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1.0 INTRODUCTION

This report summarizes the work conducted under this contract

during the period of January 5, 1984, to April 4, 1984. Contract goals

are to develop an efficient, comprehensive Si solar cell modeling program

that has the capability of simulation accuracy of 5 percent or less.

Computer simulation programs, in general, may be subdivided into a

number of major tasks: (1) analytical method used to represent the

physical system; (2) phenomena submodels that comprise the simulation of

the system; (3) coding of the analysis and the phenomena submodels;

(4) coding scheme that results in efficient use of the CPU so that CPU

costs are low; and (5) modularized simulation program with respect to

structures that may be analyzed, addition and/or modification of phenomena

submodels as new experimental data become available, and the addition of

other photovoltaic materials. These tasks are briefly discussed below.

Computer modeling simulations have been shown to be very useful in

the development of semiconductor devices in those cases where the simulation

is an accurate representation of the physical device. However, to be an

effective aid to the experimentalist and to become an equal partner in

the technologies used in device development, it may be required to

operate the computer program frequently each day in an active develop-

mental program. For frequent use, as required in solar cell development,

CPU costs must be low. Moreover, low CPU cost allows for engaging in

computer experiments, which can be made to be a very useful and powerful

technique.

Computer modeling using numerical integration methods in Si device

technology have usually shown fair-to-good agreement with experimental

data. However, CPU costs for the execution of computer programs that



are based on numerical integration methods are typically high for their

use as a laboratory or manufacturing tool [1]. The number of bias

points that are required to study optimized device designs is usually

more than 1,000 to 2,000 runs. Similarly, a comprehensive study involving

device structures or new types of devices typically exceeds 2,000 runs.

In most cases, the cost of such modest studies for the benefits gained

is not attractive. It is clear that conducting in-depth studies is not

cost-effective; for this reason, numerical integration methods are not

used for comprehensive studies.

A method has been developed that, in principle, should result in

simulation accuracy equivalent to that demonstrated by numerical integration

methods, but with low CPU costs. This method uses recursion relationships

to solve for the constants of integration and is subsequently described.

Simulation accuracy is determined by both the accuracy of the

analytical method representing the device and the accuracy of the phenomena

submodels in representing the corresponding experimental data related to

material properties. For most efficient use of the CPU, the accuracy of

the analytical method and of the phenomena submodels should be equivalent.

For example, even if the analytical method accurately represents the

device, simulation results may not agree with experimental data if the

phenomena submodels are accurately represented. The reverse is also

true. In solar cells, the phenomena submodels that produce first-order

effects in terminal characteristics are: absorption curve, built-in and

induced electric fields, bandgap, lifetime, mobilities, diffusivities,

photoexcited carrier concentrations, surface recombination velocities,

junction transport, etc. Some of these will be discussed in this report.

The representation of the phenomena submodels must take on an importance

equal to the analytical method used to represent the system.



Codings of the analysis and phenomena submodels are separated in

the program. Moreover, the coding of the submodels is modularized so

that there is maximum flexibility to add, subtract, and/or modify them.

The efficiency of the coding may only be demonstrated by the accuracy

of the simulation results with experimental data and the corresponding

CPU execution time.

The spectrum of structures and cases that may be treated by the

simulation program depends on the analytical method or algorithm used

to represent the device, generality of the boundary conditions imposed,

comprehensiveness of the phenomena submodels, and the generality of

representation of each of the submodels. These issues will be described

below.



2.0 DESCRIPTION OF THE INVESTIGATIONS CONDUCTED

2.1 Analytical Method Used to Represent Solar Cell Structures

RTI has been developing computer modeling programs for semiconductor

devices since 1976 [2-9]. The major element that has evolved out of

these modeling programs is the analytical method that is used to analyze

physical systems. To obtain an accurate representation of a physical

system, the system geometry is divided into a number of segments (mesh

points). In a one-dimensional geometry, the segments are defined by a

series of parallel planes. The separation of the planes defining the

segments determines the simulation accuracy. The segments may be taken

as thin as required to obtain the accuracy desired. The transport

equations, governing the behavior of the physical system, are applied to

each segment, and a closed-form solution is obtained in each of the

segments. It has been demonstrated that when applying the boundary

conditions to the solutions at each of the planes, there exists a recursion

relationship between the constants of integration of the solutions

obtained in each segment.

This method has been applied to semiconductor devices and has

been shown to give excellent agreement with experimental results. It

has been applied to devices for which the solutions are functions of

position and time, such as photodiodes [8] and avalanche photodiodes

(APD) [8]. The method has also been applied to solar cells, where the

solutions are functions only of position [unpublished].

