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SUMMARY

A flight test program using a representative agricultural airplane has been
conducted to provide data for validating a computer program model which predicts
aerially applied particle deposition. The data from this test and comparisons of
predicted and measured particle deposition are presented. A particular feature of
the computer program is that the mean particle trajectory and the variance from the
mean resulting from fluid fluctuations are both predicted simultaneously. The com-
parisons between predicted and measured mean deposition locations showed very good
agreement, with crosswind effects accurately accounted for. Deposition pattern
spreading, caused by turbulent fluctuations in the wake, however, is underpredicted
for most downwind depositions. Both computer predictions and limited tests with
winglets support previous model results, in that they demonstrate that the wake char-
acteristics can be tailored to produce desirable effects on deposition and drift
characteristics. Applications of the computer program for spray pattern improvement
are illustrated.

INTRODUCTION

Since 1976, the National RAeronautics and Space Administration (NASA) has been
conducting basic research in aerodynamics relating to aerial applications. During
the 1976 to 1978 time period, NASA initiated a specific research program consistent
with in-house research capabilities to address the aerial application industry's
major technical concerns (ref. 1). Because of increasing chemical costs and environ-
mental concerns, reducing the drift of aerially applied chemicals away from the tar-
get area was identified as the industry's most important concern. The control of
chemical drift is a complex problem requiring an understanding of spray behavior,
airplane wake aerodynamics, and the economic, meteorological, and biological factors
involved in aerial applications of agricultural chemicals.

In order to provide some technological assistance in this area, NASA embarked on
a research project to develop improved capabilities for integrating airplane wake
characteristics with dispersal techniques to produce wider, more uniform deposition
patterns with minimum losses due to drift. The initial research efforts required
developing the experimental and theoretical research tools necessary to model aerial
applications under controlled test conditions. The principal objectives of the early
experimental work, conducted at model scale in the Langley Vortex Research Facility
and the Langley 30- by 60-Foot Tunnel, were to develop methods to simulate aerial
dispersal, to develop a data base to quantify wake and dispersal characteristics, and
to examine wake modification as a means of producing favorable changes in deposition
characteristics (ref. 2).

- Results from the model tests were used in later experimental research centered
around full-scale flight tests, which were conducted with an Ayres Thrush
Commander-800 airplane, with and without winglets (fig. 1). Simultaneously, theo-
retical methods to simulate aerial dispersal of particles were developed for predict-
ing the interaction of the dispersed particles with the aircraft wake (refs. 3
to 5). The factors which influence aerially applied particle deposition can be
divided into three categories: details related to the particles themselves,
aircraft-related parameters, and deposition-site-related variables. The size, shape,



and density of the particle affect its viscous drag and terminal velocity, which
determine the time the particle remains airborne and how closely the particle follows
flow streamlines. If the particle is a liquid, particle evaporation is a concern,
since evaporation changes particle size. The pertinent aircraft-related parameters
are those which influence the aircraft wake flow field. The details of the
distribution of velocity in the wake are primarily dependent on the aircraft load
distribution across the wing span. The propeller slipstream has a strong influence
on the flow field behind the propeller. At the deposition site, the slope of the
terrain and the density of the plant canopy affect both the mean flow field and the
turbulence level. Meteorological conditions at the site, such as background
atmospheric stability, crosswind level and direction, and relative humidity, also
influence both the mean flow field and the turbulence level. Relative humidity also
affects the evaporation rate for liquid particles and the size and consistency of dry
particles, which may tend to agglomerate at high humidity levels. The theoretical
methods attempted to accurately model these factors. The flight test program was
designed to measure many of these factors to provide a data base for evaluating the
accuracy of the theoretical models. With accurate predictive capability, validated
against experimental data, analysis of aircraft configurations and dispersal systems
can be made without the necessity of conducting costly experimental tests.
Additionally, with accurate modeling of environmental factors {(crosswind, terrain,
plant canopy), the predictive methods can be used for evaluating alternative
operational procedures. This report describes the procedures and presents the
results of the flight experiments, summarizes the analytical prediction methods used
for the computer model of particle deposition, and provides a comparison of
predictions and flight test data.

SYMBOLS AND ABBREVIATIONS

b! distance between vortices, ft

Cy, 1ift coefficient

Flt, flight

GMT Greenwich mean time

h height above collector array, ft

I horizontal distance from array centerline to flight-path-crossing location

(positive for locations to right of array centerline), ft

r radial distance from center of vortex, ft

S wing planform area, £t2

Vo, vortex tangential velocity at a given radial distance, ft/sec
Ve calibrated airspeed, knots

w3 vortex descent velocity, ft/sec

W airplane weight for each pass, 1lb



y horizontal distance from array centerline (positive for locations to right
of array centerline), ft

y'! horizontal distance from flight-path-crossing location, y' =y - I, ft
z altitude above collector array of spray boom at wing root, ft

r circulation strength, ft2/sec

Po standard air density at sea level, lb-secz/ft4

TEST APPARATUS AND PROCEDURES
Baseline Airplane

The agricultural airplane used for these tests was an Ayres Thrush
Commander-800. A three~view drawing of the basic airplane is shown in figure 2.
It is a propeller-driven airplane powered by an 800-horsepower, seven-cylinder,
supercharged radial engine. Other characteristics of this airplane are listed in
table I. The 9-ft-diameter, three-bladed propeller operates at about 1300 rpm with a
cruise propulsive efficiency of about 0,75. A data system on board the airplane
recorded parameters for calculating airplane operating conditions. A NASA-modified
radar altimeter system was used to provide visual cues to guide the pilot to the
target altitude selected for each run.

Modified Airplane

Research in the Langley Vortex Research Facility {(ref. 2) has shown that wing-
lets offer some promise of reducing drift problems by displacing the wing-tip vortex
upward to near the tip of the winglet, thereby reducing the potential for particles
from the spray boom tip to be trapped in the vortex flow-field influence while main-
taining the lateral transport, which gives wide swath widths. These potential bene-
ficial effects of winglets were shown to be relatively insensitive to changes in
winglet cant angle in the range between 20° outward and 10° inward, On the basis of
the promising wake interaction effects caused by winglet configurations, wind-tunnel
tests were conducted in the Langley 30- by 60-Foot Tunnel of the full-scale basic
configuration airplane equipped with winglets canted outward 20°, These tests
(ref. 6) indicated that outwardly canted winglets would provide very unsatisfactory
lateral-directional handling qualities for the airplane. Data from subsequent
piloted simulator studies (ref. 7), as well as model tests, showed that changing the
winglets from an outward to an inward cant of 10° would minimize the unfavorable
lateral-directional control response characteristics. As a result of these tests,
the airplane flight tests were conducted with winglets canted inward 10° to achieve
favorable wake vortex interaction while minimizing the detrimental effects on air-
plane handling qualities (which still turned out to be marginal) (ref. 8).

The winglets used for the flight tests were constructed with a modified GA(W)-2
(redesignated NASA LS(1)-0413) airfoil section such that the total winglet area was
12 percent of the wing area. These winglet tests were exploratory, and no attempt
was made to optimize winglet geometry for maximum aerodynamic or aerial application
benefits. The design of winglet configurations which have acceptable handling quali-
ties is possible by using modern computational methods (refs. 8 and 9). A three-view
drawing of the airplane with winglets on is shown in figure 3,



Test Site

Particle deposition data were gathered at the Collector Array Test (CAT) Site
(see fig. 4) located at NASA Wallops Flight Facility. The CAT Site included three
200-ft-long rows of masonite boards mounted so that the boards were all in a hori-
zontal plane 1 ft above the highest ground elevation, The rows, denoted as row -1,
row O, and row 1, were 50 ft apart. The array was located in a fixed position such
that the airplane track normal to the rows was oriented along a path 211° from true
north (fig. 5). A tower at the east end of row 0 was instrumented to collect mete-
orological data. Wind velocity and direction were recorded at i1-sec intervals by cup
anemometers located on the tower at positions 10, 20, 30, 40, and 50 ft above the
array.

For flow visualization of the airplane wake, a smoke screen was created at
row -1. A motor-driven camera set along the airplane flight path photographically
recorded the movement of the smoke as it followed the streamlines in the flow. This
technique has been used successfully in model facilities (ref., 2).

The NASA Wallops Flight Facility radar/laser tracking system and a laser reflec-
tor located on the top of the airplane canopy were used to establish airplane posi-
tion data. With this system, the airplane lateral and vertical (spray boom height)
positions in relation to the particle collector array were determined with an accu-
racy of +6 in., in each direction. Accuracy of this order is important for providing
confidence in the validation of wake interaction prediction methods. The airplane
ground track is presented with the midpoint of the collector array as a reference.

Test Procedure

The test matrix, shown in table II, was designed to provide wake interaction
data influenced by dispersal semispan location, flight speed, and particle size., The
semispan locations included the influence regions of the propeller slipstream and
wing root and tip vortices. The two target airspeeds (90 and 120 knots) represent
the lowest and highest application speeds for typical missions. The tests were con-
ducted with a target altitude for the spray boom of 10 ft above the array. For
greater reliability in obtaining data, two test runs were made for each condition.
The airplane was refueled after each four to eight passes over the test area to main-
tain approximately the same weight for all flights, and fuel flow was recorded by the
data system for accuracy in determination of airplane weight for data reduction. The
airplane weight with pilot and load was nominally 6000 1lb with winglets off and
6350 1b with winglets on. Therefore, the 1lift coefficient for the 90-knot passes was
approximately 0.70 with winglets off and 0.75 with winglets on, and for the 120-knot
passes it was approximately 0.40 with winglets off and 0.42 with winglets on. Actual
test conditions resulted in data taken at varying airspeeds and altitudes and in
varying crosswinds, Most flights were conducted at night to minimize exposure to
high winds. The majority of the tests were made in winds less than 5 knots at the
10-ft-high measurement station. The crosswind, which is the component of the wind
perpendicular to the airplane flight path, is derived from the measured wind speed
and direction and is specified as positive from the left in table IIX.

To approximate particle release at discrete locations and to control particle
size and density, solid particles were used. Particle dispensers were mounted at
specific locations on each spray boom (figs. 1 and 6). This positioned the release
location about 1 ft behind and 1.5 ft below the trailing edge of the wing. The pilot
remotely triggered the dispenser to release particles as the airplane began each test
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run. Each dispenser contained enough particles for four data runs between reload-
ings. Because correlations exist for scaling particles of varying size, shape, and
density to a representative sphere (refs. 10 to 12), and scaling laws exist for aero-
dynamically representing spheres of one diameter and density by another of a differ-
ent diameter and density (ref. 13), the particles selected for release during the
tests were two size ranges of commercially available polystyrene spheres with a spe-
cific gravity of 0.65. The 300- to 355-um-diameter particles scale to represent
particle sizes and densities used in insecticide applications. The 600~ to 700-um-
diameter particles scale to represent those used in herbicide applications. The CAT
Site rows were covered with 4-in-wide paper tape containing a 3-in. strip of adhesive
to collect the particles dispensed from the airplane as it passed over the array.
Data reduction consisted of counting the number of particles per running foot of the
3-in-wide adhesive strip along each row of the array.

The conditions from the flight tests are contained in the appendix, tables A1
to A83, and summarized in table III. The ground deposition patterns are plotted in
figures A1 to AS83.

ANALYTICAL PREDICTION METHOD

The analytical prediction method used in this study tracks the path of a parti-
cle released from an aircraft as it is influenced by the velocities and the turbulent
fluctuations in the plane normal to the aircraft flight path. This is a numerical
simulation equivalent to observing a slice across the width of the spray pass. It is
assumed that factors in the direction of flight are not changing significantly, and
although there are three-dimensional effects in aircraft wakes, two-dimensional
effects dominate the aerial application problem. The analytical prediction numerical
methods were incorporated in a computer code named "AGDISP." Details of this com-
puter code are covered in reference 4 and are summarized here.

