion measurements.

Since such knowledge of most systems is somewhat vague, the selection of

these covariances usually involves some trial and error along with general
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knowledge of the system to optimize their relative magnitudes. Reca]] from

the discussion of the identification algorithm that the relative magnitudes of

P/R and Q/R are actually more important than individual magnitudes and should

reflect the relative uncertainty in vibration measurements and system identi-

fication. In this study, covariances P, Q, and R were varied from their base-

line values over a fairly wide range to determine the sensitivity of contro]-

let performance to non-optimum tuning of P, Q, and R.

Controller Implementation

The sequence of events (neglecting computational requirements) that

occurs within a typical rotor revolution with the controller activated is

shown in Figure 5. Once the controller is initialized and activated, the

controller performs its calculation of required higher harmonic control and

implements the appropriate changes in control inputs once every rotor revolu-tion.

In Figure 5, a step change in higher harmonic control input, Ae, is shown

to occur at the start of the ith rotor revolution. The magnitude and phase of

the &0 input commanded at the beginning of this rev are the result of control-

ler calculations made at the end of the (i-1)th rev. As a result of this AO

input, a transient vibration response of the helicopter occurs due to the

transient change in rotor higher harmonic airloads. This transient response

is allowed to decay for 3/4 rev before the harmonic analyzer in the vibration

controller is activated. This 3/4 rev delay is essentially "dead" time during

which the controller must wait, but it is very important to controller perfor-

mance. If the harmonic analysis is performed earlier, the analyzer would

operate on a largely transient signal and pass inaccurate information to the

parameter identifier. The resu]t would be an inaccurately identified T-matrix

with a resultant degradation in controller performance, since the commanded Ae

inputs would be based on inaccurate parameter estimates passed to the minimum
variance control algorithms.

The time that is allowed to pass before the harmonic analysis is per-

formed is certainly arbitrary. The more time allowed for transient decay, the
better for controller performance in terms of system identification and ac-

curacy of commanded control inputs; however, this may not be true of overall

controller performance when taking into account the time to convergence or the
capability to quickly track T-matrix changes and reduce vibration due to tran-

sient maneuvers. As the time allowed for transient decay decreases, there is

a degradation in controller performance due to inaccurate system identifi-

cation and inaccurate Ae commands which in the extreme could increase vibra-

tion response. On the other hand, an increase in the time delay allowed for
transient decay increases the time between vibration response and commanded
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higher harmonic control. At some point, time to convergence to a minimum

vibration condition will be longer than for a controller needing to hunt

around somewhat due to inaccurate system identification. While keeping the

above tradeoff in mind, it is desirable to update higher harmonic control as

quickly as possible in order to track any maneuver induced transient changes

in the T-matrix, and to reduce the resultant vibration response.

The 3/4 rev allowed for transient decay in Figure 5 is based upon a

theoretially predicted transient vibration response to a typical step input of

higher harmonic control. Figure 6 shows the transient 4/rev response of the

vertical component of hub acceleration to a step input of 0.2 degrees of 3/rev

cyclic pitch as predicted by G400. The magnitude of the step input and the

conditions present when applied are representative of the conditions present

when the controller is first activated at rev 4 in a typical closed-loop

simulation. The response shown is representative of the transient response

observed in the other components of hub acceleration as well as those for the

RTA simulation used in this study. For any given revolution, the vibration

level plotted in Figure 6 is the I/2 peak-to-peak amplitude of acceleration

obtained from a harmonic analysis of the last I/4 rev as shown in Figure 5.

As indicated in Figure 6, more than five revs are required for the transient

response to completely die out. However, the error introduced by allowing

only 3/4 rev for transient decay before performing the harmonic analysis is

less than I0 percent of the new steady state vibration level. The ear]ier the

harmonic analysis is performed, the larger the error in the 4/rev content.

These results depend upon the nature of the A0 input, the initial vibration

level, and the sensitivity of the particular vibration components to higher

harmonic control. However, the results do indicate the importance of the

transient response to Ae inputs. In the present study, the impact of waiting

longer than one rev between updates has been considered. It has been decided

that a 3/4 rev elapse time and a once per rev update is a good compromise

between minimizing the transient effect and minimizing the time between

updates. Thus, the once per rev update shown in Figure 5 is used in most of

the present study.

Returning to Figure 5, the time history of the vibration response is read

into the harmonic analyzer for the last i/4 rev. The harmonic analyzer

supplies the cosine and sine components of each vibration parameter to the

parameter identifier. Based upon this vibration response and identified

parameters from the last rev, the controller updates system identification,

calculates the required higher harmonic control, and commands an updated

higher harmonic control input which takes the form of a new A6 step input

implemented at the beginning of the (i+l)th rev. This procedure is repeated

recursively throughout the entire flight, including all maneuvers and
transients.
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The controller implementation shown in Figure 5 and described above is

for the idealized simulation used in this study where &8 inputs are put in as
step inputs and the computational requirements of the controller are

neglected. The practical considerations of implementing active vibration

control in an actual helicopter is discussed in detail in Ref. 10. Clearly,

the commanded L£ input in a practical system would not be a true step and the

computational requirements of the controller would either infringe upon the

time allowed for transient decay or cause a delay in control commands. Thus,

in a practical application, the time allowed for decay for once per rev update

would be slightly less than 3/4 rev. Note that it may also be possible to

perform certain calculations during a combination of sampling time and
transient decay.

Controller Computer Simulation

The previous sections outlined the vibration controller, discussed its

separate components, and explained how it is implemented in the closed-loop
analytical simulation in the present study. This section discusses the com-

puter simulation of the controller coupled to a rotor mounted on the RTA. The

controller simulation was performed on a digital computer by linking an exist-

ing nonlinear aeroelastic simulation of the rotorcraft with a computer sub-

routine that performs all of the functions of the vibration controller as

outlined in the previous sections. The nonlinear aeroelastic computer anal-

ysis used to represent the H-34 rotor mounted on the RTA and the computer
subroutine that performs all the functions of the active controller are dis-
cussed below.

Nonlinear Aeroelastic Coupled Rotor - RTA Simulation

The nonlinear aeroelastic analysis used to simulate the coupled rotor and

Ames Research Center Rotor Test Apparatus (RTA) is the G400 analysis, docu-

mented in Ref. 22. Many improvements have been made to the analysis since the
publication of Ref. 22. It can, however, be used for a detailed basic

description of the analysis.

This computer analysis performs a time history solution of the differen-

tial equations of motion for a helicopter rotor coupled with a flexible body

such as a fuselage, or in this case, a wind tunnel test apparatus. The non-

linear equations of motion are solved by using a Galerkin procedure in which

the uncoupled normal modes are used as degrees of freedom. The mode shapes

and spanwise derivatives of blade pitch angle and nonlinear twist are appro-

priately combined to describe the coupled blade response to the fully coupled

aerodynamic and inertial load distributions. The rotor is coupled to the

flexible body at the hub by considering all six hub motion components due to a

superposition of as many as sixteen fuselage normal modes, which can be either

rigid body or elastic modes. Features of G400 which make it especially
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suitable for this study of self-adaptive higher harmonic control include the

capability of computing a transient time history which considers the influence

of a flexible fuselage and the motion of each individual blade, and its use of

nonlinear aerodynamic effects as appropriate.

The H-34 rotor system represented in the simulation has the following

basic characteristics:

Type - Fully Articulated

Number of Blades - 4

Diameter - 17.069 m (56 ft)

Blade Chord - 0.417 m (1.367 ft)

Blade Airfoil - NACA 0012

Twist- -8 deg.

Tip Speed - 198 m/s (650 ft/s)

Further physical data on the H-34 rotor system are contained in Appendix I of

Ref. 23.

The G400 analysis uses uncoupled natural modes of the individual blades

as rotor degrees of freedom. The present simulation includes four blade flat-

wise modes, two edgewise modes, and one torsion mode, which includes the

effect of control system flexibility. The natural frequencies of these modes

are tabulated below in cycles per revolution for the 198 m/s (650 ft/sec) tip

speed:

Mode Frequency, --ff-

Flatwise i 1.03

2 2.65

3 4.74

4 7.32

Edgewise 1 0.24
2 3.31

Torsion 1 7.04
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The G400 analysis uses a superposition of normal vibration modes to

represent the fuselage or other flexible body such as the RTA to which the

rotor is attached. This study uses normal vibration mode data from an exist-

ing NASTRAN mathematical model provided by NASA. The mathematical model

includes not only the RTA structure itself, but also the wind tunnel support

struts and balance frame structure. A diagram of the NASTRAN mathematical

model is shown in Fig. 2(b). The routine execution of the NASTRAN normal

modes analysis provides natural frequencies, generalized masses, and mode

shapes at grid points throughout the structure of the RTA, balance frame andstruts.

Six normal modes were chosen to represent the RTA and wind tunnel support

structure in the G400 analysis. These were chosen by examining the transla-

tional acceleration mobility at the rotor head of a total of 24 NASTRAN modes

in the longitudinal, lateral, and vertical directions at the rotor blade

passage frequency of 14.78 Hz. The six modes having the highest mobilities in

any of the three translational directions were utilized in the G400 analysis.

The modal properties of the six chosen modes are provided in Tables 2 and 3.
Descriptive names and natural frequencies are summarized below:

Mode Description Frequency (Hz)

Strut Fore-Aft 4.327

Strut Lateral 5.410

Module Nose Vertical 8.321

Module Vertical Bending 14.61

Shaft/Transmission Vertical 15.31

Shaft Lateral 28.33

While G400 considers the influence of the flexible RTA, as represented by

the above modal properties, in calculating transient time histories, the

version available for this study provides vibration levels at the hub only.

Accelerations at various locations in the RTA are not directly available.

Therefore, provision has been made in the controller subroutine for a linear

transformation to calculate accelerations in the RTA from accelerations at the

hub (fixed system). This linear transformation can be written as

ZRT A = TGA * ZH (53)

where ZRT A is a vector of the cosine and sine components of 4 per rev

acceleration at the six locations in the RTA (see Table I) and ZH is a

vector of the cosine and sine components of 4 per rev acceleration of the six
motions at the hub (see Table 1).
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TABLE 2. MODAL REPRESENTATION OF ROTOR TEST APPARATUS AT HUB

Modal Vector at Hub

Mode Freq. Generalized x y z 0 0 _)x Y z

No. Hz Mass

kg IIb-s2 I rad/m rad/in) rad/m rad/in) rad/m (rad/in)
\i_-_-----I ,

I 4.33 10669. (60.9) I .0030 -.2333 -.0004 (-.000009) .1911 (.004854) -.0010 I-.000025)

2 5.41 7321. (41.8) -.0018 I -.0010 -.0804 (-.002041) - .0003 (-.000007) -.2259 ( .005738)

3 8.32 8199. (46.8) I .0004 -.7072 .0001 ( .000003) .9185 ( .02333) .0001 ( .000004)

4 14.61 81711. (466.2) I -.0029 .5119 .0022 ( .000057) .6185 ( .01571) .00005(.000001)

5 15.31 48217. (275.1) -.7689 .0014 I -.0004 (-.000009) -.6102 (-.0155 ) .0007 ( .000018)

6 28.33 3763. (21.5) .0031 i -.0003 -i 7893 (-.045448) .0066 ( .000168) .3039 ( .007718)

TABLE 3. MODAL REPRESENTATION OF ROTOR TEST APPARATUS AT SENSOR LOCATIONS

RTA MODAL VECTOR
i

Mode Freq. Nose Nose Cross-Beam Cross-Beam Tail Tail

No. Hz. Lateral Vertical Longitudinal Vertical Lateral Vertical

1 4.33 .0044 - .5475 .7378 -.0830 -.0029 .0696

2 5.41 1.3471 - .0006 -.0015 .0244 -.2627 - .0008

3 8.32 .0009 -2.2659 -.2656 .0203 .0001 .163A

4 14.61 -.0009 - .0250 .I_356 .7637 .0018 -1.5102

5 15.31 .0022 1.7121 -.1898 .7949 -.0006 .0442

6 28.33 .3071 .0064 .0003 .1403 -.0986 .0013



The Jinear transformation matrix TGA can be determined from the followingrelationship

TGA = MRT A * INVERSE (MH4P) (54)

where MRT A and MH4P are mobility matrices calculated via a modal steady-state

forced vibration analysis using the NASTRAN model provided by NASA Ames

Research Center. MH4 P is the matrix relationship between 4 per rev forces and
4 per rev accelerations at the hub:

ZH = MH4P * FH (55)

Likewise MRT A is the matrix relationship between forces at the hub and
accelerations in the RTA:

ZRTA = MRTA * FH (56)

ZH and ZRT A are as defined above and FH is a vector of the cosine and sine

components of 4 per rev forcing at the hub. MH4 P and MRT A consider an

equivalent viscous structural damping coefficient of 5 percent of critical.

The above procedure is mathematically correct; however, with a limited

number of modes included in the analysis, the practical validity is

constrained. It is implicitly assumed that the rotor hub acceleration vector

ZH contains only those motions that result from steady state 4 per rev

excitation of the natural modes included in the analysis. If the ZH vector

includes other motions or transient effects due to a limited sample length,

errors can be obtained when calculating ZRT A by Eq. (53). This difficulty was

evidenced by the appearance in TGA of certain off-diagonal elements having

unreasonably large values. These basically result from inverting the MH4 P
mobility matrix for a limited number of modes. These large elements cancel if

the ZH vector is consistent with modal steady-state excitation by a

reasonable but arbitrary set of FH components. On the other hand, it was

evident that small variations in ZH from an idealized modal ZH will cause

large errors in ZRT A. Therefore, the large off-diagonal TGA elements were

arbitrarily removed in order to obtain reasonable RTA accelerations.

This does not compromise the results of this active control study since

they pertain to controller behavior. It merely represents RTA accelerometer

responses that are somewhat different from those that would result from
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a superposition of modal responses at those points. These differences are

equivalent to an arbitrary re-selection of transducer locations in the RTA or

to differences that might be expected between calculated and experimental

data.

Vibration Controller Subroutine

This section briefly describes the computer simulation of the vibration

controller defined previously. The vibration controller was formulated into

an independent subroutine named CONTRL which is linked to the G400 aeroelastic

simulation of the rotorcraft. The subroutine CONTRL is formulated in much the

same manner as that defined in Ref. I0 for the original RTSA controller, but

with appropriate modifications to include the new capabilities described

above. Figure 7 shows a schematic of subroutine CONTRL including the inter-

face with the G400 analysis. Note that the active controller consists of all

the subroutines occurring between the first dashed line shown in this figure

and the return to G400. Together, these subroutines perform all the active

controller functions shown in the lower part of Fig. 4. As can be seen in

Figure 7, this subroutine CONTRL implements the alternative controller config-

urations by setting various input parameters or flags in subroutine VARCON to

dictate which system model, controller type, and other alternative modifica-

tions are to be used.

During the time history solution process in G400, the time integration

step is normally set to an equivalent of 5 degrees of rotor azimuth. In the

last quarter rev (270 to 360 degrees azimuth), the time varying hub accelera-

tions as computed by G400 are passed to a harmonic analyzer to simulate analog

sensor signals. This step initiates the active controller functions. The

harmonic analyzer in the form of subroutine HARM calculates the cosine and

sine components of the 4/rev vibrations and stores them in a vibration vector,

Z. At the end of the 360 degrees azimuth calculation and, immediately after

the call to HARM, CONTRL is called by the G400 main program and the active

vibration controller is entered. The information passed when CONTRL is called

is the vibration vector, Z, and a control vector containing the cosine and

sine components of higher harmonic control inputs from the last rev. This

step initiates the remaining active vibration controller functions which are

simulated by additional subroutines in CONTRL. Note that no measurement noise

has been included in this simulation. If it were to be considered, noise

could be added to the harmonically analyzed vibration mesurements at this

point, as was done in the study reported on in Refs. 9 and i0.

It should be pointed out that the time varying accelerations could have

been just as easily passed to subroutine CONTRL via a storage matrix. The

harmonic analysis could then have been performed by a harmonic analyzer within

CONTRL. In this manner, all the active controller functions would have been

performed by subroutine CONTRL; however, it was decided, for convenience only,

to use the same subroutine used in G400 to perform the harmonic analysis.
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Each case of the coupled G400/controller simulation begins with an

initial settling period to allow initial numerical transients in the G400 time

history solution to die out. During this settling period, which lasts a

selected number of revs as indicated by input parameter NDELAY, the controller

is left inactive and subroutine CONTRL returns control immediately back to

G400 with no update in initial control inputs. After this settling period,
the controller is activated and the simulation proceeds as follows.

On the first rotor rev of active control, the subroutine INITAL is called

to initialize all of the required parameters. As discussed above, this

includes the setting of initial values for the T-matrix and covariances p, Q,

and R. At this time subroutine PRINTI (not shown in Figure 7) prints the

initial system data. In subsequent calls to CONTRL, these two subroutines are

skipped, and the parameters from the previous rev are used as required by the
recursive identification algorithm.

At this point, subroutine CONTRL linearly transforms the vector of the

cosine and sine components of the 4/rev vibration response calculated in G400

to a new vector of parameters that are to be controlled or minimized. This
linear transformation can be written as

ZC = TGA • Z (57)

where TGA is the linear transformation matrix and ZC is the vector of para-

meters to be controlled. It is the vector ZC that is actually used to form

the performance index to be minimized by the minimum variance'control

algorithm. The reason for this step in this simulation is that G400 does not,

as discussed previously, directly calculate the vibration response in the RTA

even though the modal interaction between the RTA and the rotor is taken into

account when calculating the hub response. Thus, the vibration response

passed to subroutine CONTRL is for the hub. It is then assumed that the

vibration response in the RTA can be formed by the above linear transforma-

tion. In a practical application, the RTA response would be directly measured

and passed to the controller. If it were the hub response that were to be

minimized, the TGA matrix would simply be set to the identity matrix, rather

than that defined in Eq. (53). Note that the use of a TGA matrix to calculate

RTA vibrations is equivalent to controlling hub vibrations with a non-diagonalweighting matrix.

After establishing the vector of parameters to be controlled, the con-

troller is ready to identify the required system parameters using the Kalman

filter identification algorithm as discussed previously. In order to im-

plement the identification algorithm, the covariances Q and R must be defined.
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If these covariances are to be held constant, subroutine PARID is called to

perform all the functions of the Kalman filter identification algorithm using

the initial values of Q and R supplied by INITAL. As indicated earlier, sev-

eral alternative algorithms are to be considered for varying Q and R as func-

tions of the performance index. If one or both of these covariances is to be

varied, then the appropriate subroutine QVAR and/or RVAR is called to update

the covariances immediately before calling PARID. The primary purpose of

PARID is to identify and track the system parameters required by the minimum

variance control algorithm. For the local model_ the T-matrix relating vibra-

tion response to higher harmonic control inputs must be identified. For the

global model, the uncontrolled vibration level, Zo, must also be identified.

Before calculating the required higher harmonic control inputs, the sen-

sor weighting matrix, Wz, must be established. In the present study, two

alternative algorithms for varying Wz as a function of controller perfor-

mance are considered. If Wz is to be varied, the updated weighting matrix

is calculated in subroutine ZWT. Otherwise, Wz is held constant at its

initial value. If algorithms were to be considered for varying W 9 or

WAft, a subroutine to perform this function would also be called at this

point. Once all system parameters have been updated, subroutine VARCON is

called to apply the minimum variance control algorithm to calculate the op-

timum change in higher harmonic control inputs Ae* required to minimize the

performance index. The exact form of the minimum variance contro! algorithm

implemented by VARCON is dependent upon the controller type and system model.

As shown in Figure 7, the controller configuration is defined by the values of

parameters IOPT and IBETA. IOPT is set to 1 for the local model and 0 for the

global model. IBETA is set to 0 for a deterministic controller, to +i for a

cautious controller, and to -I for a dual controller.

The end product of VARCON is a computed optimum A0* for updating the

higher harmonic control vector; however, before the higher harmonic control

inputs are updated and commanded, they must be limited to satisfy any external

constraints placed on these inputs. This function is performed in subroutine

LIMIT. If the calculated optimum Ae* is larger than allowed due to hardware

limitations or other reasons, A0 is limited to the prescribed amplitude while

maintaining the same phase as Aft*. Subroutine LIMIT then calculates the new

higher harmonic control input to be implemented in G400 by adding A0 to the

total e from the previous rev. Finally, subroutines PRINT2 and PRINT3 (not

shown in Figure 7) print the results for the current rev. Having performed

all its functions, subroutine CONTRL passes the new 0 vector back to G400

which then continues its time history solution with the updated higher

harmonic control vector.
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CLOSED-LOOP ANALYTICAL RESULTS

Analysis and evaluation of the active vibration controller were performed

by linking the G400 helicopter simulation with the active vibration controller

subroutine CONTRL and operating them in closed-loop fashion, as discussed in

the last section. During the course of this study, three controller types
were investigated: deterministic, cautious, and dual. Both a local and

global system model were investigated as the basis for the primary controller

configuration for each controller type. In addition to investigating these

primary controller configurations, several internal controller parameters and

minor variations in controller configuration were also investigated. These
are summarized in Table 4.

TABLE 4

CONTROLLER PARAMETERS INVESTIGATED

o Kalman filter covariances
P, Q, R

o Minimum variance control parameters

• Control angles and limits

8, A0

• Weighting

WZ, WO, WAS

• Stochastic control constant (Cautious, dual)

• Sensors
• RTA
• Rotor hub
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The closed-loop analytical study of the controller was generally divided

into four parts. First, controller performance for all configurations was

investigated at a baseline high speed steady state operating/flight condition.

Note that the terms operating and flight condition will be used inter-

changeably throughout the report even though the simulation considered is for

a rotor/RTA coupled system in the wind tunnel. Second, controller performance

was investigated at additiona! steady flight conditions having alternate

forward velocities or rotor thrusts. Third, selected controller configura-

tions were investigated during several transient maneuvers. Finally,

controller performance was evaluated for additional minor modifications to

controller configurations.

The following discussion of the closed-loop analytical results is divided

in somewhat the same manner. The baseline controller configurations is

presented for each of the three controller types. These baseline configura-

tions can be assumed to be the basis of all results presented for the closed-

loop active control study, unless otherwise stated. A summary of overall

controller performance for each of these baseline configurations is then

presented for the baseline high speed flight condition. Each of the three

controller types is then discussed with an emphasis on how controller perfor-

mance is affected at the baseline flight condition by various controller para-

meters and variations in controller configuration. The effectiveness of

active vibration control at various forward velocities and rotor thrusts is

presented. Where applicable, the characteristic performance of specific

controller types or system models is discussed at these alternate flight

conditions. Controller performance during severa! transient maneuver condi-

tions is then covered. Throughout this discussion, a comparison is made

between the three controller types (deterministic, cautious, and dual) and

between the two system models (global and local).

Controller Performance at Baseline High Speed Flight Condition

A steady high speed moderate thrust flight condition was selected as the

baseline condition for studying and optimizing controller performance for

each controller type. This flight condition had a forward velocity of 77.2

m/s (150 kt) and a nominal value of 0.06 for CT/O. The resultant vibratory

response for this flight condition was fairly mild with RTA accelerations on

the order of 0.2g's with no higher harmonic control or other vibration treat-
ment.

This flight condition was used for the initial study of all modifications

made to the RTSA controller. Any modification that failed to show a potential

for improving controller performance at this flight condition was not con-

sidered further at more severe flight conditions. Much of the testing at the
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baseline flight condition focused on the initial study of controller perfor-

mance, the optimization of controller configuration, and the investigation of

controller parameters for each of the three types of controllers.

Baseline Controller Configurations

Based upon the analytical investigation of controller performance at the

baseline high speed flight condition, a baseline controller configuration was

selected for each of the three controller types. Each of these configurations

showed the best overall performance at this flight condition for a given

controller type. The characteristics of each of these baseline controllers
are presented in Table 5 below.

TABLE 5

BASELINE CONTROLLER CONFIGURATIONS

Deterministic Cautious Dual

System Model Global Global Global

Sensors RTA RTA RTA

Kalman Filter Identifier

Covariances

Po (g's/rad)2 100. 100. I00.

Qo (g's/rad)2 .001 .001 .001

Ro (g's)2 .001 .001 .001

Minimum Variance Optimizer

Time between update (rev) 1 1 1
External Control Limits

0max (deg) none none none

Aemax (deg/rev) none none 0.2

Stochastic Control Constant (%) 0.0 1.0 0.01
Weighting in Perf. Index

Sensors, Wz (I/g's)2 1.0 1.0 1.0

Control Magnitude, We (I/red)2 0.0 0.0 0.0

Change in Control, WA0 (l/red)2 1000. 0.0 0.0
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All three of the baseline configurations in this table are identical

except for controller type, the arbitrary stochastic control constant related

to controller type, and the external limits and internal weighting specifica-

tions placed on AO. Thus, other than the fundamental differences in con-

troller algorithms due to controller type, the only difference in the three

baseline controllers is the manner in which limiting of control inputs is

implemented.

All three of the baseline controllers are based upon the global system

model. As will be discussed later, the selection of the global model was made

arbitrarily since the performance of each of the controllers was quite good

with both the local and global models. There was no significant advantage of

one model over the other. All three of the baseline controllers also use the

same Kalman filter configuration with the same initial values for P, Q, and R.

Furthermore, all three baseline controllers hold 0 and R constant at their

initial values while varying P according to the Kalman filter algorithm

discussed previously.

All three controllers actively control the vibration levels from the

sensors located in the RTA (see Table I); the output from each of these

sensors is weighted equally at unity. The time between control updates is one

rotor revolution. Thus, the output from these sensors is harmonically

analyzed, the system parameters are identified, and new control inputs are

calculated every rotor revolution.

All three controllers place limits on the control inputs, but do so in

different ways. None of the baseline controllers externally limit the overall

magnitude of control, e, or internally weight 6 via W 0 in the performance

index. The baseline deterministic controller slows the rate of change in

control inputs between updates by internally weighting A0 with WAe in the

performance index. In this baseline deterministic contr011er, ali three con-

tr01-_puts (3, 4 and 5 per rev) are weighted equally at i000 (i/Tad) 2 This

value does not represent a I000 to 1 ratio of importance in keeping A0 small

and in reducing vibration. Rather, weighting matrices W z and WAe account for

differences in units and relative magnitudes of vibration and control param-

eters in the terms contained in the performance index (Eq. (3)) as well as the

relative importance of these parameters. No external limits are applied to

A0.

The baseline cautious controller neither applies external limits to Ae

nor internally weights Ae with WAe. Rather, the cautious controller

inherently slows down the implementation of new control inputs via the

stochastic term discussed previously. Since the global model is used, this

term effectively acts as a variable weighting on 0 in the performance index

which is dependent upon the uncertainty in system identification.

°.
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The baseline dual controller applies external limits on the rate of

change of control in order to a11ow the inherent perturbations in contro!

inputs due to its stochastic term in the performance index without allowing
short term control to be compromised too severely. The baseline dual

controller externally limits the change in control between updates to a maxi-
mum of 0.2 degrees for each of the control inputs.

These baseline controller configurations can be assumed to be the config-
urations used for all results presented in this report (unless otherwise

stated). The performance of these baseline controllers at the baseline high
speed (150 kt) flight condition are discussed below.

Vibration Reduction

Figures 8(a) and 8(b) present the G400 simulation results for the three

baseline controller configurations operating closed-loop at the baseline high

speed flight condition. Each of the three sets of curves in Figs. 8(a) and

8(b) represents the response of one of the best configurations, achieved by
tuning appropriate parameters within the controller algorithms, for each of

the three controller types when using the global system model. The specific

tuning values used for each controller in these figures have been presentedpreviously in Table 5.

Figure 8(a) shows G400 predicted time histories of the vibration

performance index JZ and one typical component of vibration in the RTA

(Cross-Beam vertical) after the controller is activated at the fourth rotor

revolution. Figure 8(b) shows the time history of the amplitude of each of

the higher harmonic control inputs (3, 4, and 5 per rev) commanded by the

three controJlers. Since the vibration performance index plotted in Fig. 8(a)

is a weighted sum of the squares of a11 the vibration components being active-

ly control_ed, it is a good indicator of overall controller performance in

reducing vibration. Note that-the vibration performance index plotted is not

the same as the performance index actually minimized by the minimum variance

control algorithms, (e.g., Eq. (3)), since none of the weighted quadratic

terms involving 6 or Ae are included. While these terms are important to

overall controller performance and stability, they are not indicative of

vibration reduction achieved by the active controller. Unless otherwise

stated, all plots of the performance index in this report are actually the
vibration performance index JZ having vibration terms only.

Figure 8(a) shows that all three controller types do an excellent job of

reaching a new steady vibration level that is greatly reduced from the base-

line vibration level. After the controller is activated at rev 4, the vibra-

tion performance index JZ immediately starts to decrease for all three

controller types. After only two revs and 0.55 seconds elapsed time of active
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control, both the deterministic and cautious controllers achieve and maintain

at least a 90 percent reduction in the performance index. The limited dual

controller requires about 5 revs or 1.4 seconds of active control to achieve

the same overall vibration level. By rev 10, all three controllers have

essentially converged to a value of the performance index that is only 3

percent of the baseline value. The elapsed time between rev 4, when the

controller is activated, and rev 10 is about 1.6 seconds.

The predicted vibration level in the RTA is represented in Fig. 8(a) by

the vertical component at the cross-beam sensor location. The vibration level

at this location also decreases abruptly after rev 4 for the deterministic and

cautious controllers. By rev 7, these two controllers have achieved at least

a 65 percent reduction in this vibration component. The limited dual

controller does not achieve this level of vibration until rev I0. In fact,

due to system probing by the dual controller, the vibration level at this

location actually increases in the first 3 revs, even though the overall

vibration level is being reduced, as indicated by a reduction in the perfor-

mance index. By rev 15, all three controllers have reduced the vertical

cross-beam vibration level to less than 0.041g, which is less than 30 percent

of the baseline value of 0.14 g.

Note that, at rev 9, both the deterministic and cautious controllers

achieve a level of vibration at this sensor location that is quite a bit lower

than that achieved at convergence. Thus, these controllers have somewhat
sacrificed the reduction in vibration at this location in order to achieve a

lower value of the performance index, which is effected by not only the vibra-

tion level at each sensor location but also the A0 and 0 terms (see Eq. (3)).

If this is unacceptable, the vibration weighting matrix, WZ, can be changed

to alter the relative importance of selected vibration parameters.

Figure 8(b) shows the time history of 3, 4, and 5 per rev cyclic pitch

amplitudes as commanded by the three controllers. For the deterministic and

cautious controllers, the initial change in 3/rev cyclic pitch is about 0.12

degrees in the first rev, while changes in 4 and 5/rev are on the order of

0.15 degrees. The corresponding reduction in the vibration level in this

first step is substantial, as noted above. After the first rev of active

control, the deterministic and cautious controllers gradually increase the

amplitude of all three control inputs, while further reducing the vibration

level. The vibration at the six RTA sensor locations remains fairly steady

after rev 15. At this point, the 3/rev cyclic pitch amplitude is still rising

very slowly, on the order of 0.002 degrees per rev. However, the 5/rev input
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is fairly steady and the 4/rev input slowly starts to decrease at about 0.002

degrees per rev. Thus, after 15 revs, both the deterministic and cautious

controllers are trying to further reduce vibration but, in effect, achieve a

fairly steady vibration level by trading off an increase in 3/rev with a

decrease in 4/rev cyclic pitch. These changes are so gradual that the 3/rev

cyclic pitch increases by only 0.025 degrees between rev 30 and rev 50. As

wil! be discussed later, the deterministic and cautious controllers did not

exhibit this same tendency to command ever so slightly increasing and/or

decreasing control inputs at the baseline flight condition when large values
of Po were specified.

