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September 1984

Subject: Progress Report covering the period February 1984 to September 1984 on NASA Re-

search Grant NGL-05-020-243, "Refined ;Methods of Aeroelastic Analysis and Opti-

mization," Holt Ashley, Principal Investigator.

To:	 Mr. R.V. Doggett, Jr., NASA Langley Research Center, Technical Monitor, and NASA

Scientific and Technical Information Service.

The most recent published repo.1 describing work funded by this grant is still Ref. 1

the third such product based on the Doctoral Thesis of of Nitzsche (Ref. 2). Roweve)r,`

a paper by the Ph.D. candidate Valana Wells (Ref. 3) appears in the bound volume of

the 14th I.C.A.S. Congress in Toulouse and was delivered with outstanding success by

its author at that meeting. As described below for information, the Wells paper deals

with a new linearized potential theory for a multi-bladed propeller in steady, subsonic

flight. Travel expenses for this presentation were not furnished by NASA, nor was there

an attribution to NASA because the research was supported form several sources. An

extenoion is now planned, however, to the oscillating propeller for flutter analysis and the

like; this will receive significant funding from the present grant.

Professor Ashley described some of Nitzsche's results in an invited seminar delivered

at Arizona State University, Tempe, on March 30, 1984. Entitled "Vibration and Flutter

of a Vertical Axis Wind Turbine Blade," this not only reviewed Nitzsche's theoretical

investigation but also presented more general information about wind energy arld about
t

Y	 design problems of curved, notating airfoils.
ti

r,E,
4114



G

The September 1983 Progress Report gave some details about research undertaken last

summer by the Principal Investigator and dealing with the influence on aeroelastic stability

on various kinds of "strong nonlinearity." During .a busy academic year and summer, there
d

has been time only for limited progress in this Oflort. Accordingly, a review of the subject is

postponed until a later report. The remainder of thle present one focuses again on the work

of Ph.D. candidate John Green. A:Lvo described is a study of subsonic propeller theory by

Ph.D. candidate Wells, whose Research Assistant appointment is being partially supported

by Grant NGL-243.

Activity of Graduate Student J. Green on Divergence of Laminated Composite Lifting

Surfaces.

The February 1984 Progress Report outlines the early stages of the work done on the

divergence of forward swept wings. This early investigation focused on isotropic structures,

for which analytic solutions were available (Refs. 4, 5 and 6). The integrating matrix

technique proved both accurate and quick to converge upon the known results.

The study of composite wings is well along, with comparisons being made to the work

such as Blair, (Ref. 7). Blair's paper includes both computational and experimental results

for Composite plates, with and without an aerodynamic shell, and it is the former case that

is of most direct applicability. The largest part of Blair's report deals with a composite

plate with a, fibreglass overlay to provide an aerodynamic shape. However, he also studies

three cases with the plate alone and describes wind-tunnel tests for three fibre orientations

and four sweep angles. Interestingly Ref. 7 concludes that tests done with the aerodynamic

shell were unnecessarily complicated.

The integratir,;g matrix code developed at Stanford was run with these three fibre

orientation angles and a full range of forward sweep angle. The calculations are summarized

•	 in Figs. 1, 2, 3, reproduced from the last progress report. The variable fibre angle B applies



to the two outermost fibres in the following lay-up;

[:F45/90/ :f 45/90/:F 45/902/021,

The figures show that the integrating matrix results match the experimental ones very

well and that they are consistently closer than those from the OWING code which Blair

used. This gives encouragement for the potential usefulness of integrating matrices as a

fairly simple and cheap solution technique, since the data in these figures derive from the

solution only of a 4 x 4 eigenvalue problem.