The AGDISP code uses a Lagrangian formulation of the equations of motion, based
on a two-component model of atmospheric- and aircraft-generated turbulence in the
aircraft wake, to predict the mean trajectory of a particle and the standard devia-
tion about that mean when the particle is released from a specified point in the
aircraft wake. The particle location as a function of time is computed to predict
the flight path for each particle. The interaction of the particle with the turbu-
lence in the environment creates turbulence correlation functions for the particle
position and particle velocity, for particle velocity variance, and for particle
position variance. The square root of the position variance gives the standard devi-
ation about the mean position., Particle deposition on the ground is calculated as a
Gaussian distribution based on the mean and the standard deviation in the horizontal
direction. Particle diameter, density, release location, and initial velocity must
be specified. The important forces which act on particles having densities and diam-
eters typically used in aerial applications are viscous drag, the force as a conse-
quence of droplet evaporation, and gravity. The equation used in the code for
calculating the drag of the assumed spherical particle comes from the work of
Langmuir and Blodgett (ref. 14), where an analytical expression was derived to fit
the experimental data. The AGDISP code is applicable to liguid or solid material.
Evaporation effects are included in the AGDISP formulation but are not discussed
here, since the experimental tests used for comparison were conducted with solid
particles.

The AGDISP code has simple flow-field models for the wakes of fixed-wing air-
planes and helicopters and is also configured to accept flow fields from experimental
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data or from other fluid dynamic codes. (See, for example, ref. 15,) The results
presented here were calculated by using the model of the fixed-wing aircraft wake
contained in the code. The basic feature of this simple flow-field model behind a
fixed-wing aircraft is at least one pair of counterrotating vortices which originates
near the wing tips. A schematic of such a wake is shown in figure 7. This sketch
shows a particle released from a dry spreader., The surface shown rolling up down-
stream of the wing is a visualization of the vorticity shed from the wing. This
sheet of vorticity rolls up into major trailing vortices of circulation strength T,
There are vortices trailed from the lifting tail surfaces as well, but these are of
lesser strength and influence the particle trajectories in only a minor way when the
particles are released near the wing. Therefore, these vortices are not included in
the model.

The details of the distribution of velocity in the wing-tip vortices are pri-
marily dependent on the aircraft weight distribution across the wing span. The wake
model used accepts specification of the load distribution as a function of wing span
or gpecification of rectangular loading as a function of the aircraft weight, wing
span, and flight speed. The latter option was selected for the calculations pre-
sented here. This models the tangential velocity field as a fully rolled-up vortex
with Ve = T'/2nr for all r, where r is measured from the center of the vortex.
The propeller slipstream is modeled as a swirling jet, as a function of propeller
geometry and operating characteristics. The atmospheric crosswind is modeled by a
logarithmic velocity profile dependent on a specified crosswind velocity at a height
and the surface roughness (generally 1/30 of the physical height of the surface
covering). Local background turbulence may be specified by specifying the crosswind
velocity, by fixing a constant value (as percent of mean velocity), or by selecting
an option for the turbulence field to be computed consistent with the given mean
velocity. For the calculations presented here, the turbulence level was specified by
the crosswind condition,

The vortex pair does not remain at the altitude of the wing but descends down-
ward with a velocity given by Wy = T'/2nb', where b' 1is the spacing between the
vortices. The motion of the vortex pair is further complicated when the pair is near
the ground, as is nearly always the rule in aerial applications. The lateral move-
ment of the vortex as it nears the ground increases the size of the swath from an
agricultural aircraft by moving particles released into the wake farther outboard.
The effect of plant canopy density on the vortex trajectories in the normal plane has
been calculated and shows that the tangential velocities and thus the lateral move-
ment of the particles are significantly reduced by the presence of large (in relation
to the aircraft wing span) canopies, as in application over forests (ref. 5). This
effect is caused by the interference of the canopy with the majority of the vorticity
in the wake. This effect is strong when the height of the canopy is of the same
order as the wing semispan. The effect of plant canopy is modeled with modifications
to surface roughness, turbulence, and particle paths consistent with the specified
plant canopy density. Also, either a horizontal or nonhorizontal level surface may
be specified. For the experimental data presented in this paper, the height of the
ground cover was negligible, and the effects of plant canopy density and surface
condition were not evaluated in the comparisons presented here.

RESULTS AND DISCUSSION
The purpose of the present study was to assess the accuracy of the predictions
from the theoretical method. For the computations, the measured airplane weight and

wing span are input to the computer program along with the airspeed and the wind
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speed and direction at the time the airplane crossed row 0. The wind speed and
direction from the anemometer height closest to the spray boom height for each test
run were used to establish the meteorological conditions for that run. The vortex
center specified for the computations was determined by means of smoke visualization
during flight testing. The collector array height at the centerline is approximately
2 ft; therefore, as previously discussed under the theoretical method description,
the surface roughness is specified at 1/30 of this value. The Lagrangian formulation
of the computer program tracks the path of a single particle and is therefore
restricted to a single-diameter particle. Since no data were available on the per-
centage of particle diameters within the size range, the particle diameter selected
for comparison was the one within the physical size range which resulted in the best
agreement with the experimental data. It should be noted that in the experiment,
there was no metering of the particles once the pilot had triggered the dispenser to
open. In some cases, because of static buildup, the dispenser was still fully loaded
when the airplane returned to the hangar. As can be seen by comparing the graphs for
the three rows for some flights, there were some runs during which the particles were
released at some time other than at the moment the dispenser was triggered.

Comparisons of the measured depositions from the flight test program and the
depositions predicted by the computer program for the measured meteorological condi-
tions were made for all the flight test data. In the figures, selected detailed
comparisons are presented to illustrate specific points regarding the test matrix,
and one summary plot compares all the predicted mean deposition locations to the
measured mean deposition locations to illustrate the overall accuracy of the method.
Since the smaller particles were influenced more than the larger particles by the
flow field, most of the detailed comparisons are for the small-particle cases. In
the figures, the right-hand wing (from the pilot's perspective) is shown on the right
side. In plots of the predicted trajectory computations, the mean trajectory is
shown as a so0lid line. The dashed lines denote the magnitude of the variance of
particle position computed normal to the trajectory. As can be seen in figure 8, the
predicted and measured mean locations differ by 10 percent of the span, and the
lateral spread differs by 25 percent of the span for the 300- to 355-um particles
released from the 15-percent-semispan location (in the influence field of the pro-
peller slipstream). These particles were released from the basic configuration dur-
ing flight at 90 knots in a 2.8-knot crosswind. The boom altitude was 11 ft.
Improvements in the agreement between predicted and measured mean location and lat-
eral spread might be possible with modeling of the wing-fuselage interference flow
field,

For the crosswind levels evaluated, the AGDISP code does a reasonable job of
accounting for the crosswind effect on the trajectories. The predicted and measured
deposition patterns show generally good agreement for the mean location and the
spread, although the lateral spread is underpredicted for the downwind side of the
airplane. This is illustrated in figure 9 by a comparison of the AGDISP prediction
and the data for the 300- to 355-um particles released from the basic configuration
at 70 percent semispan. These particles were released from a boom altitude of 11 ft
during flight at 90 knots in a 2.4-knot crosswind., The strong influence of the
crosswind on small particles can be seen in this figure, where the mean deposition
from the experiment varies from approximately 28 ft on the right-hand side of the
airplane to 58 ft on the left-hand side. For this case, the mean location on the
downwind side is predicted within 10 percent of the span, although the lateral spread
in ground deposition is twice that predicted. The agreement on the upwind side is
closer, with the mean location predicted within 2 percent of the span and the lateral
spread within 10 percent of the span.



A comparison of the AGDISP prediction and the data for the 300- to 355-pm parti-
cles released from the basic configuration at 80 percent semispan is shown in fig-
ure 10, These particles were released from a boom altitude of 9 ft during flight at
120 knots in a 1.5-knot crosswind. The strong influence of even a light (1.5-knot)
crosswind on small particles can be seen in this figure, where the mean deposition
from the experiment varies from approximately 50 ft on the right-hand side of the
airplane to 21 ft on the left-hand side. Also note the multimodal distribution of
the data. This is attributed to some of the particles being entrained in the vortex
before being deposited on the collector array. It should be noted that the predic-
tive method for ground deposition used in AGDISP provides a Gaussian distribution
about the mean based on the computed horizontal variance due to turbulence and thus
is not capable of predicting this nonGaussian distribution. For this case, the mean
location on the downwind side is predicted within 20 percent of the span, although
the spread in ground deposition is three times that predicted. The agreement on the
upwind side is again closer, with the mean location predicted within 11 percent of
the span and the lateral spread overpredicted by 30 percent of the span.

The accuracy of the AGDISP code in predicting ground deposition of larger parti-
cles is shown in figure 11 by a comparison with experimental data from the flight
tests. This measured ground deposition is for 600- to 700-pm particles with a spe-
cific gravity of 0.65. The particles were released at 80 percent semispan from the
basic configuration flying at 90 knots in a 1.8-knot crosswind with a boom altitude
of 10 ft. Even these larger particles are affected by a light crosswind, as seen
here, where a 1.8-knot crosswind alters the peak deposition location from 30 ft on
one side of the airplane to 40 ft on the other. Fewer 600~ to 700~-um particles were
collected because the dispensers held fewer large spheres, For these large parti-
cles, the mean locations are predicted within 2 percent of the span, Spreading of
particles due to turbulence on the upwind side is predicted within 5 percent of the
span; however, on the downwind side of the airplane, the lateral spread is twice that
predicted.

As previously indicated, for all cases, the downwind deposition pattern of the
experimental data has more lateral spread than the upwind pattern. This may be
caused by the more acute angle which the downwind trajectory makes with the ground
plane or by increased turbulence experienced by the downwind particles as a result of
"scrubbing" over the ground of the downwind vortex and the vortex "bounce" (rise in
altitude after initial descent, see ref. 5). Only the horizontal variance due to
turbulence is used when computing the ground deposition. When the particle tra-
jectory makes a more acute angle with the ground, the variance in the vertical direc-
tion becomes the more prominent one, Therefore, a different method of calculating
ground deposition may improve the agreement in lateral spread.

A flow visualization of the wing-tip wake of the airplane with winglets off and
with winglets on is shown in figure 12, Figqure 12(a) shows the tightly rolled-up
vortex forming at the wing tip of the airplane with winglets off. In figure 12(b),
the tip vortex can be seen forming at the tip of the winglet,

The predicted trajectories and the predicted and experimental ground deposition
patterns for particles released from the 95-percent-wing-semispan location are shown
in figure 13 for the basic configuration and in figure 14 for the configuration with
winglets on. Both sets of data were collected from the airplane during flight at
120 knots in a 2.2-knot crosswind. For the basic configuration, the boom altitude
was 14 ft and for the configuration with winglets on, the boom altitude was 15 ft.
On the downwind side of the airplane, the particles released from the basic config-



uration are deposited closer to the flight path centerline (than those released from
the airplane with winglets on) because of the vortex. With winglets on, in addition
to the deposition location being further from the flight path centerline for parti-
cles released from this location near the wing tip, more particles were collected.
Because of the limited number of runs made with winglets on, further detailed experi-
mental work would be necessary to determine if the increased deposition with winglets
on is caused by this lack of entrainment.

A measure of the overall accuracy of the predictions is presented in figure 15,
where the predicted mean deposition location versus the experimental mean is plotted
for 83 test runs. If the two were in perfect agreement, all the data points would
fall along the 45° line. Points within 10 ft (25 percent of the wing span) of this
line are considered to be in good agreement. As can be seen in the figure, the
agreement for the majority of the test runs was excellent. There are a few points
which fall outside this range. One was for the large particles (600 to 700 pm in
diameter); the others were for flights which were conducted with the small particles
(300 to 355 pum in diameter). 1In all these cases, particles were released from the
airplane at 85-, 90-, or 95-percent-semispan location at altitudes greater than
10 ft. This implies that the particles were in the strong influence of the vortex
and that the crosswind, which was not constant, had a relatively long time to act on
the particles and to interact with the vortex. A small error in altitude (such as
the +0.5-ft accuracy of the laser tracking system) or in representing the varying
crosswind with a single measurement would mean a large difference in the lateral
displacement of the deposition.

