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I. INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

All engines occasionally stall. This is a result of their operating with
minimum stall margins to maximize performance and economy. In recent years, a
considerable number of data gathering and analysis techniques have been used
to derive engine designs that attempt to minimize the occurrence of stalls.
Obviously, when stalling does occur, it is desired that the stalls be only
momentary disruptions of the performance of the engine and that they may be
self-recovering with no action required of the pilot. Unfortunately, some
modern turbofans, after one or more surge/stall cycles, stabilize at an
operating point of low speeds and high turbine temperatures. This situation
is termed nonrecoverable stall [1,2]. In some cases, it has led to loss of
the turbine. The situation almost invariably requires shutdown and restart in
order to clear the engine of this condition.

Current design techniques do not provide adequate insight into the
sensitivity or susceptibility to nonrecoverable stall. Consequently, since .
neither the physical mechanism nor the influence factors triggering or
exciting the phenomena are clearly understood, satisfactory technical
guidelines to assure avoidance of or recovery from this behavior do not exist.

One of the most important and least well-known parameters governing stall
behavior is the quasi-steady in-stall compressor performance. Identifying the
parameters which describe this performance characteristic is a non-trivial
problem. Data are scarce and models have not been verified.

The solution to nonrecoverable stall most probably involves both
component and system redesign. Compression system characteristics may be
altered either through component redesign or innovative uses of bleeds and
variable geometries. System changes may involve parameter changes (volumes,
etc.) and/or innovative uses of multivariable control theory. In short,
interactions among the compression components, bleeds, ducting, splitters,
volumes, and controls are all potentially significant factors governing the
nonrecoverability of engine stalls. Investigating these interactions and the
effectiveness of proposed solutions required validated engine stall models.



In the past 10 years, system analysis tools have been fully developed and
implemented which are directed toward system identification [3-21]. The tools
include algorithms for mathematical model structure determination, parameter
estimation, and test planning. These tools, when properly applied, provide
the test engineer and engine designer with the vaidated data and test results
to make critical assessments and evaluations of design decisions directed
toward the alleviation of nonrecoverable stall.

1.2 PROGRAM GOALS

This is the final report the program entitled "Development of a Technique
to Identify Quasi-Steady In-Stall Compressor Maps from Transient Data,"
sponsored by NASA LeRC. The principal goal of this program was to demonstrate
that nonlinear compressor map parameters, which govern an in-stall response,
can be identified from test data using parameter identification techniques.
The program tasks included developing and then applying an identification
procedure to data generated by NASA LeRC on a hybrid computer. This provided
a means of verifying the technique since the exact parameter values were known
(although they were not known beforehand by SCT).

Two levels of model detail were employed. First, the procedure was
applied to a lumped compressor rig model that was derived from Ref. 3. This
model is presented schematically in Figures 1.1 and 1.2, and described in
detail in Chapter IV and Appendix A. Second, a simplified turbofan model was
used. This model was also taken from Ref. 3. It is presented schematically
in Figure 1.3 and is discussed in Chapters VI and Appendix B.

The main outputs of this program are the tools and procedures generated
to accomplish the identification.

1.3 SUMMARY OF RESULTS

The program goals were accomplished. For both the simulated rig data and
the turbofan data, not only were the compressor characteristics identified
successfully, but also other engine parameters (e.g., flow resistances and
volumes). This success is a major step towards the development of a procedure
applicable to real test data.
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Figure 1.2 Pressure Performance Map for Compressor



llf

"-If

i

II

Iffil!_

c
n)

O
X)
s-

O).

o>
4- O
O C

Ol

(T3 O)
i. >*-
CD 0)
n> ce

•^-
a E

o
u s-

aj
^=
u
oo

0)
s-
3



In future efforts, SCT plans to extend these results to actual compressor
rig and turbofan test data.

One important difference between the work accomplished in this program

and that proposed for future studies is that the correct model structure was

known in this program. It will not generally be known for actual compressor
rigs and turbofans. This added complexcity will add to the challenge of those

future efforts; however, it also helps justify this current effort.

1.4 SUMMARY

This final report documents all program results and includes general
conclusions and recommendations. It is arranged around the program outline.
After background and details of parameter estimation are discussed in Chapters
II and III, the results of the compressor rig study are examined in Chapter

IV. The identifiability/sensitivity study of the turbofan study are

documented in Chapters V and VI. Chapter VII summarizes all results and

documents general conclusions and specific recommendations.



II. BACKGROUND

2.1 INTRODUCTION

The primary objective of this program is to develop and demonstrate

techniques to identify engine parameters. In this program* the parameters
studied represent the characteristics of an engine compressor during
recoverable or non-recoverable stall.

The method being used to study these parameters is parameter estimation
(or identification). Parameter identification is used because of its uniquely
effective ability to evaluate real, transient data and to extract model
information.

In this program, parameter identification is used to identify four
parameters: Kp (compressor positive flow characteristics), Kn (compressor
negative flow characteristics), Rx (cross-flow resistance) and V3 (lumped
parameter value of stage 3 volumes). Program focus, however, is upon the two
parameters which define a quasi-steady in-stall compressor map: Kp and Kn.
These parameters define the shape of the compressor map during an in-stall
condition for positive (Kp) and negative (Kn) compressor flows. An example of
how the parameters affect the in-stall compressor map is shown in Figure 2.1.

The interest in Kp and Kn comes from their effect on the stall response
of the engine [3]. Some Kp and Kn values allow the engine to recover from the

stall simply by the nature of the in-stall compressor maps. Alternately,
other Kp and Kn values produce non-recoverable stall responses in the engine
(Figure 2.2 ). While the immediate goal of the program is to identify these
in-stall parameters from simulated engine data, a long-term goal is to study
what in the engine build determines these Kp and Kn values.

Because this program is intended to demonstrate an ability to identify
these parameters, the work was done in a controlled situation. Instead of
using real engine data to identify the parameters, synthesized data were
used. This way, noise and sensor characteristics could be added and removed
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from the synthetic data to see how they affect identification. Follow-on
efforts are expected to apply these results to actual engine test data.

Synthesized data were provided by the hybrid computing facilities at NASA
LeRC. The hybrid computer implements low-order stand-alone compressor rig and
turbofan models characteristic of the Pratt Whitney TF-34 engine. Both
models are capable of producing recoverable and non-recoverable stall.

Synthesized data representing both non-recoverable and recoverable stall
were generated by encoding different Kp and Kn values into the hybrid model
compressor maps. The hybrid models were perturbed to initiate stall and the
resulting data are recorded on tape with an FM multiplexer, filtered and
eventually digitally recorded on another tape. That digital tape was then
sent to SCT for processing. The whole recording process and the use of the
hybrid computer are emulating the steps that normally occur during an engine
test. Figure 2.3 illustrates how the information flows through the recording
and analysis system.

Once the data arrived at SCT, it was processed using an SCT-developed
software package called SCIDNT. SCIDNT uses parameter estimation theory
developed at SCT over the past ten years to identify the engine parameters.
(Details on the workings of SCIDNT are found in Chapter III.)

The basic idea in system parameter identification is to find model

parameters that cause the model to reproduce and predict plant responses as
accurately as possible. Parameters identified by SCIDNT represent maximum
likelihood values which are most likely to be the actual parameter values of
the plant. In terms of the Kp and Kn identifications, the identified values
have the highest probability of being the same as those used to produce the
data. In a real engine test, the identified parameters would be those values
that most likely describe the true characteristics of the engine.

A few examples of the identifications from the program are shown in
Figures 2.4 through 2.6. Notice that SCT's initial model (represented by the
solid, noise-free line) disagrees with the NASA data which has had noise added
to it. As SCIDNT evaluates and compares the NASA data to the SCT model, it
changes the values of Kp and Kn until the model and plant responses become as
close as possible. Finally, SCIDNT converges to a solution (a new in-stall
compressor map) which is the best estimate of the actual characteristic of the
engine.

10
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Convergence to the best estimates is illustrated graphically in Figure
2.5. Notice that the original guess of Kn was twice what was used in the NASA
engine. SCIDNT determined that decreasing the Kn value would decrease the
model-plant errors and a new guess was made at a lower parameter value.
Eventually, a final value is settled upon which cannot be changed without

increasing model-plant errors. This value is the maximum likelihood parameter
value.

A comparison of the NASA model and the final SCT model is shown in Figure
2.6. At this point the newly identified parameter values are very close to
the actual values, and the identification is complete.

2.2 PROGRAM OUTLINE

2.2.1 Task A: Compressor Rig Identification

This first phase of Task A satisfied the primary program objective:
demonstration of compressor parameter identification techniques. The

demonstration was based upon parameter identifications made from simulated

data of a TF-34 Compressor Rig. However, the focus in this particular task
was not only to demonstrate, but to identify those areas of identification
that required further investigation for improved identification accuracy.

Task A also provided needed experience with an engine model having an
unusual structure: two modes for unstalled and stalled operation. Experience
was gained by attempting a variety of identification techniques using the

compressor rig model. At the conclusion of the task and experience gathering,
areas for improvement and further investigation were identified for use in

Task B, and experiences were summarized for use in Task C.

2.2.2 Task B: Identifiability/Sensitivity Study

Using the compressor rig model developed under Task A, an identifi-

ability/sensitivity (I/S) study was performed. The study investigated the
ability to identify engine and compressor parameters under differing
instrumentation conditions (sensor noise, sensor sets, sensor lags) and plant
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responses (recoverable vs. nonrecoverable)). These results were used to
improve the compressor parameter identification process and in the turbofan
study make recommendations for engine test instrumentations.

The I/S study also investigated how engine and compressor parameter
identifications are sensitive to modeling errors. Modeling errors include
structural errors (e.g., lumped parameter assumption), instrumentation
modeling errors (unmodeled or poorly modeled sensor lags), and recording
modeling errors (time skews between recorded channels.) These results were
also used to improve the identification process and point out potential
sources of difficulty for future identifications.

2.2.3 Task C; Turbofan Identification

This final program task combined knowledge gained in Tasks A and B
(identification experience and instrumentation effects) to demonstrate
advanced procedures for stall parameter identifications. Three subobjectives
were used to accomplish Task C. First, the identification experiences from
Task A were used to develop a streamlined identification procedure. Second, a
turbofan was developed and identified using these new procedures to achieve
maximum accuracy. Finally, the turbofan results and future results were
predicted using the tools developed under the I/S study.

2.3 SUMMARY OF FINDINGS

All tasks mentioned above were completed successfully. A few details and
results are summarized below.

2.3.1 Task A: Preliminary Demonstration

Task A preliminarily demonstrated the identification of compressor map
parameters. A major subobjective in Task A was the acquisition of
identification experience. This experience was used to find problem areas
requiring further investigation in Task B and to improve identification
techniques for use in Task C.
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Kn and Kp were successfully identified using the compressor rig. Kn was
more accurately identified than Kp and that Kp is only marginally identifiable
in recoverable stall runs. Both Kn and Kp identifiability improved as more
data were used, particularly data on the positive stalled flow periods. Kn
and Kp identifiability was influenced by the quality of information, which was
determined in part by the noise levels present.

Several special considerations had to be made when identifying compressor
parameters. Among the considerations are stall synchronization, algorithm

precision and integration procedures.

2.3.2 Task B: Identifiability/Sensitivity Study

Task B, the I/S study, explained the results of the compressor rig
identifications and developed tools that can generally be used in all types of
engine identifications. One of these tools quantitatively explains the
relationship between identifiability (a statistical measure of the accuracy of

an identified parameter) under a variety of data conditions including sample

frequency, number maneuvers, noise level, number of maneuvers, type of stall,

and available sensors. Another tool indicates which sensors are necessary to
identification and which are marginal.

The sensitivity portion of the study focused on parameter susceptibility

to biasing due to model errors. For example, if Kn were in error, then its
effect on the model would cause estimates of Kp to be in error. Kp would be
in error because parameter estimation seeks to minimize a cost function and
that function is mathematically related to all engine parameters; this is what
is meant by sensitivity.

Sensitivity relationships were derived from identification theory to

explain these error and biasing effects and improve identification
procedures. Strong biasing relationships were found between errors in several

engine parameters and the compressor map parameters, Kn and Kp. The discovery
of these relationships affected the philosophies used to develop
identification techniques and had a significant impact upon the methods used
in the turbofan identifications.
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The experiences gained in Tasks A and B were instrumental in streamlining
procedures used in the turbofan identifications. The final task, Task C, was

aimed at refining these procedures and producing an effective set of
guidelines for use in future compressor parameter identifications while also

achieving maximum identification accuracy.

2.3.3 Task C: Final Demonstration

The identifications achieved in Task C were very accurate as a result of
the techniques developed during Tasks A and B. As expected from Task B

results, accuracy was dependent upon the noise levels present. I/S tools
predicted that KPC would be marginally identifiable in recoverable stall for

the given turbofan model, noise level, etc. I/S tools also indicated that KPC
would be readily identifiable in nonrecoverable stall. Both predictions

proved to be correct.

Several identifications were made without the use of flow measurements
and satisfactory accuracy was achieved. I/S tools determined that flow
measurements would not be necessary to attain satisfactory results in the
identification of compressor stall parameters. However, these results are
dependent upon sensor time constants and noise conditions present in the other

sensors.

2.3.4 Conclusion

The NAS3-23537 program has accomplished it objectives. Identification of
compressor map parameters from transient data was demonstrated. Experience

was gained in map parameter identification, new tools were developed, and a
logical, efficient identification procedure was outlined.
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III. PARAMETER IDENTIFICATION

3.1 THEORY AND CONCEPTS

The techniques used by SCT to identify model parameters from transient
data are drawn directly from parameter estimation theory developed at SCT.
This chapter summarizes the concepts of parameter estimation and begins the

development of some identification and sensitivity tools.

The basic idea in system parameter estimation is to find model parameters

that force the model's response to match that of the plant (e.g., energy).
Parameters identified by SCT's parameter estimation algorithm, SCIDNT, .
represent maximum likelihood values of the model parameters. The identified
parameters make the model follow the engine as well as possible and are the
most likely plant parameters given the plant model.

3.1.1 Cost Function

The goal of parameter estimation is to estimate model parameters in such
a way that the model reproduces the results of the unknown system as closely

as possible. This is illustrated graphically in Figure 3.1, where the goal
would be to eliminate the differences between the two responses highlighted by

the slanted lines. Stated mathematically, the problem is equivalent to
minimizing a performance index, the error between measured plant outputs and
corresponding model outputs.

N .
Ls(e) = E O -yU, e, y)] (3.1)

where

x = f(x, u, w, t, e) - K(y - y)
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y = h(x, u, t, e) + v

N = number of data points

x = nx states

y = ny outputs

u = nu inputs

o = np parameters

t = time

w = nx process noise vector

v = ny output noise vector

E{w} = 0 ,E{w w1} = Q

E{v] = 0 E{v v1} = R

where

E is the expected value

and

E{x x'} is the covariance matrix

The estimated plant outputs are determined by using both state equations

and output measurements (typically a Kalman filter.) When a Kalman filter is

used, minimizing the performance index produces maximum likelihood parameter

estimates. (Kalman filters were not used in this program.)

If w and v are Gaussian then the performance index in Eq. (3.1), can be

expressed as a likelihood function (Eq. (3.2)). This likelihood function is

Gaussian and indicates the likelihood (probability) that a certain parameter

set, e, has produced the measured data, y. Since e is the random variable

here, the likelihood function covers np-space, and, instead of a single normal
curve, the function is actually an np-space surface.

L (e) = exP- (3.2)
/2 ir a
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To find an optimal set of parameters, the likelihood function in
Eq. (3.2) must be maximized, i.e., a e must be found which gives the largest
value of L. Eq. (3.2) can be maximized as is, but a simpler approach
considers the negative log of Eq. (3.2). Finding the minimum of the negative
log likelihood function is equivalent to finding the maximum of the likelihood
function.

J(») = - In L(e)

min J(e) = max L(e)

where

J(e) = 1/2 • E { v'v R"1 + 2*ln R1/2J (3.3)

J = negative log likelihood (cost function)

M - Y - Y(e)

Y(e) = model outputs

Q = model parameters,

Y = plant measured outputs,

R = E {v v1} = covariance of measurement noise

Minimizing the negative log likelihood is a least squares problem, very
similar in form to Eq. (3.1), the general optimization problem. Because v and
w are Gaussian, the relationship in Eq. (3.3) still produces maximum
likelihood parameter estimates. One example of a negative log likelihood
function for a single parameter is shown in Figure 3.2.

3.1.2 Gradient Search

The maximum likelihood parameters occur where J is at a minimum. Finding
this minimum requires the use of the gradient of J since the minimum of J
occurs where the gradient (slope) of J is zero (see Figure 3.3.) Parameter
identification algorithms are based upon finding where the gradient of J is
nearest to zero:
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Figure 3.2 Example Cost Function
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(3.4)

• The SCT algorithm, SCIDNT, uses a Gauss-Newton method to converge to
gradient zeros. The convergence follows a first-order iterative algorithm.

First, an initial parameter guess, ei, is made. The cost function value,
J(ei) is measured based upon the plant response and the model's response given
the model parameters, ei . Next, the gradient and Hessian are measured at si.
The gradient is the first partial of J with respect to e at ei and the Hessian
is the second partial. The Hessian is used to predict where the gradient is
zero; this is done with a first-order estimate (see Figure 3.4).

*i+1 = e/- pM'1* g (3.5)

where

9 = np x 1 parameter .vector

g = gradient of J

M = gradient of g

= 2nd partial of J

p = a user-defined scalar (< 1.) used to control rate of convergence.

If the overall costs (value of J) decrease at &i+1, then the new
parameter estimate is accepted. If the costs increase, a smaller step is
tried.

Once a new parameter is accepted, a new cost value, gradient and Hessian

are measured for e^+^ and another step is calculated. The whole process is
repeated several times until convergence is achieved. The iterative nature of
the process is illustrated in Figure 3.5. Convergence is determined by the
size of the step. If the parameter estimate is so close to the actual value
that the step sizes are less than .001 percent, identification is stopped.
(SCIDNT users can use step thresholds other that .001 percent according to
precision requirements.)
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Figure 3.4 Parameter Stepping Using Gradient and Hessian
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Figure 3.5 Parameter Iteration
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3.1.3 Perturbational Techniques

The critical problem at this point is the determination of the gradient
and Hessian for what could be a highly nonlinear model. Differentiating
Eq. (3.3) with respect to e yields the following relationships for the
gradient and Hessian (written in matrix form).

g-Mv'-R-1^-^) v-R-1^^

+ (1/2) MR"1 !§)} . (3.6)

iR-li) (3.7)

The SCT solution to the gradient determination relies upon the use of
approximations of the gradient using estimates of the v and R partials
produced via a perturbational technique1 for each parameter e(j):

[ye + &e - y] - [y(&) - y]

A&) - y(&)

In effect, SCIDNT propagates two output models, one at e-+ AS and one
at e. The partial of R is found in a manner similar to that used above.
SCIDNT produces maximum likelihood parameter estimates using these
approximations and the stepping algorithm. Additional information and
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background.on parameter estimation and applicable algorithms can be found in
Refs. 2 through 12.

3.1.4 Other Considerations

Thus far, the question of the accuracy of these identifications has not
been posed. But accuracy is indeed and important concern in parameter
estimation. Several clues to factors affecting accuracy can be found upon
examining Eqs. (3.6) and (3.7). To understand better how external factors
(e.g., noise, sample rates, time lags, etc.) affect identification accuracy,
Sections 3.1.4.1 and 3.1.4.2 introduce the concepts of identifiability and
sensitivity. These concepts are drawn directly from parameter estimation
theory and form the basis of the I/S studies discussed in Chapter V where
parameter identifiabilities and sensitivities are fully interpreted and
examined.

3.1.4.1 Identifiability

The concepts of identifiability and sensitivity are both derived from the
Hessian. The Hessian is the second partial of the cost function with respect
to the estimate parameter(s) and is also known as the Fisher information
matrix.

The Hessian is a weighted measure of the information content of each
measurement in matrix form. It is an indication of how much the model will
change (or how much the model-plant costs will change) given a change in
parameter values. The measure is weighted by the noise levels associated with
each measurement. For example, if a parameter has a large effect on the model
outputs, then the outputs have a high information content. But this content
may be offset by the fact that the measured signal has a great deal of noise.
This can be seen physically by considering the model-plant error demonstrated
in Figure 3.1. Assuming that the errors indicate how much the model changes
under a change in parameters, consider what the error would look like if the
measured signal contained a large amount of noise. The greater the noise, the
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less obvious and significant the model-plant errors become, and the weaker the
parameter-cost function relationship in the Hessian becomes.

Thus, the amount of noise determines how much information each
measurement can contribute and also determines the overall strength of the
measured parameter-cost function relationship. It is this relationship
between the parameter values and the measured cost function (the Hessian)
which determines how well a parameter can be identified, i.e., parameter
identifiability.

Parameter identifiability is measured by the inverse of the Fisher
information matrix. Also known as a measure of parameter uncertainty, the
inverse matrix is a covariance matrix indicating the expected covariance in
the estimated parameters.

M"1 = E {» e1} (3.10)

diag M"1/2 = E{©} „(») (3.11)

Because M inverse is the parameter covariance matrix, it is a measure
of the likelihood that a estimated parameter is within a certain range of the
actual value. In regards to identifiability, the values of greatest concern
are the square roots of the diagonal elements of M inverse. These values are
the standard deviations of each of the parameters being estimated.

The standard deviation indicates the confidence regions for an estimated
parameter. If o(Kp) is 0.1, then there is a 68 percent probability that the
actual KP is within 10 percent of the estimated value, and, there is a 95
percent probability that the actual parameter is within 20 percent of the
estimated value (2a rule). Thus, standard deviations can provide a measure of
the confidence or uncertainty in an estimated parameter.

