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14. Absw._"

A quantitative evaluation method of the suction
effect from a suction plate on side walls is
explained. It is found from wind tunnel tests
that the wall interf6rence is basically described
by the summation form of wall interference in
the case of two dimensional flow and the interference
of side walls.
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A NEW METHOD OF EVALUATING THE SIDE
WALL INTERFERENCE EFFECT ON AIRFOIL
ANGLE OF ATTACK BY SUCTION FROM THE
SIDE WALLS*

Hideo Sawada, Seizo Sakakibara, Mamoru
Sato, Hiroshi Kanda, Toshio Karasawa**

i. Preface

Interference from the walls of a two-dimensional wind /i***

tunnel is generally treated as being identical on a flat

surface where the flow in the test section is in an arbitrary

position and is parallel to the side walls. However, the actual

flow area which is created in the test section is not flat.

The space between the side walls in the test section of the

wind tunnel, which is called a two-dimensional wind tunnel and

the wind tunnel which was made for testing only airfoil models,

is very narrow compared to its height. Thus it is natural to

consider that the flow area in the test section is completely

different from the flat one. If the width of the test section /2

is wide enough, the flow area which is created inside approaches

the flatter one. Here the width of the test section is very

narrow compared to its height (ratio of height to width is

greater than 2), so we shall call the wind tunnel for testing

only the two- dimensional model a two-dimensional wind tunnel.

One of the wind tunnel wall interferences which will become

important for the two-dimensional wind tunnel is side wall

interference. Since this has a narrow space between the side

walls, the boundary layer which was developed on the walls

has a strong influence on the region which is considered as the
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flow potential formed in the test section. Because of that,

the flow area in the test section does not become two dimensional;

therefore, this phenomenon is called side wall interference.

It is verydifficult to evaluate the influence on flow potential

in the boundary layer which develops on the side walls. For

example, at a junction of two dimensional model and the side

walls, there is a very complex three dimensional boundary layer.

It is currently still impossible to predict the motion of a

viscous fluid there accurately. Therefore, as far as the writers

know, evaluation of the amount of side wall interference has

been impossible until now. Except Jn the cases that the lift

of the airfoil model was large or a shock wave occurred on the

airfoil, it is known from experience that the amount of side

wall interferences is small. When the space between the side

walls is extremely small compared to the height of the test

section, it was reported that the amount of side wall inter-

ference becomes large, so it must be evaluated.[l]

In the two dimensional wind tunnel where the performance

of airfoil models at high subsonic speed is tested, a suction

plate is installed in a portion of the side walls around the

model in order to prevent the shock wave from bending toward

the span direction. [2,3] In the conditions under which the

suction plate is installed, fluid in the test section can go

in and out of the test section through the suction plate to

some degree. Also, the amount can be changed byadjusting the

pressure bleed chamber on the side of the suction plate. Experi-

mentally it is known that, if the amount of fluid suction in

the test section through the suction plate is increased, the

lift which occurs in the airfoil model matrix increases [4].

Therefore, even at the same flow velocity and at the same angle

of attack isetting, different lift coefficients are obtained

at different amounts of suction. It is currently difficult

to determinewhich lift coefficient of which amount of suction

is the real lift coefficient of a two dimensional airfoil model.
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Considering the present conditions, the writers have already

reported a method of handling wall interference of a two dimensional

wind tunnel as wall interference of a three dimensional wind

tunnel [5]. Osing this method, in this report, we are going

to explain the quantitative evaluation method of the suction

effect from a suction plate on the side walls.

2. Analysis

The most important thing at the time of quantitative evalua-

tion of wind tunnel wall interference is that it is necessary

to decide beforehand about what is the case of no interference.

In this report, we are going to follow a report which has been

written by these writers and has been publiclypresented already

[5]. _ Namely, the following concern the flow area which does

not have wall interference and the airfoil model matrix in it.

(i) The condition of homogeneity is the same as the one

of the wind tunnel.

(2) Although the width distribution of the airfoil model

is the same as the airfoil model which was used for the wind

tunnel test, the length of the span direction of airfoil model

matrix is infinite. Therefore, the circulation distribution

which occurs on the airfoil model matrix is invariant toward span

direction.

(3) The circulation distribugion of airfoil chord length

direction agrees with the one on the central sectional surface

of the airfoil model matrix in the wind tunnel test.

On the other hand, when there is a homogeneous airfoil

which spreads out infinitely,iif the minute disturbance potential

7 follows [5], the following will be described.
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Here, _ will be defined as follows.

_=U q(9_+_) (2)
_=#,._ (3)

(_y,z)= (_,v,o= (_,#_,_) (41
p= JT--u£ (51

ALSO,

! I

-_='j(__X)z+(__y),+(¢_=)z •(6)

From the basic condition [2], equation [i] will be transformed

furthermore

_ 1 _ XT

(x,y,z)=-_J

+ If _ (71 13

and it•is understood that _ does not change toward _ direction,

namely the span direction. However, in the wind tunnel•the

minute disturbance potential of flow area which occurs from

the airfoil model matrix is three dimensional. According to

[51

(x,y;z)=-If ..s(¢,v)"W[¢-od¢av
J J,

Swing

-ffz (,_._+w._]_ ,_,_v (8).
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Here,_ is defined to be the same as _ as follows:

{ @=uoo($+Q) (9)(10).

