Manual of Phosphoric Acid Fuel Cell
Power Plant Cost Model and
Computer Program

Cheng-yi Lu and Kalil A. Alkasab
Cleveland State University

May 1984

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Under Grant NCC 3-17

for
U.S. DEPARTMENT OF ENERGY
Morgantown Energy Technology Center
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
NTIS price codes¹
Printed copy: A03
Microfiche copy: A01

¹Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: Energy Research Abstracts (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication, NTIS-PR-360 available from NTIS at the above address.
Manual of Phosphoric Acid Fuel Cell
Power Plant Cost Model and
Computer Program

Cheng-yi Lu and Kalil A. Alkasab
Cleveland State University
Cleveland, Ohio 44115

May 1984

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Cleveland, Ohio 44135
Under Grant NCC 3–17

for
U.S. DEPARTMENT OF ENERGY
Morgantown Energy Technology Center
Morgantown, West Virginia 26505
Under Interagency Agreement DE–AI21–80ET17088
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>I. SYSTEM DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>II. COST MATHEMATICAL MODEL</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Capital Investment</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Levelized Annual Cost Analysis</td>
<td>8</td>
</tr>
<tr>
<td>III. COST COMPUTER MODEL</td>
<td>12</td>
</tr>
<tr>
<td>3.1 Program</td>
<td>12</td>
</tr>
<tr>
<td>3.2 Program Operation</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Sample Problem</td>
<td>16</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>26</td>
</tr>
<tr>
<td>LISTING OF THE COST COMPUTER MODEL</td>
<td>27</td>
</tr>
</tbody>
</table>

Preceding Page Blank
INTRODUCTION

Cost model of phosphoric acid fuel cell powerplant includes two parts: a method for estimation of fuel cell system capital costs, and an economic analysis which determines the levelized annual cost of operating the system used in the capital cost program.

Cost estimates are prepared for a given powerplant based on the equipment specifications discussed in the previous report of the performance model. Costs were estimated by determining the actual capacities of the equipment and the existing cost data. Current costs of these equipments in the form expected to be used were obtained from the references. Total module cost can be obtained by multiplying the equipment cost by the Direct Cost Factor (DCF), Indirect Cost Factor (ICF), and Contingency Factor (CF).

The levelized annual cost of an investment is defined as the minimum constant net revenue required each year of the life of the project to cover all expenses, the cost of money, and the recovery of the initial investment. This is the capital investment analysis approach commonly used by electric utilities.

The cost model has been coded in Fortran programs with several input options. Mathematical formulation and program description will be discussed in this report. A sample problem will be presented to express the inputs and outputs.
I. SYSTEM DESCRIPTION

As shown in Figure 1, methane which is circulated by compressor \(C \) is preheated by heat exchanger \(E-1 \) prior to mixing it with the super heated steam which receives its heat by passing through heat exchanger \(E-9 \). Before entering the reformer, the methane steam mixture is heated via heat exchangers \(E-2 \) and \(E-3 \). Inside the reformer, methane is catalytically reformed by reaction with excess steam to produce carbon monoxide, carbon dioxide, and the desired product, hydrogen. The effluent from the reformer is cooled by flowing through heat exchanger \(E-2 \) before it enters the high temperature shift converter \(S-1 \). The function of the high temperature shift converter is to increase the hydrogen concentration and to reduce the carbon monoxide concentration of the reformer gas effluent. The temperature of the effluent from the shift converter \(S-1 \) is then reduced by passing through heat exchangers \(E-1 \), \(E-9 \) and \(E-6 \) before entering the low temperature shift converter \(S-2 \). The low temperature shift converter further increases the hydrogen concentration by promoting the shift reaction at a lower operating temperature. The effluent from the low temperature shift converter then enters the fuel cell containing \(\text{H}_2 \), \(\text{CO} \), \(\text{CH}_4 \), \(\text{CO}_2 \) and \(\text{H}_2\text{O} \). The fuel cell converts inputs of hydrogen and oxygen to DC power, water and heat. Oxygen is delivered to the fuel cell by air compressor \(A \), which also provides air to the reformer burner. The spent fuel from the fuel cell anode goes to the burner after mixing with air supplied by compressor \(A \).

Before entering the burner, the mixture is preheated by the burner effluent via heat exchanger \(E-4 \). The spent fuel is then burned with whatever additional methane is needed to provide the thermal energy necessary for the reformer reaction.
Heat generated in the fuel cell is removed by heat exchangers E-7 and E-10. Heat from heat exchanger E-7 can then be utilized in industrial heat processing or space heating and cooling, while exchanger E-10 is used to preheat the water supplied by liquid separator Q to provide the necessary steam needed for the reforming process. The effluents from the burner and fuel cell cathode will have their water removed and separated by condenser E-5 and liquid separator Q before allowing them to be exhausted to the atmosphere.
II. COST MATHEMATICAL MODEL

2.1 Capital Investment

Total module cost of a piece of equipment can be separated into two parts: FOB equipment cost and the working capital costs; the latter is related to the former. The relationship of total module cost and FOB equipment cost is shown in Figure 2, where the total module cost is obtained by multiplying the purchased equipment cost (FOB) by three factors: Direct Cost Factor (DCF), Indirect Cost Factor (ICF), and Contingency Factor (CF). The definitions of these are also shown in the figure. DCF and ICF of each equipment can be obtained from Refs. 3 and 4, where CF is the input option. The working capital cost is the difference of these two kinds of cost.

All the costs were corrected by the Marshall and Swift cost index to be in constant mid-1981 dollars which is basic year used in the model.

Equipment Cost

There are several methods for estimating equipment cost. Three of them were used in the developed model for different components, which are power factor method, interpolation of true cost data, and unit-cost estimate. The fuel cell stack cost was estimated by unit-cost estimate method. For pumps and power inverter, linear interpolation was used to estimate the cost from tabulated data published by Exxon (Ref. 1). The power factor method was most used for the estimation of equipment cost in this model, which includes the reformer, the shift converters, the heat exchangers, the separator, and the compressors.
Figure 2
GENERALIZED INVESTMENT COST ESTIMATING LOGIC (REF. 3)

FOB Equipment
Material Factor
Labor Factor

Direct M&L Cost
Engineering
Construction Overhead

Bare Module Cost
Contingency, etc.
Fee

Total Module Cost

\[
x \times x = 100 \times \text{DCF} \times \text{ICF} \times \text{CF}
\]
Briefly, the power factor method is

\[\frac{C}{S} = a_1 S^{a_2} + a_3 \] \hspace{1cm} (1)

where
- \(C \) = cost
- \(S \) = capacity
- \(a_1, a_2, \) and \(a_3 \) are coefficients to be determined

From (1)

\[\ln \left(\frac{C}{S} - a_3 \right) = \ln a_1 + a_2 \ln S \] \hspace{1cm} (2)

A linear regression on sample cost data will provide the values of \(a_1, a_2, \) and \(a_3 \). Cost data have been obtained from the sources listed in the references.

The linear interpolation algorithm is

\[Y = YT(I-1) + \left[YT(I) - YT(I-1) \right] \frac{X - XT(I-1)}{XT(I) - XT(I-1)} \] \hspace{1cm} (3)

where
- \(Y \) is the cost of \(X \) capacity
- \(YT(I) \) is the listing cost of \(XT(I) \) listing capacity.

The stack cost estimates were based on calculations of actual quantities of raw materials used to fabricate the components (unit-cost estimate). Current cost of raw materials, in the form expected to be used, were obtained from Chemical Marketing Report (Ref. 10) and Refs. 1 and 2. Fabrication costs were then determined by multiplying the material cost by a manufacturing cost factor, which was selected based on the production rate and the degree of automation envisioned for the manufacturing facility. The factor reflects manufacturing value added, including direct and supervisory labor plus other manufacturing burdens (e.g., maintenance and inventory costs). For example, the cost of catalyst (platinum) is

\[CCP = (CPL \times LCP \times AA \times NCELL \times NS) \times (1 + MCP) \] \hspace{1cm} (4)
Energy Related (E): purchased power and fuel

Non-Energy Related (NE): other variables and semi-variables

Fixed Charges: depreciation, return-on-investment; income taxes, and local taxes and insurance.