These measured uncertainties can be used to determine how reliable an
estimate might be (given that noise can cloud an identification).
Uncertainties can also be determined without measured data by using only
estimated noise levels. This is done extensively in Chapter V to study how
parameter uncertainties change under various noise conditions. It is also
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done while considering limited numbers of sensors, slow sample rates, etc.,
all of which affect uncertainty. (Note: uncertainty is alternately referred
to as identifiability throughout this text. Identifiability is equally
appropriate since the measure also indicates the likelihood that a parameter
will be accurately identified.)

As a final note, the uncertainty relationship in Eq. (3.11) is an ideal;
that is, the uncertainty predicted by the information matrix is a minimal
value based upon exact model and plant agreement. Any disagreement between
model and plant in form or parameter values will be reflected as an increase
in uncertainty. Once the model and plant disagree, the inverse square-root of
M is no longer a mathematically correct prediction of uncertainty and the
values predicted by M will be below actual uncertainties.

3.1.4.2 Sensitivity

The Fisher information matrix indicates how much the plant-model errors
change given a change in the estimate parameters. Not only can a measure of
identifiability be drawn from the Fisher matrix, but a measure of sensitivity
can also be determined.

Sensitivity is defined as the anticipated change in an estimated
parameter based upon a unit change in another parameter. It is a critical
measure since it indicates how much an estimate might be biased when a model
parameter is wrong. For example, if a modeled inlet resistance is only 90
percent of the actual value, then the estimated value of Kp might be biased
due to the 10 percent error. The estimate would be biased because parameter
estimation theory attempts to compensate for errors resulting from the bad
resistance by over compensating with the Kp estimate.

All of this sensitivity information can be found in the information
matrix. The matrix indicates how much model-plant errors change due to
changes in the parameters. Sensitivities are determined by equating these
changes. The idea is that if an X change in parameter A produces a Y change
in the plant and so does a Z change in parameter B, then an X error in A will
produce a Z error in the estimate of B.
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The mathematics of sensitivity theory are saved for Chapter V. The
common measures used in sensitivity analysis is called a bias matrix. The
bias matrix is used extensively in the results sections in Chapter V to
investigate the bias-inducing effects of modeling errors (e.g., resistance
errors, volume errors, etc.), sensor errors (time lag errors, drift, etc.),
and recording errors (channel to channel time skews).

Sensitivity results were used to modify the identification procedures to
avoid problems areas in the turbofan identifications. The greatest use of
sensitivity tools has yet to be fully realized and will probably come in
evaluating proposed models in future engine identifications in the context of
parameter uncertainties (e.g., how accurately must the resistance value be
known) and instrumentation (e.g., how much drift can be allowed or how
accurately must a time constant be modeled).

3.2 PARAMETER IDENTIFICATION ALGORITHM: SCIDNT

SCIDNT is the acronym given to SCT's parameter estimation algorithm. The
algorithm implements the estimation theory discussed in the preceding sections
along with additional features not previously mentioned. The purpose of this
brief subsection is to discuss some of SCIDNT's special features that are
particularly relevant to considerations involved in compressor map
identifications.

3.2.1 Background

SCIDNT was designed with modularity in mind. This is in part due to
foresight, in part due to necessity. Out of necessity, SCIDNT had to be able
to work with any type of dynamic model. This meant that the model subroutines
had to be modular and generic so that they could be easily incorprated. The
format chosen for SCIDNT is simple yet effective. Three subroutines are
used: MEAS, STATIC and STATE. MEAS takes as inputs the current state (X),
state derivatives (XDOT), control input values (U), and the vector of model
parameters (P)(any one of which can be identified.) MEAS's output is the
.output vector of measurements (Y). STATIC is the initial condition module.
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It is only called at the beginning of a propagation to determine the initial
states. Its inputs are the input control vector (U) and the model parameter
vector (P). Its outputs are the initial state values (X), state derivatives
(XDOT), and outputs (Y). The third module, STATE, calculates the state
derivatives. The inputs are the past state values (X), the vector of model
parameters (P), and the input control vector (U). Output of STATE is the
vector of state derivatives (XDOT)

3.2.2 Variable Step Integration

In keeping with its modular philosophy, SCIDNT is equipped with a
integration subroutine. The routine updates the value of X using the state
derivative vector, XDOT. The method used is fairly involved but important to
the program.

The unique feature of this integration routine is its ability to do
variable-step integration. This is convenient especially for nonlinear models
since the model time constants may vary significantly over a maneuver. The
routine uses an integration step only as small as is needed at any given time;
thus, small time steps are only used when absolutely necessary thereby saving
computation time. An example of how the time step can change over a maneuver

j

is shown in Figure 3.6.

The user is given some control over the routine by means of tolerable
error specifications. Maximum allowable percent errors in the states are
specified by the user (commonly on the order of .001 percent). Thus, when the
user specifies a small error tolerance, the time steps generally are smaller.

3.2.3 Error Weighting

Recall from Eq. (3.3) that model-plant errors are weighted, or
normalized, according to the amount of measurement noise on a signal. In
SCIDNT, there are two ways in which to specify the error weighting terms. In
the first and most common method, weight is determined by the RMS error
between the plant and model evaluated over the entire maneuver. At the onset
of identification this error consists of both modeling error effects and noise
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errors. As the model comes closer to the actual plant, model errors are
reduced and weighting is almost entirely due to noise. An important point here
is that the weights change as the identification precedes.

The second method of error weighting is user-specified. The user
estimates (or measures in some way) the RMS values or standard deviations of
the measurement noise. These values can then be specified to SCIDNT and the
cost function will be weighted according to these values. These values remain
fixed over the maneuver.

The fact of whether the weights are fixed or floating is important to the
compressor map identifications. Some parameters have only slight effects on
the model response and thus have numerically small normalized gradients. When
the measurement weightings are allowed to vary (as they are in the first
method), the weighted gradient can end up varying a great deal. Thus, from
one iteration to the next, the normalized gradient may change drastically
(even change signs), while the true gradient is much more stable and
predictable. The result is that convergence can be destroyed because the
parameter step calculations are disrupted. Consequently, the fixed weighting
method was used in most of the identifications.

3.2.4 Simultaneous Identifications

SCIDNT is capable of identifying up to 50 parameters simultaneously.
This means that for each calculated parameter step (see Eq. 3.5), up to 50
parameters may be changed. It also means the gradient vector has 50 values
and the Hessian is 50x50. Although these are large structures to manipulate
in a program, there are significant advantages to simultaneous
identifications. Basically, simultaneous identifications produce more
accurate identifications using less computations. The alternative is to
identify one parameter and then the next. The problem with this approach is
that one parameter might bias the other, so the process must be iterated
through several times in order to reduce the biasing effects.
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Normally, simultaneous identifications are used. .The point about
individual identifications is mentioned here because some of the unique
features of the stalling compressor model required that individual
identifications be made at times. This had some significant effects on the
compressor map identifications, the consequences of which are fully discussed
in Chapter IV.
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IV. PRELIMINARY DEMONSTRATION WITH COMPRESSOR RIG

4.1 BACKGROUND

Task A demonstrates parameter identification techniques on transient,
in-stall compressor rig data. The demonstration was designed to mimic those
procedures that would be followed in any engine identification. The only
exception was that the data were simulated instead of measured directly from
an engine. An outline of the major procedures is given below:

(1) NASA LeRC implemented a fifth-order, lumped-parameter model of
a compressor rig on a hybrid digital/analog computer.

(2) Using several different Kp, Kn, V and L parameters, NASA LeRC
obtained a variety of recoverable and nonrecoverable stall
signatures.

(3) These signatures were recorded on analog tape and consisted of
flow, pressure, and temperature signals.

(4) The analog results were filtered and recorded digitally at 5
kHz.

(5) The digital tapes were sent to SCT for processing.

(6) SCT developed a second compressor rig model, identical to the
first, but strictly a digital version.

(7) The SCT model was used in conjunction with SCIDNT to identify
the parameters used in producing the various stall signatures
recorded on the NASA Lewis digital tapes. (Note: the SCT
model was perturbed by the recorded input signal, a throttling
disturbance knoz. As a result, the model response was
dependent upon the condition of this recorded signal, the
significance of which becomes more apparent when model-piant
synchronization are discussed in Section 4.5.3.)

4.2 COMPRESSOR MODEL DEVELOPMENT

The compressor rig model is a fifth-order, lumped-parameter model taken
from a NASA-developed TF-34 model [1]. The major features of the model are
summarized in schematic form in Figure 4.1 and are listed below:

37



*
LU
C3
<C

00

<J3 .—i
<C X
h- LU
00

C_J

O —

oo
CO

o

LU

xfV

<C «—> OQ
<c

Q_ 3r —.
•a: o Q

CD LU CD
00 > LU
00 —- —1

o_
oo

a:
Q_ C 00

in CD

oo

o
OO
00
LU

*
LU

I—
oo

UJ <—*

CXI

UJ

<c
oo

CXI

CD

<c'

CVI

o
ce:

oo
I— 2:
LU CD

OO

CD

OO
00

LU
>

OO

00
LU
0£

oa

CXI

UJ

o:
h- I—
oo oo

CXI

LU
CD
<c

s
3

00
00
LU
cc:
o_

LU
0£

cc:
LU
0..

<u
T3
O

O)

T3
Ol
o.
E

—I
01

s_
o
t/1

Q.

O

3
CTI

38



(1) Resistive inlet.

(2) Stages 2 and 3 are constant volume and adiabatic.

(3) Mass conservation is maintained at Stages 2 and 3.

(4) Temperature and pressure at Stages 2 and 3 are functions of the
accumulated mass and internal energy.

(5) A volumeless compressor is assumed at Stage *. This compressor
operates in both unstalled and stalled conditions depending
upon the compressor flow and speed.

(6) Inductive flow into stage 3.

(7) Throttled, adiabatic exit flow.

(8) Compressor speed is constant, although corrected speed may vary.

A detailed mathematical description of the model is in Appendix A. The
compressor map at stage * is shown in Figure 4.2. The parameters of interest
in this program, Kp and Kn, define the shape of the map during stalled
positive and negative flow respectively. The curves are quadratic functions
of corrected compressor flow and speed. The map is shown in a 3-dimensional
representation in Figure 4.3.

Two examples of how the model responds during stall are shown in Figures
4.4 and 4.5. The first is a recoverable stall, the second is nonrecoverable.
The only diffence in the model between these two responses is that Kp was

increased to produce the recoverable stall. The goal of task A was to
identify what Kp and Kn parameters produce a given stall signature such as
those shown in these figures.

4.3 IDENTIFICATION OF Kp AND Kn WITH NASA DATA

SCT identified Kp and Kn for several NASA stalled compressor runs and the

results were quite successful. First of all, the identifications demonstrated
the ability to identify compressor parameters using SCIDNT. Second, the
identifications presented some typical difficulties that may be encountered
in more real situations and indicated approaches that could be used to
overcome the difficulites. These experiences were the most valuable results
of the compressor identification task. Using the experiences gained here, new
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Figure ,4.2 Pressure Performance Map for Compressor
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studies were fostered to quantify the effects of the difficulties (Task B),
and these studies were used to define a comprehensive set of guidelines for
achieving maximum identification accuracy in Task C. The identification
results and experiences are related in Sections 4.4 through 4.6 and are
summarized and interpreted in Section 4.7.

The goals of the compressor rig study are to demonstrate identifiability
and gain understanding of the intricacies of compressor map parameter
identification. Because of these goals, a minimal effort was made to improve
the less successful identifications even though there were means available to
do this. In this task, maximizing identification accuracy was not a specific
goal.

The following sections document all the results of the identifications
runs under four headings: the identification runs, general identification
details, general identification results, and case-specific details and results.

4.4 THE IDENTIFICATION RUNS

Eight of 18 possible compressor stall runs were selected for use in the
parameter identification studies based upon their diverse characteristics.
The remaining 10 runs were omitted from the identification because they were
either too similar to other runs or began in a transient mode, making
initialization difficult.

Note: Runs 2, 8, 12, 18 were characterized by a Knoz that was throttled
before data recording started. Because the throttling began too early, the
compressor was in a transient mode at t=0. The compressor model was incapable
of initializing in a transient, and, consequently, these runs could not be
used for identification. This situation may be avoided in the future by using
only data which begins in a steady state mode or by configuring models to
initialize in a transient mode.)

The runs selected for identification are shown in Figures 4.6 through
4.21. The parameters used in each run and their major characteristics are
summarized in Table 4.1. These runs provide a diverse test bed for the
identification study as seen by their descriptions.
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Table 4.1
Run Descriptions

Run V3 x L x Kn Kp Description

5

7

9

10

10

10

10

10

1

1

1

1

8.0

8.0

20.0

10.0

0.1

0.5

0.8

0.8

Non-recoverable, medium damping,
medium frequency.

Recoverable in 1 cycle,
medium frequency.

Non-recoverable, light damping,
medium frequency.

Recoverable in 5 cycles,
medium frequency.

11

13

15

17

2

2

10.

10

1

1

2

2

15.0

15.0

15.0

15.0

2.0

4.25

1.0

2.0

Non-recoverable, medium damping,
high frequency.

Recoverable in 1 cycle,
high frequency.

Non-recoverable, light damping,
low frequency.

Recoverable in 1 cycle,
low frequency.

Note: In many of the runs, the NASA measurements (T2, T3, P2, P3,...)
were biased above the identified initial conditions. These biases affected the
identifications. To what extent is unknown, but in future identifications,
identification of sensor bias levels should be considered. Effects of sensor
biases can be studied with sensitivity tools (from Chapter V). See Section
4.7, Identification Experiences, for further discussion.

4.5 SPECIAL CONSIDERATIONS

Several identifications were made for each run as needed. In many cases
the identification had to be tailored for a particular type of stall
characteristic and required special consideration. For example, in the
recoverable stall runs, it was beneficial to use only a portion of the data
such as the positive flow stalled region for identification. This technique
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eliminated the use of unnecessary, noisy data and improved overall convergence
properties. Some of these special treatments are discussed on a case by case
basis in Section 4.6.1. More general details are discussed in this section
and are used in Section 4.7 for defining a comprehensive approach to future
parameter identifications.

This section examines four special considerations: number of data points
needed for each identification, the need for separate Kp and Kn
identifications, a procedure for synchronizing the onset of stall between
model and data, and the need for a fixed-step integration routine in SCIDNT.

4.5.1 5-kHz Data versus 1-kHz Data

The primary frequency of the stalling compressor model is in the area of
20 to 100 kHz, depending on volume and inductance parameters. The exception
occurs at the onset of stall, where the compressor flow becomes negative and
the model eigenvalues are briefly near -7000 rad/sec. Using this information,
SCT determined that a 1-kHz signal could be used with reasonable success in
identification. Thus, most identifications used only one out of every five
NASA-recorded data points.

A need for higher frequency data signals does exist, however. A
significant improvement in identification accuracy was noticed when 5-kHz data
were used instead of 1-kHz data. In some cases the improvement was marginal.
In other cases the improvement was more substantial, particularly where the
amount of time spent in stalled flow was limited due to the speed of the model
(e.g. run 13).

Identification improvement was brought about because the 5-kHz signal
provides more noise and signal information, and SCIDNT is better able to
distinguish between the two. If less noise information is available, then
estimate uncertainty will increase, as will estimate biases. The NASA data
have a significant amount of noise since were passed through a relatively
high-frequency filter (16 kHz) before the signal was recorded. Subsequently,
there remains a fair amount of noise (approximately 10 percent) on each of the
channels. When a 1-kHz sampling frequency is used with the noisy data, SCIDNT
is less able to distinguish between noise and signal, while a 5-kHz sample
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rate provides much more information about the noise and the signal. Using a
1-kHz signal did not make identification impossible, but it did impede
identification under difficult conditions.

The sample rate consideration prompted, in part, the Task B I/S study.
Chapter V develops mathematical relationships between sample rate and
identifiability which explain these observations.

For the cases discussed below, some loss in identification was expected
because the 1-kHz signal was used. The loss was considered acceptable because
the identification goals (to demonstrate identifiability and provide
experience) do not require identification accuracy. A few special cases were
done with the 5-kHz signal to demonstrate improved convergence, but generally,
5-kHz runs were avoided because of extended computation times. Using an
improved signal type (e.g. a 5-kHz signal or better) may be mandatory for
proper convergence in more critical identifications.

4.5.2 The Need for, and Consequences of, Separate Kp and Kn Identifications

SCIDNT is capable of identifying several parameters at the same time,
allowing the parameters to converge simultaneously to their maximum likelihood
values. This is an advantageous feature since it saves iterating between one
parameter identification and another. But the feature has its limitations
too. Parameters being identified must have certain relationships among
themselves, if they do not, they must be identified separately. Kp and Kn
lack this relationship.

4.5.2.1 Poorly Conditioned Hessian

Kp and Kn had to be identified separately in the compressor rig study for
two reasons. The first reason is related to the information matrix, M. The
second reason is related to the nature of the stalled compressor model. The
discussion begins with the information matrix.

The information matrix is used to define how parameters converge to their

maximum likelihood values. Rewriting Eq. (3.5) from Chapter III reveals the
relationship:
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M * g = - AQ (4.1)

or, solving for the parameter step size:

= - M"1 g ' (4.2)

Equation (4.1) indicates that if M is poorly conditioned or nearly

singular, forming the inverse and ae will be difficult. This is in fact

what happens with simultaneous Kn and Kp identifications. The two eigenvalues
of M related to Kn and Kp are separated by approximately 6 orders of
magnitude in the compressor model. Given the numerical precision of a 32-bit
computer, such a difference makes inverting M very difficult. To SCIDNT this
means that Kn converges while Kp doesn't; Kp is dominated by the Kn
convergence. Increasing the precision of the computer would help the

situation, but still there is the second reason for separate identifications
(compressor model nature) that makes simultaneous identifications difficult.

This second aspect is discussed in Section 4.5.2.3.

4.5.2.2 Consequences of Separate Identifications

Important consequences regarding the accuracy of identified parameters
appear because Kp and Kn must be identified separately^ Since they can no
longer converge simultaneously, as Kn is identified, Kp does not improve, and
Kn is identified with an uncertain value of Kp. This situation causes a bias

in the estimate of Kn. Such biases can be eliminated by identifying
iteratively. For example, first identify Kn, then identify Kp with the new

Kn, then identify Kn with the new Kp, and so on. By this procedure, the
maximum-likelihood solution would eventually be reached since the biases

diminish with each iteration. In simultaneous identification, this iterative
process occurs naturally; with the separate identifications, the process is
done artificially and is more time-consuming.

In all of the compressor rig cases, only a single step iteration was
carried out because additional iterations produced minimal accuracy
improvement. This was due to the identification sequence and the fact that Kn
could be" identified accurately regardless of Kp errors. However, if the Kn

63



identification was inaccurate because of uncertainties introduced through
sensor noise, Kp could be biased by the Kn errors.

To obtain a greater understanding for the extent of the biases, a
sensitivity analysis was performed. (The details of this analysis are not
given until Chapter V, but results are presented here to explain the Kn and Kp
relationships.) The relationship being studied is the sensitivity of Kn to
errors in Kp and vice versa.

The test case uses NASA run 5 data with a nominal parameter set. The
analysis results are shown in Table 4.2. First-order approximations of
estimated biases are made for a 10 percent nuisance bias level. The

approximations should be taken with prejudice, yet they do indicate a
magnitude for the expected errors.

Table 4.2
Kp and Kn Parameter Biases

for Kn/Kp for Kp/Kn
Bias sensitivity 2.4779 -0.0529

Bias sensitivity 0.0309 -4.2320
(normalized)

+10 percent produces bias of in estimated
bias in

Kn -42.3 percent Kp

Kp +0.31 percent Kn

Consider a physical interpretation of the above results. In the case of
an error in Kn, physically, that error increases or decreases the amount of
time spent in negative flow. Since negative flow typically occurs at the
beginning of a stall (before the positive stalled flow), the effect is to
shift the positive flow model in time. For example, if Kn were 10 percent
above the'nominal value, the model would spend less time in the negative flow
region. Then modeled positive flow would begin before the data indicates, and
the model and data would appear to be skewed. In a non-recoverable stall,
this makes the model appear to be phase-shifted with respect to the data.
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Such a serious disagreement between model and data could produce dramatic
biases in an estimated Kp as reflected by the large predicted biases in Kp due
to Kn.

So even though Kp and Kn are used at different times by the model, one is
able to have a dramatic effect on the other because of a time relationship in

the model. If the physical argument is logically extended to consider

estimated Kn biases, the situation is completely reversed. Here, the positive
flow response will have practically no effect on the negative flow response.
The only exception is found in some non-recoverable cases where the
oscillatory response occasionally dips into negative flow. Other than this

exception, it is not surprising that the predicted Kn biases are quite small
for Kp errors.

The important result is the consequence on Kn and Kp identifications.
Since Kp has a minimal effect on Kn, an identified Kn should be unbiased by

Kp, and a subsequently identified Kp should be unbiased as well. So, for a
single step iteration (separate identifications), the results should ideally

be the maximum-likelihood values and there will be no need for further
iteration, as long as the Kn identification is accurate.

4.5.2.3 Bimodal Model Effects

The physical analysis presented above helps explain the other reason why
it is so difficult to identify Kn and Kp simultaneously. If Kn is allowed to
change and converge during an identification, then the time relationship
between the positive flow model and data is also changing. This means that

SCIDNT has to hit a moving target: the Kp information (gradient, etc.)

changes while Kn is allowed to vary. Unlike the first aspect (numerical
difficulties) which could be corrected by improved precision, there seems to

be no such solution to this obstacle other than separate identifications or
the situation where Kn is very close to 'its actual value.