In contrast to the deterministic and cautious controllers, the dual

controller exhibits a tendency to probe the system by perturbating the higher

harmonic cyclic inputs. This tendency is clearly evident in the cyclic pitch

amplitudes shown in Fig. 8(b) for the dual controller. As expected, this

probing initially results in a slight degradation in short term control as can

be seen in both the cross-beam vertical vibration component and the perfor-

mance index. After identification improves, system probing diminishes and the

final controller solution is every bit as good as that of the deterministic

and cautious controllers. As will be discussed later, the dual controller's

tendency to probe the system has been somewhat inhibited in the controller

configuration represented in Figs. 8(a) and 8(b) by an application of external

rate limits of 0.2 degrees per rev. Without these limits, the perturbation in

control inputs used to probe the system are much larger and result in much

worse short term control; however, the unlimited dual controller still

manages to remain stable and to converge to a very good final solution.

The change in the vibration level at all six sensor locations in the RTA

is shown in Fig. 9 for all three controllers. In this figure, a comparison is

made between the 4 per rev vibration levels at rev 4 without any higher har-

monic control and at rev 30 where the controllers have essentially converged

to a steady level of reduced vibration. All three controllers have substan-

tially reduced vibration at all sensor locations except the two locations that

had very !ow initial levels of vibration without any higher harmonic control.

The low levels of vibration at these two sensor locations have been main-

tained. Reductions in vibration for the four primary components are between
75 and 90 percent for al! three controllers.

Also shown in Fig. 9 are the fixed system hub vibrations. Note that the

three angular accelerations have been multiplied by 0.305 m (1 ft) so that all

six hub vibrations are presented in the form of g's. The two primary contri-

butors (vertical and longitudinal components) have been reduced by all three

controller types. A substantial 75 percent decrease in the longitudinal
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component has been achieved while a more modest 20 percent reduction has been

achieved in the vertical component. The other four components, which were

small initially, remain at about the same order of magnitude. The substantia!

reduction in the largest component along with less or no reductions in the

other five components indicates that the reductions in vibration in the RTA

have been achieved by a combination of reduced forcing at the rotor hub and

vectorial cancellations of modal contributions to RTA vibrations. It has been

found in this investigation that more substantial overall reduction in hub

vibrations can be achieved by the use of hub sensors rather than RTA sensors.

However, further reduction in RTA vibrations is not necessarily obtained

unless proper phasing of the hub vibrations is also obtained. Indeed, certain

RTA vibrations increased substantially even with decreased hub forcing when

only hub sensors were used at the baseline flight condition.

Finally, the amplitudes and phases of higher harmonic control required to

achieve the vibration reductions shown in Fig. 9 are shown in Fig. 10 for the

three controllers. Note that the phases shown in this figure have been trans-

formed such that 0 _ /e 3 _ 120 °, 0 ! /94 _ 90°, and 0 _ /eS ! 72°, as allowed

by the periodic nature of the control inputs. All three c---ontro]lers require

amplitudes on the order of 0.3 degrees for all three cyclic pitch harmonics

which are quite reasonable for this high speed flight condition. Figure 10

also shows that all three controllers converge to about the same control

solution. Furthermore, the very slow changes in control occurring after

convergence in the performance index has been achieved may eventually lead to

exactly the same solutions. However, this need not be the case; as will be

discussed later, many different control solutions can result in essentially
the same vibration levels in the RTA.

Rotor Blade Stresses

Another area of concern that is affected by higher harmonic control is

cyclic rotor blade stresses. Since higher harmonic cyclic pitch affects rotor

blade airloads, it is expected that some changes in blade stresses will

accompany changes in vibrations. Figure 11 shows the 1/2 peak-to-peak blade

bending stresses and torsional moment along the blade span for the baseline

flight condition with no higher harmonic control and for the deterministic

controller at rev 30 with optimum higher harmonic control. Clearly, there is

a significant increase in all the vibratory moments and stresses, but espe-

cially in the torsional moment. The effect of the cautious and dual con-

trollers is almost identical to that shown in Fig. 11 for the deterministic

controller. This is expected since the total control vector at rev 30 is

similar in magnitude and phase for all three controllers. The percent

increase in peak bending stresses and torsional moment is presented for criti-

cal locations along the blade for all three controllers in Table 6.
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TABLE 6

PERCENT INCREASE IN MAXIMUM ROTOR VIBRATORY MOMENTS

AND STRESSES FOR BASELINE FLIGHT CONDITION AT REV 30

Deterministic Cautious Dual

Flatwise

(0.394R) 13.3 14.4 17.2

Edgewise

(0.265R) 52.5 52.0 50.6

Torsional

(0.079R) 167. 174. 197.

The increase in 1/2 peak-to-peak torsional moment is almost 200 percent

near the blade root. The inboard edgewise bending stress increases by slight-

ly over 50 percent. The inboard flatwise bending stress increases by about 15

percent. These increases are most certainly significant from the standpoint

of blade life. For a new aircraft or significant model change, increases in

loads such as those indicated in this study would have to be accounted for in

the design of the rotor blade. These increased loads must also be considered

in any proof-of-concept wind tunnel or flight test to demonstrate the higher
harmonic control concept.

An alternate approach is to include terms representative of blade

stresses, appropriately weighted, in the performance index J. In so doing, it

seems possible to maintain or reduce certain stress levels, without compro-

mising vibration reduction, by reducing airloads induced by interharmonic

coupling with properly phased higher harmonic control inputs. For this to be

accomplished, parameters from the rotating system (e.g., rotor blade stresses,

rotating blade root shears) must be added to the performance index to ensure

that reductions in vibration are achieved via properly phased higher harmonic

control inputs and modal cancellations of small quantities rather than large
quantities. More will be said in regard to this later.

While such an approach was not pursued in the present study, certain

results did indicate such an approach might be feasible, and it should be

seriously considered in the future. It is not desirable to have to monitor

blade stresses (or any other parameter in the rotating system) on a production

aircraft, but in future analytical or wind tunnel test investigations such an

approach would provide valuable information on the higher harmonic control
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phenomenon as well as the capabilities of the closed-loop active controller to

operate with numerous output parameters which may represent conflicting
criteria. Furthermore, it may be possible to compute blade stresses or other

parameters in the rotating system indirectly via a state estimator rather than

by direct measurement. Such an approach may then be applicable to a produc-
tion aircraft.

Rotor Performance

Another area of concern that is affected by higher harmonic control is

rotor performance. Due to aerodynamic interharmonic coupling in forward

flight, it is possible, as predicted by linear aerodynamic theory, for 3 and 4

pe-r-_rev higher harmonic control inputs to create I and 2 per rev airloading,
which can alter the trim condition and, thus, rotor performance. The extent

that rotor performance is affected at the baseline flight condition is shown

in Table 7. This table compares key trim and rotor performance parameters for

the baseline flight condition with no higher harmonic control inputs to those

with higher harmonic control being provided by one of the three controller

types.

TABLE 7

EFFECT OF HIGHER HARMONIC CONTROL ON ROTOR PERFORMANCE

AT BASELINE FLIGHT CONDITION

No HHC Deterministic Cautious Dual

Thrust 36735 37202 +1.3% 37224 +1.3% 37273 +1.5%

N (ib) (8255) (8360) (8365) (8376)

Torque 25139 26374 +4.9% 26403 +5.0% 26514 +5.5%

N-m (18542) (19453) (19474) (19556)

(ft-lb)

Prop 4001 3983 -0.4% 3978 -0.6% 3961 -1.0%

Force (899) (895) (894) (890)

N (Ib)

Equiv. 10.26 9.37 -8.7% 9.34 -9.0% 9.23 -10.0%

L/D

Note: Rotor Performance Parameters with higher harmonic control are those

occurring at rev 30
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At the baseline (150 kt) flight condition, the application of higher

harmonic control has caused an increase in required torque on the order of

about 5 percent for all three controller types. This increase in required

torque is accompanied by an increase of about i percent in rotor thrust. In

actual flight, any impact of higher harmonic control on rotor thrust would be

accounted for by adjustment of collective pitch. For this particular flight

condition, a direct power penalty is being paid for the implementation of

higher harmonic control to reduce vibration by all three controllers (exclu-

sive of any increase in power necessary to operate the control system).

Ideally, it would be desirable to implement higher harmonic control without

any increase in required power. It may be possible, in future studies, to

accomplish this by including in the performance index an appropriately

weighted term that is proportional to rotor torque.

In addition to the changes in rotor torque and thrust, the implementation

of higher harmonic control has caused a decrease in both propulsive force and

equivalent L/D. The propulsive force has decreased by less than 1.0 percent

for all three controllers. The equiva]ent L/D has decreased by almost I0

percent. This is within the accuracy of the performance analysis for which

constant inflow and steady aerodynamics were assumed for this study.

Effect of Internal Controller Parameters on Performance

at the Baseline High Speed Flight Condition

In the previous section, overall results were presented for three base-

line controllers at the baseline high speed steady flight condition. All

three controllers demonstrated excellent effectiveness in quickly achieving

substantial reductions in RTA vibrations with low multicyclic control inputs.

Each baseline configuration was determined by testing many different con-

troller configurations and optimizing controller performance at the baseline

high speed flight condition for each one of the three controller types being

investigated in this study. In optimizing controller performance, the charac-

teristics considered most important were stability, time to convergence, over-

all reduction in vibration, and amplitude of control inputs commanded by the
controller.

In the process of optimizing controller performance and establishing the

baseline controller configurations, much has been learned about the effect

that various control]er parameters (e.g., %, WAg, W0, and A0ma x) can have on
controller performance. The effect of important parameters on the character-

istic performance of each controller type at the baseline flight condition

will be discussed throughout the remainder of this section. Furthermore, the

performance of controller configurations based upon the local system model

will be presented and compared to the performance of corresponding configura-

tions based on the global model.
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Deterministic Controller

One of the most important considerations in controller perfermance is

stability. In Ref. I0, external rate-limiting of control inputs was found to

be very important to stability and performance for the deterministic con-

troller. In this investigation, rate-limiting has also proven to be very

important to the deterministic controller's stability and performance for not

only the local system model, which was used for the RTSA controller in Ref.

10, but also for the global system model. However, it has been found that

stability and performance of the deterministic controller is improved

dramatically for both system models by the use of internal rate-limiting with

WAe and the weighted quadratic AO term placed in the performance index in Eq.

(3), rather than external rate-limiting with A6max.

External Rate-Limiting

In Figs. 12 and 13, controller performance at the baseline flight condi-

tion is shown for an unlimited deterministic controller based on a _Ioba]

system model and a local system model, respectively. Other than the local

system model being used in the latter and no limits being placed on contrcl

inputs, the configuration of both controllers is exactly the same as the base-

line deterministic controller presented in Table 5. Clearly, the time

histories of the performance index and the amplitude of 3 per rev cyclic pitch

presented in these figures show that both controllers are unstable. The time

histories of 3 per rev cyclic pitch magnitude, which are indicative of 4 and 5

per rev control as wet1, are highly oscillatory and increase to e;_tremeJy high

magnitudes. The time histories of the performance index are also very

oscillatory, oscillating violently between vibration reduction and magnifica-

tion.

Figures 14 and 15 show the effect of app|ying various amounts of external

rate-limiting to the same two controllers. Note that the sharp break that

occurs in the 3 per rev cyclic pitch at rev 29 in these figures is due to the

control inputs being held constant during the last rev to allow transients to

decay before the final vibration analysis is performed. This is done in all

the closed-loop simulations, but is most apparent here since convergence has

not been achieved. Equal limits are applied to the incremental changes of

each of the three control inputs. These limits are applied after the minimum

variance control algorithm has calculated a set of optimal changes in control,

as shown in Fig. 4. With a limit of 0.5 degree placed on the change in con-

trol between updates, the behavior of the deterministic controller is still

very oscillatory and unacceptable for both system models. By further

restricting the limits to 0.2 degree between updates, controller stability and

performance have been improved in both controllers to the extent that the

oscillatory behavior has been reduced substantially. Furthermore, once the
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controllers are activated a reduced vibration level is maintained. After I0

revs, both controllers maintain at least a 45 percent reduction in the perfor-

mance index compared to the initial value with no higher harmonic control. By
restricting the limits to 0.1 degree per rev, controller performance is

smoothed still further; however, the control inputs commanded by both

controllers are very high and do not appear to be converging even by rev 30.
Furthermore, neither controller can maintain the low levels of vibration

achieved between revs 20 and 23. The detrimental effects of large control
inputs will be discussed shortly.

While external rate-limiting clearly improves the stability and perfor-

mance of the deterministic controller with either a local or global system

model, performance as shown in Figs. 14 and 15 is still unsatisfactory due to

the very high control inputs being commanded for a moderate flight condition

and the lack of convergence by rev 30, especially in light of the excellent

performance obtained with the three baseline controllers. Part of the problem
appears to be that the controller with the particular initial T-matrix

supplied is biased towards reducing vibration with large control inputs which

are properly phased to produce low vibration in the RTA. Reduced vibration in

the RTA can be achieved by a properly phased '_ix" of 3, 4, and 5 per rev

inputs of large amplitude or of small amplitude, as demonstrated by the

solutions just presented for the externally limited deterministic controllers

and the solutions presented previously for the baseline controllers. One of

the reasons for this is coupling between 3, 4, and 5 per rev control inputs
and vectorial cancellation in going from the rotating system to the fixed

system. One possible phenomenon is as follows. The 3 and 5 per rev rotating

inplane shears combine to form 4 per rev fixed system hub loads (longitudinal,
lateral, pitching moment, and rolling moment). Reduced fixed system shears

can result from small differences between either large rotating shears or

small rotating shears. Since 3 and 5 per rev control inputs directly affect 3

and 5 per rev rotating shears, 3 and 5 per rev higher harmonic control inputs

can tend to cancel each other. Thus, a particular mix of control inputs
with large amplitudes can have essentially the same overall effect on vibra-

tion in the fixed system as an appropriate mix of inputs of small amplitude.

Further coupling can take place due to modal cancellation in the RTA for a

given set of fixed system hub loads. Thus, many solutions in terms of the

amplitude and phase of 3, 4, and 5 per rev may exist for a given vibration
level in the RTA, as will be demonstrated later.

It is not clear as to why the controller with this particular initial T-

matrix, which is obtained by perturbating control inputs around zero higher

harmonic control, is biased toward large amplitude control solutions; however,

that appears to be the case. It may be due to the use of fairly large ampli-

tudes (I.0 degree) for perturbation of each of the control inputs. When the

controller has no limits or very large limits placed upon the rate that inputs

can be implemented, the controller quickly implements large changes in control
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inputs, which causes two problems. First, larger transients occur due to

large changes in control inputs, and these transients take longer to decay.

Thus, the controller is working with larger errors in system measurements

which causes it to perceive certain vibration levels in the RTA and effects of

implemented control angles on vibration that are erroneous. This, in turn,

leads to changes being made to the T-matrix that may not be appropriate.

Furthermore, the controller is more sensitive to perceived errors in the

T-matrix, and the corresponding changes to the T-matrix are increased due to

increased Kalman gains caused by larger control inputs or changes in control

inputs. Thus, even if the system is completely linear, large control input

implementation can lead to oscillatory behavior and instability. The second

effect is that nonlinearities and changes in the T-matrix increase at large

amplitudes of control. Clearly, this second effect aggravates the first.

When the limits placed on Ae are made smaller, the transient effects are

lessened and the controller is given more of a chance to measure vibration

response and identify and track system parameters more accurately. Thus,

performance is improved. However, external limits do nothing to directly

remove the bias to go to large control inputs. They simply slow down the rate

that the controller proceeds. Indirectly, rate-limiting allows more time for

identification to remove this bias with changes in the T-matrix. However, as

Agma x becomes smaller, less information is received by the identifier in order
to make changes in the T-matrix. Thus, the bias to go to solutions with high

amplitudes of control inputs tends to remain as can be seen in the time his-

tory for 3 per rev cyclic pitch and a value of 0.1 degree for Aema X in

Figs. 14 and 15.

It is possible to overcome some of these effects encountered with more

restrictive limits by specifying higher initial values of P and O. With the

resulting increase in Kalman gains, the controller becomes more sensitive to

errors in predicted vibration levels and makes larger corresponding changes in

the T-matrix. The effect of increasing Po and Q in an externally limited

deterministic controller is shown in Fig. 16. This figure shows the time

history of 3 per rev cyclic pitch amplitude and the performance index for a

deterministic controller with local system model having values of 1000.0,

I00.0, 0.001, and 0.2 for Po' Q' R, and Aemax, respectively. The substantial

increases in Po and Q have allowed substantial changes in the T-matrix to be

made which allows a solution having at least an 85 percent reduction in the

initial performance index to be reached with control inputs on the order of

0.8 degree or less. The limit of 0.2 degree placed on incremental changes in

3, 4, and 5 per rev control inputs allows the controller to remain stable.

However, the controller is very skittish as evidenced by the oscillatory

behavior in both control inputs and performance index even after "convergence"
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has been achieved. This skittishness could result in instability if large

changes in system parameters were encountered due to change in flight condi-
tion, transient, etc.

It should be noted that the controller represented by the response in

Fig. 16 has essentially the same configuration as the RTSA controller studied

in Ref. 10. The only differences are the initial tuning of Po' Q' R, and

Aema x and a constant covariance R. For the results shown in Fig. 16 as well

as all other results presented in this report, R is held constant. In

Ref. 10, the controller used a very simple algorithm to vary R as a function

of the performance index. The response shown in Fig. 16 is the best perfor-

mance that can be obtained with the local deterministic configuration without

any of the modifications being investigated in this study. Extensive experi-

mentation with the tuning of Po' Q' R, and A@ were required to achieve
performance this good. max

Figure 17 compares the performance of two deterministic controllers with

external rate-limiting. The dashed curve represents the local deterministic

controller with high Po and Q just discussed. The solid line represents a

global deterministic control]er with values of 100.0, 0.001, 1.0, and 0.1 for

Po' Q' R, and AOmax, respectively. R has been raised such that identification

is somewhat inhibited due to low Kalman gains. Thus, changes made in the T-

matrix are sma11. The difference in performance between these two controllers

is not a matter of local versus global model, but is a matter of differences

in tuning of Po' Q, R, and _0ma x. The intent of this and the next several

figures is to demonstrate the phenomenon of cancellation of inplane rotating

shears and the differences that exist between these two solutions due to the

differences in the magnitude of control inputs implemented.

Figure 18 compares the RTA vibration levels achieved by these two

controllers at rev 30 to the initia] values present with no higher harmonic

control. Both controllers have achieved substantial reductions in vibration.

The higher harmonic pitch amplitudes commanded at rev 30 by these two

controllers are shown in Fig. 19. Considering the substantial differences in

multicyclic pitch amplitudes required by these two controllers, the vibration

levels achieved in the RTA are surprisingly similar.

Figure 20 compares the 3 and 5 per rev rotating lateral shears, the 4 per

rev longitudinal and lateral fixed system hub shears, and the performance

index for these two controllers. The baseline values of these parameters

without higher harmonic control and those values achieved by the baseline

deterministic controller with internal rate-limiting (WA@) are also shown
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for reference. This figure is indicative of the phenomenom of cancellation

between 3 and 5 per rev control inputs and rotating shears as discussed

above.

The large 3 and 5 per rev inputs commanded by the global deterministic

controller having low Kalman gains have caused large increases in 3 and 5 per

rotating lateral shears. The increase in the 5 per rev rotating shear is

especially large at almost 14 times the baseline value. On the other hand,

the moderate 3 and 5 per rev inputs of the local deterministic controller

having high Kalman gains has actually reduced the 3 per rev rotating lateral

shear slightly. At the same time, it has increased the 5 per rev component by

almost 6 times the baseline value, but this is almost half the value resulting

from the global model. In comparison, the small control inputs commanded by

the baseline deterministic controller with internal rate-limiting (WA0)

have resulted in a significant decrease in the 3 per rev rotating shear and a

comparatively moderate increase in the 5 per rev rotating shear.

These significantly different sets of 3 and 5 per rev rotating shears

combine to form hub fixed system components that are fairly close in magni-

tude. The resulting 4 per rev fixed system longitudinal shears are almost

equal in magnitude while the resulting magnitudes of 4 per rev lateral shears

are fairly close considering the huge differences in the rotating shears.

With modal cancellation in the RTA, these fixed system shears, in turn, result

in similar vibration levels in the RTA as indicated by the performance indices

in Fig. 20 and the actual vibration at each sensor location in Fig. 18.

Some of the consequences of achieving reduced vibration in the RTA via

large control inputs and corresponding large rotating shears rather than small

inputs and small rotating shears is shown in Figs. 21 and 22. Figure 21 shows

3, 4, and 5 per rev harmonic components of the blade response of the first two

flatwise modes. As expected, the blade response resulting from the high

amplitude control inputs is substantially higher than the response resulting

from the moderate amplitude control inputs. As a consequence, the i/2 peak-

to-peak bending moments and stresses are significantly higher for the control

inputs of high amplitude (03 = 2.6 ° / 120_, 04 = 2.6° / 34°, 65 = 2.1 /24°), as

shown in Fig. 22. This is especially true of the edgewise stress and the

torsional moment. The effect of the high ampliutde control inputs on rotor

performance is summarized in Table 8.
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TABLE 8

EFFECT OF CONTROL INPUT AMPLITUDE ON ROTOR

PERFORMANCE AT BASELINE FLIGHT CONDITION

Moderate High

No HHC Amplitude (_0.8 deg) Amplitude (~2.5 deg)

Thrust 36735 36971 +0.6% 33638 I -0.8%

N (ib) (8255) (8308) (7559) J
Torque 25139 26488 +5.4% 31262 24.4

N-m (18542) (19537) (23058)
(ft-lb)

Prop. 4001 3974 -0.7% 3431 -14.2%

Force (899) (893) (771)
N (ib)

Equiv.

L/D 10.26 9.20 -10.3% 5.61 -45.3%

Just as for blade response and stresses, the detrimental effect of control

inputs of high amplitude on rotor performance is much more severe than that of

control inputs of low amplitude. However, note that the effect on rotor

thrust is still relatively small.

The above results clearly indicate that higher harmonic control inputs

can have detrimental effects on blade stresses and rotor performance.

Furthermore, these effects tend to become much more severe as the amplitudes

of the control inputs increase. As far as the controller is concerned, the

above two solutions are equally as good since the performance indices are

almost equal. It has no way of knowing that it is better to seek out solu-

tions that reduce vibration while degradating as little as possible other

performance criteria, such as blade stresses or rotor performance, that do not

appear in the performance index. As discussed above, it may be possible to

direct it to such solutions by including appropriate criteria in the perfor-

mance index in addition to vibration response. In so doing, it might even be

possible to achieve improvements in these other criteria. In lieu of that,

one might use the weighted term for control inputs in the performance index.

By adjusting We, a compromise can be reached in the desire to reduce vibra-

tion and the desire to keep the magnitude of control as small as possible.

Internal limiting of the total magnitude of control via Wo will be discussed

shortly. First, however, controller performance with internal rate-limiting

62



will be discussed and compared to the results just presented for external

rate-limiting.

Internal Rate-Limiting

As already mentioned, the use of internal rate-limiting dramatically

improves the stability and performance of the deterministic controller. This

is quite apparent when comparing the performance of the baseline deterministic

controller, which uses internal rate-limiting, to the results just presented

for the deterministic controller with external rate-limiting. Recall that

internal rate-limiting refers to the use of a quadratic term inyolving A0 in

th_--eperformance index which penalizes for large incremental changes in control

(Eq. (3)). Thus, the controller calculates a solution which takes into ....

account the desire to minimize vibration with relatively small changes in

control.

Figures 23 through 25 summarize the overall results for both the baseline

deterministic controller with internal rate-limiting and one of the best

deterministic controllers with external rate-limiting. The baseline determin-

istic controller has the configuration specified in Table 5, while the exter-

nally limited controller is the same as that used for Fig. 16. Thus, the

externally limited deterministic controller has the same configuration as the

baseline; except that WAe is set to zero (no internal rate-limiting), _gma x is

set to 0.2 degree per rev (external rate-limiting), Po, Q, and R have been

significantly retuned to optimize performance for this flight condition, and

the local system model is used. As discussed above, this externally rate-

limited deterministic controller is essentially the same as the RTSA control-

ler used in Ref. I0 and the results shown here are the best that could be

obtained with significant experimentation and tuning of P, Q, R, and AOma X.

Figure 23 clearly demonstrates the dramatic improvement in stability and

performance provided by internal rate-limiting. The internally limited

controller is completely stable with very little oscillation present in the

time histories at this flight condition. The externally rate-limited control-

ler is quite oscillatory and skittish. While stable at this flight condition,

this controller would tend to be unstable for sudden changes in flight condi-

tion due to the high values used for P and Q in the identification algorithm.

As for performance, the internally rate-limited controller significantly

improves controller performance according to every criteria dealing with

vibration reduction. First, the initial reduction in overall vibration

achieved in the first step of active control is significantly greater, even

though slightly smaller magnitudes of 3, 4, and 5 per control inputs were

used. Over 40 percent reduction in the performance index is achieved in the

first step of active control with cyclic pitch magnitudes between 0.13 and

0.18 degree for the internally rate-limited controller. Only a 16 percent
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reduction is achieved by the externally rate-limited controller with all three

control inputs at their limits of 0.2 degree for the first rev. Second, the

time to convergence is much shorter for the baseline internally rate-limited

controller. Convergence occurs at about rev 10 for this baseline controller

after being activated at rev 4. "Convergence" for the externally rate-limited
controller occurs at about rev 25. If the same relaxed criteria were used for

the baseline controller, convergence can be said to occur even more quickly at

rev 6 after only 2 revs of active control. Third, the internally rate-limited
controller achieves significantly greater overall reduction in vibration in

the RTA as can be seen in the performance index in Fig. 23 (97 percent reduc-
tion versus 85 percent) and the accelerations at each sensor location in

Fig. 24 (e.g., 95 percent reduction in Cross-Beam Longitudinal vs 73 percent).
Finally, these reductions in vibration are achieved with smaller control

inputs as can be seen in Fig. 25.

\ The main reason for the dramatically improved performance achieved by the

I internally rate-limited controller is that the minimum variance control algor-

_i ithm takes directly into account, via WA0 and the weighted quadratic AO

term in the performance index, the desire to implement relatively smallchanges in the control inputs when trying to minimize a certain state of

I ibratory response. Thus, the bias to achieve vibration reduction via large

I control inputs is immediately alleviated and the controller searches on the

very first step for a solution that minimizes both vibration and the change in

I control inputs Every step thereafter, the controller is directly trying to

ii compromise between vibration reduction and implementation of small changes in
!_ the control inputs\j

The difference in solutions for these two controllers is shown in Fig. 26

where the amplitude and phase of the 3, 4, and 5 per rev control inputs at rev

4 and rev 30 are presented graphically in polar plots. The solutions shown

for rev 30 in the bottom half of this figure correspond to those shown (in

terms of amplitude only) in Fig. 25. Note that the phase differences between

the 4 per rev inputs are not as large as they might appear at first glance,

since phase shifts involving integral multiples of 90 degrees for this 4-

bladed rotor result in identical 4 per rev inputs. For the externally limited

controller, all three inputs have been arbitrarily limited at rev 4 to 0.2

degree while maintaining the same phase calculated by the minimum variance

control algorithm. As can be seen by the long dashed vectors, which are not

drawn to scale, the minimum variance control algorithm calculated very large

magnitudes for these vectors based on the initial T-matrix and measured

vibratory response supplied.

This is an inherent problem with the externally limited controller. That

is, external limiting is not taken into account when calculating the solution
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needed to minimize vibration. Rather, the solution is calculated using an

unconstrained optimization algorithm under the assumption that any set of

control inputs is acceptable. Then, after the fact, arbitrary limits are

applied to the calculated optimum solution. Even if the T-matrix relationship

is accurately identified and applicable not only in the region of the current

control point but also in the region of the newly calculated control point,

this arbitrary limiting can cause problems. By limiting each control input

separately, the "mix" of 3, 4, and 5 per rev inputs can be changed. Although

the phase of the calculated change in components is maintained, the

proportionality in amplitudes is not. It is very possible that the large

calculated change in one input (e.g., 3/rev) is highly limited while the small

change calculated in another input does not exceed the limits being applied

and is implemented as calculated. Clearly, such a situation can result in a

change in the mixture of control inputs, both amplitude and phase. Such a

change could cause less vibration reduction to be achieved or even an increase

in vibration if the system is fairly nonlinear and very sensitive to the

mixture of 3, 4, and 5 per rev control inputs.

In contrast, the baseline deterministic controller takes directly into

account the desire to minimize changes in control inputs. As a result, the

minimum variance control algorithm calculates a completely different solution

at rev 4 from that calculated by the externally limited controller as can be

seen in Fig. 26. While the magnitudes of the control inputs are about the

same, the phases are completely different. Presumably, these phases are the

optimum phases for minimizing vibration with inputs of this order of magni-

tude, if the initial T-matrix is accurate. Consequently, this internally

limited controller achieves a much greater reduction in the performance index

with this first step of active control, even though its inputs are somewhat

smaller than those commanded by the externally limited controller. By rev 30,

completely different solutions have been reached by the two controllers,

although both have been very successful in reducing overall vibration in the

RTA.

As just shown, the use of internal rate-limiting dramatically improves

controller performance by taking into account the desire to achieve additional

vibration reduction each rev with as small a change in control inputs as

possible. The tradeoff in minimizing vibration and restricting the rate of

change in c_ntrol--is represented by the diagon-al Weighting matrix WAe. As

explained-in- the discussion of controller configurations, thif_m-atrix takes

into account differences in dimensions, magnitudes, and relative importance of........ o ......

minimizing change in each control input relative to minimizing vibration.

Figure-27 Shows the effect of this parameter on controller performance at the

baseline high speed flight condition. In this figure, the time history of 3

per rev cyclic pitch amplitude and the performance index are shown for the
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baseline deterministic controller having various values of WA6. Through-

out the current investigation, each control input has been weighted equally.

Thus, the values shown for WA6 were applied equally to all three control
inputs.

As can be seen in Fig. 27, the weighting placed on A6 in the performance

index, WA6 , has a significant impact on controller performance. In fact,

the value used for WA6 affects all the important characteristics of

controller performance: stability, time to convergence, vibration reduction,

and fina] control solution reached at convergence. For very small values of

W&6 , the controller performance is very similar to the unlimited and

lightly limited deterministic controller performances shown in Figs. 12

through 15. However, one important difference is readily apparent in Fig. 27.

Even the very oscillatory controller with weighting of 1.0 for WA0 is

close to convergence by rev 30. While not shown since the magnitude of

control inputs implemented are completely off the scale after the very first

rev of active control, the 3 per rev control input has converged at a value of

3.76 degrees by rev 25. Thus, even minimal internal rate-limiting allows the

controller to converge, although a control solution with very large values of

3, 4, and 5 per rev inputs is reached. Recall that the controllers with

relaxed external limits never did converge. The capability for controllers

with only small internal rate-limiting to converge when controllers with more

restrictive external limits could not is most likely due to the phenomenon of

arbitrary external limits changing the mix of total control inputs imple-
mented, as discussed above.

