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1.0 INTRODUCTION

This report summarizes the work conducted under this contract
during the period of January 5, 1984, to April 4, 1984. Contract goals
are to develop an efficient, comprehensive Si solar cell modeling program
that has the capability of simulation accuracy of 5 percent or Tless.

Computer simulation programs, in general, may be subdivided into a
number of major tasks: (1) analytical method used to represent the
physical system; (2) phenomena submodels that comprise the simulation of
the system; (3) coding of the analysis and the phenomena submodels;
(4) coding scheme that results in efficient use of the CPU so that CPU
costs are low; and (5) modularized simulation program with respect to
structures that may be analyzed, addition and/or modification of phenomena
submodels as new experimental data become available, and the addition of
other photovoltaic materials. These tasks are briefly discussed below.

Computer modeling simulations have been shown to be very useful in
the development of semiconductor devices in those cases where the simulation
js an accurate representation of the physical device. However, to be an
effective aid to the experimentalist and to become an equal partner in
the technologies used in device development, it may be required to
operate the computer program frequently each day in an active develop-
mental program. For frequent use, as required in solar cell development,
CPU costs must be Tow. Moreover, low CPU cost allows for engaging in
computer experiments, which can be made to be a very useful and powerful
technique.

Computer modeling using numerical integration methods in Si device
technology have usually shown fair-to-good agreement with experimental

data. However, CPU costs for the execution of computer programs that



are based on numerical integration methods are typically high for their
use as a 1aboratdry or manufacfuring tool [1]. The number of bias

points that are required to study optimized device designs is usually
more than 1,000 to 2,000 runs. Similarly, a comprehensive study involving
device structures or new types of devices typically exceeds 2,000 runs.

In most cases, the cost of such modest studies for the benefits gained

is not attractive. It is clear that conducting in-depth studies is not
cost-effective; for this reason, numerical {ntegration methods are not
used for comprehensive studies.

A method has been developed that, in principle, should result in
simulation accuracy equivalent to that demonstrated by numerical integration_
methods, but with low CPU costs. This method uses recursion relationships
to solve for the constants of integration and is subsequently described.

Simulation accuracy is determined by both the accuracy of the
-analytical method representing the device and the accuracy of the phenomena
submodels in representing the corresponding experimental data related to
material properties. For most efficient use of the CPU, the accuracy of
the analytical method and of the phenomena submodels should be equivalent.
For example, even if the analytical method accurately represents the
device, simulation results may not agree with experimental data if the
phenomena submodels are accurately represented. The reverse is also
true. In solar cells, the phenomena submodels that produce first-order
effects in terminal characteristics are: absorption curve, built-in and
induced electric fields, bandgap, lifetime, mobilities, diffusivities,
photoexcited carrier concentratfons, surface recombination velocities,
junction transport, etc. Some of these will be discussed in this report.
The representation of the phenomena submodels must take on an importance

equal to the analytical method used to represent the system.



Codings of the analysis and phenomena submodels are separated in
the program. Moreover, the coding of the submodels is modularized so
that there is maximum flexibility to add, subtract, and/or modify them.

The efficiency of the coding may only be demonstrated by the accuracy
of the simulation results with experimental data and the corresponding
CPU execution time.

The spectrum of structures and cases that may be treated by the
simulation program depends on the analytical method or algorithm used
to represent the device, generality of the boundary conditions imposed,
comprehensiveness of the phenomena submodels, and the generality of
representation of each of the submodels. These issues will be described

below.



2.0 DESCRIPTION OF THE INVESTIGATIONS CONDUCTED

2.1 Analytical Method Used to Represent Solar Cell Structures

RTI has been developing computer modeling programs for semiconductor
devices since 1976 [2-9]. The major element that has evolved out of
these modeling programs is the analytical method that is used to analyze
physical systems. To obtain an accurate representation of a physical
system, the system geometry is divided into a number of segments (mesh
points). In a one-dimensional geometry, the segments are defined by a
series of parallel planes. The separation of the planes defining the
segments determines the simulation accuracy. The segments may be taken
as thin as required to obtain the accuracy desired. The transport
equations, governing thg behavior of the physical system, are applied to
each segmént, and a closed-form solution i$ obtained in each of the
segments. It has been demonstrated that when applying the boundary
conditions to the solutions at each of the planes, there exists a recursion
relationship between the constants of integration of the solutions
obtained in each segment.

This method has been applied to semiconductor devices and has
been shown to give excellent agreement with experimental results. It
has been applied to devices for which the solutions are functions of
position and time, such as photodiodes [8] and avalanche photodiodes
(APD) [8]. The method has also been applied to solar cells, where the
solutions are functions only of position [unpublished].

Convergence problems do not impose any conditions on the mesh
point separation. The segments may be made arbitrarily thin or
arbitrarily large. For maximum accuracy in simulating a physical
system, a large number of segments may be required. The segments may be

increased beyond 1,000 for greater accuracy; however, it has been found



that this is not always necessary. In the case of APDs, a device for
which éccuracy of éeﬁresentéfion is difficult, simu]atioﬁrresu1ts were
studied for f = 2 up to f = 80 to determine the agreement between modeling
and experimental data. It was found that the results obtained for f =
15 were within 1 percent of the results obtained for f = 80 [8]. This
clearly shows these real advantages of the recursion relationship method
over the numberical integration method: (1) a "guess solution" is not
required; (2) convergence is always obtained for any number of mesh
points; (3) a smaller number of mesh points may be used; (4) transport
.equations are solved by means of recursion relationships; and (5) CPU
runhing time is reduced significantly.