Convergence problems do not impose any conditions on the mesh

point separation. The segments may be made arbitrarily thin or

arbitrarily large. For maximum accuracy in simulating a physical

system, a large number of segments may be required. The segments may be

increased beyond 1,000 for greater accuracy, however, it has been found



that this is not always necessary. In the case of APDs, a device for

which accuracy of representation is difficult, simulation results were

studied for f = 2 up to f = 80 to determine the agreement between modeling

and experimental data. It was found that the results obtained for f =

15 were within 1 percent of the results obtained for f = 80 [8]. This

clearly shows these real advantages of the recursion relationship method

over the numberical integration method: (1) a "guess solution" is not

required; (2) convergence is always obtained for any number of mesh

points; (3) a smaller number of mesh points may be used; (4) transport

equations are solved by means of recursion relationships; and (5) CPU

running time is reduced significantly.

During this contractual period, the analytical method described

above has been applied to silicon solar cell structures; however, it has

been generalized so that it may be applied to heterostructures encountered

in amorphous silicon, III-V and II-VI material-based cells. Cascade

cell structures may also be analyzed by means of this solution. The

silicon solar cell structures that may be analyzed are given in Table 1,

including the effect of an oxide-charged insulator (OCI).

Final results of the recursion relationships have not yet been

obtained and will be reported in the second quarterly report.

2.2 Analytical Representations of Phenomena Submodels

In this section, a brief discussion is presented of some of

the phenomena submodels and the representations used in the simulation

program.

2.2.1 Mobility

Carrier mobilities in silicon have been studied by Dorkel and

Leturcq [10], denoted DL mobility. They have assessed experimental and

theoretical studies and developed analytical relationships which represent

5



Base

n

pp

n'
n+n

Table 1. Silicon structures that may be studied
using.the simulation program.



low field electron and hole mobility, depending on impurity concentration

(ionized impurity scattering), temperature (lattice scattering), and

injection level (carrier-carrier scattering). The DL mobility formulation

has been selected as the primary method to be used in the simulation

program, because the mobility components that arise from the three

scattering phenomena are easily discerned. In addition, the composite

form of the DL mobility relationships are relatively simple to apply,

and it contains the mobility component arising from carrier-carrier

scattering which becomes important in degenerate material and/or high

injection levels. However, it appears that the DL relationships may not

accurately represent mobility data for net impurity concentrations above
•I Q O

2-3 x 10 Q cm under low injection levels and for nonequilibrium values

of the electron-hole product (Pnnn or p n ) above 10 cm" . This

aspect will be dealt with subsequently.

The DL mobility relationships, which provide for silicon

mobility dependency on impurity concentration, temperature and injection

level are given by the expressions:

Vi =L ' yLOl~T
300 a

AT3/2

Mi + •]'
. 2 x IP17 T3/2Uccs ^41 + ̂ioV]

I (pn)1/3 J

/ V, (Vr +Wrr.) '

X = t±-± 2«_ , (4)



V = U, 1.43
1.025 n noc lc\

In the above set of equations, both electron and hole mobilities are

represented and for which the baseline constants are listed in Table 2.

Using these relationships, both electron and hole mobilities may be

obtained in n-type material where N represents the net donor concen-

tration, NDN .. Similarly, electron and hole mobility may be determined

in p-type using the appropriate mobility parameters in Table 2.

Eqs. (1), (2), and (3) represent the mobility components

produced by lattice, ionized impurities, and carrier-carrier scattering.

The latter is important in degenerate material and at high injection

levels, and is usually negligible for most other cases. On the other

hand, the lattice scattering and ionized impurity scattering are determined

under conditions close to thermal equilibrium.

Lattice scattering mobility, Eq. (1), is produced by a scattering

phenomenon attributed to accoustic phonons. This component decreases

with increasing temperature, and the parameters, M,Q and "a," depend on

the carrier type and the temperature range. It is this component which,

in large measure, determines the temperature behavior of mobility. It

is clear from Table 2 that y,NQ > Vi pg-

Ionized impurity scattering mobility, Eq. (2), is produced

because of scattering of carriers by immobile ionized impurities. This

mobility decreases with increasing impurity concentration or decreasing

temperature. Implicit in this formulation is that the effect of scattering

is the same for electrons and holes in the presence of ionized donors as

well as for ionized acceptors.



Parameter

yLo

a

A

B

Electrons

1430 cm2 (V sec)"1

2.2

4.61 x 1017 (cm V sec K3/2)~ ]

1.52 x 1015 cm"3 K~2

Holes

495

2.2

1 x 1017

6.25 x 1014

Table 2. Baseline values of mobility parameters using the
Dorkel-Leturcq [10] representation.



Carrier-carrier scattering mobility, Eq. (3), becomes important

where the electron-hole product is greater than 10 cm~ for 10 cm~
op C.

impurity concentration and when the product is greater than 10 cm
19 -3for 10 cm impurity concentration. These conditions occur for injection

levels produced under solar concentrations exceeding 10 to 20 suns.

Electron mobilities predict experimental values to within

5 percent in the temperature range above 200 K, and for doping levels

less than 3 x 10 cnf3. At 300 K, hole mobilities are predicted to
1 o

within 5 percent or less, and for doping concentration less than 2 x 10 cm

There is agreement with experimental data in the temperature range 200

to 300 K. However, hole mobility data above 300 K and the DL mobility

relationships cannot be assessed at this time [10].