At the other extreme, very high values for WA6 cause slow, although

smooth, convergence to a reduced vibration level. The convergence of the

controller with the highest value of WA_ shown in Fig. 27 is so slow as to
make the controller almost ineffective.

In between these two extremes, moderate values for WA9 result in very

effective controllers. The baseline deterministic controller having a value

of 1000.0 for WA0 can be seen to have the best overall performance of

those shown in Fig. 27 for the baseline flight condition. The optimum value

for WA6 depends upon flight condition since the rate-limiting achieved by

a given value for WA6 depends upon the level of vibration present. While

this could prove to be somewhat of a problem, the results in Fig. 27 indicate

that the controller is fairly insensitive to the exact value of W&6. In

fact, a wide range of values of 2 to 3 decades for WA6 results in very

effective controllers at the baseline flight condition. Furthermore, the

baseline deterministic controller has proven to be very effective at many

different flight conditions considered in this study without any adjustment of

WA6 , as will be discussed later.
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The effectiveness of the baseline deterministic controller in reducing

vibration with various values for WAe is shown in Fig. 28 where the

acceleration at rev 30 is shown for each of the RTA sensor locations. All but

the highest value of WAe have resulted in essentially the same vibration

levels. Even the lowest value for WAS has resulted in substantial reduc-

tions in vibration after initially oscillatory behavior.

The effect of WAS on the final control solution is shown in Fig. 29.

As expected, the magnitudes of the control inputs at rev 30 generally decrease

as WAS increases. These completely different solutions all result in very
similar reduction in vibration in the RTA. Thus, by taking into account the

desire to minimize incremental change in control amplitudes, the controller

calculates a properly phased mix of control inputs that reduce vibration.

The effect of these control inputs on maximum peak-to-peak stresses is

shown in Fig. 30. This figure shows the maximum i/2 peak-to-peak flatwise and

edgewise bending stresses and torsional moment. As discussed before, the

general trend is to higher stresses as the magnitudes of the multicyclic

inputs increase, which corresponds to a decrease in WAe. All except the

most lightly weighted controller have about the same effect on rotor perfor-

mance at the baseline flight condition as that presented in Table 7 for the

baseline deterministic controller. The very large control inputs commanded by

the lightly weighted controller cause severe degradation of rotor performance,

as is expected.

One final observation should be made about the behavior demonstrated by

the deterministic controller with internal rate-limiting. As can be seen in

Fig. 27, all the effective controllers have a tendency to command very slight

changes in control in an attempt to achieve further reduction in vibration

even after convergence has been reached at a fairly steady level of vibration

in the RTA. In terms of 3 per rev cyclic pitch shown in Fig. 27, this takes

the form of a very slight but steady increase in amplitude. The source of

this drift may be any number of things. It may be indicative of the tendency

exhibited by the externally rate-limited controller to try to further reduce

vibration with large control inputs that effectively cancel to achieve about

the same low vibratory response in the RTA. Such a tendency is fought by the

internal rate-limiting, which becomes more restrictive as vibration is reduced

since the same WAe gives relatively more importance to rate-limiting than

for reducing vibration. This tendency to drif_ may also be an effort to

better identify the T-matrix. Since convergence in the performance index is

reached so quickly and with such small control inputs, little change in the T-

matrix has been obtained by convergence. Errors in the T-matrix may cause the

controller to hunt, while at the same time, the increased importance of

wAe inhibits this tendency. As will be pointed out later, raising Po
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allows the identifier to be more sensitive to errors in the T-matrix and does

eliminate this slight tendency to drift.

Whatever the cause, the changes can be seen to be very slight even with

the large scale used in Fig. 27. However, if the tendency to drift to higher

amplitudes of control were significant or bothersome at other flight condi-
tions, it can be alleviated by implementing a small or moderate internal

weighting on the total magnitude of control inputs via W0. If the tendency

to drift is due to a tendency to achieve vibration reduction by cancellation

between proper mixes of large inputs, internally weighting only one input

(e.g., 5 per rev control) may a11eviate the drifting. As will be discussed in

the next two sections, both methods do eliminate this tendency to drift at

this flight condition. Use of We to internally limit total magnitude of
control is discussed in the next section.

Internal Limiting of Total Control Magnitude

Internal limiting of the tota] magnitude of control inputs also dramati-

cally improves the stability and performance of the deterministic controller

in much the same manner as internal rate-limiting. Internal limiting of total

cont_____rol.....inputs is achieved via a quadratic weighted term in the performance

i___nd_exinvolving W_0 and 0. This term penalizes for large amplitudes of

multicyclic pitch. Thus, the controller calculates a control so]ution which

tries to minimize both vibration and the total magnitude of control inputs.

The apparent bias to calculate large control inputs to achieve vibration
reduction is removed.

The effect of We on overa]l controller performance is shown in Figs. 31

through 33. Figure 31 shows the time history of the performance index and 3

per rev cyclic pitch amplitude for various values of W e . The vibratory

response in the RTA and the multicyclic control amplitudes commanded at rev 30

are shown for these values of W6 in Figs. 32 and 33, respectively. The

results presented in these figures represent the response of a deterministic

controller with no rate-limiting at the baseline flight condition. The

controller is based on the global system model, and the tuning of P, Q, and R

is the same as that for the baseline deterministic controller with internal

rate-limiting. The indicated values of Wo are used by the controller to

equally weight both the cosine and sine components of all three multicyclic
control inputs.

Figure 31 shows that controller performance is oscillatory and that the

controller is still somewhat biased to large control inputs when We is

small. This is to be expected since no other limiting is present except that

resulting from the internal limiting of total control magnitudes. Thus, as
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W8 goes to 0, the configuration of the contro]ler approaches that of the

unlimited global deterministic controller represented in Fig. 12. Clearly,

even the smallest value of We shown in Fig. 31 substantially improves

controller performance relative to that of the original deterministic control-

ler with no limiting or with external rate-limiting. Even this light internal

weighting of control magnitude allows the controller to remain stable, to

quickly reduce vibration, and to converge to a steady level of reduced vibra-

tion.

As the value of We is increased, the bias to implement larger control

inputsis completely removed, and convergence to a final solution is very
rapid and smooth. Figure 33 shows that, in general, the magnitudes of the

fin_l control--inputs decrease as We increases. However, as We is

increased, the controller does not simply calculate new control solutions

having smaller amplitudes, but the same phases. Rather, the controller calcu-

lates a completely different set of control inputs based on the need to

minimize both vibration and the weighted control magnitudes. Both the

magnitude and phase of the control inputs are changed in an attempt to reduce
vibration as much as possible without paying an excess penalty in the form of

larger weighted control amplitudes. This can be seen clearly in Fig. 34,

which shows the magnitude and phase of both the initial and final control

inputs for two different values of We. Thus, for small to moderate values

of We, the controller is still able to achieve about the same reduction in

overall vibration with smaller but properly phased control inputs, as can be

seen by the final performance index in Fig. 31 and the final vibratory

response in the RTA in Fig. 32. However, these two figures also show that, at

some point, the value of We becomes large enough that the desire to hold

down the magnitude of control inputs becomes more important than minimizing

vibration, and the controller becomes less effective at reducing vibration.

For the highest value of We shown, the controller simply cannot command

large enough amplitudes for 3, 4, and 5 per rev cyclic pitch to be able to
reduce overall vibration to the same level as that of the other controllers.

The exact effect of particular values of We is depehdent upon the flight

condition and the corresponding level of vibration present. Just as for

internal rate-limiting via WAe , the relative importance of maintaining

small control inputs for a given value of We increases somewhat as vibration
is reduced.

Figure 35 once again points out the general trend between vibratory blade

stresses and the size of multicyclic pitch inputs. This figure shows that the

maximum I/2 peak-to-peak blade bending stresses and torsional moment generally

increase with increase in control amplitude. Torsional moment is by far the

most sensitive to changes in amplitude. The same can be said for the detri-

mental effect on rotor performance. As the multicyclic pitch amplitudes
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increase, rotor drag tends to increase with an accompanying increase in

required torque. Thus, as mentioned previously, it is desirable to reduce

vibration with control inputs that are as small as possible, although it may

be possible to reduce vibration, blade stresses, and detrimental effects in

rotor performance by properly phased multicyclic control inputs obtained with

appropriate additional terms in the performance index.

The overall performance of the deterministic controller with internal

limiting of total control magnitude is compared to that of the deterministic

controller with internal rate-limiting and with external rate-limiting in

Fig. 36. The performances shown are the best achieved with the particular

controller configuration represented. Clearly, the two deterministic

controllers with internal limiting of control inputs, either incremental

changes or total magnitudes, substantially improve the performance of the

original deterministic controller with external rate-limiting. Both inter-

nally limited controllers converge quickly and smoothly to virtually identical

vibration levels at each sensor location in the RTA, even though quite differ-

ent control solutions have been reached. While Fig. 36 shows that the final 3

per rev cyclic pitch control inputs are about the same magnitude for these two

controllers, significant differences in phase exist between the two solutions

for all three higher harmonic inputs, and a relatively large difference in 5

per rev magnitude also exists. Table 9 presents the amplitudes and phases of

the final control solutions (rev 30) calculated by these three controllers.

Note that the phases shown in this table have been transformed such that

0 ! /e3 ! 120", 0 ! /e_ ! 90°, and 0 ! /65! 72°"

TABLE 9

FINAL CONTROL SOLUTIONS FOR DETERMINISTIC CONTROLLER WITH

EXTERNAL OR INTERNAL LIMITING PLACED ON CONTROL INPUTS

AT BASELINE FLIGHT CONDITION

Limiting 03 04 05

A0max = 0.2 deg/rev 0.58°/20 _ 0.48°/60 ° 0.73°/41 °

WAB = 1000 (1/rad) 2 0.28"/37" 0.26°/74" 0.31"/41"

WO = 10 (l/tad) 2 0.24°/15 ° 0.27"/41 ° 0.52°/27 °
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Aside from the different solutions being achieved at convergence, there

are several rather subtle differences between the performance of the determin-

istic controller with internal limiting on total control magnitudes (W0) and

the performance with internal rate-limiting (WAe). Thelimiting of ___t°tal

O does not restrict the incremental changes in control between updates. Thus,

relatively large-changes_in control inputs can occur between updates _ven

though relatively small overall magnitudes are being maintained. For

instance, on two consecutive revs, the 3 per rev cyclic pitch may be of about

the same moderate magnitude but of completely different phase. Thus, the

difference vector representing the incremental change between updates would be

fairly large. As demonstrated in the first few revs of active control in

Fig. 36, these fairly large changes cause somewhat more oscillatory behavior

initially in both control inputs and vibration performance index than exhi-

bited by the controller with internal rate-limiting on incremental changes.

As convergence is approached, these relatively large changes cease and conver-

gence occurs quickly.

The effect of WAe and W0 on rate of convergence and controller

effectiveness at convergence is also siightly different. The value of WA0

significantly affects rate of convergence as can be seen in Fig. 27. _As

WAe increases, smaller incremental changes in control are allowed and the\

t_e required to reach a certain level of control increases. Thus, reductions

in vibration tend to take longer to achieve. However, the effectiveness in

reducing vibration at "convergence" is relatively unaffected. Even the

largest value of WA6 shown in Fig. 27 appears to be approaching, although

very slowly, a control solution that achieves the same level of vibration

reduction as the other more effective controllers shown in this figure. In

contrast, the value of W 6 has very little effect on rate of convergence if

it is Sufficiently large enough to prevent undue oscillatory behavior. As

Wo increases in Fig. 31, c0nvergence to a smaller level of control is

quickly achieved. In the limit as the value of W e goes t0 infinity, the

controller would achieve convergence instantaneously but with no change in

control and no reduction in vibration. Clearly, the effectiveness in reducing

vibration at convergence is affected significantly by the value of We .

For values of W e greater than a certain magnitude, the controller can

no longer command large enough signals to achieve as large a reduction in

vibration. While internal rate-limiting slows down the rate that inputs can

be implemented-according to the magnitude of WA6, it does not limit the

total magnitude of control that can be commanded. It may take awhile, but any

leaf--of higher-harmonic contr01 inputs required to minimize the performance

index can be reached. Thus, as already observed, the controller with internal

rate-limiting tends to slowly implement small changes in control in an attempt
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to further reduce vibration. In contrast, the controllers with total weight-

ing converge quickly-to an allowable level of control and exhibit no tendency
to drift,--ascan be seen in Fig. 31. This level of control represents the

tradeoff between vibration reduction and minimum control inputs. While

further reduction in vibration may be possible with only slight increases in

control magnitude, such an increase would result in a higher value of the

performance index due to the increased penalty term involving e and We.

Note that the performance index referred to here is the complete performance

index shown in Eq. (3) including penalty terms on 6 and Ae, and not just the
vibration performance index as plotted in Fig. 31.

Due to these subtle differences in the effect of WAe and We on
controller performance, the deterministic controller tends to be a bit more

sensitive to values of We than WAO. This is due to the fact that values

of a given magnitude for W6 begin to compromise overall effectiveness in

reducing vibration at convergence, whereas comparable values for WAe may

start to slow convergence somewhat, but not enough to significantly compromise

overall performance. Nonetheless, a fairly wide range of We results in very
effective controller performance.

Effect of Control Input Mix

The results presented to this point for the deterministic controller with

internal limiting of total flhave all been for equal weighting on each of the

three multicyclic control inputs. It is also possible to operate the

controller with each of the control inputs weighted differently. This proved

to be useful in this analytical study for exploring certain aspects of
controller performance.

For instance, it was shown above that very effective vibration reduction

in the RTA can be achieved by either a set of small or a set of large control

inputs of appropriate phase. In Fig. 20, it was shown that the large contro!

inputs caused large inplane rotating shears, as indicated by the 3 and 5 per

rev lateral shears, and that small control inputs caused relatively small

inplane rotating shears. When combining to form the 4 per rev fixed system

hub loads, the 3 and 5 per rev lateral and longitudinal rotating shears tended

to vectorially cancel, if properly phased, to give about the same magnitude of

fixed system longitudinal and lateral hub shears and about the same vibration

state in the RTA. It has been hypothesized that the unsatisfactory behavior
of the original deterministic controller configuration with external rate-

limiting is due to the tendency for large control inputs to effectively cancel

and to the apparent bias with the initial T-matrix supplied for reducing

vibration via a set of large control inputs. Due to the phenomenon just
described, it was felt that 3 and 5 per rev control might be the drivers
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involved, since both directly affect 3 and 5 per rev rotating shears. If this

is the case, then the performance of the original deterministic controller

configuration should be improved by inhibiting or eliminating either 3 or 5

per rev control so that they do not tend to fight each other.

To check this hypothesis, the deterministic controller was run at the

baseline flight condition with no limiting other than internal limiting of the

total magnitude of either 3 or 5 per rev control. This can be accomplished by

placing finite values along the diagonal of matrix W0 corresponding to

either 03 or 05, and zeros elsewhere. Moderate values would inhibit control

and very large values would essentially eliminate the weighted control
inputs.

It has been found that inhibiting or eliminating either 3 or 5 per rev

control does indeed improve the performance of the original deterministic

controller. This is demonstrated in Fig. 37 where the time histories of the

vibration performance index and 3 per rev cyclic control are presented for

three different controllers in which 5 per rev control is essentially elimi-

nated by a very large value of W05 (1 x 10S). The solid curve represents a

controller with no rate-limiting of any kind. Thus, the performance of this

controller can be compared directly to the performance shown in Fig. 12 for

the unlimited global deterministic controller. The only difference between

these two controllers is that 5 per rev control has been eliminated from the

controller represented in Fig. 37. Otherwise, they are both unlimited and

have the same tuning.

Clearly, elimination of 5 per rev control has substantially improved

performance. While the controller with no 5 per rev control exhibits fairly

oscillatory behavior, it remains stable and finally begins to converge after

15 to 20 revs of active control. Furthermore, at convergence, vibration in

the RTA and, thus, the vibration performance index have been reduced almost as

effectively as with the baseline deterministic controller having 3, 4 and 5

per rev control and internal rate-limiting. These reductions in vibration are

achieved with reasonable magnitudes of 3 and 4 per rev control on the order of

1.0 degree or less. In contrast, the unlimited controller using all three

control inputs shown in Fig. 12 is completely unstable and commands ever

increasing magnitudes of control. Thus, elimination of 5 per rev control has,

in fact, eliminated the tendency at this flight condition to calculate solu-

tions with very high magnitudes of control.

Although the unlimited controller shown in Fig. 37 remains stable and

converges to a very satisfactory final solution, the oscillatory behavior

indicates the need for rate-limiting to improve overall performance. Also

shown in Fig. 37 are two controllers having no 5 per rev control but using
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rate-limiting. This figure shows that either external (Aemax = 0.2 deg/rev)
or internal (WAe = 1000 (I/rad)2) rate-limiting significantly improves

performance by greatly reducing the oscillatory behavior of the unlimited

controller. In so doing, rate-limiting allows the controller to converge more

quickly (even though control inputs are implemented more slowly) and to

achieve a slightly better level of overall vibration in the RTA with signifi-
cantly smaller 3 and 4 per rev control inputs.

While both internal and external rate-limiting significantly improve

performance, it is important to point out some differences between these two

methods of rate-llmiting. While removing the tendency to calculate very large

control inputs has allowed the externally rate-limited controller to provide

excellent performance, internal rate-limiting still provides somewhat better

performance than external rate-limiting. Convergence is achieved more quickly
and smoothly with internal rate-limiting. This is most likely due to the

change in control "mix" that occurs with external limiting when arbitrarily

limiting control inputs as separate quantities outside the minimum variance

control algorithm. Taking into account the desire to implement small control

changes within the minimum variance control algorithm inherently provides

better performance than external limiting. This is true even for this moder-

ate flight condition and this better behaved control configuration having only

3 and 4 per rev control. As previously shown, internal rate-limiting starts

exhibiting significant improvements in performance over external rate-limiting
when the situation is not so well behaved. Regardless of the cause of the

difficulties encountered when all three control inputs are used, internal

rate-limiting provides excellent performance, and the performance achieved

with external rate-limiting is unsatisfactory. Internal rate-limiting should

a_so provide significantly better performance at more severe flight conditions

where increased nonlinearities or extreme sensitivity to the "mix" of 3, 4,
and 5 per rev control exist.

One final point should be made in regard to Fig. 37. Note that neither

rate-limited controller has any tendency to drift after convergence is

achieved. That is, elimination of 5 per rev control has inhibited the

tendency, which is exhibited by the baseline controllers in Figs. 8(a) and

8(b), to continue to trade off changes in control inputs in an attempt to

further reduce vibration after convergence has already been achieved in the
performance index.

As mentioned above, elimination of 3 per rev control also improves

controller performance significantly by presumably eliminating the coupling

between 3 and 5 per rev control and the tendency to calculate high magnitude

control inputs. In fact, eliminating 3 per rev control resulted in less

oscillatory behavior without any other limiting than did the elimination of 5
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per rev control. It also should be noted that 3 or 5 per rev control need not

be entirely eliminated to achieve the same improvements in controller perfor-

mance. Simply weighting either 3 or 5 per rev control inputs with a moderate

value of W0 eliminates the tendency at this flight condition to calculate

solutions with large control inputs. These results indicate that coupling

between 3 and 5 per rev inputs is indeed a source of the unsatisfactory

behavior exhibited by the original deterministic controller configuration with

external rate-limiting. However, elimination of 4 per rev control also

improves controller stability and performance. This tends to indicate that

the coupling effect between 3 and 5 per rev control mentioned above is not the

only coupling phenomenon. In fact, since elimination of 3 or 4 per rev

control results in a less oscillatory behavior than elimination of 5 per rev

control, a coupling between 3 and 4 per rev control may be more important than

that discussed above.

Therefore, it is still not clear as to the exact driver of the tendency

to alleviate vibration with appropriately phased control inputs of large

magnitude when 3, 4, and 5 per rev control are all implemented. However, at

this flight condition, elimination of any one of the control inputs essen-

tially "decouples" the system and eliminates this tendency. As a result,

controller stability is improved such that rate-limiting is no longer required

at this flight condition, although rate-limiting can still improve overall

controller performance significantly. At more severe flight conditions, rate-

limiting will most likely be required for stability as well.

Results obtained by eliminating or inhibiting various control inputs

points out another very important aspect of controller performance. As

mentioned previously, many significantly different control solutions can

result in very effective vibration reduction in the RTA. This is shown in

Figs. 38 through 40. Figure 38 shows the final control solutions occurring at

rev 30 for several different controllers operating at the baseline high speed

flight condition. Each solution is shown as a polar plot of the amplitude and

phase of the 3, 4, and 5 per rev control inputs commanded. Figures 38(a)

through (c) represent the solutions for deterministic controllers in which

internal limiting on total 0 has been used to separately eliminate 3, 4, and 5

per rev control, respectively. Figure 38(d) represents the control solution

for the baseline deterministic controller having 3, 4, and 5 per rev control

and internal rate-limiting. Figure 38(e) represents the control solution for

a deterministic controller with 3, 4, and 5 per rev control and very light

internal rate-limiting. Figure 38(f) is the only figure that does not

represent the control solution for only one controller. Rather, Fig. 38(f)

represents the final solution for three deterministic controllers in which
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internal limiting on total 0 has been used to eliminate all but one of the

multicyclic contro] inputs.

Clearly, al] the solutions shown in Fig. 38 represent a completely

different "mix" of amplitude and phase of 3, 4, and 5 per rev control inputs.

Each solution either has one or two control inputs eliminated and/or exhibits

significantly different amplitudes and phases than that of the baseline

controller shown in Fig. 38(d). It is interesting to note that elimination of

one or two of the three standard control inputs generally results in slightly

larger magnitudes required for the remaining control input(s) in order to

achieve the same vibration reduction. Despite the significant differences in

the control solutions, each of these controllers has been very effective at

reducing overall vibration in the RTA, as indicated by at least a 95 percent

reduction in the vibration performance index. The resulting vibration at each

of the sensor locations for these solutions is shown in Figs. 39 and 40.

Figure 39 shows the vibration response for the control solutions shown in

Figs. 38(a) through (d), and Fig. 40 shows the response for control solutions

shown in Figs. 38(d) through (f). The baseline RTA vibration levels without

higher harmonic control are shown in both figures for reference as is the

response of the baseline controller having the solution shown in Fig. 38(d).

Figures 39 and 40 show that essentially the same vibration levels at each

location in the RTA have been achieved by these completely different solu-

tions. While minor differences do exist at each individual sensor location,

these differences are for the most part insignificant, especially in light of

the completely different solutions that cause them. Furthermore, once the sum

of the squares of the magnitude of vibration at each location is calculated to

form the vibration performance index, little difference exists. However,

differences do exist in the I/2 peak-to-peak blade moments and stresses and in

rotor performance, although not shown here. Certain of these solutions result

in significantly reduced stresses and/or detrimental effect on rotor perfor-

mance when compared to the baseline solution, while others result in a larger

degradation in blade stresses and/or performance. While no general trends or

conclusions, other than the genera] correlation between large control inputs

and large detrimental effects on blade stresses and/or rotor performance, can

be drawn from these results, they do highlight two important aspects of

controller performance that should be explored.

First, the controller does not care what set of control inputs are

achieved at convergence as long as the performance index is being minimized.

If other criteria are of concern (e.g., blade stresses or required rotor

torque) and it is desirable to try to meet these criteria or at least not

compromise them too severely, the controller must be guided to more acceptable

solutions. The only way of doing this with the particular unconstrained
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minimization algorithm being used is to place an appropriately weighted term

in the performance index that penalizes for violating or not meeting the

corresponding criterion. In the results just presented, weighting matrices

WB and WA0 have been used to guide the solution in one way. For

instance, it has been clearly shown that WB can be used to guide the

controller to a solution that maintains all inputs at reduced levels or that

inhibits or eliminates one particular input. Since there is the general

correlation between large control inputs and large stresses, the weighted e

term in the performance index can be looked upon as a penalty on high stress

solutions. Clearly, any additional term in the performance index raises the

possibility of compromising reduction in the original parameters of interest

(e.g., vibration) for better satisfaction of the associated criterion. This

was shown in Figs. 31 through 33 for sufficiently high W0. However, the

results just presented, demonstrate the effectiveness of the controller in

reducing vibration in the RTA with significantly different control solutions.

This capability to reduce vibration with different control "mixes" highlights

the possibility that better control solutions may be achieved in terms of

blade stresses and/or rotor performance without unduly compromising vibration

reduction.

Effect of Kalman Filter Covariances

Tuning of the initial values of the Kalman filter covariances (P, Q, and

R) can have a significant effect on controller performance depending upon the

controller configuration and the flight condition. As discussed previously,

the performance of the deterministic controller with external rate-limiting

can be changed significantly by tuning of Po, Q, and R. In contrast, the

baseline deterministic controller with internal rate-limiting is fairly insen-

sitive to tuning of these covariances. In fact, excellent controller perfor-

mance is maintained for Po in the range of 1.0 to I0000, R in the range of

0.001 to 1.0, and Q in the range of 0.001 to I0.0.

If Po, Q, and R are adjusted in order to essentially eliminate identi-

fication due to extremely low Kalman gains, the deterministic controller with

internal rate-limiting exhibits excellent performance that is very similar to
that of the baseline controller with identification, as can be seen in Fig.

41. This is due the flight condition being fairly linear, especially at small

magnitudes of control. Since internal rate-limiting allows the controller to

converge to a solution having very small multicyclic control inputs, the

linear T-matrix relationship between vibration measurements and control inputs

is still applicable. Thus, lack of identification and non-optimal tuning of

Po, Q, and R have only a minor effect on controller performance at this
flight condition. This is not true at more nonlinear flight conditions or in

maneuvers changing from one flight condition to another.
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It is also not true at this flight condition if the tendency to calculate

large control inputs is not eliminated (e.g. by internal rate-limiting or

internal limiting of total e), and the controller allows these high amplitude

solutions to be achieved, where the T-matrix is no longer valid. This is the

case, for example, when WAe is small or external rate-limiting is used. In

such a case, identification and optimal tuning of identifier covariances

become important. This can be seen in Fig. 42 which shows the performance of

both a local and global deterministic controller with external rate-limiting

(Aema x = 0.2 deg/rev) when identification is inhibited at the baseline flight

condition. Without identification both controllers exhibit extremely poor

performance. The local model is unstable. Compare this to the performance

shown in Fig. 16 for a local model having the same external limiting, but high
Kalman gains that result in a very sensitive identifier. The global model

with inhibited identification is stable, since it bases calculations on the
identified Zo vector as well as an identified T-matrix. Without

identification, T and Zo do not change, and the global controller always
calculates the same solution. The controller proceeds to this solution as

quickly as the rate-limiting allows. Figure 42 clearly shows that this

particular large magnitude solution when reached does not result in any

reduction in the performance index. If these controllers were not biased to

high magnitude solutions, they would most likely be relatively insensitive to
non-optimal tuning of the identifier as well.

Local System Model

Unless otherwise stated, all the results presented above for the deter-

ministic controller are for the global system model. These results and the

accompanying discussion are generally applicable to the local system model as

well. It has been found in this investigation that the performance of the

deterministic controller at steady flight conditions is very similar for both

system models when the same overall configuration is used (e.g., internal

limiting) and similar tuning of internal parameters is specified (e.g.,
ASmax' WAS' Po' Q, R).

Figures 43 through 45 compare the overall results at the baseline flight

condition for a local deterministic controller with internal rate-limiting to
those for the baseline deterministic controller specified in Table 5. The

overall configurations are the same; however, tuning of Po and Q are

somewhat different. For the local model, Po and Q are 1000.0 (g's/rad) 2 and
100.0 (g's/rad) 2, respectively. Covariance R is the same as that shown in

Table 5 for the global model. Figure 43 compares the time histories of the

performance index and 3 per rev cyclic pitch. Clearly, the performance of

both models in terms of minimizing the performance index is virtually
identical. The time histories of 3 per rev cyclic pitch show some minor
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differences. This particular local controller holds steady control inputs

after convergence in the performance index is achieved. The global model

shown tends to try to reduce vibration further by making small changes in

control inputs. As discussed previously, the small changes in all three

control inputs tend to cancel so that about the same RTA vibrations and

performance index are maintained. This tendency to "drift" and the

differences in the time histories of 3 per rev cyclic pitch are greatly

exaggerated in this figure due to the enlarged scale.

Figures 44 and 45 show the very similar control solutions and RTA vibra-

tion response achieved by both controllers at rev 30. Actually, the very

minor differences shown in Figs. 43 through 45 are not due to the difference

between local and global system models, but to differences in tuning of Po,

Q, and R. The local controller shown has high values for Po and Q so that

the identifier is very sensitive to errors in the T-matrix. When similar

tuning is specified for the global model, the 3 per rev cyclic pitch time

history is virtually identical to that shown for the local model. This is the

type of minor differences caused by different tuning of identifier covariances
that were discussed above for the deterministic controller with internal rate-

limiting at the baseline flight condition.

The similarity in performance for both the local and global system models

is seen in t'_--heresults for all three controller types and all steady flight _-

conditions investigated. Thus, there will not be a great deal of emphasis

placed on the results for the local model. As in the discussion here for the

deterministic controller, the results for the local model will only be covered

when appropriate.

Deterministic Controller Summary (Baseline Flight Condition)

In summary, all the results at the baseline flight condition demonstrate

that the baseline deterministic controller is very effective in reducing

vibration when an appropriate configuration is defined. With either internal

rate-limiting and/or internal limiting of total magnitude, the deterministic

controller with appropriate tuning of internal parameters exhibits excellent

stability and performance. Convergence to a solution with significantly

reduced vibration in the RTA is achieved quickly and smoothly. The reduced

vibration in the RTA can be achieved with quite small control inputs.

It has been found that controller performance with internal limiting on

either A6 or 0 significantly improves performance over that of the original

deterministic configuration, which used external limiting. While A0max, Po'
Q, and R could be defined for this particular flight condition to make the
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original controller fairly effective in reducing vibration, performance of the

original configuration is unsatisfactory when compared to the performance of

the deterministic with the modification of internal limiting. Furthermore,

performance with the original configuration is very sensitive to tuning of
internal parameters (Aemax, We , Po' 0, and R).

Finally, higher harmonic control tends to have a detrimental effect on

rotor blade stresses and rotor performance. However, these detrimental

effects are generally correlated to the magnitude of the multicyclic pitch

amplitudes and can be reduced by achieving vibration alleviation with the

smallest control inputs possible. Use of internal limiting has shown to be

very effective in doing this. Furthermore, it has been shown that essentially

the same vibration reduction can be achieved with a multitude of significantly

different control solutions having various effects on stresses and rotor

performance. These results indicate that it may be possible to guide the

controller to better solutions that effectively reduce vibration, but have a

minimal detrimental effect on other criteria by adding appropriate terms to

the performance index. These last remarks pertain also to the cautious and
dual controllers which will be discussed next.