During this contractual period, the analytical method described
above has been applied to silicon solar cell structures; however, it has
beén genera]ized.so that it may be applied to heterostructures encountered
in amorphous silicon, III-V and II-VI material-based cells. Cascade
cell structures may also be analyzed by means of this solution. The
silicon solar cell structures that may be analyzed are given in Table 1,
including the effect of an oxide-charged insulator (OCI).

Final results of the recursion relationships have not yet been

obtained and will be reported in the second quarterly report.

2.2 Analytical Representations of Phenomena Submodels

In this section, a brief discussion is presented of some of
the phenomena submodels and the representations used in the simulation

program.

2.2.1 Mobility

Carrier mobilities in silicon have been studied by Dorkel and
Leturcg [10], denoted DL mobility. They have assessed experimental and

theoretical studies and developed analytical relationships which represent
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Table 1. Silicon structures that may be studied
using.the simulation program.



(ionized impurity scattering), temperature (lattice scattering), and
injection level (carrier-carrier scattering). The DL mobility formulation
has been selected as the primary method to be used in the simulation
program, because the mobility components that arise from the three
scattering phenomena are easily discerned. In addition, the composite
form of the DL mobility relationships are relatively simple to apply,

and it contains the mobility component arising from carrier-carrier
scattering which becomes important in degenerate material and/or high
injectjon levels. However, it appears that the DL relationships may not
accurately represent mobility data for net impurity concentrations above

18 om™3

2-3 x 10 under low injection levels and for nonequilibrium values

of the electron-hole product (pnnn or ppnp) above 1036 cm'6. This
aspect will be dealt with subsequently.

The DL mobility relationships, which provide for silicon
mobility dependency on impurity concentration, temperature and injection

level are given by the expressions:

: a
“L=“Lo<§$“o> ’ (1)
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In the above set of equations, both electron and hole mobilities are
represented and for which the baseline constants are listed in Table 2.
Using these relationships, both electron and hole mobilities may be
obtained in n-type material where N represents the net donor concen-

tration, N Similarly, electron and hole mobility may be determined

DNet’
in p-type using the appropriate mobility parameters in Table 2.

Eqs. (1), (2), and (3) represent the mobility components
produced by lattice, ionized impurities, and carrier-carrier scattering.
The latter is important in degenerate material and at high injection
levels, and is usually negligible for most other cases. On the other
hand, the lattice scattering and ionized impurity scattering are determined
under conditions close to thermal equilibrium.

Lattice scattering mobility, Eq. (1), is produced by a scattering
phenomenon attributed to accoustic phonons. This component decreases
with increasing temperature, and the parameters, M0 and "a," depend on
the carrier type and the temperature range. It is this component which,
1n'1arge measure, determines the temperature behavior of mobility. It
is clear from Table 2 that MINO ” MLPO*

Ionized impurity scattering mobility, Ea. (2), is produced
because of scattering of carriers by immobile ionized impurities. This
mobility decreases with increasing impurity concentration or decreasing
temperature. Implicit in this formulation is that the effect of scattering
js the same for electrons and holes in the presence of ionized ddnors as

well as for ionized acceptors.



Parameter Electrons ' Holes
2 -1
L 1430 cm® (V sec) 495
o]
a 2.2 2.2
A 4.61 x 1017 (em V sec k3271 1x 1017
B 1.52 x 101 em™3 k2 6.25 x 10'%

Table 2. Baseline values of mobility parameters using the
Dorkel-Leturcq [10] representation.



Carrier-carrier scattering mobility, Eq. (3), becomes important

where the electron-hole product is greater than 1028 cm'6 for 10]4 cm'3

impurity concentration and when the product is greater than 1032 cm'6

for ]0]9 cm-3

impurity concentration. These conditions occur for injection

levels produced under solar concentrations exceeding 10 to 20 suns.
E]ecfron mobilities predict experimental values to within

5 percent in the temperature range above 200 K, and for doping levels

less than 3 x 1018 cm'3. At 300 K, hole mobilities are predicted to

within 5 percent or less, and for doping concentration less than 2 x 10]8 cm'3.
lThere is agreement with experimental data in the temperature range 200
to 300 K. However, hole mobility data above 300 K and the DL mobility
relationships cannot be assessed at this time [10].

Due to limitations of applicability of the DL formulation in
some temperature and doping concentration ranges, a second representation
has been included in the mobility submodel. This representation is due
to Arora et al. [11]. It is denoted as the AHR mobility formulation.