An AGDISP prediction for the basic configuration with a full-span boom with
10 equally spaced nozzles on each wing is shown in figure 16. The particle tra-
jectory plots aid in determining which nozzle locations to reposition to improve the
deposition pattern. For this case, the deposition pattern alone would indicate that
repositioning was needed on nozzles near, but not at, the boom tip. The computed
trajectories, however, indicate that the two most outboard nozzles are actually the
ones causing the high deposition at approximately 130 ft from the flight centerline.
Adding nozzles and adjusting nozzle locations results in the predicted pattern shown
in figure 17. The improved pattern is the result of using an 80-percent wing-span
boom with 13 nozzles on each side. By overlapping the deposition pattern, the proper
distance between adjacent flight paths which should be used to obtain optimum swath
width can be determined, as illustrated in figure 18. For this situation, the pre-
diction indicates that the flight path centerline for the second pass should be
shifted by 110 ft from the first pass to obtain the cumulative deposition pattern as
shown.

The AGDISP prediction for the particle trajectories and deposition pattern for a
full-span boom on the winglet-equipped airplane with the nozzles spaced as in fig-
ure 16 is shown in figure 19. By comparing the predicted distribution patterns from
figures 16 and 19, it is apparent that the displacement of the vortex by the winglet
results in a more uniform distribution pattern. However, as pointed out earlier,
tests conducted during the flight program indicate that the winglet configuration can
have adverse effects on the handling qualities of an airplane. 1In order to be effec-
tive and practical, the winglet configuration must be carefully tailored in terms of
its effect on both the wake and the airplane flight characteristics.



CONCLUDING REMARKS

A flight test program using a representative agricultural airplane has been
conducted to provide data for validating a computer program model which predicts
aerially applied particle deposition. The data from this test are presented here.
Comparisons of predicted and measured particle deposition are presented. A particu-
lar feature of the computer program is that the mean particle trajectory and the
variance from the mean resulting from fluid fluctuations are both predicted simul-
taneously. The following observations were noted:

1. The comparisons between predicted and measured mean deposition locations
showed very good agreement, with crosswind effects accurately accounted for. Deposi-
tion pattern spreading, caused by turbulent fluctuations in the wake, however, is
underpredicted for the downwind depositions for semispan release locations less than
95 percent.

2. Both computer predictions and limited tests with winglets support previous
model results in that they demonstrate that wake characteristics can be tailored to
produce desirable effects on deposition and drift characteristics.

3. A nozzle spacing study using the aircraft wake model in the code has illus-
trated the use of the code for improving deposition patterns.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 17, 1984
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TABLE I.- CHARACTERISTICS OF AYRES THRUSH COMMANDER-800 AIRPLANE

General:
Overall length, £t .seeessescccsscsssssessssssnssssssssessssssssssncssssssssss 2738
Height to top of airplane canopy, ft ceeecscecsscesscssscosscsssccsscosscosscee Del7
Maximum gross Weight, 1D seveeeeeccosvevsscosescescosccsccsscososssoasosnsossssscesnes 7800
ENGINe sesesseseesasscscsososcasscscsscsessssvessssnsessssces Wright Cyclone R-1300

Wing:
TYPE cocesooscocosossonsosscoanssssscsssssossssscssossasssssscssesses FUll cantilever
RAirfoll section .ceceeeeessccercvvsssosncsosscscosssosscescsssscsscscesssses NACA 4412
Dihedral, A€Q secceecccecorscsssacsvonsesrsscscssacesossscssosscscsasossossnsssssscses 3450
Center-of-gravity range:
Forward 1limit cececesessscavscecssccccnrsscsesses 22,5 in, aft of wing leading edge
Aft 1imit soevececccsessccvcccsssssscsssssenees 28,0 in. aft of wing leading edge
SPAN, ft seceeesevresssessscssrecsoscscssconscnscavrssscssscscssccsssccscssscscse 41,42

Area’ ft 0 0000000000000 0 0000000000000 0000000600000060000000000000000000000 310.63

11



cl

TABLE II.- TEST MATRIX

Particle release location, percent semispan, of -

df:;z‘t:;? af‘;‘:g:z 4, 25 40 50 60 70 75 80 90 95
pm knots
Flt. Flt.]JRun}Flt.{ Run| Flt.| Run| Fl1t.| Run|Flt.| Run}Flt.| Run| F1t.! Run|Flt. Flt.{Run|Flt.| Run
no. no. |no. no. no. | no. { no.{no. | no.|no. |no.f{no. | no.|no. no. {no.|no. |no.
300 to 355 90 58 57 12.6 2.1 2.2} 59 ] 4.0] 59 | 2.0} 54 }2.0] 54 | 4.0} 54 55 | 2.1] 56 |4
58 2.3F 59 {4.1] 59 { 2.1 54 | 4.1]| 54 55 [ 2.2] 76 |2
67 | 2.1 77 }1.5] 74 | 2.4} 74 56 | 2.0} 76 {2
78 12.0 56 | 2.1
300 to 355 120 58 57 11.1 1.6 12f 59 }13.2] 59 j1.3] 54 {1.0{ 54| 3.0] 54 55 [1.1] 56 {3
58 57 1.2 59 {3.7] 67 j1.1] 54 [1.1] 54| 3.1| 54 56 |1.1] 56 |3
78 1.5} 76 {3.0] 74 §11.0]|] 74 76 1
76 §3.1 76 {1
600 to 700 90 51 47 16.0 2.0 47 (4.1 49§ 1.0 49 49 | 6.2] 50 | 2.2
51 49 ]| 1.1] 49 49 1 6.4
600 to 700 120 51 47 5.0 3.3 1.1] 52 ]1.0 47 |3.0] 48 1 1.0| 49 49 |5.2] 50 |1.1
47 | 5.1 47 13.1] 48| t.1] 49 49 5.4
49 | 2.0
49 | 2.1




TABLE III.- RUN SUMMARY

Particle Dlsper.\ser Spra§! boom Crosswind
Flight no. | Run no. | Configuration diameter, location, Vs knots altitude component,
: um percent at row O, ft/sec
semispan ft

47 1.1 Basic 600 to 700 50 113.2 12 -2.23
47 2.0 50 86.9 12 -3.38
47 3.0 75 113.0 14 ~1.64
47 3.1 75 111.3 9 -3.44
47 4.1 75 71.9 12 -1.67
47 5.0 25 118.7 7 -4.46
47 5.1 25 120.8 7 ~2.17
47 6.0 25 90.9 1 1.37
48 1.0 80 110.3 9 -3.28
48 1.1 113.3 10 -5.38
49 1.0 90.9 10 -3.25
49 1e1 93.2 10 -2.12
49 2.0 118.1 9 -3.04
49 2.1 4 114.9 10 -6.79
49 3.0 85 113.6 1 -6.20
49 3.1 117.6 11 -6.23
49 4.1 91.2 10 -6.76
49 4,2 Y 88.7 9 -4.76
49 5.2 90 112.3 13 -4.76
49 5.4 114.4 12 -6.52
49 6.2 87.3 9 -5.48
49 6.4 \ 88.0 8 ~5.69
50 1.1 95 118.6 13 -2.72
50 2.2 95 86.7 12 -2,07
51 1.2 15 117.2 8 3.08
51 2.1 15 89.7 6 4.10
51 2.3 15 89,7 9 1.01
51 3.3 40 118.0 13 2.48
52 1.0 / 60 116.7 1 -5.25
53 1.2 300 to 355 50 123.3 12 -5.84
53 2.2 50 88.5 10 -5.54
53 2.3 50 89.1 10 =-5.22
54 1.0 75 115.7 10 5.81
54 1.1 75 117.9 1 2,62
54 2.0 75 86.3 11 2.20
54 3.0 80 115.7 10 2.30
54 3.1 117.4 9 2.47
54 4.0 l 85.2 2 -2.89
54 4.1 82.9 11 ~-2.36
54 5.0 85 115.0 12 -3.87
54 5.1 150.3 10 -6.04
54 6.1 1 86.6 11 -5.50
54 6.2 / 87.9 10 -4,53
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TABLE III.-~ Concluded

Particle Dispe?ser Spray boom | o, ssying
Flight no. Configuration | diameter, | 10€ation,| ¢ —ynotg| altitude | . nnonent,
percent c at row O,
pm ; ft/sec
semispan ft

55 Tel Basic 300 to 355 a0 124.7 15 2.40
55 2.1 '88.7 6 3.35
55 2.2 87.7 7 5.87
56 1.1 118.3 ‘13 -1.18
56 2.0 86.5 8 -.62
56 2.1 85.6 7 -2.43
56 3.2 95 150.5 16 -5.18
56 3.4 95 119.3 14 -3.73
56 4.1 95 89.4 11 -3.90
57 1.1 25 120.3 19 5.05
57 1.2 25 118.0 17 3.73
57 2.6 25 83.7 8 5.49
58 1.5 15 119.1 12 2.07
58 1.8 121.7 15 -4,72
58 2.0 89.2 11 -4,72
58 2.9 85.1 9 -5.02
59 1.3 70 119.8 13 ~-4,04
59 2.0 70 87.3 9 =2.65
59 2.1 70 88.2 10 ~-4.10
59 3.2 60 116.4 12 -3.00
59 3.7 110.5 14 ~-2.45
59 4,0 l 82.2 12 - 11
59 4.1 79.1 1 -3.54
60 1.6 40 113.5 11 -3.00
60 2.1 40 80.5 . 8 -3.40
67 1.1 Winglet 70 118.9 14 4.86
67 2.1 70 81.9 12 2.20
74 1.0 80 121.0 14 -.69
74 2.4 80 81.6 13 -.72
74 3.2 85 118.9 16 1.90
74 4.0 85 83.8 12 1.84
76 1.0 95 120.9 13 ~-2.10
76 1.1 119.3 15 -3.94
76 2.0 l 82.1 9 =5.00
76 2.1 83.7 10 =5.58
76 3.0 75 124.3 16 -5.87
76 3.1 75 121.9 16 -5.25
77 1.5 75 84.7 14 10.47
78 1.5 70 121.1 13 -.92
78 2.0 \/ 70 81.3 9 -2.49
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(a) Airplane with winglets off.

S

(b) Airplane with winglets on.,

Figure 1.- Ayres Thrush Commander-800 airplane as modified for
flight tests.

L-84-96
aerial application
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l_‘g ft 1—1 in.

T
e

VAN <9 ft 10 in.—
04 !
2 ] l
OJQ T ioko 1|7 ft 6 in.
% )

4 .
e
47 £ 80

- 27 ft 4.5 in.

Figure 2.~ Ayres Thrush Commander-800 airplane with winglets off.



5 ft 2 in.

< 27 ft 4.5 in. "

Figure 3.~ Ayres Thrush Commander-800 airplane with winglets on.
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Figure 5.- Planview of Collector Array Test Site.



5.

“ Spray boom

L-84-98

Figure 6.~ Particle dispenser mounted on spray boom.

WING LIFT

DISTRIBUTION
DRY SPREADER

PARTICLE TRAJECTORY

LATERAL
DISPLACEMENT

~

STRONG WING-TIP VORTEX

/

Figure 7.- Schematic of airplane wake.
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Figure 8.~ Comparison of measured and predicted ground deposition patterns for
particles released at 15 percent semispan in propeller slipstream during flight
at 90 knots in 2.8-knot crosswind.

Measured data are for 300~ to 355-um
particles; predicted data are for 300-pm particles.
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Figure 9.~ Comparison of measured and predicted ground deposition patterns for
particles released at 70 percent semispan during flight at 90 knots in
2.4-knot crosswingd.

Measured data are for 300- to 355-um particles; predicted
data are for 300-um particles.
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Figure 10.~ Comparison of measured and predicted ground deposition patterns for

particles released at 80 percent semispan during flight at 120 knots in
1.5-knot crosswind.

Measured data are for 300- to 355-um particles; predicted
data are for 300-um particles.
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Figure 11.- Comparison of measured and predicted ground deposition patterns for

particles released at 80 percent semispan during flight at 90 knots in
1.8~knot crosswind.

Measured data are for 600- to 700-ym particles; predicted
data are for 600-um particles.
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Vortex_

core

(a) Winglets off.

(b) Winglets on.