Cautious Controller

In Figs. 8 through 10 and the accompanying discussion, it was demon-

strated that the baseline cautious controller has very similar performance

characteristics at the baseline flight condition as the baseline deterministic

controller with internal rate-limiting. Thus, the addition of the stochastic

) term to the performance index in Eqs (11) and -(16), Which converts the deter-

mlnlstic controller to a cautious controller, dramatically improves controi-leer

performance over that of the original deterministic configuration in much the

, same manner as the addition of internal rate-limitlng and/or internal limiting

_ of total magnitude in the deterministic controller. This is as expected

! l since, as discussed in relation to Eqs (II) through (21) the cautious term

• Ii" / for the local model has a form similar to that of the weighted Ae term that

'_ provides internal rate-limiting. Fo E the global model, the cautious term has

i _ a form similar to the weighted e term that provides internal limiting on total
_control magnitude.

Thus, these stochastic terms of caution are expected to effectively pro-

vide additional internal rate-limiting and total 8 limiting in the local and

global models, respectively. However, since these terms are proportional to

the varying covariance matrix of the estimated T-matrix rather than the con-

stant diagonal matrices used for WAS or We, the weighting placed on A8 or 8 is

dependent upon the uncertainty in identified system parameters, and some
differences in performance are expected.
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Effect of Stochastic Control Constant (%)

Recall that the stochastic cautious term for both system models is

proportional to % • Pi " _Wz'_" As discussed previously, Pi for the local

model is the covariance of t_e estimated T-matrix. For the global model, Pi

is defined as in Eq. (17) and includes the covariances and cross-covariances

for the estimated T-matrix and Zo. Thus, in either model, Pi is a matrix

of statistical parameters that indicates the relative uncertainty in the esti-

mated parameters being identified by the Kalman filter algorithm. The

stochastic control constant % is an arbitrary constant used to give some

flexibility to modify the cautious control algorithm if desired.

For a given controller with a particular initial covariance matrix Po

and constant vibration weighting matrix Wz, the stochastic control constant

is indicative of the amount of "caution" introduced by the cautious

controller. Figure 46 shows the effect of % on the performance of the

cautious controller at the baseline high speed flight condition. In this

figure, the time histories of the vibration performance index and 3 per rev

cyclic pitch are shown for the baseline cautious controller with several

different values of %. Recall that the baseline cautious controller is based

on the global model.

Clearly, % has a significant effect on controller performance. As X goes

to zero, the cautious controller becomes very oscillatory and unstable with

performance similar to that of the unlimited or lightly limited deterministic

controller, as is expected since the cautious control algorithms degenerate to

those of a deterministic controller for % equal to zero. For small finite

values of % that are greater than some minimum allowable magnitude, controller

performance is oscillatory, but stability is maintained, effective control

solutions are reached, and substantial reductions in vibration are obtained.

At the other extreme, very large values of X cause very slow, but smooth,

convergence to a reduced vibration level. The rate of convergence for the

largest value of % shown in Fig. 46 is so slow as to make the controller

practically ineffective. However, it does appear that convergence to the same

minimum vibration levels achieved by more effective controllers may eventually
be reached.

In between these two extremes, a wide range of values for % result in

very effective controllers. The baseline cautious controller, which has a

value of 1.0 for _, can be seen to have the best overall performance of those

shown in Fig. 46 for the baseline flight condition. The optimum value of

for a given flight condition obviously depends upon the-nominal magnitude of

the elements in Pi and the vibration weighting matrix. For a given

controller, the optimum value of X depends upon the flight condition since the
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limiting achieved by the weighting placed on e for the global model and Ae for

the local model depends upon the level of vibration present. However, Fig. 46
indicates that the cautious controller is somewhat insensitive to the exact

value of %. Furthermore, the baseline cautious controller has been used

effectively in this investigation at many different flight conditions without
adjustment of any internal parameters, including %.

The effectiveness of the baseline cautious controller (%=1.0) in reducing

vibration in the RTA was shown in Fig. 9. All of the effective controllers

shown in Fig. 46 achieve essentially the same vibration level at rev 30 at

each sensor location in the RTA as those shown for the baseline cautious con-

troller in Fig. 9, despite the obvious differences in control solutions. The

magnitude of 3 per rev control shown at rev 30 in Fig. 46 is indicative of

the general effect of % on the final control solution. For a given controller

and flight condition, the magnitude of the control inputs at convergence

generally decreases as the specified value of % increases. This is expected

since the weighting on e (Ae for the local model) increases with increase in

%. Figure 46 also shows that there are exceptions to the trend for any given

control input and range of %. One of the reasons for this, other than just

converging to a particular local solution, is that the weighting matrix on fl

(or Ae for the local model) depends upon the covariance matrix Pi multiplied

by a scalar constant. In contrast to Wo or WAe , Pi is not a diagonal matrix,

although the diagonal terms are dominant. Furthermore, once the controller is

initialized, Pi is automatically calculated by the Kalman filter identifica-

tion algorithm (e.g., Eq. (46)7 during each controller update. Thus, after a

few updates, the diagonal elements may or may not be of the same magnitude,

and one control input may be weighted more heavily than another for a given
convergence sequence.

In comparing the results shown in Fig. 46 to those shown in Fig. 27, the

performance of the cautious controller with the global system model is almost

identical to the performance of the global deterministic controller with

internal rate-limiting. Note that corresponding controllers in these figures

having elements of the same order of magnitude along the diagonal of the

weighting matrix also have virtually the same performance, as indicated by the
time histories shown. For example, the baseline cautious controller is

initialized with a value of 100.0 for each element along the diagonal of Po"

The trace of the vibration weighting matrix, _ Wzij, is 12.0 since the sine

and cosine components of each of the six RTA vibration sensors is weighted

equally with a value of 1.0. Thus, when activated, the baseline cautious

controller (%=1.0) has a weighting matrix with diagonal elements equal to

1200.0 as calculated by % • Po " _ Wzjj" As already shown in Figs. 8(a) and

8(b), this baseline cautious controller has virtually the same performance as

the baseline deterministic controller, which has values of 1000.0 along the
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diagonal of WAe. The same can be seen to be true for the other values of k.

Since Po and Wz remain the same, the range of k shown in Fig. 46 for the

global cautious controller corresponds very closely to the range of WAe

shown in Fig. 27 (except for the lowest values of _ and WA6).

This similarity between the performance of the cautious controller based

on the global system model and the deterministic controller with internal

rate-limiting is somewhat surprising, since the stochastic term for the global

model results in an effective weighting on e, not Ae, as discussed above and

shown in Eq. (21). Thus, it was expected that the performance of the global

cautious controller would be more similar to the performance, shown in Fig.

31, for the deterministic controller with internal limiting on total e. It is

the local cautious controller that is expected to have performance character-

istics similar to the internally rate-limited deterministic controller, since

the stochastic term for the local model results in effective weighting on Ae,

as shown in Eq. (12). Indeed, the local cautious controller does have

performance characteristics almost identical to those of the global cautious

controller and, therefore, to the deterministic controller with internal rate-

limiting as well.

The main reason that the global cautious controller behaves more like a

rate-limited controller than a controller with limiting on total 9 is that the

effective weighting matrix on total e depends directly on Pi" As already

pointed out, Pi is calculated automatically at each controller update

according to the Kalman filter algorithm. Since Pi is indicative of the

uncertainty in system identification, the magnitude of its elements tends to

decrease, as active control proceeds, due to improved system identification.

Thus, internal weighting on total 0 generally decreases as convergence is

approached. This decreased weighting on total 6 allows the controller to try

to reduce vibration further by calculating larger control inputs. The result

is the characteristic "drift" noted in the internally rate-limited determinis-

tic controller. As a result, an increase in _ slows the rate of convergence

somewhat for the cautious controller, but does not appear to affect its abil-

ity to eventually achieve the same reductions in the vibration. This is the

same effect WAe has on the deterministic controller.

In contrast, the weighting on total 0 due to We is held constant. As

discussed previously, the relative importance of maintaining small control

inputs due to the constant We increases as vibration decreases. Thus, the

deterministic controller with weighting on total e tends to converge to a

steady control solution, which represents the optimum tradeoff between reduc-

ing vibration and reducing the magnitude of control. An increase in W0, if

its magnitude is larger than some minimum value, generally results in less

effective vibration reduction due to more emphasis placed on maintaining small
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control inputs than on reducing vibration. As will be discussed in the next

section, the global cautious controller begins to perform like a deterministic

controller with internal weighting on total O when Pi remains essentially
constant (e.g., inhibited identification).

As for the deterministic controller with internal rate-limiting, elimina-

tion of 3 or 5 per rev control in the cautious controller tends to alleviate

the slight "drift" in control that occurs at convergence. As will be dis-

cussed in the next section, raising Po to make the identifier more sensitive

to errors in the estimated system parameters also eliminates this slight drift,
just as it did for the internally rate-limited deterministic controller.

Effect of Kalm Filter Covariances

The baseline cautious controller is fairly insensitive to the tuning of

the Kalman filter covariances (Po, Q, and R) at the baseline flight condi-

tion. Due to the fairly linear nature of the flight condition at the small

magnitudes of control commanded by the baseline cautious controller, excellent

controller performance is maintained for Po in the range of 1.0 to 10000.0

(g's/rad) 2, R in the range of 0.001 to 1.0 (g's) 2, and Q in the range of 0.001

to 10.0 (g's/rad)2 However, some clarification is necessary when talkin_

about the effect of Po on controller performance, since Pi not only

affects identification in the cautious controller, but also directly affects
the effective weighting placed on 8 or Ae.

In the range of Po just cited, controller performance is affected

significantly if the value of % is not also adjusted accordingly. For a con-

stant value of %, the nominal value of elements in Po have about the same

effect as the effect of % discussed in the last section. For small Po, the

control inputs are lightly weighted and the controller tends to command large

control inputs. For large Po, the control inputs are weighted very highly

which results in very slow convergence similar to that shown in Fig. 46 forlarge %.

However, if % is adjusted accordingly to maintain about the same level of

weighting on control inputs as that used in the baseline cautious controller,

excellent controller performance is achieved for the cited range of 1.0 to

10000.0 (g's/rad)2 for Po. For example, if elements along the diagonal of

Po are reduced to 1.0 (g's/rad)2 from the baseline value of 100.0

(g's/rad) 2, then adjustment of % to a value of 100.0 maintains essentially the

same controller performance as that for the baseline controller. Since the

same nominal weighting on control inputs is maintained, the controller

converges to a fairly small control solution, the T-matrix changes very

little, and controller performance is not hurt by the small Kalman gains. On
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the other hand, if Po is increased to I0000.0 (g's/rad) 2 and % is reduced to
0.01 to maintain about the same level of weighting on control inputs, the

identifier is very sensitive to errors perceived in the estimated system

parameters, and the slight "drift" noted above is eliminated.

Therefore, an important parameter is % • Po for a given controller with

some specified vibration weighting matrix. If % • Po is maintained at about
the same level as that for the baseline controller, controller performance at

this baseline flight condition is fairly insensitive to changes in Po since

small control inputs are commanded and only small changes in the T-matrix must

be tracked. This may not be true for very nonlinear flight conditions or

flight conditions requiring large control inputs to minimize vibration.

Degradation in controller performance for the global system model does

become noticeable if Po, Q, and R are adjusted to essentially eliminate

identification due to extremely low Kalman gains. This is shown in Fig. 47

where the performances of two cautious controllers, which have the Kalman

filter system identifier essentially turned off, are compared to the perfor-

mance of the baseline controller having optimal tuning for Po, Q, and R.

System identification is inhibited in both these controllers by specifying

very large values of R while keeping %'Po at its baseline value. The Kalman

filter can make essentially no changes in system parameters since the Kalman

gains, which are proportional to Po/R, are so small. Clearly, the effec-

tiveness of the global cautious controller in reducing vibration has been

compromised. The reduction in the vibration performance index is only 77

percent compared to over 97 percent reduction achieved by the baseline

controller. The degradation in performance is not due, however, to poor

identification of system parameters. This can be seen by the performance

shown in Fig. 47 for the local cautious controller with no identification,

which is essentially the same as that of the baseline controller with identi-

fication. As mentioned earlier, only very small changes occur in the T-matrix

relationship between vibration outputs and control inputs over the small range

of inputs commanded by these controllers at this flight condition. Thus, lack

of identification due to non-optimal tuning of Po, Q, and R has only minor

effects on the cautious controller based on the local system model.

Therefore, the degradation in the performance of the global cautious

controller with no identification is not due to poor identification of system

parameters since it commands small control inputs on the same order of magni-
tude as those commanded by the local cautious controller. Rather, the degrad-

ation in controller performance is due to little or no change occuring in

Pi. Since essentially no identification is allowed to take place due to

non-optimal tuning of the identifier, little information is gained about

system properties. As a result, the identifier maintains about the same Pi
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matrix indicating that the relative uncertainty in system parameters has not

been reduced from that specified initially. This causes the effective

weighting placed on total e in the performance index to remain nearly

constant. It was pointed out in the last section that the global cautious

controller performed more like a deterministic controller with internal rate-

limiting than with internal limiting on total 0 due to the reduction in Pi
that occurs with improved system identification. However, without identifica-

tion, Pi remains nearly constant, and the global cautious controller can be

expected to perform more like the deterministic controllers shown in Fig. 31
with constant internal limiting on total 8. Indeed, the global cautious

controller with no identification shown in Fig. 47 has essentially the same

performance as that shown in Fig. 31 for We equal to 1000.0 along the

diagonal. The effective weighting matrix for the global cautious controller
has diagonal elements of 1200.0.

In contrast, the local cautious controller without identification per-

forms like a deterministic controller with constant WA8 weighting matrix.

Thus, as long as % • Pi " Wzjj applies enough weighting on Ae to guide the

controller to a control so]utlon with small amplitudes, lack of identification

does not significantly affect the performance of the local cautious controller

at this flight condition, as is shown in Fig. 47.

Local System Model

Unless otherwise stated, all the results presented above for the cautious

controller are for the global system. These results and the accompanying

discussion are generally applicable to the local system model as well. Any
significant differences have already been noted. It has been found in this

investigation that the performance of the cautious controller, at steady
flight conditions, is very similar for both system models when similar and

near optimal tuning of internal parameters is specified (e.g. Po, Q R, and
" PO)" ' '

Figures 48 through 50 demonstrate the similarity in overall controller

performance for both system models. The configuration used for the global
model is the baseline configuration specified in Table 5 for the cautious

controller. The tuning of the local cautious controller is somewhat differ-

ent, but _ • Po is the same. Clearly, the performance based on both system
models is nearly the same in every respect. Almost identical levels of

substantially reduced vibration are achieved at each of the RTA sensor loca-

tions. These reductions in vibration are achieved with almost the same

control solutions, and time to convergence is virtually the same. The only
significant difference between the performance of these two controllers is the

tendency for drift in the control inputs exhibited by the baseline controller
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with global model after convergence is reached in the vibration performance
index. The local model does not exhibit this tendency; however, this differ-

ence is a matter of the tuning of Po, Q, and R. The local model shown has

high values for Po and Q so that the identifier is very sensitive to errors
in the T-matrix. When similar tuning is specified for the global model, while

maintaining the value of k • Po, the tendency to drift is eliminated, and

the performances of the two controllers are virtually identical.

Cautious Controller Summary (Baseline Flight Condition)

In summary, the cautious controller has proven very effective in reducing
vibration at the baseline high speed flight condition. When appropriately

tuned, both the local and global system models form the basis of controllers

that exhibit excellent stability and performance. Convergence to a solution

with significantly reduced vibration in the RTA is achieved quickly and

smoothly, and the required inputs for achieving these reductions are quite

small. With near optimal tuning, the controller, based on either the local or

global model, performs much like the baseline deterministic contro!ler with

internal rate-limiting. The effective weighting matrix on control inputs

depend directly upon k • Po which has much the same effect as WAO on con-

troller performance. However, the effective weighting matrix for the cautious

controller varies with time since Pi is calculated by the Kalman filter

identifier at each controller update. Generally, the magnitude of elements in

Pi and, thus, the effective weighting matrix decrease as system identifica-

tion improves. For this reason, the global cautious controller behaves much
like a rate-limited controller, even though it effectively weights total 0 in

the performance index. Finally, the cautious controller is fairly insensitive

to tuning of internal parameters (%, Po, Q, and R) at this fairly linear

flight condition. Even quite non-optimal tuning of these parameters results

in significantly better performance than that of the original deterministic

configuration with external rate-limiting. However, it must be kept in mind

that Po directly affects both the identification algorithm and effective

weighting placed on control inputs. For this reason the cautious controller
is somewhat more sensitive to tuning than the deterministic controller having

either form of internal limiting. If Po is changed significantly, % may

have to be adjusted to maintain effective controller performance by main-

taining appropriate weighting on control inputs.

Dual Controller

In Figures 8 through I0, it was shown that the baseline dual controller

is very effective in reducing vibration with small control inputs at the base-

line flight condition. However, it was also noted that the dual controller

has very different performance characteristics than those already discussed in
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some detail for the deterministic and cautious controllers. This is due to

i the stochastic learning term that is added to the performance index in Eq.
(22). This term acts as a perturbation signal that allows the controller to

actively probe the system in order to improve system identification at the
same time it is providing control.

The stochastic learning term has the exact opposite effect to that of the

weighting terms placed on control inputs by the baseline deterministic and

cautious controllers, since this learning term tends to reduce the constraints

on control inputs. While the cautious controller penalizes control (when poor
system identification is indicated) by limiting control inputs, the dual

controller actively tries to improve identification by providing more informa-

tion to the identifier in the form of large control and vibration changes.

Therefore, the system probing used by the dual controller tends to com-

promise short term control and may lead to instability. As will be discussed

in the next section, some form of rate-limiting is required to ensure that the
detrimental effect on short term control is not too severe.

Effect of Rate-Limiting

Figures 51 through 53 show the overall performance for three different

dual controller configurations. The first configuration shown is that of the

baseline dual controller presented in Table 5. The other two configurations

are the same except for the limiting of control inputs. The second configura-
tion uses internal rate-limiting (WAe = 5000) rather than the external rate-

limiting used in the baseline controller, and the third configuration is

completely unlimited allowing the controller to actively probe the system at

will. While all three controllers converge to excellent final solutions, the
time histories presented in Fig. 51 show the significant differences in short
term control.

The time history of 3 per rev cyclic pitch shown in Fig. 51 for the

unlimited dual controller clearly demonstrates the active probing that results

from the stochastic learning term included in the performance index. In the

first four revs of active control, the resulting perturbation in control

inputs is quite large, and the resultant short term control is unacceptable.
For instance, after the first rev of active control, the performance index has

increased tremendously to a value that is over forty times the baseline value

before any higher harmonic control is implemented. In the second rev of

active control, the performance index increases further to a peak value that

is almost sixty times the baseline value. This corresponds to increases in

the vibration level at each of the RTA sensor locations to values that are 6

to 12 times their baseline values. Representative of these increases in
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vibration is the increase in the vertical vibration component at the cross-

beam sensor location from 0.14 g's just before activating the controller to

1.3 g's after two revs of active control. Thereafter, the unlimited dual con-

troller begins to reduce the performance index fairly steadily, even though it

is still probing the system with fairly large perturbations of the control

inputs. As system identification improves, the size of the perturbations

caused by the learning term decrease from the very large initial perturbations

to almost no perturbations at convergence. This is due to the stochastic

learning term being proportional to % • Pi_I/R as shown in Eq. (23). As

system identification improves, Pi-1 decreases while % and R are held
constant.

By convergence, the unlimited dual controller achieves a steady control
solution that is very similar to and equally effective in reducing vibration

as that achieved by the baseline controller. Figure 52 shows the similarity

in the higher harmonic pitch amplitudes for these two solutions. Furthermore,

there is only a few degrees difference in phase between any one of the control

inputs for the two solutions. Figure 53 shows that essentially the same

substantially reduced vibration levels have been reached in the RTA. Recall

that the deterministic controller is completely unstable and diverges at this

flight condition when no rate-limiting is applied. Thus, the inherent probing

by the dual controller allows the controller to converge to a very good solu-
tion.

Despite the excellent final solution and reductions achieved in the RTA,

the overall performance of the unlimited dual controller is unacceptable due

to the severe detrimental effects on short term control, not to mention the

impracticality of the large changes in control commanded in the first four

revs. While the stochastic control constant % can be adjusted to try to

achieve a better tradeoff between short term control and system probing for

improved identification, the unlimited dual controller is very sensitive to

the value specified for %. In fact, all other values used for % in the

unlimited dual controller resulted in worse performance than that shown in

Fig. 51. An increase in % results in even worse short term control and less

effective vibration reduction as well. A decrease in % results in better

short term control, but eventually, divergence of the controller.

Clearly, rate-limiting is required to achieve adequate controller perfor-

mance in terms of improved stability and short term control. Figure 51 shows

that excellent controller performance can be achieved by both external or

internal rate-limiting; however, internal rate-limiting tends to inhibit or

eliminate the inherent probing of the dual controller. Furthermore, con-

troller performance is very sensitive to the relative weighting specified for

WA0 and the effective "negative" weighting due to the learning term. If
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WA9 is too small, the controller tends to have the same problems as the

unlimited dual controller. If W_0 is nearly equal in magnitude to the

probing term, the controller tends to perform like a deterministic controller

with no limiting or light rate-limiting. Thus, performance is oscillatory

and/or very large control solutions are calculated. Finally, if WAe is
made large enough to improve stability and short term control, it tends to

remove the probing nature of the dual controller. While performance is excel-

lent, even better performance has been demonstrated with much simp]er config-
urations, such as the baseline deterministic controller with internal rate-

limiting, that are much less sensitive to tuning of internal parameters.

On the other hand, Fig. 51 shows that external rate-limiting allows some

system probing to occur while still providing excellent overall performance.

If more system probing is desired, the external limits can be relaxed with the

expected penalty of relatively poor short term control. The external rate-

limiting used in Fig. 51 is 0.2 deg/rev and the excellent overall performance

of this baseline dual controller has already been discussed and compared to
that of the baseline deterministic and cautious controllers. While this

amount of rate-limiting severely limits the system probing when compared to

the unlimited controller, this limited amount of system probing must still

have a fairly large effect since convergence to an excellent steady solution

is achieved. Recall that a deterministic controller with the same tuning of

Po, Q, and R and the same amount of external rate-limiting has very unsatis-

factory behavior, as was shown in Fig. 14 (A0max = 0.2 deg/rev). This exter-

nally rate-limited deterministic controller never really converges and is not
nearly as effective in reducing vibration.

Effect of Stochastic Control Constant

Recall that the stochastic learning term implemented by the dual

controller is directly dependent upon - % • Pi_i/R and results in effectively
a "negative" weighting on total 0 in the global mode] and be in the local

model. The result is a reduction in constraint on control inputs and active

probing of the system by the controller, as demonstrated in Fig. 51. As
discussed previously, Pi for the local model is the covariance of the

estimated T-matrix. For the global model, Pi is defined as in Eq. (17) and

includes the covariances and cross-covariances for the estimated T-matrix and

Zo. For both system models, R represents the covariance of the measurement

noise. Thus, the learning term is directly dependent upon the ratio between

the relative uncertainty in the estimated system parameters (T and/or Zo)

and the uncertainty in the measured vibration parameters (Zi). The stochas-

tic control constant % is an arbitrary constant used to give some flexibility
to modify or tune the dual control algorithm.
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While system probing tends to improve system identification, Fig. 51

clearly shows'that it also tends to compromise short term control. Thus, the

dual controller, in order to be useful, must achieve an acceptable tradeoff

between long term system identification and short term control. The stochas-

tic control constant % represents this tradeoff. This constant must be

selected to tune the dual controller by reaching an acceptable compromise

between good short term control and the rate of learning. Figure 54 shows the

effect of % on the performance of the dual controller at the baseline high

speed flight condition. In this figure, the time histories of the vibration

performance index and 3 per rev cyclic pitch are shown for the baseline dual
controller with several different values of %. Recall that the baseline dual

controller is based upon the global system model and implements external rate-

limiting with ASmax = 0.2 deg/rev.

Clearly, % has a significant effect on the dual controller's performance.

The baseline dual controller (%=0.01) exhibits the best overall performance.

As % is decreased from the baseline value, short term control improves some-

what, but long term control worsens. The lowest value shown for % results in
the best short term control, but the controller eventually goes unstable. As

% increases over that for the baseline controller, controller performance

becomes unacceptable. In just the small change from the baseline value of %

to that of the next higher value, the tendency to probe the system completely

dominates to the point that not only is short term control severely compro-

mised, but the controller goes unstable, despite external rate-limiting. It

is not clear what is happening at the highest value of %, but the same type of

behavior has been exhibited at high values of % for the unlimited dual

controller as well. Apparently, the learning term becomes so large that it

dominates the performance index and the minimum variance control algorithm

breaks down.

Figure 54 indicates the extreme sensitivity of the dual controller to

tuning of internal parameters. Even for this fairly mild flight condition,

only a very small range of values for % results in acceptable performance.

Tuning of the controller is further complicated by the fact that two important

internal parameters used to tune the Ka]man filter identification algorithm

(Po and R) also play an important role in the learning term and signif-

icantly affect the tuning of the minimum variance control algorithm. Thus,

tuning of %, Po' Q' R, and A0max to achieve the best tradeoff between system

probing and short term control for optimum dual controller performance may be

extremely difficult for new flight conditions. Much of this increased sensi-

tivity to tuning is probably due to the increased importance of matching

identifier tuning to system probing and tuning of the minimum variance control

algorithm. Clearly, making large control changes with continually poor system

identification can quickly degenerate in an unstable controller.
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Local System Model

Figures 55 and 56 demonstrate the similarity in dual controller perfor-

mance for both the global and local system models when similarly tuned.

Figure 55 compares the time histories of the vibration performance index and 3

per rev cyclic pitch amplitude for two unlimited dual controllers based upon

local and global models, respectively. The tuning of both controllers is

identical; the only difference between these two controllers is the system

model used as the basis of the controller algorithms. Figure 56 compares the

time histories for a local dual controller to those for the externally rate-

limited baseline dual controller. The controllers are the same except for the

system model used. In both figures, controller performance for the local

model is essentially identical to that for the global model, as indicated by
the very similar time histories of a representative control input and the
performance index.

Dual Controller Summary (Baseline Flight Condition)

In summary, the dual controller can be very effective in reducing vibra-

tion of the baseline flight condition when an appropriate configuration is

defined and properly tuned. It has been found that rate-limiting is essential

for maintaining acceptable short term control. Despite the inherent

difficulties of external rate-limiting that were discussed in relation to the

deterministic controller, external rate-limiting is most appropriate for the

dual controller since it a11ows system probing to occur. Internal rate-limit-

ing, on the other hand, tends to eliminate the inherent probing used by the

dual controller to improve system identification, if the internal weighting is

made large enough to achieve adequate short term control. For a given config-
uration, the dual controller is extremely sensitive to tuning of internal

parameters. Thus, tuning of the dual controller at other flight conditions

may present a significant problem. This is in contrast to the optimum config-

urations for the deterministic and cautious controllers which are fairly
insensitive to tuning. However, as will be discussed later, the dual

controller has provided good performance at other flight conditions without

retuning. Its performance during certain transients indicates that it may

have more potential for performing well during transients, when properly
tuned, than perhaps the deterministic and cautious controllers.

Based only on the results at the baseline flight condition, the dual

controller does not offer any sufficiently significant improvements in perfor-
mance to warrant its use. Configurations for both the deterministic and

cautious controllers can be defined that give better overall performance than

the baseline dual controller. Their short term control performance is

significantly better. Furthermore, the minimum variance control algorithm for
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the deterministic controller is much simpler and more satisfying, since it is

not based on some rather nebulous parameters (%, Po, R) that require

significant tuning to achieve good performance. The weighting of A0 and 0

with WA0 and We, respectively, can be related back to the physical system, and
one can get a feel for the effect of WAe and WO. Furthermore, their effect is

consistent and does not depend upon the performance of the identifier. Thus,

unless the dual controller (and the cautious control]er for that matter)

provide significantly better performance than the deterministic controller in

one way or another, there is no reason to consider them further. Therefore,

it is only the anticipated potential for the dual controller to better handle

transients and maneuvers that warrants further consideration.

Effect of Forward Velocity on Controller Performance

The effect of forward velocity on controller performance is shown in

Figs. 57 through 60. These figures present the results of active control at

three different steady flight conditions having forward velocities of 57.6 m/s

(i12 kts), 66.9 m/s (130 kts), and 77.2 m/s (150 kts). The latter flight

condition is the baseline high speed flight condition that has already been

discussed. All three flight conditions have about the same thrust level with

a nominal value of 0.06 for CT/g. The results shown are for the baseline

cautious controller, but essentially the same excellent performance is

expected from the baseline deterministic and dual controllers as well. It is

important to note that these excellent results have been obtained with no

retuning of the controller and with the same initial T-matrix (between RTA
vibrations and higher harmonic control inputs) developed at the baseline

flight condition.

Figure 57 compares the time histories of the vibration performance index

and the 3 per rev cyclic pitch amplitude for all three flight conditions. The

controller exhibits the same excellent performance characteristics at all

three forward velocities. Convergence to an excellent control solution occurs

very quickly and smoothly, with about 5 revs required for all three flight
conditions.

The change in the vibration level at each of the six RTA sensor locations

is shown in Fig. 58 for the two lower forward velocities. These results can

be compared directly to those for the cautious controller at the baseline

flight condition (150 kts) shown in Fig. 9. Clearly, the controller is very

effective at all three velocities in reducing vibration at all sensor loca-

tions except those having very low initial levels of vibration without any

higher harmonic control (nose lateral and tall lateral). The low levels of
vibration at these sensor locations have been maintained if not reduced
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slightly. Note that at the lower velocities the controller is startin_ to

achieve reductions in vibration at these locations as well, since the initial

vibration levels at these locations are now higher than the reduced vibration

levels at the other sensor locations. The controller generally tends to

achieve about the same level of vibration at each of the sensor locations.

Figure 59 shows a more direct comparison in the effectiveness of the

controller at reducing vibration at the three forward velocities. The

longitudinal and vertical cross-beam vibration levels with and without higher

harmonic control are shown for all three forward velocities. The vibration

performance indices are also shown. As forward velocity increases, overall

vibration without any higher harmonic control increases, as expected. This

increase is apparent at both representative sensor locations and the vibration

performance index, which is indicative of overall vibration. After the active

controller has converged to a substantially reduced vibration level, this same

trend is again present; vibration at each of the two representative sensor

locations and the vibration performance index tend to increase with increased

forward velocity. While the controller has reduced vibration substantially,

it cannot achieve the same minimum vibration levels at each flight velocity.

Apparently, the minimum vibration levels that can be achieved via higher

harmonic control are dependent upon the flight condition. Figure 60 shows

that about the same percentage reduction is achieved in the vibration levels

at the two sensor locations and in the vibration performance index. In any
case, substantial reductions in vibration have been achieved at all three

flight velocities as indicated by at least a 97 percent reduction in perfor-

mance index, at least a 95 percent reduction in the longitudinal cross-beam

vibration, and at least a 75 percent reduction in the vertical cross-beamvibration.

Finally, Fig. 60 shows that the higher harmonic pitch amplitudes at 3, 4

and 5 per rev required to achieve these substantial reductions in vibration

tend to decrease with a decrease in forward velocity. Required higher

harmonic pitch amplitudes are on the order of 0.I, 0.2, and 0.3 degree at

57.6 m/s (112 kts), 66.9 m/s (130 kts), and 77.2 m/s (150 kts), respectively.

These levels of required control to achieve such substantial vibration reduc-
tion at these flight velocities are quite reasonable.