The remaining Figs. 4 and 5 demonstrate two methods of displaying the behavior of

composite wings with varying fibre orientations to a designer. The contour plot is more

familiar, and permits more precise readings to be taken, but the three dimensional plot

provides a very graphic demonstration, and is better for giving a feel for the phenomenon.
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Before going on to complete the study of divergence as a function of the !_' eegoing

and other parameters, it is useful to be able to evaluate the effect of flutter. Although

divergence has been seen as the primary barrier to practical application of forward swept

wings, the cure afforded by aeroelastic tailoring comes with a penalty. The composite

layups that alleviate divergence can also reduce the flutter speed. (See for instance Refs.

8 1 10 and 11.)

The aim here is to be able to modify the 3-D plot for divergence (e.g., Fig. 4) to

include flutter and thus produce a general aeroelastic stability boundary. The method

used to calculate the flutter speeds is based, of course, on the integrating matrix, and an

outline of the relevant theory follows (Ref. 9).

The general vector equation of motion is

dx — Zy + s'My + sCy — Q( a , q)y,
	 (1)

where

y = state vector

Z = structural matrix

M mass matrix

C = damping matrix

Q = aerodynamic matrix

s = Laplace variable

q = dynamic pressure
t

After applying the integrating matrix to both sides of the equation (1) and enforcing a

cantilever boundary condition, the problem takes on the following matrix form:

(I + G22)	 G23	 G24	 7
G32	 (I + G33)	 G34	 w= 0,	 (2)
G42	 G43	 (I + G44)	 a

with

G = T 
IMs,2 — 

Q(s * , A )]	 (3)
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Here

T = includes bounda,,y conditions, structural matrix and integrating matrix

S* = nondimensional Laplace variable

A=nondimensional dynamic pressure

Equation (2) depends upon the two variables, and flutter is indicated when the real

part of s' becomes positive. Thus to solve (2) it is necessary to assign a value to A and

calculate the value of s' for which the determinant is zero. This solution is done using

an algorithm similar to Muller's method (Ref. 9) to find the roots of the determinant.

Muller's method proves to be a very efficient and accurate approach.

Having found the root of the determinant, a check is made to see if its real part is 	 y

positive. If not, a new value of A is tested. When the real part becomes positive a further

calculation can be made to evaluate the value of A at which flutter occurs.

In order to be able to generate a 3-D carpet plot like Fig. 4 it is necessary to calcu-

late the flutter speed of a large number of configurations. If the flutter speed has to be

determined by manually testing the sign of the root then obviously much time would be

wasted. Thus it is planned to develop an. automatic "search" routine such as was used by

Edwards (Ref. 12). He applied a gradient search algorithm with some success, and it is

hoped that such a scheme will make 3-D plots feasible. 	 r
f

The results of the divergence calculations were compared with the experimental results

of Blair (Ref. 7); however, he did not include any flutter examples. It is intended to

compare the flutter calculations with the experimental work of Sherrer et.al  (Ref. 8),

but since all their tests were for a composite plate with an aerodynamic shell, it will be

necessary to include a correction for such a shell in the integrating matrix calculations.

This work is currently being undertaken.
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Activity of Graduate Student V. 'Wells on Subsonic Propeller Theory, with a Goal

I	

of Aeroelastic Analysis

r	 This e-ummary of progress is based primarily on the theory and examples of Ref. 3,

f
copies of which can be supplied if required. After reviewing past linearized solutions for

incompressible and compressible flow past thin screw propellers, the wo^k focuses on a

potential flow solution in the reference frame depicted by Fig. 1 o! the February 1984

Progress Report. Writing a linearized P.D.E. for the disturbance potential, the procedure 	 i

converts to a non-inertial cylindrical system (r, 0, x, t) defined by

r="rz B=9+wi

(4)

Here w is angular speed in rad./sec. Per,urvning these coordinate transformations gives

the unsteady, linearized potential equation in the rotating system:

021p 
M2a2jo + 2MM,1 

192W + 
MZ 

a?^ + 1 
2U 

a2(P 
+ 2w a!—'p + 492 (P(5)

aZ2 	 r azae	 r2 a02 	 a2	 axat	 a0at ate )

where Me a' is the radially varying apparent Mach number in the angular direction.