Choosing to identify Kn before Kp in the separated identifications comes
from this physical analysis. Simply put, Kn was chosen for identification
ahead of Kp, because it is fairly independent of Kp. The sensitivity results
and predicted biases simply verify these qualitative interpretations and
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support the decision for separate identifications. In the future, when 10
parameters, not 2, will be identified, the condition of the information matrix

will be the primary method for determining if simultaneous identifications are
possible. The M-matrix tool is very powerful. The physical analysis is

helpful to conceptualize why separate identifications are necessary, but
fundamentally, the M matrix supplies the needed information.

4.5.3 Synchronizing Model and Data

The third consideration pertaining to these identifications is the
synchonization of the SCT model with the NASA data. There are two phases to .
this problem.

First, it was found that the recorded NASA throttle disturbance (Knoz)
was not vigorous enough to initiate stall when used as an input to the SCT

model. This was not entirely unexpected. Earlier results with the SCT model

indicated that a throttle coefficient of approximately 40.3 (vs. NASA's 40.0)

was needed to initiate stall. In response to the situation, a scaling
parameter was inserted into the model, "AT". The new scaling parameter made
the measured throttle channel data appear as if a larger "AT" coefficient were
used (see Figure 4.22). The fix worked well for initiating stall, but it also
pointed out a strong relationship between the time of stall onset and the SCT
value of AT. It was found that if the new AT was too large, even by a half

percent, stall would begin too early, and the SCT model would be skewed with
respect to the data (see Figures 4.23 and 4.24). If new AT's were to be used,

a method had to be developed to ensure synchronization between model and
data. This method is the second part of the synchronization problem.

This problem has a familiar aspect: find a suitable AT that will make
SCT's model fit the hybrid data — simply a problem of parameter
identification. SCIDNT was used to identify a new AT for each of the 8 runs,
a new AT that both initiates stall and synchronizes the data. The results are
in Table 4.3. A comparison between different AT's is demonstrated in Figures
4.23 and 4.24.
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Knoz
stall point

Y
new scale factor

time

Figure 4.22 Scaling of Knoz Disturbance with AT
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Table 4.3
Identified Throttle Coefficients

Run 5 7 9 10 11 13 15 17

AT 40.168 40.147 40.379 40.288 40.930 40.468 40.524 40.448

Note that these new values are only 1/10 to 1/2 percent from the NASA,
values. This may indicate the initialization problem is related to numerical

or precision differences rather than any gross model structure anomaly.

4.5.4 Fixed integration Routine in SCIDNT

In Chapter III, the advantages of using a variable step integration

routine in SCIDNT were discussed (mainly in decreasing computer costs'.)
Unfortunately, it turns out that the variable integration routine is not

precise enough in single-precision form to supply the accuracy needed for Kp

identifications. It was observed that Kp cost errors were changing more

drastically with different integration step size histories than they were with
parameter steps. Efforts were made to improve precision by decreasing error

tolerances, but they were to no avail. As a result, SCIDNT was converted a

fixed step integration routine.

4.6 COMPRESSOR RIG IDENTIFICATIONS SUMMARY

Table 4.4 summarizes the results of the identification study. In

general, SCIDNT successfully identified the Kp and Kn parameters; however,

the degree of success varied from case to case. The case to case variances

contain useful information since they demonstrate limitations in

identification and also suggest methods for improving the identification

process. General items of the identifications are discussed below. More

specific details are discussed on a case by case basis in the following eight

subsections.

The general conclusion of these results is that two factors dominate the

success of identification: (1) the amount of information available, i.e.
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simply the number of data points available for a given scenario, and (2) the
stall trajectory or path followed on the stalled compressor map.

Table 4.4
Identification Summary

;un

5

7

9

10

11

13

15

17

Kn
Initial

16.

4.0

14.0

16.0

8.0

16.0

30.0

30.0

Kn

7.94

8.22

17.9

9.32

20.2

20.88

12.78

15.6

percent
error

„_„ _•»•
-0.75

+2.75

-10.5

-6.8

+34.5

+39.2

-14.8

+4.0

Kp
Initial

0.5

1.0

0.5

0.5

3.0

5.0

0.5

3.0

Kp

.115

.983

.755

.669

2.055

4.807

0.899

2.026

percent
error

+15.0

+96.7

-5.60

-16.4

+2.75

+13.0

-10.1

+1.30

N

R

N

R

N

R

N

R

Regarding the number of data points, one significant trend indicates that
Kp identification is more difficult in recoverable runs (7, 10, 13, and 17)
than in non-recoverable runs. The problem here is not the
recoverable/non-recoverable nature of the stall phenomenon but simply the

amount of positive stalled flow information. In each non-recoverable stall
case there are about 350 milliseconds (or 1750 points/channel) of data. In

each recovery case there are only about 15-20 milliseconds, or 1/20 of the
information. The lack of information in the recovery cases is primarily

responsible for the poorer identifications. This fact is supported by Kn

results which show no particular sensitivity to the
recoverable/non-recoverable character of the runs. Both types of runs have
approximately equivalent amounts of negative stalled-flow information, and Kn
was equally indentifiable in each type.

A related trend is found in Kn identification for runs 11 and 13. In
these cases, the increased inductance (L = Lnom x 2) caused the stall response

to speed up significantly and thus decreased the ratio between response
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frequency and sample rate. Again, there is less information content and Kn

identifications suffer as a result. This conclusion is supported by the fact

that'runs 5 and 11, and 7 and 13 are so similar. Both sets of runs have
identical stall characteristics except runs 11 and 13 are faster and thus have
less information and fewer data points.

The information content argument is supported further by cases where more

data were used for identification — more data meaning use of a 5-kHz signal
instead of a 1-kHz signal. A 5-kHz signal was used instead of a 1-kHz signal

in several cases, and these cases showed improved identification and

demonstrate that increasing the amount of information increases

identifiability.

(There are ways, other than just using higher frequency signals, to
increase the amount of information where information content is poor. Content
can be increased by using several measurement sets for a single run or by
using several single measurement sets for several similar runs. For example,
if several independent measurements from the same run were available, these
measurements could be used in unison to increase information content and thus
identifiability.)

The second factor affecting identifiability is the type of stall being

studied. As mentioned above, non-recoverable stalls are more identifiable
than recoverable stalls because of the increased amount of time spent in

positive stalled flow. Similarly, those non-recoverable stalls which exhibit
light damping in the stall oscillations (runs 9 and 15) are more easily
identified than the heavily damped runs (runs 5 and 11.) The basic reason
again is information. The lightly damped runs have trajectories that cover a

larger portion of the stalled compressor map. Because they cover more of the
map, they provide more information and better definition of the map. It is

analogous to rolling a marble in a bowl. If the marble circles the bowl
several times before settling at the bottom, the path it follows gives a good

definition of the shape of the bowl. On the other hand, if the marble circles
the bowl only once or twice and the path is more uncertain because of noise,

the definition of the bowl shape becomes more ambiguous.
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In conclusion, the compressor model parameter identifications in Table
4.4 are determined by the amount of information available. Information
content can be increased under several conditions:

(1) Non-recoverable "stalls provide more positive stall flow
information.

(2) Lightly damped non-recoverable stalls also provide more
information.

(3) Information can be increased by using higher frequency signals.

(4) Information can also be increased by using several measurement
sets for a single run or several runs with a single set of
measurements.

Information is the key to identification. Identifications will be most
accurate when optimal measurement sets and stall trajectories are used in data
recording. Therefore, it is extremely valuable to consider a priori to
identification what arrangements (stall trajectories and measurement sets)
would yield the greatest payoff in information and identifiability. Further
discussion of these needs is found in Section 4.7 and are studied in detail in
Chapter V.

4.6.1 Specific Identification Details and Results

All runs followed the same single step iteration: AT (throttling
coefficient) and Kn were identified simultaneously, then Kp was identified
with the identified AT and Kp. The identified AT synchronizes data and model,
the identified Kn defines negative flow characteristics and places the model
at a proper state for the positive flow identification. The identified Kp

completes the identified model. The steps are summarized below:

(1) Synchronize model and define negative flow — identify AT and
Kn.

(2) Complete model identification — identify Kp.

These steps form the single-step iterative process used by SCT. In some
cases steps, 1 and 2 were repeated several times under different conditions to
resolve difficulties or provide experience.
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4.6.1.1 Run 5 (Figures 4.25 and 4.26)

Run 5 is a non-recoverable stall with medium damping (see Figures 4.6 and

4.7). The identification followed the basic outl.ine sketched above. To begin
the identification process, two K-parameters were chosen as initial values

(Table 4.5.) Before the parameters were identified, the model and data were
synchronized by identifying a new AT. To simulate as real a situation as
possible, the new AT was identified using the initial (incorrect) K-parameters
in the model. The identified AT is shown in Table 4.3., the new Kn and Kp are
shown in Table 4.5.

Table 4.5
K-Parameter Identification for Run 5

Run Initial Final Actual Initial Final Actual Comments
Kn Kn Kn Kp Kp Kp

n05a 16.0 7.82 8.00 0.05 0.10 1 kHz

p05a 7.82 8.00 0.05 0.132 0.10 1 kHz

To demonstrate the SCIDNT identification algorithm, a plot of each of the
Kn and Kp values tested by SCIDNT is shown in Figures 4.27 and 4.28. The

figures illustrate the progression of SCIDNT-selected parameters towards the

maximum-likelihood values. Normalized K-parameters (normalized to actual

values, 8.0, and 0.1) are plotted versus normalized RMS errors in W2dot
(uncorrected compressor flow). W2dot was chosen to represent a cost value

because it is fairly indicative of Kp and Kn errors. The W2dot error is
normalized to the RMS error present when actual parameter values are used in

the model, i.e., the nominal error represents noise only.

In the first figure, Figure 4.27, Kn moves in one step from its initial
value to within 10 percent of actual. Such a rapid convergence indicates that
the gradient is fairly constant in this region. Kn progresses from this value
to a new value at 97.75 percent of actual. At this point the gradient is near

zero, i.e. the amount that model-data errors are changed by changing Kn is
practically nil, so the identification is halted. (SCIDNT terminates the
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search for more-likely parameter values when the parameter step size drops
below a low threshold value specified by the user, in this case, 0.001
percent.)

To this point, even though SCIDNT has identified Kn, there still are
model-data (WZdot) errors remaining. These errors are too small to be seen in
Figure 4.27, but they are present. The errors are due to the incorrect Kp
value being used in the model and possibly due to an incorrectly identified
(or biased) estimate of Kn. They can be seen more clearly in Figure 4.28. In
this figure, the scale of normalized cost (W2dot) is much narrower than in the
Kn figure, simply because the errors due to incorrect Kp are quite small in
comparison to errors due to Kn.

This difference in error magnitudes is significant. Because the
normalized errors due to Kp are so small, the normalized gradient and
information matrix (a scalar in this case) are also small. This means that
there are precison problems in determining a parameter step size for Kp (see
Eq. (3.13)). There was no such problem with Kn, because its gradient is
steeper and the information matrix is thus better conditioned. But this is
not the case with Kp. The difficulty with Kp was alleviated to some extent in
the turbofan study by switching to a double-precision algorithm.

Note that the final solution, indicated by the vertical line, is not the
lowest cost. This is because the plotted cost is only the W2dot RMS error.
The actual cost used by SCIDNT is a weighted sum of all RMS errors and may
therefore be slightly different. It is apparent in this example that the
WZdot error gives a better indication of cost, suggesting that a weighting
system other than what is currently used may increase accuracy.

The run 5 identification showed improvement when the amount of
information was increased. The same identifications for Run 5 were repeated
using a 5-kHz signal instead of a 1-kHz signal. As expected, the
identification improved significantly. The new results are shown in Table 4.6
and in Figures 4.29 and 4.30.
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Table 4.6
K-Parameter Identification for Run 5

Initial Final Actual Initial Final Actual
Run Kn Knf Kn Kp Kp Kp Comments

n05b

p05b

16.0 7

7

.94

.94

8.00

8.00

0

0

.05

.05 0.115

0.10

0.10

5 kHz

5 kHz

Run 5 Observations: Kp typically has a small effect on model response,
and as a result has poorly conditioned information matrices resulting in poor

convergence. Increasing precision should aid the situation, increasing the
sampling frequency surely does.

4.6.1.2 Run 7 (Figures 4.31 and 4.32)

Run 7 parameters are similar to those of Run 5 except that a Kp was
chosen to produce a recoverable stall. Kn and AT were identified successfully
as shown in Tables 4.3 and 4.7; difficulties arose when Kp was identified.
The difficulty with Kp was due to the amount of time spent in positive stalled

flow. Because the stall is recoverable, the compressor spends approximately

15 milliseconds in positive flow, about 4 percent that of the non-recoverable
Run 5. When this is coupled with the fact that the Kp gradient is very small,
the indication is that there is not enough Kp information for identification.

This conclusion is illustrated in Figure 4.33. Two Kp identifications
were attempted; one at 4 times actual value and one at twice the actual
values. Both identifications failed to converge satisfactorily, mainly

because the gradients were just too small, as demonstrated by the small scale
of the cost function in the figure.

The experiences of Run 5 lead to two approaches to attempt to solve this

problem: (1) a double-precision algorithm to improve the parameter step size
calculation and (2) use of a 5-kHz signal or additional versions of the same
run to add more information and help reject signal noise. This second (5-kHz)
approach was used in Run 5 and was also used in Run 7. The 5-kHz results show
limited improvement (see Figure 4.34).
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n07a

p07a

p07b

p07c

4.0 8.

8.

8.

8.

22

22

22

22

8

8

8

8

.00

.00

.00

.00

2

2

1

2

.00

.00

.00

.00

1.688

.9833

1.321

0.

0.

0.

0.

50

50

50

50

Table 4.7
K-Parameter Identification for Run 7

Initial Final Actual Initial Final Actual
Run Kn Knf Kn Kp Kp Kp Comments

min at 1.7

5 kHz

4.6.1.3 Run 9 (Figures 4.35 and 4.36)

Run 9 is a non-recoverable stall with light damping exhibited in the
positive stalled flow oscillations. Two Kn identifications were made for Run
9 in order to test qualitatively the effects of Kp errors on Kn. The first
identification was obtained using an initial Kp value that made the
identification model recover even though the data indicated a non-recoverable
stall. The results of this identification showed moderate success, with Kn
approaching 34 percent of actual value. The use of this Kp guess produced
stall characteristics significantly different from those of the data and
served to test the previous sensitivity and physical analysis results which

indicated Kp values should have minimal impact upon Kn identifications (see
Section 4.5.2.2).

This theory was verified by the second Kn identification which used a Kp

that produced a non-recoverable stall effect (model and data agree.) The
results of this second case were nearly identical to the first and supported
the no-effect theory. This is an important result, because it indicates that
Kn can be identified regardless of the value of Kp. Kp could be grossly
misguessed and still not affect the identification of Kn.

After Kn was identified, Kp was identified with the new Kn as the
best-guess value. The convergence was significantly improved over those of the

two previous cases (see Figure 4.37). Again, the reason seems to lie with

information content. Because the run is a lightly damped non-recoverable
stall, the model spends a large amount of time in positive flow and also
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provides a large amount of unique information. More data points on the
stalled compressor map are provided which contribute to.improved
identification. Note the gradients are much larger than those from runs 5 and
7. Also note that the lowest cost is not at the actual value, but is slightly
less. The maximum likelihood value of Kp has been biased by the biased Kn.

Run 9 Observations: Kn is oblivious to initial Kp values. Manuevers with
a great deal of movement increase identification ability. Kp is biased by
inaccurate Kn values.

Table 4.8
K-Parameter Identification for Run 9

Initial Final Actual Initial Final Actual
Run Kn Knf Kn Kp Kp Kp Comments

n09a

n09b

p09a

14

14

.0

.0

17.

17.

17.

9

9

9

20.

20.

20.

0

0

0

1

0

0

.50

.50

.50

0.

0.

0.755 0.

80

80

80

(recover/stall)

(stall/stall)

4.6.1.4 Run 10 (Figures 4.38 and 4.39)

Run 10 is a stall that cycles 5 times before recovery. The Run 10
results support the information identifiability relationship and provide
experience with marginally recoverable stalls.

Two identifications were made for Kn. The first identification used the
entire 0.5 seconds of data in determining the gradient relationship between
measurement errors and the Kn parameter. The second run used only 0.2 seconds
of data. A hypothesis was being tested that said that the excess information

in case a, which contains no negative stalled flow information, would only
increase gradient uncertainty. Therefore, if less extraneous information were
used, the gradient would be more accurate and the convergence properties would
improve. That is indeed what happened (see Table 4.9).

A similar test was preformed for the identification of Kp. All 0.5
seconds were used in the first Kp identification while only the first 0.26
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seconds in the second identification. (0.26 seconds is the time it takes the
compressor to recover.) The results of these two identifications were

inconclusive. The second Kp identified was further away from actual than the
first, but there several outside factors could be influencing the second's

convergence: 1) the Kp values may be biased by the identified Kn, 2) the 0.26
seconds of data does not contain all of the Kp information available.

Examination of the exit flow and P3 responses in Figures 4.38 and 4.39 reveals
that there is still unstalled initial condition information in the signals
after recovery. The results of this Kp test were inconclusive.

The Kp identification provided an excellent opportunity to test

identification of parameters that are around a nonrecoverable/ recoverable
boundary. At this boundary (Figure 4.40), slight Kp changes around the

nominal value can drastically change the character of the compressor
response. For example, if the actual Kp value used in generating the data

were changed 10 percent, the response would change to a non-recoverable stall
or a single cycle recoverable stall. This presents a difficulty to SCIDMT
because Kp gradients around this Kp boundary are likely to be rather erratic.

In run 10, both identified Kp's were within 20 percent of the actual
value, but both produced nonrecoverable stalls in the model response. Even
though the data showed recovery after 5 stalled cycles, the identified model
did not. Examination of the overlayed responses in Figures 4.38 and 4.39
reveals the identified model response follows the data quite well but only

until the data recovers. It is likely that the Kp which would produce a 5

cycle stall for Kn= 9.32 would likely be less than 0.8 (see Figure 4.40); how
much less is not known.

This all leads to the question of how to identify a better Kp, a Kp that
would produce a 5-cycle stall. All of the methods mentioned so far (higher

frequency signals or additional data sets) would likely help the
identification, but how much cannot be predicted with the given data. Further

refinement of the recovery model might create a model structure that is more
amenable to identification of the parameters or values which determine
recovery.
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COMPRESSOR DISCHARGE VOLUME

Figure4.40 Recovery/Non-Recovery Boundary
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Run 10 Observation: Use only the data that contains information
pertaining to the parameter being identified.

Table 4.9
K-Parameter Identification for Run 10

Initial Final Actual Initial Final Actual
Run Kn Kn Kn • Kp Kp Kp Comments

nlOa

nlOb

plOa

plOb

16

16

.0

.0

9.

9.

9.

9.

13

32

32

32

10

10

10

10

.0

.0

.0

.0

0.50

0.50

0.50

0.50

0

0

0.688 0

0.669 0

.80

.80

.80

.80

(stal

t<.2

(stal

U.26

l/rec:5)

sec

l/rec:5)

sec

4.6.1.5 Run 11 (Figures 4.41 and 4.42)

Run 11 is a non-recoverable stall run with high frequency ( 60 Hz) stall
oscillations and medium damping. The identification results were satisfactory

considering the difficulties enocuntered in synchronizing the data and model.

Normally, an AT is identified, and the identified value causes data and

model to synchronize, however in this case, the identified value did not
produce synchronization.

AT was identified as usual with the initial (incorrect) K-parameter
values. When this identification failed to produce favorable results, AT was
identified again using the actual K-parameter values, but again the results
were unfavorable. The problem appears to be in the initial guess of AT. The

initial guess produced a negative gradient, indicating that the

maximum-likelihood value is greater than the initial guess value. This is in
fact true. But when SCIDfff stepped AT to a larger value, the model-data
errors increased, and SCIDNT halted the identification process. It is
possible that the effects of time shifts on a periodic function (such as a

nonrecoverable stall) have produced a cost function with several local minima,
thus causing convergence difficulties.
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Figure 4.43 is an example plot of the RMS error resulting from two phase
shifted sinusoids. Notice that at each multiple of 2ir there is a local

minimum. Since the stall model and data are similar to phase shifted
sinusoids, it may be that the initial guess of AT puts the cost function near

one of these local minima's. And since SCIDNT converges to minima, either
absolute or local, the progression would stop right there.

Further analysis would be needed to ascertain if local minima is the
difficulty. The "egg-crate" type pattern in Figure 4.43 is, however, a
reasonable cost function pattern that must be considered when preforming
identification. It should always be considered that an initial parameter

guess may produce convergence into a non-absolute minima.

Kn and Kp were identified with asynchronous model plant measurements, and

despite these asynchronisms, the identifications were fairly successful. Kn
converged in the correct direction and stopped at 35 percent above actual

value. Figure 4.41 shows that the model and data were poorly synchronized in
negative stall flow, yet even under these conditions, the identification was
reasonable. The success of the Kp parameter identification is even more
surprising. Kp was identified within 3 percent of actual with the given
asynchronism. This result is a positive indication that SCIDNT can identify
reasonably well in the face of significant model-data asynchronisms although
the general desire is to avoid them.

Run 11 Observation: SCIDNT demonstrates some robustness towards
asynchronous model-data.