_ L-84-99
Figure 12.- Effect of winglets on vortex location.
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Figure 13.- Measured and predicted ground deposition patterns for particles
released at 95 percent semispan from basic configuration during flight at
120 knots in 2.2-knot crosswind. Measured data are for 300- to 355-um particles;
predicted data are for 300-pm particles.
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Figure 14.- Measured and predicted ground deposition patterns for particles
released at 95 percent semispan from configuration with winglets on during flight
at 120 knots in 2.2-knot crosswind. Measured data are for 300- to 355-pm
particles; predicted data are for 300-im particles.
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Pigure 16.~ Predicted trajectories and ground deposition patterns for full-span
boom on basic configuration with nozzles equally spaced. Boom altitude = 10 ft;
Airpseed = 90 knots; Particle diameter = 300 um; no wind.
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Figure 17.- Predicted trajectories and ground deposition patterns for full-
span boom on basic configuration with nozzles added and spacing adjusted
to improve ground deposition. Boom altitude = 10 ft; Airspeed = 90 knots;
Particle diameter = 300 pm; no wind.
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Figure 18.- Overlap of adjacent swath predictions to determine spacing of spray
passes.
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Figure 19.- Predicted effect of winglets on particle trajectories and deposition
Boom altitude = 10 ft;

pattern for full-span boom with nozzles equally spaced.
Particle diameter = 300 um; no wind.

Airspeed = 90 knots;
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APPENDIX

FLIGHT TEST CONDITIONS AND MEASURED GROUND DEPOSITIONS

This section lists the data obtained during the wake interaction flight tests at
NASA Wallops Flight Facility. Table II contains the test matrix, and table III con-
tains a run summary. In tables A1 to A83, flight conditions, radar/laser data, and
meteorological data are described for each test run. The corresponding ground
deposition patterns are plotted in figures A1 to A83.

For the particular flight and run number, each table lists the date of the test
in addition to the time (Greenwich mean time) the airplane crossed the center row
(row 0) of the Collector Array Test Site. Also, airplane configuration, particle
dispenser location in percent semispan, and particle diameter are listed.

The radar/laser data are required to accurately know the location of the air-
plane over the test site. PFor each row, =z indicates the altitude of the spray boom
at the wing root above the collector array, and I represents the distance from the
array centerline to the point where the airplane track intercepts the indicated
row. In addition to the distances z and I, the crossing angle is listed. This is
the angle formed by the centerline of the collector array and the track of the
airplane.

The meteorological data section lists wind speed, wind direction, and tempera-
ture at 10-, 20-, 30-, 40-, and 50-ft altitudes above the array. Also S-second
averages of the data for all five heights above the array (period of data averaging
is time that airplane crosses row 0 + 2.5 seconds) are listed for some flights.
Relative humidity at the test site is also shown when available.

For each test run, airplane flight conditions and magnetic heading are listed.
The weight of the airplane W has been corrected for the weight of fuel consumed
during flight., Calibrated airspeed V has been corrected for position error. The
lift coefficient is calculated as follows:

0.5p V 'S
o C

where Po is the standard sea level air density, S is the wing planform area,

and V. 1is expressed in ft/sec. Airplane heading angle is provided to indicate the
direction of flight in relation to the collector array and the wind direction. In
figures A1 to A83, the number of test particles for each row as counted after each
run is plotted as a function of vy, the distance from the collector array centerline
not corrected for airplane track interception.
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APPENDIX

TABLE Al.- CONDITIONS FOR FLIGHT 47, Run 1.1

Date: 8-7-81 Dispenser location: 50 percent semispan
Time: 05:04:59.,1 GMT Particle diameter: 600 to 700 um
ATRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.25°
z, £t 14 12 12 Airplane heading: 210°
I, ft 2.0 1.0 0
METEOROLOGICAL DATA: Relative humidity: 82 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 1.7 340.3 68.45
20 2,4 336.0
30 2.7 342.6
40 2.7 354.8
50 2.4 350.3 68.14
5~second averages: 2,5 350.3 68.14
FLIGHT CONDITIONS: Vc = 113.2 knots CL = 0.434 W = 5851 1b

TABLE A2.- CONDITIONS FOR FLIGHT 47, Run 2.0

Date:
Time:

8-7-81
05:47:45.6 GMT

Dispenser location:
Particle diameter:

600 to 700 pm

50 percent semispan

AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.60°
z, ft 12 12 12 Airplane heading: 211°
I, ft 1.0 0.3 _0'3
METEOROLOGICAL DATA: Relative humidity: 82 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.0 350.1 67.24
20 3.3 355.4
30 3.1 345.9
40 3.4 347.7
50 3.3 347.8 66.87
5-second averages: 3.2 348.0 66.87
FLIGHT CONDITIONS: Vc = 86.9 knots Cp, = 0.729 W= 5794 1b
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APPENDIX

TABLE A3.- CONDITIONS FOR FLIGHT 47, Run 3.0

Date: 8~7-81 Dispenser location: 75 percent semispan
Time: 07:44:37.2 GMT Particle diameter: 600 to 700 um

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.,05°
z, ft 14 14 14 Airplane heading: 211°
I, £t 2.0 1.0 0

METEOROLOGICAL DATA: Relative humidity: 83 percent

h, £t Wind speed, knots Wind direction, deqg Temperature, °F

10 4,2 17.7 65.77

20 4.3 14.8

30 5.0 8.0

40 5.3 14,0

50 5.4 7.9 65.35
5-second averages: 5.2 9.9 65.35
FLIGHT CONDITIONS: Vc = 113.0 knots CL = 0,458 W = 6166 1b

TABLE A4.- CONDITIONS FOR FLIGHT 47, Run 3.1

Date: 8-7-81 Dispenser location: 75 percent semispan
Time: 08:09:15.6 GMT Particle diameter: 600 to 700 um

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row =1 Row O Row 1 Crossing angle: 0.82°
z, ft 9 9 9 Airplane heading: 211°
I, ft 3.9 3.3 2.6

METEOROLOGICAL DATA: Relative humidity: 78 percent

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 0.6 11.5 62.58

20 1.2 10.4

30 1.0 28.1

40 1.1 8.9

50 «5 22,9 61.61
5-second averages: 0.7 22,9 61,61
FLIGHT CONDITIONS: Vc = 111.,3 knots CL = 0.469 W =6118 1b
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APPENDIX

TABLE AS5.- CONDITIONS FOR.FLIGHT 47, Run 4.1

Date: 8-7-81 Dispenser location: 75 percent semispan
Time: 08:48:41.0 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.01°
z, ft 12 12 12 Airplane heading: 211°
I, ft 1.6 0.7 0
METEOROLOGICAL DATA: Relative humidity: 78 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 2.1 2.8 65.55
20 2.5 3.0
30 2.5 9.7
40 3.1 14.0
50 3.3 10.2 65.14
5-second averages: 3.0 11.6 65,16
FLIGHT CONDITIONS: Vc = 71.9 knots CL = 1,109 W = 6034 1b
TABLE A6.~- CONDITIONS FOR FLIGHT 47, Run 5.0
Date: 8-7-81 Dispenser location: 25 percent semispan
Time: 10:06:11.50 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0,40°
z, ft 7 7 7 Airplane heading: 212°
I, ft 3.9 3.6 3.3
METEOROLOGICAL DATA: Relative humidity: 69 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.1 333.7 66.29
20 3.3 347.4
30 3.4 349.5
40 3.7 354.0
50 4,2 349.8 65,97
5-second averages: 4.2 349.8 65,97
FLIGHT CONDITIONS: Vc = 118.7 knots CL = 0,404 W = 5998 1b
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APPENDIX

TABLE A7.- CONDITIONS FOR FLIGHT 47, Run 5.1

Date: 8-7-81 Dispenser location: 25 percent semispan
Time: 10:23:56.6 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.76°
z, ft 7 7 7 Airplane heading: 212°
I, ft "‘003 ""005 0.7
METEOROLOGICAL DATA: Relative humidity: 69 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 2.0 353.8 66.8
20 2.3 357.4
30 2.7 353.3
40 2.7 350.6
50 2.4 341.3 66.4
5-second averages: 4.1 341.3 66.4
FLIGHT CONDITIONS: Vc = 120.8 knots CL = 0,388 W = 5965 1b

TABLE A8.- CONDITIONS

FOR FLIGHT 47, Run 6.0

Date: 8-7-81 Dispenser location: 25 percent semispan
Time: 10:42:10,40 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0,54°

z, ft 11 1 1 Airplane heading: 212°

I, ft 0.6 0.4 0.3

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.2 53.6 67.0

20 2.2 57.0

30 2.2 50.9

40 2.9 48.6

50 3.4 39.8 66.4
5-second averages:
FLIGHT CONDITIONS: Vc = 90,9 knots CL = 0.676 W = 6029 1b
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APPENDIX

TABLE A9.- CONDITIONS FOR FLIGHT 48, Run 1.0

Date: 8-12-81 Dispenser location: 80 percent
Time: 4:24:17.30 GMT Particle diameter: 600 to 700

AIRPLANE CONFIGURATION: Basic

semispan

pm

'RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: -0.003°
z, ft 9 9 9 Airplane heading: 212°
I, £t 1.3 1.3 1.3
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.4 247.0 70.56
20 3.8 250. 8
30 4.2 244.3
40 4,9 241.1
50 5.0 244.8 71.80
5-second averages: 4.6 241, 4 71.80
FLIGHT CONDITIONS: Vc = 110.3 knots CL = 0,488 W = 6247 1b
TABLE A10.~ CONDITIONS FOR FLIGHT 48, Run 1.1
Date: 8-12-81 Dispenser location: 80 percent semispan
Time: 4:53:49.3 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.,94°
z, £t 9 10 10 Airplane heading: 211°
I, ft 1.6 0.7 0
METEOROLOGICAL DATA: Relative humidity:

h, £t Wind speed, knots Wind direction, deg Temperature, °F

10 3.1 286.7 70.88

20 3.6 283.0

30 5.2 287.2

40 4,7 271.2

50 4.3 279.4 72.07
5-second averages: 4,4 276.5 72.07
FLIGHT CONDITIONS: Vc = 113.3 knots CL = 0,457 W =6176 1b
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TABLE Al1.- CONDITIONS

FOR FLIGHT 49,

Run 1.0

Date: 8-13-81 Dispenser location: 80 percent semispan
Time: 4:21:6.6 GMT Particle diameter: 600 to 700 pm
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.08°
z, ft 10 10 10 Airplane heading: 211°
I, ft 3.3 2.3 1.3
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 2.4 265.0 64.78
20 2.8 276. 4
30 3.0 255.1
40 3.6 260.0
50 4.3 260.8 65.21
5-second averages: 3.3 264,7 65,25
FLIGHT CONDITIONS: Vc = 90.9 knots CL = 0,7168 W = 6235 1b

TABLE A12.- CONDITIONS

FOR FLIGHT 49, Run 1.1

Date: 8-13-81 Dispenser location: 80 percent semispan
Time: 4:41:37.9 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1,.29°

z, ft 10 10 10 Airplane heading: 211°

I, ft 3.9 2,6 1.6

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 1.5 268.0 64,11

20 1.8 270, 0

30 1.8 254.9

40 2.3 248.5

50 2,4 251.9 63.64
5-second averages: 1.9 256.4 63.70
FLIGHT CONDITIONS: Vc = 93,2 knots CL = 0.6767 W = 6188 1b

33




APPENDIX

TABLE A13.~ CONDITIONS FOR FLIGHT 49, Run 2.0

METEOROLOGICAL DATA:

Date: 8-13-81 Dispenser location: 80 percent semispan
Time: 4:59:46,1 GMT Particle diameter: 600 to 700 pm
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row ~1 Row O Row 1 Crossing angle: -0.17°

z, ft 9 9 12 Airplane heading: 212°

I, ft 0] 0] 0.3

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.5 258.0 63.03

20 3.0 265, 8

30 3.4 267.3

40 4.3 259.1

50 4.3 259.7 63.27
5-second averages: 4.3 263.6 63.28
FLIGHT CONDITIONS: Vc = 118.1 knots CL = 0,419 W = 6147 1b

TABLE A14.- CONDITIONS

FOR FLIGHT 49, Run 2.1

METEOROLOGICAL DATA:

Date: 8-13-81 Dispenser location: 80 percent semispan
Time: 5:17:58.,7 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row =1 Row O Row 1 Crossing angle: 0.32°

z, ft 10 10 10 Airplane heading: 212°

I, ft 0.7 0.3 0

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 ' 4.1 290.5 64.42

20 4.3 288.4

30 5.0 281.1

40 5.3 276.7

50 5.4 274.6 64.42
5~-second averages: 5.3 275.1 64.42
FLIGHT CONDITIONS: Vc = 114.9 knots CL = 0.439 W = 6106 1b
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TABLE A15.- CONDITIONS

FOR FLIGHT 49, Run 3.0

Date: 8-13-81 Dispenser location: 85 percent semispan
Time: 6:33:29,0 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.09°
z, ft 11 1" 11 Airplane heading: 211°
I, £t -0.7 ~1.6 -3.3
METEOROLOGICAL DATA: Relative humidity: 91 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.7 293.5 64.54
20 4.4 291.0
30 4.9 278.1
40 5.4 280.1
50 5.5 276.9 64.42
5-second averages: 3.5 262.9 62.60
FLIGHT CONDITIONS: Vc = 113.6 knots CL = 0,455 W =6178 1b

TABLE A16.- CONDITIONS

FOR FLIGHT 49, Run 3.1

Date: 8-13-81 Dispenser location: 85 percent semispan
Time: 6:54:45.1 GMT Particle diameter: 600 to 700 um
ATIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.17°
z, ft 12 11 1 Airplane heading: 212°
I, £t 0 0 ~0.3
METEOROLOGICAL DATA: Relative humidity:
h, £t Wind speed, knots Wind direction, deg Temperature, °F
10 3.7 297.5 63.95
20 4.0 295,8
30 4.8 292.4
40 5.5 279.7
50 5.2 281.6 63.88
-5-second averages: 4.9 284.1 63.84
FLIGHT CONDITIONS: Vc = 117.7 knots CL = 0.427 W = 6229 1b
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TABLE Al17.- CONDITIONS FOR FLIGHT 49, Run 4.1

METEOROLOGICAL DATA:

Relative humidity:

Te
g:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 4.1 288.4 65.28

20 4,7 290. 4

30 5.3 282.9

40 5.6 284.6

50 5.9 284.4 65.80
5-second averages: 5.7 282.3 65. 80
FLIGHT CONDITIONS: Vc = 91,2 knots CL = 0,704 W =6176 1b

85 percent semispan

230
211°

Date: 8-13-81 Dispenser location:
Time: 7:15:27.,0 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle:
z, ft 10 10 10 Airplane headin
I, ft 6.9 5.6 4.6

TABLE A18.- CONDITIONS

FOR FLIGHT 49, Run 4.2

METEOROLOGICAL DATA:

Relative humidity:

0.
g:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.9 287.6 64.26

20 3.4 292,4

30 4.0 283.1

40 4.0 280, 6

50 4,0 276.0 64.44
5~-second averages: 4,0 278.6 64,85
FLIGHT CONDITIONS: Vc = 88,7 knots CL = 0,740 W =6129 1b

85 percent semispan

98°
211°

Date: 8-13-81 Dispenser location:
Time: 7:35:59.8 GMT Particle diameter: 600 to 700 pm
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle:
z, ft 9 9 9 Airplane headin
I, ft 0.3 -0.3 -1.3
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TABLE A19.- CONDITIONS FOR FLIGHT 49, Run 5.2

Date: 8-13-81 Dispenser location: 90 percent semispan
Time: 8:57:51.8 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row =1 Row O Row 1 Crossing angle: 0,83°
z, ft 13 13 13 Airplane heading: 211°
I, ft 1.0 0 -0.7
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 4.2 276.2 65.37
20 4,7 260.0
30 4,2 266.6
40 5.6 269.7
50 5.5 265.1 65.70
S5-second averages: 5.2 261.7 65.70
FLIGHT CONDITIONS: v, = 112.3 knots CL = 0,469 W = 6235 1b

TABLE A20.- CONDITIONS

FOR FLIGHT 49, Run 5.4

Date: 8-13-81 Dispenser location: 90 percent semispan
Time: 9:22:17.1 GMT Particle diameter: 600 to 700 uym
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row =1 Row O Row 1 Crossing angle: 0.56°
z, ft 10 12 12 Airplane heading: 212°
I' ft 0 -"003 -100
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 4.0 286.7 65.86
20 4,6 279.8
30 5.3 272.3
40 6.5 265.9
50 6.2 278.5 66.81
5-second averages: 5.6 276.2 66.85
FLIGHT CONDITIONS: Vc = 114.4 knots ¢y, = 0.448 W = 6165 1b
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TABLE A21,- CONDITIONS FOR FLIGHT 49, Run 6.2

Date: 8-13-81 Dispenser location: 90 percent semispan
Time: 10:05:53.8 GMT Particle diameter: 600 to 700 pm

ATRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.28°
z, ft 9 9 9 Airplane heading: 212°
I, ft 1.6 1.3 1.0

METEOROLOGICAL DATA: Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.6 276.2 65.43

20 4.0 282.4

30 4,2 278.7

40 6.1 268.3

50 6.0 270.3 66.22
5-second averages: 6.0 272.8 66.22
FLIGHT CONDITIONS: V, = 87.3 knots Cq = 0.757 W = 6079 1b

TABLE A22.- CONDITIONS FOR FLIGHT 49, Run 6.4

Date: 8-13-81 Dispenser location: 90 percent semispan
Time: 10:29:57.1 GMT Particle diameter: .600 to 700 um

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: -0.16°
z, ft 9 8 8 Airplane heading: 212°
I, ft 0.7 0.7 0.7

METEOROLOGICAL DATA: Relative humidity: 62 percent

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.8 274.5 66.27

20 4.6 280.0

30 4.9 276.0

40 4.9 274.3

50 5.9 267.5 67.24
5-second averages: 5.4 270.8 67.24
FLIGHT CONDITIONS: Vc = 88.0 knots CL = 0.740 W = 6026 1b
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TABLE A23.~ CONDITIONS FOR FLIGHT 50, Run 1.1

Date: 8-14-81
Time: 04:22:15.2

GMT

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA:
z, ft
I, ft

Dispenser location: 95 percent semispan

Particle diameter: 600 to 70

METEOROLOGICAL DATA:

h, ft

0 um

10
20
30
40
50

5-second averages:

FLIGHT CONDITIONS:

Row -1 Row O Row 1 Crossing angle: 0.90°
13 13 13 Airplane heading: 211°
3.3 2.6 2.0

Relative humidity: 83 percent
Wind speed, knots Wind direction, deg Temperature, °F
3.0 243,5 65.34
3.4 237.4
3.7 235.6
4.1 232.0
4.8 230.6 65.25
4.8 230.9 65.25
Vc = 118,.6 knots CL = 0.413 W = 6115 1b

TABLE A24.- CONDITIONS FOR FLIGHT 50, Run 2.2

Date: 8-14-81
Time: 04:59:17.6

GMT

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA:
z, ft
I, £t

Dispenser location: 95 percent semispan
Particle diameter: 600 to 700 pm

Row -1 Row O Row 1 Crossing angle:
12 12 12 Airplane headin
5.3 4.9 4.9

METEOROLOGICAL DATA:

Relative humidity: 83 percent

0.
g:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.4 233.1 65.64

20 3.3 243.4

30 3.1 237.4

40 3.4 235.8

50 3.5 235.6 65.17
5-second averages: 3.498 235,50 65.19
FLIGHT CONDITIONS: Vc = 86.7 knots CL = 0.761 W = 6019 1b

08°
212°
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TABLE A25.~ CONDITIONS FOR FLIGHT 51, Run 1.2

Date: 8-19-81 Dispenser location: 15 percent semispan
Time: 4:24:05.,0 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.94°
z, ft 8 8 8 Airplane heading: 211°
I, ft 6.2 5.6 4.6
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 2.8 72.4 66.43
20 3.3 85.0
30 3.0 101.9
40 4.0 84.8
50 4.1 70.5 67,1
5-second averages: 3.7 80.3 67.1
FLIGHT CONDITIONS: Vc = 117.2 knots CL = 0,430 W = 6273 1b

TABLE A26.~ CONDITIONS FOR FLIGHT 51, Run 2.1

Date: 8-19-81 Dispenser location: 15 percent semispan
Time: 5:11:54.4 GMT Particle diameter: 600 to 700 pum
ATRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.49°
z, ft 6 6 6 Airplane heading: 211°
I, ft 4.6 3.3 2.0
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.4 89.7 65.70
20 3.8 85.4
30 3.4 82.5
40 4.0 53.0
50 4,2 66.0 67.62
5-second averages: 3.8 78.8 67.62
FLIGHT CONDITIONS: Vc = 89.7 knots CL = 0.719 W = 6099 1b
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TABLE A27.~ CONDITIONS

FOR FLIGHT 51, Run 2.3

Date: 8-19-81 Dispenser location: 15 percent semispan
Time: 5:34:25.1 GMT Particle diameter: 600 to 700 pum
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.

z, ft 9 9 9 Airplane heading:

I, ft 5.6 4.6 3.9

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.0 48.9 65.53

20 2.0 78.0

30 2.7 85.9

40 2.7 76.9

50 3.3 97.4 67.06
5-second averages: 3.1 92,1 67.1
FLIGHT CONDITIONS: Vc = 89.7 knots CL = 0.713 W = 6050 1b

11°
211°

TABLE A28.- CONDITIONS

FOR FLIGHT 51, Run 3.3

Date: 8-19-81 Dispenser location: 40 percent semispan
Time: 7:13:07.2 GMT Particle diameter: 600 to 700 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.

z, ft 13 13 13 Airplane heading:

I, ft 4.9 3.9 3.0

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.4 60.3 66.45

20 3.5 53.8

30 3.3 68.7

40 5.2 63.9

50 5.3 66.7 67.82
S-second averages: 4.0 69.1 67.82
FLIGHT CONDITIONS: Vc = 118.0 knots CL = 0,423 W =6212 1b

25°
211°
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TABLE A29.- CONDITIONS FOR FLIGHT 52, Run 1.0

Date: 8-25-81 Dispenser location: 60 percent semispan
Time: 4:50:37.6 GMT Particle diameter: 600 to 700 um

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.68°
z, ft 11 " 11 Airplane heading: 212°
I, ft O -'003 -100
METEOROLOGICAL DATA: Relative humidity: 86 percent
h, ft Wind speed, knots Wind direction, deg Temperature, .°F
10 3.1 302.6 70.92
20 3.5 308.4
30 3.6 306.1
40 3.7 301.5
50 4.1 302.9 69.51
5-second averages: 4,1 : 302.9 69.54
FLIGHT CONDITIONS: Vc = 116.7 knots CL = 0.429 W = 6148 1b

TABLE A30.- CONDITIONS FOR FLIGHT 53, Run 1.2

Date: 8-26-81 - Dispenser location: 50 percent semispan
Time: 8:12:27.6 GMT Particle diameter: 300 to 355 um

ATRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1,02°
z, ft 12 12 12 Airplane heading: 211°
I, ft 4.6 3.9 4.0
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.4 307.7 59.27
20 4.4 310.8
30 4.6 311.7
40 4.4 319.6
50 4.3 324.7 57.27
5-second averages: 4.4 319.8 57.27
FLIGHT CONDITIONS: VE = 123.3 knots CL = 0.389 W = 6235 1b
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TABLE A31.- CONDITIONS FOR FLIGHT 53, Run 2.2

Date: 8-26-81 Dispenser location: 50 percent semispan
Time: 8:59:52.,1 GMT Particle diameter: 300 to 355 um

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1,57°
z, ft 13 10 10 Airplane heading: 211°
I, ft 3.9 2.6 1.3
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.4 303.1 58.64
20 3.7 316.8
30 4.1 323.7
40 4.4 331.5
50 4,4 327.7 56.55
5-second averages: 4.4 329.8 56.55
FLIGHT CONDITIONS: Vc = 88.5 knots CL = 0.739 W = 6094 1b