In general, the solution to a linearized lifting body problem is subject to the following

conditions:

1.) Tangency of the flow at the body surface;

2.) Vanishing (or at least finiteness) of disturbances an infinite distance away from the

body and its wake; and

3.) Zero normal velocity through the wake.

The first of these conditions has' the mathematical representation

à t +V •OF =0 on F=0,
at

11
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where F = 0 represents the surface of the lifting body, -,Ad V = VO is the total velocity

vector in an inertial coordinate system. By the rule for vector time derivatives, in a non-

inertial frame, the total velocity, u seen in the coordinate system rotating with angular
ii

speed, w, is:

W= V w x i= V— wra.	 (7)

Substitution into the above boundary condition, along with the conversion of the time

derivative, giveb the boundary condition la the rotating reference frame:

z
0 = at — as yB + W - OF = at + W OF on F = 0,	 (8)

which is the expected result. In other words, the body boundary condition may be treated

in the same manner Mn the rotating Coordinate system as it is in the inertial system, as

long as the local freestream velocity, W, is considered.

The wake boundary condition can be made mathematically tractable by assuming

1.) Unsteady perturbations are small so that the unsteady wake has, to leading order,

the same shape as the steady wake; and

2.) The slipstream velocity, w, is much smaller that the freestream velocity, U.

With these assumptions, the position of the wake can be approximated by:

21r
, r < R,	 (9)

for B - the number of propeller blades, n - the blade index, and R =— the blade radius.

For r - r4 and n = 1, for example, the equation describes a single helix with radius ro

and origin at B = 0. The wake surface is a helicoid made up of an infinite number of these

helices with radii from r = 0 to r = R originating at z = 0 and at each angular station

corresponding to a propeller blade location.

12
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The first order analysis assumes that all Nation of the helicoidal wake occurs in the ax.

ial direction. Since there can be no flow through the wake, the wake condition is expressed

as

W cos e = u, cos C- us sin a	 (10)

on

B-Uz=(n-1)B, r<	 (11)

where u, =_ induced velocity in the x-direction, up = induced velocity in the O-direction,

and e - helix angle = tan- l U/wr. In terms of the velocity potential, then, the boundary

condition is

wrw = wr à̂  _ U ate .	 (12)
az r a®

Moat work to date has focused on the aerodynamics of the steady propeller; that is, a

rigid propeller experiencing a uniform inflow. These conditions allow the time dependent

terms in equation (5) to be excluded since, now, the flow field appears steady in the

rotating, translating coordinate system.

The dimensional spatial variables, r and z, have convenient dimensionless forms—

p wr/U and _ . Dropping the bar over the dimensionless z variable, the steady,

potential equation becomes:

— +lamp +Q2a?^ + 1 
(i - ,M2 p2 ) a2lP - 21112 alp 01	 (13)ape p ap	 az2 pz	aB	 a®az

with Q2 = 1- R2. Equation ( 13) appears to depend on one parameter (M) only. Howeve-,,

the advance ratio parameter is hidden in the dimensionless variables, p and z.

13
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In "helical* coordinates described by f = 0 — z and v B + z, this becomes

'Prr + 
I ^P'. +(I+ z)SPtt +( 1 -F- z — `1W )Spoe - 2( 1 + s —2M`)^pso=0.	 (14)
P	 P	 P'	 P

Goldstein (Ref. 15) shows that, in the far wake, the flow field depends only on the variables

p and S. (S runs counter to a helix at a given radius.) This results from purely geometrical

considerations, and therefore holds for both compressible and incompressible flows. Thus

in th4s far wake,

iPcr + 'Pv -f- ( 1 + o )vtt = 01
	

().5)

which is exactly the equation salved by Goldstein. This result is of interest on two accounts:

1) The perturbed iow in the far wake has an incompressible character which imp?ies that

-quantities which depend only on the far wake are invariant from incompressible to

compressible flow.