Table 4.10
K-Parameter Identification for Run 11

Initial Final Actual Initial Final Actual
Run Kn Kn Kn Kp Kp Kp Comments

nlla

nllb

plla

pllb

8.0 8.001

8.0 20.174

20.174

15.0

15.0

15.0

3.00

3.00

3.00

3.00

2.00

2.00

3.00 2.00

2.055 2.00

AT is off

still off
t<.2 sec
still off

do not ID

99



•D

O
U'l
n
c

flj-i-i
•4-

Jl

V
Oj
U'l

JC
a.

o

•-.
LJ

a;

i
.A....

\

X
\

•\-

i5>
ID

L0

u:-

"3T3

e

c

3

•o
ai

oo
I

a>

s_
O

o

u
c

in
O

(U

>3

* *

LD

«S O *'3

T O O



4.6.1.6 Run 13 (Figures 4.44 and 4.45)

Run 13 is similar to Run 11 in its fast response time, except that it is

a recoverable stall. The entire stall lasts for about 10 milliseconds, only 2
percent of the 500 millisecond data frame. Multiple identifications were made

for the run in an effort to improve SCIDNT convergence, but final results were
marginally successful.

Three identifications were made for Kn. In the first identification, a
Kp value was used that caused the model to enter a non-recoverable stall. The
Kn identified from this run is considerably below the actual value. To

determine if Kp had induced the error, another run was made with a recovering

Kp value. In this case, the identified Kn moved in the opposite direction
from actual Kn. The two results are inconclusive if not perplexing. There
appears to be a lack of information problem here (only 5 milliseconds of
negative stall flow data is available.) Improving information content would
probably improve this identification.

A final Kn run was made without identifying AT during the
identification. This was done to test the hypothesis that AT was influencing
the convergence of Kn. The results indicate there is some influence of AT,
but not significant enough to improve the identified Kn. (It still is in the

direction opposite of the actual value.)

So the Kp identification began with a rather suspect value of Kn

(20.88). In the first run, an initial Kp value of 5.5 was used. SCIDNT

calculated a small, albeit negative gradient for the cost of Kp, which
indicated that the most-likely value was greater than 5.5. SCIDNT followed
the gradient and eventually converged at a value of 5.51, indicating a local
minima in the cost curve around Kp = 5.51. To investigate the situation
further, a new Kp identification was made with an initial value beyond the
local minima, out at 10. This time the gradient pointed towards the actual

value and SCIDNT converged towards it. However, this time convergence was

marked at Kp = 6.057.

Both of these Kp identifications are summarized in Figure 4.46. There is
indeed a minimum in the cost curve around Kp= 6. In fact, this minima is

lower than the nominal cost. The interpretation is that SCIDNT has operated
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just as expected: it found the minimum-cost parameter set. It just happens

that the identified set is not the actual parameter set. The shifted local
minimum is due to signal biases or aliases, or biases from the inaccurate Kn.

To see if additional information would reduce the alias or bias, a third

run was made using a 5-kHz measurement signal. In this case the convergence

is better and moves closer to the actual value. Not only did the increase in

information improve the convergence, apparently it also reduced noise effects

so that the shape of the cost curve no longer had a minima near 5.5.

Run 13 Observation: Demonstration of insufficient information effects.

Table 4.11
K-Parameter Identification for Run 13

Initial Final
Run Kn Kn

Actual Initial Final
Kn Kp Kp

Actual
Kp Comments

n!3a 16.0

n!3b 16.0

n!3c 16.0

p!3a

p!3b

p!3c

9.81

20.88

19.76

20.88

20.88

20.88

15.0

15.0

15.0

15.0

15.0

15.0

4.00

5.50

5.50

5.50

10.0

5.00

5.51

6.057

4.807

4.25

4.25

4.25

4.25

4.25

4.25

(stall/rec)

(rec/rec)

do not ID AT

gradient wrong

5 kHz data

4.6.1.7 Run 15 (Figures 4.47 and 4.48)

Run 15 is a non-recoverable stall with medium-light damping in the stall

oscillations. A standard identification procedure was followed, i.e., a Kn

identification followed by a Kp identification. The identifications were

successful and no procedural revisions were required. Tabular results are

shown below; graphical results are shown in Figures 4.47 and 4.48.
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Table 4.12
K-Parameter Identification for Run 15

Initial Final Actual Initial Final Actual
Run Kn Kn Kn Kp Kp Kp Comments

n!5a 30

p!5a

.0 12.

12.

78

78

15.

15.

0

0

0.

0.

50

50 0 .899

1

1

.00

.00

4.6.1.8 Run 17 (Figures 4.49 and 4.50)

Run 17 is a recoverable stall run with response time similar to Run 15.
The identification for Run 17 was standard except for one special test. The
test was to see if SCIDNT could identify Kp by beginning with a Kp value that
produced the wrong stall characteristic. The initial Kp was chosen to produce

a non-recoverable stall in the model while the data indicated a recoverable
stall. The idea was to test the robustness of SCIDNT: could it identify a Kp

and cross the recoverable/non-recoverable stall boundary? The answer for this
run is no. The results may have improved if the data set were limited to the
first 0.2 seconds. The Kp identification was successful when the initial
value was switched to a Kp value with a recovery characteristic.

Run 17 Observation: SCIDNT unable to cross recovery/non-recovery

boundary.

Table 4.13
K-Parameter Identification for. Run 17

Initial Final Actual Initial Final Actual
Run Kn Kn Kn Kp Kp Kp Comments

n!7a 30.0

p!7a

p!7b

15.6

15.6

15.6

15.0

15.0

15.0

0.50

0.50

3.00

0.458

2.026

2.00

2.00

2.00

(stall /rec)

(stall/rec)

(rec/rec)
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4.7 IDENTIFICATION EXPERIENCES

The compressor rig identifications successfully identified compressor map
parameters. Some identifications were more successful than others and these
were studied so that identification procedures could be improved and refined..
A variety of experiences also were gained which spawned much of the work done
in Task B.

The following is a summary of experiences drawn from the compressor model
parameter identifications. The experiences give an indication of what could
be done in the future to maximize compressor identification accuracy and were

studied even further in the I/S study (Task B) to predict the effects of
noise, sample rate, ̂ synchronizations, reduced measurement sets, etc. The

results of Task B form a foundation of identification requirements and
guidelines that were used to maximize identification accuracy in the turbofan
demonstration.

4.7.1 Model-Plant Differences: Time Skews

Observation: Due to slight differences between the model and plant, the
SCT digital model stalls slightly later than the NASA hybrid model when given

the same input. This delay introduces a time skew into the identification and
can bias compressor parameter estimates.

Response: An input scaling factor, AT, was introduced to the SCT
compressor model so the input could be artificially increased to hasten the
onset of stall. The parameter was identified using SCIDNT until it produced
synchronization between model and plant. This procedure worked fairly well
but was troublesome and in some cases unsuccessful.

4.7.2 Initialization

Observation: The initial state values of the dynamic compressor rig
model were supplied to SCT by NASA Lewis. In a normal identification
situation, these values would not be available and would have to be estimated
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or identified from the data. Incorrect initial values produce steady state
errors between the plant and model that could bias parameter estimates.

Response: Future identifications should make provisions for

parameterization of initial condition values, i.e., the initial conditions
should be model parameters (under the SCIDNT definition of model parameters)
and be accessible for identification.

4.7.3 Estimate Parameter Biasing

Observation: If a parameter is poorly identified, that is, if it is

inaccurate, then it is able to affect the estimate of other parameters. This

can be understood physically in the Kn and Kp identifications. If Kn is in
error, then the model and plant will be in disagreement from the inception of
negative stall flow till the end of the maneuver. Since most of the positive
stall flow (determined by Kp) follows negative stall flow, the Kn errors
produce model-plant mismatches that affect the Kp identification.

Response: The quantitative effects of this and other modeling "errors"
is worth pursuing. Certainly, other errors in parameter values, lumped
parameter assumptions, sensor time lags, etc., could have significant impact

upon compressor map parameter identifications as well. The problem of

estimation "sensitivities" is addressed in Task B (Chapter V).

4.7.4 Information Content

Observation: Identifications improved with more information. Most of
the compressor rig work was done using only one out every five data points.

When all data points were used, identification accuracy improved.

Observation: Noisier data decreases identification accuracy for all

parameters.
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Observation: Compressor parameter identifications seem to have a
predictable relationship tied to available information. For example, in
recoverable stalls, there is less time spent in positive stalled flow, and
correspondingly, Kp identifications in recoverable stalls are marginal to

poor. Kn identifications on the other hand seem to be impervious to the type
of stall and are satisfactory, regardless of stall type.

Observation: Specific sensors can be eliminated from the identification
process. Through elimination of certain sensors it was found that P2 (under
the present noise levels) contributes little to Kn or Kp identification.

Response: The precise effects of sampling frequency, noise levels, type
of stall and sensor set configurations require further investigation. A
greater understanding of these effects will help define instrumentation

requirements and help in streamlining identification procedures. This is done
in Chapter V.

4.7.5 Separate Kn and Kp Identifications

Observation: Kn and Kp must be identified separately because of dramatic
differences in the amount of information available for each parameter. If
identified together, Kn dominates the identification convergence and the Kp

estimate is left unimproved.

Response: Simultaneous identifications may be possible if the accuracy
of the algorithm is improved. Conversion of the SCIDNT code from single

(32-bit) precision to double (64 bit) precision may produce the desired

accuracy.

4.7.6 Fixed-Step Integration

Observation: Unreliable results have been obtained when using the
variable step SCIDIOT integration routine. Specifically, the calculation of Kp
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gradients loses fidelity under variable-step integration. Loss of fidelity is
tied the fact that the Kp gradients are very small in recoverable stalls
(meaning that Kp has very little effect on changing the stall trajectory when
the stall is recoverable.) Thus, when minor gradient errors are introduced via
the variable-step integration, Kp gradient values are distorted and
identification is disrupted.

Response: SCIDNT is capable of integrating the compressor rig model
using an efficient, variable-step integration package. Use of this package
could produce considerable computer cost savings; however, the package cannot

be used because of the accuracy problems.

Because of the discontinuous nature of the stall-capable model, very
small integration steps are needed at times. Adjusting the variable-step
integration parameters of the package is not sufficient to produce an accurate
integration. Therefore, a fixed-time step is required. (First-order Euler
integration is used.)
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V. TASK B: IDENTIFIABILITY AND SENSITIVITY STUDY

The success of any parameter identification algorithm is dependent upon
both the form of the system model and the condition of the measurement

signals. This fact was highlighted by the results of the compressor model
identifications in Chapter IV, where it was was noted that Kn and Kp parameter
identifications varied from one type of model to another (e.g. non-recoverable
to recoverable stall models) and from one sample rate tq another (e.g., 1 kHz
to 5 kHz).

In response to these results, a series of studies was conducted to
quantify relationships between identification success and model form and
measurement conditions. These identifiability and sensitivity study results

not only accurately predict identifiability, they also provide an analytical
tool for specifying instrumentation arrangements and predicting performance.

The concept of identifiability is based upon a measure of uncertainty in
estimated parameters; uncertainty being a measure of the likely proximity of
the actual parameter value to the estimated value. If an estimated parameter
has a "large uncertainty," then the range in which the actual value is likely
to be is fairly large. Typically, uncertainty is expressed as a standard
deviation.

The uncertainty in a parameter estimate can be predicted before the

estimate is made, based upon an assumption of appropriate noise levels, sample
rates, etc. Knowing the uncertainty before identification provides a measure

of what is termed "identifiability". One purpose of this study is to
investigate how identifiability changes under various model and measurement
conditions. The validity of the identifiability concept will be verified by
comparing actual identifications with predicted identifiability.

.Another benefit of uncertainty measures is that they provide a means for
evaluating parameter identifications. When a parameter is estimated, it is

desirable to know just how good the estimate is, i.e. how close to actual the

estimate is likely to be. One way to quantify this is with uncertainty.

It is mentioned above that uncertainty relationships provide a means to
predict the likely proximity of estimate and actual. Uncertainty is used
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before identification (a priori) to predict how accurate the identification
will be. Yet uncertainty can also be used after identification (post de

facto) to measure the likelihood that the actual parameter value is nearby.

These two uncertainty values are very similar, but in .the a priori case, the

original parameter guess is likely to be far from the actual value and thereby
gives an imprecise estimate of accuracy (the estimate is always better than
actual). After identification, however, the estimated parameter is closer to
actual, and the post de facto uncertainty value gives a better idea of how

close the estimate is to the real value.

To summarize, the identiflability portion of study indicates there are

direct relationships between identifiability and number of data points, sample

rate and noise levels. The study also demonstrates that identifiability

changes under varied sensor set conditions including sensor lags, no flow
sensors, and multiple sensor sets. These results can be used to make
trade offs between various sensor arrangements, sensor noise levels, sample
rates, etc., in determining instrumentation specifications in follow-on work.
This is anticipated to be one of the major benefits arising from this study.
Test results and past identification runs for the compressor rig were also
explained in the study.

The sensitivity portion of the study demonstrates how parameter
identification is sensitive to various types of modeling errors. Errors

considered include errors in compressor map parameters, sensor lag time
constants, and dimensional (volumes, resistance levels, etc). Sensitivity
bias matrices are fundamental tools which can explain why identified
parameters are biased away from actual values. The bias sources examined in
this chapter showed that bias effects were potentially a much larger source of
identification error than the uncertainties due to noise and sample rate
effects in the compress rig study in Task A.

5.1 IDENTIFIABILITY

Recall from Chapter III that the Hessian provides a measure of estimate
parameter uncertainty. This discussion focuses upon the use of the Hessian

for developing identification relationships, later it is used for studying
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sensitivity. Development of identiflability relationships is based upon
results found in Section 3.4.1 and on other aspects of parameter estimation
theory.

Identifiability is "a measure of the likelihood that any estimated

parameter is within a specific range of the actual parameter value." It can

also be thought of as a measure of confidence (or uncertainty) in a parameter
estimate. This is a more quantitative way of viewing identifiability.
Mathematically, uncertainty is expressed as a standard deviation.

To understand what affects M (and uncertainty), consider M written in
another form. The information matrix relationship in Eq. (3.8) in Chapter III
equates M to a sum of partial innovation vector products normalized by the
measurement noise covariance matrix, R. If R is considered to be diagonal,

then Eq. (3.8) can be expanded to a scalar relation where each measurement (or
innovation) contribution is seen separately.

M = (5.1)

In this form, it is possible to see clearly the relationships between
parameter uncertainty and number of data points (N), number of measurements
(m), and measurement noise level (o(y)). Generally speaking, as the number
of data points increases, parameter uncertainty decreases with 1//(N), i.e.
the ability of the parameter algorithm to identify a parameter will improve
with the square root of N. One simple way to increase the number of data
points is to use a higher sample rate. Another way is to make several runs
under the same conditions. In the latter approach, even though sample rate

has not increased, the number of data points for the same type of information
is increased. Other conditions do impinge upon the selection of sample rate
minimums, but generally, identification can be improved without increasing
sample rates by using multiple identification runs.

Equation (5.1) also indicates that as the number of outputs is increased,
uncertainty decreases — not a very surprising result. Equally predictable is

the fact that uncertainty increases as measurement noise increases. In fact,
uncertainty increases in direct proportion to overall increases in measurement
noise levels.
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The term within the highest level brackets in Eq. (5.1) has a unique

characteristic. From Eq. (3.9) of Chapter III and Eq. (5.1), it is apparent
that this term is only dependent on the model output and the number of data

points. Thus, if e is near the actual e, then the values for each output

j are relatively constant. This is illustrated by rewriting Eq. (5.1):

(5.2)
m=l

where

m(v, e) is the contribution of the jth innovation over the entire
measurement period (N points.)

and

o(y) is the noise level associated with the jth measurement

Since m(v,e) is constant near e actual, it is possible to relate
uncertainty changes to various combinations of sensor noise levels. In fact
by making any a(y) very large, it is possible to see how uncertainty will
change without the contributions of a sensor, i.e., what happens to
uncertainty under limited sensor sets.

This completes the development of identifiability formulae. Many of these

results are used in later sections to explain how uncertainty changes under
various instrumentation conditions.

5.2 SENSITIVITIES

Consider the problem: Given parameters to be identified, what
identification errors will result if other model parameters are biased or

incorrect? For in-stall compressor parameters, the effects of biased
parameters are substantial.

The effect of one parameter on the identification of another is called
parameter "sensitivity." Parameters being identified (affected) are
customarily called "estimate parameters" (e); remaining (affecting) parameters
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are called "nuisance parameters" (0). As with identifiability, the answers to

this sensitivity problem are found within the Fisher information matrix.

The information matrix defined in Eq. (3.8) of Chapter III is an np x np
matrix, for np model parameters. If only ne parameters are being estimated, M

can be rearranged and partitioned as follows:

ne
M =

ne nn
i

M12 (5.3)
nn

where

ne = number of estimate parameters

nn = number of nuisance parameters
np = ne + nn

M-JJ is the Fisher information matrix that relates the changes in J due
to changes in only the estimate parameters, e. During parameter
identification, only the Mj^ portion of the information matrix is used, the
portion which pertains to the parameters being identified. (So actually only
MH is used in the parameter stepping algorithm, Eq. (3.5).)

A relationship between e and <f> can be found by using other portions

of the information matrix, namely, M12, in conjunction with M11. M12
can be expressed as

Combining the information in M^ and M12 yields,

l ' <5-5'
where

bias matrix
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The bias matrix indicates how much the estimate parameters change for a
unit change in the nuisance parameters. Equation (5.5) is the exact solution
for the scalar case (J, e, and 0 sealars) and has similar interpretations in
the general matrix case. Equation (5.5) can be used to estimate the effects
of biased parameters on the estimation of other parameters. For the worst
case results, the absolute value of each element in the Xb A# product is
taken. The worst-case estimate parameter (e) errors are,

worst error = iMTplioll A0 I (5.6)

where

Atf is the change in # off nominal.

Equation (5.6) is the primary means used in analyzing potential effects
of nuisance parameter errors in Section 5.3.2. A typical application would be
the effect of a change in a sensor time constant. For example, assume T3 has
a modeled time lag constant of 100 milliseconds, and the actual sensor
constant is 120 milliseconds. The question would be, how might this nuisance
parameter error bias an estimate of Kn or Kp. •

"5.3 STUDY RESULTS

Presented here are practical results observed by applying the theoretical
identifiability and sensitivity formulas derived in Sections 5.1 and 5.2.
Results have been split into two major areas 1) instrumentation effects on
identifiability (e.g. sample rate, sensor noise, sensor lags, etc.) and model
and error effects on sensitivity (nuisance parameters and model structural
errors). In general, the results support both of the theories discussed
above; they also demonstrate practical methods for improving future
identifications and specifying instrumentation requirements.
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5.3.1 Instrumentation Effects

5.3.1.1 Sample Rates and Multiple Maneuvers

The basic uncertainty relationship for sample rates is found in
Eq. (5.1). The relationship is simply: if N is increased by some factor kN,
then uncertainty decreases by a factor l/^(kN). N can be increased by three
distinct ways:

(1) the sample rate can be increased;

(2) the number of measurement runs can be increased (e.g. make two
tests on a stalling compressor under identical conditions and
use both measurement sets for identification: "multiple
maneuver approach,"); or

(3) use redundant sensors.

All methods theoretically produce the same results. Consider the effect
of increasing N in Eq. (5.2):

'(») =
m m(J, &)

(y)2
-1/2

(5.7)

Here, a(e) is expressed as a function of m(v, e) and a(y) for N data

points. From Eqs. (5.1) and (5.2), if N changes by a factor of kN, then

uncertainty (o(e)) changes by a factor of l//(kN). Rewriting Eq. (5.2) to
express this relationship yields:

kN J m(v, 9)

J-l °(y)2

-1/2
(5.8)

where

m(v, e). is the contribution of the jth innovation over the entire
measurement period (Nstd points);

a(y) is the noise level associated with the jth measurement
measurement;
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and

kN is the actual number of data points divided by some standard
number

The theoretical relationship between sample rates and uncertainty is

illustrated in Figures 5.1 and 5.2 for four different cases: Kp and Kn

uncertainties for Runs 5 and 7 (non-recoverable and recoverable) under

conditions of 5 percent noise. The 5 percent noise level represents Gaussian

noise with a standard deviation equal to 5 percent of the steady-state,

unstalled, output levels. Noise level values along with the four cases are
summarized below:

Table 5.1
Noise Levels (Standard Deviations)
for Study of Sample Rate Effects

P3 12 T3

62.2 519. 823.

3.11 25.95 41.15

Figure 5.1 illustrates the inverse square-root relationship between
uncertainty, and sample rate (or number of points.) The same results are shown
in Figure 5.2 for 1 percent noise in a log-log plot. Here the relationship
between log sample rate and log uncertainty is linear (slope=-l/2.)

SCIDNT is capable of statistically analyzing measurement noise and
determining the uncertainty of a model's being representative of the
measurement data (a primary way of determining parameter estimate confidence.)
Twelve test cases were studied using SCIDNT to see how uncertainty changed
with the sample frequency using simulated noisy data. These twelve measured
uncertainties are plotted in Figure 5.2. Of these cases, three uncertainties
were measured for each test case at three different sample rates using the
simulated data. The lines in Figure 5.2 result from using Eq. (5.8) in
conjunction with m(v, e) contributions determined at 1 kHz and 1 percent
noise levels. The measured uncertainties follow theory very well. Uncertainty

Wl

S.S. 65.

5 3.25
per-
cent

W2

65.

3.25

W3

65.

3.25

P2

14.7

.735
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for the stalling compressor model does indeed follow an inverse square
relationship with sampling rate.

