
NASA Technical Memorandum 86289
NASA-TM-86289 19840026128

SOFTWARE IMPLEMENTED

FAULT-TOLERANT (SIFT)
/

USER'S GUIDE

David F. •Green, Jr.

Daniel L. Palumbo
-. ,',: , , , i,,., - i _ " _,; •

Daniel W. Baltrus

AUGUST 1984 _=_B_._V _PV

,:'"__, i_84

NationalAeronauticsand
SpaceAdministration

LangleyResearchCenter
Hampton,Virginia23665

CONTENTS

Page

INTRODUCTION ... I

• SIFT COMMANDS ... 2

SIFT ... 2

ADDRESS .. 2

ALP .. 4

ARM ... 4

BRF _.................................... 5

CMP ... 6

DISPLAY ... 7

DMP ... 9

ENDSIFT...12

HLT...12

LOAD..I2

MAP ... 13

PC 14

RDM ... 14

RDR ... 14

SEL ... 15

SIFTASM 15

SIFTLNK 16

SPO/SPL/SPN ,................... 16

SST 17

START ,... .. 19

STAT 19

STM ,... 19

STR ... •.............. 19

APPENDIX A _ SIFT SCHEDULE GENERATING UTILITY 20

APPENDIX B _ IMPLEMENTATION OF THE BDX 930 RELOCATABLE ASSEMBLER,

SYMBOLIC ASSEMBLER AND LINKAGE EDITOR 27
t

APPENDIX C _ SYSTEMS PROGRAMMING FOR THE SIFT ENVIRONMENT... 37

SIFT USER'S GUIDE

INTRODUCTION

Research in a Software Implemented Fault-Tolerant (SIFT) computer system is
, conducted at the NASA Langley Research Center's AIRLAB facility. Program

development for this system is accomplished using a DEC VAX-11 to interface
with eight Bendix BDX 930 flight control processors. The interface software
which provides this SIFT program development capability was written by AIRLAB
personnel. This document describes the application and design of this software
in detail, and is intended to assist both the user in performance of SIFT
research and the systems programmer responsible for maintaining and/or
upgrading the SIFT programming environment.

The main section of this guide describes thecommands (hereafter referred to as
SIFT commands) which are used to load SIFT programs and data to the BDX 930s,
read and write BDX memory and registers, set and read the program counter, run
and halt processors, debug programs, and other tasks needed in the development
of SIFT systems. The command SIFT, which starts the SIFT session, is listed
first. All other commands are listed in alphabetical order for easy reference.

Appendix A describes the SIFT Schedule Generating Utility. Coding all
permutations of the SIFT schedule canbe tedious and error prone. The schedule
generator allows the user to define his schedule with simple command syntax.

Appendix B describes the command syntax required to operate the BDX 930
Relocatable Assembler, Symbolic Assembler, and Linkage Editor. Also included
is a description of programs which modify the output files produced by the
assembler/llnker programs.

Appendix C, Systems Programming for the SIFT Environment, describes the
installation and programming concepts for the SIFT functions in detail. It is
applicable only to systems programmers responsible for maintaining and/or
upgrading the functions outlined in this document.

The user should be advised that, because SIFT is a dynamically evolving system,
modifications to existing functions/commands or new procedures can be expected
and will not be immediately reflected in this guide. Amendments or revisions
will be published periodically as required to bring this publication up to
date. Current information can be obtained through the VAX/VMS help facility
which will be kept updated to reflect the latest changes.

•¶

SIFT COMMANDS

SIFT

Format: SIFT (no parameters)

Starts the SIFT session and SIFT display of BDX 930 processor status.
The prompt SIFTS will replace the $ prompt indicating that all SIFT commands
can be used. Note, however, that all VAX DCL commands can also be entered at
the SIFTS prompt.

SIFT display: (see figure I for example display)

A display will appear at the top of the screen showing the current
processors which are not allocated to other,users. Processor numbers

already allocated to other users will not appear in the display.
Information is also displayed for LOAD:, MAP:, and SCOPE which is explained
in the descriptions of LOAD and MAP commands in this section.

Processor status (ARMED, ALLOCATED, SELECTED, HALTED, and RUNNING) is
indicated by various combinations of character attributes. For

example, processors allocated are shown with the processor number
underlined. Processors selected are shown with the processor number in
reverse video. Halted processors are shown with the letter H under the

processor number and conversely, running processors are shown with the
letter R. Armed processors are indicated by bold (or brighter) letters H
or R, as applicable. If the letter H is shaded it means that the user has
executed a HLT (halt) command. If the letter H is not shaded it means the
processor has halted for other reasons (e.g., a halt instruction).

ADDRESS - Find Hex Address

Format: ADD*RESS $[scope.]label;..

Translates the labels used in the user's program to their associated hex
addresses. Labels must be mapped using the MAP command before the ADDRESS
command can be used. See MAP command for the definition of scope and label.

2

Figure I. SIFT display

ALP - Allocate Processor(s)

Format: ALP Pn .. Pm
ALP NONE

Allocates BDX930 processor(s) Pn through Pm, where n/m _ 0..6. The second
format deallocates all processors currently allocated. (Note: no operations
can be done on a processor unless it is first allocated.)

Processors are required to be entered on the command line and can be
separated by spaces, commas, or nothing.
Examples: ALP PO PI P5 ALP PO,PI,P5 ALP POPIP5

A minus sign can be used to deallocate specified processor(s):
Example: ALP PO -PI P5 (allocates PO,P5 and deallocates PI)

The ALP command automatically does a SELect (see SEL) for each processor
allocated. The allocated and selected processors will be shown in the SIFT
display at the top of the screen with processor numbers underlined
(allocated) and reverse video (selected).

ARM - Arm Processor(s)

Format: ARM [Pn .. Pm]
ARM NONE

Arms the interrupt of BDX930 processor(s) Pn through Pm, where m/n = 0..6.
The second format dearms all allocated processors which were currently armed.

Processors can be separated by spaces, commas, or nothing.
Examples: ARM P3 P5 ARM P3,P5 ARM P3P5

If processors are not specified, the default is SELected set (see SEL
command).

The minus sign can be used to dearm specified processor(s).
Example: ARM -P3, p4 (dearms P3 and arms P4)

The SIFT display will show the armed processors with bold (brighter)
letters or brighter reverse video for the letters H,R which appear just below
the processor numbers.

BRF - Breakpoint Fast Debugging

Format: BRF [hexaddress]
BRF [$[scope.]label]

Sets a breakpoint at the hexaddress or symbolic location (scope and/or
label) for debugging programs on the BDX930 processor(s).

• To use the second format, labels must first be mapped using the MAP
command. For a definition of scope and label, see MAP command.

Examples: BRF 05FF BRF $VOTE BRF $SIFTO.VOTE

If hexaddress or label or scope.label are omitted, you will be prompted for
the information.

By default, the breakpoint is set on SELected processors. You cannot
designate specific processors in the command llne but you can specify one or
more processors for debugging purposes by using the SEL command.

When the BRF command completes, the program automatically goes to the
single step mode of operation (see SST command) for debugging purposes• The
BDX program counter will point to the breakpoint address given in the BRF
command unless the program halts for some other reason before it reaches the

breakpoint, in which case a message will indicate the actual stopping point.
Once in the single step mode (if BRF completes successfully) the current
program counter will be displayed along with the machine code instruction in
hex and disassembly code for the instruction (see figure 5).

I

CMP - Compute

Format: CMP [number or expression]
CMP <RETURN> (prompts for input)

Converts a number or the result of an arithmetic expression to its
equivalent in decimal, hexadecimal, octal and binary. Accepts integers or
floating point decimal numbers, but only the integer portion of the floating
point number is converted. If entries are typed on the command llne, the
program exits after the computation. If there is no command line, the
program prompts for the information and prompts are repeated after each
computation.

Radix syntax: %D (decimal), %X (hex), %0 (octal), %B (binary).
Initial default radix is decimal. Radix can be changed by using %.
Example: 456 + %0 747 + 640 + %D123

dec oct oct dec

Arithmetic expressions can have parentheses and the binary operators + - * /
^ for add, subtract, multiply, divide, and exponent. The unary operators + -
must be separated from binary operators by parentheses or radix operators.
Example: -243 - (-465) + %0 -777

In the repeat mode (no initial command line) the result of the last
computation is stored in the variable P which can be used in the next
computation.
Example: first computation: 2+2; 2nd computation: P+2 (result 6)

DISPLAY - Display Memory or Register Contents

/ $[scope']label,.. \
Format: DISP*LAY/qualifiers < hex,.. > [ON Pn..Pm]

\ Rn, ..Rm /
DISP*LAY REDRAW

Displays labels, hexaddresses, or registers and their contents from specified
processors. If processors are not specified, default is SELected processors.
Labels and hexaddresses can be on the same command line but registers must be
specified on a separate command line. The screen can display up to six
groups (or boxes) which show the processor number, current program counter,
memory location (either hex or label as requested in the DISPLAY format),
register number and the memory or register contents. Memory locations and
registers are currently displayed in different groups. The groups are
numbered from I to 6. See figures 2a and 2b for example displays.

