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i-ummarq

The EUV emission produced by particle excitation of the hydrogen atrnopsheres of

Jupiter and Saturn is examined using model calculations to determine the nature of the

energy deposition process and the effect of such processes on atmospheric structure.

Research supported by this grant has been conducted in a number of closely related

tasks, which range from examination of phenomenologically related processes on Saturn

and Titan in addition to Jupiter, to analysis of experimental laboratory data required

to allow accurate modeling of emissions from hydrogenic atmospheres.

1) A major accomplishment in the program is completion of work which advances

a new explanation of the hydrogen H Ly« bulge in Jupiter's emission from the

equatorial region.1 The explanation diverges drastically from earlier work, because

detailed analysis of the Voyager EUV spectrum shows that the abundance of atomic

hydrogen is constant in magnetic longitude. Earlier explanations depend on a bulge in H

abundance, in direct conflict with these results. The explanation advanced here as the

only plausible possibility, is a combination of collisional transfer of H(£s> atoms into the

H<£p) state and recombination of H.̂ "1" and H .̂"1" in an asymmetric ionosphere. The pro-

posed mechanisms have far reaching importance because the processes imply that the

ionosphere and upper atmospheric heating must be controlled by solar simulated exos-

pheric particle excitation generated mostly from an internal energy source. Saturn

appears to show a very similar deposition process,* but with different physical man-

ifestations due to a higher degree of symmetry in the magnetic field, and a lower-

gravitational field.

£> The same high altitude energy deposition processes occurring on Saturn pro-

duces a substantial flux of atomic hydrogen with energies surrounding the atmospheric

escape value of 5.5 - 6 eV. According to this work the flux is sufficient to produce
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the extended hydrogen cloud surrounding Saturn and extending beyond the orbit of

Titan. It is proposed that Saturn, rather then Titan is the major source of the

extended cloud. The atomic hydrogen detected at the rings of Saturn may originate

predominantly from the same source.

3> A cross calibration has been obtained betu/een the Pioneer 18 EUV photometer

and the S'oyager EUV spectrometers,31 thus providing a direct measure of the temporal

morphology of Jupiter between a minimum (1973/74) and a maximum (1979> in solar-

activity. The results indicate a strong apparent dependence of Jupiter auroral and

equatorial EUV emission rates on the major solar cycle. It appears that the radiative
S

power of the lo torus also follows this cycle with a similar order of magnitude varia-

t ion.

4) Atomic and molecular data required for the research program have been

obtained,4 in continuing collaborative work. Detailed analysis of laboratory data has

been essential to the successful mode!ing of atmospheric phenomena.

5) An extrapolation of conditions in the upper atmospheres of Jupiter and Saturn

has produced a predicted condition at Uranus in terms of excitation and hydrogen

escape rates that may be observed at Voyager—Uranus encounter.

Research Tasks Conducted in the Present Grant

Details beyond the following descriptions are available in earlier proposals and

reports in the program.

a> The Lye* Bulge on Jupiter

The early work on this phenomenon recognized its importance as a process unique

to Jupiter. The observational evidence immediately eliminated any simple explanation
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for the correlation of the equatorial H Lya brightness with system III <Ajjj) magnetic

longitude. Ail of the previous studies (see Appendix A) considered solutions surround-

ing the basic assumption that the bulge was caused by soiar resonance scattering in a

substantial asymmetry in the abundance of atomic hydrogen. However the production

of atomic hydrogen requires energy, about 15 eV per neutrai pair, and evidence for

the deposition of the necessary amount has not been forthcoming. The analysis dis-

cussed in Appendix A in fact has shown that the bulge in atomic hydrogen required by

earlier suggested 'mechanisms does not exist. The explanation of the phenomenon

according to Appendix A lies mostly with the preferential collisiona! transfer of H<£s)

atoms into the H<2p) state in the quiet sector region of the lower magnetosphere. The

nature of the proposed process is therefore totally different from earlier published

descriptions, because it does not involve the deposition of large amounts of energy in

a particular region of Xjjj longitude, and requires no strong asymmetry in the abun-

dance of atomic hydrogen. Thus the bulge phenomenon internally, as described here,

does not involve the transfer of significant amounts of energy and from this narrow

point of view is not a matter of direct importance in Jupiter's budget. On the other

hand the process creating the ingredients for the emission asymmetry is of extreme

importance to the understanding of the upper atmosphere and magnetosphere.

According to the present analysis the bulge phenomenon can appear only in a particle

excited exosphere. This particle excitation process controls the production of ionos-

pheric particles., neutral hydrogen, and probably the upper atmospheric temperature.