These results also highlight the basic identifiability differences
between Kp and Kn for non-recoverable and recoverable stall cases. In

general, Kn is more identifiable than Kp and is relatively independent of the
type of stall. Kp is much less identifiable than Kn and does not fare as well

in recoverable stallsas in non-recoverable stalls (not surprising since there
is less Kp information in a recoverable stall.) The differences in

identifiability are fairly dramatic.

Consider the example where the noise levels are the same for all four
identifications and the user seeks a 1 percent confidence level in estimates.
It would require 1 measurement set at 100 Hz and 1 percent noise to achieve a
1 percent confidence level with a Kn identification. It would take 100

measurement sets at 100 Hz to achieve the same accuracy with Kp in an
non-recoverable stall model. And it would take 400 measurement sets at 100 Hz
to achieve the same accuracy with Kp in a recoverable stall model. From a
sample rate point of view, sample rates of 0.1 kHz, 10 kHz and 40 kHz would be

needed to achieve the same accuracies in all three cases. The concept is the
same for all cases. It takes 100 to 400 times more data to identify Kp as
well as Kn (for Runs 5 and 7).

Figure 5.2 can be used in two ways. First, if a Run 5 identification has

been made at some arbitrary frequency, then Figure 5.2 could be used to assign
some confidence to that estimate, e.g., the actual value is likely to be
within 2a values. Secondly, Figure 5.2 can be used to determine

instrumentation requirements. If a minimal confidence level is established

before an engine test, then sample rates, number of probes and number of test
runs can be traded off to achieve the desired accuracy for all parameters of

interest. (Note: The compressor model can only be used for identification
down to near 100 Hz. Rates much lower than this miss too much data and the
stall may be missed altogether).

An important assumption made in these discussions is that noise is always
white and unbiased. This is why uncertainty improvements can theoretically be
had even as sample rates approach the continuous case. In actuality, noise is
not white and there are definite points beyond which an increase in the sample
rate would not improve estimate uncertainty or identifiability.
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Future identifications should determine fundamental parameter
uncertainties before identification by using typical noise levels and sample
rates. From these uncertainties (and Eq. 5.8), it can be determined what
sample rates or number of manuevers would be necessary to obtain a desired
accuracy.

5.3.1.2 Sensor Noise

From Eq. (5.8), estimated uncertainty is proportional to the sensor noise
(assuming that relative noise levels between sensors is constant). Thus, if
base noise levels change by some kc percent, then uncertainty will also
change by ko percent. A graphical example of this relationship is shown in
Figures 5.3 and 5.4. The noise levels used in this example are in the same
proportions as those in Table 5.1, and the m(v, e) values are based upon a
1-kHz sample rate. Figures 5.3 and 5.4 examine the relationships between four
cases — the same four mentioned above (Kp and Kn for Runs 5 and 7).

The graphs indicate that as noise approaches zero, uncertainty disappears
and identifiability is maximized. The differences in identifiability between
Kn, Kp in a non-recoverable stall, and Kp in a recoverable stall are indicated
by the different slopes of the curves.

The next phase in the study considers a slightly more complicated
situation. In Figures 5.5 through 5.7 are three sets of graphs indicating how
Kn uncertainty changes in Run 5 when noise on just a single sensor is
increased. Each line represents Kn uncertainty for 5 percent noise on all
sensors except one, and that one noise level is allowed to vary from 0 to 25
percent.

The graphs point out several important relationships. For example, all
of the pressure and temperature sensors have little effect on decreasing
uncertainty past about a 2 percent noise level. Decreasing noise on any one of
these sensors will increase identifiability only if their noise level is less
than 2 percent.

The same is not true for flow measurements. Figure 5.5 indicates that
identifiability is fairly strongly associated with the flow measurement noise
levels, particularly for inlet flow. A large amount of information is being
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contributed by flow measurements in the m(v, e) term — enough information
to make the flow contributions significant even at a 5 percent noise level.
Inlet flow is a good example of this. Decreasing noise in the inlet flow
measurement, even at the 15 percent level, causes uncertainty decrease. No
other sensor has this great an impact. This is an indication that the inlet
flow sensor is quite important to identification of Kn as will be seen in
Section 5.3.1.4.

Figures 5.5 through 5.7 show that some measurements, flows in particular,
tend to be large contributors of information. They demonstrate in a subtle
way the different value of each type of measurement, i.e., the different
information contributions from each measurement. Understanding which sensor
contributes what becomes important knowledge when sensor configurations are
determined. Section 5.3.1.4 shows how the ratio of m(v, 9) to a(y) can be
used as a measure of these contributions.

5.3.1.3 Sensor Lags

Sensor lags, particularly in temperature sensors, are an inevitable
nuisance to be confronted in parameter identification. To this point, the
compressor model has not included models for sensor lags. In this section the
compressor rig model is expanded to include lags to consider identifiability
effects induced by lagging or dynamic sensors.

The focus in this section is on temperature sensor lags (later examples
consider pressure and flow measurement dynamics as well). A first order lag
was chosen to model temperature sensor dynamics and the lag time constants are
listed below:

Table 5.2
Temperature Sensor Time Constants

Sensor Time Constant (msec)

T2 ' 170.
T3 170.
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Several sample cases were examined to study how temperature lags alter
identifiability. Eight identification cases were examined in all. Four of
the cases are identical to those discussed in Section 5.3.1.1; the remaining
four differ only in that lags are added to the temperature measurements.

Results are shown in Figures 5.8 and 5.9. In general, the difference
between temperature sensors with lags and without lags is minimal after the
contributions of all the other sensors. This is because temperature sensors
with or without lags contribute little by way of m(v, e) to the information
matrix and uncertainty values.

Although temperature lags have little effect on decreasing uncertainty in

a full sensor set, they can still be a major source of identification error.
The influences of temperature lags go beyond simply reducing the amount of
information in M. For example, if the estimated time constants in the sensor
model differ from the actual sensor dynamics, the result is a plant-model
disagreement or modeling error. This modeling error can induce biases on
estimated Kn and Kp parameters. These and other model error-related topics
fall under the sensitivity study discussed in Section 5.3.2.

5.3.1.4 Sensor Contributions

The previous two sections brought up a concept of "sensor contributions."
In theory and practice, each sensor contributes a specific portion of the
parameter information contained in M. This section explores Eq. (5.2) to show
how contributions from each measurement can be quantified and compared.
Results show how sensor sets can be chosen for maximum identifiability and how
sensor constraints can limit that identifiability.

Measurement contributions can best be understood by re-examining
Eq. (5.2). In that relationship the elements of the information matrix are
expressed as sums of contributions from each measurement taken over time, N.
The measurement contributions m(v, e) are normalized by a noise level so
that their contributions are weighted according to both the scale and
"believability" of the measurement signal. Thus, when the contributions from
each measurement are summed, they are compatible and comparable. The
contribution concept uses this "compatible and comparable" idea to allow
comparative evaluations of the contributions.
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For example, consider where Kn is the sole estimate parameter and M is a
scalar. Dividing each summed element in Eq. (5.2) by M, the resulting values
indicate what percent of M is contributed by each measurement. (Keep in mind
that the contributions will vary according to the sensors present and the
level of noise on each sensor.) Although it is not possible to show any direct
relationship between individual measurement contributions and uncertainty, the
percentage results do provide an excellent comparative measure of
effectiveness for each sensor.

Figure 5.10 is an example result. It shows the contribution of each
sensor to the Kn information matrix for Run 5. Noise levels at 5 percent of
initial values were used. In general, the flow sensors, inlet flow in
particular, show the greatest contribution of Kn information. P3 and T2
provide smaller amounts of information than P2 and T3. It is worth stressing
that all of these relationships could change with different noise levels. The
measurement contribution tool can be used to great advantage in several ways.
First, if sensors and their noise levels are already known, it can be
determined which sensors contribute the most information and should be used in
the identification process. Second, if sensors are being chosen, their
contribution relationships can be used to determine what noise levels on what
sensors would be acceptable.

Sixteen examples of measurement contributions are shown in Figures 5.10
through 5.25. The examples examine contributions to Kn and Kp for recoverable
stall and non-recoverable stall, for sensor configurations with temperature
lags and without, and for where flow measurements are not available.
(Scenarios with unavailable flow measurements are studied by simply omitting
the flow measurement contributions from the sum in Eq. 5.2.) The changes are
generally predictable. Flow measurements are of primary import throughout all
scenarios; temperature contributions decline when lags are present (the
information is being filtered out); and pressure and temperature
contributions increase when flow measurements are unavailable.

Flow measurements are not critical to identifying in-stall compressor map
parameters, but are valuable. Much of the valuable information in the flow
measurements could be extracted from other measurements under the proper
conditions. This can be seen by examining the compressor rig equations.
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Inlet flow can be replaced by P2 since inlet flow is a simple resistive
function of the pressure drop across stages 1 and 2, and in this model, PI is
constant. Thus, inlet flow is directly related to P2, and therefore P2

contains the same information. In the measurement contribution figures, inlet
flow contributes more information because its noise levels are small in
comparison to its sensitivity to the Kp and Kn parameters. If P2 had a
sufficiently small noise level, it would show the same contribution as the
inlet signal.

Assume an inlet flow measurement is not available and is to be
synthesized using the P2 signal. The maximum allowable noise level on P2 to

•

achieve the same contribution level as Wl with 1 percent (3 Ib/sec) noise
would be:

.Wl + o(lil) = [PI - (P2 + o(P2))] / RO

where

RO = 0.00158 psi/(lb/sec)

To have the same apparent noise on the synthesized inlet flow, the P2
noise level would have to be:

o(P2) = c(lil) * RO

if

o(Wl) = 3 Ib/sec

then

a(P2) = .00474 psia
•

So a Wl with 1 percent noise (1 percent of initial value) can be replaced
with a P2 measurement only if the pressure noise is less than .00474 psia or
0.03 percent. Even though P2 and inlet flow contain the exact same
information, P2 is outweighed by inlet flow because it has a comparatively
high noise level. Figures 5,10 through 5.17 provide good examples of this.
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Similar relationships can be found between exit flow and P3 and T3.
Theoretically, P3 alone could identify in-stall compressor maps, but it would
have to be a very clean, unbiased sensor.

The measurement contribution software developed at SCT is capable of
determining exactly which sensors are most valuable under various noise (and
drift) levels. Such an analysis requires a definite model and good estimates
of noise and drift levels. If it is known that flow measurements will not be
available, it can be determined what kind of accuracy is needed on other
parameters (e.g. RO in the above example) and what kind of noise can be
tolerated on other sensors so that they can be used as substitutes.

5.3.1.5 Combined Identifiability Results

In the above subsections, identifiability was related to a number of
variables: sample rates, number of maneuvers, overall noise levels,
sensor-specific noise levels, presence of sensor lags, absence of flow
measurements, etc. In this section, these identifiability relationships are
unified to illustrate how identifiability and uncertainty can be predicted for
almost any measurement system, for both recoverable and non-recoverable
stalls.

At a very basic level, one in which the m(v, e) values for each sensor
are known, it becomes possible to predict parameter estimate uncertainties for
almost any possible measurement configuration. Table 5.3 lists m(v, 9)
values for eight different identification cases considered at 1 kHz. Using
the m(v, e) values as basic building blocks, parameter uncertainties can be
obtained for any expected noise level and sampling conditions, for systems
with lags and for systems without certain sensors.
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Table 5.3
Measurement Contributions (m's)

• • •

Case Ml W2 W3 P2 P3 T2 T3

1
2
3
4

5
6
7

8

727. 316.

43.3 18.5
684. 221.
38.9 14.4
24500. 18300.

1203. 909.

164. 80.6

37.6 27.3

Case

1

2
3
4

5

6
7

8

Signal

Ml, W2,
P2, P3
T2, T3

8.16
1.65

5.49
.976

491.

85.4

12.2
13.7

Theta

Kn
Kn
Kn
Kn

Kp
Kp
Kp
Kp

W3

.00172 9.21 3550. 2560.

.000101 1.10 370. 101.

.00162 6.42 3330. 1810.

.000093 .963 221. 123.

.0579 627. 7996. 14300

.00316 102. 1587. 7234.

.000389 13.8 431. 1399.

.000085 14.5 73.5 89.5

Run Conditions

5 Normal
5 Lags

7 Normal
7 Lags
5 Normal
5 Lags

' 7 Normal
7 Lags

Sensor Time Constant

27 msec
27 msec
170 msec
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Equation (5.8) is the fundamental relationship that allows these m(v,
e) values to be used in conjunction with various kN and o(y) values.
Recall that each m(v, e) value is a function only of the model outputs and
the e values. If a m(v, e) value is omitted from the sum, the effect is
equivalent to omitting a sensor from the measurement system. If a sensor has

a lag placed upon it, it does not affect the other m(v, e) values, so a
m(v, e) value for a lagged sensor can be "swapped" with an unlagged m(v, e)
value. The following is a demonstration of these principles.

Noise Levels (Standard Deviations)

Wl W2 W3 P2 P3 T2 T3

.1470 1.866 2.595 40.33

Sample rate : 5.7 kHZ, 3 maneuvers

Noise Levels : P2 - 1 percent, P3 - 3 percent, T2 - .5 percent,
T3 - 4.9 percent

Sensor Set : W's omitted, lags on P2 and P3

Run : 5

•**«; 7 * [ .00316̂ . 102. x 7996. + 14300. 1
= 3*5.7 [ TOZIT* J7B7 + 031 * TBZBT-J

o(Kp) = 1 //(M'(Kp)J

= .00691 =6.91 percent

Thus, in a scenario with no flow sensors, lags on the pressure sensors,
lag-free temperature sensors, a 5.7-kHz sample rate, and three distinct
maneuvers, Kp can be identified with 95 percent confidence to within 14
percent. A similar exercise is done for a case that was identified using
synthesized data (see Section 5.4.2).

(In doing this example without flow measurements, it is apparent that T2
is the overwhelming contributor of information. In fact, under these noise
conditions, the other three sensors could be omitted from the instrumentation

with little consequence.)
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Several likely sensor scenarios have been considered using the above
data. The results are shown below in Table 5.4 and are used to draw a few
general conclusion about compressor map parameter identifiabilities and

uncertainties.

Summary of Kn
Table 5.4

and Kp Uncertainties Under Eight Different
Run and Sensor Conditions

Theta

Kn
Kn
Kn
Kn

Kn

Kn

Kn

Kn

Kp

Kp

Kp

Kp

Kp

Kp

Kp
Kp

Run

5

5

5
5

7
7

7

7

5

5

5

5

7

7

7

7

Conditions

Normal
Temperature Lags
No Flow Meas.
T-Lags and No Flows

Normal
Temperature Lags
No Flow Meas.
T-Lags and No Flows

Normal
Temperature Lags
No Flow Meas.
T-Lags and No Flows

Normal
Temperature Lags
No Flow Meas.

T-Lags and No Flows

sigma

0.2414

0.2486

0.8985
1.999

0.2594

0.2609

0.9670

2.418

3.092

3.095

21.65

23.63

7.668

7.063

23.51

25.72

percent
chg

.

2.98

272.

728.

—
0.57

273.

832.

—
0.10

600.

664.

—
-7.89

207.

236.

Sigma is the uncertainty at 1-kHz sample rate and 1 percent noise.
Uncertainties can be determined at other conditions, sigma need only be
multiplied by the kN or ka factors discussed in Sections 5.3.1.1 and 5.3.1.2.

Table 5.4 shows mostly familiar results about uncertainty under various
measurement conditions. Temperature lags do little to change uncertainty
except when Kn is being identified without flow measurements. (Figures 5.18
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through 5.25 indicate this is because P2 and P3 contain little Kn
information.) The absence of flow measurements has a profound impact on all
identifications; most significantly perhaps in the Kp uncertainties where
uncertainty is rather large anyway. Kn is much more identifiable than Kp, and
Kp loses about 50 percent of its identiflability if the measured stall is
recoverable. (These generalizations are specific to Runs 5 and 7 and may

differ in other models.)

Together, Tables 5.3 and 5.4, and Eq. (5.8) combine to produce a valuable
tool for not only predicting identifiability but evaluating the quality of
identified parameters. They provide a means for evaluating compressor
identification runs and can be used to evaluate various sensor set
configurations.

5.3.2 Model and Error Effects

Modeling errors can have a large effect on parameter identifications,
namely by biasing the estimates. The types of errors considered in this
section are grouped into three categories:

(1) estimate parameter biases (the effect of one estimated
parameter (in error) upon the estimate of another);

(2) nuisance parameter biases (the effect of an error in a
non-estimated parameter such as V2 or RO on an estimated
parameter); and

(3) measurement-induced biases errors in estimated parameters
(primarily induced by time skews in the data).

Study results show that in-stall compressor map parameters are quite sensitive
to a variety of model errors and precautions should be taken in identification
to avoid negative identification influences. Specifically, Kp is very
sensitive to Kn errors, and both Kn and Kp are sensitive to errors in Ro, V2,
V3, and L, errors in sensor time constants, and input time skews.

The primary means for studying these modeling errors is with the use of
the bias matrix defined in Section 5.2. Recall the matrix has the form:
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V NT M P /Xb = Mn M12 = E { -j-̂ -j —

-El|f} ' (5.9)

where

X^ = bias matrix

The matrix measures estimate parameter "sensitivity" (a measure of how
much an estimate parameter is biased by a nuisance parameter error). Xb
depends upon sensor noise levels which are a part of J, therefore, biases are
expected to vary under different noise conditions.

5.3.2.1 Estimate Parameter Biases

Noise effects can affect parameter estimate biases by adding
uncertainty. However, study of the noise levels observed in the compressor
rig indicated that noise was not responsible for the more significant estimate
errors. The most probable source of estimate parameter errors eminates from
within the estimate parameters themselves. In Chapter IV it was discussed how
the Kn and Kp parameters must be identified separately because of the
two-stage nature of the stalled model. It was also explained that because Kp
is highly sensitive to Kn, Kn must be as near its actual value as possible
before Kp is identified. The conclusion in Chapter IV was' that Kn must be
identified before Kp so that any error in Kn will have a minimal effect on Kp.
This section quantifies this effect and demonstrates that even slight Kn
errors can cause significant Kp errors and may have strongly affected the Kp
identifications.

Table 5.5 contains the normalized bias matrix (scalars) relating Kp to Kn
(and vice versa) for Runs 5 and 7 at 1 percent noise levels. The normalized
bias matrices, or sensitivities, indicate what percent bias will be induced in
the estimated parameter (Kp or Kn) given a bias in the other parameter.
Generally, Kn has a greater effect on Kp than vice versa. The magnitude of
the Kp sensitivity is quite significant considering that Kn is likely to be in
error considering identifiability limitations (uncertanties).
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Table 5.5
Kn and Kp Normalized Bias Matrices (Scalars)

Kp Bias due to Kn (Run 5) : 4.968
Kp Bias due to Kn (Run 7) : 17.98
Kn Bias due to Kp (Run 5) : .0308
Kn Bias due to Kp (Run 7) : .0117

The sensitivity values provide a good indication of relative
sensitivities, yet it is important to know just how well they can predict
actual biases considering the nonlinear nature of the compressor model. A
study was made by identifying Kn with biases in Kp (and vice versa) for Runs 5
and 7. The identifications were made with noise free measurement data so that
the uncertainties in the final identified values would be minimal.

Results of the study are shown in Figures 5.26 through 5.29. Generally,
the results indicate that the bias matrix and a first order prediction are
well able to predict estimate parameter-induced biases. Thus, the
sensitivities in Table 5.5 can be used with reasonable confidence to predict
Kp and Kn biases in model runs 5 and 7, and can be used to guestimate biases
in other non-recoverable and recoverable models.

The value of this result cannot be understated. It is likely that this
estimate parameter bias effect is one of the primary sources of parameter
estimate error encountered in the identifications documented in Chapter IV.

5.3.2.2 Dimensional Parameters

This section examines the effects of "fixed" compressor model
parameters on the identification of KP and KN. The parameters studied are RO,
V2, V3 and L, inlet resistance, stage 2 volume, stage 3 volume, and compressor
flow inductance, respectively. The study differs slightly from the previous
study in that it uses Run 4 instead of Runs 5 and 7 for a base model.

A normalized bias matrix for dimensional parameter sensitivities is shown
below. (The matrix is normalized to nominal values of KP, KN, RO, V2, V3,
and L.)
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RO V2 V3 L

KP -0.06199 0.5542 -2.6920 -0.5018
KN 0.8562 -0.1758 -0.3890 -0.08378

The normalized matrix indicates that a 1 percent error in V3 would

produce a -2.692 percent error in the Kp estimate, a 5 percent error would

produce a -13.45 percent error. Other example effects of five percent errors
in the "fixed" dimensional parameters are summarized Table 5.6.

Table 5.6
Percent Bias Expected in Estimate Parameters Due to
5 Percent Errors in "Fixed" Dimensional Parameters

due RO V2 V3 L
in to

KP -0.3099 2.771 -13.46 -2.510

KN 4.28 0.879 1.945 0.419

Kp and Kn are quite sensitive to the value of V3. In fact, Kp and Kn
are fairly sensitive to all of the dimensional parameters considered,
indicating that stalled compressor map parameters are highly dependent upon
the compressor model structure and its parameters.

5.3.2.3 Sensor Lags

Parameter identifications can also be influenced by errors in estimated

time lag constants. In this analysis, all sensors are assumed to have first
order sensor lag characteristics, and the modeled sensor lags have time
constant errors. The results show that time constant errors can significantly
bias K-parameter estimates and should be given worthy attention in the
identification process.

The time constants chosen for each sensor are characteristic of what can
be expected in a test-cell.
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. Table 5.7
Sensor Time Constants

Signal Sensor Time Constant

Wl, W2, W3 27 msec
P2, P3 27 msec
T2, T3 170 msec

Two bias matrices were determined for Runs 5 and 7. The results are
listed in Table 5.8.