Labels can be augmented. For example:

DISP $L1,$L2+4 (will display contents of LI and L2+4)
DISP $LI,$L2,+,+,+ (will display contents of L1,L2,L2+I,L2+2,L2+3)

The special format, DISP*LAY REDRAW, can be used to redraw the display if
the screen has been cleared for other operations (e.g.,editlng) and the
display does not return after the operation.

The DISP*LAY command without parameters will update the group(s) that are
already on the screen. That is, _he register or memory locations currently
displayed will be updated.

********** WARNING **********

Use of DISPLAY may disrupt operation of SIFT processors.
Unknown amounts of skew will be injected into each processor
during a read. Current active task might timeout.

Qualifiers:

/SCOPE=s Defines 's' as new scope.
/DEL*ETE=n,..m Deletes groups n through m.
/DEL*ETE hex,.. Deletes specified addresses

Rn,..,Rm Deletes specified registers
$[scope.]label,.. Deletes specified labels

/OFF Disables display. Erases screen.
/ON Enables display. Redraws screen.
/KEEP Display is permanent.
/NOKEEP Display is scrolled.
/GROUP_n Uses group n as display.

7

Figure 2. Displays of BDX 930 memory and register
contents using DISPLAY command.

8

DMP - Dump Processor Memory _

Format: DMP [hexaddress#numlocations] [FROM Pn,..,Pm]
DMP [hexaddress#numlocations] [FROM Pn,..,Pm] TO filename[/SAVE]

The first format dumps contents of specified BDX memory locations to the
screen. The second format dumps to a text file for printing or, if /SAVE
option is used, to a binary file which can be reloaded using the LOAD
command.

If hexaddress#numlocations is omitted from the command line, the DMP program
prompts for the information. If FROM Pn,..,Pm is omitted the default is
SELected set. If TO filename is omitted, a CRT dump is assumed. If /SAVE
is omitted after the filename, a text file dump is assumed.

The # character is a required separator between hexaddress and numlocations
if information is entered in the command line. Numlocations is entered in
decimal.

The hexaddress and numlocations together is called an access group. When
the first request has completed, the program will automatically prompt for
additional access groups and/or processors to be dumped. Any number of access
groups can be dumped and processors can be changed for each access group if
desired. However, the /SAVE option uses a single processor and does not
permit changing processors for each access group. If different processors
are needed for the /SAVE option, the DMP command has to be reentered for each
one. A null response (pressing <RETURN>) for all prompts will terminate the
DMP command.

Examples: DMP 050A#I00 FROM PO,PI
DMP 050A#I00 FROM PO PI TO PRTFILE.DAT
DMP 0500#100 TO SVFILE.X/SAVE

Examples of formats for screen dump and text file dump are given in figures
3 and 4.

9

For._at for screen dJmp:

DUMP OF PROCESSOR PI. STARTZNG ADDRESS = 0500. NUHBER 0= LOCATIONS = 100
PAGE I _F 1

0500 0510 0520 0530 0540 0550 0560

6837 6837 0026 1402 OOFZ 0F57 0013
7F02 3802 26F2 140A 7FO_ 0033 5E02
6837 6837 0026 1402 O_F2 0F67 0013
7F02 3802 26F2 140A 7F06 0003 5E02
DSFA O00F 6F02 0037 1202 O00F
8818 0C33 21EA 0012 FFFF 56F7

DSFA O00F 6F02 0037 1202 O00F
8818 0C33 2TEA 0012 FFFF 56F7
8FIF 0042 14F6 0053 0303 0053
ESF7 05F7 06E7 8F43 0382 0026
8FIF 0042 14F6 0053 0303 0053
ESF7 05F7 06F1 8F43 0382 0026
FF02 0026 55E2 2607 0001 1402
1202 0E26 0063 0037 3802 1408
FFOZ 0026 55E2 2607 0007 1402
1202 0E26 0063 0037 380Z 140B

The hexadecimal address is indicated at the top of each column and the
contents are shown beloe each column. The fzrst entry Xn the column Ls in
address • Oo the second is in address • 1, the third Is in address • 2t
etc.. The last entry in a column is in address • 15. For example, to
find the co,tents of address 051At count from 0 to 10 down the column
that starts lith hex address 0510. The Contents of 051A = 0042.

Figure 3. Screen dump format and display.
...

i0

DUMP OF PROCESSOR P3. STARTING ADDRESS = g5Bg. NUMBER OF LOCATIONS = Igg

ADDR B l 2 3 4 5 6 7 8 9 A B C D E F

BsBg 77F8 8BBF 6837 7F82 42gF gB_F D5FA 881B 56F9 8612 8FIF ESF7 7FgZ 418F FFB8]2_U
8518 gBg7 gB8B 6837 38B2 7Fg6 42gF BBBF gC33 B853 8C2Z 8842 DSF7 BFIF _861 _824 8E26
8520 1402 I4BA BBZ4 26FB g835 081Z 6F88 2?EA 8853 8F41 14F4 D667 BFZI 8842 55E2 B_61
0530 B824 0E26 I48Z]4BA BBZ4 ZEDE 8835 881Z 6F8_ Z7D8 8853 Bf41 14F4 D6D5 ZED5 _35
8540 gBl2 6FBB BBFg 7F_6 4IBF FFBg IZgg FFFF 8BBB 3488 0381 0388 77F9 IBBD 8827 3B_,'
8558 7482 6837 gF67 BBBI 7Fg5 428F gBBF 56F7 gg4z 8C11 2051 8824 8E25 1483 1482 14_B

• 8568 Bg34 Z7EE BBI3 5EB#

o

o

o

N

ENDSIFT - End SIFT Session

Format: ENDSIFT (no parameters)

Deallocates processors, erases the screen and deletes SIFT command symbols.
The DCL prompt ($) will reappear.

HLT - Halt Processor(s)

Format: HLT [Pn .. Pm]

Halts processors n through m.
If processors are not specified, the default is SELected processors.

The SIFT display will indicate the halted processors with the letter H in
reverse video which appears below the processor number.

LOAD - Load processor(s)

Format: LOAD filename [ON Pn,..,Pm]

Loads an absolute executable image file to the BDX 930s.

Filename for LOAD cannot include a directory spec or logical name. The file
is assumed to be located in LOAD:, which is assigned to the user's default
directory at the start of the SIFT session. If a file to be loaded is

located in another directory, the logical directory LOAD: must be reassigned
using the DCL commands ASSIGN or DEFINE

ON is a required keyword if processor(s) are entered on the command line. If
processor(s) are omitted the default is SELected set.

The SIFT display will show the name of the loaded file if the LOAD command
was successfully executed. The file name appears next to the heading LOAD:
in the display (see figure I for example).

Example: LOAD STELO ON P2
(Note - if the file extension is missing the default is .X) _

12

MAP - Map Symbolic Names

Format: MAP filename

Associates (maps) symbolic names (scope and label) used in a SIFT program to
BDX memory addresses. The MAP command must be executed before scope and
label can be used in other SIFT commands (see definition of scope and label
below).

. The cross references between labels and addresses are contained in a keyed
indexed file that is created during use of the symbolic assembler or linkage
editor and has the default filename extension .CRF. However, the file.CRF
will not be created unless the listfile (/L) option is specified in the
ASM930 or LNK930 command line, or unless the parameter M is included the
SIFTLNK command line. The MAP command cannot be used if these options are
not specified. See Appendix B for a description of the listfile option when
invoking the symbolic assembler and linkage editor. Also see the description
of SIFTLNK command in this section.

Filename for the MAP command cannot include a directory spec or logical
name. The file is assumed to be located in MAP:, which is assigned to the
user's default directory at the start of the SIFT session, If a file to be
used is located in another directory, the logical directory MAP: must be
reassigned using the DCL commands ASSIGN or DEFINE.

Example: MAP STELO (Note - file extension .CRF is assumed)

The SIFT display will show the name of the map file beside the heading MAP:
(see figure I for example).

Definition of scope and label: The scope is a symbolic name for a program
module. The MAP command initializes the scope to the first module in the
program and prints the scope name in the SIFT display. Labels (or names)
are used to represent addresses and are defined only within a particular
scope. Scopes and labels are used extensively in various SIFT commands to
preclude the use of hex numbers and provide a symbolic reference to locations
in the program. The syntax is as follows: $1abel or $scope.label. The $ is
required as the first symbol. Scope is optionai. If used it must come
before label and separated with a dot. If scope is omitted, the default is_
the current SCOPE name shown in the SIFT display. The SCOPE name in the
display can be changed using the command DISP/SCOPE--scopename as described
under qualifiers for the DISPLAY command.

13

PC - Program Counter

Format: PC hexaddress [ON Pn .. Pm]
PC $[seope.]label [ON Pn .. Pm]
PC <RETURN>

Sets or reads the program counter on specified processor(s). Defaults to
SELected set if processors are not specified on the command line.

The first format sets the PC to the hex address Specified. The second format
sets the PC to the address associated with the $1abel or $scope.label
specified. To use this format labels must first be mapped using the MAP
command. The third format (null command line) simply reads and displays the
current program counter.

Examples: PC 100 ON P2,P3 (PC set to 0100 hex on processors P2 and P3.)
PC $START (PC set to address associated with the label

START. Set on SELected processors.)
PC <RETURN> (The current PC is displayed for SELected

processors.)

RDM - Read Memory

/ $[scope.]label\
Format: RDM < >; ...