Evidently it is also the dominant source of the H+, K£
+ and Hs

+ ions loading the magne-

tosphere throughout the region to the "'88 Rj bow shock. The H Ly« bulge in this

description is therefore an outcrop of a process which is a controlling influence on

the upper atmosphere and magnetosphere. Although the bulge can be explained in

quantitative terms through models of the observed effects, the underlying mechanisms

for the generation of particle energy and heat deposition is very difficult to explain



<Appendix A>. It- is without a doubt the single most important factor influencing the

condition of the upper atmosphere-magnetosphere system and should be the subject of

intensive studn in future work.

b> Long Term Temporal Morphology at Jupiter;

Pioneer 18 vs. Voyager

Appendix A also briefly discusses the changes in Jupiter's emissions over the 1973

- 1979 time period. Uncertainties in relating observations in 1973 to the later

encounters stem mostly from questions of relative calibration of the observing instru-

ments. Part of this year's research program has been devoted to establishing the

relative sensitivites of the Pioneer 18 (PIS} and Voyager EUV instruments. The primary

results of this work are being published in a paper by Shemansky, Judge and Jessen

(see references in Appendix ffi. The sensitivites of the instruments have been related

through common observations of the interstellar medium. The results indicate that the

apparent intensities from the P18 instrument in the long wavelength channel must be

multiplied fan a factor of 4.4 in order to place the two instruments on the same cali-

bration scale. The H Ly« emissions from Jupiter calculated on this basis are more

than an order of magnitude weaker in 1973 at solar minimum than they were at Voy-

ager encounter in 1973. This result gives strong support to the conclusion in Appendix

A that solar photons act as a stimulus to internally generated energy deposition at

Jupiter. By implication, Saturn behaves in a very similar manner. These results pro-

vide a basis for model calculations aimed at simulating conditions on the outer planets

as a function of major solar cycle. This work also impacts research programs on the

morphology of the lo plasma torus.
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c) The Atomic Hydrogen Torus in Saturn's Magnetosphere

Last year's proposal for continuing research in this program discussed work that

suggested the neutral torus at Saturn and the ring atmosphere were mostly supplied

from Saturn's exosphere rather than local sources or Titan. The escape of atomic

hydrogen from Saturn was calculated on the basis of a phenomenologically similar pro-

cess as that described for Jupiter in Appendix A. The results of this work published

orally by Shernansky and Smith <see references, Appendix A) remain valid subsequent to

the detailed study of hydrogen reactions in Appendix A. However, work on this impor-

tant question for Saturn has not proceeded over the past year because of limited time

resources. It remains an important part of the research program that must receive

attention. An important factor in this study is the role played by Titan. The upper-

atmosphere of Titan requires a substantial research program as a separate subject,

although atomic data in the EUV for nitrogen has vastly improved since the time of

encounter, research in this area has not proceeded because of resource limitation.

d> Uranus

The recent preparations for Voyager encounter with Uranus have stimulated some

unpublished research (Shemansky and Smith; assuming that upper atmospheric energy

deposition processes analogous to those at Jupiter and Saturn also take place on

Uranus. The basic major difference in physical conditions at Uranus is the much lower
i

gravitational field. This allows substantially more of the dissociated hydrogen to

escape, giving Uranus a comet—like character. It is then possible that the Uranus

rnagnetosphere may be heavily loaded with protons, given the proper conditions. The

accompanying table gives a rough projection of rates. Although, as the table data in-

dicate, the estimated loss rate is not significant for total atmospheric evolution consi-



derations, it is many orders of magnitude larger than previous estimates based on

satellite or other sources.

Exobase Production Rates and Escape of Atomic Hydrogen

e +• H2 -r H-:«t> -•- HiJfiJf) -i- e

-«• H<«jJ> + H* + £e

-t H.2
+ + £e

Dissociation Production <s-1> 1.6 x 103* 3 x 10" £ x 102&?
Rate <crn2 s-1> 5.1 x 19* 1.7 x 10* 5 x 10e?

HI escape energy (eV;- 19. 6. £.

Escape yield CO 9 "15 --86

Loss Rate (kg yr—1) £.4 x 10* 8 x 10*?

Loss Lifetime for £00 km am H2 <yr> 1011

Exobase ion density (cm-3;1 £ x 16s £ x 18H

These estimates exclude auroral activity
(

e) Atomic and Molecular Data

Developments in atomic and molecular data have played a strong role in a I touting

the research in this project to move forward. The ma.jor work establishing the

importance of higher H.^ Rydberg series band systems and providing rneaured cross-

sections has been completed ^Appendix B>. Further research having a broad effect on

cross—section measurements in general is described in Appendix C. Ongoing ojork in

collaboration ujith the authors of Appendix E is in progress relating to the triplet

system of H2 and improvements in accuracy of transition probabilites of the higher H;

Rydberg band systems.
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