Table 5.8
Normalized K-Parameter Sensitivities Errors

in Modeled Time Constants

Run 5:

Wl W2 W3 P2 P3 T2 T3

Kn 2.585 1.265 .0281 .0001 .2220 .2710 .0198

Kp 8.335 4.489 2.769 .0004 2.649 1.850 -.2060

Run 7:

Wl W2 W3 P2 P3 T2 T3

Kn 3.110 1.359 .1567 .0001 .1610 .1670 .0158

Kp 6.502 3.420 1.199 .0002 2.240 5.814 .3138

The normalized bias matrix indicates that a 5 percent error in any of
several time constants could produce at least a 15 percent error in Kn or Kp
estimates. It appears that, given that so much information is already lost
with the sensor lags, any corruption of the information resulting from
improper sensor models has a severe effect upon the identification process.
The normalized bias matrices also follow the same proprtions as the
measurement contributions. This is expected since an error in a "valuable"
signal would likely have a large impact on the identification process.
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Significant efforts must be made in future identifications to understand
the effects of sensor time constant errors and to devise procedures (e.g.,
identification) to minimize the errors and their effects.

5.3.2.4 Time Skews

Timing skews in measurement data also effect the identification of Kp and
Kn. Results indicate that timing skews may have a large effect upon the
identification of Kp and Kn.

Using the same procedure as above with Run 4 as a model basis, a bias

matrix was produced to relate the estimate parameters to the nuisance

parameters. In this case, the nuisance parameters are now, dlayUl, dlayYl,
dlayY2,... dlayY7, and the estimate parameters remain Kp and Kn. DlayUl is a
time quantity representing the amount of time U(l), or Knoz, is skewed from
the rest of the measurement data. dlayYl is a similar quantity for the Y(l)
measurement, Wldot. Each signal was perturbed by 0.1 milliseconds to produce
the bias matrix shown below:

Normalizing the bias matrix to nominal values of Kp and Kn and

millisecond delay values yields:

KP

KN

Knoz

6.997E-01

5.340E-02

Wl

1.359E-04
-2.318E-04

W2

1.639E-06
-7.713E-07

W3

-8.290E-07
3.987E-07

KP
KN

P2

5.155E-09
-8.767E-09

P3

-1.190E-06
5.724E-07

T2

-5.570E-06

2.681E-08

T3

-1.436E-07

6.900E-08

A value of 0.2 msec was chosen to represent a possible time skew value.

Skews of this size in the output values have minimal impact on the
identification of Kp and Kn, and yet a 0.2 msec skew between output values and

the input signal would produce a 1 percent error in Kn and a 14 percent error
in Kp. A skew in this area could cause substantial identification problems.
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It is not necessary that time skews appear in the recording process for
them to appear during identification. Other influences may produce the same
effects. Recall from Chapter IV that special action (identification of a new
throttling coefficient) had to be taken in order to synchronize the onset of
stall between measured data and the SCT model. Despite this action, a time
skew remained (see Run 11). This is one way in which an apparent time skew
can appear in the identification process. It is likely that such skews, in
smaller magnitudes, contributed to the errors in the compressor model
identifications.

5.4 EXAMPLE RESULTS

Section 5.3 demonstrated the usefulness of uncertainty (identifiability)
and sensitivity tools. In demonstrating these tools, a few theoretical
examples were given, most notably in the effect of sample rates and estimate
parameter biases. This section illustrates how these tools can be
successfully applied to actual identification problems.

5.4.1 Six Example Cases

Six example identification cases were chosen to study the accuracy of the
uncertainty theories. The cases are all based upon Run 5 but consider various
noise level, sensor lag, and limited sensor set configurations. The
measurements used in the identification were generated by SCT and are shown in
Figures 5.30 through 5.35. The uncertainty predictions of the study were
extremely accurate, and the formulae developed in Section 5.3.1 successfully
predicted identifiabi1ity.

A description of the six example cases is given below in Table 5.9. Also
listed are the uncertainties predicted with the given noise levels, sensor
lags and sensor sets applied to the formulae of Eq. (5.8). Sensor time
constants are found in Table 5.7, sample rate is 1 kHz, and "no W's" means no
flow measurements were used in identification. The estimated noise levels are
shown in Table 5.10. (These values may be higher than actual values because a
slightly different process was used to add the noise.)
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Table 5.9
Description of Six Example Cases

Sensor Lags
• •

Cases Theta Noise Temp P and W no W's Sigma (%)

1
2

3
4

5

6

1

2

3

4

• 5

6

Kn

Kn

Kn

Kn

Kn

Kn

Kp
Kp

Kp

Kp
Kp

Kp

X

X

X

X

X

X

X

x •
X

X

X

X

X

X

X

X

0

0.54

X 1.50

0.57

X 2.15

X X 5.20

0

7.58
X 34.7

7.61

X 31.5

X X 73.6

Table 5.10
Noise Levels(%)

Wl W2 W3 P2 P3 T2 T3

1.298 3.081 2.948 0.1023 1.015 9.884 10.24

The results of the six cases are summarized in Table 5.11. None of the
resulting identification errors was due to biasing since there were no
nuisance parameter errors (including Kn and Kp). Two different sigma values
are given in Table 5.11. The first value is the a priori uncertainty estimate
and is calculated when the model is already at the actual parameter value;
thus, it is a low estimate of uncertainty. The second sigma value is
calculated by SCIDNT at the identified parameter values (not necessarily the
actual value). This second value generally is larger because of error terms
introduced by model-plant measurement mismatches. It also is a better
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estimate of the true uncertainty of the estimated parameter (parameter
confidence).

Table 5.11
Six Example Case Results

Case Theta Actual Ident

a b
percent percent percent
error cent a cent a

1
2

3
4

5

6

1

2

3

4

5

6

Kn

Kn

Kn

Kn

Kn

Kn

Kp

Kp

Kp

Kp
Kp

Kp

8.0 8.000

7.939

8.023

7.931

8.163

8.370

0.1 .1000

.1053

.1370

.1014

.0831

.0600

0.000

-0.764

0.293

-0.863

2.040

4.630

0.000

5.350

37.00

1.400

-16.90

-40.00

0.0002

0.519

1.490

0.545

1.710

5.270

0.003

6.160

15.70

6.830

28.90

106.0

0.00
0.54

1.50

0.57

2.15

5.20

0.00

7.58

34.7

7.61

31.5

73.6

a denotes post de facto estimate uncertainty
b denotes a priori uncertainty

The results in Table 5.11 provide a good opportunity to test the validity
of the uncertainty and identifiability concepts. By dividing the percent
error by sigma values, the result is a standardized error. Statistical theory
predicts that if the sigma1s are correct, i.e., if the identifiability and
uncertainty ranges are correct, then the standardized errors will follow a
Gaussian distribution.

The normalized values are summarized in a histogram in Figures 5.36 and
5.37. The results indicate that a priori uncertainty calculations well
predict identifiability, and the post de facto parameter uncertainties provide
an excellent measure of confidence. Both sets of uncertainties show that the
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identification errors are indeed gaussian and are well predicted by standard

deviations. The six example cases provide strong evidence of the validity of
the uncertainty principles. (The a priori uncertainties are sometimes more
pessimistic than they should be because of the high original noise levels
chosen. Post de facto uncertainties are more realistic since they use noise
levels estimated by SCIDNT using the actual measurements.)

5.4.2 Test Case

A test identification was made to evaluate both sensitivity and
identifiability concepts at the same time. Unlike the six example cases given
above, nuisance parameter errors are present in the test case and lead to
biases in the identified parameters.

Following the outline of a normal identification run, Kn was identified
first with an inaccurate guess of Kp (because the actual value is assumed
unknown). This inaccurate Kp causes the Kn estimate to be biased from
actual. Kn is not expected to be the actual value anyway since sensor noise
limits its identifiability. Kp, in turn, is expected to be biased because of
errors in the identified Kn. Sensitivity and identifiability relationships
can both be used explain these results.

The test case is described by the following:

Table 5.12
Noise Levels (Standard Deviations)

Wl W2 W3 P2 P3 T2 T3

— 4.55 4.55 1.029 4.35 36.33 57.54

Sample rate: 2 kHZ

Noise Levels: P2 - 7 percent, P3 - 7 percent, T2 - 7 percent,
T3 - 7 percent

•

Sensor Set : Wl omitted, No lags

Run : 5
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The results of the identifications, along with a priori uncertainties,
estimated bias levels and post de facto uncertainties (confidences), are all
summarized below.

Table 5.13
Test Case Identification Results

e(e) a b
Theta Ident e(a) eU) bias bias sigma sigma

Kn 7.628 -4.65 -50.0 -1.80 -2.85 2.000 1.997

Kp .0964 -3.60 -4.65 -21.2 17.6 22.6 22.5

a denotes post de facto estimate uncertainty
b denotes a prior uncertainty

Both parameters were identified to within 5 percent of actual values,
although the confidence in Kp (22.6 percent uncertainty) is much less than
that for Kn (only 2 percent uncertainty.) An expected identification bias was
calculated for each parameter given the known errors. In the case of Kn, the
initial value of Kp was 50 percent below the actual value. This, in theory,
would cause the identified Kn to be biased 1.8 percent below the actual
value. After correcting the observed error in Kn for this bias, the resulting
error is well within 2 standard deviations of uncertainty. Kp then was
identified with the identified Kn (which was off by -4.65 percent). The same
procedure indicates the corrected error (17.6 percent) to be within 1 standard
deviation of uncertainty. Although this error is greater than the uncorrected
error, the uncertainty range suggests that both values are reasonable.

5.5 APPLICATION TO NASA DATA IDENTIFICATION

Efforts were made using identiflability and sensitivity tools to
determine what factors may have influenced the compressor results. These
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efforts, however, were limited by of the size of the job involved. Results
did indicate that noise and sample rate effects could only have played a minor
role in biasing the compressor rig estimates. Sensitivity effects,
particularly from estimate parameter biases and time skew biases, were likely
responsible for some of the larger errors. Precautions were taken in the
turbofan study to minimize their effects after recognizing the potentials of
these biasing influences.

Aside from the effects of noise and sample rates on uncertainty, the
following influences are believed to be the major sources of error in the
compressor model identification study:

(1) input and outputs time skewing (model lags or leads data);

(2) biases in several of the measurements; and

(3) excessive noise on the input.

Knowledge gained in the compressor identifications and this sensitivity
analysis were used to avoid many of these bias inducing contributors in the
turbofan identifications. The general approach was simply to identify and
minimize these errors within the identification process itself. This was the
approach taken earlier with the synchronization of the model and data in the
compressor identifications. For the turbofan, the synchronization effort was
fortified by identifying an input time skew parameter in place of AT.
Similarly, measurement bias level parameters were to be identified if
necessary so that they could be incorporated into the identification model and
their biasing effects, minimized.

The actions taken to avoid error effects with the turbofan provide
valuable experience for future identifications, particularly since these types
of influences are typical of those encountered in "real world" identifications.

5.6 SUMMARY

The following is a brief summary of the results and conclusions of the
identification and sensitivity study.
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5.6.1 Uncertainty

(1) Identiflability of estimate parameters (in the form of uncertainty)
can be predicted before identification.

(2) Uncertainty can be used as a measure of confidence for identified
parameters.

(3) Uncertainty is directly linked to and can be estimated using sample
rates, number of manuevers, noise levels, sensor time constants and
limited sensor sets.

(4) Uncertainty relationships can be used to determine instrumentation
requirements.

5.6.2 Sensitivity

(1) Sensitivity is a measure of predicted biases in estimate parameters
due to unmodeled errors (in other parameters, time constants, time
skews, etc.).

(2) In-stall compressor map parameters are highly sensitive to estimate
parameter errors, dimensional parameter errors, time constant
errors, and especially input-output time skews.

5.6.3 Verification

(1) Identifiability and sensitivity results were verified using
synthetic data.

5.6.4 Application

(1) Sensitivity results in particular seem to explain a large amount of
the errors seen in the compressor model identifications. No effort
was made to verify this quantitatively because of the level of
effort involved.

(2) Identifications with the turbofan model used sensitivity results to
identify outside error influences and compensate their effects in
identification.
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VI. FINAL DEMONSTRATION WITH TURBOFAN MODEL

6.1 BACKGROUND

The turbofan identifications are the second and last phase of the
compressor map parameter identification demonstration. This second phase
concentrates upon developing advanced procedures for stall parameter
identifications. The experiences and tools gained from Tasks A and B were
instrumental in developing a more streamlined and comprehensive approach to
turbofan parameter identification. These improved procedures resulted in
excellent identification accuracies achieved for the stall and engine
parameters. Those areas where identification was not entirely successful were
correctly predicted and explained by I/S tools. I/S tools also predict that
nonrecoverable stall data (as opposed to recoverable stall data) will be
necessary to identify Kp in future identifications, and that flow measurements
probably will not be required for any of the stall and engine parameter
identifications considered in this program.

The procedures used regarding the recording and transferral of data for
the turbofan were identical to those used for the compressor rig study (see
Section 4.1).

6.2 TURBOFAN MODEL DEVELOPMENT

Like the compressor rig model, the turbofan model was also developed from
the NASA Lewis TF-34 lumped-parameter model [1]. the turbofan is a twelfth-
order model with the following features:

(1) adiabatic volume effects;
(2) resistive inlet, duct and crossflows;
(3) inductive flow through fan and compressor;
(4) quasi-steady compressor and fan maps;
(5) choked turbine flow;
(6) fixed absolute speed, variable correct speed;
(7) fixed variable geometry;
(8) capable of reverse flow.
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A schematic diagram of the turbofan model is shown in Figure 6.1, and an
example stall response of the model is given in Figures 6.2 through 6.5.

6.3 SPECIAL CONSIDERATIONS

6.3.1 Initial Conditions in the Parameter Vector

The parameters used in the turbofan model were extended to include
initial condition values (IC's) as parameters. Including IC's as parameters
made it possible to identify plant initial conditions using measured plant
outputs. This is a significant improvement in the identification approach in
that it allows IC's to be identified from real data rather than taken as
givens from NASA Lewis specifications. There are two important benefits in
using this approach: (1) identifying IC's from measured data is a more real
world approach to initializing the model and (2) there is a greater certainty
that the NASA and SCT models were operating under the same conditions. The
following briefly discusses how initial conditions were made into model
parameters and how they were identified.

The turbofan model is represented in three major subroutines according to
the conventions and requirements of SCIONT. The three subroutines are:
(1) STATE, which calculates 12 state derivatives of the turbofan given present
state, input conditions and model parameters, (2) MEAS, which calculates model
outputs (flows, temperatures, pressures) based upon the current states, inputs
and measurement conditions, and (3) STATIC, which determines initial state
conditions based upon model parameters and user specifications (in this case,
steady state operation at a specified operating point.) The new feature added
to the turbofan model is a special implementation in the STATIC routine.

STATIC was redesigned to allow determination of turbofan initial
conditions from three major conditions: (1) inlet pressure and temperature,
TO and PO, (2) fan operating point (unconnected flow and speed), and (3)
compressor operating point (uncorrected flow and speed). Once these three
conditions are determined, STATIC calculates all 12 turbofan states in steady
state, and they become state IC's for the STATE and MEAS routines attached to
SCIDNT.
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The critical part of this implementation is the way in which operating
conditions are specified. The model parameter vector is extended beyond
normal model parameters (resistance, volume, compressor map parameters, etc.)
to include 6 flow, speed, temperature, and pressure values. Unlike the other
parameters, these special 1C parameters are used only once to calculate model
initial conditions. Since they still are considered model parameters, they
can be treated like any other model parameter and can therefore be
identified. This is the critical aspect. Once measured steady-state outputs
are known (pressures, temperatures, etc.), then the initial conditions of the
plant can be identified as parameters.

Initial conditions of the turbofan were identified to demonstrate the
technique and verify the NASA-supplied values. The results are shown below for
the operating points. In general, the identified conditions are quite close
to those reported by NASA Lewis. Values identified from run 1 were used in
the turbofan identifications. (Note: speed values are an absolute fraction;
they do not include theta correction.)

Table 6.1
Identified Initial Conditions

Parameter NASA Run 1 Run 2

PNFoper
PNCoper
WFdotIC
W2dotIC

.9000

1.055

303.7

41.8

9.0070100E-01

1.0504104E+00

3.0329800E+02

4.1984400E+01

9.0034527E-01

1.0494944E+00

3.0336107E+02

4.1923758E+01

6.3.2 Double Precision

Turbofan identifications used a double-precision version of SCIDNT
instead of the single-precision version used for the compressor rig. The move
to double precision was prompted by two considerations: (1) the ability to
invert the Hessian, M, and (2) the accuracy of the gradient calculation, g.
Both processes involve the parameter stepping (gradient search) algorithm in
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Eq. (3.5) in Chapter III. The move to double precision helped to alleviate
some of the earlier problems encountered with (1) and (2) and helped improve
overall convergence properties.

oi+1 = ̂  - pM'1 * g (6.1)

where

e = np x 1 parameter vector

g = gradient of J

M - gradient of g

= 2nd partial of J

p = a user defined scalar (< 1.) used to control rate of convergence.

Note that the gradient search algorithm requires that the second partial
of the cost function, the Hessian, be inverted. While this presents no obvious
difficulties as long as M is well conditioned, problems may arise when M is
nearly singular.

In the compressor rig study, an effort was made to identify Kp and Kn
simultaneously. Problems arose however when the two parameters produced a 2x2
Hessian that was poorly conditioned and difficult to invert. The solution at
that time was to identify the two parameters separately (inverting the 1x1 M
being trivial). The approach did have drawbacks, though. Separate
identifications meant that estimate parameters could be biased and influenced
by other estimate parameters. In fact, it was found that Kp could be
significantly biased by Kn (see Chapters IV and V).

By converting to a double precision SCIDNT, the poorly conditioned
Hessian became more invertable. This allowed simultaneous identifications to
be made in some cases and helped to eliminate the parameter biases associated
with separate identifications.

The second reason why double precision was implemented revolves around
the accuracy of the gradient calculation. In the Kp parameter identifications
(compressor rig study), the gradient of Kp was much flatter than that of Kn.
Interpreted physically, a flat gradient means that the parameter has a small
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effect of the response on the model. Precision errors can significantly
affect the gradient value and identification convergence properties when the
gradient is small. This problem was mentioned in the compressor rig
identifications in Sections 4.5.4 and 4.6.1.2.

The double-precision SCIDNT is more effective in the calculation of small
gradients such as the one associated with Kp. This has been translated into
increased identification accuracy.

The benefits of double-precision code are two-fold. First, the increased
precision allows for simultaneous parameter estimations, thereby reducing
parameter biases; and second, overall parameter convergence and identification
accuracy are improved as gradient calculations are improved.

6.3.3 Limited Sensor Sets

The are two rounds of turbofan identifications. The first round used
noise-free data with all turbofan measurements. The second round used noisy
data with only pressure and temperature measurements (no flow measurements.)
This second round of identification more closely mimics the instrumentation
conditions that would be encountered with real engine data.

6.3.4 Stall Detection

In the compressor rig identifications, one of the major obstacles was
getting the SCT model to stall at the same time as the NASA data. Out of that
experience, a new approach was developed to synchronize stall between the
plant and model. This section presents a new method developed for the
turbofan identification. Results of the technique's effectiveness are
presented.

In the identification process, a plant and plant model are fed the same
inputs. If the plant and model are identical, the outputs of the two will be
identical. If the plant and model outputs do not agree, the model must be
revised to produce better agreement (the job of SCIDNT). In the stall
parameter studies, the inputs are designed to initiate stall. If the model
and plant differ even slightly, their responses will differ and they may stall
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at different times producing stall asynchronism. This was seen in the
compressor rig and is also a matter of concern with the turbofan, since the
model usually does differ from the plant (at least slightly). The solution
presented here is to work with a stall time parameter.

The approach is to first make a rough estimate of the time that stall
begins in the data. For the turbofan fan, this is accomplished by examining
the data before identification and detecting rapid drops in P3dot. Once the
stall time is estimated, the SCT turbofan model is forced to stall only at
that specified stall time. This specified time (TSTART), like the initial
conditions, is a model parameter and therefore can be identified to minimize
the stall time differences. Through this method, stall synchronization can
easily be achieved.

This stall detection technique worked well for the turbofan
identifications. Unlike the compressor rig identifications, there were no
observable skews between stall onset in the model and plant. A preliminary
table of identified stall times is shown below.

Table 6.2
Identified Stall Times

Run No. Stall Time

5

10

15

20

.01875

.01785

.01846

.01818

6.3.5 Recovery Detection

The TSTART parameter was created and integrated into the SCT model so
that the model and data could be synchronized. In the same vein, a TSTOP
parameter was created to see if such a parameter could be used to ensure
simultaneous recovery of the model and plant.

The idea behind the TSTOP parameter identification is analogous to the
TSTART parameter identification; that is, to get the model and plant to
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recover (or stall) at the same time. As with the stall time, it was felt that
an incorrect recovery point could bias the estimate of the KPC parameter by
introducing extraneous model-piant errors. However, unlike the stall time
issue, the attempt to identify a TSTOP parameter was a failure and actually
detrimental. The failure was beneficial in another sense though, because it
leads to further insight about the role of KPC in recoverable stalls.