A1 so

_= 8HL I_--_ 4=B _ I m

x c0s-L-"(,I--y)

oo oo
1 1

.=,.,=, T'e- "c°'T( _-Y

x co,T (¢-')
111)

Here,

V_ r_ 2 77_ 2 (12)

Also,.the domains Swing' Sw are shown in Figure 2 and the domains
' Y)Z are the test surface. Namely,

H

L

Also,

{_(€,,_,o)_,.=_(e, L,O -.._(e,--L,¢) (15) .

[w(_._._')]__=a!(_._,B)-w(_,,/,-!D ( 16)1
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Figure i. Wind tunnel test z
section.

Figure,2. Swing and Swake _ /4
uniform flow

-5wing

(_,.:S.o) S.Qk.

[_'<e,_,cO_+=}_+o{_<_,_,E_
-_(_,_,-E)} (17)

oo

f a_s=- _ (181

:°°8w (19)

Figure 3 shows the coordinates, etc. of a test section
of a two dimensional wind tunnel.

airfoil model

Figure 3 Test section of =.-"[---'---";--t ,21./L
two dimensional wind tunnel.
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The width distribution of an airfoil model matrix is

invariant toward span direction, so equation (8)will be as.

follows:

_ L

x L L

(20)

Here, wind tunnel wall.interference potential _!is defined as

a difference from minute disturbance potential _(x,o,t):hgt_eSwind

tunnel central cross section and_,y,z)of free flow._.Namely,

9(x,z)= _(x,y,z)-¢(x,o,z) (21)

:)

_(x,z).wil_bedesc_i±bed_asfollows by the positive forms of equa-

tions .(7), (20), and (21).

1 _XT oo _ --x
_(_,z)=--[ s2(t)"

2=j=L .=,[(zB_+z)'+(_-_

+ (_r_._z)_+(_'__._2_&"
oo L

X L _"-L

i z _~+
"_2,_ (&-a_)_+z-----/- €)-

(22)

+ff/,,.. dgd'l
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Therefore, _._.±0)._=_.±0} , which corresponds to the increment

of the velocity component in the x, z direction by interference_

from wind tunnel walls on the airfoil surface (z_0) , is as
follows:

I _XT

_=(x,+0)=--/ s_(e)
2=., XL

!

'_' "_ (e-x)-_} deX[4H--'"_co,,ech" 2-_

.,,'0

Here,

× £1('_ _/(2_--l)z+'z'z )

for ,,=1,2,3, ...... (24)

l=H/& (25)

Figure 4 and 5 show a picture of Ji"_(x;l_)/ in terms of x. Also,

v'-c ' "Lc is the following quantity.

_o.3i

-0.3
,I-! t"e

Figure 4. -s k_; !)



_ ' ",_03! n=O

......
,-0,3

Figure 5 8 kL ;5)

H
°('_=_f_.{,,(e,L,O-,,(e,-L,:)}_'LC

xcosgC dC (_=0,1,2,......) (26)H

L

wzca("_--Z-'-L1f _L{w(_,_l,H)_w(¢,_l,_H)}

rtt_

xcos-T _d_ (m--o,l,2, •.....) (27)

Figure 6 shows u_, WHC which is approximately the representa-
<o

tive case.

_a£@,(x, ±o)=
x L

/.

+ 2--_"

- _ _._(_)-_(-7 ;_)_
.11,'0 ,_o

f_. ,),(_) ,:_
Here, ¢(v_(=;l)=T g _( v_2,,_,)z+_)2_2,-"= ..

v-I (29)

for _=1,2,3, ...... 9
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, - _. (30)
m_',l eoseeh (m=,l) ._(--x) x e -_/_'2+ _',n'' Izl "

i '_' 1

._, ,/( 2u: I )z+_r_+ ,_*n(_)'''_'i :_-2,,,a_

" for m=I,2,3, ......
i

t

-- V /6

, )

: * V

JI

t
t

€

$

.• t_,i _

¢

> ' (

o1.) and v_"1(n= 0,I,2)Figure 6. u,Hc
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Figure 7 and 8 •show a picture of_")(_;l),j_(_,l)interms of x. Also,

°_ °(") is the following quantity.t_HC , PLS/

=.c =
L

x cos--_-_d_/ m= 0,1,2," ...... '('31)

Figure 7.1. _ i

o.II
_ In=2 n.-1

-3 L-I 0 J/L I 2

0.5

Figure 7 2 _,i_htfu.:tio,_ 1• ° ,,a._.5

(-)t _ s)

v k'_-;

-2 -1 0 1 2

o.s

m----O !

m=2

-z.o -,.o oo _.o _/g 2.0

Figure 8,1. J_ (_- ;
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Figure 8.2. _ ,0.3

0.2

[0.

m=l i

-2 -I 0 JTH I \ 2

H

a(.) 1 f_/./

)<sin -_ _"dC _,= 1,2,3, ...... (32)

Figure 9 and i0 show the representative case of _sc,u_ .