2) The far wake solution for a propeller in incompressible flow also satisfies the compress-

ible equation.

Davidson (Ref.	 16) pointed out the latter and used that fact in his study of the

propeller in compressible flow in a wind tunnel.	 This study also utilizes the far wake

solution as will be shown.

The problem of compressible, potential flow about a propeller reduces to that of solving

a partial differential equation Eq. (14), subject to

1. p finite at p = 01

2. Sommerfield radiation as p becomes infinite,

3. No flow through the propeller blades, and

4. No flow through the propeller wake.

The solution to the equation for the incompressible velocity potential, cp,(p, 9 — z), also

solves the compressible equation. Though it cannot capture the compressible effects at the

propeller blades, this solution accurately describes the far wake flow. Thus, a superposition

14
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of a compressible solution, which accounts for effects near the blades but dies out LN!, the

far wake, on the incompressible solution also constitutes a solution to the linear differential

equation. As will be shown later, the superposed solution is desirable in this case as the

analytic form of the compressible solution does not lend itself well to satisfying the wake

boundary condition.

Though most forms of the incompressible velocity potential, 9;, are derived at an

infinite distance behind the propeller plane, any form given as Vj(p, B — z) must solve

Eq. (14). However, in order for the superposed solution Sp = PC + gyp; to form a solution to

the entire problem, the sum, gyp; + gyp,, must satisfy the boundary conditions. The first two

conditions, finite V at p = 0 and proper dying out of the disturbance as p --► oo, do not

cause any difficulty as they can be satisfied independently by gyp; and PC.

In order to account for the more problematic conditions (3) and (4) above, the flow field

can be artificially divided into two regions - one forward of the propeller plane in which only

the compressible velocity- potentla'. holds, and the other behind the propeller plane in which

both gyp; and PC apply. The form of gyp;, which automatically provides for the existence of a

trailing wake, necessitates the division of the flow field. This division, however, requires the

introduction of two more "boundary" conditions which assure continuity at the propeller

plane. Designating PC+ as the forward potential and gyp- = ( gyp; + PC -) as that behind the

propeller, and situating the propeller at z = 0 as before, a continuous flow Meld is ensured

by

PC+ I z=o= A LO +VC Lo'	 (16)

and

C7 PC  I _ app; I	 + a^Po - 

LO	 (17)
az	 O 8z	 O	 az

Since both P+ and cp- are valid at z =, 0, both must satisfy the condition of no flow

through the propeller blades.

15
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Detalki of this incompressible result are worked out in Ref. 3 on the basis of Reissner's

paper (R(:f. 17). A general solution to the steady, compressible potential equation may be

obtained through reparation of variables. The resulting series solution has the form:	 I

00

^P = F An .Rn(P) %n(z)einBO;	 (18)
n=0

with

X (P) = CnB (pVM2n 2B2 + A2
„)

 ,	 (19)

and

P

Zn(x) = exp 
inB f 

1 An — n2B2M2 Z.	 (20)
P9 	Q	 P2

CnB represents a linear combination of solutions to Bessels equation, An is the separation

constant, or eigenvalue, and p, 81M is the dimensionless radius at which the local

freestream velocity becomes son,,c. Applying the boundary condition requiring finiteness

of ^p at p = 0 gives

&(P) = JnB (pVWn2 B2  -4- A,2,
J

	
(21)

A separated solution is a slightly different form from that given above was first proposed

by Busemann (Ref. 13).

The behavior of the J-Bessel function as its argument approaches infinity will cause

automatic satisfaction of the radiation boundary condition. This leaves no mechanism for

determining values for the eigenvalues, An; in fact, the notion of the eigenvalue has no real

meaning for problems of infinite domain. Therefore, the solution must be obtained using

a method other than a simple separation of variables.