\ hexaddress /

Reads up to 8 BDX 930 memory locations of SELected processors. The locations
can be entered in hex or using $scope.label and each location is separated
with a semicolon. The memory address and contents are displayed on the
terminal. See MAP command for a definition of scope and label.

Examples: RDM A123; 53C0; 4269 RDM A35; A36

RDR - Read Register

Format: RDR Rn; .. Rm

Reads up to 8 BDX 930 registers of SELected processors. The registers are

separated by semicolons. Example: RDR RI; R2;R4. The register contents are
displayed on the terminal.

Examples: RDR RO;RI;R2 RDR R15

14

SEL - Select Processor(s)

Format: SEL [Pn .. Pm]
SEL NONE

Selects or deselects processor(s) n through m for various SIFT functions such
as debugging. Processors in the SELected set are used as the default in a
number of other SIFT commands. The second format deselects all processors

. currently in the SELected set. If processors are not specified on the
command llne, all allocated processors will be put in the SELected set.

Processors specified in the command line can be separated by spaces, commas
or no separation.
Examples: SEL P3 p5 sel P3,P5 SEL P3P5

The minus sign is used to deselect processors.
Examples: SEL -P3 (deselects P3) SEL P3,-P4 (selects P3, deselects P4)

Selected processors are shown in the SIFT display with processor
numbers in reverse video.

NOTE: The ALP (Allocate) command automatically SELects all processors that
have been allocated. You must use the minus sign to deselect those
processor(s) not wanted for a particular operation (e.g., debugging).

SIFTASM - Assemble Source File

Format: SIFTASM [assembler source filename] [L]

Calls the BDX 930 Relocatable Assembler to assemble a BDX 930 assembly code
source file. If the file name is omitted the default edit file name is used.
The output is a relocatable binary image file with extension .RX. If the
parameter L is included in the command line, a listing will be generated with
the extension .LIS. Appendix B gives additional options which are available
for the Relocatable Assembler and the formal command-llne syntax to invoke
these options.

15

SIFTLNK - Link SIFT Operating System (OS) Modules

Format: SIFTLNK [OS binary filename] [M]

Calls the BDX 930 Linkage Editor to link a new OS file to standard SIFT

modules. If the OS filename is omitted, the default edit filename will be

used. Produces a loadable image file with extension .X. If parameter M is

included in the command line, a map is generated with the extension .MAP and
a cross reference file is created with the extension .CRF. File.MAP can be •

printed and provides a listing of module names, mnemonic names and associated

hex addresses. File.CRF is a keyed indexed file used by various SIFT

functions to retrieve hex addresses (see MAP command). Appendix B gives
additional options which are available for the Linkage Editor and the formal

command-llne syntax to invoke these options.

SPO - Compile a Pascal Source File
SPL

SPN

Format: SPO [Pascal source file]

SPL [Pascal source file]

SPN [Pascal source file]

Compiles the Pascal source code file. If the filename is omitted, the

default edit filename is assumed. SPO produces BDX assembler source code

with file extension .SR as output. SPL produces a Pascal listing. SPN has

no output and is used for a syntax check.

16

SST - Single Step Debugging

Format: SST (no parameters)

Single steps program instructions for processors in the SELected set
. for debugging purposes.

f

After the SST command is executed, a screen display will show the current
. program counter, machine code (hex) and disassembly of the instruction; and

the SST> prompt will replace the SIFTS prompt. See figure 5 for an example
of the SST display.

SST Subcommands at the SST> prompt:

Format: SST> <RETURN>
SST> P: Pn,..Pm
SST> number from I to 999
SST> EXIT

The first format will execute the single instruction pointed to by the
program counter (PC). After the instruction has executed, the SST display
will show the information for the next instruction. Note that, in addition
to single steps by pressing <RETURN>, any DCL or SIFT command may be entered
at the SST> prompt. For example, a speclfic breakpoint address can be set by
using the BRF (breakpoint fast) command or the contents of a register can be
changed by using the STR (store register) command. After the DCL/SIFT
command is processed, the SST> prompt will reappear.

The second format designates which processors (of the SELected processors)
will be shown in the SST display. By default the information displayed
after single step executions will be for the first (lowest numbered)
processor in the SELected set. To display other processors in the SELected
set enter one or more processors according to the following examples:

SST> P:PI,P3 SST>P:P2 P4 SST>P:PO SST>P:ALL SST>P:NONE (no display)

The third format executes a number of instructions in one operation and only
displays the last instruction. For example, to execute the next ten
instructions enter the number 10 at the SST> prompt (example, SST> 10). Any
number of instructions can be executed in this manner up to 999.

The forth format (EXIT) terminates single step and returns to the SIFTS
prompt.

17

Figure 5. Display of single step debugging.

18

START - Start Processor(s)

Format: START [Pn .. Pro]

Starts processors Pn through Pm. If processors are not specified, the
default is SELected processors. Processors are started simultaneously.

The letter R in the SIFT display beneath the processor number indicates
the processor is running. The letter H means it is halted.

STAT - Status of Processors

Format: STAT (no parameters)

Causes the SIFT display to be updated (header information at the top of the
screen). The displays of memory and register contents, which are provided by
the DISPLAY command, are not updated.

Use of the STAT command will not disturb operation of the system.

STM - Store Memory

/ $[scope.]label\
Format: STM < >, hex value; ...

\ hexaddress /

Stores up to 8 hex values in specified BDX 930 memory addresses of SELected
processors. The address where the value is to be stored and the value to be
stored are separated by a comma; additional pairs of these values are
separated by semicolons.

The addresses can be specified in hex or by label (seeMAP command for
a description of scope and label).

Examples: STM 5C2A, 3F; 3884, A STM $START,OCFF;$MODI.A$3, 0

STR - Store Register

Format: STR Rn, hex value; ...

Stores up to 8 hex values in specified BDX 930 registers of SELected
processors. Commas separate the register from the value to be stored and
semicolons separate the reglster/hex-value pairs.

Example: STR R3, FFOC; R4, 8E3D

19

SIFT USER'S GUIDE

APPENDIX A

SIFT SCHEDULE GENERATING UTILITY

INTRODUCTION

The SIFT Schedule Utility (or scheduler for short) is designed to provide an
interactive pre-processor to prepare the assembly macros for the Bendix Model
930 Flight Computers. The pre-processor syntax, which is described below, is
intended to replace the direct preparation of the assembly macros with an
English like set of instructions. In addition to preparing the assembly macros
the pre-processor provides display options for presentation of the data
structures used in the preparation of the BDX 930 assembly macros.

The SIFT Schedule Utility provides for automatic scheduling based upon the
order of the task definition records processed. Alternatively, the researcher
can override the auto schedule algorithm and input individual schedules for
each processor and grouping of processors.

As an aid in development the scheduler logs all input during a session onto a
file identified by the default name SCHED.TRN. This file is in a standard text
format and can be edited and used as an input for subsequent sessions. The
<FILE INPUT=file name> command defines the file to be used.

The SIFT Schedule Utility produces an output file (defined by the command <FILE
OUTPUT=file name>) which is in macro assembly language for the Bendix Model 930
Flight Computer. Two items of special note are that the symbols must be a
maximum of 5 characters, and that the assembler is sensitive to spacing on
input lines. The symbols used by the scheduler are automatically truncated to
5 characters without a warning message, which allows the user to enter
mnemonics of any length as long as the first 5 are unique. When editing a
transaction file, note that the scheduler inserts tab characters between
fields instead of spaces to avoid the spacing problems of the assembler.

SIFT SCHEDULER - SYNTAX SUMMARY

The SIFT Schedule Utility is designed to provide a simplified method of
deriving the BDX 930 macro assembly language necessary to schedule tasks and
voting. The syntax of the scheduler is given below in two parts. The first
part, the definition syntax summary, describes the syntax to be used in the
initial setup phase and for auto scheduling. The second part, the schedule edit
syntax summary, describes the syntax to be used for the optional customizing of
schedules by the user. The transition from the first syntax to the second is
made by entering the SCHED EDIT command. To return to the main syntax use the
EXIT command. The prompt for the main definition syntax is > and the prompt
for the schedule edit syntax is *> . File SIFTDIR:SCHEDULE.DEF contains the
SIFT default schedule and may be used as a base schedule.

2O

SIFT SCHEDULER - DEFINITION SYNTAX SUMMARY

The following syntax is used in the normal mode (prompt >) to define system
parameters and set up the automatic scheduling algorithm. This phase must
preceed the manual EDIT SCHEDULE mode so that all tasks, groups and variables
are defined prior to editing the schedules. To return to this mode type EXIT.
To exit this program type EXIT again, the output is automatically copied to the

• file defined by the FILE OUTPUT=filename command.

* [your comments]

An asterisk denotes the beginning of a comment string. All
characters after the asterisk are_ignored. Comments are sent
to the terminal if input is read from an alternate file.

ID integer value

Allows user to enter the task ID. This must be done for each task
or an assembly error will occur.

IN [var1[=buffer_location], [var2,...];]

Allows user to specify the input set for the object task; by
typing "IN" alone the current input list for the object task
is displayed. Note that the semi-colon is required to continue
parameter entry on the same line. The buffer location parameter can
also be defined by an OUT or VAR statement. Only one definition is
required. The last value entered is always used.