From the characteristics of ./s")(.ril ) if 1 is small, toward

at .n_l , i_")_is very small toward I_°_ . Consequently,.the
• (-)

term :which affectS_J_ (x;1)(_1) can be ignored compare d to the

other terms. As known from equation 125), 1 is large in the

usualy two dimensional wind tunnel; therefore, we can approxi-

mate equation (23) accurately as follows:

/

1 ,

4// _,_

- _ ,,,.c,,,"l,C_;a) 't
.- .-"0 €,o

! ' i ' ,-I/,_ |a,|'

i ki

I Ceiling floor

12 Figure 9• sgCabd(=----0'l'2)
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Here, _ is a large positive integer.

The Ist and 2nd terms of the right side of equation (23)'

describe the amount of barrage interference in the two dimensional.

case obtained•when the flow potential which is formed in•test

section is completely flat. The 3rd term on the right side

of equation (23)' describes the influence that suction of fluid

in the•test section from side walls exerts on the flow potential

formed in the test section. Therefore, if this term is evaluated

quantitatively r it means that the amount of interference which

corresponds to the x direction•velocity increment in the side

wall interference effect was evaluated.

/8

€

€

!

> <
< >

Figure i0. v_s(")(n=l,z>
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On the other hand, from the characteristics of J_(x;/)if

is large, the value is extremely small at m_i , and it is °,

understood that_H'_c(m_i)hasalmost no influence on the value

of the right side of •equation(281 Therefore, equation (28) can

be approximated as follows in the two dimensional wind tunnel.

L

++,±o=fcf
XL " -L

1 1 . +

+ z_ (e-_)_G>-] de

• oo a(o)

_ r= .+ _., e-= _)_(_)+j_==..-, _ (28)'

Here, _i is a large natural number. The first term on the

right side of equation (28)' describes the interference effect

in the case when circulation distribution of airfoil model

matrix in wind tunnel changes in the span direction. The 2nd

term describes the interference effect from upper and lower

walls of the test section when the potential flow area in the

test section is completely two dimensional. The 3rd term describes

the amount of interference which corresponds to the increment

in the z directional•velocity component of the side wall

interference effect.

How, for simplicity•we assume•that the pressure distribution

of•the airfoil model•between both side walls becomes constant

with the proper suction from the side walls. This was confirmed

from the experiemental fact that even if the amount of suction

from the side walls is changed somewhat, the pressure distribution

of the airfoil model is constant in the span direction. (refer

to Figure•Ii). We are going to limit our statements in the

following discussion only•to the cases•when this k_nd of assumption

14



is realized. Since 'C_]_,: is invariant in the y direction, equation

(28)' is further adjusted and it will become "

1 rXT +

4B,] Xl"

I f_zr:.+
+_-_J<_J-.(_-_)_

%

- ___),e
- 1_}.ell

- _,J-2" ¥) (28),,

All of the right hand 1st, 2nd, and 3rd terms in the above

equation exhibit two dimensional lift interference.

From the above, in the case when an airfoil model test

is performed with the two dimensional wind tunnel, if the proper

suction is performed from the side walls, and the pressure dis-

tribution of airfoil model matrix is made constant in the span

direction, wall interference of the wind tunnel test section ___

will be described by equationI(23)' and (28'') as the usual ;!

two dimensional wall interference and the interference by suction

from the side walls, c;sBc_B c,

.',/ =, O. 5 0 -0. 130 -0. 112 O.278

Figurefacefromi_thespan°fleadingll'40%Pressuredirection.airfoiledgetodistributiOnchordairfoillengthtopas=°°" _r-L°1_ 0-06s9-0.47z 0.sls

-0.5

-Lo o.o l.o 15
y/L

I I



3. Evaluation of the influence on the effective angle
of attac_on an airfoil model b_ suction from the
side walls.

The test surfact, which is flat and parallel to the•side

walls, and which exists outside of the boundary layer created

on side•walls and•which is crossed by the,7-axis at the points

L,-L, is made 2L,Z-L . Until the iast section (Figure 3)it
was understood that the side wall interference of a two dimensional

wind tunnel can be evaluated if the distribution of the velocity

component•perpendicuIar•to the test surface is known. The boundary•

layer which developed on side•walls influences its outside flow

potential. It is possible to evaluate the influence if the

velocity component which is•perpendicular to this surface is

measured on ZL,Z-_ . However, in fact, measuring thisvelocity .

component over the surface is difficult. In the case when flow

of uniform Mach number and the airfoil model angle Of attack

are low, as they do not form a supersonic domain and large separation

area on the airfoil surface, the side wall interference effect

on a two dimensional wind tunnel by the boundary layer which

is created on the side walls of this•kind of solid has been

ignored except in the case when the space between the side walls

is exremely narrow compared to the height of the test section.