Due to periodicity in the angular coordinate, the expected solution to the partial

differential equation has the form:

00

(P = E V,(P, z) e. 
inBl	

(22)

n=0

16
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Substituting his into the PDE givesg	 g

	

+ 1'Pn^ — n2B22 l i + pZMI) n = —I'2pn„ + 2inBAI^pn,,	 (23)
P	 P

Performing a Hankel transform on this equation gives	 'a

p2p" — 2inBM2p, — (ry2 — n2B2AJ2^ = 0,	 (24)

a second order, ordinary differential equation for the Hankel-transformed potential, P. The

Hankel parameter, ry, appears only parametrically. The solution to this equation is easily

obtained:

2 2

^Pn(z ; -1) = Anexp i 
P: 

f	 rye — 
nP:--1  

z	 (25)

Inverting this transformed solution results in

`Pn(Pi Z) = f

00	 nB

	

o
A.(ry)ryJ„B(ryn)eaP i7 f 1rye  n282 

z dry.	 (26)

	

 P.	 p	 P.

The complete solution to the compressible potential equation is then

°°
V(P, z ) 9)	 einBB

 fo

	

A, ( ry) ryJ„B (ryp)exp i 
PB 

f	 72 — 
nPB2 z 

I dry.	 (27)
n=0

It remains to determine the unknown "constants," An(-Y)-

A careful "matching" process described in Ref. 3 makes it possible to relate all of the

required constants to the single unknown function r(p), which is the unknown distribution

of circulation along each of the identical propeller blades. Table 1 summarizes the results.

17
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Table 1— Coefficients for Compressible Velocity Potential Series

After the convergence of integrals appearing in Eqs. (26) and (27) is proved, one

proceeds to apply a flow-tangency boundary condition to determine r. This condition

may be expressed as

uz cos e – uB sin e = Wa for z, B —+ blade,	 (28)

for the simple case of uncambered, thin airfoils sections, u L and ug are the perturbation

velocities, achieved by differentiating the velocity potential. ur, ue, e, W, and a are all

functions of radial position.

In the lifting line approximation, which is developed in detail, there is no blade at

which to apply condition (28). Instead, the condition given by Reissner must be used.

Referring to figure 6, this condition is given as

Vi

a

o` = ao —	 at z —+ Of B —+ B.	 (29)

ao is the geometric angle of attack, and v; is the induced velocity perpendicular to W.

18
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Figure 6 -- Velocities at the Blade

Two well-known relations assist in reducing this to usable form: 1 = µWI' and 1 =

ZW2 cc^,a, where 1 = lift per unit radius, µ = density, c i, = section lift curve slope and

C = blade chord. Combining these two expression gives a = 2I'/Wcc, Substituting this

into (29) gives

v;+ 2r 
U _ a z —► 0

'
 0 --► 	 (30)

W pa'cct, W	 °'	 B'

where c	 c%R, an inverse "blade aspect ration." Note that v P = ur cos e — u° sin e, as

before.

Condition (30) introduces two parameters, c and ci, . z is easily estimated for a typical

propeller blade; however, cr, is not known in advance for compressible flow. It is assumed

here that an estimate of cc, based on strip theory will introduce only minimal error.

By defining cp r ='gyp and t r = r, Eq. (30) can be written in dimensionless form:

r	 e	 •
p aSP _ 1 c7p 

+ 
2r *

- = (1 +p2 )a° , z —► 0, 0 --1'
Ir
	(31)

8z	 p C70	 pcc1,	 B'

19
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Carrying out and collecting the expressions for the derivatives in Eq. (J11) leads to a

rather complicated integral equation pair for the circulation distribution (see Eqs. (4.5

a,b) of Ref. 3). A useful method for solving these relations involves choosing a series

"shape function" for T` (p) with unknown coefficients. Collocation at a set of K stations

along the blade then yields K x K linear equations in K unknown coefficients.