Those cost elements were first converted into a series of future cash flows (escalation allowed) which were then levelized to obtain a uniform annual cost series. This procedure is presented graphically in Figure 3.

Levelized annual costs were determined from the following generalized relationship:

\[
LAC = IxFCR+E \left[\sum_{n=1}^{N} \frac{(1+i + e_E)^n}{(1+\gamma)^n} \right] CRF_y + NE \left[\sum_{n=1}^{N} \frac{(1+i + e_{NE})^n}{(1+\gamma)^n} \right] CRF_y
\]

where

- \(FCR = \) fixed charge rate, and equal to

\[
CRF_m, n_B \frac{[1-t (DEP)-C]}{(1-t)} \]

and

- \(CRF_m, n_B \): capital recovery factor for the after-tax cost of capital \(m \) and the economic life \(n_B \)
- \(t \): tax rate
- \(C \): investment tax credit rate
- \(DEP \): levelized depreciation factor (Sum of Years Digit) and

\[
z [n_T - 1/CRF_m, n_T] \]

equal to \(\frac{n_T}{n_T (n_T + 1)^m} \)

- \(n_T \): tax depreciation life
- \(m \): after tax cost of capital at the assumed inflation rate
I : total module cost in mid-1981 dollars, and equal to \(K_m K_e K \left(1 + e_k + i_o \right)^{N^* - N_0 - L} + W \)

and \(K_m : \) cost-of-capital factor = \(e^{0.418mL} \)

\(L : \) design and construction time

\(K_e : \) escalation factor = \(e^{0.562(e_k + i_o)L} \)

\(K : \) equipment cost

\(W : \) working capital

\(e_k : \) real capital cost escalation per year

\(N^* : \) first year of commercial operation of the investment

\(N_0 : \) the year used as basis for the cost estimate \(k \)

\(i_o : \) annual inflation rate

\(E : \) annual energy cost

\(NE : \) annual non-energy cost

\(eE : \) annual energy escalation

\(eNE : \) annual non-energy escalation

\(\gamma : \) weighted cost of capital with inflation \(i_o \)

\(n : \) project life

\(CRF_{\gamma} : \) capital recovery factor at \(\gamma \) cost of capital and \(n \) years, which equal to

\[
\frac{(1+\gamma)^n - 1}{\gamma(1+\gamma)^n}
\]

(8)
The manufacturing cost factors used for estimating the cost of PAFC stack in this model were adopted from Ref. 1. More detailed description of this factor can be found in Ref. 4, pages 191-201.

2.2 Levelized Annual Cost Analysis

The levelized annual cost (LAC) of an investment is defined as the minimum constant net revenue required each year of the life of the project to cover all expenses, the cost of money, and the recovery of the initial investment. LAC is a comparative measure of both the fixed and variable costs associated with the investment, incurred at different times throughout the life of the project.

The computation of the levelized annual cost was accomplished by segregating annual costs into three categories, namely, energy related costs, non-energy related costs and fixed charges. The cost items grouped in each category were as follows:
Figure 3
APPROACH TO LEVELIZED ANNUAL COST ANALYSIS

PROJECT LIFE

0 1 5 10 15 20

I = Capital Investment

NE = Non-energy Cost

E = Energy Cost

PROJECTED CASH FLOW

LEVELIZED ANNUAL COSTS

K_{NE} (NE) CRF

K_{E} (E) CRF

(I) FCR

K = Conversion Factor
Defined as

\[K = \sum_{n=1}^{20} \frac{(1+i+e)^n}{(1+r)^n} \]

where:
- \(i \) = inflation
- \(e \) = real escalation
- \(n \) = year
- \(r \) = weighted cost of capital

FCR = Fixed Charge Rate with SYD depreciation and 10% tax credit
III. COST COMPUTER MODEL

3.1 Program

There is one subroutine (RLIN) in addition to the BLOCK DATA and MAIN programs in the cost computer model. The MAIN program estimates the capital investment of the PAFC powerplant, and calculates the levelized annual cost using the algorithm described in the previous chapter. The subroutine RLIN do the linear interpolation with two sets of input serial data and a specific capacity. The BLOCK DATA supplies the cost data tables, for the pump and the power inverter, from Ref. 1, and also the physical properties of the gases in the system. Table 1 shows the nomenclature of the variables.

3.2 Program Operation

The program input consists of a set of NAMELIST data which must be in a specified order. The first NAMELIST set is called INDEX and contains the Marshall and Swift cost index of the specified time. All the indices are obtained from Chemical Engineering magazine.

The second set (CONST) has the constants used in the power factor method (Section 2.1). The general form used here is

\[C = a_1 \left(\frac{S}{a_2} \right)^{a_3} \]

(9)

where \(C \) is cost and \(S \) is capacity. The definitions of the constants for the equipment in this NAMELIST are listed in Table 2.

The third set (FUCEC) contains the amount, the unit cost, and the manufacturing cost factor of the material used in manufacturing the PAFC stack.
TABLE 1

NOMENCLATURE OF COST COMPUTER MODEL

Equipment Number and Unit for Estimating the Cost

<table>
<thead>
<tr>
<th>Number</th>
<th>Equipment</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fuel cell stack</td>
<td>kW</td>
</tr>
<tr>
<td>2</td>
<td>reformer</td>
<td>MBtu/hr ejected</td>
</tr>
<tr>
<td>3</td>
<td>fuel compressor</td>
<td>brake HP</td>
</tr>
<tr>
<td>4</td>
<td>heat exchanger</td>
<td>transfer area ft²</td>
</tr>
<tr>
<td>5</td>
<td>separator</td>
<td>g-mole water</td>
</tr>
<tr>
<td>6</td>
<td>pump</td>
<td>W</td>
</tr>
<tr>
<td>7</td>
<td>condenser</td>
<td>gal/min water</td>
</tr>
<tr>
<td>8</td>
<td>high temperature shift converter</td>
<td>g-mole H₂</td>
</tr>
<tr>
<td>9</td>
<td>low temperature shift converter</td>
<td>g-mole H₂</td>
</tr>
<tr>
<td>10</td>
<td>power inverter</td>
<td>V</td>
</tr>
<tr>
<td>11</td>
<td>air compressor</td>
<td>ft³/min</td>
</tr>
</tbody>
</table>

Cost of Fuel Cell Stack

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>active area per cell, cm²</td>
</tr>
<tr>
<td>NS</td>
<td>number of stacks</td>
</tr>
<tr>
<td>SV</td>
<td>operating voltage, V</td>
</tr>
<tr>
<td>CPL</td>
<td>cost of platinum, $/g</td>
</tr>
<tr>
<td>CMRIN</td>
<td>Chemical Marketing Reporter index of raw material</td>
</tr>
<tr>
<td>NCELL</td>
<td>number of cells per stack</td>
</tr>
<tr>
<td>LCP</td>
<td>platinum loading, g/cm²</td>
</tr>
<tr>
<td>LESL</td>
<td>electrolyte support layers loading, g/cm²</td>
</tr>
<tr>
<td>LEM</td>
<td>electrolyte matrix loading, g/cm²</td>
</tr>
<tr>
<td>LBP</td>
<td>bipolar plate loading, g/cm²</td>
</tr>
<tr>
<td>CKW</td>
<td>capacity of fuel cell stack, kW</td>
</tr>
<tr>
<td>MCP</td>
<td>mfg. cost factor of catalyst</td>
</tr>
<tr>
<td>MESL</td>
<td>mfg. cost factor of electrolyte support layers</td>
</tr>
<tr>
<td>MEM</td>
<td>mfg. cost factor of electrolyte matrix</td>
</tr>
<tr>
<td>MBP</td>
<td>mfg. cost factor of bipolar plate</td>
</tr>
<tr>
<td>MCC</td>
<td>mfg. cost factor of cooling cartridge</td>
</tr>
<tr>
<td>MSH</td>
<td>mfg. cost factor of stack hardware</td>
</tr>
<tr>
<td>CCP</td>
<td>cost of platinum (catalyst)</td>
</tr>
<tr>
<td>CGFP</td>
<td>cost of electrolyte support layers – graphite fiber paper</td>
</tr>
<tr>
<td>CEM</td>
<td>cost of electrolyte matrix – silicon carbide fiber</td>
</tr>
<tr>
<td>CBP</td>
<td>cost of bipolar plate – carbon/phenolic resin</td>
</tr>
<tr>
<td>CCC</td>
<td>cost of cooling cartridge – carbon plate with copper tube grid</td>
</tr>
<tr>
<td>CSH</td>
<td>cost of stack hardware – end plates, manifolding, tie rods</td>
</tr>
<tr>
<td>CGF</td>
<td>unit cost of graphite fiber paper, $/g</td>
</tr>
<tr>
<td>CSC</td>
<td>unit cost of silicon carbide fiber, $/g</td>
</tr>
<tr>
<td>CCPR</td>
<td>unit cost of carbon/phenolic resin, $/g</td>
</tr>
<tr>
<td>CMROT</td>
<td>CMR index of data year</td>
</tr>
</tbody>
</table>