Due to limitations of applicability of the DL formulation in

some temperature and doping concentration ranges, a second representation

has been included in the mobility submodel. This representation is due

to Arora et al. [11]. It is denoted as the AHR mobility formulation.

Composite mobility relationships.for electrons and holes have

been obtained empirically, as a function of temperature (lattice scattering

mobility) and impurity concentration (ionized impurity scattering mobility),

based on experimental data and the Brooks-Herring theory of mobility.

The relationships predict electron and hole mobility to within ±13 percent
20 -3up to 10 cm doping concentration am

range. The relationships are given by:

20 -3up to 10 cm doping concentration and in the 250 to 500 K temperature

v« =
1 + 0.88N /300\ 2'b

1.26 x l O 1

10



*54.3(»°'57* 1-36 x-IO8'*

2.33

o cflC

0.88N / 3 0 Q 2 - 5 4 6

2.35 x 1017 ̂  T

The above formulation may be used in those temperature and doping concen-

tration values where the DL formulation exhibits a poor representation

of experimental data. However, Eqs. (6) and (7) only apply to low

injection level cases, in which case we will resort to the DL formulation.

The DL [10] and AHR [11] relationships are compared in the
•14 19 -3impurity concentration range of 10 to 10 cm in Figures 1, 2, and 3

for 200, 350, and 500 K, respectively, under low injection level,
oc o

pn = 10 cm" . Agreement for electron mobility between the formulations

is excellent at 350 and 500 K and not as good at 200 K. The overall

agreement for holes is not as good as it is for electrons. However,

these results show that either formulation may be used to represent

mobility data under low injection levels.

2.2.2 Diffusivities

In most cases, the carrier diffusivities used are of the

Einstein form represented for electrons by

However, in degenerate and/or high injection levels, the Einstein

relationship is a poor approximation.

Consider a degenerate p-type semiconductor under thermal

equilibrium (i.e., open-circuit conditions) as shown in Figure 4(a)

Under these conditions, the electron current, given by

11
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dn

is zero, from which the electron diffusivity is given by

dx

E in this case is the built-in potential that is established to produce
A

an equal, but opposite drift current to the diffusion current. The

built-in field is obtained from a relationship for the conduction bandedge,

E . The bandedge expression may be placed in a form given by

EC = -<j> + constant (11)

where $ is the electrostatic potential. The built-in potential is

obtained from Eq. (11), represented by

'x dx dx

To obtain dn /dx, we use the relationship

™ ™P° = P° _
dx 3E dx

and substituting from Eq. (12), the result is

~ nO _ p PO
~- Ex iE"

15



The relationship for electron concentration (using the rigid band

approximation) given by

% = NcFl/2<V

where N is the density-of-states at the conduction bandedge, F, ,„ is

the Fermi-Dirac integral of 1/2-order, and

is the argument for thermal equilibrium. Using the relationship

^

it can be shown then [12] that

where F i / C ' i ) 1S tne Fermi-Dirac integral of the -1/2-order. Substituting

Eqs. (14), (15), (16), (17), and (18) into Eq. (10) results in the

electron diffusivity in degenerate material given by

A similar procedure and relationship may be obtained for the case of

high injection level, by elevating temperature or by another method in

which the same electron-hole pair concentration is produced as through

16



irradiation by a high photon flux as shown in Figure 4(b) under dynamic

equilibrium and open-circuit conditions. The latter assumes that a

uniform distribution of electron-hole pairs is generated. The diffusivity

is given by

F1/?(n)
D = D r• ' I \ , (20)n no F_1/2(nn)

for which

- „ Fn c
nn - q kT

where EF is the quasi-Fermi level for electrons. Under thermal equilibrium

conditions, Eq. (20) reduces to the relationship given in Eq. (19).

Corresponding relationships exist for holes.

Figure 5 shows the electron and hole diffusivities, normalized

with respect to the Einstein diffusivity, plotted as a function of their

respective arguments (n and -e,.-n)' which contain the Fermi level.

Increasingly positive arguments represent increasing degeneracy for

which the diffusivities show significant increases. Negative arguments

represent nondegenerate cases where the diffusivity ratios approach

unity. For argument values of +10, the diffusivity ratios are greater

than six. This represents a condition where the Fermi level penetrates
20 -3the corresponding bands by 0.15 eV, which are attained for 10 cm

doping under low injection. High injection adds to this penetration,

and the diffusivity ratio increases still further.

2.2.3 Boundary Conditions at Depletion Region Edges

Boundary conditions imposed at depletion region edges are

briefly discussed below. Due to the controversy that may surface when

17



^
p-type |

Semiconductor
Contact

(a)

\ \ v

\ \ \
i p-type 1

(b)

Figure 4. Physical systems used to describe carrier diffusivities: (a) degenerate
semiconductor in thermal equilibrium; and (b) degenerate and/or high
injection level in a semiconductor in dynamic equilibrium.
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Figure 5. Electron and hole diffusivities normalized with respect to the Einstein
relationship for degenerate and/or high injection level conditions for all temperatures.
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discussing these boundary conditions under high injection levels, special

attention was devoted to this subject [13-19]. During the course of

this investigation, a number of significant results were obtained, and

these will also be presented below.