DELETE [taskname or groupname]

Deletes the specified task or group from the schedule. Does not
remove the task from the data structures. The object task becomes
"null" upon execution of this command. If no task-name is specified
the current object task is deleted.

DESTROY name

Removes the specified name (task or variable)from the schedule
and the data structures. NOTE: All references are destroyed,
therefore, variables cannot be destroyed if they are referenced
by a task which is still valid.

DISPLAY [name, ALL, VAR, TASK, SCHED or GROUP]

- Display information concerning a given name or all names, or
display information for a class of names.

0

L

21

DURA [integer valu6]

Specifies duration in 1.6 ms cycl_es that execution of the object

task requires. No default is used, and an error message will be

generated during assembly code generation for each task for which

a duration was not specified.

EDIT

This statement is the same as SCHED EDIT; it changes the program
mode to the edit mode. See SCHED EDIT command for more information.

END GROUP

This statement identifies the end of a group of tasks It sets

the current group to null, Note that a group can be reopened by
entering the GROUP statement again with the same name.

EXIT

Causes the program to exit and save the output schedule and data
structures created during the session, provided that an output•
file was previously specified and a schedule exist. An error
message is written if a schedule cannot be generated. An EXIT
command encountered during an alternate input read returns control to
the terminal.

FILE [(INPUT,OUTPUT)_fIIename]

Informs processor of files to be used for input and output of the
processor. If an external input file Is•used, control is
automatically returned to the user when an EXIT or QUIT command

is executed or at the end of the file. NOTE: noblanks should

be used in the file specification.

GROUP [groupname]

Define a group name and start position. If no name is given then
pertinent data regarding the current group is:•displayed.

INIT [ALL, SCHED] •

Ini•tlalizes all or part of the data structures used in the SIFT

scheduling pre-processor.

22

LIST [ALL, OUT or SCHED]

Llst information concerning all tasks, variables and groups;
or the resulting assembly output; or the current schedule. This output
is copied to the file SCHEDULER.LIS which is then printed and deleted.

NAME asmb name

Provides the processor with the name to be used in generating the
assembly macros. This name is the TITLE parameter of the input to
the BDX 930 assembler.

OUT [var1[=buffer_location],[var2,...];]

Allows user tO enter the output variables for the object task, and
set the buffer location to match the Pascal 'include' file. The

semicolon (;) is required to terminate the output llst if other
parameters are to be entered on the same llne. As with the IN and
VAR statements, the buffer location only needs to be entered once.

QUIT

Causes the program to exit without saving the results of the session.
Exception, if the processor assembly output file was created using
"SCHED /OUT" command, this file remains intact.

REPEAT groupname

This command causes the group of tasks specified by groupname
to be repeated in the schedule.

REPLIC [n1(,n2,n3..)]

Specifies the number of replicates of the object task which
are required, or displays current value. If a task is to have defined
levels of redundancy, they can be entered, e.g. [5,3,1].

23

SCHED [AUTO,ON ,OFF,OUT,EDIT]

Provides control of and information concerning the SIFT
schedule being generated by the processor. If no options are
specified, the system generates the detailed schedules for
subsequent DISPLAY SCHED or LIST SCHED commands. Options are:

AUTO Sets the auto schedule flag true (default). This
flag when true accepts the order of task and group
definitions as the schedule order.

ON Same as AUTO.

OFF Sets the auto schedule flag false. When false, no
entries are added to the schedule.

OUT Takes the schedule created in AUTO mode or EDIT mode

and generates the BDX 930 assembly language module.

EDIT This command changes the mode of the program and
switches to the syntax described below under the heading
of SCHEDULE EDIT SYNTAX SUMMARY. The prompt for the edit
mode changes to *> .

TASK [taskname[/dlsplay ,/list]

Displays current object task, or alternately defines an object
task, or provides display or list of the task parameters. An
object task is that task which was last referenced, and on which
the parameter commands (IN,OUT,etc) operate.

VAR [varname[=buffer_locatlon][attrlbutes]

Defines a variable to the scheduler. Used when a variable is used

by a task before it is defined, or when special attributes are !
required. Allowable attributes are: i

]

PRESET/NOPRESET for variables defined during initialization, the
default is NOPRESET.

VOTE/NOVOTE for variables which may or may not be voted, the
default value is VOTE.

The _buffer location must be entered once for each variable, but !
may also be entered when specifying INput and OUTput variables -
during TASK definition.

24 _

SIFT SCHEDULER - SCHEDULE EDIT SYNTAX SUMMARY

The following synyax is provided as an option to allow the user to customize
the schedule for tasks running on the BDX 930.

* [your comments]

An asterisk denotes the beginning of a comment string. All
characters after the asterisk are ignored. Comments are sent
to the terminal if input is read from an alternate file.

COPY Sij Smn

Copy schedule "Sij" to schedule "Smn", where i and m are digits
representing the number of processors and j and n are the processor
to be scheduled. Note that SO0 is a master schedule and is defaulted
to the schedule produced by the AUTO schedule algorithm if selected
initially.

DELETE slot number

Deletes the task at the given slot number and replaces it with the
null task.

DISPLAY Sij [or Si]

Displays the schedule Sij on the terminal, or alternately displays
the set of schedules for i processors.

EXIT

Exits the schedule editing mode and reverts to the definition mode.

INIT Sij [or ALL]

Initializes the specified schedule or optionally all schedules,
except schedule SO0 unless specifically requested.

INSERT slot number task name[or group name]

Inserts the task or group specified at the slot given and adjusts
all subsequent tasks already in the schedule down by one if inserting

. a task or by the number of tasks in the group.

25

LIST Si [or ALL]

Lists the schedules Si or alternately displays the set of all
schedules.

PURGE slot number

Purges the task at a given slot andmoves all other tasks up in
the schedule.

REPLACE slot number [or task name] new task name

Replaces the task at a given slot with a new task, or optionally
replaces a given task with a new task globally.

SCHED Sij

Specifies which schedule is being edited.

SHOW Sij [or Si]

Displays the schedule Sij on the terminal or alternately displays
the set of schedules for i processors.

26

SIFT USER'S GUIDE

APPENDIX B

IMPLEMENTATION OF THE BDX 930

RELOCATABLE ASSEMBLER
_ SYMBOLIC ASSEMBLER

LINKAGE EDITOR

I. INTRODUCTION

This appendix describes the operation of the BDX 930 relocatable assembler,
symbolic assembler and linkage editor.

Section 2 gives an overview of the VAX_11 implementation and general rules of
operation are covered. Sections 3, 4, and 5 contain specific instructions and
command_llne syntax for operating the symbolic assembler, the relocatable
assembler and the linkage editor, respectively. The information in these
sections was extracted from the documentation file BDX930.DOC prepared by
Virginia Polytechnic and State University, September 1982, and is included in
this appendix for ease of reference.

Section 6 contains a llst of pertinent files, along with a short explanation of
each file's contents.

Section 7 describes the programs which create files to load the BDX 930
computers directly from the VAX_11. The source code for these programs is in
SIFTFILES.PAS and ASMFILES.PAS. The implementation of these programs is
transparent to the user; however, they are described in this guide primarily
for systems programming installation and maintenance purposes.

Additional information concerning installation, maintenance and testing for the
symbolic assembler, relocatable assembler and linkage editor is contained in
the documentation file BDX930.DOC.

27

2. VAX IMPLEMENTATION OVERVIEW

The topics covered in this section concern the VAX operating system
interface. File specifications and general rules of operation will be
discussed in relation to the BDX930 assembler/llnker system. Hints useful to
the user are also covered.

FILE SPECIFICATIONS

File specifications are of the form Dev:[Direct]File.Ext;Version where all but
the file name is optional and a single file specification must not contain
imbedded spaces or tabs. If the Device:[Directory] is omitted the default,
SYS$LOGIN, is used. The Version number default depends on the context of its
use. The most recent version of a file will be used in the case of an input
specification. In the case of an output specification, a file having a version
number one greater than the most recent will be created. If the file does not
exist, the version number of I is used. The extension (Ext) may be omitted but
the dot (.) must be included to terminate the file name if a null extension is
desired. When the dot is omitted it indicates the use of a default extension.
In particular, a specification of the form File (no dot) will be translated to
FIle.DAT or File.CRF or File.X depending on the type of file (explained in
sections 3, 4 and 5 of this appendix).

All three of the BDX930 programs impose a limitation on the length of a file
specification, namely that a single file identifier must be less than 16
Characters in length. A library search directory specification is the single
exception to this rule; it is limited to 39 characters or less. The VAX _
logical name facility can be used if longer identifiers are required. These
limitations do not include characters used for swltch qualifiers. A further
restriction is that wild card characters are NOT allowed in any file _
specification or library specification.

LOGICAL NAMES

VAX logical names may be used with any of the programs, subject to a few
restrictions. An example will best demonstrate the use of logical names.
Suppose the following command line is entered at monitor level:

ASSIGN DraO:[BDX930.Source] BDX

This equates the name BDX to the logical device DraO:[BDX930.Source]. The
name may then be used as a device specification in a command llne such as:

ASM930R BDX:File.ext

The logical name, BDX, must be delimited by a colon (:) to indicate a logical
device. The above command llne is functionally equivalent to:

ASM930R DraO:[BDX930.Source]File.ext

The only difference is that this command line violates the 15 character file
speciflcation llmit, while the other one does not.