13
TABLE 1 (cont'd)

NOMENCLATURE OF COST COMPUTER MODEL

Cost of Other Equipments

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>power conditioner voltage, V</td>
</tr>
<tr>
<td>CC2</td>
<td>power conditioner cost, $/kW</td>
</tr>
<tr>
<td>CP1</td>
<td>pump power, W</td>
</tr>
<tr>
<td>CP2</td>
<td>pump cost, $</td>
</tr>
<tr>
<td>HCH4</td>
<td>high heating value of methane, Cal/g-mole</td>
</tr>
<tr>
<td>HCO</td>
<td>high heating value of carbon monoxide, Cal/g-mole</td>
</tr>
<tr>
<td>HH2</td>
<td>high heating value of hydrogen, Cal/g-mole</td>
</tr>
<tr>
<td>COST(I)</td>
<td>cost of equipment I, $</td>
</tr>
<tr>
<td>CEQ(I,J)</td>
<td>capacity of equipment I number J</td>
</tr>
<tr>
<td>IN81</td>
<td>Marshall and Swift index of mid-1981</td>
</tr>
<tr>
<td>IN80</td>
<td>Marshall and Swift index of 1980</td>
</tr>
<tr>
<td>IN79</td>
<td>Marshall and Swift index of 1979</td>
</tr>
<tr>
<td>IN791</td>
<td>Marshall and Swift index of January 1979</td>
</tr>
<tr>
<td>IN77</td>
<td>Marshall and Swift index of 1977</td>
</tr>
<tr>
<td>IN75</td>
<td>Marshall and Swift index of 1975</td>
</tr>
<tr>
<td>IN68</td>
<td>Marshall and Swift index of 1968</td>
</tr>
<tr>
<td>IN67M</td>
<td>Marshall and Swift index of mid-1967</td>
</tr>
<tr>
<td>CH4</td>
<td>methane input, g-mole/hr</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide input, g-mole/hr</td>
</tr>
<tr>
<td>H2</td>
<td>hydrogen input, g-mole/hr</td>
</tr>
<tr>
<td>COMP</td>
<td>brake hp of compressor, hp</td>
</tr>
<tr>
<td>HE(J)</td>
<td>transfer area of heat exchanger number J, m²</td>
</tr>
<tr>
<td>SEPR</td>
<td>amount of steam input in separator, g-mole/hr</td>
</tr>
<tr>
<td>PUM</td>
<td>power of pump, hp</td>
</tr>
<tr>
<td>COND</td>
<td>inlet H₂O flow rate of condenser</td>
</tr>
<tr>
<td>HSHIF</td>
<td>inlet hydrogen flow rate of high temp. shift converter, g-mole/hr</td>
</tr>
<tr>
<td>LSHIF</td>
<td>inlet hydrogen flow rate of low temp. shift converter, g-mole/hr</td>
</tr>
<tr>
<td>AIRC</td>
<td>inlet air flow rate, g-mole/hr</td>
</tr>
</tbody>
</table>

Total Module Cost and Operation Cost

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCF(I)</td>
<td>direct cost factor of equipment I</td>
</tr>
<tr>
<td>ICF(I)</td>
<td>indirect cost factor equipment I</td>
</tr>
<tr>
<td>CF</td>
<td>contingency factor of equipment</td>
</tr>
<tr>
<td>CMAIN</td>
<td>maintenance cost of fuel cell system, $/kWh DC</td>
</tr>
<tr>
<td>CREPL</td>
<td>factor of capital cost for replacement</td>
</tr>
<tr>
<td>MTIME</td>
<td>times which replacement will occur for 20 years usage</td>
</tr>
<tr>
<td>WATER</td>
<td>cooling water input, g-mole/hr</td>
</tr>
<tr>
<td>CWAT</td>
<td>cost of cooling water, $/m³</td>
</tr>
<tr>
<td>AVER</td>
<td>mean factor of cooling water for recycle</td>
</tr>
<tr>
<td>ENPU</td>
<td>input fuel flow rate, g-mole/hr</td>
</tr>
<tr>
<td>AVHT</td>
<td>average heating value of input fuel, Btu/ft³</td>
</tr>
<tr>
<td>CENG</td>
<td>cost of energy fuel, $/GJ</td>
</tr>
</tbody>
</table>
TABLE 1 (cont'd)

NOMENCLATURE OF COST COMPUTER MODEL

Levelized Annual Analysis

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>cost of common equity</td>
</tr>
<tr>
<td>CD</td>
<td>cost of debt</td>
</tr>
<tr>
<td>CP</td>
<td>cost of preferred equity</td>
</tr>
<tr>
<td>EK</td>
<td>real capital cost escalation per year; i.e., rate of capital cost escalation, decimal</td>
</tr>
<tr>
<td>FL</td>
<td>annual inflation rate</td>
</tr>
<tr>
<td>FP</td>
<td>ratio of preferred equity</td>
</tr>
<tr>
<td>L</td>
<td>design and construction time, year</td>
</tr>
<tr>
<td>NE</td>
<td>economic life</td>
</tr>
<tr>
<td>NSTAR</td>
<td>first full year of commercial operation of investment change above or below the rate of inflation</td>
</tr>
<tr>
<td>NT</td>
<td>tax depreciation life</td>
</tr>
<tr>
<td>NZERO</td>
<td>the year used as basic year</td>
</tr>
<tr>
<td>TAX</td>
<td>tax rate</td>
</tr>
<tr>
<td>TAXL</td>
<td>state and local tax</td>
</tr>
<tr>
<td>TC</td>
<td>investment tax credit rate</td>
</tr>
<tr>
<td>CAKE</td>
<td>escalation factor</td>
</tr>
<tr>
<td>CAKM</td>
<td>cost-of-capital factor</td>
</tr>
<tr>
<td>CAPIT</td>
<td>capital investment</td>
</tr>
<tr>
<td>CEN</td>
<td>levelized energy cost</td>
</tr>
<tr>
<td>CN</td>
<td>non-energy cost</td>
</tr>
<tr>
<td>CRFRE</td>
<td>capital recovery factor at R for economic life</td>
</tr>
<tr>
<td>CRFRK</td>
<td>capital recovery factor at AK for energy in economic life</td>
</tr>
<tr>
<td>CRFRT</td>
<td>capital recovery factor at R for tax depreciation life</td>
</tr>
<tr>
<td>DEP</td>
<td>levelized depreciation factor for sum of years digits (SYD)</td>
</tr>
<tr>
<td>FCL</td>
<td>levelized fixed charges</td>
</tr>
<tr>
<td>FCR</td>
<td>fixed charge rate</td>
</tr>
<tr>
<td>RLAC</td>
<td>levelized annual cost</td>
</tr>
<tr>
<td>TLIN</td>
<td>levelized local tax and insurance</td>
</tr>
</tbody>
</table>
The fourth set (INPUTS) consists of the input flow composition of fuel compressor, condenser, separator, high temperature and low temperature shift converters, the transfer area of each heat exchanger, and power needed in compressor and pump.