(for example, H/L = 5). Because of this reason we will not

discuss the influence of the boundary layer•which occurs at

the solid•wall section of the side walls; we will only•discuss

the influence in the case of a suction boundary•layer on the

Side walls through a suction plate. Especially, it is understood

from•the discussion in the previous section that _(_0) on the

x axis introduced from the influence of the boundary layer becomes

from equation (28)''.

16



upper slottedwall

test section / suction boxes

_ •

l._._rfoil model '

.i It.s
porous p a

/ _solid side walls
-. lower slotted wall

Figure 12. Suction mechanisms from side•walls.

The fluid suction method in the test section is considered

here as a method shown in Figure 12. This is a suction•method

which is employed in the two dimensional wind Gunnel of the

National Aerospace Laboratory. [4] As understood from the figure,

control of the amount of suction is achieved by controlling

the pressure in a box called a suction box by•properly.adjusting

the degree of opening of the valve for controlling suction amount.

Here, the influence of the pressure change in this suction box

on v(x,L,z)and v(x,-L, z); namely, the influence on the velocity

component perpendicular•to the test surface at ZL.Z-L , which

is the.test.surface near the side:walls, can be approximated q

if the.static pressure at the point of (x ± L, z)in the test

section isproportional, to the square root of the pressure differ-

ence with the pressure in the suction box. This approximation

is.used widely for the aerodynamic characteristics of a porous

wall. Although this does not always describe a highly.accurate

approximation, it is known that the basic characteristics are

sufficiently described [2].

l _ •(33)

Here, "!_. is density of a uniform flow.wind tunnel, Iv_ is

the•velocity component perpendicular to the suction plate, p

is thelateral• pressure of test section of the suction plate,

17



P_ is the suction box pressure, and K is a constant which

is called the suction plate pressure loss coefficient. It is

known that this pressure coefficient is not always constant

[4], but it is constant for large change of p. The change at

the position of the static pressure in the flow area around

air foil model is almost of the degree of dynamic pressure except

for the area veryclose to the airfoil surface. Therefore,

in the case when fluid in the test section is sucked by using

a suction plate near the airfoil model matrix, it does not matter

if the pressure loss coefficient is constant. If both sides

of equation (33) are divided by the uniform flow dynamic pressure

--c_= r-_-_. (34)
i

Here, U_ is a uniform f!ow velocity

p-_@=
1 , (35)TP_U&

C_= ! . z (36)

Here, m_ is a uniform flow static pressure.

Since the direction of v.C is toward low pressure, equation

(34) is rewritten as follows: _

-_ = sgn(cj,-CpsB)._ Jlcp-CPs_l (37)

where the direction which is decided as positive is from the

inside of the test section outward through the suction plate.

Figure 13 is a figure looking upstream from the downstream side

, of the two dimensional wind tunnel. In the case when the fluid

inside of the test section flows out, the sign of the velocity

component perpendicular to the wall is positive..On the other

hand, when fluid flows out after going through the suction plate

on the leftside, the sign becomes negative. Now, if the pressure

coefficient, which is defined by equation (36) of the pressure

18 r
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"' ' . and the pressurein the right side suction box, is set as .c_8,,

coefficient in left side is set as ces_._

v.(x,L,z)=s_( ' .ce-C_;ss). ,Jlce-¢;sBI (38)

v. (z,--L, z)=--sgn(Ce--C_sB).tcJICp--C_s, I ( 3 9 )

Here,.kis

•=1/V_- (40)

On the other hand, from equation (9) and (i0) which are definition

equations of the minute disturbance potential @, ,%(x,±L,z)=p'o.(x,±L,z)
(double signs are in the same order) (41).

Here,

v=@_ (42)

Therefore,

+ +

v(x,Z, z )= sgn(Ce-ceSs) .fl _.V/Ice-cl,sB.I. ( 3 8 ). '

,,(=,-L,:)=-,,,(c.,.-c_,,).p,.jJ_-_,._,,j (391'

q

If.V of equations.(38)' and (39)' are substituted in equation:(32),

" H ' " "

Va(Z_a)--
Zl -H

H

rt= 1,2,3. •..... . (43)

19
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_(n)+ a(n)"
Here, we will define the amount of _Ls , v_

_,(._ p H + + "
'_ -"7 f j_(_"-%_"/_c_'-%_ (44)

Y

l model

Figure 13. c_s8&cvsB " H

-H

×siny _ (45) /ii

, a(.)
If v_, is described by using a(.__(.)-•P_ _UL$

vi(s.)I , ,,(.1+ ,,(.)_ (46) ,

Therefore, if the amount which corresponds to an increment of

the velocity component in the z direction of the side.wall inter-

ference described by..(28)''' is described by. @;(z,±0)

1 NL f a(.)+

(._,.e-= ._),£(..._)x,v£T;

" f" °''- '- _.. v_ .._.") ;,l)a ' (47)_-----I--OO

o
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ia(.)_
AS understood from equations (44) and (45), v_ is equal

to the case of ,v_ which was made by some method to become

equal to the pressure in the suction box located on the left

side of Figure 13. .Va_)_i_.is also i_(,_v_when the suction

pressure in right side is made equal to that of the left side.