From the TSTOP investigations, it was found that KPC affects the stalling
turbofan in two ways: (1) whether or not the compressor will recover, and
(2) when the compressor will recover. Other than the time of recovery, KPC
appears to have little effect on measured responses. This means that by
altering the position of the recovery line (by changing KPC), the primary
result is to change the time of recovery. The shape of the positive stalled
flow map seems to have little direct effect on engine responses in recoverable
stalls. It also means that KPC and TSTOP seem to be very similar in their
effect on engine responses. Thus, when trying to identify KPC and TSTOP
simultaneously, the result is analogous to identifying the same parameter
twice: one parameter is identified accurately and the other parameter is
misidentified. In the KPC and TSTOP case, the TSTOP parameter was usually
identified very accurately while the KPC parameter was misidentfied as being a
value near zero.

TSTOP was introduced to the model but then was later removed when this
above effect was discovered. Once TSTOP was removed, KPC identifications
improved significantly.

The conclusion is that TSTOP defines some of the engine characteristics
normally reserved for KPC, and when TSTOP is used in the model, it can alter
the meaning of KPC. Furthermore, since TSTOP and KPC are nearly interchange-
able, it is implied that KPC's primary effect on recoverable stalls is in the
determination of the time of recovery. This means that, for recoverable
stalls, KPC has little effect on the shape of the response curve during
positive stalled flow; its greatest effect is on the time of recovery.
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6.4 TURBOFAN IDENTIFICATION PROCEDURES

The special considerations and techniques used in the turbofan parameter
identifications are summarized below. The special techniques are as a result

of experience gained in the compressor rig and identifiability/sensitivity
studies and reflect the special consideration outlined in Section 6.3.

(1) Identify initial conditions. This includes the ambient conditions
(TO and PO) as well as the two operating points (fan and compressor
flows and speeds.)

(2) Detect time of stall. This step utilizes a test which searches for
rapid drops in P3dot. A similar procedure could be used on actual
test data.

(3) Identify measurement biases (optional).

(4) Incorporate preliminary identified conditions into turbofan model.

(5) Identify parameters with noise-free data.

(a) Identify Rx, V3, KNC, and TSTART with only unstalled and
negative stalled flow data. (KPC is not identified in this
step because of its sensitivity to errors in KNC and TSTART.
The idea is to identify the parameters that KPC is sensitive to
before KPC is identified. This may reduce biases induced in
the KPC estimate.)

(b) Incorporate the identified parameters from the previous step
into the model and identify Rx, V3, KNC and KPC with the entire
stall maneuver.

(6) Repeat set 5 for second round using noise-supplemented data.

(7) Evaluate.

6.5 TURBOFAN IDENTIFICATIONS USING NOISE-FREE DATA

The first round of turbofan parameter identifications is summarized below

in Table 6.3. The identifications are for four engine parameters, Rx, V3, KNC
and KPC, and a fifth temporal parameter, TSTART. In general, the
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identifications using the noise-free data were quite successful, particularly
the Rx, V3 .and KNC identifications. The identified models are compared to the
measured data in Figures 6.6 through 6.13.

Table 6.3
Turbofan Identifications Using Noise-free,

Recoverable Stall Data

Run TSTART
(sec/100)

5 1.8720
6 1.7305
9 1.7777
10 1.7820
13 2.2698
14 1.7730
17 1.9227
18 2.1387

Average
Actual

percent
error

Rx
(xl/100)

1.004

.9902

.9639

.9758

1.054

1.045

2.039*

2.041*

1.005

1.000

0.5

V3

3337.

3347.

3328.

3324.

2637.*

2647.*

3288.

3279.

3317.

3319.

-.06

KNC

51.86

50.47

95.25*

99.53*

48.63 '

47.72

48.74

50.67

49.68

50.00

-.64

KPC

6.427*

4.127*

3.406

4.160

3.960

5.026

4.982

4.431

4.327

5.000
-13.5

Average* 2.04 2642. 97.42 5.277

identified unknown values. Not included in first average.

The original parameter estimates are summarized in Table 6.4. A total of
15 measurements were used in the identifications; they are summarized in
Table 6.5. (T3star and P3star, although provided by NASA Lewis, were omitted
since they represent quantities that cannot actually be measured in a
turbofan. The variables are intermediate variables which are unique to the
lumped parameter turbofan model and have no analogous quantities in a turbofan
engine.)
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Table 6.4
Turbofan Identifications Original Parameter Estimates

(Before Identification)

Run

5

6
9

10
13
14
17

18

TSTART
(sec/100)

1.9000

1.7500
1.8000

1.8100
2.2900
1.7900
1.9400
2.1600

Rx
(xl/100)

1.500

1.500
.5000
.5000
1.500
1.500

1.500
1.500

Measurements Used in

WOdot
WTdot
WHdot
WDdot
WXdot

W2dot
W3dot

PI
P2t

P2h
P3
Tl
T2t
T2h
T3

V3 KNC KPC

3019. 25.00 10
3019. 25.00 10
4319. 25.00 7.

4319. 25.00 7.
2319. 25.00 7.
2319. 25.00 7.

2319. 25.00 7.
2319. 25.00 7.

Table 6.5
Noise-free Data Identifications

inlet flow
fan tip flow
fan hub flow
duct flow
crossflow
compressor flow
exit flow

pressure, stage 1
pressure, stage 2 tip

pressure, stage 2 hub
pressure, stage 3
temperature, stage 1
temperature, stage 2 tip
temperature, stage 2 hub
temperature, stage 3

.00

.00
500
500
500
500

500
500

Three of the four engine parameters, Rx, V3 and KNC, were identified with
great accuracy (to within 1 percent of actual) in the first round of

identifications. This is not surprising, considering the model and plant are
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identical and the data were noise free. Yet the KPC identifications,
averaging around a 13 percent identification error, were less successful than
might be expected (under perfect, noise-free conditions, exact identification
is predicted by theory.) It will be shown later that KPC is practically
unidentifiable in recoverable stall even with low noise levels. And, given
that there was some small amount of noise in the "noise-free" data (see T2h
for example), imperfect KPC identifications are not unreasonable.

Several alterations to the identification procedures were made in an
effort to improve the KPC identifications. Although no technique proved to be
successful, the revised alterations are summarized and discussed below for
documentation and reference.

6.5.1 New Procedures for Improving KPC Identifications

(1) The above identifications used two steps in identifying the engine
parameters. First, Rx, V3, and KNC were identified; then these three were
identified along with KPC. In an effort to improve the KPC values identified
in this second step, a third step was added to identify KPC by itself, without
the influence of the other parameters. Since KPC and KNC were being identifed
simultaneously, it was suspected that the KNC identification may be
influencing the KPC results, as had happened in the compressor rig
identifications. However, this added third step did little, if anything, to
improve the KPC identifications.

(2) Another technique investigated involved reducing the number of
sensors used. Only the compressor flow measurement was used in a few
identifications in an effort to improve the KPC results. If some of the other
measurements were biased or in some way inaccurate, they might influence the
identification. Using a single measurement source would eliminate these
negative influences if they did exist as long as the single measurement itself
was unbiased. The technique again showed no improvement in the KPC
identifications and was not pursued further.
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(3) By definition, KPC only affects the turbofan model when the model is
in a positive, stalled flow mode. Thus, KPC identification is mainly
dependent upon data representing positive stalled flow (note: KPC can
influence state variables after recovery and thus still affect the model when
not in a positive stalled flow regime).

Using this knowledge, a technique was employed whereby only positive
stalled flow data were used in the identification. The procedure called for
the twelve turbofan states to be known at the onset of positive stalled flow
so that the model could be initialized. The states were determined by
propagating the turbofan model using the previously identified engine
parameters until the end of negative stalled flow and the states were noted.
Once the model was initialized and the measurement data edited to include only
the data of interest, the identification followed the normal identification
procedure. However, the KPC identifications failed to improve.

The theory being tested was that the timing of the model switching
(from negative stalled flow to positive stalled flow) may be hampering the KPC
identifications. Even if KNC is fixed (not identified), the point at which
the model switches into positive stalled flow may vary because a small part of
the trajectory moves through positive stalled flow just at the onset of
stall. If the switching point is allowed to vary, then in theory, the cost
function gradients may exhibit unusual characteristics because of what
"appears" to be a time skew problem. This concept was discussed for the
compressor rig in Section 4.5.2.3.

(4) A final technique used, and already mentioned above, involved the
creation of a "stall end" time parameter, TSTOP. Again, the TSTOP parameter
was intended to eliminate differences in the time of recovery between model
and plant produced by slight model-piant differences (similar in concept to
the TSTART problem.) The difficulty with the technique is that TSTOP, the time
of recovery, is in large part determined by KPC. Thus when TSTOP is used, the
value of KPC is practically eliminated, i.e., KPC has little if no effect on
the model. The when TSTOP is used, KPC identifications suffer rather than
improve.
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The reason these techniques were unsuccessful, or marginally successful,
was primarily due to the limited identifiability of KPC. As will be discussed
later, different KPC values have very little effect on the engine response in
recoverable stalls. Consequently, there is very little "KPC information" to

be found in the measurements. Most of the above techniques were aimed at
isolating the information or eliminating unwanted background information. The
techniques were unsuccessful primarily because the amount of KPC information
was just too small, even with the use of special technical enhancements.

6.6 TURBOFAN IDENTIFICATIONS USING NOISY DATA

The results of the second round of turbofan identifications are
summarized in Table 6.6. In this round, random white noise was added to the
data and the measurement set used in identification was reduced significantly
(see Table 6.7). Flow measurements were entirely eliminated from the
measurement set so that the importance of their presence in stall parameter
identification could be determined.

Identification of three of the four engine parameters was very good,
especially considering the added presence of noise. The fourth engine
parameter, KPC, did not fare so well. Its identification was much impeded by
the lack of flow measurement information and the added noise. The identified
models are compared to the measured data in Figures 6.14 through 6.21.
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Table 6.6
Turbofan Identifications Using Noisy Recoverable Stall Data

Run TSTART
(sec/100)

5 1.8729
6 1.7307
9 1.7755
10 1.7820
13 2.2689

14 1.7750

17 1.9214

18 2.1367

Average
percent
error
Average*

Rx
(xl/100)

.9781

.9817

.9453

.9662
1.0245

1.1225

1.9356*

1.9225*

1.003
0.3

1.9291

V3

3403.
3389.
3483.

3398.
2644.*

2572.*
3387.

3406.

3411.
2.77

2608.

KNC

47.28

47.24

99.29*

98.66*

48.21
52.22

47.45

45.82

48.03
-3.93

98.98

KPC

N/C

N/C

N/C

N/C

N/C

N/C

N/C

N/C

N/A

N/A

identified unknown values. Not included in first average.
N/C no change

N/A not applicable

Table 6.7
Turbofan Identifications Sensor Set and Standard Deviation

of Added Noise Levels

PI 0.08 psia
P2t 0.08 psia
P2h 0.08 psia

P3 3.0 psia

Tl 3.0 deg R
T2t 3.0 deg R
T2h 30.0 deg R

T3 30.0 deg R
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6.7 TURBOFAN IDENTIFICATION EVALUATION

The successes and failures in the turbofan identifications can be
explained by examining the identifiabilities, or uncertainties associated with
each parameter. Using Run 10 as a standard for the recoverable runs, the
identifiability for each parameter given the sensors and noise levels in Table
6.7 are the following:

Table 6.8
Parameter Identifiabilities in Percent Standard Deviation

IT ZT

Rx
V3
KNC

KPC

0.1602

0.0830

0.5143

31.81

0.3204

0.1660

1.0286

63.62

Table 6.8 simply says that for any single recoverable run, Rx can be

identified to within 0.32 percent and KPC to within 63 percent, 95 percent of
the time. Both of these examples are best-case examples (perfect model-plant

agreement) and are therefore somewhat over-optimistic. They do indicate that
while Rx, V3 and KNC are quite easily identified, KPC is rather difficult to
identify with recoverable stall data. In fact KPC could not be identified at
all in the second round of turbofan identifications.

To get a greater physical understanding of why KPC identifications are so
difficult, two propagations of the Run 10 model were made. The first

propagation consisted of the nominal parameter set (see Figure 6.22), the
second consisted of identified Rx, V3, KNC and KPC parameters (see Figure
6.17).

Even though the KPC value in the second set was off by 100 percent (10

vs. 5), the measurement cost errors were practically identical to the values
produced in the nominal case. In fact, the identified model errors were about

1/10 percent less than the nominal cost errors. This indicates that the
differences in the stall trajectory produced by changing KPC are being
overshadowed by sensor noise. The other parameters are identifiable because

their differences are still significant in the presence of noise.
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Simply stated, the model trajectory cannot be significantly improved by

changing KPC in recoverable stall identifications. The changes in trajectory

produced by KPC parameter changes are insignificant in comparison to

uncertainties introduced by noise. To SCIDNT, the result is that a proper
gradient cannot be determined.

KPC recoverable stall identification might be improved under better
sensor set and noise conditions (could be studied by using the measurement
contributions in Appendix A and methods outlined "in Chapter IV). But for this

particular scenario, KPC is unidentifiable.

6.7.1 Measurement Contributions

The informational contributions of each measurement to the engine
parameters have been summarized graphically in Figures 6.23 through 6.30. The
contribution levels are dependent upon the noise assumed on each sensor; the
noise levels are shown in Table 6.9.

Table 6.9
Measurement Noise Levels Used in Calculating

Contribution Levels

WOdot 3.0 Ib/sec
WTdot 3.0 Ib/sec

WHdot 3.0 Ib/sec
WDdot 3.0 Ib/sec

WXdot 3.0 Ib/sec
W2dot 3.0 Ib/sec
W3dot 3.0 Ib/sec
PI 0.08 psia
P2t 0.08 psia
P2h 0.08 psia

P3 3.0 psia

Tl 3.0 deg R

T2t 3.0 deg R
T2h 30.0 deg R
T3 30.0 deg R
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For recoverable stall identifications both Rx and V3 are largely
dependent upon temperature measurements and are independent of flow
measurements. Consequently, their identifiability suffers little in the

absence of flow readings.

KNC is more evenly divided in its informational dependence. It therefore

sacrifices approximately half of its identifiability in the absence of flow
readings.

KPC is heavily dependent upon the crossflow measurement. This measurement
alone contributes 50 percent of the information pertaining to KPC, and
consequently is sorely missed in the KPC second round identifications.

The scenarios change significantly in the nonrecoverable stall
identifications. With nonrecoverable stall, the information is more evenly
distributed among the flow, pressure and temperature measurements for all four
parameters. Absence of flow measurements, although significant, usually would

not be catastrophic to any single parameter identification.

6.7.2 Parameter Uncertainties

Table 6.10 summarizes engine parameter identifiabilities for four
different situations. The uncertainties are based upon the noise levels given

in Table 6.9.

Case Description

1 Run 10 using all measurements. Recoverable stall.

2 Run 10 using pressure and temperature measurements only.
Recoverable stall.

3 Run 20 using all measurements. Nonrecoverable stall.

4 Run 20 using pressure and temperature measurements only.
Recoverable stall.
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Table 6.10
Parameter Identiflabilities in Percent Standard Deviation

Case Rx V3 KNC KPC

1
2

3
4

.1428

.1602

.0915

.1261

.0757

.0830

.0266

.0357

.3951

.5143

.0189

.0303

17.54

31.81

.0204

.0333

Several important generalities can be drawn from these results:

(1) All engine parameters are identifiable in all four cases with one
exception: KPC is virtually unidentifiable in recoverable stall
cases.

(2) Parameter uncertainty will increase from 10 percent to 50 percent if
flow measurements are unavailable.

(3) Parameter identifiability improves significantly when identification
is done with nonrecoverable data instead ofrecoverable data. This
is strikingly true with KPC, and true for KNC as well, but to a
lesser degree.

From these results, it can be determined with reasonable confidence that,
had the nonrecoverable identifications been possible, the KPC identifications
would have been much improved. In fact, the results in Table 6.10 predict
identifiablity on par with the other three engine parameters.

6.8 NONRECOVERABLE RUN IDENTIFICATIONS

The turbofan identifications concentrated upon recoverable stall data for
the turbofan study. Originally, it was planned to use both recoverable and
nonrecoverable data, but difficulties in using the nonrecoverable data
prevented its use.

Nonrecoverable data identification has been unsuccessful to date because
of what appears to be a fundamental difference between the SCT and NASA Lewis
turbofan models. Although some identification was completed using the
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nonrecoverable data, it was soon determined that the model differences would

produce "incorrect" identifications in some of the parameters. The following
two sections document these identifications and the model-plant mismatch.

6.8.1 Model-Plant Mismatch

Figures 6.31 and 6.32 present the NASA Lewis and SCT stall responses for
model Run 20. The SCT model uses the parameter values shown in Table 6.9 and
should be identical to the NASA Lewis response. Obviously there is a major
difference between the two responses. A second model (Run 15) was also tested

to verify the differences, and it also exhibited major model-plant differences.

Table 6.11
Run 20 Nominal Engine Parameters

Run TSTART Rx V3 KNC KPC
(sec/100) (xl/100)

20 1.8190 2.000 3319. 50.00 5.000

Note that the two models agree through the unstalled and negative stalled

flow portions of the trajectory and that it is during the positive stalled
flow that the models diverge. This suggests that the modelling error lies
within the positive stalled flow portion of the model. In any event, since
part of the responses do seem to agree, identification of some of the engine
parameters (Rx, V3, and KNC; all but KPC which is only active during positive
stalled flow) was possible.

The reason why the SCT and NASA Lewis nonrecoverable models differ could
not be determined under the scope of this project. It is somewhat confusing
that the recoverable stalls, although they also move through unstalled to

negative stalled to positive stalled flow, do not appear to have the same

modelling problems. Efforts may be made in future work to resolve these
anomalies.
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6.8.2 Nonrecoverable Run Identifications

Despite the problems identified above, several nonrecoverable stall
identifications were successfully completed. The pre-identification model and
plant are shown in Figures 6.33 and 6.34; the identified model and plant are
shown in Figures 6.35 and 6.36. Identification results are summarized below
in Table 6.12.

Table 6.12
Turbofan Identifications Using Noise-Free

Nonrecoverable Stall Data

Run TSTART
(sec/100)

15 1.8400

20 1.8190

Average
percent
error

Rx
(xl/100)

1.036

1.972*

1.036

3.6

V3

2647.*

3335.

3335.

0.48

KNC

48.84

45.74

47.29

-5.42

KPC

4.586

3.217

3.902

-21.97

Average* 1.972 2647. N/A N/A

identified unknown values. Not included in first average.

Table 6.13
Turbofan Identifications Original Parameter Estimates

Run TSTART
(sec/100)

15 1.8600

20 1.8400

Rx
(xl/100)

1.500

1.500

V3

2319.

2319.

KNC

25.00

25.00

KPC

2.000

2.500

The procedures for the the nonrecoverable identifications were the same
as those for the recoverable identifications except for one modification in
step 5.2. Instead of using the entire stall trajectory in the final round of
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engine parameter identifications, only data up to the end of the first stall
cycle was used (i.e., up to the point where compressor flow becomes negative
for the second time).

The trajectory of the identified model is compared to NASA data in
Figures 6.35 and 6.36. Notice that the agreement is excellent up to positive
stalled flow and that agreement in the first cycle is quite improved over the
nominal trajectory. The indication is that a non-nominal KPC was found that
produced better model-plant agreement in the first cycle than could be
produced under nominal conditions. This aspect of the identification helps to
support the theory that KPC identification is possible when nonrecoverable
stall data are used.

6.9 SUMMARY OF RESULTS

The turbofan identifications were successfully completed by using only
recoverable stall data. Final identification procedures followed the basic ••
form outlined previously using compressor rig identification experience. The
procedures worked very well, although some modifications were made in an
attempt to improve the KPC identifications. The modifications did not improve
the identifications.

Identifications using noise-free data were the extremely accurate, with
three out of the four engine parameters being identified to within one
percent. KPC was more difficult to identify and could not be identified at
all from the noise-added recoverable data.

A measurement contribution analysis was made to evaluate the worth of the
f

15 possible measurements considered. Results revealed that only KPC in
recoverable stalls was heavily dependent upon flow information and that in
most other cases flow measurements could be omitted without catastrophic
losses in parameter information. (Contribution results are specific to
turbofan model structure and chosen noise levels.)

Uncertainty analyses were used to explain the poor identifiability of KPC
when recoverable data were used. The analyses also indicated that KNC and
especially KPC would show much improved identifiability if nonrecoverable data
is used in identification.
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The turbofan study was unable to use all of the NASA Lewis nonrecoverable
stall data because of a model-plant mismatch problem; however, limited results
obtained from some of the nonrecoverable data are encouraging.
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VII. SUMMARY OF FINDINGS AND RECOMMENDATIONS

7.1 SUMMARY OF FINDINGS

7.1.1 Preliminary Demonstration (Task A)

The compressor rig identifications demonstrated the feasibility of
compressor map parameter identification from transient data. They also
provided identification experience that were used during the program to

refining the compressor parameter identification procedures. A summary of the
identification results is given in Table 7.1. A summary of the experiences
encountered is listed in Table 7.2.

7.1.1.1 Demonstration

The compressor rig demonstration used a fifth-order turbofan model
derived from a lumped parameter turbofan model developed by NASA Lewis [1].
The model actually filled a dual role. First, it was used by NASA Lewis on a
hybrid computer to produce analog stall response measurements. Once the model
produced stall measurements, the measurements were recorded and delivered to

SCT. The model was used a second time at SCT along with the identification

program, SCIDNT, to identify the rig parameters used in the NASA Lewis model.

The entire process mimics an engine test, where the nature of the plant is
unknown and real instrumentation effects, noise and recording effects, are

included in the data.

The compressor rig identification results demonstrated several facts
about the compressor map problem. First, compressor parameters can be
identified from transient data. Second, the degree of identification success
is dependent on a variety of conditions including number of data points,
sensor noise levels, type of stall, value of the parameter being identified,
etc. In general, Kn is more identifiable in the compressor rig than Kp, and
in recoverable stall runs of short duration, Kp is only marginally
identifiable.