The fifth set (FACTR) contains direct cost factor, indirect cost factor, and contingency factor of each equipment.

The sixth and seventh sets (NENEG and ENG) include the amount and unit cost of fuel and utilities used in the system. The maintenance information is in NENEG.

The last NAMELIST set (ECON) contains all the necessary data used for LAC analysis.

All of the input variables are listed in Table 3, along with their units and numerical values in the sample run.

3.3 Sample Problem

The computer code described in the previous sections was used to estimate the equipment capital cost and the levelized annual cost of CSU designed PAFC powerplant (Figure 1). A 100 kW powerplant was considered here, which included one fuel cell stack containing 200 cell plates with 1900 cm2 active area in each cell plate. The middle of year 1981 was chosen as the basic year for constant dollar estimation.
TABLE 2
DEFINITIONS OF CONSTANTS IN NAMELIST CONST

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Constants Used in Equation 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a₁</td>
</tr>
<tr>
<td>Refomer</td>
<td>C₁</td>
</tr>
<tr>
<td>Fuel Compressor</td>
<td>C₃</td>
</tr>
<tr>
<td>Heat Exchangers</td>
<td>C₅</td>
</tr>
<tr>
<td>Separator</td>
<td>C₇</td>
</tr>
<tr>
<td>Pump</td>
<td>C₁₀</td>
</tr>
<tr>
<td>High Temperature Shift Converter</td>
<td>C₁₂</td>
</tr>
<tr>
<td>Low Temperature Shift Converter</td>
<td>C₁₅</td>
</tr>
<tr>
<td>Air Compressor</td>
<td>C₁₈</td>
</tr>
<tr>
<td>NAMELIST Name</td>
<td>Variable Name</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>INDEX</td>
<td>IN81</td>
</tr>
<tr>
<td>INDEX</td>
<td>IN80</td>
</tr>
<tr>
<td>INDEX</td>
<td>IN791</td>
</tr>
<tr>
<td>INDEX</td>
<td>IN77</td>
</tr>
<tr>
<td>INDEX</td>
<td>IN75</td>
</tr>
<tr>
<td>INDEX</td>
<td>IN68</td>
</tr>
<tr>
<td>INDEX</td>
<td>IN67M</td>
</tr>
<tr>
<td>CONST</td>
<td>C1,...,C19</td>
</tr>
<tr>
<td>FUCEC</td>
<td>AA</td>
</tr>
<tr>
<td>FUCEC</td>
<td>NS</td>
</tr>
<tr>
<td>FUCEC</td>
<td>SV</td>
</tr>
<tr>
<td>FUCEC</td>
<td>CPL</td>
</tr>
<tr>
<td>FUCEC</td>
<td>CMRIN</td>
</tr>
<tr>
<td>FUCEC</td>
<td>NCELL</td>
</tr>
<tr>
<td>FUCEC</td>
<td>LCP</td>
</tr>
<tr>
<td>FUCEC</td>
<td>LESL</td>
</tr>
<tr>
<td>FUCEC</td>
<td>LEM</td>
</tr>
<tr>
<td>FUCEC</td>
<td>LBP</td>
</tr>
<tr>
<td>FUCEC</td>
<td>CKW</td>
</tr>
<tr>
<td>FUCEC</td>
<td>MCP</td>
</tr>
<tr>
<td>FUCEC</td>
<td>MESL</td>
</tr>
<tr>
<td>FUCEC</td>
<td>MEM</td>
</tr>
<tr>
<td>FUCEC</td>
<td>MBP</td>
</tr>
<tr>
<td>FUCEC</td>
<td>MCC</td>
</tr>
<tr>
<td>FUCEC</td>
<td>MSH</td>
</tr>
<tr>
<td>FUCEC</td>
<td>CGF</td>
</tr>
<tr>
<td>FUCEC</td>
<td>CSC</td>
</tr>
<tr>
<td>FUCEC</td>
<td>CCPR</td>
</tr>
<tr>
<td>FUCEC</td>
<td>CMROT</td>
</tr>
</tbody>
</table>
TABLE 3
INPUT DATA OF SAMPLE PROBLEM