28

The VAX logical name facility is more general than this example suggests. In
fact, any part of or all of a file identifier may be assigned a logical name
The use of general logical names, however, is not recommended with these
programs, primarily because of possible uhexpected consequences and an

. inconsistant set of rules. Details can be found under the title NOTES, in the
section on the particular program in question (sections 3, 4 and 5 of this
appendix). It is important to note that logical devices, such as in the
previous example, are not subject to these restrictions and can be used
anywhere.

COMMAND LINE RULES '

The command line used to invoke any of the programs conforms to VAX standards.
If a command exceeds a single line, the continuation character - (dash) can be
used. There is a 511 character maximum limit on the length of any command line
imposed by these programs. Continuation characters (-) are not included in
this limit. Note that this maximum may be superceeded by local operating
system limitations. Finally, indirect file specification (@FILE) within a
command line is not allowed. The command line rules for each of the programs
are covered in more detail in sections 3, 4 and 5 of this appendix.

TEMPORARY FILES

All temporary files needed by the assembler/linker programs will be created in
the user's login directory by default. While these files are deleted after
use, they can temporarily consume a significant amountrof disk space.

HINTS AND ERROR 99

There are a few details of the operation of these programs that may be useful.
First, the VAX has a "null" I/O device (NL:) to which files can be sent, never
to be seen again. This is sometimes useful in suppressing list file creation.
Simply specify NL:/L in the command llne and the list file will never be.

There is also a listing error number that is not included in the Bendix BDX930
user's manual (It was added to the VAX implementation). Error number 99
indicates an overflow of the location counter. This will occur any time a
location (relative or absolute) greater than 32767 (decimal) is encountered.
The error is not fatal and recovery is made simply by resetting the location
counter to zero.

The list files produced by all three programs are formatted for a default page
length of 58 llnes/page (This default is set during system generation). The
default may be changed at run-tlme with the /H switch. If n/H is entered as a
command llne parameter, the page size will be n lines/page.

29

3 SYMBOLIC ASSEMBLER

This section describes the calling sequence and specific instructions for the
symbolic assembler, which will assemble individual source modules into an
absolute executable image file.

CALLING SEQUENCE

ASM930{global options} {filespec/local option} Input{/N} ...

GLOBAL OPTIONS (Defaults)

/K Octal llst format (Hexideclmal)
.

/M Map (memory assignment listing) (No map) •

/P Page zero symbol listing (No listing)

LOCAL OPTIONS (Defaults)

/L Listfile (NL:)

/0 Absolute image file (Scratch file)

/E Library search directory _No search)

/N Module Not to be included in listing (Include module)

Input(s) Input source module file(s) (No default-error)

n/H Format list file for n llnes/page (58 lines/page)

EXAMPLE

The command llne,

ASM930/M/P Test.ls/L Test.ob/O Drc:[Sift]/E Testa.asm/N Testb.asm

causes the assembler to read in the source modules Testa.asm and Testb.asm.

If either of these files •containsunresolved EXTRN's, the directory Drc:[Sift]
will be searched for files of the form "external symbol," "no extension." The
list file produced will include a memory map with a page zero summary and will
reside in the file Test.ls. Note that the source file, Testa.asm, will not be
included in the listing. When the listfile option (/L) is specified as it is
in this case, a cross reference file with the name File.CRF is automatically
created during assembly. This is a keyed indexed file that is used later for
mapping symbolic names used in the program to specific hex addresses (see MAP
command in the main section of this guide). Also, if the extension is omitted
from the executable image file (Test.ob in this example), the default extension
.X will be used.

3O

NOTES

I) If the library search mode is used and unresolved EXTRN's are present after
processing the input module llst, the directory specified will be searched for
filenames having the EXTRN name with no extension. If the directory is not
specified, SYS$LOGIN: is used.

2) There is no required order for the options to be specified in.

3) General logical names may be used for input file and list file
specification. A logical device name used for a library specification must be
terminated with a colon (:).

4) Read section 2 for more information.

4. RELOCATABLE ASSEMBLER

This section describes the calling sequence and specific instructions for the
relocatable assembler, which will assemble individual source modules into
individual relocatable object modules, having the same name and a .RX
extension.

The object modules created can later be linked by the linkage editor into an
absolute executable image file. Note that individual source modules must
reside in separate files.

CALLING SEQUENCE

ASM930R{global options} {filespec/local option} Input{/N} ...

GLOBAL OPTIONS (Defaults)

/K Octal list format (Hexidecimal)

LOCAL OPTIONS (Defaults)

/L Listfile (NL:)

/N Module Not to be included in listing (Include module)

Input(s) Input source module file(s) (No default-error)

n/H Format list file for n lines/page (58 lines/page)

31

EXAMPLE

The command line,

ASM930R Test.ls/L Testa.asm/N Testb.asm

results in the creation of two relocatable object files, Testa.rx and
Testb.rx. The list file, Test.ls will contain only the source listing for
Testb.asm.

NOTES

I) A general logical name may be used to specify the list file. Any logical
name used for an input specification must NOT be assigned to a file
specification containing an extension or a version number. For example:

ASSIGN drb2:[system]inputfil.ext;100 Temp
ASM930R Temp

will not work properly, but

ASSIGN drb2:[system]inputfil Temp
ASM930R Temp: .ext;I00

will work fine. A logical device may be used for a library specification if it
is terminated with a colon (:).

2) There is no required order for specifying the options.

3) Read section 2 for more information.

32

5. LINKAGE EDITOR

This section describes the calling sequence and specific instructions for the
linkage editor, which will link relocatable object modules assembled by the
relocatable assembler into an absolute executable image file.

CALLING SEQUENCE

LNK930{global options} {filespec/local option} Input{/N} ...

GLOBAL OPTIONS (Defaults)

/K Octal list format (Hexidecimal)

/M Map (memory assignment listing) (No map)

/P Page zero symbol listing (No listingi

LOCAL OPTIONS (Defaults)

/L Listfile (NL:)

/N Module not to be included in listing (Include module)

/0 Absolute image file (Scratch file)

/E Library search directory (No search)

Input(s) Input source module file(s) (No default-error)

n/H Format llst file for n lines/page (58 lines/page)

EXAMPLE

The command llne,

LNK930/M/P Test.ls/L Test.ob/O DrcO:[Sift]/E Testa.rx Testb.rx

causes the linker to read in the relocatable object modules, Testa.rx and
Testb.rx. If either of these files contains unresolved EXTRN's, the directory
DrcO:[Sift] will be searched for files of the form "external symbol".RX. The
llst file produced by the linker will include a memory map with a page zero
listing. The list file will reside in the user logln directory in the file
Test.ls. The absolute executable image will reside in Test.ob in the user
logln directory. The file Test.CRF will be created automatically and can be

- used later in the MAP command (see MAP command in main section of this
document). If the extension .ob for the absolute image file had been omitted,
the default file extension .X would have been used.

33

NOTES

I) If library search mode is used and unresolved EXTRN's are present after
processing the input file list, the directory specified will be searched for
filenames having the EXTRN name with a .RX extension. If the directory is not
specified, SYS$LOGIN: is used.

2) General logical names may be used for any input file and the list file. A
logical device may be used to specify the library search directory provided
the name is terminated with a colon (:)]

3) There is no required order for specifying the options.

4) Read section 2 for more information.

34

6. FILES LISTING

BDX930.DOC VAX implementation document

ASM930S.FOR Symbolic assembler source
ASM930R.FOR Relocatable assembler source

. LNK930.FOR Linker source

SIFTFILES.PAS VAX interface source program for linkage editor
ASMFILES.PAS VAX interface source program for symbolic assembler
OPTIONS.FOR Subroutine module linked with linkage editor and symbolic

assembler (gets command line options for SIFTFILES and ASMFILES)

SIFTASM.COM Provides a simplified method of invoking the relocatable
assembler

SIFTLNK.COM Provides a simplified method of invoking the linkage editor

IMAGEGEN.COM Source compile/link command file
LOGINGEN.COM Command verb definition generation command file
TMPDIRUSE.COM Set temporary directory command file

LOCK.FOR Module lock utility source
UNLOCK.FOR Module unlock utility source

LOCKOB.COM ASM930S module name llst (for LOCK)
LOCKOR.COM ASM930R module name llst (for LOCK)
LOCKOL.COM LNK930 module name list (for LOCK)

930TEST.ASM Sample BDX930 source file (Processor self test)
930TEST.LIS Listing of above produced by ASM930
930TEST.ABS Executable image of source produced by ASM930

35

7. DESCRIPTION OF PROGRAMS SIFTFILES AND ASMFILES

The programs slftfiles and asmfiles, written in PASCAL, are actually
modifications to the linkage editor and symbolic assembler programs,
respectively. The primary purpose is to convert the absolute image files
created by the linker and assembler to a format that can be used by the VAX-11
to load the BDX computers. The files created by the linker and assembler were
designed for use by the Data General Eclipse but cannot be used by the VAX.
The modification is achieved by calling siftfiles (or asmfiles) directly at the
end of the linker (or assembler) program using the run time library routine,
llb$do command. The user does not have to invoke these programs since they are
run automatically with the LNK930 or ASM930 command lines. The absolute image
file produced by the linker or assembler is used as input, a new file is
created and the original file is deleted.