Consider the geometry where x2 and x., denote the depletion

region edges in the n- and p-regions, respectively. The symbols for the

corresponding carrier concentrations are denoted pn(x9), n (x9), p (x,),n c n L- p o

and n (xo). In general, the relationships that exist between thesep o
concentrations are given by

_
Pn(x2) = Pp(x3) e

 kT , (22)

for holes, and for electrons by

VX3} = %(X2) kT > (23>

where V. . is the nonequilibrium built-in potential established in the

depletion region. While the expressions in Eqs. (22) and (23) are valid

for both equilibrium and nonequilibrium conditions, at high injection

levels the quantities pn(x.,) and n (x9) are unknown. This gives rise top *5 n £.

two different forms of the boundary conditions for low and high injection

levels. The different forms are a direct result of the charge neutrality

conditions that exist under low level injection, given by

nn(x2) + nno(x2) = NQ(x2) (24)

in the n-region, and in the p-region by

20



= NA(-X3> > (25)

where Nn^Xp) and N»(x3) represent donor and acceptor concentrations in

the n- and p-type regions, respectively, at the depletion edges.

Substituting Eq. (24) into Eq. (23), and Eq. (25) into Eq. (22), gives

the boundary conditions for low injection level:

(26)

and

(27)

The nonequilibrium built-in potential is defined by

Vbi = Vbio -

where V, . is the built-in potential at thermal equilibrium, and V,

is the photovoltage. Therefore, under low injection levels, Pn(Xo) and

n (x.J may be determined.

In the high injection case, the charge neutrality condition

imposed in the n-region is given by

nn(x2) - Pn(x2) = ND(x2) (29)

and in the p-region by

21



• Pp(x3) - np(x3) - NA(x3) , • (30)

where p (x2) may be comparable to or even greater than NQ(x2) and

similarly for n (XQ) and Nfl(x-,). One form of the boundary condition
P o Ho

under high injection was first reported by Fletcher [14] and given by

[N (xJ + N ( x ) 4 ] €

for holes at x2 and by

[Nn(x?) + NA(xJD 2

at x3> where

^ (x2J.Np)n1e(x3fT.NA) T^
= - N (x IN fx ) - e • (33a)

1 ; ^ ;

The quantity V, is the photovoltage generated across the depletion

region, x3-Xp- The form of. 5 is somewhat different from the results

obtained in the literature because it includes the effects of bandgap

narrowing through the intrinsic concentrations n. (xp.T.Ng) and nie(
x3

To show this more explicitly, Eq. (33a) may be placed in the following

form:

(X2) + AEG(x3)]/2kT

e= - NA(x3)ND(x2)

This form shows that ? is dependent on the sum of the bandgap narrowing

of the depletion edges. If the doping concentration at x2 and x3 are

22



1 p o
1 x 10 cm" , the sum of the bandgap narrowing is 0.086 eV and E is

increased by a multiplicative factor of 28 compared to pure material.

An alternative form of these boundary conditions is attributed

to Misawa [13]. While the Fletcher formulation is based on quantities

defined at the depletion region edges (x~ and x.~), the Misawa formulation

also includes quantities defined at the outer boundaries of the n- and

p-regions, which represent the ohmic contact interfaces (x = 0 and x5)

in a solar cell structure. The two relationships are given by

- [V(x2) - V(x5) + - dx]

»n<*2> = 'po(x5>e " • <34>

and

"p^ = nno(0)e

- V(x3) +|Q
2 qyVdx] , (35)

where pnr.(x(-) and n (0) are the acceptor and donor concentrations atpo o no
the ohmic contacts, and V(x5) and V(0) are the corresponding potentials.

The disadvantage of the Misawa form is the photocurrent J and J are

required to be known in order to calculate pn(x9) and n (x.,).n L. p o

2.2.4 Boundary Conditions Imposed at the Mesh Points

The analytical method described in Section 2.1 solves, in closed

form, for the minority carrier concentrations at each mesh point. Therefore,

each of the closed form solutions contains two constants of integration,

which solutions must be obtained through the imposition of boundary

conditions of each of the mesh points.

23



are:

In the n-region', the boundary conditions at the j mesh point

(AE .AT)
s VJ ,, (36)

and

(37)

where Pne-(yoJ and Pne(-j+])(°) represent the photoexcited hole concen-

tration, J -(yoi) and JD(-+i}(0) the hole current density, y • the

separation between the j -1 and j mesh point, and AE . the discontinuity
" J

in the valence bandedge. If AE . > 0, a discontinuity in hole concentration
* J

exists and provides for carrier confinement. A corresponding set of

conditions are imposed in the p-region.