TABLE A32.- CONDITIONS FOR FLIGHT 53, Run 2.3

Date: 8-26-81 Dispenser location: 50 percent semispan
Time: 09:13:49,4 GMT Particle diameter: 300 to 355 um

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.30°
z, ft 10 10 10 Airplane heading: 212°
I, ft 5.6 5.3 4.9
METEOROLOGICAL DATA: Relative humidity: 70 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.1 307.1 58.44
20 3.4 323.4
30 4.0 324.0
40 4.3 330.9
50 4.6 330.3 56.30
5-second averages: 4.6 334.0 56,30
FLIGHT CONDITIONS: Vc = 89.1 knots CL = 0,712 W = 5956 1b
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TABLE A33.-~ CONDITIONS FOR FLIGHT 54, Run 1.0

Date: 8-27-81
Time: 04:13:22.2 GMT

Dispenser location:
Particle diameter:

75 percent semispan
300 to 355 pm

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O
z, ft 8 10
I, ft 1.3 0.7

METEOROLOGICAL DATA:

Row 1 Crossing angle: 0.57°
10 Airplane heading: 212°
0.3

Relative humidity: 83 percent

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 4,0 177.3 61.90

20 4.0 172.4

30 4,7 174.6

40 4.9 168.2

50 4.8 173.6 58.28
5-second averages: 4.4 173.9 58.28
FLIGHT CONDITIONS: Vc = 115.7 knots CL = 0,437 W = 6154 1b

TABLE A34.- CONDITIONS FOR FLIGHT 54, Run 1.1

Date: 8-27-81
Time: 04:27:35.2 GMT

Dispenser location:
Particle diameter:

75 percent semispan
300 to 355 pum

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O
z, ft 12 1
I, ft -1.6 -2.0

METEOROLOGICAL DATA:

Row 1 Crossing angle: 0.44°
1" Airplane heading: 212°
-2. 3

Relative humidity: 83 percent

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.9 179.4 60.89

20 3.1 182.8

30 3.4 172.4

40 4.3 171.0

50 4.3 181.2 58.80
5-second averages: 4.6 177.5 58,78
FLIGHT CONDITIONS: Vc = 117.9 knots CL = 0.418 W =6115 1b
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TABLE A35.- CONDITIONS FOR FLIGHT 54, Run 2.0

Date: 8-27-81 Dispenser location: 75 percent semispan
Time: 04:40:47.0 GMT Particle diameter: 300 to 355 pm

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.43°
z, ft 1M 11 9 Airplane heading: 212°
I, ft 1.3 1.0 0.7

METEOROLOGICAL DATA: Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.7 183.4 61.50

20 3.4 173.4

30 3.7 174.0

40 3.5 179.8

50 4.3 184.9 59.38
S5-second averages: 4,4 189.8 59.38
FLIGHT CONDITIONS: Vc = 86.3 knots CL = 0,776 W = 6079 1b

TABLE A36.~ CONDITIONS FOR FLIGHT 54, Run 3.0

Date: 8-27-81 Dispenser location: 80 percent semispan
Time: 06:00:33.1 GMT Particle diameter: 300 to 355 um

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: =~0,23°
z, £t 10 10 10 Airplane heading: 212°
I, ft -1.6 -1.6 -1.3

METEOROLOGICAL DATA: Relative humidity: 88 percent

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.9 184.0  60.58

20 3.5 185.8

30 4.0 182.5

40 4.3 - 186.9

50 4.6 190.5 59.72
5-second averages: 4.6 189.9 59.74
FLIGHT CONDITIONS: Vc = 115.7 knots CL = 0,439 W = 6181 1b
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TABLE A37.- CONDITIONS FOR FLIGHT 54, Run 3.1

Date: 8-27-81 Dispenser location: 80 percent semispan
Time: 06:17:10.4 GMT Particle diameter: 300 to 355 um

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row 0 Row 1 Crossing angle: 0.15°
z, £t 9 9 9 Airplane heading: 212°
I, ft "'3.0 "3'0 —300 .

METEOROLOGICAL DATA: Relative humidity: 88 percent

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.1 183.9 61.09

20 3.5 187.0

30 4.4 178.6

40 5.0 174.9

50 5.3 184.8 58.95
5~-second averages: 5.4 185.4 58.96
FLIGHT CONDITIONS: Vc = 117.4 knots CL = 0,423 W = 6139 1b

TABLE A38,- CONDITIONS FOR FLIGHT 54, Run 4.0

Date: 8-27-81 Dispenser location: 80 percent semispan
Time: 06:50:32.8 GMT Particle diameter: 300 to 355 um

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1,07°
z, ft 2 2 2 Airplane heading: 211°
I, ft -8.9 -9.5 -10.5

METEOROLOGICAL DATA: Relative humidity: 88 percent

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.7 250.4 60.81

20 2.9 232.4

30 3.1 224.4

40 4.1 214.5

50 4,0 215.7 57.56
5-second averages: 4,1 ' 214.9 57.56
FLIGHT CONDITIONS: Vc = 85.2 knots CL = 0,790 W = 6043 1b
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TABLE A39.~ CONDITIONS FOR FLIGHT 54, Run 4.1

Date:
Time:

8-27-81
07:05:00.1 GMT

Dispenser location:

Particle diameter:

80 percent semispan
300 to 355 pm

AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row =1 Row O Row 1 Crossing angle: -0.06°
z, ft 11 11 11 Airplane heading: 212°
I, ft -1.3 -1.3 -1.3
METEOROLOGICAL DATA: Relative humidity: 89 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 1.8 262,7 59.32
20 2,3 251.8
30 2.4 229.5
40 3.3 213.9
50 3.3 213.4 56.97
5-second averages: 3.1 213.9 56,98
FLIGHT CONDITIONS: Vc = 82.9 knots CL = 0,831 W = 6007 1b

TABLE A40.- CONDITIONS FOR FLIGHT 54, Run 5.0

Date: 8-27-81 Dispenser location: 85 percent semispan
Time: 08:07:17.9 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0,60°
z, ft 12 12 12 Airplane heading: 212°
I, ft -1.0 -1.3 -2,0
METEOROLOGICAL DATA: Relative humidity: 74 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 2,5 278.0 58.68
20 2.5 277.8
30 3.4 239.6
40 4.2 232.6
50 4.4 230.1 56.46
5-second averages: 4.6 228.2 56.46
FLIGHT CONDITIONS: Vc = 115.1 knots CL = 0,443 W = 6178 1b
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TABLE A41.- CONDITIONS FOR FLIGHT 54, Run 5.1

Date: 8-27-81 Dispenser location: 85 percent semispan
Time: 08:19:17.4 GMT Particle diameter: 300 to 355 pm
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.60°
z, ft 10 10 10 Airplane heading: 212°
I, ft -1'6 -203 "'206
METEOROLOGICAL DATA: Relative humidity: 74 percent
h, £t Wind speed, knots Wind direction, deg Temperature, °F
10 3.6 295.4 58.41
20 3.5 289.4
30 3.4 269.0
40 3.3 254.9
50 3.7 249.7 56.68
5-second averages: 3.8 250.4 56.68
FLIGHT CONDITIONS: Vc = 150,.3 knots CL = 0.258 W =6142 1b

TABLE A42.- CONDITIONS

FOR FLIGHT 54, Run 6.1

Date: 8-27-81 Dispenser location: 85 percent semispan
Time: 08:45:18.3 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: -0.04°
z, ft 1 11 1 Airplane heading: 212°
I, ft 2.0 2,0 2.0
METEOROLOGICAL DATA: Relative humidity: 74 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.3 298.4 57.78
20 4.0 294.8
30 4.1 286.9
40 4.4 284.8
50 4.8 278.9 56.17
5-second averages: 4.9 278.8 56.17
FLIGHT CONDITIONS: Vc = 8646 knots CL = 0,770 W = 6070 1b
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APPENDIX

Run 6.2

Date: 8-27-81 Dispenser location: 85 percent semispan
Time: 08:58:52.4 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: -1.13°
z, £t 10 10 10 Airplane heading: 213°
I, ft 3.9 4.6 5.6
METEOROLOGICAL DATA: Relative humidity: 74 percent
h, ft Wind speed, knots Wind\direction, deg Temperature, °F
10 2.7 295.7 57.61
20 3.1 299.0
30 3.4 282.7
40 3.6 278.9
50 3.6 272,6 55.81
5-second averages: 3.7 270.8 55. 81
FLIGHT CONDITIONS: Vc = 87.9 knots CL = 0,742 W = 6034 1b

TABLE A44.~ CONDITIONS FOR FLIGHT 55, Run 1.1

Date: 8-31-81 Dispenser location: 90 percent semispan
Time: 10:21:13.3 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.66°
z, £t 15 15 15 Airplane heading: 212°
I, ft 10.2 9.8 9.2
METEOROLOGICAIL DATA: Relative humidity: 68 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 2.5 59.8 65.48
20 3.0 60,0
‘30 3.4 58.3
40 3.8 55.7
50 4.3 69.2 62.13
5-second averages: 4.1 65.1 62.13
FLIGHT CONDITIONS: Vc = 124.,7 knots CL = 0,376 W = 6157 1b
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TABLE A45.,- CONDITIONS FOR FLIGHT 55, Run 2.1

Date: 8-31-81 Dispenser location: 90 percent semispan
Time: 11:14:16.5 GMT Particle diameter: 300 to 355 um
ATIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.26°
z, ft 6 6 6 Airplane heading: 212°
I, ft 4.9 4.6 4.6
METEOROLOGICAL DATA: Relative humidity: 68 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.6 65.5 70.39
20 4.6 58.8
30 4.3 63.1
40 5.6 43,9
50 5.0 56.2 69.91
5-second averages: 6.0 77.2 69.91
FLIGHT CONDITIONS: V. = 88.7 knots CL = 0,725 W = 6009 1b
TABLE A46.- CONDITIONS FOR FLIGHT 55, Run 2.2
Date: 8-31-81 Dispenser location: 90 percent semispan
Time: 11:44:45.0 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.76°
z, ft 7 7 7 Airplane heading: 211°
I, ft 2.6 2.0 1.3
METEOROLOGICAL DATA: Relative humidity: 68 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 6.6 63.8 71.37
20 7.5 66. 4
30 7.2 49.5
40 6.5 59.1
50 6.6 58.2 71.06
5-second averages: 6.4 58.7 71.08
FLIGHT CONDITIONS: Vo = 87.7 knots Cp, = 0.734 W = 5950 1b
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TABLE A47.- CONDITIONS FOR FLIGHT 56, Run 1.1

Date: 9-1-81 Dispenser location: 90 percent semispan
Time: 10:01:54.9 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.38°
z, ft 13 13 13 Airplane heading: 212°
I, ft 13.5 13.1 12.8
METEOROLOGICAL DATA: Relative humidity: 70 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 2.1 339.5 68.13
20 2.0 340.8
30 2,2 350.9
40 2.0 2.1
50 2.2 3.4 66.90
5-second averages: 2.3 10.1 . 66,90
FLIGHT CONDITIONS: V, = 118.3 knots Cy = 0.414 W = 6100 1b

TABLE A48.- CONDITIONS FOR FLIGHT 56, Run 2.0

Date: 9-1-81 Dispenser location: 90 percent semispan
Time: 10:25:28,60 GMT Particle diameter: 300 to 355 um
ATIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.29°
z, ft 8 8 8 Airplane heading: 211°
I, ft 5.6 4.3 3.3
METEOROLOGICAL DATA: Relative humidity: 70 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 1.6 17.6 67.89
20 1.7 29,0
30 2.1 30.5
40 2.1 29.7
50 2.3 28.9 62.82
5-second averages: 2.2 32.1 65.84
FLIGHT CONDITIONS: Vo = 86.5 knots Cq, = 0.765 W = 6028 1b
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TABLE A49,- CONDITIONS

FOR FLIGHT 56, Run 2.1

Date: 9-1-81 Dispenser location: 90 percent semispan
Time: 10:42:35.60 GMT Particle diameter: 300 to 355 um
ATRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.61°
z, ft 7 7 7 Airplane heading: 212°
I, ft 0 -0.7 ~0.9
METEOROLOGICAL DATA: Relative humidity: 70 percent
h, ft Wind speed, knots Wind direction, deqg Temperature, °F
10 3.6 8.6 67.23
20 3.4 5.0
30 3.6 10,2
40 3.5 4.4
50 3.7 13.5 66.49
5-second averages: 3.4 22.9 66.49
FLIGHT CONDITIONS: Vc = 85.6 knots CL = 0.777 W = 5998 1b