<table>
<thead>
<tr>
<th>Namelist</th>
<th>Variable</th>
<th>Sample Data</th>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUTS</td>
<td>CH4</td>
<td>172.6</td>
<td>g-mole/hr</td>
<td>methane input flow rate</td>
</tr>
<tr>
<td>INPUTS</td>
<td>CO</td>
<td>2.79</td>
<td>g-mole/hr</td>
<td>carbon monoxide flow rate</td>
</tr>
<tr>
<td>INPUTS</td>
<td>H2</td>
<td>867.63</td>
<td>g-mole/hr</td>
<td>hydrogen flow rate</td>
</tr>
<tr>
<td>INPUTS</td>
<td>COMP</td>
<td>1.62</td>
<td>hp</td>
<td>brake hp of compressor</td>
</tr>
<tr>
<td>INPUTS</td>
<td>HE(J)</td>
<td>0.3945</td>
<td>m²</td>
<td>transfer area of heat exchanger J</td>
</tr>
<tr>
<td>INPUTS</td>
<td>SEPR</td>
<td>6820.63</td>
<td>g-mole/hr</td>
<td>input H2O flow rate of separator</td>
</tr>
<tr>
<td>INPUTS</td>
<td>PUM</td>
<td>0.00226</td>
<td>hp</td>
<td>power of pump</td>
</tr>
<tr>
<td>INPUTS</td>
<td>COND</td>
<td>132960.37</td>
<td>g-mole/hr</td>
<td>input H2O flow rate of condensers</td>
</tr>
<tr>
<td>INPUTS</td>
<td>HSHIF</td>
<td>3708.6</td>
<td>g-mole/hr</td>
<td>input H2 flow rate of high temperature shift converter</td>
</tr>
<tr>
<td>INPUTS</td>
<td>LSHIF</td>
<td>3925.62</td>
<td>g-mole/hr</td>
<td>input H2 flow rate of low temperature shift converter</td>
</tr>
<tr>
<td>INPUTS</td>
<td>AIRC</td>
<td>24524</td>
<td>g-mole/hr</td>
<td>inlet air flow rate</td>
</tr>
<tr>
<td>FACTR</td>
<td>DCF(I)</td>
<td>1.15, 1.42, 1.15, 1.35, 1.14, 1.75, 1.16, 1.15, 1.15, 1.15</td>
<td>direct cost factor of equipment I</td>
<td></td>
</tr>
<tr>
<td>FACTR</td>
<td>ICF(I)</td>
<td>1.14, 1.28, 1.14, 1.14, 1.14, 1.14, 1.14, 1.14, 1.14, 1.14</td>
<td>indirect cost factor of equipment I</td>
<td></td>
</tr>
<tr>
<td>FACTR</td>
<td>CF</td>
<td>0.2</td>
<td></td>
<td>contingency factor of equipments</td>
</tr>
<tr>
<td>NENEG</td>
<td>CMAIN</td>
<td>0.00065</td>
<td>$/KW-h DC</td>
<td>maintenance cost of system</td>
</tr>
<tr>
<td>NENEG</td>
<td>CREPL</td>
<td>0.5</td>
<td></td>
<td>factor of capital cost for replacement</td>
</tr>
<tr>
<td>NENEG</td>
<td>MTIME</td>
<td>4</td>
<td></td>
<td>times which replacement will occur for 20 yrs.</td>
</tr>
<tr>
<td>NENEG</td>
<td>WATER</td>
<td>184356</td>
<td>g-mole/hr</td>
<td>cooling water flow rate</td>
</tr>
<tr>
<td>NENEG</td>
<td>CWAT</td>
<td>.001316</td>
<td>$/m³</td>
<td>cost of cooling water</td>
</tr>
<tr>
<td>NENEG</td>
<td>AVER</td>
<td>12</td>
<td></td>
<td>mean factor of cooling water for recycle</td>
</tr>
<tr>
<td>ENG</td>
<td>ENPU</td>
<td>1405.16</td>
<td>g-mole/hr</td>
<td>input fuel flow rate</td>
</tr>
<tr>
<td>ENG</td>
<td>AVHT</td>
<td>360242.6</td>
<td>Btu/ft³</td>
<td>average heating value of input fuel</td>
</tr>
<tr>
<td>ENG</td>
<td>CENG</td>
<td>6.29</td>
<td>$/GJ</td>
<td>cost of energy fuel</td>
</tr>
<tr>
<td>ECON</td>
<td>TAX</td>
<td>0.48</td>
<td></td>
<td>tax rate</td>
</tr>
<tr>
<td>ECON</td>
<td>TC</td>
<td>0.1</td>
<td></td>
<td>investment tax credit rate</td>
</tr>
<tr>
<td>ECON</td>
<td>ESC</td>
<td>0.024</td>
<td></td>
<td>escalation</td>
</tr>
<tr>
<td>ECON</td>
<td>CD</td>
<td>0.03</td>
<td></td>
<td>cost of debt</td>
</tr>
<tr>
<td>ECON</td>
<td>CP</td>
<td>0.09</td>
<td></td>
<td>cost of preferred equity</td>
</tr>
<tr>
<td>NAMELIST</td>
<td>Variable Name</td>
<td>Sample Data</td>
<td>Unit</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>ECON</td>
<td>CC</td>
<td>0.09</td>
<td></td>
<td>cost of common equity</td>
</tr>
<tr>
<td>ECON</td>
<td>FD</td>
<td>0.4</td>
<td></td>
<td>ratio of debt capital to total capital</td>
</tr>
<tr>
<td>ECON</td>
<td>FP</td>
<td>0</td>
<td></td>
<td>ratio of preferred equity</td>
</tr>
<tr>
<td>ECON</td>
<td>FC</td>
<td>0.6</td>
<td></td>
<td>ratio of common equity</td>
</tr>
<tr>
<td>ECON</td>
<td>TAXL</td>
<td>0.02</td>
<td></td>
<td>state and local tax</td>
</tr>
<tr>
<td>ECON</td>
<td>FL</td>
<td>0</td>
<td></td>
<td>annual inflation rate</td>
</tr>
<tr>
<td>ECON</td>
<td>NT</td>
<td>20</td>
<td></td>
<td>tax depreciation life</td>
</tr>
<tr>
<td>ECON</td>
<td>NE</td>
<td>20</td>
<td></td>
<td>economic life</td>
</tr>
<tr>
<td>ECON</td>
<td>L</td>
<td>1 year</td>
<td></td>
<td>design and construction time</td>
</tr>
<tr>
<td>ECON</td>
<td>EK</td>
<td>0</td>
<td></td>
<td>real capital cost escalation per year</td>
</tr>
<tr>
<td>ECON</td>
<td>NSTAR</td>
<td>1982</td>
<td></td>
<td>first full year of commercial operation</td>
</tr>
<tr>
<td>ECON</td>
<td>ZERO</td>
<td>1981</td>
<td></td>
<td>basic year</td>
</tr>
</tbody>
</table>
Figure 4
SAMPLE INPUT DATA

&INDEX IN81=696.9,IN80=659.6,IN791=561.,IN77=505.4,IN75=444.3,IN68=273.
,IN673=270.
&END
&CONST C1=7620.,C2=.85,C3=514.55,C4=.82,C5=162.106,C6=.6934,
C7=1500.,C8=817200.,C9=.64,C10=104.4,C11=.5,C12=900.
C13=4310.,C14=.69,C15=1320.,C16=4540.,C17=.69,C18=7.,C19=.68,
&END
&FUCEC AA=1900.,NS=4,SV=133.,CL=16.75,CMR=158.34,NCELL=200,LCP=0.0075
,LES=0.024,LEM=0.039,LPB=0.44,CKW=100.,MC=0.05,ME=0.6,MB=1.5
,MCC=1.5,M=1.4,C=0.066,CSC=0.0176,CC=0.0009,CM=198.66,
&END
&INPUTS CH4 = 172.6,CO=2.79,H2=867.63,COMP = 1.62,
HE=0.3945,1.4024,1.5395,2.3735,1.4953,0.2,0.6418,SEPR=6820.63,PUM=0.00226,
COND=132960.37,31396.,HSH=3708.6,LHIF=3925.62,AIR=4524.
&END
&FACTR DCF=1.15,1.42,1.15,1.35,1.14,1.75,1.16,1.15,1.15,1.75,
ICF=1.14,1.28,1.14,1.407,1.15,1.45,1.5086,1.14,1.14,1.45,CF=0.2,
&END
&NEG C=0.0065,CREPL=0.5,MTIME=4,WATER=184356.,CWAT=0.0013157,AV=12.
&END
&ENG ENPU=1405.16,AVHT=360242.64,CENG=6.29,
&END
&ECO TAX=0.48,TC=0.1,ESC=0.024,CD=0.03,CP=0.09,CC=0.09,FD=0.4,FP=0.,FC=0.6
,TAXL=0.02,FL=0.,MT=20,NE=20,L=1,EK=0.,NS=1582,NZ=1981,
&END
Figure 5
SAMPLE COMPUTER RUN

$INDEX
IN81 = 696.8999
IN80 = 659.5999
IN791 = 561.0
IN77 = 505.3999
IN75 = 444.2998
IN68 = 273.0
IN67M = 270.0
$END
&CONST
C1 = 7620.0
C2 = 0.850
C3 = 514.5498
C4 = 0.820
C5 = 162.1060
C6 = 0.69340
C7 = 1500.0
C8 = 817200.0
C9 = 0.640
C10 = 104.40
C11 = 0.50
C12 = 900.0
C13 = 4310.0
C14 = 0.690
C15 = 1320.0
C16 = 4540.0
C17 = 0.690
C18 = 7.0
C19 = 0.6799999
$END
&FUCEC
AA = 1900.0
NS = 4
SV = 133.0
CPL = 16.750
CMRIN = 158.340
NCELL = 200
LCP = 0.7499999E-03
LESL = 0.240E-01
LEM = 0.390E-01
LBP = 0.440
CKW = 100.0
MCP = 0.50E-01
MESL = 0.60
MEM = 0.60
MBP = 1.50
MCC = 1.50
MSH = 1.40
CGF = 0.6599998E-01
CSC = 0.1760E-01
CCPR = 0.8999999E-03
CMROT = 198.660
$END
&INPUTS
CH4 = 172.60
C0 = 2.790
H2 = 867.6299
COMP = 1.620
HE = 0.39450, 1.402399, 1.539499, 2.37350, 1.495299, 0.20, 0.64180
Figure 5 (cont'd)

SAMPLE COMPUTER RUN

SEPR = 6820.629
PUM = 0.2260E-02
COND = 132960.3, 51396.0
HSHIF = 3708.60
LSHIF = 3925.620
AIRC = 24524.0
&END
&FACTR
ICF = 1.139999, 1.280, 1.139999, 1.4070, 1.150, 1.450, 1.508599, 3X1.139999
1.450
DCF = 1.150, 1.419999, 1.150, 1.349999, 1.139999, 1.750, 1.160, 3X1.150, 1.750
CF = 0.20
&END
&NNEG
CMAIN = 0.64999991E-03
CREPL = 0.50
MTIME = 4
WATER = 184356.0
CHAT = 0.131570E-02
AVER = 12.0
&END
ENPU = 1405.160
AVHT = 360242.6
CENG = 6.290
&END