2.2.5 Bandgap Narrowing and Intrinsic Concentration

Bandgap reduction has been shown to occur in silicon with

increasing impurity concentration, which is attributed to the broadening

of impurity levels and which ultimately overlap with the conduction and

bandedges when donors and acceptors, respectively, are involved. This

effect is well established from the results of band structure analysis

[20-22], and has been shown by direct means through the measurement of

the intrinsic optical absorption threshold £23]. The largest narrowing

observed is 0.068 eV, using this technique, in n-type silicon for a
19 3donor concentration of 9 x 10 cm [23]. These experimental results

were employed to develop models by a number of investigators to obtain



improved agreement between experimental data and theoretical calculations

related to effects produced by high impurity concentrations in the

emitter and base regions of bipolar transistors [24-26].

More recently, other methods have been used to measure bandgap

narrowing [27,28]. These data have been analyzed and empirical relation-

ships obtained which describe the bandgap and bandgap narrowing with

increased impurity concentration and which are denoted here as the SD

[27] and D [29] relationships. In most cases, the experimentally deter-

mined bandgap narrowing in the 10 to 2 x 10 cm range is greater

than the values resulting theoretical analysis [30-32]. The Slotboom

and de Graaff (SD) values have been used to calculate injected electron

current under contacts in logic circuits [33,34], to obtain improved

agreement in calculating built-in potentials [35], and to model solar

cells [36]. The results appear to be more encouraging for the SD than

for the D relationships; therefore, in the following discussion the SD

results are used.

Slotboom and de Graaff measure the bandgap by two indirect

methods that involve the IQ-VEB characteristic in NPN bipolar transistors,

as a function of impurity concentration (4 x 10 to 2.5 x 10 cm )

and temperature (150 K to 400 K). Following MacFarlane et al. [37], a

linear approximation is assumed for the bandgap above 250 K and represented

by

EG(T,N) = EGO - cJ - AEG(N) , (38a)

where a = 3.855 x 10 eV(K) is the temperature coefficient, Err. = 1.206 eVbU

is a constant, and AEQ(N) is the bandgap narrowing. Both EGQ and a are

independent of impurity concentration and temperature, while AEG(N) is

25



dependent only on the net impurity concentration. If the bandgap,

E~(T,N), is measured, the bandgap narrowing may be determined from the
b

relationship

AEQ (N) = EQO - 3.855 x 10"4T - EQ(T,N) . (38b)

In-analogy with nondegenerate material, Slotboom and de Graaff use the

relationship

-Er(T,N)/kTb (39)

2
to calculate EG(T,N) once they obtain n. (T,N) from the measurement of

collector current. N and N are the density of states at the conduc-

tion and valence bandedges, respectively, and are assumed to be invariant

in form and in their values from those in pure silicon. These assumptions

constitute what is commonly referred to as the Rigid Band approximation,

because the assumptions are equivalent to assuming that the bandedges

remain parabolic even in degenerate cases. Although this is almost

certainly not true, it still represents an approximation that is more

realistic than the estimates that are required in the bandstructure

calculations [20-22]. As a result, Eq. (39) may be written in the form
f

? ~ AEr/kT
nfe(T,N) = nf0(T)e

 G , (40)

where the square of the intrinsic concentration in nondegenerate material

is given by

n?Q(T) = 9.6 x 10
32T3e" Go . (41)

26



Slotboom and de Graaff state that their data demonstrates that AE

is independent of temperature. Therefore, they measured nie(T,N) only

at 300 K over a range of impurity concentration values. It is then

assumed that the form of Eq. (40) applies to the doping and temperature

studied. An empiracle relationship is obtained to represent bandgap

narrowing and is given by

AE(N) = 9 x 10'3
G 10'

In (42)

Substituting for net concentration values, N gives the bandgap narrowing

obtained from the measurement of n. (T,N).

The Slotboom-de Graaff assumptions may be questioned. Although

they have maintained electron injection into the degenerate base region

at a low level, they claim that this is reason enough to represent the

pn-product by Boltzmann statistics. The temperature behavior of hole

mobility in the base region is determined by measuring the sheet resistance

of the base region. This hole mobility temperature dependency is then

ascribed for electrons as well. Moreoever, the temperature dependency

of bandgap narrowing is inferred to be constant as a result of measuring

the temperature behavior of the emitter-base voltage (VFB) and of the

electron mobility. The validity of the above assumptions is not questioned

in general, but only as it applies to determining small effects such as

bandgap narrowing.

A more realistic method to determine AEfi(N) from measured

values of nie(T,N) is to use Fermi-Dirac statistics when studying effects

in degenerate materials. In the following, we present the results of a

study that applies Fermi-Dirac statistics to bandgap narrowing. In
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place of Eqs. (39)-(42), we substitute the relationship that applies to

degenerate and nondegenerage cases given by [12]:

n2 (T N) = n2 , (43)( ' } - ' (

where F, /o(x) represents the Fermi-Dirac integrals of the 1/2-order, and

ErEr
n = -^ , (44)

n, = E-̂ r± , (45)
I N I

(46)CG kT •

Ep, Ep., E , and E are used to represent the usual parameters.