Because of that reason, ._z_,±0) described in equation (47)

describes the average amount of suction interference from the

slidewalls which is found when the pressure in one of the two

suction boxes enters both suction boxes; and, on the other hand,

the interference amount which is found when thepressure in

the other suction box enters both of the suction boxes. And,

it means that the amount of side wall interference bysuction

is described when different pressures enter the two suction

boxes. Definitely, for the fluid suction process in the test

section from usual side walls, it is attempted to make the inside

pressure of both of the suction boxes possibly become equal.

However, as in the two dimensional wind tunnel of the National

Aerospace.Technical Laboratory, in the case when the left and

right side suction systems are separated, the internal pressure

of both of the suction boxes cannot agree completely. However,

it is understood that this case also can be evaluated sufficiently

if equation (47) is used.

From the above discussion if Cp(x,±L,z) is measured on
' 4- -

suction plate, and . .cp_,cp_iis also measured at the same ,.

time, it is understood from equation (47) that an increment

_.(x_±0)of the z directional velocity component in the amount
of side wall interference from suction is found. However, as

understood from equations_(44) and (45), an undetermined k is

still included in * !_P'+_.(x,_0)i . Strictly speaking if C_sB,CPsa_,

is defined /9,;(x,+6)/ is simply determined, k can be uniquely

dtermined beforehand from other experiment, but under the conditions

where a uniform flow runs is test section, a boundary layer

develops on the suction plate and k must be determined for various

cases. Because of that we will state the method in this report

21
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that even if the value of k is now known, the suction effect

wili be known as follows. If _ _,±0) is obtained from equation

(47), the upwash distribution from.suction on x-axis becomes

!
---_$(x,±0) (49)#

An increment, d_ of the effective angle of attack of the airfoil

model corresponding to this.upwash distribution is

_ao=-I__:_:_,±o)dx
o _#j:_ (50)

[6]..HOW, ks is.defined as follows:

Ja=aas/, ,I( ) (51)

AS mentioned before, , Jas_is not determined unless k has been

determined. On the other hand, from equation.(51), regardless

of k, _. is the amount to be determined if ce.+ -. CPsn,CPss is

known. Now, assuming that the proper amount of suction from

the side walls are performed, ,.dasbecomes 0. At this time

:_s also becomes 0 no matter how much the k values from equation

(51) are. Namely, if suction "from side walls is adjusted for _. . S:I

to become:0, no change,in.the effective angle of attack of airfoil

model with suction occur. But, during the experiment,it.is

considered that it.is difficult to adjust the amount of.suction

by calcuiating das: in order for the value to become 0. Therefore,

in the case.when a portion of fluid in.the test section is.sucked

through the suction plate from side walls, the pressure, in the

suction boxes is.variously changed, and cP. + -CPsB,CPsS and the

• lift coefficient of.the model are measured. Needless to say,

the.value of the lift coefficient is changed by the value of

ic_mC;s_. . Next, da_ of various cases is found,with these /i___2
measured,values, and it is plotted on a :c_.-_a_surface with 'cL,

at that .timeas Figure 14. The straight line which goes through

these points shows the value of the lift coefficient,in the

case.when.the point, which crosses,the !eL axis, becomes _as*=o .
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Figure 14. _s-_ surface.

4. Applications of this method for evaluatin9 the influence
of suction from the side walls in the two dimensional
wind tunnel of the National Aerospace Technical Laboratory

The test section of the two dimensional wind tunnel has

a width 300 mm, height 1000 mm, and the upper and lower walls

consist of walls with multiple slots. NACA64A410 is used for

the airfoil model matrix and airfoil chord length is 250 mm.

Suction of fluid in the test section from side•walls is achieved

through a permeable disk of sintered metal. The effective

diameter of the suction box side of this disc is 460 mm, so

it was considered that the effective configuration of the suction

plate was a 460 mm diameter disc. In the beginning, a disc

shape was used for this suction plate, but later it was modified

to a half disc shape in which the sealed bottom half was used.

In this report only the experimental result of uniform Mach

number 0.50, total pressure 4.0 kg/cm2, and stagnation point

temperature of about 20°C was used. Please refer to [4] for

the details of the experiment.
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Until the last section we stated a method of evaluating

quantitativelythe influence on the effective angle of attack

of an airfoil. If the pressure distribution on the suction plates

of the test section and pressure in suction box are known, suction

of fluid in test section through the suction plate influences

effective angle of attack of the airfoil model. However, static

pressure pores, etc. to measure pressure distribution at the

plate are not installed in the suction plate in this experiment.