Siftfiles and asmfiles also have additional functions. Siftfiles takes the

listfile produced by the linker and makes a four column listing of the mnemonic
name and address table. (Original version had a one column listing that used
more paper.) Both siftfiles and asmfiles create a cross reference file
(File.CRF) using the information contained in the listfile if the /L option is
specified in the LNK930 or ASM930 command llne. File.CRF is a keyed indexed
file that associates symbolic names used in the program with hex addresses. It
is used for the MAP command (see MAP command in the main section of this
document) and allows retrieval of addresses using scopes and labels.

One other file is associated with this modification. OPTIONS.FOR is a fortran

subroutine GET OPTIONS which is linked with the linkage editor and symbolic
assembler. Its purpose is to get the information from the LNK930 or ASM930
command line and put it in common (using lib$put common) for use by siftfiles
or asmfiles. Siftfiles and asmfiles get the inf_rmatlon out of common (using
lib$get common) and determine what files to create from the options specified
by the user.

For siftfiles and asmfiles to be invoked from the linkage editor and symbolic
assembler, respectively, a command file must contain the following definitions:

$SIFTFILES :--=$SIFTDIR:SIFTFILES
$ASMFILES :--_$SIFTDIR :ASMFILES

36

SIFT USER'S GUIDE

APPENDIX C

SYSTEMS PROGRAMMING FOR THE SIFT ENVIRONMENT

I• INTRODUCTION

This appendix describes the software developed for the SIFT environment which
is implemented on the VAX-11. The information is intended primarily for
systems programmers required to maintain or upgrade the programs described
herein, or to develop new programs for future requirements.

Section 2 contains a list of all the programs that make up the SIFT
environment.

Section 3 describes the basic programming concepts used for SIFT and section 4
gives a functional description of each interface program.

Section 5 contains a summary of the device driver for the BDX 930 processors
and the driver's function dependent operations.

2. LISTING OF APPLICABLE PROGRAMS

The software for the SIFT environment consist of five major packages (only
source code files are listed):

a. SIFT Schedule Generating Utility (described in Appendix A).

b. BDX 930 Assembler and linkage programs (described in Appendix B).

c. SIFT Interface Programs:

(I) Command Procedures

- siftup.com
- makesyms.com
- runttdsp.com
- endslft.com

- alp2.com
- debugloop.com/calls sstoff.pas
- delsyms.can

37

(2) PASCAL modules containing common procedures or declarations

- gen.pas
- siftdec.pas

(3) PASCAL programs to implement the SIFT commands (Note: programs
listed together are linked. The module gen is also linked with
each group and must be listed last in the LINK command line.):

Main Program Parser State Table Associated Modules

sift.pas • genstate .mar
ttdsp .pas ttdspsta .mar, vtdraw .pas
stopsift .pas genstate .mar
select .pas procsta.mar
arm.pas procsta.mar
alpl.pas procsta.mar
alp3.pas procsta .mar
unalp.pas genstate .mar
dlsplay.pas dlspsta.mar _ dispsub.pas, loc.pas
mapsetup, pas mapstate .mar
load .pas loadstate.mar
start, pas proesta .mar
hit.pas procsta.mar
pc.pas pcstate .mar loc.pas
bdxdump,pas dmpstate.mar diskfile.pas
stm.pas stmstate .mar loc.pas
str.pas strstate.mar
breakfast, pas brfstate.mar loc .pas
snglstep .pas genstate.mar
rdm.pas rdmstage.mar loc.pas
rdr.pas rdrstate.mar
status,pas genstate .mar
compute.pas (not linked wlth gen)

d. Device Driver for the BDX 930 Flight Control Computers

e. SIFT Help Files

- sift.hip text file used for input to the VAX/VMS help facility
- sifthelp.com command procedure for installing sift.hlp

38

3. Programming Concept for SIFT Environment

The overall programming concept for the SIFT environment is to provide a
separate DCL command (and separate program) for each SIFT function. The DCL
commands for SIFT comprise the SIFT command language. This language allows the
user maximum flexibility and control of SIFT functions and permits the use of
all DCL commands within the SIFT environment. It also provides a multi-user

- capability and the capability to add or modify functions easily to accommodate
future requirements. Although not as user friendly as the menu driven
approach, the SIFT operation can be implemented more effectively once a user
becomes familiar with the SIFT command language.

To implement this concept, the initialization program (called SIFT) creates a
global section in memory and spawns a subprocess. The subprocess runs a
program (called TTDSP) whose function is to set up the SIFT display for a VTIO0
or VT125 terminal. The program TTDSP maps to the global section and the
program SIFT exits. Control is returned to DCL and TTDSP runs as a subprocess
concurrently with the user's main process. This allows the use of all DCL/SIFT
commands while the SIFT display is on the screen. The global section continues
to exist because TTDSP is mapped to it. All SIFT interface programs also map
to the global section and can transfer information from one program (or task)
to another by reading from and writing to the global section. Information in
the global section is also used by TTDSP to update the SIFT display after each
SIFT command. The global section is defined in the module gen (source code
gen.pas) and the external declarations are in file siftdec.pas. All SIFT
interface programs must link with gen andrefer to siftdee.pas in an INCLUDE
statement.

39

4. Functional Description of Programs and Sequence of Operations:

a. Programs to Initialize and Terminate the SIFT Environment:

The logln procedure for SIFT users (members of the SIFT systems group [300,*])
contains global symbols and definitions necessary to operate the SIFT
environment. This procedure defines the command SIFT:==@siftdir:siftup, where
slftdlr is the iogical name for the directory containing all executable
versions of the SIFT interface programs. The symbols sifting=--0and sifted==O
are also defined.

To start the SIFT session the user types the command SIFT (without parameters)

which is defined in the system logln procedure to call the command procedure
slftup.com.

SIFTUP.COM, MAKESYMS.COM - Slftup.com starts the process by assigning the

logical names MAP: and LOAD: to the user's default directory to locate the map

and load files. It then calls the command file, makesyms.com, to define the

symbols and command verbs that execute the'SIFTtasks. Finally, it calls the
program SIFT (slft.exe) to initiate the SIFT environment. When it returns from

slft.exe it changes the DCL prompt to SIFTS.

SIFT.EXE - The primary functions of program SIFT are to create the global

section in memory (calls the global procedure create section declared in gen),

initialize some arrays in the global section and sp_n a subprocess by calling

llb$spawn. Creating the global section requires a unique name which is

constructed by getting the first 5 characters of the process name concatenated

with ' GBL'. The subprocess also requires a unique name which is constructed
by get-ting the first 5 characters of the process name concatenated with ' DSP'.

An argument passed to llb$spawn is the command string which includes the-
command TTDSP and the name of the global section as the command llne. The

command TTDSP is defined in makesyms.com to call the command procedure
runttdsp.com. Therefore, when llb$spawn is called runttdsp.com is invoked

which in turn starts the program TTDSP and passes to TTDSP the name of the

global section. When TTDSP is executed the program SIFT exits and the program
TTDSP continues to run as a subprocess with the function of creating and
updating the SIFT display.

40

TTDSP]EXE - The program TTDSP parses the name of the global section passed by
runttdsp.com and then maps to the global section. It then calls the procedure
vtdraw (in module vtdraw) to set up the display. Procedure vtdraw cycles up
every second to update the display. Action is taken only if a SIFT command has
signaled. Vtdraw queries the driver for a list of allocated processors, halted
processors, and armed processors. The header is updated with this information
and the load, map and scope data. This process doesn't disturb SIFT operation.
Vtdraw can redraw the header (the startup sequence) or just update the header
and display fields. The display is redrawn from the DISPLAY program. Updating

the DISPLAY program's display can upset SIFT operation. Procedure up_disp
queries the DISPLAY data structure, reads memory, registers and PC as required,
and updates the screen. The section on the DISPLAY program has more
information on the DISPLAY data structure. I/O to the terminal is by QIO.
Output buffers are built holding up to 500 characters each, To insure
contention for the terminal from the user process and vtdraw doesn't destroy
the screen, the user process must wait until vtdraw is complete. This
synchronization is done through the boolean update in the global section.
Procedure set update in module gen sets update to true (signaling vtdraw to
begin), then waits for update to go false (signaling vtdraw complete).

To terminate the SIFT session the user types the command ENDSIFT (without
parameters) which is defined in makesyms.com to call the command procedure
endsift.com.

ENDSIFT.COM, UNALP.EXE, STOPSIFT.EXE, DELSYMS]COM- Endsift.com calls unalp.exe
to deallocate processors, calls stopsift.exe to stop the subprocess, calls
delsyms.com to delete all the command symbols and verbs, deassigns logical
names LOAD: and MAP:, and finally restores the DCL $ prompt.

41

b. Programs which implement the SIFT commands:

General - All programs described in this section (except command procedures and
the compute program) start by mapping to the global section and parsing the
command line if applicable. This is normally done by one function called

map andparse found in module gen. Map_andparse calls lib$get foreign (get
foreign command line), sysSmgblsc (map global section system service) and
libStparse (table driven finite state parser) to do its work. LibStparse uses
a state table which is a MACRO-11 object module linked with the main program
module (see parser state table column in section 2c(3) above). The state table
lists the keys and action routines used by lib$tparse to parse the command
llne. The action routines are functions in the main program module.