The effect of higher harmonic control on rotor blade vibratory stresses

and moments at all three flight conditions is shown in Table I0. This table

shows the maximum I/2 peak-to-peak stresses and moments at critical locations

along the blade span before and after higher harmonic control is applied. The

percentage increase in stress or moment is also shown for each velocity. As

forward velocity is decreased, the relative increases in blade stresses and

moments that tend to be associated with the application of higher harmonic
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control are reduced. This is most likely due to the smaller amplitudes of

control required for vibration reduction. It should be noted that, even with

these increases, the blade vibratory stresses and moments are still signif-

icantly lower than those at the high thrust conditions without higher harmonic

control, which will be discussed in the next section.

TABLE 10 - EFFECT OF HIGHER HARMONIC CONTROL ON MAXIMUM

ROTOR VIBRATORY MOMENTS AND STRESSES AT VARIOUS FORWARD VELOCITIES

(Baseline Cautious Controller)

FORWARD VELOCITY

57.6 m/s (112 kts) 66.9 m/s (130 kts) 77.2 m/s (150 kts)

No HHC HHC % Diff No HHC HHC % Diff No HHC HHC % Diff

Flatwise 1669 1805 1950 2195 2363 2702

(0.394R) +8.2 +12.6 +14.4

N/cm2(Ib/in 2) (2419) (2617) (2827) (3182) (3426) (3918)

Edgewise 288 366 410 565 640 973

(0.265R) +27.0 +37.9 +52.0

N/cm2(Ib/in 2) (418) (531) (594) (819) (928) (1411)

Torsion 59.2 131.9 74.6 200.1 101.7 278.8

(0.079R) +124. +168. +174.

N-m (in-lb) (524) (1167) (660) (1771) (900) (2467)

The effect of higher harmonic control on rotor performance is shown in

Table 11 for all three forward velocities. As forward velocity is decreased,

the effect on each rotor performance parameter is reduced. The detrimental

effects on drag and required torque are significantly reduced. At the 57.6 m/s

(112 kts) flight condition, the effect of higher harmonic control on rotor

performance is minimal.
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TABLE II - EFFECT OF HIGHER HARMONIC CONTROL ON ROTOR

PERFORMANCE AT VARIOUS FORWARD VELOCITIES

(Baseline Cautious Controler)

FORWARD VELOCITY

57.6 m/s (112 kts) 66.9 m/s (130 kts) 77.2 m/s (150 kts)
i

No HHC HHC % Diff No HHC HHC % Diff No HHC HHC % Diff

Thrust 36543 36606 37322 37505 36735 37224

N (Ib) +0.2 +0.5 +1.3

(8212) (8226) (8387) (8428) (8255) (8365)

Torque 16702 17220 20768 21163 25139 26403

N-M +0.6 +1.9 +5.0

(ft-lb) (12619) (12701) (15318) (15609) (18542) (19474)

Prop. 3071 3071 3645 3640 4001 3978

Force 0.0 -0.I -0.6

N (Ib) (690) (690) (819) (818) (899) (894)

Equiv. 9.42 9.44 +0.2 10.34 10.07 -2.6 10.26 9.34 -9.0

L/D

Forward Velocity Variation Summary

In summary, the active controller is very effective in reducing vibration

throughout the range of velocities of 57.6 m/s (112 kts) to 77.2 m/s (150 kts).

These reductions are achieved very quickly by the controller, even though the

same initial T-matrix developed at the high speed flight condition is used

throughout the range of velocities and the controller is not retuned. The

required control inputs to achieve these reductions in vibration throughout the

range of velocities are quite reasonable. As the forward velocity decreases,

the required higher harmonic pitch amplitudes also decrease. Finally, the

detrimental effects on rotor blade vibratory stresses and rotor performance

also decrease with a decrease in forward velocity.
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Effect of Rotor Thrust on Controller Performance

The effectiveness of the active controller has also been investigated as

a function of rotor thrust. Figures 61 and 62 present a summary of the

results of active control for three different steady flight conditions. All

three flight conditions have the same forward velocity of 77.2 m/s (150 kts)

as the baseline flight condition, but different nominal values of 0.058, 0.08,

and 0.085 for CT/C. The first flight condition (CT/C = 0.058) is the

baseline flight condition that has already been discussed in detail. The last

two flight conditions represent more severe flight conditions with increases

in rotor thrust over the baseline of 39 and 47 percent, respectively. As can

be seen in Fig. 61, increased rotor thrust results in higher baseline (no HHC)

vibration levels in the RTA as a direct result of increased hub loads corre-

sponding to a greater rotor disc loading. These figures also show the

excellent reduction in vibration achieved by active higher harmonic control at
all three thrust conditions.

The highest thrust level (CT/C = 0.085) is especially severe with a

significant increase in vibratory response over not only the baseline flight

condition but also the other high thrust condition (CT/C = 0.08). Predicted

RTA accelerations for this flight condition are on the order of 0.8 to 1.0 g

with no higher harmonic control or other vibration treatment. Thus, a rela-

tively small increase in rotor thrust between the two high thrust flight

conditions results in a significant increase in vibration. The severity of

the highest thrust condition is due to its being well into stall with the

constant inflow model used. As will be discussed in the results of the open-

loop nonlinearity study, this flight condition is also somewhat more nonlinear

and has more interharmonic coupling effects than the baseline flight condi-

tion. Furthermore, the T-matrix relationship between vibration response in

the RTA and control inputs changes significantly with change in both flight

condition and higher harmonic control. Thus, this maximum thrust flight

condition should represent a good test of controller performance. For this

reason, a comparison of the performance of the three baseline controllers

specified in Table 5 will be made at this flight condition, and the results

will be covered in somewhat more detail in the following discussion.

Comparisons made between the three thrust conditions will be for results

obtained by the baseline deterministic controller. It should be noted that

these baseline controller configurations have been applied to these high

thrust flight conditions without any retuning of the controllers to improve

performance. The excellent performance shown in Figs. 61 and 62 will be

discussed in some detail in the next subsection entitled: "Vibration

Reduction."

Before covering these results, it should be pointed out that the same

initial T-matrix, To, used to initialize the active controller at the base-

line flight condition is also used at the high thrust flight conditions. This
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T-matrix was found by open-loop perturbation at the baseline flight condition.

Since the system is somewhat nonlinear and sensitive to both the flight

condition and the operating control point, such an initial T-matrix can be

quite inaccurate for flight conditions other than that at which it was deter-

mined. Since the high thrust flight conditions represent more severe condi-

tions than the baseline, it is expected that the linearized relationship

between inputs and outputs is also quite different from that at the baseline.

A comparison, which will be made later, between the initial T-matrix and one

determined at the final optimal control point at the highest thrust condition

considered shows that significant differences occur due to change in flight

condition and the presence of nonzero higher harmonic control. Thus,

activating the controller at these high thrust conditions with the baseline T-

matrix is a good test of the controller's capability to remain stable while

identification of system parameters is updated. However, it should be noted

that, in a production helicopter, the controller will probably be activated

and initialized in hover with system identification being updated as the

design flight condition is approached. Such a procedure represents a much

less severe task for the controller than that required in this analytical

study where the controller is activated at some steady forward flight condi-

tion with, perhaps, a fairly inaccurate T-matrix.

Vibration Reduction

Figures 61 and 62 directly compare the effectiveness of the baseline

deterministic controller in reducing vibration at all three thrust conditions.

Figure 61 presents the longitudinal and vertical components of vibration at

the cross-beam sensor location and the vibration performance index for all

three thrust conditions; a comparison is made between the values of these

representative quantities with and without higher harmonic control. As rotor

thrust increases, overall vibration without higher harmonic control increases

due to larger hub loads resulting from a higher rotor disc loading. A

significant increase in vibration occurs between the two high thrust condi-

tions, since the maximum thrust condition is well into stall. This same trend

is apparent after the baseline deterministic controller has converged to a

substantially reduced vibration level; vibration is still generally higher for

higher thrust levels at convergence. While the controller reduces vibration

substantially at all three thrust conditions, it cannot reach the same minimum

vibration levels. However, the minimum vibration levels achieved at each

condition are fairly close considering the significant differences in vibra-

tion present without any higher harmonic control.

Figure 62 shows that the controller achieves about the same percentage

reductions in the vibration performance index and accelerations at the two

representative sensor locations. Clearly, the deterministic controller has

achieved substantial reductions in overall vibration at all three thrust

conditions, as indicated by at least a 97 percent reduction in the performance
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index, at least a 95 percent reduction in the longitudinal cross-beam vibra-

tion component, and at least a 74 percent reduction in the vertical cross-beam

vibration component.

Figure 62 also shows that larger higher harmonic pitch amplitudes are

required for an increase in rotor thrust and corresponding increase in base-

line vibration response. Required higher harmonic pitch amplitudes are on the

order of 0.3, 0.5, and 0.9 degree at CT/O equal to 0.058 (8255 ib), 0.08

(11508 Ib), and 0.085 (12053 Ib), respectively. These levels of required

control are quite reasonable with less than 1.0 degree required for each of

the three control inputs at even the highest thrust condition. As will be

discussed later, higher harmonic control has a significant effect on rotor

performance at the two high thrust conditions. However, the effect on rotor

thrust is less than 2 percent for even the highest thrust condition

considered, and the resultant thrust level is greater than that without higher

harmonic control in each case. Thus, the results just presented should be

indicative of the control requirements and potential reductions in vibration

that could be achieved if the rotor could be kept in trim in the computer

simulation as active control is implemented.

While the overall results just presented for the three thrust conditions

are for the baseline deterministic controller, comparable results to those

shown in Figs. 61 and 62 could be shown for both the baseline cautious and

dual controllers. As shown in Figs. 9 and 10 for the baseline flight condi-

tion and Figs. 63 and 64 for the highest thrust condition, the final control

solutions and resulting vibration response in the RTA are very similar for all

three controller types when appropriate configurations are specified. Figure

63 shows the reductions in vibration achieved by all three controllers at all

six sensor locations for the highest thrust condition. Basically the same

vibration levels have been achieved by all three controllers, although the

reductions achieved by the dual controller are slightly less due to system

probing still occurring at rev 30. Figure 64 shows the similarity in the

control solutions commanded by all three controllers at the highest thrust

condition.

It should be noted that deterministic and cautious controller configura-

tions that are the same as the baseline controllers, except for the use of the

local system model, exhibited very similar performance characteristics to the

global models used in the baseline controllers. However, the local

controllers were slightly more oscillatory indicating that the local system

model might be more sensitive to tuning and to the effects of transients and

inaccurate vibration measurements.
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While Figs. 61 and 62 demonstrate that excellent final reductions in

vibration are achieved at all three thrust levels, transient response is

somewhat different at the highest thrust level, as can be seen by comparing

the time histories for the baseline deterministic controller at all three

operating conditions. Figure 65 presents the time histories of the vibration

performance index as well as the amplitude of the 3, 4, and 5 per rev control

inputs commanded by the baseline deterministic controller at the high thrust

condition having a value of 0.080 for CT/O. Figure 66 shows the time

history of the performance index for all three baseline controllers operating

at the highest thrust condition (CT/O=0.085) as well as the time history of

vibration at a representative RTA sensor location (Cross-Beam vertical).

Figure 67 presents the time histories of the amplitude of the 3, 4, and 5 per

rev control inputs commanded by all three baseline controllers at this thrust

condition. The results shown in these figures can be compared directly to the

time histories for all three controllers operating at the baseline flight

condition (CT/O=0.058) presented in Figs. 8(a) and 8(b).

In Fig. 65 for CT/O of 0.08, the deterministic controller exhibits

virtually the same characteristics as at the baseline flight condition;

reduction of vibration is achieved very quickly and smoothly, with about 5

revs required for convergence in the performance index. In contrast, the

behavior of all three controllers is fairly oscillatory at CT/O equal to
0.085. This increased oscillatory behavior is exhibited in the time histories

for the vibration performance index, the acceleration at a representative RTA

sensor location (Cross-Beam vertical), and the amplitude of the 3, 4, and 5

per rev control inputs shown in Figs. 66 and 67. The dual controller exhibits

even more oscillatory behavior than both the deterministic and cautious

controllers, whose time histories are very similar just as they were at the

baseline flight condition. This increased oscillatory behavior in the dual

controller is clearly evident in the higher harmonic control inputs and RTA
vibrations and is due to increased system probing, which is still evident in

the time history of all three control inputs at rev 30.

The increased oscillatory behavior of all three controllers at the

highest thrust condition is due to an inaccurate initial T-matrix, increased

system nonlinearities, increased sensitivity of the T-matrix to changes in the

higher harmonic control operating point, and non-optimal tuning of the

controllers at this flight condition. The extent of the changes in the T-

matrix relationship between RTA vibration and control inputs that can occur

due to change in flight condition and the presence of nonzero higher harmonic

control inputs will be discussed briefly in the next section. A more detailed

discussion of system nonlinearities will be covered in Appendix A, which

presents the results of a separate open-loop study (e.g., no active control)

of the extent and sources of system nonlinearities and interharmonic coupling

at the baseline and maximum thrust flight conditions (CT/O = 0.058 and
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0.085). It is sufficient here to say that significant changes in the initial

T-matrix estimate must be adapted to by the controllers in converging to an

optimal solution at the maximum thrust condition (CT/_ = 0.085). The

significant inaccuracies in the initial T-matrix and the changes that occur

with changes in the control inputs cause inaccurate calculations for updates

in control by all three controllers and increased system probing by the dual

controller. The inaccurate calculations for new "optimal" control solutions

cause commanded inputs that may or may not reduce vibration. Depending on the

severity of system nonlinearities and the limiting placed on control inputs,

this can cause oscillatory behavior similar in nature to that caused by the

inherent system probing of the dual controller.

Another significant factor in the somewhat oscillatory behavior of the

baseline deterministic and cautious controllers is that they have not been

retuned. In particular, WAO for the deterministic controller and % for

the cautious controller have not been changed to match the flight condition.

As shown in Fig. 61, there is a significant increase in overall vibration in

the RTA at the maximum thrust condition compared to the baseline flight condi-

tion at which the controllers were tuned. Thus, the effective weighting on

the control inputs at the highest thrust condition due to the values of

WA8 and _ determined at the baseline flight condition is significantly

reduced; more relative emphasis is placed by thelcontroller on reducing the

increased RTA vibrations than on maintaining small changes in control inputs.

This is evidenced by initial changes in control commanded at the baseline and

maximum thrust conditions. At the maximum thrust condition, initial changes

in control on the order of 0.7 degree are commanded by both the deterministic

and cautious controllers for 3, 4, and 5 per rev inputs. At the baseline

flight condition, initial changes on the order of 0.15 degree are commanded,

even though the same values of WAe or % are used. At CT/O equal to

0.08, vibration levels in the RTA are higher than those at the baseline flight

condition, but the effective weighting due to WAe or % is still high

enough to keep initial changes in all three control inputs less than 0.35

degree. Note that these initial changes in control inputs are acceptable for

this analytical investigation since stability is maintained; however, in

practice, it will be necessary to limit the allowable changes in control

inputs that can be implemented in any given rev in order to meet the

capability of controller hardware.

The large initial changes in control caused by the non-optimal tuning of

the deterministic and cautious controllers at the maximum thrust condition

cause two problems. First, the T-matrix is more sensitive to change in

control inputs at this flight condition. Thus, larger changes in the T-matrix

are more likely to occur with these large changes in control. The controller

must track these changes as well as overcome the inaccuracies of the initial

T-matrix estimate. Second, the large changes in control cause larger

ioi



transients to occur in the vibration response which also take longer to die

out. The transients cause less accurate vibration information to be obtained

by the harmonic analyzer. This inaccurate vibration information can, in turn,

lead to inaccurate updates made to the T-matrix estimate and inaccurate calcu-

lations of updates in optimal control required to reduce the perceived vibra-

tion. Thus, while larger changes in control inputs give a potential of better

system identification since more information is passed to the identifier more

rapidly, these changes cannot be so large as to cause completely inaccurate

information to be processed. Obviously, the large initial control inputs

csused by non-optimal tuning of WA8 or _ can lead to oscillatory
behavior.

Despite the inaccurate initial T-matrix and non-optimal tuning, stability

is maintained and convergence is achieved by all three controllers at the

maximum thrust condition. Furthermore, no amplification of vibration occurs

at any time during convergence, except perhaps during initial transients.

However, convergence is slowed somewhat by the oscillatory behavior. All

three controllers require about 10 revs (2.7 seconds) to achieve and maintain

at least a 90 percent reduction in the performance index as compared to about

2 revs (0.55 seconds) for the same deterministic and cautious controllers at

the baseline flight condition. As might be expected after the above discus-

sion, increasing the effective rate-limiting of control inputs via increase in

WAe or % for the deterministic or cautious controllers, respectively,

improves performance by providing a smoother, less oscillatory convergence.

Whether or not convergence is achieved more quickly depends upon the level of

weighting placed on control inputs. For heavy weighting, more accurate

information is sent to the controller, but the controller takes longer to

achieve required levels of control. For light weighting, required levels of

control can be reached more quickly, but the control inputs actually commanded

may be based on inaccurate information. The oscillatory behavior of the dual

controller can also be alleviated by more restrictive rate-limiting; however,

in so doing, the inherent system probing of the dual controller is inhibited.

One last point should be made in regard to the time histories shown for

the highest thrust condition in Figs. 66 and 67. By rev 20, vibration

response and control inputs have smoothed out somewhat for all three

controllers. The deterministic and cautious controllers no longer exhibit any

oscillatory behavior since the effective rate-limiting of constant parameters

WAft or % increases for the reduced vibration levels present. Thus, transient

effects are alleviated and these controllers smoothly update control inputs

based upon updated system information. At rev 30, both these controllers have

the same tendency, which was exhibited at the baseline flight conditions, to

continue to command very slight changes in 3, 4, and 5 per rev control after

the performance index and RTA vibrations have essentially converged. When

allowed to run to 50 revs, these two controllers continue to increase 3 per
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rev cyclic pitch amplitude at a nominal rate of 0.01 degree per rev, while

decreasing 5 per rev amplitude at a nominal rate of 0.005 degree per rev and

holding 4 per rev amplitude almost constant. Between rev 30 and rev 50, the

total increase in 3 per rev amplitude and decrease in 5 per rev amplitude is

about 0.2 and 0.i degree, respectively. These changes in control after rev 30

tend to cancel and achieve only slight reductions in the performance index and

RTA vibrations relative to the baseline values with no higher harmonic

control. For example, between revs 30 and 50, the deterministic controller

reduces the vibration performance index from 0.018 to 0.015 and the 4/rev

amplitude of vibration at the longitudinal cross-beam sensor location from

0.031 to 0.017 g's. While these changes represent reductions of 17 and 45

percent relative to the values at rev 30, they represent reductions of only

0.13 and 1.9 percent relative to the baseline values. If this tendency to

drift proves troublesome, it can be alleviated by implementing some limiting

on total 0 via W0, as discussed for the baseline flight condition.

In contrast to the deterministic and cautious controllers, the dual

controller does not appear to have the same tendency to drift after rev 20.

Rather, the dual controller causes the control inputs to oscillate around

fairly steady nominal values. This oscillation due to system probing, in

turn, causes oscillatory behavior in the performance index and RTA vibra-

tions.

Nonlinear Effects

As already noted, the time history of control inputs and the resulting

vibratory response are somewhat more oscillatory for all three controllers at

the maximum thrust condition than the corresponding time histories at the

baseline flight condition. It has been suggested that this oscillatory

behavior is partially due to using an inaccurate initial T-matrix which was

determined by open-loop perturbation about a zero higher harmonic control

operating point at the baseline flight condition. Figures 68 and 69 demon-

strate the extent of the changes in the linearized T-matrix relationship

between RTA vibration components and higher harmonic control inputs that can

occur due to change in flight condition, system nonlinearities, and the

presence of non-zero higher harmonic control. These changes must be adapted

to by the controller for successful convergence to an optimum solution to
occur.

Figure 68 compares two T-matrices determined by open-loop perturbation at

two different flight conditions and two different operating control points.

The T-matrix shown in Fig. 68(a) has been determined by perturbating about a

zero higher harmonic control point at the baseline flight condition. Each

column represents the 4 per rev harmonic response in the RTA to a 1.0 degree
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input for the cosine or sine component of one of the higher harmonic control

inputs. Each element has the dimensions g's per radian. The T-matrix shown

in Fig. 68(b) has been determined by open-loop perturbation about the optimal
control solution previously determined by the baseline deterministic

controller at the maximum thrust condition (CT/O = 0.085). Thus, the open-

loop perturbations were superimposed on the optimal control point shown for

the deterministic controller in Fig. 64. The cosine and sine components of

this optimal control point are shown in Table 12. Thus, the T-matrix shown in

Fig. 68(a) represents the sensitivity of the vibratory response at each sensor

location in the RTA to each of the higher harmonic control inputs at the

baseline flight condition before any higher harmonic control is applied. This

is the T-matrix used to initialize the controller at all flight conditions

considered in this study unless otherwise noted. The T-matrix shown in

Fig. 68(b) represents the sensitivity of RTA vibratory response to control

inputs near convergence (rev 30) of the baseline deterministic controller at
the maximum thrust condition.

TABLE 12

OPTIMAL CONTROL POINT USED FOR OPEN-LOOP

PERTURBATION AT THE MAXIMUM THRUST CONDITION

Cosine Sine

Harmonic Component Component

3 0.89 0.12

4 0.22 0.90

5 -0.69 -0.20

Clearly, these two matrices are completely different. Nearly every

element of the T-matrix determined at the optimal control point for the

maximum thrust condition has changed extensively from the initial T-matrix

used to initialize the controller at this flight condition. Figure 69 shows

graphically the extent of these changes for two representative sensor loca-

tions (cross-beam vertical and longitudinal). In this figure, vibration

response at these two sensor locations to each of the components of higher

harmonic control are plotted in polar form. Thus, the vectors in this figure

have dimensions of g's per radian and represent the sensitivity of the
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vibratory response at these sensor locations to changes in control inputs.

Both Figs. 68 and 69 show significant changes in both amplitude and phase of

these sensitivities. Furthermore, the changes in sensitivity that occur in

going from one flight condition and control point to another are different for

each of the three control inputs. For example, the sensitivity to 4 and 5 per

rev control has increased significantly at the maximum thrust condition, while

the sensitivity to 3 per rev control has decreased. There are also signif-

icant differences in the phase shift between vibratory response at the two

f|ight conditions for each control input.

There are several sources of the significant differences in the T-

matrices shown in Figs. 68 and 69. A change in flight condition is one major

source. One expects significant changes in the relationship between higher

harmonic control inputs and vibratory response when a 2.0 degree change in

collective pitch, which results in almost a 50 percent increase in rotor

thrust, is made. Even larger changes are expected when the resultant high

thrust condition is in stall, as is the case at the maximum thrust condition

(CT/O = 0.085) shown in these figures. Another major source of changes in

the T-matrix at a given flight condition is the variation of the T-matrix with

control inputs due to nonlinear effects in system response. The T-matrix

shown for the baseline condition is based upon no higher harmonic control

being present at the operating point, while the T-matrix shown for the maximum

thrust condition is based on an optimal control point having 3, 4, and 5 per

rev inputs on the order of 1.0 degree. These nonlinear effects can take on

two forms. First, the T-matrix can vary with input amplitude and phase about

a local operating point due to nonlinear changes in response to local changes

in a particular input. Second, the matrix can vary with change in the local

control point. That is, the T-matrix varies with and is dependent upon the

total control vector. For example, the sensitivity to 3 per rev control can

vary with change in 5 per rev control. Thus, at a given flight condition, the

T-matrix can change not only with the amplitude and phase of a particular

control input, but with the "mix" of 3, 4, and 5 per rev inputs.

Figure 69 indicates that a certain amount of nonlinearity is present in

the vibratory response to higher harmonic control. Since the sensitivities

shown are for perturbations about a fixed control point, these nonlinearities

are of the first type where the T-matrix varies with amplitude and phase of a

given control input about a local control point. In a linear system, the

response at a given sensor location would be of the same magnitude for both

the sine and cosine components of a given higher harmonic control input.

Furthermore, these two components would be exactly 90 degrees out of phase.

In Fig. 69, at the baseline flight condition with no higher harmonic control

at the operating control point, the sensitivities to sine and cosine
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components for a given input are about the same magnitude, and have a phase

shift of almost 90 degrees. This indicates that the relationship between RTA

vibration and higher harmonic control is fairly linear at the baseline flight

condition when zero or small higher harmonic control inputs are implemented.

In contrast, the phase differences between sensitivities to cosine and sine

components of a given higher harmonic control input are significantly greater

or less than 90 degrees at the maximum thrust condition. Furthermore,
differences in magnitude are evident. Thus, nonlinearities are evident at

this flight condition and optimal control point; however, they appear to be
fairly moderate.

A separate open-loop study (e.g., no active control) of system nonlinear-

ities and interharmonic coupling has been performed in addition to the closed-

loop simulation of active control. The results of this study are presented in

Appendix A. In this study, the response to higher harmonic control was inves-

tigated at both the baseline flight condition and the maximum thrust condi-

tion. By implementing various amplitudes and phases of 3, 4, and 5 per rev

control at different local control points, the change in response due to the

change in amplitude, phase, and mix of 3, 4, and 5 per rev control inputs has

been determined for both flight conditions. By tracing the response to higher

harmonic control from the fixed system vibratory response in the RTA back

through the hub vibratory response, rotor blade forces, blade motions, and

harmonic airloading, further insight into the extent and sources of non-

linearity and interharmonic coupling has been gained.

As expected, the sensitivity of vibratory response in the RTA to changes

in control inputs is highly dependent upon flight condition. The severity of

both types of nonlinear effects discussed above are also dependent upon flight

condition. At the baseline condition (CT/O = 0.058), 4 per rev vibratory

response in the RTA has been found to be fairly linear for separate local

perturbations of 3 and 4 per rev control and moderately nonlinear for 5 per

rev control. At the highest thrust condition (CT/O = 0.085), RTA response

is moderately nonlinear for all three control inputs. However, nonlinear

coupling effects are significant at both flight conditions. That is, the

sensitivity of vibratory response in the RTA to higher harmonic control inputs

(T-matrix) changes significantly in both magnitude and phase with a change in

the local control point, even though response at this new control point

remains fairly linear at the baseline flight condition and moderately

nonlinear at the maximum thrust condition. The linearized T-matrix relation-

ship between control inputs and RTA response is particularly sensitive to the

"mix" of 3, 4, and 5 per rev control inputs at the maximum thrust condition.

This nonlinear coupling effect at the highest thrust condition is particularly
severe for 3 per rev inputs. The major source of these nonlinear effects is

the blade modal response, rather than nonlinear aerodynamic effects.
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Interharmonic coupling has also been found to be highly dependent upon

flight condition and the local control point. Interharmonic_ coupling of modal

blade response is significantly greater than interharmonic coupling of air-

loads. F_the-rmore, interharmonic coupling between 5 per rev blade modal

response to 3 per rev inputs and between 3 per rev response to > per rev

inputs can b-esubstantial; whereas, the interharmonic coupling of airloads

occurs pr_fp_if between adjacent harmonics. The interharmonic coupled

blade response can be substantially larger than the response at the same

harmonic as the input. Thus, interharmonic coupling of blade response signif-

icant yl-_-i_creases the potential for high blade stresses resulting from the

coupled effect of a given set of higher harmonic control inputs. The source

of this interharmonic coupling is the blade flatwise bending mode response.

The results of the open-loop study of nonlinearity and interharmonic coupling

will be discussed in Appendix A.

Rotor Blade Stresses

The effect of higher harmonic control with the baseline deterministic

controller on rotor blade vibratory stresses and moments at the maximum thrust

condition is shown in Fig. 70. This figure shows the I/2 peak-to-peak blade

bending stresses and torsional moment along the blade span with and without

higher harmonic control at CT/O equal to 0.085. The distributions shown are

for the control solution commanded at rev 30 by the baseline deterministic

controller. As can be seen, the relative increases in stresses and moments

are of the same magnitude or lower than those shown in Fig. II for the base-

line (minimum) thrust condition. Most importantly, the torsional moment is

not nearly as sensitive to higher harmonic control at the maximum thrust

condition as at the minimum thrust condition. While Ref. I0 also noted that

relative increases in blade stresses and moments were smaller as rotor thrust

increased, results at CT/O equal to 0.08 tend to contradict this trend.

Table 13 shows the maximum i/2 peak-to-peak stresses and moments at

critical locations along the blade span before and after higher harmonic

control is applied at all three thrust conditions. The percentage increase in

the maximum vibratory stress or moment is also shown. Indeed, the percentage

increases in the maximum vibratory bending stresses and torsion moment at the

maximum thrust condition are less than those at the minimum thrust condition.

The maximum flatwise stress at CT/O equal to 0.08 also follows this trend of

a lower percentage increase in stress with decrease in rotor thrust; however,

the edgewise bending stress and the torsion moment at this thrust condition

both show larger relative increases than those at the lower thrust condition

(CT/O = 0.058). This may or may not be a matter of a particularly bad mix

of control inputs being commanded by the deterministic controller. In any

case, the vibratory stresses and moments with higher harmonic control at both

CT/O equal to 0.058 and 0.08 are significantly lower than those without

higher harmonic control at the maximum condition.
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TABLE 13

EFFECT OF HIGHER HARMONIC CONTROL ON MAXIMUM ROTOR

VIBRATORY MOMENTS AND STRESSES FOR VARIOUS ROTOR THRUSTS

(Baseline Deterministic Controller)

Rotor Thrust, CT/O

0.058 0.08 0.085

No HHC HHC % Diff No HHC HHC % Diff No HHC HHC % Diff

F1atwise 2363 2678 2878 3204 4228 4451"

(0.394R) +13.3 +11.4 +5.3

N/cm2(ib/in 2) (3426) (3882) (4172) (4646) (6130) (6452)

Edgewise 640 976 1134 2072 2137 4851

(0.265R) +52.5 82.7 +54.6

N/cm2(ib/in 2) (928) (1415) (1644) (3004) (4548) (7033)

Torsion 102 271 138 426 500 713

(0.079R) +167. +207. +42.6

N-m (in-lb) (900) (2400) (1228) (3774) (4424) (6310)

*Maximum flatwise bending stress at maximum thrust condition with higher

harmonic control occurs at blade spanwise location of 0.265R and has value
shown.
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If increases in blade stresses caused by higher harmonic control through-

out the flight regime are of the same magnitude as those at the maximum thrust

condition, blade life would have to be considered. This may lead to the

necessity for redesigning the rotor blade or limiting control inputs to

acceptable levels while accepting less than maximum possible reduction in

vibration. However, certain results of the current study indicate that it may

be possible to guide the controller to acceptable solutions in terms of blade

stresses by placing appropriately weighted terms in the performance index that

are indicative of increases in blade stresses and moments. With proper

weighting, a tradeoff in reducing vibration and maintaining acceptable blade

stress can be reached. With such a term to guide the solution, it may even be

possible to maintain acceptable stress levels without severely sacrificing

reductions in vibration. As discussed previously, the weighting matrix W0

has been used in this study to guide the controller to many significantly

different solutions that achieve about the same substantial reductions in RTA

vibrations but have significantly different effects on rotor blade vibratory

stresses.

The blade stress distributions for one such solution are shown in Fig. 71

for the highest thrust condition. This solution is the result of W e being

used to eliminate 5 per rev control in the baseline deterministic controller.