TABLE A50.- CONDITIONS

FOR FLIGHT 56, Run 3.2

Date: 9-1-81 Dispenser location: 95 percent semispan
Time: 12:13:50.60 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.65°
z, ft 16 16 16 Airplane heading: 212°
I, ft 0.3 -0.3 -0.7
METEOROLOGICAL DATA: Relative humidity: 72 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.5 330.5 71.28
20 3.6 330.8
30 3.8 325.7
40 3.7 321.7
50 3.8 319.5 70.86
5-second averages: 4.0 332.0 70.70
FLIGHT CONDITIONS: Vc = 150.,5 knots CL = 0,258 W = 6148 1b
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TABLE A51.~ CONDITIONS FOR FLIGHT 56, Run 3.4

Date: 9-1-81 Dispenser location: 95 percent semispan
Time: 12:29:52,20 GMT Particle diameter: 300 to 355 pm

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.88°
z, ft 14 14 14 Airplane heading: 211°
I, ft ~0.3 ~1.3 -2.0

METEOROLOGICAL DATA: Relative humidity: 72 percent

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.1 346.1 73.15

20 2.3 354.0

30 2,7 359.4

40 2,3 5.6

50 2.5 6.2 72.77
5-second averages: 2.4 352.6 72,75
FLIGHT CONDITIONS: Vc = 119.3 knots CL = 0,408 W =6112 1b

TABLE A52.- CONDITIONS FOR FLIGHT 56, Run 4.1

Date: 9-1-81 Dispenser location: 95 percent semispan
Time: 12:47:22,80 GMT Particle diameter: 300 to 355 um

AIRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: -6.59°
z, ft 11 11 11 Airplane heading: 219°
I, ft 10.5 16,1 21,7
METEOROLOGICAL DATA: Relative humidity: 72 percent
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.5 357.4 74.71
20 3.4 354.0
30 2.9 358.2
40 3.7 10.4
50 3.7 12.1 74.57
5-second averages: 3.3 9.0 74.57
FLIGHT CONDITIONS: V., = 89.4 knots Cp, = 0.721 W = 6070 1b
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TABLE A53.- CONDITIONS FOR FLIGHT 57, Run 1.1

Date: 9-2-81 Dispenser location:

Time: 10:00:37.7 GMT Particle diameter: 3

ATRPLANE CONFIGURATION: Basic

RADAR/LASER DATA: Row -1 Row O Row 1 Crossin
z, ft 19 19 19 Airplan
I, ft 4.9 4,3 3.9

METEOROLOGICAL DATA:

Relative humidity:

25 percent semispan
00 to 355 pm

0.61°
212°

g angle:
e heading:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.4 91.9 69.66

20 3.7 83.4

30 5.2 95.8

40 4,7 90.5

50 5.9 87.1 69.06
S5-second averages: 4.4 85.9 69.06
FLIGHT CONDITIONS: Vc = 120.3 knots CL = 0,408 W = 6218 1b

TABLE A54.- CONDITIONS FOR FLIGHT 57, Run 1.2

Date: 9-2-81 Dispenser location: 25 percent semispan
Time: 10:15:30.9 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: -~0,70°

z, ft 17 17 17 Airplane heading: 213°

I, ft 13.1 13.8 14.4

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.5 61.5 69.42

20 2,9 75.0

30 3.3 54.0

40 3.4 81.3

50 4,8 83.5 69.13
5-second averages: 4.3 95,7 69.13
FLIGHT CONDITIONS: Vc = 118.0 knots CL = 0.422 W = 6182 1b
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TABLE A55.- CONDITIONS FOR FLIGHT 57, Run 2.6

Date: 9-2-81 Dispenser location: 25 percent semispan
Time: 10:44:46.9 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.66°

z, ft 8 8 8 Airplane heading: 211°

I, ft 4.3 3.0 1.3

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.1 106.0 70.02

20 3.4 122.0

30 4.7 98.9

40 5.2 76.1

50 5.4 62.7 69.66
5-second averages: 4.4 108.3 69.66
FLIGHT CONDITIONS: V., = 83.7 knots Cy, = 0.825 W = 6088 1b

TABLE A56.~ CONDITIONS FOR FLIGHT 58, Run 1.5

Date: 9-3-81 Dispenser location: 15 percent semispan
Time: 10:22:44.2 GMT Particle diameter: 300 to 355 pm
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.26°

z, £t 12 12 12 Airplane heading: 212°

I, ft 3.0 2.6 2.6

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.8 50.8 69.75

20 4.6 59.4

30 5.3 64.0

40 5.3 54 .1

50 4.9 78.1 69.13
5-second averages: 5.5 60.3 69.13
FLIGHT CONDITIONS: V, = 119.1 knots Cq, = 0.403 W = 6016 1b
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TABLE A57.~ CONDITIONS

FOR FLIGHT 58, Run 1.8

Date: 9-3-81 Dispenser location: 15 percent semispan
Time: 10:49:59.0 GMT Particle diameter: 300 to 355 um
ATRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1,29°
z, ft 15 15 16 Airplane heading: 211°
I, ft 100 “0.3 _1.3
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.4 335.1 67.89
20 3.6 336.4
30 3.7 330.4
40 3.7 335.8
50 3.7 333.5 67.89
5-second averages: 3.2 358.3 67.91
FLIGHT CONDITIONS: Vc = 121,7 knots CL = 0.379 W = 5902 1b

TABLE A58.~ CONDITIONS

FOR FLIGHT 58, Run 2.0

Date: 9-3-81 Dispenser location: 15 percent semispan
Time: 11:02:58.,1 GMT Particle diameter: - 300 to 355 um
ATRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: -1.72°

z, ft 8 11 11 Airplane heading: 214°

I, ft 3.9 5.6 6.9

METEOROLOGICAL DATA:

Relative humidity:

direction, deg

h, ft Wind speed, knots Wind Temperature, °F

10 3.0 325.6 66.61

20 3.7 328.0

30 4.2 335.6

40 4.4 337.4

50 4.6 350.5 66.15
5-second averages: 4,42 344.17 66.16
FLIGHT CONDITIONS: Vc = 89.2 knots CL = 0,702 W = 5878 1b
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TABLE A59.- CONDITIONS

FOR FLIGHT 58, Run 2.9

Date: 9-3-81 Dispenser location: 15 percent semispan
Time: 11:27:17.30 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row =1 Row O Row 1 Crossing angle: -0.38°

z, ft 8 9 9 Airplane heading: 212°

I, ft 2.6 2.6 2.6

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 4.0 343.9 66.58

20 4,0 343.8

30 4.0 343.4

40 4.3 346.7

50 4,3 353.3 66.13
5-second averages: 4.7 352.1 66.13
FLIGHT CONDITIONS: Vc = 85,1 knots CL = 0.760 W = 5800 1b

TABLE A60.~ CONDITIONS

FOR FLIGHT 59, Run 1.3

Date: 9-10-81 Dispenser location: 70 percent semispan
Time: 11:44:16.5 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.61°

z, ft 13 13 13 Airplane heading: 212°

I, ft -0.3 -1.0 -1.3

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.3 345.4 58.89

20 3.1 3.8

30 3.6 1.8

40 3.8 4.6

50 4.2 5.5 57.45
5-second averages: 3.6 6.4 57.42
FLIGHT CONDITIONS: Vc = 119.8 knots CL = 0,409 W = 6176 1b
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TABLE A61.- CONDITIONS

FOR FLIGHT 59, Run 2.0

Date:
Time:

9-10-81

RADAR/LASER DATA:
z, ft
I, ft

METEOROLOGICAL DATA:

AIRPLANE CONFIGURATION:

11:58:10.4 GMT

Dispenser location:
Particle diameter:

70 percent semispan
300 to 355 pm

Basic
Row -1 Row O Row 1 Crossing angle: 1.24°
9 9 9 Airplane heading: 211°
1.0 2.0 3.0

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.6 5.2 61.41

20 3.8 1.0

30 3.8 17.2

40 3.7 14.3

50 3.8 24,2 60,49
5-second averages: 4.3 18.9 60, 49
FLIGHT CONDITIONS: Vc = 87.3 knots CL = 0,746 W = 5982 1b

TABLE A62.- CONDITIONS

FOR FLIGHT 59, Run 2.1

Date: 9-10-81

Time:

RADAR/LASER DATA:
z, ft
I, ft

METEOROLOGICAL DATA:

AIRPLANE CONFIGURATION:

12:11:44.3 GMT

Dispenser location:
Particle diameter:

70 percent semispan
300 to 355 pm

Basic
Row -1 Row O Row 1 Crossing angle: 1.43°
10 10 10 Airplane heading: 211°
-2,0 -3.3 -4, 6

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.9 334.0 62,96

20 2.9 353.0

30 3.4 0.1

40 3.8 358.9

50 3.7 353.9 62.24
5-second averages: 3.2 2.0 62,22
FLIGHT CONDITIONS: Vc = 88.2 knots CL = 0,747 W =26117 1b
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TABLE A63.- CONDITIONS

FOR FLIGHT 59, Run 3.2

Date: 9-10-81 Dispenser location: 60 percent semispan
Time: 13:23:44.3 GMT Particle diameter: 300 to 355 pm
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.20°

z, ft 12 12 12 Airplane heading: 211°

I, ft ~7.6 -8.5 ~9,5

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.5 346.2 69.39

20 2.8 335.0

30 2.8 346.9

40 2.7 347.7

50 3.8 334.9 69.46
5-second averages: 3.2 329.2 69.44
FLIGHT CONDITIONS: Vc = 116.4 knots CL = 0,416 W = 5929 1b

TABLE A64.- CONDITIONS

FOR FLIGHT 59, Run 3.7

Date: 9-10-81 Dispenser location: 60 percent semispan
Time: 13:44:51.8 GMT Particle diameter: 300 to 355 pm
ATRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.15°

z, ft 14 14 14 Airplane heading: 211°

I, ft 2.3 1.3 0.3

METEOROLOGICAL DATA:

Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.9 1.3 71.1

20 3.0 353.4

30 2.9 348.0

40 2.1 347.3

50 3.0 344.0 70.50
5-second averages: 3.2 340.2 70.50
FLIGHT CONDITIONS: Vc = 110.5 knots ¢, = 0.482 W = 6206 1b
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TABLE A65,- CONDITIONS FOR FLIGHT 59, Run 4.0

Date: 9-10-81 Dispenser location: 60 percent semispan
Time: 14:01:01 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.04°
z, ft 12 12 12 Airplane heading: 211°
I, ft 0.3 1.0 2,0
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.5 29.9 72.68
20 3.5 18.4
30 3.4 18.7
40 2.7 15.7
50 3.4 15.8 72.34
5-second averages: 3.4 15.8 72.36
FLIGHT CONDITIONS: Vc = 82,2 knots CL = 0.867 W =6173 1b

TABLE A66.- CONDITIONS FOR FLIGHT 59, Run 4.1

Date: 9-10-81 Dispenser location: 60 percent semispan
Time: 14:19:4.2 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.33°
z, ft 7 1 1 Airplane heading: 211°
I, ft 2.3 3.3 4.6
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.6 355.4 73.98
20 3.5 343.0
30 3.4 352.8
40 2.4 353.8
50 3.4 338.5 73.58
5-second averages: 3.3 338.0 73.62
FLIGHT CONDITIONS: Vc = 79.1 knots CL = 0,934 W = 6147 1b
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TABLE A67.- CONDITIONS FOR FLIGHT 60, Run 1.6

Date: 9-11-81 Dispenser location: 40 percent semispan
Time: 10:30:56.20 GMT Particle diameter: 300 to 355 um
ATRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.27°
z, ft 11 1" 11 Airplane heading: 211°
I, ft 0.7 -0.3 -1.6
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.0 247.2 62,65
20 3.4 240. 4
30 4,3 253.7
40 4.4 247.8
50 4.7 249.1 61.72
5-second averages: 4,5 254.1 61.71
FLIGHT CONDITIONS: Vc = 113.5 knots CL = 0,454 W = 6150 1b

TABLE A68.- CONDITIONS

FOR FLIGHT 60, Run 2.1

Dispenser location: 40 percent semispan

Date: 9-11-81
Time: 10:56:51.9 GMT Particle diameter: 300 to 355 pm
AIRPLANE CONFIGURATION: Basic
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.88°
z, ft 8 8 8 Airplane heading: 211°
I, ft 1.0 0 0.7
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 2.2 277.0 62.18
20 2.8 272.4
30 2.5 275.4
30 2.1 272.8
50 2.8 266.9 61.12
5-second averages: 3.0 274.2 61.14
FLIGHT CONDITIONS: Vc = 80.5 knots CL = 0.892 W = 6094 1b
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TABLE A69.- CONDITIONS FOR FLIGHT 67, Run 1.1

Date:
Time:

12-4-81
13:02:32.3 GMT

AIRPLANE CONFIGURATION:

Dispenser location:
Particle diameter:

Winglets on

70 percent semispan
300 to 355 pm

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.44°
z, ft 14 14 14 Airplane heading: 212°
I, ft 7.5 7.5 7.5
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 2.9 164.2 45,2
20 3.3 151.4
30 3.4 178.1
40 4,0 171.2
50 4.1 160.6 45,0
5-second averages: 4.6 175.4 45,0
FLIGHT CONDITIONS: Vc = 118.9 knots CL = 0.434 W = 6414 1b

TABLE A70.- CONDITIONS FOR FLIGHT 67, Run 2.1

12-4-81
13:47:31.3 GMT

Date:
Time:

AIRPLANE CONFIGURATION:

Dispenser location:
Particle diameter: .