The programs which implement the SIFT commands can be classified in two ways -
programs to run and load the BDX computers, and programs for debugging.

(I) Programs for Running and Loading the BDX 930s:

ALPI.EXE, ALP2]COM, ALP3.EXE - This series of programs implements the ALP
(allocate processor) command. The user types ALP with a command line listing
the processors requested to be allocated or deallocated. The first program
ALPI maps to the global section and parses the command line (by calling the

function map_andparse in the module gen), and then executes ALP2.COM by
calling lib$do command. ALP2 does the actual allocation which is necessary
because device units cannot be allocated permanently in a program. ALP2 then
calls ALP3 which has the function of updating the global section and display.
One other function of ALP3 is to put the allocated processors in the SELect set
so it is not necessary for the user to do a separate SEL command after the ALP
command.

SELECT.EXE - This program implements the SEL (select processor) command. The
user types SEL with an optional command line listing processors selected or
deselected from the allocated set. The command is not necessary after the ALP
command since allocated processors are automatically selected. However, the
user may want to work with only a portion of the processors allocated in which
case the SEL command can be used for selection and deselection. The program
does no I/O but merely writes to the global section variable which holds the
selected set and updates the display.

ARM.EXE -This program implements the ARM (arm processor) command. The user
types ARM with an optional command line listing processors to arm or dearm. If
there is no command llne the default is processors in the SELected set. The

program calls map_and parse and then calls $QIOW with the function code IO$ARM
or IO$_DISARM, as applicable. The last thing iS to update the display.

42

HLT.EXE - This program implements the lILT (halt processor) command • The user
types HLT with an optional command llne listing processors to halt. If the
command llne is on_Itted,the default _s SELected processors. After calling
map_andparse the only function is to call $QIOW with the function code IO$ HLT

- and update the display.

START.EXE - This program implements the START (start processor) Command. The
user types START with an optional command llne listing processors to start. If
the command llne is omitted the default is SELectedprocessors. After calling
map and parse the only function is to call $QIOW with the function code
IO$-START and update the display.

LOAD.EXE - This program implements the LOAD (load processor) command. The user
types LOAD with the load filename on the command llne. The program assumes the
load file is located in the directory LOAD: and assumes a file extension of .X

if no file extension is given. The primary functions listed in sequence are as
foilows:

I) Procedure map loadfile- maps the loadfiie to an array in VAX memory
which allows the fast_st transfer of data from the file.

2) Procedure loadproc- assigns channels, halts processors, gets
additional information if the load size is greater than 32,000 words (procedure
get_loadlnfo) and calls proc@dure qlo load to do the actual loading from the
array in VAX memory to the BDX memory. If the size Of the load is greater than
32,000 words there has to be two separate load operations due to device driver
limitations.

3) Procedure verlfy_load - if load proc is successful verify load does a
procedure to read the BDX memory locati_ns just loaded into a separate array in
VAX memory, compares the read with the original load and, if there are errors,
it makes up to 5 attempts to reload the processor(s).

4) Prints an appropriate message to the screen based on results of the
foregoing operations. If the load is successful•the name of the load file is
printed in the SIFT display

43

(2) Programs for Debugging

BDXDUMP.EXE -This program implements the DMP (memory dump) command. The user

types DMP and an optional command line. If the command line is omitted, the
program prompts for information to do a dump to the screen. Besides screen
dump two other dump operations are possible: dump to a text file for printing
and dump to a binary file for subsequent loading using the LOAD command. Only
one type of dump is possible each time the DMP command is used and the type of
dump is determined by the command llne syntax. The primary programming tasks
are to determine the type of dump(performed by procedure get_dump options),
call the I/O driver to read specified BDX memory locations into an array in VAX
memory (performed by procedure read BDX), and process the output depending on
the type of dump (performed by procedure process output). The program also
allows the user to enter additional access groups (address and number of
locations) after the first access group has been processed (performed by

procedure getmore dumps). For text file and binary file dumps, the additional
access groups are _dded to the file. Create dlskfile is a procedure in a
separate module linked wlththe main program-and is called to facilitate
creation of the binary file if this option is selected. Create diskfile calls
$CRMPSC (create and map system service) which maps the array in FAX memory
directly to a disk file thus avoiding numerous disk accesses to create the
file.

44

BREAKFAST,EXE -This program implements the BRF (breakpoint fast) command. The
user types BRF with a command llne listing the memory location to set the
breakpoint. If the command llne is omitted the program prompts for the
information. The program assumes processor(s) in the SELect set. The user

• cannot choose particular processor(s) for debugging with the BRF command but
must use the SEL command for this purpose. The primary programming tasks are
listed in sequence as follows:

4

I) Procedure get_breakpoint - gets information from the command line or
prompts to determine the memory address for the breakpoint.• The user can enter
a hex address or a symbolic name (scope and label) to refer to the breakpoint.
If scope and/or label is used the labels have to be mapped to a keyed indexed
file which the user should have already done using the MAP command (see
mapsetup.exe). If the file is mapped (indicated by a boolean in the global
section), the function LOC (label) returns the hex address associated with the

label. The function LOC is in module _OC which is linked with this program.

2) Procedure save_breakpolnt - saves the contents of the breakpoint
location by doing QIO to read the breakpoint and store the value in an array
variable.

3) Procedure Control Y AST - calls lib$dlsable ctrl to disable control y
for the command Interpreter_ -Calls $QIOW with a special function code that-
establishes the control y AST. The AST is the procedure exit handler which
restores the breakpoint if the user types control y before th_ end of the
program.

4) Procedure write halt inst - calls qio write_memory to write a halt
instruction (FCO0) into-the _reakpolnt locati_n.

5) Procedure run to breakpoint - starts the processor(s)with qio function
code IO$_START and runs until the processor(s) are halted at the breakpoint.
Updates the SIFT display during this process. After each processor is halted
the program checks the PC to see if it halted at the correct location. If not,
an appropriate message is displayed.

6) Procedure restore breakpolnt - writes the original contents of the
breakpoint location back into the breakpoint address and sets the program
counter back to point to the breakpoint address (i.e., writes the breakpoint
address to the PC).

7) Procedure setupdate -•updates the SIFT display.

8) If not already in SST mode (single step), the program•calls the command
procedure debugloop.com (using libSdo command) to link this program with the
single step program. Thus, when the -breakpointis reached the user can enter

. single step commands (see snglstep.exe).

45

SNGLSTEP.EXE - This program implements the SST (single step) command but is
also entered automatically after the BRF command (see breakfast.exe above). To
go directly into single step without setting a breakpoint in BRF, the user
types SST without a command line. The program assumes processor(s) in the
SELect set. The user cannot specify particular processor(s) for debugging with
the SST command but must use the SEL command for this purpose. The SST command
calls the command procedure debugloop.com. The function of debugloop.com is to
establish a single step loop so that all DCL/SIFT commands can be entered from
single step and control will always return to the single step program after the
DCL/SIFT commands are executed. Debugloop,com also sets up a short (2 sec)
delay in order to read any DCL or error messages printed on the screen. When
SNGLSTEP is called from debugloop, a display is printed on the screen and the
SIFTS prompt is replaced by SST> indicating that single step commands as well
as DCL/SIFT commands can be entered. The primary functions of program SNGLSTEP
are listed in sequence as follows:

I) Procedure map section - maps to the global section. Procedure
mapand_parse is not used because there is no command llne to parse.

2) Procedure disp current PC - displays the current PC, machine
instruction code and d_sassemb_y of the instruction. This information is
displayed for the first processor in the SELect set. The disassembly is
obtained by calling the procedure disassemble.

3) The prompt SST> is printed on the screen. To single step the user
presses <RETURN> or types a number to single step more than one time.

4) Procedure single_step - called when the user types <RETURN> at the SST>
prompt. Single step calls procedure qio sst for each processor in the SELect
set. Qio sst does a QIOW with the function code I05 SST which executes the
single instruction pointed to by the PC. When qio sst returns the new PC is
read and the procedure disassemble is called. Wh_ disassemble returns the
information is displayed in the same format as displayed by procedure
disp_current_PC.

5) Procedure disassemble. This procedure is broken down into threeparts:
the main procedure which calls the QIO to read the machine instruction at the

PC location, procedure dlsassemble_opcode which disassembles only the opcode
portion of the machine instruction, and procedure disassemble operand which
disassembles the operand portion of the machine instruction. The data
structures used for these procedures are arrays,(or tables) to store the
instruction mnemonics and a variant record type for the 16 bit instruction.
The variant record allows a symbolic reference to any combination of bits in
the instruction and greatly facilitates coding and testing/comparing bit
fields. A separate procedure compute effective addr is called by
disassemble operand if a memory reference or skip/jump instruction is detected.
The code which results from disassembly is put in a string variable and this
plus the hex machine instruction (one or two words) are passed back to the

calling procedure (display_currentPC or single step).

46

6) Procedure multiple SST - this procedure is called if the user enters a

number at the SST> prompt.--It does a loop which calls procedure single_step
the number of times requested by the number entered. However, the display is
not printed on the screen until the last singlestep has been performed.