So, we decided to assume the pressure distribution across this

suction plate from the pressure distribution of the central

cross section of the airfoil model matrix. First of all, since

airfoil model pressure distribution at the central cross section

of airfoil model matrix was accurately found, static distribution

over the entire flow area in the case when the pressure distribu-

tion occurs was found by using the thin airfoil approximation.

The influence of upper and lower walls toward pressure distribution

across the suction plate in the test section of the two dimensional

wind tunnel of this laboratory becomes, at the highest, of the

order 10'2 of the coefficient of static pressure. On the other

hand, the influence which the airfoil model exerts on pressure

distribution across the suction plate is 1 order higher than

that. Therefore, in the casewhen the static pressure distribution

over the flow area was found, the influence of upper and lower

walls was ignored. Figure 15 shows the example of pressure

distribution on a suction plate which was found as above.

0.0 _= 0.2_

aS= 0.0 °

(460mm i. d_e_r)

Figure 15. Lines of constant pressure on suction plate.
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Since the thin airfoil approximation is used, this pressure

distribution is not accurate near the leading edge of airfoil

model; pressure distribution around this area is not so closely /13
related to the influence of suction front the side walls of

the test section on the effective angle of attack of the airfoil

model. This is because the velocity component perpendicular
to the side walls around this area does not influence the effective

angle of attack of the airfoil model. Figure 16 shows how strongly

thevelocity component which is perpendicular to sidewalls influences

the upwash at the 1/4 airfoil chord length point of airfoil

model, _.*(0.±0) which is directly related to upwash and

downwash by equation (49).

H/L= 3.33

M, =0.50
1. Oi -0.25 -0.2 H/c =2.0

Lie = O.6

-0.2! -0. 1

--0.

-0.5 -0.25 0.0 0.25 0.5 0.75 1.0 o

Figure 16. Weight function of u._ .

Symbols show distinction of upwash and downwash, and the absolute

value shows the strength of the influence. This figure was

found byusing equations (28)' and (32). AS understood from

the figure, the velocitycomponent perpendicular to the side

walls verynear the x axis does not influence the effective

angle of attack of the airfoil model so much, compared to the

kind of velocity component which is at a point some distance

away fromx axis. However, if R is large -- namely, in the

case when the space between side walls isvery small compared

to the height of the test section -- it is understood from Figure 17

that thevelocitycomponent perpendicular to the side walls

near the x axis also sufficiently influences the effective
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angle of attack of the airfoil model. In this case since the

influence of the complex three dimensional boundary layer which

occurs at the region where the side walls and the airfoil model

matrix are connected influences the effective angle of attack

of airfoil model as it is, applying the suction effect evaluation

method of•the•suction effect found in the last section for this

kind of influence evaluation must be avoided. The test section

which,is handled•in this section is equivalent to the case of

Figure 16. .,
_/L = 6.67

M =0.50

5/€ = 2. 0

1.0_ -0.5 L/e=0.3
-0.25

i
/
!

/
/

/"

I
-o.5 -o.25 0.0 o.25 o.5 0.75 1.0 _o

Figure 17. Weight function of u..

As mentioned before, the"suction plate was completely •orbicular

for the two dimensional,wind tunnel at the National Aerospace

Laboratory. When•this•kind of suction plate is installed•in
;!

the•test section, flow occurs across this suction plate from

pressure surface side of airfoil model matrix to suction•surface

side. Because of that, the absolute value of the lift coefficient

becomes much smaller compared to the case in.which side•walls

are made with solid walls and also in which the velocity component

perpendicular to this kind of wall is only •rarely.derived. This

aspect is shown in Figure 18.

Figure 19 shows upwash distribution on airfoil•surface

which,is derived by•suction from side walls.
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_ , M =0.50 e
,__ _' fully solid side walls

O. 3 a s = O. O" • '

? o o
cL i o

/ o
0.25

o circular porous plates

o semi-circular porous plates\j
Control valves for suction are

completely closed.

O.2
-0. 2 ' -0. 4 -0. 6

c"sB+%s
. \ 2

Figure 18, Effect of• suction from an orbicular shaped suction
plate.

M=O._

aS= 4.0" d 0 O (_ 0 (_ O"
€ o

<3 0.2- -
C,,s_ c,.

- _--_._*,(_/c,+o) o -o.919 -1.1_7o.791
0-0.197 -0.227 0.702

O. I-

$

0
o., 0.25 0.5 o

-0.25 o' o o o 0.75
0 0 0 0

x/e

Figure 19...Upwash distribution on airfoil surface which was
derived by suction from side walls. /14

Although it seems that•the upwash angle is changed very much

on.the airfoil surface, the value of k is extremely.small. In

fact it is.said that,there is almost no change in upwash angle

on.the airfoil surface. Figure 20 shows the configurational

change of the airfoil model•in the case when the actual airfoil

model received upwash angle distribution in the case of _=4._
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in Figure 19 by the suction from side walls, by using a k value

of 0.•0476which was determined logically •later.