Composite mobility relationships for electrons and holes have
been obtained empirically, as a function of temperature (lattice scattering
mobility) and impurity concentration (ionized impurity scattering mobility),
based on experimental data and the Brooks-Herring theory of mobility.
The relationships predict electron and hole mobility to within %13 percent
0 o

up to 102 m'3 doping concentration and in the 250 to 500 K temperature

range. The relationships are given by:

1\ 2.33
 o(300)0-57 7.4 x 108 (T
S W 7546 (6)
| 4 _0.88N (300)
1.26 x 1017/ \ T
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] 300
up = 54.3 ( T

>°'57 1.36 x 108 <T> e

0.88N < >
2.35 x 10

+

1 +

The above formulation may be used in those temperature and doping concen-

tration values where the DL formulation éxhibits a poor representation

of experimental data. However, Egs. (6) and (7) only apply to low

injection level cases, in which case we will resort to the DL formulation.
The DL [10] and AHR [11] re]ationships are compared in the

oté to 10'? em

‘impurity concentration range of 1 -in Figures 1, 2, and 3
for 200, 350, and 500 K, respectively, under low injection level,

= 1026 cm73. Agreement for electron mobility between the formulations
"~ is excellent at 350 and 500 K and not as good at 200 K. The overall
agreement for holes is not as good as it is for electrons. However,
these results show that either formulation may be used to represent

mobility data under low injection levels.

2.2.2 Diffusivities

In most cases, the carrier diffusivities used are of the

Einstein form represented for electroﬁs by
Do =3 *n - (8)

However, in degenerate and/or high injection levels, the Einstein
relationship %s a poor approximation.

Consider a degenerate p-type semiéonductor Under thermal
equilibrium (i.e., open-circuit conditions) as shown in Figure 4(a).

Under these conditions, the electron current, givén by
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: dn__ -
- po
Jn 9 ¥p "o Ex*aD = (9)

is zero, from which the electron diffusivity is given by

D = - _NPpoXx . (10)

EX in this case is the built-in potential that is established to produce

an equal, but opposite drift current to the diffusion current. The
built-in field is obtained from a relationship for the conduction bandedge,
Ec. The bandedge expression may be placed in a form given by

Ec = -y + constant (11)

where y is the electrostatic potential. The built-in potential is

obtained from Eq. (11), represented by
E = —S = . dv . ’ (12)
To obtain dnno/dx, we use the relationship

dnpo i} aﬂpo dEc . (13)
dx aEC dx i :

and substituting from Eq. (12), the result is

dn an
__Po _ __po
dx Ex JE (14)
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The relationship for electron concentration (using the rigid band

approximation) given by

Moo = NcF1/2(”o) (15)

where NC is the density-of-states at the conduction bandedge, F]/2 is

the Fermi-Dirac integral of 1/2-order, and

E. -E
R T “(16)

is the argument for thermal equilibrium. Using the relationship

on an
__pPo _ _ 0 _9_
3E_ Ne 3. Bn, [F1/2(”o)] » (17)

jt can be shown then [12] that

'5'?]_0 [F]/zz(ﬂo)] = F_]/z(no) ,‘ (18)

where F—]/Z(“o) js the Fermi-Dirac integral of the -1/2-order. Substituting
Egs. (14), (15), (16), (17), and (18) into Eq. (10) results in the

electron diffusivity in degenerate material given by

Fi/0(n)
5 =p /2"

_ n. no F-]/Z‘”o’ (19)

A similar procedure and relationship may be obtained for the case of

high injection level, by elevating temperature or by another method in

which the same electron-hole pair concentration is produced as through

16



jrradiation by a high photon flux as shown in Figure 4(b) under dynamic
equilibrium and open-circuit conditions. The latter assumes that a

uniform distribution of electron-hole pairs is generated. The diffusivity

is given by
Dy = Dy *—(—y?/z(n") , (20)
° " 3/2' M
for which
E. - E
_ Fn C
nn =q - kT s (2])

where EFn is the quasi-Fermi level for electrons. Under thermal equilibrium
conditions, Eq. (20) reduces to the relationship given in Eq. (19).
Corresponding relationships exist for holes.

Figure 5 shows the electron and hole diffusivities, normalized
with respect to the Einstein diffusivity, plotted as a function of their
respective arguments (n and -sG-n)'which contain the Fermi level.
Increasingly positive arguments represent increasing degeneracy for
which the diffusivities show significant increases. Negative arguments
represent nondegenerate cases where the diffusivity ratios approach
unity. For argument values of +10, the diffusivity ratios are greater
than six. This represents a condition where the Fermi 1e§e1 penetrates
the carresponding bands by .15 eV, which are attained for 1020 cm'3
doping under low injection. High injection adds to this penetration,

and the diffusivity ratio increases still further.

2.2.3 Boundary Conditions at Depletion Region Edges

Boundary conditions imposed at depletion region edges are

briefly discussed below. Due ta the controversy that may surface when

17



Semiconductor

— — Contact
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o— p-type J—o
(a)
Plv
o—V/ p-type o

(b)

Figure 4. Physical systems used to describe carrier diffusivities: (a) degenerate
semiconductor in thermal equilibrium; and (b) degenerate and/or high
injection level in a semiconductor in dynamic equilibrium.
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Figure 5. Electron and hole diffusivities normalized with respect to the Einstein
relationship for degenerate and/or high injection level conditions for all temperatures.
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discussing these boundary conditions under high injection levels, special
attention was devoted to this subject [13-19]. During the course of
this investigation, a number of significant results were obtained, and
these will also be presented below.