COST ANALYSIS FOR 100KW FUEL CELL SYSTEM

MID-1981 MONEY
100% LOAD FACTOR

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>CAPITAL COST (F.O.B)</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COST(1)</td>
<td>0.28001E 05</td>
<td>44.80</td>
</tr>
<tr>
<td>COST(2)</td>
<td>0.85823E 04</td>
<td>13.73</td>
</tr>
<tr>
<td>COST(3)</td>
<td>0.19509E 04</td>
<td>3.12</td>
</tr>
<tr>
<td>COST(4)</td>
<td>0.76818E 04</td>
<td>12.29</td>
</tr>
<tr>
<td>COST(5)</td>
<td>0.96691E 02</td>
<td>0.15</td>
</tr>
<tr>
<td>COST(6)</td>
<td>0.52845E 03</td>
<td>0.85</td>
</tr>
<tr>
<td>COST(7)</td>
<td>0.14186E 04</td>
<td>2.27</td>
</tr>
<tr>
<td>COST(8)</td>
<td>0.11188E 04</td>
<td>1.79</td>
</tr>
<tr>
<td>COST(9)</td>
<td>0.16464E 04</td>
<td>2.63</td>
</tr>
<tr>
<td>COST(10)</td>
<td>0.10533E 05</td>
<td>16.85</td>
</tr>
<tr>
<td>COST(11)</td>
<td>0.93940E 03</td>
<td>1.50</td>
</tr>
</tbody>
</table>

TOTAL CAPITAL COST (F.O.B) = 0.62497E 05
TOTAL WORKING CAPITAL COST = 0.36873E 05
ANNUAL O&M = 0.83828E 04
ANNUAL ENERGY COST IN YEAR J = 0 = 0.61490E 05

&ECON
TAX = 0.480
IC = 0.9999996E-01
ESC = 0.240E-01
CD = 0.30E-01
CP = 0.8999997E-01
CC = 0.8999997E-01
FD = 0.40
SAMPLE COMPUTER RUN

FP = 0.0
FC = 0.60
TAXL = 0.20E-01
FL = 0.0
NT = 20
NE = 20
L = 1
EK = 0.0
NSTAR = 1982
NZERO = 1981
&END

INFORMATION OF ECONOMIC FACTOR:

LEVELIZED DEPRECIATION FACTOR (SYD) 0.67699
FIXED CHARGE RATE 0.09791
CAPITAL RECOVERY FACTOR OF ECONOMIC LIFE 0.08718
CAPITAL RECOVERY FACTOR OF TAX DEPRECIATION LIFE 0.08718

LEVELIZED FIXED CHARGES 0.98846E 04
LEVELIZED ENERGY COST 0.76084E 05
TOTAL LEVELIZED COST 0.97380E 05
The following are the summary of the results:

1. Equipment Capital Cost (FOB) - in mid-1981 money

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Cost (FOB)</th>
<th>Percentage of Total FOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel cell module</td>
<td>28001</td>
<td>44.8</td>
</tr>
<tr>
<td>reformer</td>
<td>8582</td>
<td>13.7</td>
</tr>
<tr>
<td>fuel compressor</td>
<td>1951</td>
<td>3.1</td>
</tr>
<tr>
<td>heat exchangers</td>
<td>7682</td>
<td>12.3</td>
</tr>
<tr>
<td>separator</td>
<td>97</td>
<td>0.2</td>
</tr>
<tr>
<td>pump</td>
<td>528</td>
<td>0.9</td>
</tr>
<tr>
<td>condenser</td>
<td>1419</td>
<td>2.3</td>
</tr>
<tr>
<td>high temperature shift converter</td>
<td>1119</td>
<td>1.8</td>
</tr>
<tr>
<td>low temperature shift converter</td>
<td>1646</td>
<td>2.6</td>
</tr>
<tr>
<td>power inverter</td>
<td>10535</td>
<td>16.8</td>
</tr>
<tr>
<td>air compressor</td>
<td>939</td>
<td>1.5</td>
</tr>
<tr>
<td>total</td>
<td>62497</td>
<td>100.0</td>
</tr>
</tbody>
</table>

2. Total Working Cost

Total Working Cost = total module cost - total FOB cost (Figure 2)
36873 = 99370 - 62497

3. Levelized Annual Analysis

- annual operation and maintenance: 8383
- levelized local tax and insurance: 3028
- levelized energy cost: 76084
- levelized fixed charges: 9885

Total levelized annual cost: 97380

The required CPU time to run this sample problem is less than 0.01 minute on IBM/370.
REFERENCES

8. NASA LeRC Cost Data of Fuel Cell Power Section and Fuel Processing section, in Ref. 2.

LISTING OF THE COST COMPUTER MODEL
THIS PROGRAM IS TO CALCULATE GENERALIZED INVESTMENT COST ESTIMATING LOGIC WHICH IS RECOMMENDED BY K. M. GUTHRIE, "PROCESS PLANT ESTIMATING, EVALUATION, AND CONTROL"

BLOCK DATA
REAL CC1(20), CC2(20), CP1(20), CP2(20)
COMMON/DATA/ CC1, CC2, CP1, CP2, HCH4, HCO, HH2

C CC1-- POWER CONDITION VOLT (VOLT)
C CC2: POWER CONDITION COST ($/KW)
C CP1: PUMP POWER (WAIT)
C CP2: PUMP COST($)
C
DATA CC1/50., 164., 203., 248., 304., 366., 433., 528., 657., 920., 1560./
DATA CC1(12)/2810./
DATA CC2/200., 160., 150., 140., 130., 120., 110., 100., 90., 80, 70., 60./
DATA CC2(13)/50./
DATA CP1/0., 61500., 264000., 615000./
DATA CP2/500., 6700., 32000., 95400./
DATA HCH4/212800./
DATA HCO/67636./
DATA HH2/68317./

NAMELIST/FUCEC/ AA, NS, SV, CPL, CMRIN, NCELL, LCP, LESL, LBP, CKW
NAMELIST/INPUTS/ CH4, CO, H2, COMP, HE, SEPR, PUM, COND, HSHIF, LSHIF, AIRC
NAMELIST/INDEX/ IN81, IN80, IN791, IN77, IN75
NAMELIST/FACTR/ ICF, DCF, CF
NAMELIST/ENG/ ENPU, AVHT, CENG
NAMELIST/ECON/ TAX, TC, ESC, CD, CP, CC, FD, FP, FC, TAXL, FL, NT, NE, EL, EK
NAMELIST/CONST/ C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14
NAMELIST/CONST/ C15, C16, C17, C18, C19

C

C XX
EQUIPMENT NO. AND UNIT FOR CALCULATING COST

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
DEFINITION:

COST(I): COST OF EQUIPMENT I

CEQ(I,J) = CAPACITY OF EQUIPMENT I NO.J (ACCORDING TO THE COST ESTIMATE)

INPUT FUNCTIONS FOR CALCULATING COST OF EACH EQUIPMENT

BASIS: MID-1981 MONEY

100% LOAD FACTOR

F2(S) = C1X(S)xxC2xxIN81/IN68
F3(S) = C3x(S)xxC4xxIN81/IN68
F4(S) = C5xSxxC6xxIN81/IN79
F5(S) = C7x(S/C8)xxC9xxIN81/IN77
F7(S) = C10x(S)xxC11xxIN81/IN77
F8(S) = C12x(S/C13)xxC14xxIN81/IN77
F9(S) = C15x(S/C16)xxC17xxIN81/IN77
F11(S) = C18xSxxC19xxIN81/IN68

READ IN THE MARSHALL AND SWIFT INDEX

IN81: INDEX OF MID-1981
IN80: INDEX OF 1980
IN79: INDEX OF 1979
IN791: INDEX OF 1979 JAN.
IN77: INDEX OF 1977
IN75: INDEX OF 1975
IN68: INDEX OF 1968
IN67M: INDEX OF MID. 1967

READ(5,INDEX)
WRITE(6,INDEX)
READ(5,CONST)
WRITE(6,CONST)