The first attempt at selecting these shape functions followed a suggestion of Reissner

(Ref. 17). This led, however, to difficulties with th-- uniformity of convergence and has been

improved upon since Ref. 3 w::s written. At Mach Number 0.65, for example, satisfactory

convergence is now attained with approximately K = 10 on a typical two-bladed propeller.

It turns out, incidentally, that no simple "compressibility correction" can be proposed by

analogy with the Prandtl-Glauert correction for steady flow over subsonic wings.

Figure 7 compares the compressible and incompressible circulation distributions for

propellers with the same geometric angle of attack distribution. As expected, the com-

pressible case has a greater magnitude of circulation, paralleling the same trend due to

Mach number which occurs for straight wings.
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Favorable comparisons have also been made with test results on two-bladed machines,

when an empirical adjustment is made to account for the profile drag of blade sections.

The results obtained inspire confidence in the derivation and the solution methods

since a) they show convergence in both the series solutions for the velocities and the shape

function solutions, and b) they show trends anticipated from wing theory. Of course, a

favorable comparison with experiment would reinforce confidence in the method.

Further examples can be readily treated and will be shortly forthcoming. These include:

a) thrust and torque distributions,

b) efficiency calculations,

c) effects of changing Mach number and advance ratio, and

d) unsteady motions.

The Weissinger boundary condition (Ref. 18) will also be studied for accuracy improve-

ment. In addition, a viscous drag correction term must be included to correctly predict

the thrust and torque distributions, particularly for a compressible propeller analysis.

Activity of Graduate Student In Lee on Cross-Sectional Resonances of Wind Tunnels.

A limited description of this research was provided in the June 1984 continuation

proposal (Ref. 18) for the present grant. Extensive details are not repeated herein. Mr.

Lee's work has important implications for high subsonic flutter testing, but it has received

in the past only a small amount of support from the grant. Whether it will be possible to

continue this funding in the future depends, of course, upon other demands on the limited

available funds and on competion dates of other student research.

It has been well known since two-dimensional analyses at NACA Langley in the 1950's

and subsequent Brittish studies on 3-D cross-sections that there are various potentially-

significant wall effects on the a,irloading of wind-tunnel models of lifting surfaces performing

unsteady motions in a subsonic airstream. ( In the interests of brevity, the many relevant

references are not cited here.) Although transonic effects can be significant, probably

21

r



+Y0

the most dramatic of these occurs when a frequency of oscillation "resonates" with a

natural acoustic frequency of the tunnel cross section itself. Such "resonances" are most

pronounced in closed tunnels and when the fundamental tunnel mode is involved. Effects

on flutter speed of the order of 20% have been demonstrated experimentally. Thus it is

desirable to be able to predict these modes and frequencies accurately.

Although the theory can be developed in a more sophisticated fashion, the key idea

is that the "resonances" consist of 2-D standing waves in the cross section, with an effec-

tive speed of sound a.V1 — M2 . Here a,,. is the undisturbed free-stream acoustic speed

and M < 1 the test Mach No. It is significant that this effective speed, and the associ-

ated frequencies, become quite low as the transonic range is approached. (Ultimately, of

course, nonlinearity and the formation of shocks tend to invalidate the linear potential-flow

idealization.)

What Mr. Lee has succeeded in doing is to program an accurate, convergent finite-

element code for finding 2-D acoustic modes of an essentially arbitrary tunnel shape.

He has analyzed, for instance, the octagonal configuration of the NASA Langley TDT,

discoverng somewhat different natural frequencies from those previously obtained from a

rectangular approximation to its shape. His program, in the original version, was capable

of handling open or solid wall boundaries, along with combinations of open and solid

portions that could be accomodated by the finite-element formulation. Many examples

have been calculated.

Mr. Lee is currently engaged in examining porous and slotted boundaries of the sort

employed in transonic facilities. Following up on some British work, he has also discovered

interesting influences due to a finite plenum chamber (at constant pressure) surrounding

such a transonic test section. Publications are anticipated in the near future.
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