Winglets on

70 percent semispan
300 to 355 um

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.38°
z, ft 12 12 12 Airplane heading: 212°
I, ft 3.9 3.9 3.6
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.3 ' 188.5 49,7
20 3.5 164.4
30 4.3 160.8
40 5.0 159.4
50 5.3 158.9 49.0
5-second averages: 6.1 161.2 49,0
FLIGHT CONDITIONS: Vc = 81.9 knots CL = 0.904 W = 6342 1b
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TABLE A71.- CONDITIONS FOR FLIGHT 74, Run 1.0

Date: 2-8-82 Dispenser location: 80 percent semispan
Time: 23:29:03,8 GMT Particle diameter: 300 to 355 pm

AIRPLANE CONFIGURATION: Winglets on

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.73°
z, ft 14 14 14 Airplane heading: 211°
I, £t 3.3 2.6 2,0
METEOROLOGICAL DATA: Relative humidity:
h, ft wWind speed, knots Wind direction, deg Temperature, °F
10 3.3 204.1 31.9
20 3.5 204.8
30 3.8 202.8
40 3.5 201.0
50 3.6 196.2 29,7

5-second averages:

FLIGHT CONDITIONS: Vc = 121.0 knots CL = 0.422 W = 6447 1b

TABLE A72.,~ CONDITIONS FOR FLIGHT 74, Run 2.4

Date: 2~8-82 Dispenser location: 80 percent semispan
Time: 01:38:22,1 GMT Particle diameter: 300 to 355 pm

AIRPLANE CONFIGURATION: Winglets on

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.17°

' z, ft 13 13 13 Airplane heading: 212°
I, ft

METEOROLOGICAL DATA: Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.2 223.7 33,2

20 2.5 220.8

30 2.7 213.6

40 2.9 207.9

50 2.8 204.0 27.7
5-second averages: 2.9 204,2 27.7
FLIGHT CONDITIONS: Vc = 81.6 knots CL = 0.895 W = 6216 1lb
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TABLE A73.~ CONDITIONS FOR FLIGHT 74, Run 3.2

Date: 2-8-82 Dispenser location: 85 percent semispan
Time: 03:22:51.3 GMT Particle diameter: 300 to 355 um

AIRPLANE CONFIGURATION: Winglets on

RADAR/LASER DATA: Row -1 Row 0 Row 1 Crossing angle: 0.90°
z, ft 16 16 16 Airplane heading: 211°
I, ft 4,3 3.6 2.6

METEOROLOGICAL DATA: Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.0 170.8 35.7

20 1.2 140.8

30 2.0 152.3

40 2.0 137.5

50 2.1 148.0 35.9
S-second averages: 2.3 140.6 35.9
FLIGHT CONDITIONS: V_ = 118.9 knots Cp, = 0.434 W = 6414 1b

TABLE A74.- CONDITIONS FOR FLIGHT 74, Run 4.0

Date: 2-8-82 Dispenser location: 85 percent semispan
Time: 03:43:55.6 GMT Particle diameter: 300 to 355 pm

AIRPLANE CONFIGURATION: Winglets on

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.57°
z, ft 12 12 12 Airplane heading: 212°
I, ft -1.0 -1.6 -2.0

METEOROLOGICAL DATA: Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 2.0 178.5 35.5

20 2.3 164.8

30 2.7 170.5

40 2.7 165.3

50 3.0 160.4 35,8
5-second averages: 3.3 164.5 35.8
FLIGHT CONDITIONS: Vc = 83.8 knots CL = 0,871 W = 6378 1b
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TABLE A75.- CONDITIONS FOR FLIGHT 76, Run 1.0

Date: 2-26-82 Dispenser location: 95 percent semispan
Time: 05:07:15.8 GMT Particle diameter: 300 to 355 um

AIRPLANE CONFIGURATION: Winglets on

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.97°
z, ft 13 13 13 Airplane heading: 211°
I, ft 4.3 3.6 2.6

METEOROLOGICAL DATA: Relative humidity:

h, £t Wind speed, knots Wind direction, deg Temperature, °F

10 3.3 - 8.9 20.3

20 3.5 357.0

30 3.7 356.9

40 4.2 352, 7

50 4.0 5.1 16.6
S~second averages: 3.8 349.8 16.2
FLIGHT CONDITIONS: Vc = 120.9 knots CL = 0.424 W =6474 1b

TABLE A76.~ CONDITIONS FOR FLIGHT 76, Run 1.1

Date: 2-26-82 Dispenser location: 95 percent semispan
Time: 05:37:39.5 GMT Particle diameter: 300 to 355 um

AIRPLANE CONFIGURATION: Winglets on

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 1.09°
. z, ft 15 15 15 Airplane heading: 211°
I, ft 0 -1.0 -1.6
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 2.9 337.4 19.2
20 3.6 342,0
30 3.8 349.7
40 4.2 349.0
50 4.4 349.0 16.0
5-second averages: 4.5 348.3 16.0
FLIGHT CONDITIONS: V_ = 119.3 knots Cy = 0.432 W = 6426 1b

65




APPENDIX

TABLE A77.- CONDITIONS FOR FLIGHT 76, Run 2.0

Date: 2~26-82 Dispenser location: 95 percent semispan
Time: 06:06:57.5 GMT Particle diameter: 300 to 355 um
AIRPLANE CONFIGURATION: Winglets on
RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.96°
z, ft 9 9 9 Airplane heading: 211°
I, ft 5.0 4.0 3.0
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.0 313.0 18.4
20 3.1 317.4
30 3.4 332.3
40 3.8 332.0
50 3.6 332.0 14.6
5-second averages: 3.8 332.7 14.6
FLIGHT CONDITIONS: Vc = 82.1 knots Cy = 0.906 W = 6378 1b

TABLE A78.- CONDITIONS FOR FLIGHT 76, Run 2.1

Date:
Time:

2-26-82
06: 35: 35,2 GMT

AIRPLANE CONFIGURATION:

Winglets on

Dispenser location:
Particle diameter:

METEOROLOGICAL DATA:

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0,74°
z, ft 1 10 10 Airplane heading: 211°
I, £t 5.6 4.9 4.2

Relative humidity:

95 percent semispan
300 to 355 um

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.3 305.3 17.4

20 3.3 309.0

30 3.4 319.7

40 3.7 315.8

50 4.0 319.0 14.7
S5-second averages: 3.9 319.2 14.7
FLIGHT CONDITIONS: Vc = 83.7 knots CL = 0.865 W = 6330 1b
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TABLE A79.- CONDITIONS FOR FLIGHT 76, Run 3.0

Date:
Time:

2-26-82
08:32:49.1 GMT

AIRPLANE CONFIGURATION:

Winglets on

Dispenser location:
Particle diameter:

75 percent semispan

300 to 355 pm

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.57°
z, ft 14 16 16 Airplane heading: 212°
I, ft 6.8 6.6 5.9
METEOROLOGICAL DATA: Relative humidity:
h, £t Wind speed, knots Wind direction, deg Temperature, °F
10 3.3 312.0 15.4
20 3.5 309.0
30 3.6 313.5
40 4.3 311.1
50 4.6 312.9 12.7
5-second averages: 4.5 312.5 12,7
FLIGHT CONDITIONS: Vc = 124.3 knots CL = 0.401 W = 6477 1b
TABLE A80.~ CONDITIONS FOR FLIGHT 76, Run 3.1

Date:
Time:

2-26-82
09:06:11.8 GMT

AIRPLANE CONFIGURATION:

Winglets on

Dispenser location:

Particle diameter: 300 to 355 um

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.94°
z, ft 16 16 16 Airplane heading: 211°
I, ft 6.2 5.5 4.9
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 3.1 299.6 15.4
20 3.5 295.0
30 3.5 305.3
40 3.5 306.1
50 3.8 308.6 12.8
5-second averages: 3.8 308.9 12.8
FLIGHT CONDITIONS: Vc = 121.9 knots CL = 0.414 W = 6429 1b

75 percent semispan
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TABLE A81.- CONDITIONS FOR FLIGHT 77, Run 1.5

Date: 3-9-82 Dispenser location: 75 percent semispan
Time: 06:08:50,9 GMT Particle diameter: 300 to 355 pm

AIRPLANE CONFIGURATION: Winglets on

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.76°
z, ft 14 14 14 Airplane heading: 211°
I, ft 8.5 7.9 7.2
METEOROLOGICAL DATA: Relative humidity:
h, ft Wind speed, knots Wind direction, deg Temperature, °F
10 6.0 140.0 15.5
20 6.4 136.5
30 7.2 142.8
40 6.8 144,5
50 8.2 146.0 13.6
5-second averages: 6.9 143.2 13.6
FLIGHT CONDITIONS: Vc = 84,7 knots CL = 0,845 W = 6324 1b

TABLE A82,- CONDITIONS FOR FLIGHT 78, Run 1.5

Date: 3-12-82 Dispenser location: 70 percent semispan
Time: 12:11:19.5 GMT Particle diameter: 300 to 355 um

AIRPLANE CONFIGURATION: Winglets on

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0, 80°
z, ft 13 13 13 Airplane heading: 211°
I, ft 0.6 0 -0.6

METEOROLOGICAL DATA: Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 5.2 217.3 48.1

20 5.9 222.8

30 641 225.4

40 5.9 229,2

50 5.9 231.0 48.0
S-second averages: 5.9 230.3 48.0
FLIGHT CONDITIONS: Vc = 121.1 knots Cq, = 0.410 W = 6288 1b
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TABLE A83.- CONDITIONS FOR FLIGHT 78, Run 2.0

Date: 3-12-82 Dispenser location: 70 percent semispan
Time: 12:43:18.2 GMT Particle diameter: 300 to 355 pm

| AIRPLANE CONFIGURATION: Winglets on

RADAR/LASER DATA: Row -1 Row O Row 1 Crossing angle: 0.84°
z, ft 10 9 9 Airplane heading: 211°
I, ft -2.3 -3.0 -3.6

METEOROLOGICAL DATA: Relative humidity:

h, ft Wind speed, knots Wind direction, deg Temperature, °F

10 3.3 237.9 52.5

20 4.2 260, 0

30 4.4 246.0

40 4.6 242,3

50 5.4 241,9 52.3
S-second averages: 5.5 239.3 52,3
FLIGHT CONDITIONS: Vc = 81.3 knots CL = 0.904 W = 6240 1b
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