CAL. THE COST OF FUEL CELL

INPUT:

AA: ACTIVE AREA PER CELL (CM**2)
NS: NUMBER OF STACKS
SV: STACK VOLTAGE (VOLT)
CPL: COST OF PLATINUM ($/G) -- BASED ON BASIC YEAR
CMRIN: CMR (CHEMICAL MARKETING REPORTER) INDEX OF RAW MATERIAL OF BASIC
NCELL: NUMBER OF CELLS PER STACK
LCP: LOADING OF PLATINUM (G/CM**2)
LESL: LOADING OF ELECTROLYTE SUPPORT LAYERS (G/CM**2)
LEM: LOADING OF ELECTROLYTE MATRIX (G/CM**2)
0011200 C LBP: LOADING OF BIPOLAR PLATE(G/CM**2)
0011300 C CKW: CAPACITY OF THE FUEL CELL(KW)
0011400 C MCP: MFG. COST FACTOR OF CATALYST
0011500 C MESL: MFG. COST FACTOR OF ELECTROLYTE SUPPORT LAYERS
0011600 C MEM: MFG. COST FACTOR OF ELECTROLYTE MATRIX
0011700 C MBP: MFG. COST FACTOR OF BIPOLAR PLATE
0011800 C MCC: MFG. COST FACTOR OF COOLING CARTRIDGE
0011900 C MSH: MFG. COST FACTOR OF STACK HARDWARE
0012000 C CCP: COST OF CATALYST-- PLATINUM
0012100 C CGFP: COST OF ELECTRODE SUPPORT LAYERS-- GRAPHITE FIBER PAPER
0012200 C CEM: COST OF ELECTROLYTE MATRIX-- SILICON CARBIDE FIBER
0012300 C CBP: COST OF BIPOLAR PLATE-- CARBON/PHENOLIC RESIN
0012400 C CCC: COST OF COOLING CARTRIDGE-- CARBON PLATE WITH COPPER TUBE GRID
0012500 C CSH: COST OF STACK HARDWARE-- END PLATES, MANIFOLDING, TIE RODS
0012600 C CGP: UNIT COST OF GRAPHITE FIBER PAPER,$/G
0012700 C CSC: UNIT COST OF SILICON CARBIDE FIBER,$/G
0012800 C CCPR: UNIT COST OF CARBON/PHENOLIC RESIN,$/G
0012900 C CMROT: CMR INDEX OF DATA YEAR

READ(5,FUCEC)
WRITEC6,FUCEC)
CCP=(CPLXLCP*AAXNCELL*NS)X(1.+MCP)
CGFP=(CGFXLESLxAAXNCELLXNSXCMRIN/CMROT)x(1.-fMESL)
CEM=(CSCXLEMXAAXNCELLXNS*CMRIN/CMROT)x(1.+MEM)
CBP=(CCPRXLBPXAAXNCELLXNSXCMRIN/CMROT)x(1.+MBP)
ASSUME THE RAW MATERIAL COST OF COOLING CARTRIDGE AND STACK HARDWARE IS THE SAME AS BIPOLAR PLATE
CCC= CBP/(1.+MBP)X(1.+MCC)
COSH=CBP/(1.+MCC)X(1.+MSH)
COST(1)=CCP+CGFP+CEM+CBP+CCC+CSH
C
READ(5,INPUTS)
WRITE(6,INPUTS)

CEQ(2,1)=(CH4XHCH4+COXHCO+H2XHH2)X3.97E-3/l.E+&
COST(2)=F2(CEQ(2,D)
CEQ(3,1)=COMP
COST(3)=F3(CEQ(3,D)
COST(4)=0.
DO 1 K=1,7

READ(5,INPUTS)
WRITE(6,INPUTS)

CEQ(2,1)=&
COST(2)=F2(CEQ(2,1))
CEQ(3,1)=COMP
COST(3)=F3(CEQ(3,1))
COST(4)=0.
DO 1 K=1,7
CEQ(4,K)=HE(K)/.3048*8*2
1 COST(4)=COST(4)+F4(CEQ(4,K))
CEQ(5,1)=SEPR
CEQ(5,1)=PUM*745.7
CALL RLIN(4,CP1,CP2,CEQ(6,1),COST(6))
COST(6)=COST(6)*IN81/IN80
CEQ(7,1)=COND(1)*18./1000./3.785/60.
CEQ(7,2)=COND(2)*18./1000./3.785/60.
COST(7)=F7(CEQ(7,1)+F7(CEQ(7,2))
CEQ(8,1)=HSIF
COST(8)=F8(CEQ(8,1))
CEQ(9,1)=LSIF
COST(9)=F9(CEQ(9,1))
CEQ(10,1)=SW_NS
CALL RLIN(13,CC1,CC2,CEQ(10,1),COST(10))
COST(10)=(COST(10)*IN81/IN80)*CKW
CEQ(11,1)=AIRC/453.6*10.73*298.1/14.7/1.04/60.
COST(11)=F11(CEQ(11,1))
CAK=0.
DO 2 K=1,11
CAK=CAK+COST(K)
DO 3 K=1,11
P(K)=COST(K)/CAK*100.
READ(5,FACTR)
WRITE(6,FACTR)
DO 4 K=1,11
CAW=CAW+COST(K)*(DCF(K)*ICF(K)-1.)
CAW=CAW*(CF+1.)
READ(5,NENEG)
WRITE(6,NENEG)
ANDM=CKW*XMAIN*24.*365.+CAK*CREPL/MTIME*WATER
CWAT=COOLING WATER COST, $/MM**3
AVERT: MEAN FACTOR OF COOLING WATER FOR RECYCLE
READ (5,NENEG)
WRITE (6,NENEG)
0.182000
0.190000

COST(4)=COST(4)+F4(CEQ(4,K))
CEQ(5,1)=SEPR
CEQ(5,1)=PUM*745.7
CALL RLIN(4,CP1,CP2,CEQ(6,1),COST(6))
COST(6)=COST(6)*IN81/IN80
CEQ(7,1)=COND(1)*18./1000./3.785/60.
CEQ(7,2)=COND(2)*18./1000./3.785/60.
COST(7)=F7(CEQ(7,1)+F7(CEQ(7,2))
CEQ(8,1)=HSIF
COST(8)=F8(CEQ(8,1))
CEQ(9,1)=LSIF
COST(9)=F9(CEQ(9,1))
CEQ(10,1)=SW_NS
CALL RLIN(13,CC1,CC2,CEQ(10,1),COST(10))
COST(10)=(COST(10)*IN81/IN80)*CKW
CEQ(11,1)=AIRC/453.6*10.73*298.1/14.7/1.04/60.
COST(11)=F11(CEQ(11,1))
CAK=0.
DO 2 K=1,11
CAK=CAK+COST(K)
DO 3 K=1,11
P(K)=COST(K)/CAK*100.
READ(5,FACTR)
WRITE(6,FACTR)
DO 4 K=1,11
CAW=CAW+COST(K)*(DCF(K)*ICF(K)-1.)
CAW=CAW*(CF+1.)
READ (5,NENEG)
WRITE (6,NENEG)
0.182000
0.190000

C COST(4)=COST(4)+F4(CEQ(4,K))
CEQ(5,1)=SEPR
CEQ(5,1)=PUM*745.7
CALL RLIN(4,CP1,CP2,CEQ(6,1),COST(6))
COST(6)=COST(6)*IN81/IN80
CEQ(7,1)=COND(1)*18./1000./3.785/60.
CEQ(7,2)=COND(2)*18./1000./3.785/60.
COST(7)=F7(CEQ(7,1)+F7(CEQ(7,2))
CEQ(8,1)=HSIF
COST(8)=F8(CEQ(8,1))
CEQ(9,1)=LSIF
COST(9)=F9(CEQ(9,1))
CEQ(10,1)=SW_NS
CALL RLIN(13,CC1,CC2,CEQ(10,1),COST(10))
COST(10)=(COST(10)*IN81/IN80)*CKW
CEQ(11,1)=AIRC/453.6*10.73*298.1/14.7/1.04/60.
COST(11)=F11(CEQ(11,1))
CAK=0.
DO 2 K=1,11
CAK=CAK+COST(K)
DO 3 K=1,11
P(K)=COST(K)/CAK*100.
READ(5,FACTR)
WRITE(6,FACTR)
DO 4 K=1,11
CAW=CAW+COST(K)*(DCF(K)*ICF(K)-1.)
CAW=CAW*(CF+1.)
READ (5,NENEG)
WRITE (6,NENEG)
0.182000
0.190000