7) Procedure get show_procs. This procedure allows the user to choose
which processors (of those being debugged) are to be displayed and

• disassembled. By default the first processor in the SELect set is displayed
but this may be changed by typing P: Pn,..,Pm or P: ALL or P: NONE. The effect
is to show (and compare) instructions being executed simultaneously by the
processors or eliminate the display entirely.

8) Lib$do command passes DCL/SIFT commands typed at the SST> prompt and
executes the command after which it returns to the SST> prompt. (Remember that
debugloop.com performs this function of calling program SNGLSTEP in a loop.)
The command EXIT entered at the SST> prompt will stop the loop, get out of
single step mode and the prompt SIFTS will reappear.

MAPSETUP.EXE - This program implements the MAP command to associate symbolic
names (scopes and labels) used in a program with hex addresses. This cross
reference information is in a keyed indexed file (file extension .CRF) that was
created during assembly or linking if the listfile option was specified at that
time (see Appendix B). The primary functions of program mapsetup are listed in
sequence as follows:

I) The map file name passed by function map_andparse is concatenated with
the logical directory name MAP: and the file extension .CRF.

2) Lib$find file is called with the map file name to determine if the file
exists. If not, a message is printed on the screen.

3) If the map file exists (had been created during assembly or linklng),
the file is opened, several values in the global section are initialized and
the display is updated with the map file name. Once the file is mapped in this
manner, the user can use scopes and labels in other SIFT commands that refer to
BDX memory locations. See MAP command in the main section of thfs guide for a
definition of scope and label.

PC.EXE - This program implements the PC (program counter) command. The user
types PC with an optional command line. The program has two basic functions -
to set the PC to a specified address or to read the PC if no address is
specified on the command llne. Addresses can be specified on the command line

by hex number or by scope and/or label (if previously mapped using the MAP
command). In setting the PC processors can be listed on the command line or
defaulted to the SELected set. In reading the PC processors cannot be listed
and the Selected set is assumed. The write (set) PC and read PC functions are

. accomplished by QIOW calls with function codes I05 WPC and IO$ RPC.

47

STAT.EXE - This short program (only 3 lines) implements the STAT command which
causes the header information in the SIFT display to be updated. It has no
effect on the memory and register displays from the DISPLAY command and will
not disturb operation of the system. Function map and parse is called to map
to the global section and procedure set update is call_d to update the display.
Both routines are in module gen which is linked with STAT.

RDM.EXE, RDR.EXE, STM.EXE, STR.EXE- These programs, all very similar in coding
and functions, implement the commands RDM (read memory), RDR (read register),
STM (store memory), and STR (store register). The functions of each are as
implied by the command and they each call QIOW with the appropriate function
code. However, RDM/STM differ from RDR/STR in that procedures must be included
in RDM/STM for referencing memory locations by scopes and/or labels.

COMPUTE.EXE - This program implements the CMP (compute) command which converts
a number or result of an expression to its equivalent in decimal, hexadecimal,
octal and binary. It can be used as an on llne calculator with additional
capabilities of radix conversions and expression evaluation using standard
operators and parentheses. The program operates in two modes: single
computation mode when the user types a number or expression on the command
line, and repeat computation mode when the user types <RETURN> after CMP. In
repeat mode the program prompts for more numbers/expressions after the first is
completed. Also, repeat mode remembers the result of the last computation and
this result can be used in the next computation using the letter P. The main
program is an algorithm which calls a procedure gettoken to parse the
expression and uses stack data structures to evaluate the expression.

DISPLAY.EXE - This program implements the DISPLAY command for displaying the
contents of memory and registers. DISPLAY draws a display area for each group
needed to present the data requested by the user. Up to six groups may be
displayed at one time. A group is a row of up to 10 data items from a
processor's memory or registers. Registers and memory locations cannot be
displayed in the same group. The major data structure in the DISPLAY task is
the 'display record' found in the global memory partition GEN. The display
record contains an array of records each of which describes the composition of

its associated group. These 'group descriptors' (display.proc dlsp[i]) contain
information about the screen display and the I/O queries needed to gather the
required data from the SIFT processors. During command-line parse in DISPLAY,
a temporary group descriptor is built. After the parse, for each processor
identified in the command line, DISPLAY finds a group to hold its data. If the
processor already has a group, that one is used. If not, another group area is
drawn on the screen and is allocated to that processor. Once a group is found,
then the temporary group descriptor is copied into it (the temporary descriptor
is also used to define delete operations when that option is declared). After
completing the update of the display record, DISPLAY then fills in the group
areas on the screen with information from the group descriptor (e.g. processor
number, labels, register numbers). Before exiting, DISPLAY signals for a
screen update. Procedure VTDRAW uses the display record to update the screen
with data from the SIFT processors.

48

5. DEVICE DRIVER

The device driver (source file SX.MAR) handles communication between the VAX

and the device developed by Wyle Laboratories t_at controls operation of the
eight Bendix BDX 930 processors. The driver is invoked by SIFT interface
programs using QIOW system service calls and I/O function codes defined by the
driver. The following device dependent commands are defined by the driver as
follows:

ARM arm processors
RDM read memory
RDR read register i
WRM write memory
WRR write register
HLT halt specified processors
WPC write program counter
RPC read program counter
START start processors
SST single step processors
DISARM disarm processors
CLKWR write to clock
CLKRD read clock value

SENSEMODE get allocate and halt status of all processors

The device driver returns information to the I/O status block (IOSB) in two
formats depending on the function:

Format for HLT, START and SENSEMODE:

word I = return status code
word 2 = BDX status

word 3
byte I --set of processors allocated to anyone
byte 2 --set of processors halted- actual status

word 4

byte I --mask of halted processors - those requested
byte 2 --mask of armed processors

Format for all other functions:

word I = return status code
word 2 = BDX status returned
word 3 = function dependent data returned (see below)
word 4

byte I --mask of halted processors
byte 2 --mask of armed processors

49

The parameters required in the QIOW cali,::andthe function dependent output data
returned in the IOSB is defined below f6_ each I/O function code:

I05 ARM PI = set of processors
output --mask of armed processors in word 3 of IOSB

I05 RDM PI = address of destination array
P2 = number of bytes .to be transferred
P3 = number of access groups
output = number of words transferred in word 3 of IOSB

I05 RDR PI = address of destination array
P2 = number of bytes to be transferred
P3 = set of registers ,
output --number of words transferred in word 3 of IOSB

I05 WRM PI --address of source array of access groups
P2 --number of bytes to be transferred
P3 = number of access groups
output = number of words transferred in word 3 of IOSB

IO$ WRR PI = address of source array of data
P2 = number of bytes to be transferred
P3 = register set
output = number of words transferred in word 3 of IOSB

IO$ HLT PI = processor set

IO$ WPC PI --source longword i
output = program counter in word 3 of IOSB

I

IO$ RPC output = program counter in word 3 of IOSB I

IO$ START PI --processor set

I05 SST output = program counter in word 3 of IOSB

IO$ DISARM PI --processor set
-- output = mask of armed processors in word 3 of IOSB

IO$ CLKWR PI = value to "putin clock CSR
output = clock value in word 3 of IOSB

I05 CLKRD output --clock value in word 3 of IOSB

IO$ SENSEMDDE output = status of allocated and halted processors
in word 3 of IOSB

50

I. Report No. 2. Government Acc_ion No. 3. Rec,pient's Ca'_lo9 No.

NASA TM-86289

4. Title and Subtltle 5. Report Oate

Software Implemented Fault-Tolerant (SIFT) August 1984
User' s Guide 6. Performing Organization Code505-34-13-32

7. Author(s) David F. Green, Jr. 8. PerformingOrgan;zation Report No.
Daniel L. Palumbo

Daniel W. Baltrus 10. WorkUnit No.

9. PerformingOrganizationNameandAddress

NASA Langley Research Center 11. Contract or GrantNo. =
Hampton, Virginia 23665 "

13. Type of Report and Period Covered

12 Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration 14. SponsoringAgencyCode
Washington, DC 20546 }

15.Supplem,ntaryNotesDavid F. Green, Jr., Kentron International, Inc., Hampton, VA 23666

Daniel W. Baltrus, Wyle Laboratories, Hampton, VA 23666
Daniel L. Palumbo, NASA Langley Research Center, Hampton, VA 23665

16. Abstract

Program development for a Software ImplementedFault-Tolerant (SIFT) computer system

is accomplished in the NASA LaRC AIRLAB facility using a DEC VAX-II to interface

with eight Bendix BDX 930 flight control processors. The interface software

which provides this SIFT program development capability was developed by AIRLAB

personnel. This technical memorandum describes the application and design of this
software in detail, and is intended to assist both the user in performance of SIFT

research and the systems programmer responsible for maintaining and/or upgrading
the SIFT programming environment.

i

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

SIFT

Schedule Generating Utility Unclassified - Unlimited
Relocatable Assembler

Symbolic Assembler Subject Category 62

Linkage Editor

19 SecurityOa_if. (ofthisreport) 20 SecurityClassif(of this_) 121 No of Pages 22 Dice"

Unclassified Unclassified I 52 A04

.-3o_ Forsalebythe NatmnalTechmcallnformatlonServ,ce.Sprmgheld.V_rgmm2216[