The bandgap value, Eg(T,N), is determined by substituting the

Slotboom-de Graaff experimentally determined values of n. (T,N), and the

calculated values of n,-0(T) and n- into Eq. (43) through a computer

subroutine that requires that the relationship be satisfied. EG(T,N)

is determined by this method over 1 x 1 0 to 3 x 10 cm~ concentration

range and 250 to 500 K temperature range, where the invariance of AEG(N)

with temperature is also assumed. The bandgap narrowing obtained from

the two methods (SD method and the method used in this study) using

Eq. (38b) are shown in Figure 6. These results show that for concentration
1 o _o

values less than 1 x 10 cm" , both methods give identical results over

the temperature range. However, the method based on Fermi-Dirac statistics

(F-D) results in larger bandgap narrowing values compared to the results

based on Boltzmann statistics (B), and the difference increases with

increasing concentration values. Even though the experimental values of
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» Figure 6. Bandgap narrowing calculated using Fermi-Dirac and Boltzmann
statistical forms, and based upon ni§ (T,N) calculations using the Slotboom and

deGraaf data at 300 K.
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n. (T,N) obtained by Slotboom and de Graaff for which AEg(N) is independent

of temperature, the F-D method nevertheless shows that AEg(N) does

exhibit a temperature dependency. Figure 7 shows the intrinsic concentration,

n- (T,N), versus 1/T for three concentration values. It is seen that
19 -3n. (T,N) is higher by approximately one decade for 3 x 10 cm compared

to 1 x 1017 cm"3.

2.2.6 Carrier Lifetime

It is well known that carrier lifetime plays a major role in

obtaining high efficiency in silicon solar cells. As a result, a

number of studies are contemplated that involve effects produced by the

lifetime behavior which have not yet been resolved. For these reasons,

composite lifetime relationships have been incorporated as submodels in

the computer simulation program. The composite relationships contain

recombination terms representing the Shockley-Read-Hall , trap-assisted

Auger, and band-to-band Auger processes.

2.2.6.1 Shockley-Read-Hall (SRH)

Recombination processes that apply at low injection levels are

referred to as the Shockley-Read-Hall (SRH) recombination [40,41]. This

recombination relationship may also be applied to Auger recombination

through trap-assisted processes. In silicon, the latter is most important,

because silicon is characterized by indirect optical transitions.

The SRH recombination-generation relationship, which involves

the electron and hole capture and emission at low injection levels through

a single trap level, is given by [40,41]:

DK _ , _ ,
SRH (E -E .)/kT -(E,-EF.)/kT

Tp[n+n1ee
 t Fl ] + T t Fl
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The minority carrier lifetimes (T and T ), carrier concentrations (p

and n), intrinsic concentration (n. ), trap energy level (E.), and the
I C C

intrinsic Fermi level (E,--) may all be sensitive to position, temperature,

impurity concentration, and, for a number of these parameters, to injection

level.

Kendall [38] has shown that experimental hole lifetime in as-

grown n-type silicon ingots may be described by the expression -

NDo

where Nn(x) is the donor concentration which may be position-dependent.

The parameter T is the lifetime in material for which ND « NQ , and

Nn is the threshold of donor concentration where recombination concentrationDo
begins to increase significantly. These parameters are listed in Table 3.

By analogy, Fossum [39] has assumed a similar relationship for electrons

given by

(49)

NAo

where T and N. have similar meanings as in Eq. (48). In those regionsno MO
for which ND and N,, are position-sensitive, the minority carrier lifetime

will also be position-dependent.

Eqs; (48) and (49) may be made more general where the form of

the relationships of T and T are given by

(50)
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ÔO

,
CO

Ol

o
(C

1—

O)
Q.

•Y
c

• •

to
<u

'o

Q.

Q̂.

• •
to
c~
0
i.

4.2
O
O)

UJ

S-
Ol
+J

0>
E
(T3
S_
fO
D.

1 1
1 1 CTl
CTl CO
CO i — I
I i

CO CM
0 1 1oi E e
to O U

^" LO VO
1 r— r—
0 0 1
r- r- 0

X X
X

LO O
CTl r— CNJ

CO f-~ <N1

1 1
I — i CTl
CTl CO
CO 1 1
i i

CO CM
U 1 1
Ol E g
to o O

LO LO V£>
1 I— r—
O O 1
r— r— O

^—
X X

X
o o
r-. i — en

^— h

5^

O
O
CO

a.
D

*•
*•— ̂

O O *£
a. Q

H -z. o
0

o o —
C «=C C

H ^ D

i— co
1 1
oo E

o
E
a CM

r—
r-- o
O r-
r—

X
X

^«
CM r—
LO LO

r-^ ^

i— CO
1 1
00 E

O
E
U CO

l-~
r̂  (*"*!

O i—
r-~

X
X

CTl
CTl CM
0 00

O
O
CO

a.<
-M

«
^* ̂
^ O

c
O •!->
O Z
CO
**-* f\

c o
.C Q.
4-̂  -4-̂

> ^

1 1
CM
LO

LO

OO

CM
^~

1 I

1
O
Ol
to

VO
E
O

^»
CO

1
o

1 — 1 1 —
CM
<3- X

CTl
r--. CTI
CM O

CM
LO

r.