Consider the geometry where X5 and X3 denote the depletion
" region edges in the n- and p-regions, respectively. The symbols for the

corresponding carrier concentrations are denoted pn(xz), nn(xz), pp(x3),

and np(x3). In general, the relationships that exist between these

concentrations are given by

aVp;

plxp) = py(xg) e T (22)

for holes, and for electrons by

V4

nolxg) = mlx,) KT (23)

where Vbi is the nonequilibrium built-in potential established in the
depletion region. While the expressions in Egs. (22) and (23) are valid
for both equilibrium and nonequilibrium conditions, at high injection
Tevels the quantities pp(x3) and nn(xz) are unknown. This gives rise to
two different forms of the boundary conditions for Jow and high injection
levels. The different forms are a direct resﬁ]t of the charge neutrality
conditions that exist under low level injection, given by

nn(xz) - nno(xz) = ND(XZ) (24)

in the n-region, and in the p-region by

20



p (X3) - ppO(X3) = NA§X3) s (25)

p
where ND(XZ) and NA(x3) represent donor and acceptor concentrations in
the n- and p-type regions, respectively, at the depletion edges.

Substituting Eq. (24) into Eq. (23), and Eq. (25) into Eq. (22), gives

the boundary conditions for low injection level:

bi
_ kT
Palxy) = poolx;) e , (26)
and
WV
o kT
np(x3) = nno(xz) e (27)
The nonequilibrium built-in potential is defined by
Yoi = Vbio " Vg > (28)

where Vbio is the built-in potential at thermal equilibrium, and VJ
is the photovoltage. Therefore, under low injection levels, pn(xz) and
np(x3) may be determined.

In the high injection case, the charge neutrality condition

imposed in the n-region is given by
nn(xz) °‘pn(X2) = ND(XZ) (29)

and in the p-region by

21



p (X3) -n (X3) = NA(X3) s ' (30)

P p

where pn(xz) may be comparable to or even greater than ND(XZ) and

similarly for np(x3) and NA(x3). One form of the boundary condition

under high injection was first reported by Fletcher [14] and given by
[Ny(x3) + Np(x,) £

pn(xz) = ]-52 (3])

for holes at Xo and by

[Np(x,) + Np(x3) £] €
n,(x3) = .2 (32)

at X35 where

g
k

(x5, ToNpIn, (x5, TN T

NA(x3)ND(x2)

lie A) e (33a)

£=

The quantity VJ is the photovoltage generated across the dep]etioh

region, X3=Xy The form of: & is somewhat different from the results
obtained in the Titerature because it includes the effects of bandgap
narrowing through the intrinsic concentrations nie(XZ’T’ND) and nie(x3’T’NA)'
To show this more explicitly, Eq. (33a) may be placed in the following

form:

[AEG(XZ) + AEG(x3)]/2kT qVJ

nio(Tle il

£= NA(X3)ND(XZT e . (33b)

This form shows that £ 1is dependent on the sum of the bandgap narrowing

of the depletion edges. If the doping concentration at x, and x4 are

22



1x 108 cm—3, the sum of the bandgap narrowing is 0.086 eV and £ is

increasé&iby a multiplicative factor of 28 compared to pure material.

An a]ternative-form of these boundary conditions is attributed
to Misawa [13]. While the Fletcher formulation is based on quantities
defined at the depletion region edges (x2 and x3), the Misawa formulation
also includes quantities defined at the outer boundaries of the n- and

p-regions, which represent the ohmic contact interfaces (x = 0 and x5)

in a solar cell structure. The two relationships are given by

Xg
5
SR WV0g) - Vlxg) jx3 G O]

Prlxp) = Poolxg)e PP . (34)
and
X, d
SO Vg + [Pt L (3)
- nn
np(x3) = nno(O)e ,
where ppo(XS) and nnO(O) are the acceptor and donor concentrations at

the ohmic contacts, and V(x5) and V(0) are the corresponding potentials.
The disadvantage of the Misawa form is the photocurrent Jp and Jn are

required to be known in order to calculate pn(xz) and np(x3).

2.2.4 Boundary Conditions Imposed at the Mesh Points

The analytical method described 1n-Section 2.1 solves, in closed
form, for the minority carrier concentrations at each mesh point. Therefore,
each of the closed form solutions contains two constants of integration,
which so1ution§ must be obtained through the imposition of boundary

conditions of each of the mesh points.
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In the n-region, the boundary conditions at the jth mesh point

are:
(AEvj/kT)

pnej(yoi) = pne(j+1)(0)e s, (36)

and
Ay ) = . , 37

Ipilos) = Ip(je1) (O) (37)
where pnej(yoj) and pne(j+1)(o) represent the photoexcited hole concen-
tration, Jpj(yoi) and Jp(j+])(0) the hole current density, y . the

separation between the jth-1 and jth

mesh point, and AEvj the discontinuity
in the valence bandedge. If AEVj > 0, a discontinuity in hole concentration
exists and provides for carrier confinement. A corresponding set of

conditions are imposed in the p-region.