As can be seen in Fig. 71, the resulting control solution achieved by the

controller with only 3 and 4 per rev control causes almost no increase in the

flatwise bending stress and the torsion moment and only about a 20 percent

increase in edgewise bending stress. Furthermore, the resulting vibratory

response in the RTA is less at all sensor locations, except nose lateral, than

those shown in Fig. 63 for the baseline deterministic controller having all

three control inputs. The resultant vibration level at the nose lateral

sensor location is about the same as the very small initial value present

without higher harmonic control. Thus, eliminating 5 per rev control at the

maximum thrust condition allowed a much more acceptable control solution, in

terms of blade stresses, to be reached and even a slightly lower overall

vibration response in the RTA. However, elimination of 5 per rev control at

the baseline flight condition did not result in significant reductions in

blade stresses. No generalization, such as inhibiting or eliminating 5 per

rev control for better all around control solutions, can be made. It does

indicate that it might be possible to generally guide the controller to much

better control solutions while achieving excellent vibration reduction with an

appropriate term in the performance index.

For this approach to work, it may be necessary to include parameters,

such as blade stresses or rotating blade root shears, from the rotating system

in the performance index to ensure that reductions in vibration are achieved

via properly phased higher harmonic control inputs and modal cancellations of
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small blade loads rather than large loads. This approach should be seriously

considered in future studies. While it is not desirable to have to monitor

blade stresses (or any other parameter in the rotating system) on a production

helicopter, such an approach in future analytical and/or wind tunnel investi-

gations will provide valuable information on the higher harmonic control

phenomenon and its effect on blade stresses. Based on the results of such an

investigation, it may be possible to define parameters in the fixed system

that can be used to predict blade stresses or other parameters in the rotating
system via a state estimator, rather than direct measurement. Such an

approach may then be applicable to a production aircraft.

Rotor Performance

The effect of higher harmonic control on rotor performance is shown in

Table 14 for all three rotor thrust conditions. As rotor thrust is increased,

the effect on each rotor performance parameter increases. The change in rotor

thrust from trim is less than 2.0 percent for all three thrust conditions. It

should be noted that collective and i per rev cyclic pitch were kept constant

at these steady flight conditions. It is recognized that in practice, any

impact of higher harmonic control on rotor forces and moments (thrust,

propulsive force, etc.) would be accounted for by retrimming the helicopter,

which would also have an effect on required torque. The detrimental effects

on propulsive force, and required torque increase significantly at the high

thrust conditions. This is believed to be due to the rotor being near stall

at CT/O equal to 0.08 and well into stall at CT/S equal to 0.085, when

using constant inflow. Thus, such severe effects on rotor performance are not

expected at normal operating conditions. However, the effects shown at the

baseline flight condition (CT/O = 0.058) are significant enough to cause

concern. As discussed for rotor blade stresses, it may be possible to guide

the controller to a better control solution in terms of rotor performance by
including in the performance index an appropriately weighted term that is

indicative of rotor torque. While the severity of the maximum thrust condi-

tion as predicted by the constant inflow simulation may or may not be real,

the simulated flight condition still represents a good test of the ability of

the controller to remain stable and reduce vibration for a severe flightcondition.
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TABLE 14

EFFECT OF HIGHER HARMONIC CONTROL ON ROTOR

PERFORMANCE FOR VARIOUS THRUST CONDITIONS

(Baseline Deterministic Controller)

Rotor Thrust, CT/O

0.058 0.08 0.085

No HHC HHC % Diff No HHC HHC % Diff No HHC HHC % Diff

Thrust 36735 37202 51211 51749 53636 54659

N (Ib) +1.3 +1.0 +1.9

(8255) (8360) (11508) (11627) (12053) (12283)

Torque 25139 26374 30167 33076 35690 41765

N-m +4.9 +9.6 +17.0

(ft-lb) (18542) (19453) ° (22250) (24396) (26324) (30805)

Prop. 4001 3983 4481 4290 2617 1998

Force -0.4 -4.7 -23.6

N (Ib) (899) (895) (1007) (964) (588) (449)

Equiv. 10.26 9.37 -8.7 11.11 9.10 -18.0 6.61 5.19 -21.5

L/D

Thrust Variation Summary

In summary, the active vibration controller has proven to be very

effective in reducing vibration throughout the range of rotor thrust from

CT/O equal to 0.058 (8255 ib) to 0.085 (12053 ib). All three baseline

controllers, which have been tuned at the minimum thrust baseline flight

condition (CT/O = 0.058), achieved substantial reductions in RTA vibrations

at the maximum thrust condition despite the significant differences shown to

exist between the inaccurate initial T-matrix and the T-matrix applicable at

the optimal control point reached at convergence. Reductions on the order of

75 to 95 percent have been achieved in all the dominant vibration components.

These reductions have been achieved with higher harmonic control amplitudes at

3, 4, and 5 per rev of less than 1.0 degree throughout the range of thrust

considered. These control requirements agree with other published theoretical

iii



and experimental results and are quite reasonable for the flight conditions

considered. While retuning of the baseline controllers is not necessary to
achieve these excellent reductions in vibration at convergence, overall

controller performance can be improved by retuning, if desired. By tuning the

controllers for the maximum thrust condition, convergence can be reached more

smoothly and perhaps more quickly. Furthermore, it may be possible to attain

the same vibration reductions at the two high thrust conditions with even

smaller control inputs by using more appropriate weighting on 8 and A0 in the

performance index. The results presented here for various rotor thrusts and

those presented above for various forward velocities indicate that very

effective active vibration control can be achieved over a wide range of flight

conditions. By tuning or optimizing the controller for fairly severe flight
conditions (e.g., a high thrust condition), it should be possible to ensure

optimum performance for these flight conditions while maintaining more than
satisfactory performance at less severe flight conditions.

While the relative increases in vibratory rotor blade stresses resulting

from higher harmonic control are smaller at the maximum thrust condition than

at the other two thrust conditions, these increases are still significant and

will have to be considered in terms of their impact on blade life. However, a
potential for control inputs that does not increase blade stresses has been

demonstrated. Detrimental effects on rotor performance previously noted at

the baseline flight condition are significantly worse at the two high thrust

conditions. These significant increases are most likely due to these two high
thrust conditions being near and well into stall before higher harmonic

control is even implemented. It is not anticipated that such severe effects

will be encountered at normal operating conditions. However, the detrimental

effects that occur at the baseline flight condition still warrant study into
the effect of higher harmonic control on rotor performance. Methods should be

studied for guiding the controller to better control solutions in terms of

other important parameters such as blade stresses and required rotor torque.
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Controller Performance During High

Speed Transient Maneuvers

Each of the three baseline controllers has been evaluated during several

simulated transient maneuvers. While these simulated maneuvers are very

simple in nature, they represent the first step in evaluating the performance

of an active vibration controller at anything other than steady operating or

flight conditions. Each of these maneuvers represents a sudden change in

rotor thrust via a sudden change in collective pitch during an otherwise

steady flight condition. For all but one of these transient maneuvers, the

initial steady flight condition is the baseline flight condition having a

forward velocity of 77.2 m/s (150 kts) and a value of 0.058 for CT/O. After

the sudden change in collective pitch, the resulting steady flight condition,

once all transients subside, is one of the high thrust conditions just

discussed (CT/O = 0.08 or 0.085). Thus, these transient maneuvers can be

considered to be simple simulations for various pu)lups. The last maneuver

considered is just the opposite; the initial flight condition is the maximum

thrust condition and the final flight condition, after a sudden decrease in

collective pitch, is the baseline flight condition. For every one of these

transient maneuvers, the active vibration controllers not only remain stable,
but converge to an excellent control solution having about the same substan-

tially reduced RTA vibration levels as those presented previously for the
corresponding steady flight conditions.

1.0 Degree Increase in Collective Pitch

Figure 72 shows the response of all three baseline controllers to a 1.0

degree step increase in collective pitch. While this "step" increase in pitch
is actually a very sharp ramp spanning one one-hundredth of a rotor revolu-

tion, it is effectively a step since it occurs during the dead time allowed

for transient decay. In this figure, the time histories of 3 per rev cyclic

pitch and the vibration performance index are shown to represent higher

harmonic control commanded in response to the transient maneuver and overall

vibration response, respectively.

The simulated maneuver is as follows. At rev I, the baseline flight

condition (V = 77.2 m/s, CT/O = 0.058) is initialized and numerical transi-

ents are allowed to settle out. At rev 4, the controllers are activated and

allowed to reduce vibration at the steady baseline flight condition until the

end of rev 18, where the controllers have essentially converged to a steady

minimum level of vibration. Thus, the simulation and response shown for the

first 18 revs are identical to that shown in Figs. 8(a) and 8(b) for the

steady baseline flight condition. The 1.0 degree step increase in collective
pitch occurs at the beginning of rev 19 after the controller has finished

updating the control inputs based upon vibration measurements in rev 18. The
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resulting final flight condition, after a11 transients die out, is the same as

the high thrust flight condition with a value of 0.08 for CT/O discussed in

the last section. After allowing transients to decay for 3/4 rev, the vibra-

tion response is harmonically analyzed for I/4 rev, and this information is

passed to the controller at the end of rev 19. At the beginning of rev 20,

the controller makes its first update in control in response to the transient

maneuver. Thus, one complete rev has passed without the controller being able

to respond with an update in control. After rev 20, the controller actively

reduces vibration just as it did for the steady flight conditions, and no
further transients or maneuvers are encountered.

The solid line shown in this figure represents a simulation of open-loop
higher harmonic control for the transient maneuver just described. As can be

seen by the 3 per rev cyclic pitch, a steady level of higher harmonic control

is imp]emented from the beginning of the simulation. These inputs are the

same as those previously determined, by closed-loop active control at the

steady baseline flight condition, to be the optimum set of higher harmonic

control inputs for minimizing vibration at this flight condition. After the

transient maneuver occurs, no change in control is made since the loop is
open. Thus, any changes occurring in the performance index after rev 19 for

the open-loop simulation are due to transients in the vibration response of

the system to a step input. Note that the performance index, after all

transients die out, will remain at about the level shown at rev 30, as will be

shown later for an equal but much more gradual increase in thrust. The final

performance index (0.063) attained by open-loop control is significantly lower

than the baseline value for zero higher harmonic control at the new high
thrust condition (0.319). However, it is substantially higher than that
achieved by the active controller.

In contrast, the three baseline active vibration controllers have been

very effective in not only converging to an excellent control solution that

minimizes vibration at the new steady high thrust condition, but also in

minimizing transient effects. The active controllers immediately begin

updating control and reducing vibration at the beginning of rev 20. This is

long before induced transients have died out, as can be seen by the open-loop

response with no active control. While vibration increases significantly

during the I rev dead time inherent to a I rev update, the peak value of the
vibration performance index for closed-loop active control (0.043) is 60

percent and 32 percent lower than the peak and final values for open-loop
control, respectively. This corresponds to reductions in peak values of

vibration at all six RTA vibration sensors of between 33 and 45 percent.

Furthermore, the peak value of the vibration performance index is over 85

percent lower than the baseline value of 0.319 that would occur at the final
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high thrust condition if zero higher harmonic control was implemented.

Finally, the peak value of the performance index is held to a value that is

almost 60 percent lower than the initial value for the baseline flight

condition with zero higher harmonic control, despite the fact that the final

flight condition, even without transient effects, was shown in Fig. 61 to be a
more severe flight condition. Thus, all three baseline controllers maintain

vibration levels below that of the initial flight condition with no higher

harmonic control despite transient effects and the increase in severity in the
final flight condition.

Since the magnitudes of the vibration response and the performance index

at and near peak response are based upon the harmonic analysis of vibration

signals having significant transient effects, the calculated vibration levels

and performance indices are most likely in error to some degree. However, it

is felt that the trends just cited are indicative of the improvement in the

vibration response to this transient maneuver that has been achieved by the

active controllers. Thus, ali three active controllers remain stable, immedi-

ately reduce vibration when allowed to update control, and minimize the

transient effects to the point allowed by the 1 rev update. It may well be

possible to reduce the peak vibration levels even further by shortening the

time between updates, since the vibration controller could then start actively
trying to reduce vibration sooner. However, the tradeoff is the increased

transient effects on the harmonically analyzed vibration signals. As the time

between updates is decreased, the errors in the harmonically ana]yzed vibra-

tion components will increase. Since the harmonic analysis of the vibration

response is used in updating system identification and in calculating new

control inputs, these errors can significantly degrade controller performance.

At some point, the time allowed for transient decay and for sampling of data

for harmonic analysis will become so short that worse control is obtained than

that resulting from longer dead times. While 1 rev between updates resulted

in excellent controller performance at all flight conditions studied, the
effect of less time between updates should be studied further.

In addition to reducing the peak vibration response, all three baseline

controllers converge very quickly and smoothly to a steady minimum vibration

level in the RTA. Note that, as discussed previously, the minimum levels of

vibration that have been achieved at the new high thrust condition are

somewhat higher than those achieved at the initial moderate thrust condition,
as indicated by the steady levels of J before and after the transient

maneuver. The deterministic and cautious controllers exhibit very similar

behavior during this transient maneuver and have very similar time histories

for all three control inputs and all six RTA accelerations. Furthermore, both
of these controllers reached almost identical levels of vibration in the RTA

at convergence. These final levels of vibration are almost identical to those

reached by the deterministic and cautious controllers at the equivalent steady
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high thrust condition. Note that the reason that the final vibration perfor-

mance index appears to be larger at convergence in Fig. 72 for the transient

maneuver than in Fig. 65 for the same steady flight condition is the much

smaller scale used in Fig. 65 to accommodate the large initial value for this

high thrust condition with no higher harmonic control. The active controller

never allows the vibration performance index to reach these levels, even

during the transient. Figure 73 shows the final RTA vibration levels achieved

by these two controllers and compares them to the vibration levels that would

be present at the initial and final flight conditions in this transient

maneuver _f no higher harmonic control were implemented. Also shown in this

figure is the final RTA vibration response achieved by the open-loop

controller. The final control solutions commanded by these two controllers to

achieve these excellent reductions in vibration are very similar to those

shown in Fig. 62 for the deterministic controller when applied to the

equivalent steady high thrust condition (CT/O = 0.08).

While the dual controller also achieves substantial reductions in vibra-

tion, it converges to a completely different solution as clearly shown in

Fig. 72 for the 3 per rev cyclic pitch. The final RTA vibration levels are

also slightly different from those shown in Fig. 73 for the deterministic and

cautious controllers. While slightly lower vibration levels at the small

lateral components are achieved, slightly higher levels result for the

vertical components at the cross-beam and nose sensor locations. However, the

resultant performance index is about the same. Although a different control

solution is reached, the dual controller still commands amplitudes of control

of less than 0.55 degrees for 3, 4, and 5 per rev.

1.0 Desree Ramp Increase in Collective Pitch

Figure 74 shows the response of both the baseline deterministic and

cautious controllers to a transient maneuver that is very similar to the one

just discussed. The initial flight condition is the baseline flight condition

(V = 77.2 m/s, CT/O = 0.058), a total change in collective pitch of 1.0

degree is again initiated at the beginning of rev 19 after vibration at the

initial flight condition has been substantially reduced, and the final flight

condition is the same high thrust condition with a value of 0.08 for CT/O.

However, in this simulation, the 1.0 degree change in collective pitch is

implemented in ramp fashion with a fairly gradual rate of increase of 0.2

degree per rev. Thus_ the transient maneuver requires 5 revs for completion
and ends at rev 24.

Due to the rather gradual increase in collective pitch, transient effects

in the open-loop controller response are not nearly as noticeable. The vibra-

tion performance index with open-loop control gradually and smoothly increases

to about the same level as that present at rev 30 for the 1.0 degree step
increase in collective pitch, and very little overshoot or oscillation occurs
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in the performance index. While transients most likely are occurring in the

vibration response, they are small enough that the harmonically analyzed

components and, thus, the performance index appears to be changing very

smoothly.

Since the active vibration controllers can now track changes in system

parameters and update control during the maneuver to the new high thrust

condition, transient vibrations are substantially improved over those observed

during the step increase in thrust. The deterministic and cautious control-

lers, again, have very similar performance. At rev 20, which is the first

control update after initiation of the transient, both controllers immediately

begin reducing the steadily increasing vibration level. Even though the
controllers still have the I rev of dead time during each rotor rev when

thrust and, therefore, vibration is continually increasing, the controllers

are able to reduce the peak value of the vibration performance index by 58

percent compared to the peak value achieved during the step increase in

thrust. This is over 83 percent lower than the final value reached by the

open-loop controller and almost 95 percent lower than the value of the

vibration performance index when no higher harmonic control is implemented.

In fact, the controllers are able to track these more gradual changes so well

that they hold the peak vibration performance index to a value that is only

slightly higher than the value for minimum vibration reached at convergence.
After rev 24 when the collective pitch and rotor thrust have reached their

final steady value, the controllers very quickly reduce vibration to the same
minimum vibration levels reached at convergence during both the step increase

in collective and the steady high thrust condition. Thus, these baseline

active controllers, with no retuning for the transient maneuver, do an

excellent job of tracking changes in flight condition and minimizing both

transient and final vibration for a 40 percent increase in thrust over a 5 rev

time span.

2.18 Degree Step Increase in Collective Pitch

Figure 75 shows the response of all three baseline controllers to a 2.18

degree step increase in collective pitch initiated at rev 19. This causes a

47 percent increase in rotor thrust in going from the initial baseline flight

condition (V = 77.2 m/s, CT/a = 0.058) to the final maximum thrust flight

condition (V = 77.2 m/s, CT/O = 0.085). Thus, this simulation is exactly

the same as the 1.0 degree step increase except that the final flight condi-

tion is the maximum thrust condition. As discussed previously, this final

flight condition is well into stall and has significantly higher vibration

levels than the other high thrust condition with CT/O equal to 0.08. For

this reason, the scale in Fig. 75 is much smaller than that in Fig. 72 in

order to accommodate the large resulting peak values of the performance index

and the higher values of required higher harmonic control at this severe final

flight condition. Thus, the first 18 revs of these simulations at the same

baseline flight condition appear quite different, but are identical.
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Despite the much larger increases in vibration that occur at rev 19 for

this step input, all three baseline controllers not only remain stable, but

immediately start reducing vibration as soon as the i rev dead time is over.

The peak values of the performance index with active control are about the

same as that for the open-loop controller. This is due to the apparent lack

of significant overshoot exhibited in the vibration response to the 2.18

degree step increase in collective pitch, as indicated by the open-loop

response for the vibration performance index. This is quite different from

the large overshoot that occurred for the 1.0 degree step. This phenomenon

may be due to the combination of at least two effects. First, the signif-

icantly larger increase in vibration response for this step causes much larger

transient effects in the time history of accelerations at each sensor loca-

tion. This in turn causes large errors in the harmonic analysis. Thus, the

values of vibration and the performance index at and near the peak are most

likely in error to some degree. Second, the substantial increases in drag due

to stall effects at the final flight condition may result in some aerodynamic
damping of the vibration response to the step input.

After rev 20, the deterministic and cautious controllers achieve and

maintain at least an 80 percent reduction in the performance index relative to

peak in just 2 revs. They then quickly and smoothly reduce the vibration

levels to the substantially reduced levels achieved during the equivalent

steady maximum thrust condition, although slightly different final control

solutions are commanded after the transient increase to this flight condition.

Again, the behavior of the deterministic and cautious controllers is very
similar for this rather severe transient maneuver.

While the dual control]er also achieves an 80 percent reduction in the

vibration performance index from its peak value in 2 revs, it cannot maintain

this level of reduction until rev 29. Due to system probing, the dual

controller exhibits more oscillatory behavior than the deterministic and

cautious controllers; however, it eventually achieves about the same minimum
vibration levels by rev 50.

2.18 Degree Ramp Increase in Collective Pitch

Figure 76 shows the response of all three baseline controllers, again

with no change in tuning, to a transient maneuver that has the same initial

and final flight conditions as the 2.18 degree step change in collective pitch
just discussed. However, this same total change in collective pitch is

obtained by a steady increase at a rate of 0.44 degree per rev for 5 revs.

The transient maneuver is initiated at rev 19 and is completed at rev 24.

Thus, this transient maneuver is very similar to the 1.0 degree ramp increase

in collective pitch discussed above, but the rate of increase is over twice as
large.
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As expected, all three controllers do a much better job of reducing

vibration than the open-loop controller for the first four revs of the

maneuver since they are tracking system changes and updating control during

each rev of the maneuver. Furthermore, during these four revs, the control-

lets have maintained significantly lower levels of vibration than the peak

values experienced due to the step input. In fact, if the maneuver were to
end after 4 revs of this ramp input and a total change in collective of 1.76

degrees rather than 2.18 degrees, all three controllers would have reduced the

peak value of the performance index by almost 90 percent over that of the step

response. However, the ramp continues, and the last 0.44 degree change in

collective pitch is implemented between revs 23 and 24. The result is a

fairly significant increase in the calculated performance index at rev 24, as

indicated in Fig. 76. From there on, performance of each of the three

controllers is completely different and fairly poor. Although the cautious

and dual controllers eventually converge to excellent control solutions with

the same minimal vibration levels achieved at the maximum thrust condition in

steady flight, they have peak values of the performance index that are almost

as large or larger than those for the closed-loop controller and those experi-

enced for the 2.18 degree step increase in collective pitch. The determin-

istic controller performance is even worse. Although the peak shown for the

vibration performance index is no higher, it appears to be starting to diverge

after rev 30. However, there is no way of knowing whether convergence would

eventually be achieved since the particular mix of control inputs that occurs
at rev 33 causes numerical difficulties in the simu]ation that cause termina-

tion of the computer run.

Clearly, something occurs between revs 23 and 24 to initiate very poor

controller performance. As will be discussed later, the performance of each
of these controllers during this transient maneuver can be improved signif-

icantly with only slight retuning. Before proceeding with that discussion, it

is appropriate here to try to explain why this maneuver causes such problems

for the controllers.

To explain this, consider the transient maneuver shown in Fig. 77.

During this maneuver, the same change in flight condition (e.g., total change

of 2.18 degrees in collective pitch) from the baseline flight condition to the

maximum thrust condition is implemented even more gradually with a steady rate

of 0.218 degree per rev. Thus, 10 revs are required to complete the maneuver.

As can be seen in Fig. 77, both the baseline deterministic and cautious

controllers perform very well during this maneuver until the end of rev 28.

At this point, 9 out of the 10 revs of the ramp input have been completed and

a total change of 1.962 degrees has been made in collective pitch. The value

of the performance index at this point is just as low as that noted above for
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a total change of 1.76 degrees in collective pitch after 4 revs of the

maneuver shown in Fig. 76. Thus, even though this point represents a much

more severe flight condition, the active controllers have achieved the same

low levels of vibration since they have had more time to track changes in

system parameters, and smaller changes in collective pitch are made during
controller dead times.

Simply put, the controllers have exhibited excellent performance until

rev 28 even though most of the total change in collective has been made and a

fairly severe flight condition is present. At this point, the last 0.218

degree increase in collective is implemented at the same rate to complete the

maneuver at rev 29. Note that this fairly small change in collective pitch

causes a fairly large increase in overall vibration. Furthermore, this change
may actually be even larger due to transients and errors in the harmonic

analysis. This is indicated by the very large change in vibration between

revs 29 and 30 even though the maneuver has been completed. It does not

appear that this further sudden increase, which occurs after the end of the

maneuver, is precipitated by control changes since both the controllers

implement changes in control on the order of 0.05 degree for all three control

inputs just before this sudden increase in vibration. Thus, due to severe

stall effects in the constant inflow model used, a very large increase in

vibration occurs in the last 0.5 degree change in collective pitch. This has

been verified by running two open-loop steady thrust conditions with no higher

harmonic control. At the maximum collective pitch (11.0 degrees), which

corresponds to what has been called the maximum or highest thrust condition,

the thrust level actually decreases from that achieved with a collective pitch

of 10.5 degrees. Furthermore, the vibration response, required rotor torque,

rotor drag, and blade stresses all increase significantly in going from the

10.5 degree collective pitch to the 11.0 degree maximum collective pitch.

Note, for reference purposes, that the baseline flight condition corresponds
to a collective pitch of 8.82 degrees, and the other high thrust condition

discussed previously (CT/a = 0.08) has a collective pitch of 9.82 degrees.

From the results presented in Fig. 77, it appears that a good part of
these severe stall effects occur in the last 0.2 degree increase in collective

(e.g., between 10.8 and II.0 degrees). Thus, in Fig. 77, this sudden increase

in vibration with corresponding changes in system parameters causes the

controllers to respond with a large change in control which immediately
brings vibration back down. However, somewhat oscillatory behavior occurs

while the controllers identify the changes in system parameters. As can be

seen in Fig. 77, both controllers eventually reach an excellent but completely

different control solution that minimizes vibration at the steady final flight
condition.
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Based on this discussion, it is clear that what is happening in Fig. 76

is the result of severe stall effects as predicted by the constant inflow

model. While a more appropriate variable inflow model would most likely

result in different vibration response, this simulation provides a good test

of controller performance with severe changes occurring very suddenly. In

Fig. 76, the controllers, as already pointed out, perform well for the first 4
revs of the transient maneuver. Then, the last rev causes severe problems for

the controllers. Note that in this last rev of the maneuver the change in

collective is 0.44 degree in ramp fashion to the maximum collective pitch of

11.0 degrees. As just noted, this is the region having the severe stall

effects. As further penetration of the stall regime occurs near the comple-

tion of this maneuver, a large sudden increase in vibration occurs along with

significant changes in system parameters. As discussed in Appendix A, the T-

matrix relationship between RTA vibration and higher harmonic control inputs

is most sensitive to changes in flight condition and control inputs at the

high thrust flight conditions and large control inputs. Thus, it is not

surprising that a large increase in the performance index occurs at the end of

the transient maneuver since essentially a step change in vibration response

occurs during the i rev dead time for the controllers. It is actually

satisfying that the cautious and dual controllers remain stable and are able

to converge fairly quickly to a minimum vibration solution. As discussed in

the next section, the deterministic controller can also be tuned to allow

convergence to be achieved.

Retuning of Controller Parameters for Improved Performance

While the transient performance of the controllers shown in Fig. 76 are

fairly poor compared to the excellent results achieved for the other transient

maneuvers discussed so far, it should be noted that all three controllers,

assuming the deterministic controller does not go unstable but eventually

converges, maintain a level of vibration that is about the same or less than

that resulting from the open-loop simulation. Furthermore, these levels are

only momentary peaks that occur due to transient effects during controller
dead time and are immediately reduced when updates in control are implemented.

Also note that peak vibration levels are well below those that would occur if

no higher harmonic control were implemented. There are two possible ways to

try to improve controller performance for this maneuver simulation. One that

should be explored is to decrease the time between updates. If transient

effects do not degrade the accuracy of the harmonic analysis too severely,

more updates during the maneuver should allow better system identification and

faster reduction of vibration. The second way is to retune the controllers to

better match the flight condition.

It may be possible to improve controller performance significantly by

retuning either the Kalman filter identifier, the minimum variance control

algorithm, or both. As discussed above and in Appendix A, fairly large and
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rapid changes in system parameters can occur as the rotor enters the stall

regime. For example, the sensitivities of RTA vibration response to both

changes in flight condition and changes in higher harmonic control inputs are

significantly different in this region than at more moderate flight condi-

tions. Furthermore, these sensitivities are dependent upon the mix of 3, 4,

and 5 per rev control inputs. Thus, it is likely that a different tuning than

that determined at the fairly linear and moderate baseline flight condition

will be required to adequately track the type of changes in system parameters
that are encountered in the stall regime. Retuning of the Kalman filter

identifier for this transient maneuver was not explored in this investiga-
tion.

While the Kalman filter identifier may not be optimally matched to this

transient maneuver or the stall regime, it may be that the identifer can

provide adequate identification for good controller performance if the minimum

variance control algorithm is slightly retuned. It is likely that the sudden

changes in system parameters that occur when first penetrating the stall

regime are much worse than those that occur due to changes in control inputs

or further slight changes in flight condition within the stall regime. In

addition, the large sudden increases in vibration that occur when entering

stall are accompanied by large transients. Once the rotor has penetrated the

stall regime and transients have subsided, the identifier may be very capable

of providing satisfactory identification. Thus, if the minimum variance

algorithm is tuned to maintain good short term control while the identifier is

adapting to the sudden changes in system parameters, it may be possible to

achieve good overall performance without retuning the Kalman filter identi-

fier. Retuning of the minimum variance control algorithm for improved

controller performance at this transient maneuver (0.44 deg/rev ramp increase

in collective pitch) has been explored briefly in this investigation. Figures
78 through 80 demonstrate that controller performance can be effected and

improved significantly during this maneuver by slightly retuning the minimum
variance control algorithm.

One way to improve controller performance for all three controller types

is to ensure stability by increasing internal rate-limiting (e.g., increase

WAS). This would be particularly appropriate for the deterministic controller

for this simulation. The increased rate-limiting would prevent the controller

from making large sudden changes in control in response to the large sudden

increase in vibration that occurs at the very end of the transient maneuver.

This allows the transients to subside and gives the identifier the chance to

adapt to variations in system parameters, before large control updates cause

further changes to be tracked. Unfortunately, since WAe is held constant,
this will cause much slower changes in control and much slower reductions in

vibration everywhere else in the flight regime. Thus, only slightly better

performance than the open-loop controller is likely to be achieved in the

early part of the maneuver, and convergence would most likely be very slow
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after the maneuver is completed. However, it may be possible to achieve good

overall performance by developing a method of varying WAe with flight condi-

tion or vibration response. This approach was not pursued in this investiga-

tion.

Figure 78 shows the performance of two deterministic controllers in

addition to the open-loop controller and baseline deterministic controller

shown previously in Fig. 76. Other than the slight differences in tuning of

WA0 and We, these controllers have exactly the same configuration as the
baseline deterministic controller. The first new deterministic controller

shown in Fig. 78 maintains the same WAe as the baseline but also implements a

weighting on total control (We = 100). In so doing, the controller prevents

large control inputs from being commanded in response to the large sudden

increase in vibration at rev 25, but does not slow down the controller

elsewhere. This allows the controller to quickly reduce vibration after the

maneuver is completed, but does not help in reducing peak response. Further-

more, the fairly large value of We used does not allow the controller to

reduce vibration quite as much at convergence as other controllers.

The second new deterministic controller shown in Fig. 78 uses a smaller

value of WAe than the baseline controller for reduced rate-limiting and

no total e limiting. This allows the controller to make somewhat larger

changes in control early in the maneuver when system identification is still

good. In so doing, slightly larger reductions in vibration are achieved in

the first 4 revs of the ramp increase in collective pitch. Furthermore, these

larger changes in control provide more information to the identifier which

gives it the potential of better identifying changes in system parameters in

the early part of the maneuver. The identifier is better able to adapt to

these sudden changes in system parameters due to penetration of the stall

regime if system identification is already very good when they occur. In any

case, this controller not only converges quickly to substantially reduced

vibration levels after the maneuver is completed, but also substantially

reduces the peak. Clearly, the price paid for this excellent performance is

the very large control inputs commanded and their inherent detrimental effects

on other criteria. Furthermore, using this reduced rate-limiting in practice

to improve controller performance for a fairly severe transient maneuver is

somewhat risky unless additional means are used to ensure stability (e.g.,

total 8 limiting).

Figure 79 shows that the same type of reduction in limiting on control

inputs via a smaller % also provides substantially improved performance in the
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cautious controller. Again, the price is large control inputs. Note that

this controller converges to steady control inputs.