LO

m

CM

1 1

^_
1
U
Ol
to

10
E
U

r—
CO

1
i — i O
CM i —
^*

1 — 1 X

^J- 00

CO CM

a. a.
o rri

•V ' *\

c c
<-i rn

33



The parameters a and v_h are the recombination cross section and the

thermal velocity, respectively, and N. is the recombination concentration

when N. = N. or NQ = NpQ in the expression [42]:

(5,)

In addition, the recombination cross section is represented as a function

of temperature by [42]:

a = a(300K) (̂°) . (52)

Using the constants provided for T , a(300K), and vth in Table 3, N.

may be calculated and is also listed. Minority carrier lifetimes represented

in Eqs. (48) and (49) are now expressed as functions of impurity concen-

tration as well as temperature.

2.2.6.2 Trap-Assisted Auger (TAA)

Trap-assisted Auger (TAA) [43-47] is distinguished from the

band-to-band Auger recombination, because TAA recombination is sensitive

to trapping level concentration. As a result, TAA may be sensitive to

fabrication processes. This arises in those materials and/or from

fabrication processes that use high temperatures in which shallow trap

concentration is influenced. The trap concentration model used for TAA

is represented by Eq. (51), which was introduced for use with SRH

recombination.

The composite recombination model formulated considers that a

single trap level contributes to both TAA and SRH recombination [42,48].

This is consistent with the single-level analysis that has been extensively
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used in the literature and for which there is ample agreement between

experimental data and simulation results. Although this analysis,

represented by Eq. (47), was developed using the SRH capture and emission

processes, it is reasonable to extend this relationship to include TAA

recombination [42,48]. However, in SRH the lowest lifetime is obtained

for those cases where the trap level E, ̂  Ep. [40,41], while in TAA it

is obtained where E, ̂  E in n-type and E. ̂  E in p-type [42].
u L. C V

The relationship for hole lifetime in n-type is given by

[42,48]:

1 (53)
TpNtnnn

and for electrons in p-type by

(54)
nTAA TnVp

where T and T are the TAA recombination coefficients for holes and

electrons, respectively, and n and p are the nonequilibrium majority

carrier concentrations. Hole and electron recombination coefficients

may be represented by the expression [43]:

T _ 2.23 x IP"26 E | 5 /2

' *

__ _
O "3 /O /I

) 2 ( E ( T , N ) - E ' ) 3 / 2 E ( T , N )

where E1 = E -E. for holes in n-type and E1 = E.-E for electrons in p-
*

type. The quantities e and m are the relative dielectric constant and

the appropriate effective mass. Eq. (55) predicts that electron recom-

bination increases as E.-EV decreases, and is lowest for E.-E = Er(T,N).

A corresponding statement may be made for hole recombination.
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2.2.6.3 Band-to-Band Auger (BBA)

A band-to-band Auger process may also be present in silicon,

which does not require an intermediate trap level [49,50]. This recom-

bination process takes place in degenerate material and/or under high

injection levels. The recombination relationship is given by [42]:

RBBA = (V + B p p ) ( n p - ) (56)

where B and B are the recombination coefficients for electrons in p-

type and holes in n-type, respectively. While the values given for the

coefficients in the literature show a significant spread, those listed

in Table 3 appear to be the most reasonable.

2.2.6.4 Composite Relationship

The composite relationship is obtained by combining the SRH

and TAA recombination rate into Eq. (47) and adding Eq. (56) to the

result. In Eq. (47) the hole and electron lifetime, T and T , are

obtained in a form that includes SRH and TAA using the form [42,48]:

+-L- , (57)
T TSRH TTAA

for holes and electrons. This results in the relationship

T
P

(x) = [T (X )n (x) +\ v—rr-nrr (58)
V . L i n vx ;n v*; T o v., JH. IA;pv ' n

for holes in n-type using Eqs. (48) and (53), and
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for electrons in p-type using Eqs. (49) and (54). After Eqs. (58) and

(59) are substituted in Eq. (47), the result is represented by R$RH/TAA'

When RBBA and R$RH/TAA
 are added, the electron lifetime may be obtained

given by

T_
T VP

where

1 1
(E t-EFi)/kT -(E t-EF1J/kT

Vniee , pp+niee

[T n +a v.i IN,. [T p +a v,u ]N.p p p tnp tp n p n tnn tp

PPe(! +C+ Vy

(60)

and

np = npo pe

Pp Ppo Ppe

(61)

(62)

The subscripts o and e represent equilibrium and excess carrier concen-

trations, and n and p represent the total, nonequilibrium electron and

hole concentrations, respectively. A similar relationship may be obtained

for holes.

2.2.7 Induced Surface Electric Field Due to OCI

The simulation program provides for the option of imposing an

immobile charge on the irradiated surface of the solar cell. This charge

may be distributed arbitrarily throughout the insulator [53-63]. Never-

theless, from Gauss' law the total charge may be considered to reside at

the interface. An aiding field in an n-type surface, which reduces

surface recombination and improves the junction collection efficiency,
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requires the charge to be positive. This tends to repel minority carrier

holes and to produce an electron accumulation layer. The model for this

structure is shown in Figure 8.