2.2.5 Bandgap Narrowing and Intrinsic Concentration

Bandgap reduction has been shown to occur in silicon with
increasing impurity concentration, which is attributed to the broadening
of impurity levels and which ultimately overlap with the conduction and
bandedges when donors and acceptors, respectively, are involved. This
effect is well established from the results of band structure analysis
[20-22], and has been shown by direct means through the measurement of
the 1ntrinsic_optica1 absorption threshold [23]. The largest narrowing
observed is 0.068 eV, using this technique, in n-type silicon for a

19

donor concentration of 9 x 10'° cn™3 [23]. These experimental results

were employed to develop models by a number of investigators to obtain
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improved agreement between experimenta] data and theoretical calculations
related to-effects prbduced by high impurity concentrations in the
emitter and base regions of bipolar transistors [24-26].

More recently, other methods have been used to measure bandgap
narrowing [27,28]. These data have been analyzed and empirical relation-
ships obtained which describe the bandgap and bandgap narrowing with
increased impurity concentration énd which are denoted here as the SD
[27] and D [29] relationships. In most cases, the experimentally deter;

17 46 2 x 1012 ™3 range is greater .

mined bandgap narrowing in the 10
than the values resulting theoretical analysis [30-32]. The Slotboom
and de Graaff (SD) values have been used to calculate injected electron
current under contacts in logic circuits [33,34], to obtain improved
agreement in calculating built-in potentials [35], and to model solar
cells [36]. The results appear to be more encouraging for the SD than
for the D re]ationships; therefore, in the following discussion the SD
results are used.

Slotboom and de Graaff measure the bandgap by two indirect
methods that involve the I.-Vgg characteristic in NPN bipolar transistors,

15 19 cm-3)

as a function of impurity concentration (4 x 10°~ to 2.5 x 10

and temperature (150 K to 400 K). Following MacFarlane et al. [37], a
Tinear approximation is assumed for the bandgap above 250 K and represented

by

Eg(T.N) = Egg - aT - aEG(N) o (38

-1

where o = 3.855 x 10°% ev(K)

is the temperature coefficient, E., = 1.206 eV

GO
is a constant, and AEG(N) is the bandgap narrowing. Both EGO and o are

independent of impurity concentration and temperature, while AEG(N) is
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dependent only on the net impurity concentration. If the bandgap,

EG(T,N), is measured, the bandgap narrowing may be determined from the
relationship
- -4
AEG(N) = EGO - 3.855 x 10 'T - EG(T,N) . (38b)

In-.analogy with nondegenerate material, Slotboom and de Graaff use the

relationship

(39)

to calculate EG(T,N) once they obtain n?

e(T,N) from the measurement of
collector current. NC and Nv are the density of states at the conduc-
tion and valence bandedges, respectively, and are assumed to be invariant
in form and in their values from those in pure silicon. These assumptions
constitute what is commonly referred to as the Rigid Band approximation,
because the assumptions are equivalent to assuming that the bandedges
remain parabolic even in degenerate cases. Although this is almost
certainly not true, it sti]] represents an approximation that is more
realistic than the estimates that are required in the bandstructure
calculations [20-22]. As a result, Eq. (39) may be written in the form

AEL/KT
6 (40)

where the square of the intrinsic concentration in nondegenerate material

is given by

“E, /KT
(1) = 9.6 x10%1% G (41)
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Slotboom and de Graaff state that their data quqnsErates that éEG(N)
{é i;he;éﬁaen£ 5% tembérature. Therefore, they measured nie(T’N) qn]y
at 300 K over a range of impurity concentration values. It is then
assumed that the form of Eq. (40) applies to the doping and temperature
studied. “An empiracle relationship is obtained to represent bandgap

narrowing and is given by

2
) -3 N N 1
AEG(N) =9 x10 In ;677-+ \/?}n ;6T7> 5o lev . (42)

Substituting for net concentration values, N gives the bandgap narrowing

obtained from the measurement of nie(T’N>‘

The Slotboom-de Graaff assumptions may be questioned. Although
they have maintained electron injection into the degenerate base region
at a low level, they claim that this is reason enough to represent the
pn-product by Boltzmann statistics. The temperature behavior of hole
mobility in the base region is determined by measuring the sheet resistance
of the base region. This hole mobility temperature dependency is then
ascribed for electrons as well. Moreoever, the temperature dependency
of bandgap narrowing is inferred to be constant as a result of measuring

the temperature behavior of the emitter-base voltage (V and of the

EB)
electron mobility. The validity of the above assumptions is not questioned
in general, but only as it applies to determining small effects such as
bandgap narrowing.

A more realistic method to determine AEG(N) from measured
values of nie(T’N) is to use Fermi-Dirac statistics when studying effects

in degenerate materials. In the following, we present the results of a

study that applies Fermi-Dirac statistics to bandgap narrowing. In
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place of Eqs. (39)-(42), we substitute the relationship that applies to

degenerate and nondegenerage cases given by [12]:

2

Fi,o(n)Fy o(-en-n)
”1e 2 1/2 1/2 G (43)

T = Mo £yl 0Py legns)

where F]/Z(X) represents the Fermi-Dirac integrals of the 1/2-order, and

=, " (a4)
Ep.-E
Fi_ ~C

i S (45)
E_-E

"
O
<

——
N
o))

g

€ - kT

E., E E_ , and Ev are used to represent the usual parameters.