C INPUT DIRECT AND INDIRECT COST FACTORS
0.191000
0.192000
0.193000
0.194000
0.195000
0.196000
0.197000
0.198000
0.199000
0.200000

C INPUT THE OPERATING AND MAINTENANCE COSTS (NONENERGY)
0.202000
0.203000
0.204000
0.205000
0.206000
0.207000
0.208000
0.209000
0.210000

C WATER: INPUT COOLING WATER, G-MOLE/HR
0.208000
0.209000

C AVER: MEAN FACTOR OF COOLING WATER FOR RECYCLE
0.210000

C READ (5,NENEG)
0.211000
0.212000
0.213000
0.214000
0.215000
0.216000
0.217000
0.218000
0.219000

C AVHT: AVERAGE HEATING VALUE OF INPUT FUEL, BTU/FT**3
C CENG: COST OF ENERGY FUEL, $/GJ
C
READ(5,ENG)
WRITE(6,ENG)
PO=ENPU/453.6*AVHT/1000000.*CENG*24.*365.
WRITE(6,ENG)
WRITE(6,103)
WRITE(6,101)(((KK,COST(KK),P(KK)),KK=1,11)
WRITE(6,102) CAK,CAW,OANDM,PO
C
C PERFORM THE ECONOMIC CALCULATION AND A CASH FLOW ANALYSIS
C
C INPUT THE ECONOMIC ANALYSIS FACTOR
C
TAX: TAX RATE
ESC: ESCALATION, DECIMAL
CD: COST OF DEBT
CP: COST OF PREFERRED EQUITY
CC: COST OF COMMON EQUITY
FD: RATIO OF DEBT CAPITAL TO TOTAL CAPITAL
FP: RATIO OF PREFERRED EQUITY
FC: RATIO OF COMMON EQUITY
TAXL: STATE AND LOCAL TAX
FL: ANNUAL INFLATION RATE
NT: TAX DEPRECIATION LIFE
NE: ECONOMIC LIFE
L: DESIGN AND CONSTRUCTION TIME, IN YEAR
EK: REAL CAPITAL COST ESCALATION PER YEAR, I. E., THE RATE OF CAPITAL
CHANGE ABOVE OR BELOW THE RATE OF INFLATION
NSTAR: FIRST FULL YEAR OF COMMERCIAL OPERATION OF THE INVESTMENT
NZERO: THE YEAR USED AS BASIS FOR THE COST ESTIMATE
READ(5,ECON)
WRITE(6,ECON)
R=(1-((TAX+TAXL))*FD*CD+FP*CP+FC*CC+FL*(1-(TAX+TAXL))*FD)
CAKM: COST-OF-CAPITAL FACTOR
CAKM=EXP(.418*RXL)
CAKE: ESCALATION FACTOR
CAKE=EXP(.562*(EK+FL)*L)
CAPIT: CAPITAL INVESTMENT
CAPIT=CAKM*CAKE*CAK*(1.+EK+FL)**(NSTAR-NZERO-L)+CAW
TLIN:LEVELIZED LOCAL TAX AND INSURANCE
TLIN=0.03*CAPIT
CN: NON-ENERGY COST
CN=OANDM+TLIN
CRFRE: CAPITAL RECOVERY FACTOR AT R FOR ECONOMIC LIFE
DO 5 I=1,NE
C3=C3/(1.+R)
C4=C4+C3
5 CONTINUE
CRFRE=1./C4
C CRFRT: CAPITAL RECOVERY FACTOR AT R FOR TAX DEPRECIATION LIFE
D1=1.
D2=0.
DO 6 I=1;NT
D1=D1/(1.+R)
D2=D2+D1
6 CONTINUE
CRFRT=1./D2
C CXXX
C CALCULATION ANNUAL COST OF ENERGY VARY AT A CONST. ANNUAL RATE
CXXX
C CRFRK: CAPITAL RECOVERY FACTOR AT AK FOR ENERGY IN ECOMONIC LIFE
AK= (1.+R)/(1.+ESC+FL)-1.
G1=1.
G2=0.
DO 7 J=1,NE
G1=G1/(1.+AK)
G2=G2+G1
7 CONTINUE
CRFRK=1./G2
C CEN: LEVELIZED ENERGY COST
CEN=POXCRFRE/CRFRK
C DEP: LEVELIZED DEPRECIATION FACTOR FOR SUM OF YEARS DIGITS (SYD)
DEP = 2.*((NT-1.)/CRFRT)/(NT*(NT+1.)*R)
C FCR: FIXED CHARGE RATE
FCR=(CRFRE/(1.-((TAX+TAXL)))*(1.-((TAX+TAXL)*DEP-TC))
C RLAC: LEVELIZED ANNUAL COST
RLAC=CAPITXFCR+CN+CEN
C FCL: LEVELIZED FIXED CHARGES
FCL=CAPIT*FCR
C CXXX
C WRITE THE RESULTS
C XX
WRITE(6,104) DEP, FCR, CRFRE, CRFRT
WRITE(6,105) FCL, CEN, RLAC
101 FORMAT(1X,'COST(',I2,')='E13.5,10X,F5.2)
102 FORMAT(1X,'TOTAL CAPITAL COST(F.O.B)='E13.5/1X,'TOTAL WORKING CA-
103 FORMAT(1X,'INFORMATION OF ECONOMIC FACTOR:'/
104 FORMAT(1X,'LEVELIZED FIXED CHARGES='E13.5/1X,'LEVELIZED ENERGY COST -
105 FORMAT(1X,'FIXED CHARGE RATE='F10.5/
106 FORMAT(1X,'TOTAL LEVELIZED COST='E13.5)
STOP
END

SUBROUTINE RLINCN(XT,YT,X,ANS)

C THIS SUBROUTINE IS TO CALL LINEAR INTERPOLATION.
C THE ALGORITHM REQUIRES XT VECTOR TO BE IN ASCENDING ORDER.....

I=2
IF(X.LT.XT(I)) GO TO 20
N=I
IF(X.GE.XT(N)) GO TO 20
DO 10 I=2,N
IF(X.LT.XT(I)) GO TO 20
10 CONTINUE
ANS=YT(I-1)+(YT(I)-YT(I-1))/(XT(I)-XT(I-1)) * (X-XT(I-1))
RETURN
END
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Performing Organization Name and Address</td>
<td>Cleveland State University Cleveland, Ohio 44115</td>
<td>13. Type of Report and Period Covered</td>
<td>Contractor Report</td>
</tr>
<tr>
<td>15. Supplementary Notes</td>
<td>Final Report for Supplement 2. Prepared under Interagency Agreement DE-AI21-80ET17088. Project Manager, Alden F. Presler, NASA Lewis Research Center, Cleveland, Ohio 44135.</td>
<td>16. Abstract</td>
<td>Cost analysis of phosphoric acid fuel cell power plant includes two parts: a method for estimation of system capital costs, and an economic analysis which determines the levelized annual cost of operating the system used in the capital cost estimation. A FORTRAN computer program has been developed for this cost analysis.</td>
</tr>
</tbody>
</table>
| 17. Key Words (Suggested by Author(s)) | Levelized cost analysis
Phosphoric acid fuel cell power plant
FORTRAN
Capital cost | 18. Distribution Statement | Unclassified - unlimited
STAR Category 44
DOE Category UC-97d |
| 21. No. of pages | 34 | 22. Price* | A03 |