A number of methods have been used to obtain the relationships

for the electric field intensity and the electron accumulation distribution

[53-63]. The analysis follows from Poisson's equation for the one-

dimensional case

-nn(x)] . (63)

The boundary conditions imposed on the solution for E(x) are

and

EJO) = -^ (64)
* e

Ex(x2) = 0 . (65)

Integrating Eq. (63) results in the relationship for the electric field

»Xo

Es(x) = J. J [nn(x) . pn(x) - ND(x)]dx . (66)

This field component is added to the built-in electric field relationship

that is discussed in Section 2.2.7. In Eq. (66) the mimobile surface

charge density is given by

fx2
1 Cnn(x) - P n <
<# A

Qs = q [nn(x) - pp(x) - ND(x)]dx (67)

and satisfies Gauss' theorem.
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A second method may be used to obtain a relationship for the

electric field, which is an approximation. The electric field is given

by

q -Y(X) -y(x2)

M ' - - — I- ' (68)
1 - e

where

T = §- [nn(0) - NQ] , (69)

for which N is the surface donor concentration. The hole concentration

does not appear in Eq. (69) because Pn(0) « N or Pn(0) ̂  0.

2.2.8 Built-in Fields - High and Low Injection Levels

Built-in fields are usually defined as an electrostatic field

intensity that exist under thermal equilibrium [64-71]. In treating

high injection cases, the intensity of these built-in fields may be

markedly affected [72-76]. Moreover, the high injection level may

establish another field component that is attributed to photoexcited

carriers which is strikingly similar in form to the built-in field that

may be present for immobile charge impurities in thermal equilibrium.

Therefore, in the following discussion the built-in field label is

extended to nonequilibrium cases as well.

The built-in field components will be treated using the ambipolar

method [72,73] which may be applied for the entire range of injection

levels (i.e., low to high). This approach is the most direct method to

illustrate high injection effects on the fields present under equilibrium

and nonequilibrium conditions.

40



The electric field intensity that may be present in the p-type

base region is given by

where

EpBNj + EplPj + E ' (70)

__
pBNoj " q n. dx

(72)

EPIPJ = PJ- oj , (74)

kT 1 dNAir - KJ __ I A3LpIPoj ~ q N dx

. kT bpj - ^ p dnpej
q r dx

(77)

l-jo\
(78)

(79)

= Jn(x) + Jp(x) . (80)

Each of the field components in Eq. (70) and the parameters given in

Eqs. (71) to (79) are identified by the subscript j, which denotes the

j mesh point. Each is evaluated at the identified mesh point. In Eq. (70),
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E . represents the field required to conduct the total current (J-,)

E R|y,. is the electric field present in nonequilibrium and E n - . in

equilibrium attributed to bandgap narrowing, E Ip. is the field present

in nonequilibrium and E Ip . in equilibrium due to the impurity concentration

profile, and E pE-. is the field established by the distribution of photo-

excited minority carrier electrons.

Eq. (70) is obtained from a bipolar carrier treatment, where the

drift and diffusion components of both electron and hole current contri-

butions are added. Solving for E . and substituting for p from the

charge neutrality condition results in Eq. (70). The value of the

parameter £ = 1 when the ambipolar treatment is required for high

injection level, and . E = 0 for low level injection.

Eqs. (72), (74), and (76) contain r . in their denominators.
r J

Under high injection conditions, n.(= n . + n .) » N.., the field

components E BN • and E Ip. decrease with increasing n ., and when

npoj/Fpj' NAj/rpj << ls they 3re ne91191ble comPared to E
pfjj

 and E
pPEj-

It is clear that the field components, E BN . and E Ip . , that are present

in thermal equilibrium do not play a major role under high injection

levels. With increasing injection level, the ohmic field component, E .,
P"J

ultimately approaches a constant value and E pr- approaches an asymptotical

value because rp. -, \̂ ..

Phenomenologically, the reduction in the role of E BN- and

EoIPi may be understoocl by associated high injection conditions in a

semiconductor 'with that of metallic-like behavior. Under these conditions,

a built-in field established by the distribution of impurities and their

effect on the bandgap affects the slope of the conduction and/or valence

bandedges. There is a tendency to neutralize these field components
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because high current values cannot be supported. Therefore, the high

concentration of electrons and holes neutralize these field components.

On the other hand, in order to support the high terminal currents under

high solar concentration, an electric field, E ., of moderate value
P"J

must be present. The corresponding voltage that is required to conduct

this current is subtracted from the generated photovoltage across the

depletion region (x,,, \3). Thus, this field is self-limiting and the

terminal current cannot increase without limit. Similarly, the electric-

field, EDpc.j5 is also self-limiting, approaching an asymptotic value.
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3.0 SUMMARY

The general method to solve the transport equations is discussed.

A number of the more important phenomena submodels are presented, and

the reasons for selecting the particular form are discussed.
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