Figure 80 shows the effect of increasing system probing in the dual

controller during this maneuver by eliminating all limiting. Amazingly

enough, the unlimited dual controller provides the best performance of all

three controllers during this transient maneuver. While it takes slightly

longer to reach convergence in J due to significant system probing still

occurring at rev 50, it maintains the same reduced peak vibration response and

also maintains all three control inputs to magnitudes on the order of 1.0

degree or less. It appears that, if the problems due to initial system

probing (which obviously cause totally unacceptable performance at the

beginning of this simulation) can be solved, then the unlimited dual

controller may have the potential for better performance during transients

than the deterministic and cautious controllers. However, using a totally

unlimited dual controller is too risky in practice. Thus, it is necessary to

see if the same type of performance can be achieved with a practical external

limit placed on A0. It may be that practical rate-limits due to hardware

limitations will inhibit the inherent system probing to the extent that the
dual controller cannot work successfully.

2.18 Degree Step Decrease in Collective Pitch

Figure 81 shows the performance of the baseline cautious controller

during a transient maneuver in which a 2.18 degree decrease in collective

pitch is implemented in step fashion at rev 19. The result is a change in the

flight condition from the initial maximum thrust condition (V = 77.2 m/s,
CT/_ = 0.085) to the baseline moderate thrust flight condition (V = 77.2

m/s, CT/O = 0.058). Clearly, the increase in vibration that occurs during
the 1 rev dead time is immediately reduced after the controller is able to

respond. Furthermore, the controller very quickly converges to almost exactly

the same vibration levels in the RTA as it did for the baseline steady flight

condition. It is interesting to note that the controller has converged to a

completely steady set of control inputs, whereas it had a tendency to drift at

the baseline flight condition. The important point is that the controller is

able to determine that the increased vibration occurring at rev 20 requires a

decrease in the magnitude of the control inputs at the final baseline flight
condition. As demonstrated in the discussion of baseline controller results

at the steady baseline flight condition, the controller could have achieved

the same reduced vibration levels by finding an appropriate mix of largeinputs.
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Local System Model

Figure 82 compares the performance of a local deterministic controller to
that of the baseline deterministic controller, which is based on the global

system model, during a transient maneuver. The transient maneuver is the 2.18

degree step increase in collective pitch which results in a change in the

flight condition from the baseline flight condition to the maximum thrust

condition, which is in stall. The configuration and tuning of the local model

is exactly the same as that of the baseline controller with global model.

Clearly, the baseline deterministic controller with global model provides much

better performance than that of the local model. The local model is much more

oscillatory and requires quite a bit longer to converge. The same can be seen

to be true for the local and global cautious controllers shown in Fig. 83 for

the same transient maneuver. The global model shown in this figure is the

baseline cautious controller, and the local model, again, has the same config-

uration and tuning. Except for the slightly more oscillatory behavior at the

maximum thrust condition, this is the first indication of a difference in

behavior between the local and global system models. It is anticipated that

these local controllers can be retuned to achieve basically the same perfor-

mance as the global baseline controllers. However, this may indicate that the
local model is somewhat more sensitive to tuning at different flight condi-

tions or perhaps more sensitive to inaccurate vibration _easurements due to

large transient effects. Perhaps, the local controllers have not been

optimally tuned and this did not make a difference at more moderate flight

conditions. The only way to answer some of these questions and adequately

compare the local and global models is to optimally tune both a local and

global controller of similar configuration (e.g., deterministic with internal

rate limiting) at a fairly severe but representative flight condition, and

then subject these optimally tuned controllers to several fairly severe flight
conditions.

Alternate Controller Configurations

Many alternate controller configurations have been investigated in

addition to those already presented. Among those considered are several that

calculate updates in control based on fixed system hub vibration rather than

RTA response and several that allow 2 revs to elapse between control updates
rather than I rev. The effect of these modifications will be briefly

discussed below.

Effect of Hub Sensors

In all the results presented above, vibration was actively controlled at

only the RTA sensor locations listed in Table I and shown schematically in
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Fig. 3. Since these sensors are placed throughout the RTA and measure

components of vibration in three orthogonal directions, it is expected that

the excellent reductions achieved are also indicative of significant

reductions elsewhere ih the RTA. However, the reductions achieved at these

particular locations may be partially due to modal cancellations occurring in

the RTA, which might result in somewhat smaller reductions elsewhere. Thus,
it may be possible to attain similar vibration levels at these locations as

well as better overall reductions throughout the fuselage by actively

controlling the response at remote sensors closer to the source of vibratory
excitation in the rotor.

This approach has been implemented at the baseline flight condition by
using a deterministic controller to actively control vibration at sensors near

the hub in the fixed system. The controller configuration is the same as that

of the baseline deterministic controller except that the hub sensors shown in

Table 1 are used instead of the RTA sensors. The value of the WAS has also
been decreased to reflect the significant differences in magnitude of

vibration response at the hub and the RTA sensors. All six hub sensors are

equally weighted and the procedure followed in the simulation is the same as

that described previously. The rationale for this approach is that using

higher harmonic control to achieve decreased rotor hub excitations will also

result in reduced vibration throughout the RTA. If such an approach is

successful, it may be easier to incorporate the adaptive controller into new

aircraft since there would be no need to determine critical locations in the

fuselage or an appropriate weighting matrix for the many different fuse]age
sensors.

Figure 84 shows the effect of using hub sensors rather than local sensors

in the RTA representing the fuselage. This figure compares the hub and RTA

vibration response when the controller is actively controlling either local

sensors in the RTA or remote sensors at the hub (fixed system). The resulting
vibration levels are compared to the baseline response that occurs when no

higher harmonic control is applied. Clearly, the controller is able to reduce

overall vibration both at the hub and in the RTA when either set of sensors

are used; however, larger overall reductions may be achieved at the sensors

being actively controlled than at those simply being monitored. For example,
the controller achieves larger overall reductions in vibration at the hub

sensor locations when actively controlling these sensors. While one might

expect reduced vibration in the RTA as a result of the decreased forcing at
the hub, it is readily seen that vibration levels in the RTA are smaller when

the RTA sensors are used. Despite the higher vibration levels at the hub, the

controller achieves larger reductions in the RTA (when using RTA sensors);
which are evidently due to proper phasing of HHC inputs and hub forces with

modal cancellation occurring in the fuselage.
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These results indicate that the remote hub sensors are probably not a

viable alternative to local sensors placed at points of interest in the fuse-

lage, unless the use of equally weighted hub vibrations results in acceptable

levels of vibration at all critical points in the fuselage of a particular

aircraft. It would probably be easier to tune the weighting matrix directly

for a set of local sensors rather than that of the hub sensors in order to

determine the best tradeoff in vibration that can be achieved at each of the

critical fuselage locations. However, the use of hub sensors can be poten-

tially useful when used in conjunction with local vibration sensors. Since

the response of the helicopter to higher harmonic control inputs is nonlinear

there is a greater possibility of reaching the optimum solution rather than a

local solution if both the amplitude and the phase of the fuselage modal

response are controlled. This might be accomplished by including both hub and

fuselage sensors (appropriately weighted) in the performance index. The hub

sensors work to reduce the amplitude of the fuselage excitation without regard

to phase, and the fuselage sensors work to reduce the fuselage response by

vectoral cancellation with emphasis primarily on phase. This approach could

potentially lead to a vectoral cancellation of small numbers as opposed to a

vectoral cancellation of large numbers (fuselage sensors) or uncontrolled

response to minimized forcing (hub sensors). If both hub sensors and local

fuselage sensors are included in the performance index, this type of control

can be implemented and could result in lower hub and fuselage vibrations.

Effect of 2 Rev Update

All the results presented so far have been based upon controller config-

urations allowing one complete rotor revolution to pass before updating

control inputs. As shown in Fig. 5, this allows 3/4 rev for transients to

decay and I/4 rev to perform the harmonic analysis of vibration response. As

shown in Fig. 6, allowing only 3/4 rev for transient decay results in a

certain amount of error in the harmonicaily analyzed, vibration response

supplied to the controller. The errors involved clearly will depend upon the

nature of the A6 input, the flight condition, the initial vibration level, and

the sensitivity of a particular vibration component to higher harmonic

control. Regardless, the accuracy of information supplied to the controller

will be increased by allowing more time for transients to subside before

harmonic analysis of the vibration response is performed, unless of course the

flight condition changes during this controller dead time. For such a case,

changes in vibration will not only be due to variations in control, but to new

flight conditions and accompanying transients. Since the accuracy of measured

response directly impacts the identification of system parameters as well as

the calculation of updated control inputs, the time allowed between updates is

critical to overall controller performance.
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The effect of increasing time between updates to 2 revs is shown in

Figs. 85 through 88. Each of these figures compares the transient response of

two different controller configurations at a particular flight condition. The

only difference in the configurations in any one of these figures is the use

of 1 or 2 revs between controller updates. For a 2 rev update, I-3/4 revs are

allowed for transient decay and 1/4 rev is again used for harmonic analysis.
Both a variety of controllers and a variety of flight conditions are
represented.

Figure 85 compares the time histories of the performance index and a

representative control input amplitude (3/rev cyclic pitch) for deterministic

controllers operating at the baseline (150 kt) flight condition. The

controller configuration used and the transient response shown for a l-rev

update is exactly the same as that for the local deterministic controller with

external rate-limiting (ASmax = 0.2 deg/rev) shown in Fig. 23. The config-

uration for a 2-rev update is also the same except for the increased time for

transient decay, which clearly has a significant effect upon controller

performance. The use of 2 revs between updates smoothes the time histories of

both the performance index and the control inputs by allowing more accurate

response measurements to be sent to the controller; however, the erratic

behavior inherent to external limiting is still apparsnt at this fairly mild

flight condition. Furthermore, the overall performance of the baseline deter-

ministic controller is still significantly better even with a l-rev update,

since larger reductions in vibration are more rapidly achieved with smaller
control inputs.

One of the reasons for the significant improvements in performance for
this externally rate-llmited controller is the erratic behavior and rather

large changes in control (on the order of 0.2 degree) still being implemented

at rev 30. Figure 86 shows the effect of a 2-rev update on the performance of

a much better behaved controller at the same baseline flight condition. Both

transient responses shown are for the internally rate-limited baseline deter-

ministic controller having either a l-rev or a 2-rev update. Due to the small

inputs required to minimize vibration and a fairly accurate initial T-matrix,

there is little difference in the response for these two configurations at

this flight condition. Due to the moderate first step in control inputs, some
smoothing of the initial time histories results from the increased time

between updates, but the difference is not significant enough to warrant using

longer than a 1 rev update for this controller and flight condition.

Figure 87 compares the time histories for the baseline deterministic

controller having 1 and 2-rev updates at the maximum thrust condition

(CT/a=0.085). Substantial differences do exist for this case, especially in

the 3/rev cyclic pitch amplitude time histories. The controller converges to
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a steady set of control inputs much more smoothly and quickly with 2 revs

between updates. This is most likely due to both the large initial change in

control inputs, which result in a much larger transient response in the RTA

than that caused by comparatively small changes at the baseline condition, and

the errors in the initial estimate of the T-matrix, which is the same as that

determined and used at the baseline flight condition. By allowing more time

for the transient response to die out, more accurate vibration measurements

are supplied to the controller each rev for making updates in the T-matrix and

calculating new control inputs. Note that the oscillatory behavior in the

control inputs due to these effects tend to cancel, and only slightly better

performance is achieved in terms of the smoothness and rapidity of convergence

of the performance index. Furthermore, both configurations appear to be

converging to about the same set of control inputs.

If the controller had been retuned with increased weighting on A8 in the

performance index (WAe) to reflect increased vibration levels at the new
flight condition, smaller initial changes in control would be implemented, and

the resultant transient response of the controller would most likely be much

smoother. Thus, after retuning the controller for this flight condition, it

is expected that only minor differences would again be apparent for the

baseline deterministic controller having i or 2-rev updates. In practical

applications, the controller would not be initialized at such a severe flight

condition. Rather, the controller would probably be initialized and activated

at a much milder flight condition, perhaps in hover, and allowed to track

changes in system parameters and gradually implement larger control inputs as

more severe flight conditions are encountered.

While a 2 rev update results in slight improvements in overall controller

performance at steady flight conditions, a i rev update allows the controller

to reduce vibration much more quickly during transient maneuvers, as shown in

Fig. 88. Since fewer updates are made during the maneuver shown in Fig. 88 (a

total change of 2.18 degrees in cyclic pitch made steadily over 5 revs

starting at rev 19), the cautious controller takes longer to reduce vibration.

The additional delay in updating control inputs could cause further problems

(including the possibility of instability) during extended maneuvers.

As might be expected, the time allowed between updates results in a

tradeoff in the ability to smoothly implement control inputs and reduce vibra-

tion and the ability to handle transient maneuvers. Since the results of the

current investigation indicate that a 1-rev update does not significantly

compromise controller performance during steady flight conditions and can

significantly improve performance during maneuvers, it appears to give a

viable compromise between minimizing errors due to transient vibration effects

and minimizing the time between updates for transient maneuvers. However, as

previously indicated, the effect of using less than I rev between updates

should be considered in the future, especially during extended maneuvers.
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CONCLUSIONS

A Real-Time Self-Adaptive (RTSA) active vibration controller previously

developed and studied at the United Technologies Research Center has been used

as the framework in developing a computerized generic controller incorporating

a set of improved algorithms. These refined algorithms allow the capability

to define many different configurations by selecting one of three different

controller types (deterministic, cautious, and dual), one of two system models

(local and global), and one or more of several different methods of applying

limits on control inputs (external and/or internal limiting on higher harmonic

pitch amplitude and rate). The initial RTSA controller configuration was

based upon a deterministic controller with local system model and external

rate-limiting. A baseline configuration has been defined for each of the

three controller types. All three baseline controllers are based on the

global system model and tuned for best effectiveness at a high speed (77.2

m/s, 150 kt) operating/flight condition. The baseline deterministic and dual

controllers have internal and external rate-limiting respectively. After

proper tuning, each of these baseline configurations significantly improves

overall controller performance and effectiveness in reducing helicopter

vibration compared to the initial RTSA controller. The following are the

conclusions from this analytical evaluation study.

• All three baseline controllers provide more effective vibration

reduction and converge more quickly and smoothly with much smaller

control inputs than the initial RTSA controller.

At the high speed flight condition (77.2 m/s, 150 kt) for the H-34 rotor,

all three controllers achieved nearly the same solutions with 3, 4, and 5 per

rev control inputs on the order of 0.3 degrees, and reductions in vibration on

the order of 75 to 95 percent at all significant vibration sensor locations

throughout the wind tunnel Rotor Test Apparatus (RTA) simulating the fuse-

lage.

• The baseline active controllers are effective at a wide range of

steady flight conditions of different severities. No distinct

advantage in terms of controller performance and effectiveness has

been identified for any of the three controller types at the flight

conditions considered in this investigation.

Excellent overall performance has been achieved throughout a range of

forward velocities from a moderate speed (57.6 m/s, 112 kt) condition to the

baseline high speed (77.2 m/s, 150 kt) condition. Excellent overall perfor-

mance has also been achieved at two high speed, high thrust flight conditions

with CT/_ equal to 0.08 and 0.085 and forward velocities of 77.2 m/s

(150 kts). These two high thrust conditions are particularly severe flight
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conditions. According to the constant inflow model used, both are at or well

into stall even before higher harmonic control is implemented. Reduction in

vibration on the order of 75 to 95 percent is achieved at all significant

sensor locations throughout the RTA for all steady flight conditions con-

sidered. These reductions in vibration are achieved at all flight conditions

with amplitudes of 3, 4, and 5 per rev control on the order of 1.0 degree or

less. The required amplitudes of control generally decrease with decrease in

forward velocity or rotor thrust.

• In addition to steady flight conditions, all three controllers

exhibited good performance characteristics for the transient maneuvers

investigated.

For the transient maneuvers investigated, involving sudden changes in

thrust due to step or ramp changes in collective pitch, the controllers

remained stable, maintained peak vibration response well below the levels that

would be present without higher harmonic control, and quickly reduced vibra-

tion to the same levels achieved at steady flight conditions. Retuning of the

controllers was required to achieve satisfactory performance during only one

transient maneuver that involves a change in thrust from the baseline high

speed (minimum thrust) flight condition to the maximum thrust condition. Due

to stall effects at the end of this maneuver, controller performance without

retuning was somewhat less than satisfactory. Retuning of the controllers

resulted in excellent performance in terms of vibration reduction; however,

higher control inputs were commanded.

• All three controllers are very adaptable as demonstrated by their

excellent performance at a wide variety of flight conditions.

These controllers have been initialized at all flight conditions with the

same initial T-matrix that was determined by open-loop perturbation about a

zero higher harmonic control point at the baseline high speed flight condi-

tion. Since the maximum thrust condition had a significantly different T-

matrix due to stall effects predicted using constant inflow, the controllers

had to adapt to errors in the initial T-matrix as well as changes in

sensitivity resulting from updates in control inputs. For all steady flight

conditions studied, the controllers have been able to adequately identify and

update changes in the T-matrix in order to command a set of control inputs

that substantially reduce vibration. Furthermore, the excellent performance

of these controllers at all steady flight conditions has been achieved without

any retuning of the baseline configurations, although there are some

indications that overall performance might be improved somewhat by slightly

retuning the controllers.
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• Significant nonlinear and interharmonic coupling effects can occur at
the more extreme conditions.

Results from a separate open-loop study of vibration response to higher

harmonic control show that significant nonlinear and interharmonic coupling

effects occur at the maximum thrust condition. While vibration response at

this flight condition is only moderately nonlinear for changes of any given

control input about an otherwise fixed control point, nonlinear coupling

effects are significant. That is, the linearized transfer matrix (T-matrix)

relating RTA vibration response to higher harmonic control inputs is highly

dependent upon the mix of 3, 4, and 5 per rev inputs. Since the minimum

variance control solution is directly dependent upon the T-matrix, the

controller must adequately adapt to these changes in sensitivity before
satisfactory controller performance can be achieved.

• Higher harmonic control can have significant detrimental effects on
rotor blade stresses.

Significant increases in rotor blade stresses have been noted at all

flight conditions investigated and will have to be accounted for in any proof-

of-concept wind tunnel or flight test to demonstrate the higher harmonic

control concept. The torsion moment is particularly sensitive to higher

harmonic control. These increases in blade stresses are due in part to the

significant interharmonic coupling of blade response noted in the open-loop
study.

e Significant detrimental effects of higher harmonic control on rotor

performance were predicted for the more extreme flight conditions.

Performance effects are insignificant at moderate velocities (e.g., 112

to 130 kt), but tend to increase with increase in velocity and/or rotor

thrust. A fi_e percent increase in required torque was noted for the baseline

(150 kt) flight condition. Larger effects have been noted at the high thrust

conditions. While these results are approximate due to the constant inflow

model used, they do point out the potential for rotor performance changes with
higher harmonic control.

• Essentially the same vibration reductions can be achieved with a

multitude of significantly different control solutions having

/ differing effects on blade stresses and rotor performance.

Multiple control solutions (different levels and mixes of harmonics of

control) are possible for achieving low vibration. The detrimental effects on

rotor blade stresses and rotor performance tend to increase with increasing

magnitude of higher harmonic control inputs, and can be reduced by minimizing

vibration with the smallest inputs possible. Use of internal limiting has
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been shown to be very effective in doing this. At least one solution was

found at the maximum thrust, maximum vibration condition that had nearly the

same stresses as those without higher harmonic control. These results

indicate that it may be possible to guide the controller to better solutions,

by adding appropriately weighted terms to the performance index, that

effectively reduce vibration, but have minimal effects on other criteria

(e.g., blade stresses and rotor performance).

• Global and local system models result in similar controller

performance at steady flight conditions.
__r

It has been found in this investigation that the performance of all three

controller types at the baseline and maximum thrust flight conditions is very

similar for both the local and global system models when the same overall

configuration is used (e.g., controller type, method of limiting) and similar

tuning of internal parameters is specified (e.g., Po' Q' R, WAS , ASmax).
Significant differences in controller performance for the local model have

been noted only during the transient maneuvers. Controllers based on the

local system model were generally less effective without retunlng durlng

transient maneuvers than those based on the global model. While it is"

anti-cipate_d-thatretuning would result in equally effective performance, these

results for transient maneuvers may indicate that the local model is more

sensitive to tuning or to errors in system measurements due to transient
effects.

• All three active controllers (deterministic, cautious, and dual) are

very effective in reducing helicopter vibration. The baseline

deterministic and cautious controllers exhibit very similar perfor-

mance characteristics at most flight conditions. The behavior of the

dual controller is somewhat different.

The baseline deterministic and cautious controllers have been found to be

rather insensitive to less than optimum tuning. On the other hand, the dual

controller, while equally effective in reducing vibration, tends to have

slightly poorer short term control and somewhat more oscillatory behavior due

to system probing. In addition, the dual controller is quite a bit more

sensitive to the tuning of its internal parameters; however, once it was tuned

at the baseline flight condition, the dual controller did not require any

retuning at most other flight conditions.
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RECOMMENDATIONS

Based upon the results presented, several areas requiring further atten-

tion have been identified and the following recommendations are made.

o It is recommended that further study of the controllers be conducted

at more severe flight simulations.

The results of this investigation have proven the baseline controllers

to be very effective at the flight conditions considered. The next logical

step is evaluation at many different flight conditions in order to fully

explore controller capabilities and limitations. Due to the scope and nature

of the current investigation, in which many different configurations and al-

ternative modifications were exp!ored for their potentia! for improving over-

all controller performance, only a limited number of simplified flight simula-

tions were made to evaluate the performance of even the best configurations.

Furthermore, the computational efficiency required by the large number of

computer cases necessitated the use of constant inflow and quasi-steady aero-

dynnamics in the aeroelastic analysi§. Thus, it is recommended that further

study be conducted at several additional flight simulations. Representative

flight conditions should be selected to fully test selected controllers

throughout the flight envelope using appropriate aerodynamic models to

represent the actual flight conditions as realistically as practical. Vari-

able inflow and unsteady airfoil data should be used in appropriate flight-

conditions to fully evaluate the effect of higher harmonic control on vibra-

tlon, rotor blade stresses, and rotor performance. In addition to several low

and high velocity and high thrust steady flight conditions, a few simulations

should be developed to test controller performance during more extensive

transient maneuvers. One of the objectives of this study should be to deter-

mine the need for retuning the controller at various flight conditions and

maneuvers. If significant retuning is required, it may be necessary to

develop some method for varying parameters such as WAO to match the flight

condition. During the course of this study, the use of more than i update per

rev should be explored. While it is recognized that such a study requires the

number of controller configurations to be held to a minimum, it is recommended

that dual controller configurations be included, since the results of the

current investigation did give some indication that dual controllers may have

the potential for providing better controller performance during extended

transient maneuvers. Methods for improving initial start up response should

be explored (e.g., variable X and Aemax) . A comparison of controllers at

more extensive flight simulations should further answer the question of

whether the dual controller concept should be developed. The additional

"hands-on" experience gained through such a study will prove useful in tuning

the controller for maximum effectiveness and should increase the probability
of a successful proof-of-concept wind tunnel test.
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• Results of this investigation do not indicate a distinct advantage for

any of the three controller types. If the baseline deterministic

controller can be shown to have good performance at more extensive,

rapidly varying, transient maneuvers, it is recommended that the

deterministic controller be selected for final development for a

proof-of-concept wind tunnel test.

The deterministic controller is at least as effective in reducing

vibration as both the cautious and dual controllers and provides as good or

better short term control. Furthermore, the deterministic control

config_rat-i6n is based upon a simpler algorithm that is somewhat easier to

tune than those for the cautious and dual controllers. The variables used to

tune the deterministic minimum variance control algorithm (e.g., WA0 and

W 0) have some basis in real world hardware that can be used as a guide in

their selection for optimum controller performance in practical control

systems; whereas, both the cautious and dual controllers contain covariance

matrices from the____Kalmanfilter identification algorithm in their minimum

variance control algorithms. Not only are these covariances unrelated to

pitch control hardware functions, but they usually have to be selected by

trial and error in an attempt to optimize the Kalman filter identifier as

we_l. This coupling between the tuning of the minimum variance control

algorithm and the Kalman filter identification algorithm is accounted for with

the stochastic control constant %, which is completely lacking in practical

significance as well. Furthermore, this coupling can cause the cautious and

dual controllers to be harder to tune initially when adapting the controllers

to different aircraft. If it is found that retuning of the controllers are

required for satisfactory behavior during practical flight maneuvers or more

severe steady flight conditions, it may be simpler to develop an algorithm to

accomplish this when using the deterministic controller since it does not have

this direct coupling between algorithms. Finally, the deterministic

controller has proven to be a very stable controller configuration whereas,

the dual controller demonstrated a tendency for instability when non-optimally

tuned. For these reasons, the cautious and dual controllers would have to

exhibit significantly better performance to warrant their selection over the

det_inistlc co_troller-with internal limiting.

• It is recommended that a study be made into the effects of each

separate control input as well as the mix of 3, 4, and 5 per rev

control on controller performance, blade stresses, rotor performancej

system nonlinearities, etc.

The objective of such a study should be to determine if better overall

controller performance can be achieved by weighting control inputs unequally.

Results of the current study show that certain combinations of control inputs

result in various improvements in controller performance, blade stresses,
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and/or controller performance at different flight conditions. Some important

considerations that should be addressed are I) sensitivity of blade stresses

and rotor performance to each individual control input, 2) nonlinearities

associated with each input, and 3) controller performance and effectiveness in

reducing vibration when various control inputs are inhibited or eliminated.

While the open-loop investigation of nonlinear and interharmonic coupling

effects addresses some of these considerations at two particular flight

conditions, further study at several different flight conditions is necessary
to draw any conclusions on whether equal weighting on 3, 4, and 5 per rev

control is indeed the best set of control inputs for optimum overall

controller performance in terms of vibration reduction, blade stresses, and
rotor performance. Both of the above studies should prove useful to the

practical application of active vibration control by providing further insight
into the fundamental characteristics of higher harmonic control.

• It is recommended that a study be made into the use of appropriate
terms in the performance index to guide the controller to better

solutions in terms of blade stresses and rotor performance.

Some of the important considerations in such a study should be l) the

feasibility of such an approach, 2) practical parameters that can be measured

readily in a production aircraft, 3) the magnitude of realizable improvements

that can be expected in blade stresses and rotor performance, 4) the effect on

vibration reduction, 5) the effect on controller performance, 6) the charac-

teristics of the low stress and/or improved rotor performance solutions, 7)

the relative weightings required on the vibration parameters, control inputs,

blade stresses, and rotor performance parameters, and 8) sensitivity of
required weighting matrices to change in flight condition.

For this approach to be successful for blade stresses, it may be

necessary to include parameters from the rotating system (e.g., blade stresses

or rotating .blade root shears) in the performance index to ensure that reduc-

tions in vibration are achieved via properly phased higher harmonic control

inputs and modal cancellations of small blade loads rather than large loads.

While it is not desirable to have to monitor blade stresses (or any other

parameter in the rotating system) on a production helicopter, such an approach

in future analytical and/or wind tunnel investigations will provide valuable

information on the higher harmonic control phenomenon and its effect on blade

stresses. Based on the results of such an investigation, it may be possible

to define parameters in the fixed system that can be used to predict blade

stresses or other parameters in the rotating system via a state estimator,

rather than through direct measurement. Such an approach may then be
applicable to a production aircraft.
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Fig. 2(a) Rotor Test Apparatus in Wind Tunnel



Fig. 2(b) Schematic of NASTRANModel of Rotor Test Apparatus,Wind Tunnel Support
Struts, and BalanceFrame Structure
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Fig. 30 Effect of Internal Rate-Limitingon Vibratory BladeStressesand Moments
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Dual Controller
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Fig. 54 Effect of StochasticControl Constanton DualController Performance
at Baseline Flight Condition
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e3C e3S 04C 84S 05C 85S

NOSE LAT C 1.262 0.881 -0.699 0.470 0.617 0.144

S -0.962 1.394 -0.717 -0.635 -0.317 0.787

NOSE VENT C 1.246 -5.046 5.844 0.755 -1.867 5.302

S 4.662 1.175 0.145 5.103 -4.133 -3.170

CROSS-BEAU LONG C 3.139 -7.282 10.410 2.638 -3.034 10.251

S 6.772 2.999 -1.637 9.486 -8.741 -4.879

CROSS-BEAM VENT C -4.949 7.026 -12.874 -4.761 3.412 -13.613

S -6.595 -4.762 4.224 -12.190 12.408 5.142

TAIL LAT C -1.356 -0.643 0.552 -0.449 -1.032 -0.027

S 0.711 -1.443 0.655 0.621 0.047 -1.036

TAIL VENT C -4.292 10.514 -14.675 -3.530 4.319 -14.333

S -9.770 -4.096 2.032 -13.315 12.121 6.990

a) OPEN-LOOP PERTURBATION AT BASELINE FLIGHT CONDITION ABOUT ZERO CONTROL
(03=0/0 ° , 04 = 0/0 ° , 05= 0L_0_° )

°3C 03s 04C 04S 05C 05S

NOSE LAT C 0.696 -0.492 -0.262 -0.618 1.011 1.463

S 1.488 1.886 1.558 1.402 -0.946 1.648

NOSE VERT C 0.959 -1.076 6.278 11.462 -15.938 2.926

S -0.253 1.331 -8.887 0.057 6.288 -13.614

CROSS-BEAM LONG C 3.002 -2.879 9.584 16.807 -22.622 6.038

S 0.423 3.588 -13.312 1.230 5.643 -19.304

CROSS-BEAM VENT C -5.217 4.681 -10.023 -16.648 21.356 -8.439

S -1.538 -5.852 13.538 -2.832 -0.532 18.134

TAIL LAT C -0.387 0.104 0.280 0.609 -2.337 -0.983

S -1.125 -1.005 -0.682 -0.469 -0.119 -0.963

TAIL VENT C -4.044 3.918 -13.217 o24.217 32.729 -8.392

S -0.469 -4.881 19.132 -1.570 -8.765 27.934

b) OPEN-LOOP PERTURBATION AT HIGH THRUST FLIGHT CONDITION ABOUT OPTIMAL CONTROL
SOLUTION (03=0.90/82 ° , 04=0.92/14°, 05=0.72/253 ° )

Fig. 68 Comparison of Initial and Final Transfer Matrix at High Thrust Flight Condition
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Fig. 69 Effect of Rotor Thrust on Sensitivity of Cross-Beam Vibrations to Higher
Harmonic Control
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Fig. 70 Effect of Active Vibration Control on Rotor Blade Vibratory Moments and
Stresses at High Thrust Flight Condition
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1.0 DEGREE STEP INCREASE IN COLLECTIVE PITCH (CT/O-=O058 -- 0.08)
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Fig. 72 ControllerPerformanceDuringTransientManeuver
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Fig. 73 Predicted RTA 41RevVibrationsfor 1.0 Degree Step Increasein Collective Pitch



1.0 DEG (0.2 DEG/REV) RAMP INCREASE IN COLLECTIVE PITCH (CT/O-= 0.058"--" 0 08)
V= 77.2 m/s (150 kts)

(.9
LU 0.75

:f
O /---STEADY OPTIMAL CONTROL FOR

I-- 0.50 / INITIAL FLIGHT CONDITION_1
O 0.25 ------- "--¢_>-

LU J

[ I I Irr 0 I I I I I I

0.100 -- - l_l OPEN-LOOP CONTROL

N I_ DETERMINISTIC. W_r__ CAUTIOUS
x" '1
am 0.075 II
_z ,I
0

<z 0.050 ,II
rr
©
LL

,,,rr 0.025 / II

a_ \111"

0 I- I I I I I I I I

0 5 10 15 20 25 30 35 40 45 50

ROTOR REVOLUTIONS

Fig. 74 Controller PerformanceDuringTransient Maneuver
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218 DEGREE STEP INCREASE IN COLLECTIVE PITCH (CT/a = 0.058--" 0.085)
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Fig. 75 ControllerPerformanceDuringTransientManeuver
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2.18 DEC(0.44 DEG/REV) RAMP INCREASE IN COLLECTIVE PITCH (CT/0=0058_0.085)
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Fig. 76 ControllerPerformanceDuringTransientManeuver
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2.18 DEG (0.22 DEG/REV) RAMP INCREASE IN COLLECTIVE PITCH (CTIO= 0058 _ 0085)
V= 77.2 m/s (150 kls)

1.0

Fig. 77 Controller Performance DuringTransient Maneuver



2.18 DEG (0.44 DEG/REV) RAMP INCREASE IN COLLECTIVE PITCH (CTIo = 0.058--" 0.085)
V= 77.2 m/s (150 kts)

OPEN-LOOP CONTROL

W_e = 1000 (BASELINE)

W&_t = 1000. Wt) = 100

W_e = 100

Fig. 78 Deterministic Controller Performance During Transient Maneuver
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2.18 DEG (0.44 DEG/REV) RAMP INCREASE IN COLLECTIVE PITCH (CT/O= 0.058--" 0.085)
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Fig. 79 Cautious Controller PerformanceDuringTransientManeuver
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2.18 DEC (0.44 DEG/REV) RAMP INCREASE IN COLLECTIVE PITCH (CT/O= 0.058 _ 0.085)
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BASELINE CAUTIOUS CONTROLLER
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DETERMINISTIC CONTROLLER WITH ",0WEIGHTING

2.18 DEG STEP INCREASE IN COLLECTIVE PITCH (CTI0=0058"--"0.085)

V= 77.2 m/s (i50 kts)

Fig. 82 Comparisonof Global and LocalController Performance During
Transient Maneuver
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CAUTIOUS CONTROLLER

2.18 STEP INCREASE IN COLLECTIVE PITCH (CT/O = 0.058 "-* 0.085)

V= 77.2 m/s (150 kts)

Fig. 83 Comparisonof Global and LocalController PerformanceDuring
Transient Maneuver
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EXTERNALLY RATE-LIMITED DETERMINISTIC CONTROLLER
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GLOBAL MODEL

BASELINE DETERMINISTIC CONTROLLER
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BASELINE DETERMINISTIC CONTROLLER
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BASELINE CAUTIOUS CONTROLLER
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APPENDIX A

OPEN-LOOP NONLINEAR AND INTERHARMONIC RESPONSE

Charles Niebanck

Sikorsky Aircraft

Background

It is fairly well known from previous higher harmonic control (HHC)

studies that rotor response to HHC has a degree of nonlinearity and interhar-

monic coupling (i.e., the rotor response perturbations are not strictly

proportional to HHC inputs, and HHC input at a certain harmonic will create

rotor responses at other harmonics). Despite this, in order to avoid undue

mathematical complexity, the controller algorithms are designed on the basis

of a rotor whose response is essentially linear, at least for a practically

useful range of HHC increment size. The real-time self-adaptive controller

configurations investigated herein do not consider the degree of interharmonic

coupling as a controlled parameter. The interharmonic coupling that arises in

the rotor is therefore combined with the response at the HHC frequencies in
the G400 time history solution.