Fi’ “c

The bandgap value, EG(T,N), is determined by substituting the

F’

Slotboom-de Graaff experimentally determineq values of nie(T’N)’ and the
calculated values of nio(T) and n into Eq. (43) through a computer
subroutine that requires that the relationship be satisfied. EG(T,N)

is determined by this method over 1 x 10]6 to 3 x 1019 cm'3 concentration
range and 250 to 500 K temperature range, where the invariance of AEG(N)
with temperature is also assumed. The bandgap narrowing obtained from

the two methods (SD method and the method used in this study) usjng

Eq. (38b) are shown in Figure 6. These results show that for concentration
values Tess than 1 x 10'8 cn™3, both methods give identical results over
the temperature range. However, the method based on Fermi-Dirac statistics
(F-D) results in larger bandgap narrowing values compared to the results
based on Boltzmann statistics (B), and the difference increases with

increasing concentration values. Even though the experimental values of
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Bandgap Narrowing, 2E;, meV

Legend
—— Fermi-Dirac Statistics (F-D)
- ——Boltzmann Statistics (B)

120 ~
3 X 1079 ¢m™3 (F-D)
3% 1019 em3 (B)
100 |-
1 X 1079 em™3 (F-D)
80 1 %X 1019 em=3 (B)
3% 1018 em™3 (F-D)
6oL~ — — — — — - ===
3% 1018 ¢m3 (B)
40 1 X 1078 ¢m™3 (F-D and B)
3 X 1077 ¢m™3 (F-D and B)
20F
0 3 1 " 1 1 L 1 1 3 y
7 -
1% 10'7 ¢m™3 (F-D and B)
6 i L 1 1 1 L 1 1 n J

250 300 350 400 450 500
Temperature, K :

+ Figure 6. Bandgap narrowing calculated using Fermi-Dirac and Boltzmann
statistical forms, and based upon n;q (T,N) calculations using the Slotboom and
deGraaf data at 300 K.
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nie(T’N) obtained by Slotboom and de Graaff for which AEG(N) is independent
of temperature, the F-D method nevertheless shows that AEG(N) does
exhibit a temperature dependency. Figure 7 shows the intrinsic concentration,

(T,N), versus 1/T for three concentration values. It is seen that
-3

n.
ie
"ie(T’N) is higher by approximately one decade for 3 x 1019 cm ~ compared

17 -3

2.2.6 Carrier Lifetime

It is well known that carrier lifetime plays a major role in
obtaining high efficiency in silicon solar cells. As a result, a
number of studies are contemplated that involve effects produced by the
1ifetime behavior which have not yet been resolved. For these reasons,
composite lifetime relationships have been incorporated as submodels in
the computer simulation program. The composite relationships contain
recombination terms representing the Shockley-Read-Hall, trap-assiéted

Auger, and band-to-band Auger processes.

2.2.6.1 Shockley-Read-Hall (SRH)

Recombination processes that apply at low injection levels aré
referred to as the Shockley-Read-Hall (SRH) recombination [40,41]. This
recombination relationship may also be applied to Auger recombination
through trap-assisted processes. In silicon, the latter is most important,
because silicon {s éharacterized by indirect optical transitions.

The SRH recombination-generation relationship, which involves
the electron and hole capture and emission at low injection levels through

a single trap level, is given by [40,41]:

p, - n?
SRH (E,-E )/KT TE £ /KT
Tp["+"1'ee : ] * tplpin;ce ]

30



1014

1013

1012

1011

1010

109

Intrinsic Carrier Concentration, “ie(T- N}, cm3

108

107

500 K 400 350 300 275 250
3x 1019 ¢m3
3x10'8 ¢m3
| <1X 10"7¢m3
L 1
2 3 4
1 ooo K

Fugure 7. Curves representing calculatlons of the intrinsic concentration, "|e(T N},

based upon the Slotboom and de Graaff data.
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The minority carrier lifetimes (rp and rn), carrier concentrations (p

and n), intrinsic concentration (n._ ), trap energy level (Et)’ and the

ie
intrinsic Fermi level (EFi) may all be sensitive to position, temperature,
impurity concentration, and, for a number of these parameters, to injection
Tevel.

Kendall [38] has shown that experimental hole lifetime in as-

grown n-type silicon ingots may be described by the expression

T (ND) = —P0 (48)

where ND(x) is the donor concentration which may be position-dependent.

The parameter oo is the lifetime in material for which ND << NDo’ and

NDo is the threshold of donor concentration where recombination concentration
begins to increase significént]y. These parameters are listed in Table 3.

By analogy, Fossum [39] has assumed a similar relationship for electrons

given by

t (Ny) = J‘ﬁ—— : (49)
1+ NK;
where t_ and Ny, have similar meanings as in Eq. (48). 1In those regions
for which ND and NA are position-sensitive, the minority carrier lifetime
will also be position-dependent.
Eqs: (48) and (49) may be made more general where fhe form of

the relationships of Tho and Tho are given by

rr— (50)
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The parameters o and Vip are the recombination cross section and the
thermal velocity, respectively, and Nto is the recombination concentration

when NA = NAO or ND = NDo in the expression [42]:

N
NORE NS S | (51)

In addition, the recombination cross section is represented as a function

of temperature by [42]:
(52)

Using the constants provided for t h

may be calculated and is also listed. Minority carrier lifetimes represented

o o(300K), and Vi

1n.Tab1e 3, Ny

in Eqs. (48) and (49) are now expressed as functions of impurity concen-

tration as well as temperature.