• 0.0476

-- _ ) ' uncorrected
40 U,,,

Figure 20. Airfoil model after revision (NACA 64A410).

As understood from the figure, the camber configuration•of the

airfoil model almost did not change. This type of airfoil model
T

configuration rarely changes in the experimental results handled

in this report; the influence was received as a change of the

effective angle of attack. We are going to discuss the influence

exerted on the lift coefficient from side walls by suing only _a_

which as a proportional relationship with the increment Ja_
of the effective angle of attack of the airfoil model with

suction from the side walls.

Figure 21 shows a combination of d_ and cL which are

" toward various pressures in suction box•plotted on an _as-q
surface.

_0 M =0.50
d

0 0 _= 0.0"
o

0 _= 4.0"

0.5

o oO0

-o'•z -o:1 o.o o.1

Figure 21,cLvs. aa_. ' /15
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As is understood from this figure, even if the pressure

in the suction box is changed variously, (in this case as the

pressure of suction box is lowered, marks O and _: move

to their right), _ which is derived from the suction does

not become 0. Namely, flow x occurs in this orbicular suction

- plate from the pressure surface of airfoil model through the

suction plate toward suction surface. And even if the pressure

of the suction box is lowered extremely, it shows that the

influence toward Aas barely disappears_. If the pressure in

the suction box is lowered in order to weaken the flow of fluid

in the suction box to the test section through the suction plate

toward the pressure distribution on the suction plate on the

suction plate side of the airfoil model, a flow toward the suction

box occurs from the larger test section through the suction

plate on the pressure surface side of the airfoil model. Therefore,

in order to avoid this bad circulation, the suction plate was

remodeled to one in which the lower half of this disc shaped

suction plate was sealed up. Because of that, even in the case

when thevalve that controls the amount of suction is completely

closed, as shown in Figure 18 the lift coefficient, at the time

when the suction plate with this airtight lower half was installed,

became very close to the case in which the sidewalls are completely

solidwalls. Since this half orbicular suction plate is the

original orbicular suction plate with the lower section sealed

up it has completelythe same pressure loss coefficient as the

orbicular suction plate. Namely, the undetermined constant

k, which appeared in the last section, is the same for the orbicular

suction plate andthe half Orbicular suction plate. Figure

to Figure 26 show the combination of _ and '_ obtained

by Suction effect experiments using the above two kinds of

suction plates, plotted on a _-q surface. From these figures
in the case when there is no influence of suction from the side

walls on the effective angle of attack of the airfoil model, q

is found when _a_ is 0, and the one which is plotted on cL-a_

surface is Figure 27.
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M =0.50 o circular porous plates

as=O, O" e semi - circular porous plates

_ _ 0.35-

0

cL _P
Q

0.3" e

0
0

0

-o:2 o 0:2 0:4.....

Figure 22. CLvs.Ja_ .

!

M = O.50 O.64 Q semi-circular porous plates

qaS= 2.0"

CL t e

O.55 e

Q_

i i i ,

-0_2 0 2 0.4 ;:
,fa_

O.45°

Figure 23. CLvS,Ja; .
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M = O.50 o circular porous plates

as ----4.O" / o semi- circular porous plates

0.8 1

o
@

e

eL o

0.75 @ •

" 0

e
-0. 2 o [ 0.'2 0.4

o o l d_O.65 ,

Figure 24. c_ vs._a_ .

M =0.50
e semi- circular porous plates

as=6.0" 0.15.

-0.'2 0.2 0.4 :)

O.90

Figure 25 CLvs. Ja: .
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M =0.50

as -- 8.O" @semi-circular porous plates
1.2"

c_
@

1.15

@

-0.'2 0.'2 0.'4

1.05

Figure 26. cLvs._a_ .

• fully solid side walls

M= O.50 o corrected
x uncorrected

1.o t
6S

,:'7'

0.6 ° /j_

0.5 ,

0.0" 4.0" 8.0"
as

Figure 27. Lift coefficient curve. /16

In this figure the lift coefficient which was obtained when

the pressure in suction box was variously changed is shown as

is, by mark x. Also, at the same time the relationship between
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the setup angle of attack when the side walls are completely

solid walls and the lift coefficient is shown. It is considered

that the lift coefficient for which the suction effect was

eliminated from the side walls•which was found from the /1"7

various lift coefficients, has been corrected, although this

is somewhat smaller than the lift coefficient for which the

side walls are completely solid. It is also considered that

those differences which still remain occurred because of the

insufficient accuracy of the static distribution on the suction

plate, approximation differences in the velocity components

perpendicular to the suction plate, and differences which occurred

because ignorance of boundary layer developed on side walls.