It is apparent that nonlinearity and interharmonic coupling may degrade

the performance of the existing controllers. Nonlinearity will decrease the

accuracy of the linearized calculations used by the controller to update HHC

inputs and reduce vibration. The effects of interharmonic coupling combine

with HHC frequency rotor response and are transmitted to the airframe or rotor

support system where they appear as blade passage frequency vibrations.

Therefore, it is possible for interharmonic coupling response from one HHC

harmonic frequency to oppose the effects of HHC at the other two HHC frequency
inputs. This creates the possibility of HHC amplitude requirements for vibra-

tion reduction which are higher than they would be without interharmonic
coupling.

Objective of Open-Loop Nonlinearity and

Interharmonic Coupling Study

The objective of the open-loop (i.e., controller inactive) study is to

further understand the nonlinearity and interharmonic coupling characteristics

of rotor response, and to provide a basis for possible definition of practi-

cable criteria on the selection of controller or rotor parameters which could
minimize degrading effects of these phenomena.



Specific concerns to be addressed in the pursuit of the above objective
are:

• Understanding of the extent and source of nonlinearity and interharmonic

coupling.

• Assessment of the degree to which nonlinearity and interharmonic coupling

change between sample operating conditions of the rotor.

• Exploration of the extent to which nonlinearity and interharmonic

coupling vary between different components of input HHC.

Description of Open-Loop Higher Harmonic Control (HHC)

Cases for Nonlinearity and Interharmonic Coupling Investigation

Table A-I presents the set of G400 Rotor Aeroelastic Analysis open-loop

HHC cases chosen for this analytical study of nonlinearity and interharmonic

coupling. A description of this analysis appears elsewhere in this report.

HHC at the indicated amplitudes and phases was applied, and the G400 time

history solution was allowed to settle to a steady state. Note that each case

defined by a line in Table A-I designates a group of several G400 runs. The

cases were assigned to investigate the variation of nonlinearity and interhar-

monic coupling with various amplitudes and phases and with single and multi-

cyclic HHC inputs. Two rotor operating conditions were investigated as shown.

These were consistent with the conditions chosen for the closed-loop adaptive

controller investigation. Cases I through 9 were HHC perturbations about zero

HHC amplitude. Cases 10 through 12 are HHC perturbations superimposed on the

optimal HHC case shown with Table A-I. Cases I0 through 12 examine the extent

of nonlinearity and interharmonic coupling as the controller achieves such a

solution, for comparison with perturbations about zero HHC, which represent

conditions at controller turn-on.

Description of Parameters and Presentation Format for

Evaluation of Nonlinearity and Interharmonic Coupling

The parameters examined for evidence of nonlinearity and interharmonic

coupling were accelerations of the Rotor Systems Test Apparatus (RTA) at blade

passage frequency (4P), single blade vertical root shears, blade flatwise,

edgewise, and torsion modal responses, and blade out-of-plane airloads at a

selected radial position.

Nonlinearity of RTA and nonlinearity and interharmonic coupling of rotor

response were examined in terms of the cosine and sine amplitude response of
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the various parameters. The polar response plots, represented by Fig. A-l,

present the cosine versus sine parts of a stated response parameter at some

stated frequency. For example, Fig. A-3 presents the cosine versus sine

response of tail vertical vibration at the 4P blade passage frequency. An HHC
input at some stated amplitude and phase will result in sine and cosine values

of the response parameter, which will appear as a point on the polar plot.

Returning to the Fig. A-I example, hypothetical points for an HHC input of

1.5, 0, and -1.5 degrees are indicated, for some phase angle €. Note that the

-1.5 degree input is equivalent to a +1.5 degree input with a ±180 degree
phase shift.

In order to indicate the degree of nonlinearity, a series of separate HHC
conditions were run at a given flight condition. A constant increment in

amplitude or phase of HHC was applied between each condition. For example, a

series of cases at -1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5 degrees and a constant

phase angle 0 might be run. Connecting these points results in a contour such

as the sample in Fig. A-I. In similar fashion, a series of HHC conditions at

constant amplitude and phase angles of 0, 45, 90, 135, 180, 225, 270, 315, and

360 degrees might be run. This results, of course, in a closed contour. The

degree of nonlinearity present affects the shape of the constant phase and
constant amplitude contours.

If the coupled rotor-airframe/RTA system is completely linear, the

changes in the various response parameters from the zero HHC baseline state

could be obtained by multiplying the complex HHC input value by some complex

constant. If one considers the polar form of the complex quantities involved,

the mapping on the polar plot of the change in the response parameter due to a

certain HHC increment can be expresed in the following way:

z, Oz = (k, Ok) * (e, Oe)

Z, OZ = (k * O), (Ok + O0)

where Z, CZ is the complex response with amplitude Z and phase angle ¢Z; k, _k
is a complex constant with magnitude k and angle Ok; and e, €0 is the

complex input component of HHC. Thus, the response amplitude change from zero

HHC is proportional to the HHC amplitude, and the phase angle of the response
is equal to the HHC phase angle plus a constant.

Therefore, equal increments of HHC amplitudes at a constant phase would

map as equidistant points along a radial straight line starting at the zero

HHC point in the response polar plot. On the other hand, equal increments of

HHC phase at constant HHC amplitude would map on the response plot as points
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at constant angular increments along circles with the zero HHC response at the

center. Note that this mapping or transformation between HHC input and system

response is equivalent to multiplying by a constant T-matrix.

The above obervations lead to the notion of judging the degree of system

nonlinearity by comparing response tracks on the polar plots to radial

straight lines or circles, as a series of appropriate HHC amplitudes at

constant phase, or phases at constant amplitude are input to the system,

respectively. Therefore, an immediate qualitative feel for the degree of

nonlinearity is available merely by inspecting a series of such plots,

generated for various responses within the system for various baseline flight
conditions.

Although the above means of qualitative evaluation is valuable, some less

subjective and more concise method is required for evaluation of the large

number of polar plots that are generated by a detailed study. A means of

quantifying the degree of nonlinearity is indicated in Fig. A-I, in terms of
two numbers which quantify the departure of the response amplitude and phase

from what would result from a linear system. An HHC amplitude of 1.5 degrees

was selected arbitrarily for this purpose. Referring to Fig. A-I, a response

due to HHC at +1.5, 0, and -1.5 degrees at some phase angle _ is plotted. The

magnitude (distance on the polar plot) of the response change due to +1.5

degrees is divided by the similar quantity due to -1.5 degrees. The departure
of this result from unity provides a quantitative measure of amplitude

nonlinearity. A measure of the angle nonlinearity is provided by the angle
between a line from the zero HHC response point to the respective +1.5 degree

and -1.5 degree response points as indicated.

Interharmonic coupling refers to the generation of responses in the rotor

at harmonic frequencies different from the HHC blade pitch frequency. The

polar response plot was also used as a means of evaluating the degree and
character of interharmonic coupling due to HHC. Figure A-2 provides a

generalized sample of such a plot, which is analogous to Fig. A-I, except for

inclusion of responses at frequencies other than the HHC frequency. As with

Fig. A-I, inspection of the plot provides a qualitative impression of the

degree and character of the interharmonic coupling. If interharmonic coupling

is small, little change from the baseline zero HHC response will be noted at

frequencies other than the specific input HHC frequency. As explained in

connection with Fig. A-I, the degree of nonlinearity of the interharmonic

coupling can be judged qualitatively or quantitatively from the departure of
the tracks from radial straight lines or circles as, respectively, HHC

amplitude is varied at constant phase, or HHC phase is varied at constant

amplitude.
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A quantitative evaluation of interharmonic coupling is also required, to

facilitate comparisons and overviews when multiple response parameters and

flight conditions are to be studied. Thus, evaluation parameters are formed

by using the distances on the polar plots between the response points for +1.5

degrees and -1.5 degrees. As indicated on Fig. A-2, 143 is the evaluation

parameter for 3P response due to 4P HHC input, and I4s is the parameter for 5P

response due to 4P HHC input. The parameter I_3 is the ratio of the distance
between the ends of the 3P track divided by the distance between the ends of

the 4P track, as indicated in Fig. A-2. In similar fashion, five other inter-

harmonic coupling parameters are defined. These reflect 5P response due to 4P

HHC, 4P and 5P response due to 3P HHC, and 3P and 4P response due to 5P HHC.

Evaluation of nonlinearity with respect to HHC input will proceed by

first examining an RTA control point (namely the tail vertical accelerometer)

as a sample system output parameter. Similarly, evidence of interharmonic

coupling in the rotating system will be examined by starting with single blade

vertical root shear vibratory loadings. Subsequently, blade bending and

torsion mode response and aerodynamic loadings will be examined to provide

insight on the source of nonlinearity and interharmonic coupling.

Presentation and Discussion of Open-Loop Results

An overview of the nonlfnearity results for the response of the RTA to

HHC inputs appears in Table A-2, in terms of the blade passage frequency

acceleration at the tail vertical control point. The nonlinearity, expressed

in terms of the parameters defined in Fig. A-I, is considered mild, at least

in terms of the results of perturbations about the zero open-loop HHC condi-

tion. Some increase in nonlinearity is evident for the 5P HHC input, and as
the rotor lift is increased from the CT/O = 0.058 condition to the
CT/a = 0.085 condition.

An Overview of the interharmonic coupling results appears in Table A-3,

in terms of the single-blade vertical root shear response to HHC inputs, and

the parameters defined in Fig. A-2. It appears that interharmonic coupling

increases with rotor lift and can become quite large. For example, the 3P

vertical shear force increment due to 11.5 degree 4P sine HHC is 1.7 times as

high as the corresponding 4P vertical force increment. Substantial coupling

can exist not only between adjacent harmonics, but also between 3P response
due to 5P HHC and 5P response due to 3P HHC.

Samples of the G400 Aeroelastic Analysis results in terms of the polar

plots used to prepare Table A-2 are provided in Figs. A-3 through A-7. Figure
A-3 shows tail vertical response for the CT/O = 0.058 condition as a func-

tion of 5P HHC amplitude and phase input. The response is considered mildly
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nonlinear, as indicated by variations in spacing between lines of constant HHC

amplitude, and curvature in the constant phase HHC tracks. Figure A-4 shows

the effect of multi-harmonic HHC for an input of 1.5 degrees of 3P HHC.

Adding the indicated ±I degree of 5P HHC changes the shape of the constant

amplitude HHC track, showing some mild nonlinearity. Figure A-5 presents

simplified plots showing the effects of rotor lift condition on the response

to 3P sine HHC input. The increase in lift causes the response to HHC to

become more nonlinear, as shown by the curvature in the track of pure sine HHC

input. Figure A-6 exhibits simplified plots showing the effect of the

controller-determined optimal HHC on the response to open-loop 5P sine HHC.

Note at zero open-loop input, the vibration response is much smaller in the

right-hand plot because of the optimal HHC applied by the closed loop system.

The incremental response due to the open-loop HHC appears reasonably similar,

indicating no gross effects of nonlinearity. Figure A-7 shows results that

are somewhat different for 3P open-loop HHC inputs. The plots in Fig. A-7

show tracks of constant HHC input phase at 0-180 and 90-270 degrees with

varying amplitude, and a track of constant HHC amplitudes at 1.5 degrees for a

phase sweep of 0 to 360 degrees. The incremental change in response due to 3P

HHC is considerably smaller in the presence of the pre-existing optimal HHC,

and a larger amount of nonlinearity is indicated.

Samples of the G400 Aeroelastic Analysis results, in terms of the polar

plots used to prepare Table A-3, are provided in Figs. A-8 through A-10.

Figure A-8 shows the single-blade vertical root shear load harmonic response

variation as various amounts of 4P sine HHC are applied at the CT/O = 0.058

condition. The response is reasonably linear, but the variation of 3P and 5P

loadings compare in magnitude to the 4P loadings. Figure A-9 shows similar

data for the CT/O = 0.085 condition. Some similarities with Fig. A-8 may be

noted. The trajectory of the 4P response is similar in length and direction,

for example. The size of the 3P and the 5P responses have, however, increased

and the 3P response to 4P HHC is larger than the 4P response. Figure A-IO

presents the same type of data when the open-loop HHC is applied as a pertur-

bation about the controller-defined optimal HHC. The general trend of the

three harmonic response components is similar, but the relative amount of 5P

response is even larger.

Diagnostic Investigation of Sources of

Nonlinearity and Interharmonic Coupling of HHC

The previous paragraphs provided an overview of nonlinear and inter-

harmonic coupling behavior at the appropriate system output points - namely an

RTA acceleration control point and the rotating system hub shears.
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In the following, a search for the sources of the nonlinear and inter-

harmonic coupling behavior will be conducted, using system internal dynamic

response data available from the G400 runs. Because of the nonlinear effects

evident in Fig. A-7 for 3P HHC and 3P HHC plus optimal HHC, Figs. A-If through
A-13 (similar to A-8 through A-10 except for NHC frequency) have been

presented. At CT/a=0.058 vertical root shear response (VRSR) due to 3P is

linear with significant 4P coupling, as shown in Fig. A-If. At CT/O=0.085

VRSR at 3P due to 3P is still essentially linear, as shown in Fig. A-12. The

length of the 3P track is still unchanged, but interharmonic coupling has

become nonlinear. At CT/O=0.085 with optimum HHC (Fig. A-13), VRSR at 3P

due to 3P is more nonlinear, and the length of the track is only about 30

percent of the length in the two preceding plots for cases without optimal

HHC. This indicates that the rotating rather than the fixed system contains

the source of the reduction in sensitivity to 3P HHC that appears on the right
hand side of Fig. A-7. It also appears that nonlinearity is most evident in
the interharmonic coupling response, at least for 3P HHC.

Figures A-14 through A-21 present details of the modal and airloads

response to 3P HHC alone. First, flatwise bending mode 3P response to 3P is

comparatively linear, with small though nonlinear interharmonic coupling, as

shown in Fig. A-14. Second, flatwise bending mode response (Fig. A-15)

exhibits large and nonlinear interharmonic coupling in its response, as does

the third flatwise bending mode (Fig. A-16). The first edgewise bending mode

response shown in Fig. A-17 is, like the first flatwise bending mode, compara-

tively linear with relatively minor interharmonic coupling. The torsion mode

response shown in Fig. A-18 is relatively linear, with substantial coupling of

4P response. The out-of-plane airloads are also relatively linear, with

substantial coupling of 4P response, as shown in Fig. A-19.

The flatwise airloads are the principal forces entering the rotor system

as a result of HHC. Since these are comparatively linear with HHC input, it
is indicated that the increased nonlinearity of the vertical root shear

response (see Fig. A-12) is due to the inherent nonlinearities present in the
blade dynamic response.

The flatwise airloads display considerable interharmonic coupling. In

terms of Fig. A-19, considerable 4P loads result from 3P HHC inputs. An over-

view of airloads interharmonic coupling ratios is given in Table A-4, in a
manner similar to Table A-3. The interharmonic coupling increases with lift

and other HHC components, but remains milder in comparison to vertical root

shears harmonic interaction shown in Table A-3. Review of Figs. A-14 through
A-18 for relative amounts of interharmonic coupling suggest that the second

and third flatwise bending mode response is the principal source of inter-

harmonic coupling increase between the airloads and the root shears. Simpli-
fied analytical considerations were employed to assess the source of the

interharmonic coupling present in the airloads response to HHC.
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Local blade lift loading due to HHC can be expressed simply by:

pc (mr + Vsin_) 2 ¢La aHHC
LHHC = 2

where r is the blade radius

V is forward velocity of the helicopter

is the blade azimuth angle

CL= is the lift curve slope

aHHC is angle of attack due to HHC

By letting aHHC=03sin 3_, 04sin 4,, 65sin 5_ and expanding the expression
with common trigonometric identities, one obtains expressions for harmonic

parts of LHHC. These were evaluated numerically and ratios formed, similar to
those from the G400 results in Table A-3. These analytical ratios are

presented in Table A-5.

Comparison of Table A-5 with the results from Table A-4 at the

CT/a = 0.058 condition indicates that most (70 or 80 percent) of the low

lift interharmonic coupling airload is attributable to the above basic term.

Departure of the airload versus angle of attack from the above linear

relationship and harmonic blade deflections wil] add additional interharmonic

coupling. This could explain the increase in interharmonic coupling shown in

Table A-4 for the higher lift conditions.

In addition to local nonlinearity revealed by curvature and increment

spacing on the polar plots, a second type is evident by the disparity in

magnitude of system response to 3P inputs, as shown in Fig. A-7, as a result

of adding the multicyclic optimal HHC input. This tendency is also revealed

in the single-blade vertical root shear plots, by comparing the 3P response in

Figs. A-12 and A-13. Adding the optimal controller HHC reduces the 3P HHC

incremental root shear response to close to I/3 of its former value as

measured by the length of the 3P track. Comparing the corresponding 3P air-

loads tracks on Figs. A-19 and A-20, one finds that addition of the optimal

multicyclic input reduces the airloads to the blade to about 80 percent of its
former value.

The disparity is apparently primarily due to a difference in blade modal

response. Figures A-21 and A-22 show 3P first flatwise and edgewise bending

mode responses that are, respectively, about I/2 and I/5 of their magnitudes

without the multicyclic input.
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Concluding Remarks - Nonlinearity and Interharmonic Coupling

At relatively low lift (CT/O=0.058) 4P airframe acceleration response

to HHC is essentially linear for 3P and 4P inputs, and moderately nonlinear
for 5P inputs. At moderate lift (CT/O=0.085) 4P airframe acceleration

response to HHC is moderately nonlinear in character for all three HHC
frequency components (3P, 4P, 5P).

The response per unit input of HHC perturbation changes significantly

with flight condition and with co-existing multicyclic HHC input. This is

true even though response is essentially linear with respect to those

localized perturbations. Multicyclic optimal HHC was found to have a partic-

ularly severe effect on the amplitude and linearity of the vibration response

to superimposed 3P open-loop HHC inputs. In general, blade mode bending

response appears to be the source of most of the nonlinearity in the response.

Airloads interharmonic coupling is principally between adjacent harmonics

(i.e., 3P HHC produces significant 4P, 4P HHC produces significant 3P and 4P,

5P produces significant 4P). It appears that airload interharmonic coupling

is basically of a magnitude that could be expected from the product of local

dynamic pressure, lift curve slope, chord, density, and HHC angle varying at
3, 4, or 5P.

Actual blade response interharmonic coupling is generally substantially
greater than the airload interharmonic coupling. This additional inter-

harmonic coupling was greater at the higher lift conditions, and appears to be

due to blade bending mode response. Interharmonic coupled response can be

very large (substantially higher than response at the HHC perturbation input

frequency). Its amplitude and phase vary substantially with rotor operating

condition and with superimposed multicyclic HHC. Interharmonic coupling
between 5P response to 3P HHC and between 3P response to 5P HHC can also be

substantial, and variable with different flight conditions and superimposed
multicyclic HHC.

From the above, it can be expected that interharmonic coupling can cause

a substantial increase or decrease in the HHC amplitude that would otherwise
be required.

From the cases considered in this study, no systematic relationship of

HHC response nonlinearity and interharmonic coupling with flight condition can

be ascertained. It appears that nonlinearity and interharmoni¢ coupling are

inherent in the rotor response, principally in blade aeroelastic response.

The levels of nonlinearity and interharmonic coupling present for the flight
conditions considered in this study did not prevent successful controller

operation. It is believed that controller operation can be enhanced with

respect to HHC amplitude required and convergence rates if the degrading
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effects of nonlinearity and interharmonic coupling could be minimized.

It is also believed that the degrading effects of nonlinearity and inter-

harmonic coupling will be best minimized by using a systematic series of trial

weighting factors on the HHC amplitude components of the performance function,

applied and evaluated over a representative series of flight conditions during
the controller tuning process.
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TABLE A-I - OPEN-LOOP HHC CASES FOR NONLINEARITY

AND INTERHARMONIC COUPLING STUDY

FORWARD SPEED V = 150 kts

CASE CT/a 3P INPUT 4P INPUT 5P INPUT

AMP PHASE AMP PHASE AMP PHASE

(deg) (deg) (deg) (deg) (deg) (deg)

1 0.058 0-2.5 0-360

2 0.085 0-1.5 90,270

3 0.058 0-2.5 0-360

4 0.085 0-1.5 90,270

5 0.058 0-2.5 0-360

6 0.085 0-1.5 90,270

7 0.058 1.5 0-360 I 0,180

8 0.058 1.5 0-360 I 0,180

9 0.058 1.5 0-360 i 0,180 1 0,180

10 0.085 0-1.5 0-360

11 0.085 0-1.5 0-360

12 0.085 0-1.5 0-360

NOTES - TABLE A-I

I. Indicated amplitude variations were generally at intervals of I/2
degree.

2. Indicated phase variations were at intervals of 90° or 45" as
appropriate.

3. Cases I-9 are perturbations about zero HHC inputs. Cases 10-12 are

perturbations about a controller-defined optimal HHC input listed
below:

COSINE SINE
HARMONIC PART PART

3 .89 .12

4 .22 .90
5 -.69 -.20
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TABLE A-2 - OVERVIEW OF NONLINEARITY OF RESPONSE OF

RTA TO OPEN-LOOP HHC INPUTS

RTA 4P TAIL VERTICAL ACCELERATION

CASE CT/O HHC INPUT RESPONSE
NONLINEARITY

MAG _n

(deg)

1 0.058 3P SIN .97 14

3 0.058 4P SIN 1.12 25

5 0.058 5P SIN 1.42 19

7 0.058 3P SIN, 1° 4P COS 1.00 8

7 0.058 3P SIN, -I ° 4P COS 1.08 -8

8 0.058 3P SIN, I° 5P COS 1.08 10

8 0.058 3P SIN, -I ° 5P COS 1.19 -25

9 0.058 3P SIN, l° 4P COS, 5P COS .92 25

9 0.058 3P SIN, -I ° 4P COS, 5P COS 1.3 25

2 0.085 3P SIN .89 -32

4 0.085 4P SIN .75 2

6 0.085 5P SIN .45 29

I0 0.085 3P SIN + OPTIMAL HHC .67 -9

11 0.085 4P SIN . OPTIMAL HIqC .78 -13

12 0.085 5P SIN + OPTIMAL HHC 1.19 23
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TABLE A-3 - OVERVIEW OF INTERHARMONIC COUPLING OF

RESPONSE OF SINGLE-BLADE VERTICAL SHEAR TO 14HC

CASE CT/O HHC INPUT INTERHARMONIC
COUP],ING RA IO

3P 4P 5P

I 0.058 3P SIN 1.0 0.57 0.09

3 0.058 4P SIN 0.83 1.0 0.44

5 0.058 5P SIN 0.30 0.59 1.0

2 0.085 3P SIN 1.0 0.83 0.36

4 0.085 4P SIN 1.7 1.0 1.2

6 0.085 5P SIN 0.61 0.65 1.0

I0 0.085 3P SIN + OPTIMAL HHC 1.0 1.8 0.71

II 0.085 4P SIN + OPTIMAL HHC 1.5 1.0 I.I

12 0.085 5P SIN + OPTIMAL HHC 0.76 0.64 1.0
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TABLE A-4 - OVERVIEW OF INTERHARMONIC COUPLING OF

OUT-OF-PLANE AIRLOADS RESPONSE (.78R) TO HHC

INTERHARMONIC

COUILING _TIO

CASE CT/C HHC INPUT 3P 4P 5P

1 0.058 3P SIN 1.0 .42 .06

3 0.058 4P SIN .50 1.0 .49

5 0.058 5P SIN .09 .50 1.0

2 0.085 3P SIN 1.0 .73 .17

4 0.085 4P SIN .75 1.0 .92

6 0.085 5P SIN .19 .71 1.0

10 0.085 3P SIN+OPTIMAL HHC 1.0 .88 .43

II 0.085 4P SIN+OPTIMAL HHC .69 1.0 .86

12 0.085 5P SIN+OPTIMAL HHC .42 .75 1.0
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TABLE A-5 - INTERHARMONIC COUPLING RATIOS FROM

TANGENTIAL VELOCITY HHC FREQUENCY PRODUCT

Pc (_r+VSIN _)
_-- 2"CLa'_HH C

r = .78R mr = 650 FT/SEC V = 150 kts

INTERHARMONIC

COU]'LING _TIO

HHC INPUT 3P 4P 5P

3P SIN 1.0 .35 .01

4P SIN .36 1.0 .36

5P SIN .04 .36 1.0
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Fig. A·1 Diagram Characterizing Nonlinearities of Response to Higher
Harmonic Control
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HHC INPUT=0"
COSINE RESPONSE
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I
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Fig. A.2 Diagramof InterharmonicCouplingCharacterization
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V=772 mrs (150kts)

CTla= 0058
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Fig. A-3 RTATall Vertical Vibration Due to Open-Loop5P Input (Case 5)
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V= 77.2 m/s (150 kts)
CT/a= 0.058

e3p= 1.5 °

(_5p= 1° 0 5p= 180=

Fig. A-4 RTATail Vertical Vibration Due to Open.Loop3P and Multi-Harmonic
3P and5P HHC Input (Cases 1 and 8)
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Fig. A-5 RTA Tail Vertical VibrationDue to Open.Loop3P Sine HHC Input (Cases1 and 2)
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Fig. A-6 RTA Tail Vertical Vibration Due to Open-Loop 5P Sine HHC Input
(Cases 6 and 12)
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Fig. A-7 RTATall Vertical Vibration Due to Open-Loop3P HHC (Cases2 and 10)
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Fig. A.8 Single BladeVertical Root Shear Responseto 4P Sine HHC (Case 3)
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V=77.2 m/s (150kts)

CT/O= 0 085

(Ib) (N)

4000
UJ

800-
U_ -I 5 _

000

5

"2000 "1000 _ 4P _ 1000 2000 3000 4000 (N)

,.5o_ , _ _ I 4;of I-400 8(_0 (Ib)

COSINE RESPONSE
1.5° HHC AMPLITUDE

-1000

Fig. A-9 Single BladeVertical RootShear Responseto 4P Sine HHC (Case4)
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V= 77.2 m/s (150 kts)

CTla=0085

(Ib) (N)

2000

400

5P

-4000 "3000 -1000 1000 2000 (N)

1 1 ! , ] ., .L
-1000 -800 "600 "400 "200 200 400 (ib)

COSINE
RESPONSE

400

-2000

400 1.5°HHC AMPLITUDE

Fig.A-IO SingleBlade Vertical RootShear Responseto 4P Sine
HHC +Optlmal ControllerHHC (Case 11)
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Fig. A-11 Single BladeVertical RootShear Responseto 3P Sine HHC (Case 1)
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(Ib) (N)

800-

-1.5° (
- 3000

"' 600-U3
Z
o
(3.
0'3 3P
LLI
rr
LLI
z

400-

° 1.5 = HHC AMPLITUDE

")- _ooo200-

-2000 -1000 1000 2000 3000 IN)
I I _ I I I

-400' -200 "_'' 5° 200 400' 600' (Ib)
COSINE RESPONSE

-200-
- -1000

400

--2000

Fig. A-12 Single BladeVertical Root Shear Responseto 3P Sine HHC (Case2)
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Fig. A-13 Single BladeVertical Root ShearResponseto 3P Sine HHC +Optimal
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Fig. A-14 Blade First Flstwlse BendingMode (Owl) Responseto 3P Sine HHC (Case2)
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Fig. A-15 Blade Second Flatwlse Bending Mode (Qw2) Response to 3P Sine HHC (Case 2)
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Fig. A-16 BladeThird Flatwise Bending Mode(Ow3) Responseto 3P Sine HHC (Case 2)
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Fig. A-18 Blade 1st Torsion Mode (Qtl) Responseto 3P Sine HHC (Case 2)
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