2.2.6.2 Trap-Assisted Auger (TAA)

Trap-assisted Auger (TAA) [43-47] is distinguished from the
band-to-band Auger recombination, because TAA recombination is sensitive
to trapping level concentration. As a result, TAA may be sensitive to
fabrication processes. This arises in those materials and/or from
fabrication processes that use high temperatures in which shallow trap
concentration is influenced. The trap concentration model used for TAA
is representeq by Eq. (51), which was introduced for use with SRH
recombination.

The composite recombination model formulated considers that a
single trap level contributes to both TAA and SRH recombination [42,48].

This is consistent with the single-level analysis that has been extensively
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used in the literature and for which there is ample agreement betweeh
experimental data'and simulation results. ‘Although this analysis,
represented by Eq. (47), was developed using the SRH capture and emission
processes, it is reasonable to extend this relationship to include TAA
recombination [42,48]. However, in SRH the lowest Tifetime is obtained

for those cases where the trap level E_ ~ EFi [40,41], while in TAA it

t
is obtained where E, v E. in n-type and E, v E, in p-type [42].

The relationship for hole lifetime in n-type is given by

[42,48]:
A (53)
P pthn

and for electrons in p-type by
. S B (54)
nTAA T N_p

n tpp

where Tp and Tn are the TAA recombination coefficients for holes and
electrons, respectively, and N, and pp are the nonequilibrium majority
carrier concentrations. Hole and electron recombination coefficients

may be represented by the expression [43]:

;. 2.23x10°% g3/2

*)2 (EG(T,N)-E')3/2E4

a(T.N)

(Erm

where E' = EC-Et for holes in n-type and E' = E -EV for electrons in p-

t
*
type. The quantities £ and m are the relative dielectric constant and

the appropriate effective mass. Eg. (55) predicts that electron recom-

bination increases as Et-EV decreases, and is lowest for Et-EV = E.(T,N).

o
A corresponding statement may be made for hole recombination.
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2.2.6.3 Band-to-Band Auger (BBA)

A band-to-band Auger process may also be present in silicon,
which does not require an intermediate trap level [49,50]. This recom-
bination process takes place in degenerate material and/or under high

injection levels. "The recombination relationship is given by [42]}
- 2
Rggp = (Bn + Bpp)(np - Nye) (56)

where Bn and B_ are the recombination coefficients for electrons in p-

P
type and holes in n-type, respectively. While the values given for the
coefficients in the literature show a significant spread, those listed

in Table 3 appear to be the most reasonable.

2.2.6.4 Composite Relationship

The composite relationship is obtained by combining the SRH
and TAA recombination rate into Eq. (47) and adding Eq. (56) to the
result. In Eq. (47) the hole and electron lifetime, ™ and T,> are
obtained in a form that includes SRH and TAA using the form [42,48]:

1.1,
? = + ’ (57)

TSRH  TTAA

for holes and electrons. This results in the relationship

1
v (x) = (58)
P20 LT Ixdn (%) + opvyp TN Tx)
for holes in n-type using Egs. (48) and (53), and
‘ (59)

L 8 L )R [ €
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for electrons 1n.p-type using Egs. (49) andﬁ(54). After Egs. (58) and
(59) are substituted in Eq. (47), the result is represented by RSRH/TAA'

When RBBA and RSRH/TAA are added, the electron lifetime may be obtained

given by
1 -Ten +8p + ! b P
T 1 n'p P p (E ~E..)/kT -(Et—EF.)/kT pe
n n4n. e t "Fi p+n. e i
p ie + . p_ie _
[Tpnp+cpvthp]th [Tnpp+°nvthantp
where
Ny = Mho + Noe (61)
and
= +
Py = Poo ¥ Ppe (62)

The subscripts o and e represent equilibrium and excess carrier concen-
trations, and np and pp represent the total, nonequilibrium electron and
hole concentrations, respectively. A similar relationship may be obtained

for holes.

2.2.7 Induced Surface Electric Field Due to OCI

The simulation program provides for the option'of imposing an
immbbi]e charge on the irradiated surface of the solar cell. Thisvcharge
may be distributed arbitrarily throughout the insulator [53-63]. Never-
theless, from.Gauss' law the total charge may be considered to reside at
the interface. An aiding field in an n-type surface, which reduces

surface recombination and improves the junction collection efficiency,
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requires the charge to be positive. This tends to repel minority carrier
holes and to produce an electron accumulation layer. The model for this
structure is shown in Figure 8.