A more accurate approximation and experience will be necessary

in the future. The curve of lift coefficients obtained bythe

correction of suction efficiency from side walls is shown as

a broken line in Figure 27. It is understood from the figure

that at a set angle of attack of 2 degrees, the effective angle

of attack of the airfoil model which creates a lift coefficient

at•the•time when the pressure in•suction box is lowered maximally

is 21.6degrees. If the k value is determined for _as_ to become

0.6 degrees, the value becomes 0.0476. If the k value is determined

and if this k value is substituted into other experiments, the

increment d_ of the effective angle of attack is found as

a numericalvalue. Figure 28 is a plot of the relationship

between effective angle of attack las of airfoil model after

revision obtained as above, and _L • As long as the setting

of•the angle of attack does not become more than 8 degrees,

it is said that they are almost on one straight line.

In•the case when uniform Mach number is high and a supersonic

area occurs on•the airfoil surface, as the basic equation of

the•flow area is not described by a linear type Laplace equation,

this method cannot be used. However, as long as the supersonic

domain!on airfoil surface does not become very large, it is

recognized from experience that the usual method of•subsonic

wall interference correction can be practically applied. Therefore,
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the writers•think that it is worthwhile to apply this method

to the case in which shock waves occur on the airfoil surface.-

Needless to say, pressure distribution on the suction plates

must be found by using analysis of non-linear flow areas from

the static distribution on airfoil surface.

M= O.50 • fully solid side wails
0 corrected

p-

/
I

0.5- _

/

0. O" 4/0 ° ' 8/0 °
_s

Figure 28. Plot of
the effective angle of attack

and CL for k = 0.0476.

5. Conclusion

In•the wind tunnel where performance testing of•two dimen-

sionalairfoilmodel matrixes is done, the space between •the

side walls of the•test section is made extremely narrow compared

to•the height. We handled the wall interference of this kind

of•test section by considering the existence of the•side walls.

As a result, it was understood that wall interference of this

kind of wind tunnel test section is basically described bythe

summation form of wall interference in the case of two•dimensional

flow and•the interference of side walls. Also, an equation

in whichthe quantitative evaluation of side wall interference

is possible•if the distribution on a test surface which is set

near the velocity component perpendicular to the side•walls
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is known. By using the evaluation equation, the influence on

the effective angle of attack of airfoil model matrix in the °

case when fluid in test section was sucked through suction plate

from side walls was studied, and a lift coefficient was deter-

mined for the case in which the influence on the effective angle

of attack of the airfoil model matrix was considered. The curve

of lift coefficients which was found as above became very close
to the case of solid side walls.

Symbols

Cp : Pressure coefficient, equation (35)

Cpsa: Pressure coefficient in suction box, equation (36)

c_s : Pressure coefficient of the right side suction box
in Figure 13

c;sa: Pressure coefficient of the left side suction box
in Figure 13

c : Airfoil chord length (-250 mm)

g : Equation (18)

: Wind tunnel half height converted by equation (4)

: An arbitrary function regarding (_,_,C)

Equation (19)

j(a"_(z;i): Equation (24)

Ju(")(_;I)! Equation (30)

_)(Z;I): Equation (29)

: Pressure loss coefficient, equation (33)

m0(x): Transformed Bessel function Kn (x), n=0

&,(x): Transformed Bessel function Kn (x), n=l
: Equation (12)

L : Wind tunnel half width transformed by equation (4)
M : Uniform Mach number

p : Static pressure at each point of flow

P_ : Internal pressure of suction box

p_ : Uniform static pressure

s(_,_)f Width distribution of airfoil

s. : Figure 1 (s.=s.._+s,,._)
s._ : Figure 1
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S._ : Figure 1
S,(_):Width distribution of•two dimensional airfoil model

u_ _:_Uniform flow speed

(_,v,w): (_,_._,)_
_c : Equation. •(31)
a(.}
v_ : Equation (26)
a(.)
v_ : Equation •(32)

a(._..Equation. (44)VLS:
_(.)-.
v_ Equation•(45)

v. : Speed component perpendicular to ZL,$[. surface

who : Equation (27)

•(x,y,z): _,y,_) transformed by equation (4), Figure 2

: Distance from 1/4 airfoil chord length point of airfoil
mode1

xL : down stream along with tunnel axis

XT : X coordinates of leading edge

coordinates of trailing edge

: Distance from _. axis to airfoil model matrix span
,. direction, (Refer to Figure 2 for a symbol)

z : Perpendicular and upward distance from axis

as : Angle of attack of airfoil model in which the airfoil
model matrix at the time when the space between side
walls become infinite at test section incurs the same
lift coefficient as wind tunnel test.

as : Angle of attack of airfoil model of wind tunnel test
P : Prandtl - Clauert number, equation (5) '_

_as : Equation•.(50)

da_ : Equation•(51) .-

: Velocity •potential in.wind tunnel

: Velocity .potential:in free flow

: Minute disturbance potential,in wind tunnel

: Minute disturbance potential•in free flow

_ : Wind tunnel wall interference potential equation: (21)

e* : Equation. (47)

W : Equation (ii) n,n(_):=I I (orx>0
: Equation_•(6) 1I- Xorx<0

: Uniform flow density. _(x): -I * (0rx>0
2 : H/L [ 0 forx<0

_z : Equation (40)•
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