A number of methods have been used to obtain the relationships
for the electric field intensity and the electron accumulation distribution
[53-63]. The analysis follows from Poisson's equation for the one-
dimensional case

dE

& = TN+ p(x) - (0T (63)

n

The boundary conditions imposed on the solution for E{(x) are

E_(0) = % . (64)

X €
and

Ex(x2) =0 . (65)

Integrating Eq. (63) results in the relationship for the electric field

X

2
Eslx) = : Sx [n,(x) - p,{x) = Np(x)]dx . (66)

This field component is added to the built-in electric field relationship
that is discussed in Section 2.2.7. In Eq. (66) the mimobile surface

charge density is given by
X2
Q = a Sx [n, (x) - p,(x) - Np(x)Idx (67)

and satisfies Gauss' theorem.
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A second method may be used to obtain a relationship for the

electric field, which is an approximation. The electric field is given

by
-y(x)  -v(x,)
- QS e Y - e 2
ES(X) e ‘Y(Xz) s (68)
1-e
where
AR O (69)

for which N is the surface donor concentration. The hole concentration

does not appear in Eq. (69) because pn(O) << No or pn(O) ~ 0.

2.2.8 Built-in Fields - High and Low Injection Levels

Built-in fields are usually defined as an electrostatic field
intensity that exist under thermal equilibrium [64-71]. In treating
high injection cases, the intensity of these built-in fields may be
markedly affected [72-76]. Moreover, the high injection level may
establish another field component that is attributed to photoexcited
carriers which is strikingly similar in form to the built-in field that
may be present for immobile charge impurities in thermal equilibrium.
Therefore, in the following discussion the built-in field label is
extended to nonequilibrium cases as well.

The built-in field components will be treated using the ambipolar
method [72,73] which may be applied for the entire range of injection
levels (i.e., low to high). This approach is the most direct method to
illustrate high injection effects on the fields present under equilibrium

and nonequilibrium conditions.
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The electric field intensity that may be present in the p-type

base region is given by

. = .+ .+ .+ . s 0
EPJ Epm EpBNJ Ep1PJ EpPEJ (70)
where
b GJ] .
Eoaj —P———q J : , (71)
"ni pj
n Oj
EPBNJ '(bpa B ‘r’p)rpj EpBNoj ’ (72)
dn. . B
kT 2 iej 4
Epngs = - o o oo (73)
pBNoj q niej dx
n__. N, .
- _poj | Al
Ep1p; [(bpa £p) T o *p T, ] fpipoj (74)
: pJ
E 51——1—-dNAj , (75)
pIPoj ¢ NAj dx
E - KT Ppi = Ep 9Mpej (76)
pPEj q T . dx ?
pJ
= + .+
Tpg = (byg * Epingy + 85Ny s (77)
_ Fijal-egyny)
bpj - F (-ep:-n.) ° (78)
=1/2% “Gj ]
v
by =0 - (79)
PJ
3y = 3y (x) + 3 (x) (80)

Each of the field components in Eq. (70) and the parameters given in
Eqs. (71) to (79) are identified by the subscript j, which denotes the

jth mesh point. Each is evaluated at the identified mesh point. In Eq. (70),
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Eij represents the field required to conduct the total current (J]),
EpBNj is the electric field present in nonequilibrium and E in

equilibrium attributed to bandgap narrowing, EpIPj is the field present

pBNoj

in nonequilibrium and E in equilibrium due to the impurity concentration

pIPoj
profile, and EpPEj is the field established by the distribution of photo-

excited minority carrier electrons.
Eq. (70) is obtained from a bipolar carrier treatment, where the
drift and diffusion components of both electron and hole current contri-

butjons are added. Solving for E_. and substituting for Pp from the

pJ
charge neutrality condition results in Eq. (70). The value of the

parameter gp = 1 when the ambipolar treatment is required for high
injection level, and .gp = 0 for low level injection.

Eqs. (72), (74), and (76) contain rpj in their denominators.

Under high injection cond1t1ons,,npj(= Moj + npej)->> NAj’

and EpIPj decrease with increasing npj, and when

the field

components EpBN

J
npoj/rpj’ NAJ./Ppj << 1, they are negligible compared to Eij and EpPEj‘
It is clear that the field components, EpBNoj and EpIPoj’ that are present

in thermal equilibrium do not play a major role under high injection

levels. With increasing injection level, the ohmic field component, Eij,
ultimately approaches a constant value and EpPEj approaches an asymptotical
value because ij > bpjnpej‘

Phenomenologically, the reduction in the role of EpBNj and
EpIPj may be understood by associated high injection conditions in a
semiconductor with that of metallic-like behavior. Under these conditions,
a built-in field established by the distribution of impurities and their
effect on the bandgap affects the slope of the conduction and/or valence

bandedges. There is a tendency to neutralize these field components
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because high current values cannot be supported. Therefore, the high
cdncentration of electrons and holes neutralize these field components.
On the other hand, in order to support the high terminal currents under

high solar concentration, an electric field, E__., of moderate value

pQRJ
must be present. The corresponding voltage that is required to conduct
this current is subtracted from the generated photovoltage across the
depletion region (x2, x3). Thus, this field is self-1imiting and the
terminal current cannot increase without 1imit. Similarly, the electric-

field, EpPEj’ is also self-limiting, approaching an asymptotic value.
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3.0 SUMMARY
The genefa] method to solve the transport equations is discussed.
A number of the more important phenomena submodels are presented, and

the reasons for selecting the particular form are discussed.
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