241



Table 7.1
Compressor Rig Identifications

Noise-Added Recoverable and Nonrecoverable Runs

Run

5
7

9
10

11
13

15
17

KN
actual

8.00
8.00
20.0
10.0
15.0
15.0
15.0
15.0

KN
estimated

7,94
8.22

17.9
9.32

20.2

20.9

12.8

15.6

KN
percent
error

-0.75

2.75

-10.5

-6.8

34.5

39.2

-14.8

4.00

KP
actual

0.100
0.500
0.800
0.800
2.000
4.250
1.000
2.000

KP
estimated

0.115
0.983
0.755
0.669

2.055

4.807

0.899

2.026

KP
percent
error

15.0
96.7
-5.60
-16.4
2.75
13.0
-10.1
1.30

The results shown in Table 7.1 tell only half the story about the
compressor rig identifications. The main goal of the identifications was not
to maximize accuracy but to gain experience in compressor parameter
identification and investigate a variety of identification procedural
techniques. Hence, the identifications in Table 7.1 could have been improved
had more refined techniques been used.

7.1.1.2 Experiences

A summary of experiences encountered in the compressor rig
identifications is listed below in Table 7.2. These experiences were a
valuable portion of the compressor rig task. They illuminate problems that
had to be explained using the identifiability/sensitivity tools from Task B
and were accounted for in the final procedures employed in the turbofan
identifications of Task C.
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Table 7.2
Summary of Compressor Rig Experiences

1. Model-Plant Differences: Time Skews

* Observation: Due to slight differences between the model
and plant, the SCT digital model stalls slightly later
than the NASA hybrid model when given the same input.
This delay introduces a time skew into the identification
and can bias compressor parameter estimates.

* Response: An input scaling factor, AT, was introduced to
the SCT compressor model so the input could be
artificially increased to hasten the onset of stall. The
parameter was identified using SCIDNT until it produced

; synchronization between model and plant. This procedure
worked fairly well but was troublesome and in some cases
unsuccessful.

2. Initialization

* Observation: The initial state values of the dynamic
compressor rig model were supplied to SCT by NASA Lewis.
In a normal identification situation, these values would
not be availabe and would have to be estimated or
identified from the data. Incorrect initial values
produce steady state errors between the plant and model
that could bias parameter estimates.

* Response: Future identifications should make provisions
for parameterization of initial condition values, i.e.,
the initial conditions should be made model parameters
(under the SCIDNT definition of model parameters) and be
accessible for identification.

3. Estimate Parameter Biasing:

* Observation: If a parameter is poorly identified, that
is, if it is inaccurate, then it is able to affect the
estimate of other parameters. This can be understood
physically in the Kn and Kp identifications. If Kn is in
error, then the model and plant will be in disagreement
from the inception of negative stall flow till the end of
the maneuver. Since most of the positive stall flow
(determined by Kp) follows negative stall flow, the Kn
errors produce model-plant mismatches that affect the Kp
identification.
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Table 7.2 (Continued)

Response: The quantitative effects of this and other
modeling "errors" is worth persuing. Certainly other
errors in parameter values, lumped parameter assumptions,
sensor time lags, etc., could have significant impact
upon compressor map parameter identifications as well.
The problem of estimation "sensitivities" is addressed in
Task B (Chapter 5). .

4. Information Content:

* Observation: Identifications improve with more
information. Most of the compressor rig work was done
using only one out every five data points. When all data
points were used, identification accuracy improved.

* Observation: Noisier data decreases identification
accuracy for all parameters.

. * Observation: Compressor parameter identifications seem
to have a predictable relationship tied to available
information. For example, in recoverable stalls, there
is less time spent in positive stalled flow and
correspondingly, Kp identifications in recoverable stalls
are marginal to poor. Kn identifications on the other
hand seem to be impervious to the type of stall and are
satisfactory, regardless of stall type.

* Observation: Specific sensors can be eliminated from the
identification process. Through elimination of certain
sensors it was found that P2 (under the present noise
levels) contributes little to Kn or Kp identification.

* Response: The precise effects of sampling frequency,
noise levels, type of stall and sensor set configurations
require further investigation. A greater understanding
of these effects will help define instrumentation
requirements and help in streamlining identification
procedures.

5. Separate Kn and Kp Identifications

* Observation: Kn and Kp must be identified separately
because of dramatic differences in the amount of
information available for each parameter. (SCIDNT
normally can identify up to 50 parameters which produces
more accurate identifications.) If identified together, Kn
dominates the identification convergence and the Kp
estimate is left unimproved.
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Table 7.2 (Concluded)

Response: Simultaneous identifications may be possible
if the accuracy of the algorithm is improved. Conversion
of the SCIDNT code from single (32 bit) precision to
double (64 bit) precision may accomplish the desired
accuracy.

6. Fixed Step Integration:

* Observation: Unreliable results have been obtained when
using the variable step SCIDNT integration routine.
Specifically, the calculation of Kp gradients loses
fidelity under variable-step integration. Loss of
fidelity is tied the fact that the Kp gradients are very
small in recoverable stalls (meaning that Kp has very
little effect on changing the stall trajectory when the
stall is recoverable). Thus, when minor gradient errors
are introduced via the variable-step integration, Kp
gradient values are distorted and identification is
disrupted.

* Response: SCIDNT is capable of integrating the
compressor rig model using an efficient, variable-step
integration package. Use of this package could produce
considerable computer cost savings; however, the package
cannot be used because of the accuracy problems.

Because of the discontinuous nature of the
stall-capable model, very small integration steps are
needed at times. Adjusting the variable-step integration
parameters of the package is not sufficient to produce an
accurate integration. Therefore, a fixed-time step is
required (First-order Euler integration is used.)
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This concludes the summary of findings for Task A. Many of these
observations were encountered throughout the text in one form or another. In
the I/S study, the compressor rig observations defined areas for study; in
the turbofan identifications, the observations were reflected in revised
identification procedures.

7.1.2 Identifiability and Sensitivity (Task B)

The identifiability/sensitivity study served two purposes. First, the
study explained the results of the compressor rig identifications, e.g., why
some identifications were more accurate than others. Second, the study

developed general tools from identification theory that could be used to
predict 1) how identifiable a parameter is, 2) what might corrupt and
identification, and 3) what sensors are needed for accurate identification,
etc.

7.1.2.1 Motivation and Goals

These tools allow the user to determine before identification how well a
parameter can be identified given the available sensors, noise levels, lags,
etc. The tools also allow identification errors to be evaluated based upon
known uncertainties in the model. For example, if a resistance is only known
within 25 percent of its actual value, sensitivity tools can predict how much
a Kp estimate would be biased by the error, and identifiability tools can
indicate what the resulting uncertainties in parameter estimates would be.

The greatest value of the I/S tools may ultimately be found in their
application to defining instrumentation requirements. Sensors important to
certain parameter identifications can be identified using these tools before
testing begins and minimal sensor accuracy requirements could be defined as
well.

The following gives a specific outline of the I/S study goals:

(1) Determine optimal data arrangements:
o

(a) study effects of sample frequency;

(b) study effects of multiple sets of measurements;

(c) study effects of reduced sensor sets.
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(2) Determine effects of data shortcomings:

(a) study effects of sensor lags;

(b) study effects of measurement noise;

(c) study effects of asynchronizations.

(3) Determine predicted errors (resulting uncertainties) for:

(a) type of stall (e.g., non-recoverable versus recoverable);

(b) K-parameter biases.

(4) Determine optimal data weightings:

(a) study K-parameter information content as a function of
time;

(b) study information contents in each sensor.

7.1.2.2 I/S Results

I/S tools were developed to address these questions and more. Under this
program the tools were applied to the specific TF-34 lumped parameter
compressor rig and turbofan models. The results, although they may be
generally applied to other turbine engines, must be treated with caution. The
important point is that the tools can be used with any engine and model; they
are derived only from identification theory and are not model-dependent. (It
is the results that are model-dependent.)

Because the tools are directly related to identification theory, they are
precise, mathematically justified expressions. Thus, although they yield
precise measures of identifiability and sensitivity, the measures are ideals.

The measures do not consider errors induced by unknown modeling errors such as

drift, unmodeled states, etc., and consequently, do not always represent true
identifiablity and sensitivity.

The mathematical details of the I/S tools are discussed in Chapter V; a
summary of a few of the I/S findings are given below. The findings are based
upon study of the compressor rig model, and therefore, some of the conclusions
apply only to that model (for turbofan results see Chapter VI).
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(1) Kn along with most other major model parameters can be readily
identified.

(2) Kp requires 200-400 times as much data to achieve the same
identification accuracy as Kn identifications, and is sometimes
marginally identifiable.

(3) Kp identifications are easily biased by errors in other model terms
specifically, Kn.

(4) Identifiability decreases proportionally to increases in noise
levels.

(5) Identifiability increases with the square root of the number of data
points

(6) Individual contributions of sensors can be identified to determine
those sensors that are necessary to a particular parameter
identification.

(7) Kp and Kn parameters are sensitive to errors in certain model
parameters (resistances, volumes, time constants, etc.) This may
make identification of these parameters a necessity when identifying
with real engine test data.

(8) Kp and Kn identifications are sensitive to time skews resulting from
different stall onset times between model and data.

7.1.3 Final Demonstration (Task C)

The third and final program task demonstrates advanced procedures for the
compressor map parameter identification using a turbofan model and
measurments. Many of the experiences and knowledge gain via Tasks A and B
were used in developing the identification guidelines used in the turbofan
identifications. The subobjectives of the task were: first, to demonstrate
compressor map parameter identification with a turbofan; second, to develop a
set of comprehensive guidelines for in-stall engine identification procedure;
and third, to evaluate the potentials for other turbofan identifications using
I/S tools.
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7.1.3,1 Demonstration

All three of these subobjectives were successfully completed in Task C.
The turbofan model used was originally developed by NASA Lewis [1]. It is a
twelfth-order lumped-parameter model with stalling compressor and fan maps. A
summary of the identifications made on the model is shown in Tables 7.3 and
7.4. The results are from two rounds of identifications. In the first round,
noise-free data is used with a total of fifteen measurements including seven
flow measurements. In the second round noise was added to the data and the
flow measurements were omitted.

Table 7.3
Turbofan Identifications Using

Noise-free, Recoverable Stall Data

Run TSTART
(sec/100)

5 1.8720
6 1.7305
9 1.7777

10 1.7820
13 2.2698

14 1.7730

17 1.9227

18 2.1387

Average
Actual
percent
error

Rx
(xl/100)

1.004
.9902
.9639
.9758
1.054

1.045

2.039*
2.041*

1.005
1.000

0.5

V3

3337.

3347.

3328.
3324.
2637.*

2647.*

3288.
3279.

3317.
3319.

-.06

KNC

51.86
50.47

95.25*

99.53*

48.63

47.72

48.74

50.67

49.68
50.00

-.64

KPC

6.427*

4.127*

3.406

4.160

3.960

5.026

4.982

4.431

4.327

5.000

-13.5

Average* 2.04 2642. 97.42 5.277
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Table 7.4
Turbofan Identifications Using Noisy, Recoverable Stall Data

without Flow Measurements

Run TSTART
(sec/100)

5 1.8729

6 1.7307

9 1.7755

10 1.7820

13 2.2689

14 1.7750

17 1.9214

18 2.1367

Average

Actual

percent
error

Rx
(xl/100)

.9781

.9817

.9453

.9662

1.0245

1.1225

1.9356*

1.9225*

1.003

1.000

0.3

V3

3403.

3389.

3483.

3398.

2644.*

2572.*

3387.

3406.

3411.

3319.

2.77

KNC

47.28

47.24

99.29*

98.66*

48,21

52.22

47.45

45.82

48.03

50.00

-3.93

KPC

N/C

N/C

N/C

N/C

N/C

N/C

N/C

N/C

N/A

5.000

N/A

Average* 1.9291 2608. 98.98

identified unknown values.
N/C no change
N/A not applicable

Not included in first average.

A total of eight runs were made in each round. Each run represented a
slightly different model since each used a different set of model parameters.
With the procedural refinements brought about through compressor rig and I/S
study experiences, it was possible to identify simultaneously the four engine
parameters on each run. (This was. not possible with the compressor rig.)

The results of the identifications were excellent. Identification of
three of the engine parameters was outstanding in both rounds, with
identification accuracies hovering around a few percent. The fourth engine
parameter, KPC, was marginally identifiable in the noise-free data and
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unidentifiable in the noisy data. I/S tools predicted this difficulty with
recoverable data and also indicated that KPC is readily identifiable with
nonrecoverable data. Nonrecoverable data were not used in the turbofan
identifications because of a model-plant mismatch problem.

7.1.3.2 Final Identification Procedure

Despite the lack of success in the KPC identifications with recoverable
data, the turbofan identifications on the whole were quite successful. The
improved identification techniques simplified the process a great deal and
contributed to the accuracies achieved. Some of the techniques are summarized
below. Discussion of the "hows and whys" is found in Chapter VI.

Turbofan Identification Procedure

(1) Identify initial conditions. This includes the ambient conditions
(TO and PO) as well as the two operating points (fan and compressor
flows and speeds.)

(2) Detect time of stall. This step utilizes a test which searches for
rapid drops in PSdot. A similar procedure could be used on actual
test data.

(3) Identify measurement biases (optional).

(4) Incorporate preliminary identified conditions into turbofan model.

(5) Identify parameters with noise-free data.

(a) Identify Rx, V3, KNC, and TSTART with only unstalled and
negative stalled flow data. (KPC is not identified in this
step because of its sensitivity to errors in KNC and TSTART.
The idea is to identify the parameters that KPC is sensitive to
before KPC is identified. This may reduce biases induced in
the KPC estimate.)

(b) Incorporate the identified parameters from the previous step
into the model and identify Rx, V3, KNC and KPC with the entire
stall maneuver.

(6) Repeat set 5 for second round using noise-supplemented data.

(7) Evaluate.
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7.1.3.3 Evaluation

The final objective of Task C was to use I/S tools to evaluate the
turbofan identification results. Several tools were brought to bear, but the
gist of the results is summarized in Table 7.5.

The identifiabilites of the four engine parameters being tested were
measured for four different cases. The identifiablity of a parameter is "a
measure of the likelihood that any estimated parameter is within and specific
range of the actual parameter value." In Table 7.5, that range is expressed
in percent standard deviation. For example, under the conditions of case 2,
there is a 95 percent probability of identifying Rx to within 0.32 percent of
the actual value (2 standard deviations).

Case Description

1 Run 10 using all measurements. Recoverable stall.

2 Run 10 using pressure and temperature measurements only.
Recoverable stall.

3 Run 20 using all measurements. Nonrecoverable stall.

4 Run 20 using pressure and temperature measurements only.
Recoverable stall.

Table 7.5
Parameter Identifiabilities in Percent Standard Deviation

Case Rx V3 KNC KPC

1
2

3
4

.1428

.1602

.0915

.1261

.0757

.0830

.0266

.0357

.3951

.5143

.0189

.0303

17.54

31.81

.0204

.0333

Several important generalities can be drawn from these results:

(1) All engine parameters are identifiable in all four cases with one
exception: KPC is virtually unidentifiable in recoverable stall
cases.
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(2) Parameter uncertainty will increase from 10 percent to 50 percent if
flow measurements are unavailable.

(3) Parameter identifiability improves significantly when identification
is done with nonrecoverable data instead of recoverable data. This
is strikingly true with KPC, and true for KNC as well, but to a
lesser degree.

In summary, Task C brought the demonstration of compressor map parameter
identification from transient data to a successful conclusion. The engine
parameters were succesfully identified, a comprehensive identification
procedure was developed and demonstrated, and I/S tools were used to explain
results and predict accuracies in future identifications.

7.2 RECOMMENDATIONS

The experiences of the compressor rig, I/S and turbofan studies has led
to the development of a successful identification procedure outlined in
Section 6.4. This outline has been extended to cover the general problem of
system identification for stalling engines and inherently contains
recommendations drawn from this program.

Before discussing the outline, the concept of system identification must
be addressed. System identification is a phrase given to represent an
iterative process by which models are developed, refined and verified; it
goes well beyond simple parameter identification. The concept is represented
figuratively in Figure 7.1 and is the basic approach used by SCT for system
identification.

As an example application, consider the twelfth-order turbofan model used
in this program. If this model were insufficient in describing actual engine
test data, system identification would be employed to identify new modes and
model aspects to make the model more complete. Hence, the final result of an
turbofan (system) identification might produce a 20th order model in addition
to identified engine parameters.

A preliminary outline for system identification of in-stall turbofan
engines is given below. The outline is derived from the experiences of this
program. Additional information on system identification can be found in
Refs. 13 through 19.
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(1) Develop an appropriate engine model for the available engine data.
The model should be as complete as possible; minor features can
more easily be eliminated than added.

(2) Attach the engine model to SCIDNT and modify as needed for
identification considerations. Special considerations include:

(a) Double precision code to maximize accuracy.

(b) Fixed step integration to ensure fidelity between
propagations. Step size must be small enough for accurate
integration (approx. 10 microseconds).

(c) Nonrecoverable stall data should be used whenever possible to
ensure proper KPC identifications.

(d) Engine model should stall only after a model-specified stall
time; it should not stall when the model flows and speeds move
beyond the stall line. (This is because an independent stall,
condition determination can cause significant discrepancies
between model and data stall onsets.)

(e) Stall times should be model parameters, accessible for
identification.

(f) Engine model should be constructed to initialize on ambient
conditions and fan and compressor operating points (6
parameters). These initial condition values should be model
parameters, also accessible for identification.

(g) Care must be taken in writing model code to ensure that no
state or measurement relies on a value not saved in X, Xdot, or
Y. For example, a variable should not be dependent upon some
intermediate temperature that is not saved in X, Xdot, or Y.
This is because SCIDNT alters variable values in the STATE,
STATIC, and MEAS routines during identification.

(3) Identify stalled compressor map parameters using 80 percent of the
available engine data. (Only 80 percent of the data is used so that
the remaining 20 percent can be used in model verification in the
next step.) The identification process is broken into the following
subtasks.

(a) Determine the relative contributions of each of the available
measurements using SENSIT or CENTS. These results will be used
to reduce the sensor set for simplicity and determine which
sensors should be reserved for model verification.

(b) Determine the initial conditions of the measured plant by
identifying the initial condition parameters using the
unstalled, steady state portion of the engine data.

255



(c) Estimate the approximate stall and recovery times (if
applicable) of the engine data. Include these times in the
model parameter list and propagate the model.

(d) Propagate the model as necessary until the uncertain parameters
produce a trajectory reasonably close to the measured response.

(e) Identify all parameters except Kp, using only the unstalled and
stalled negative compressor flow portion of the data; that is,
stop the identification before the engine moves into positive
stalled flow.

(f) Identify all parameters including Kp, using the entire stall
maneuver. (For nonrecoverable maneuvers, it may be beneficial
to identify these parameters using only one stall cycle, then
two, then three, etc.; thereby adding more information after
each identification. This may aid the Kp identification.)

(4) Verify the identified model. Using the 20 percent of unused data,
evaluate the performance of the identified model.

(a) If the evaluation is unsatisfactory, return to step 1 and
consider a new model structure. Then repeat steps 2 and 3.

(b) If the evaluation is satisfactory, stop.

A large amount of background is involved in these recommendations, all of
which can be found in Chapters IV through VI.

7.2.1 Other Recommendations

7.2.1.1 Identifiability/Sensitivity Studies

Once an initial engine model has been developed, an extensive I/S study
of the model should be made. The goals of the study will vary depending upon
the test conditions. If the data are already recorded or the instrumentation
already determined, then studies examining sample rate and noise level effects
would be moot. An I/S study would give valuable information on:

(I) Predicted identifiabilities of each engine parameter given present
noise levels and sample rates. This could identify potential
problem parameters and could also flag where additional maneuvers
may be needed.
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(2) Measurement contributions. Given the sensor noise levels, the
relative contributions of each sensor can be measured. Those with
minimal contributions could be eliminated from the model and the
identification process to reduce sources of error and computational
costs. Temperature sensors with lags may be strong candidates for
elimination.

(3) Parameter uncertainties. The uncertainties in so-called known
parameters: resistances, inductances, etc., should be studied to
determine their effects on estimation. Recall from Section 5.3.1.4,
that these uncertainties affect estimate uncertainties in the same
way as sensor noise.

(4) Bias sources. The potential biasing effects of sensor biases, time
constant errors, and nuisance parameter errors should be examined.
Areas with high biasing potential should recieve special
consideration, including possibly identifying the magnitude of the
error.

7.2.1.2 SCIDNT Considerations

The special considerations involving the use of SCIDNT were primarily
identified in Section 7.2. These considerations include the use of double
precision code, simultaneous identifications, identification of initial
condition parameters, and creating a special TSTART parameter that can be
identified for synchronizing the onset of stall.
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APPENDIX A

COMPRESSOR RIG EQUATIONS

14.8

519

(A.I)

(A. 2)

u _
~

Pl - P2 (A. 3)

t .
(A. 4)

/. (T,
wi ro L ( '2

. (T2 )\W dt * (wr) (A.5)

where: T2 =T3(1 '

R(WT).
> !
2 ~. V0

(A.6)

To =

e.

(A.7)

(A.8)

Preceding Page Blank
259



>2 = 147
(A.9)

PN = (A.10)

<t> = 7.972 x 10
n rln 0p/6p

~~TN (A.ll)

KP

KN

Unstalled

Stall if:

+ 0.33

Unstalled

(A.12)

•

( u TA~ \
9 7 \.... . . PN I•••- , rn i
62 J

•

•k I 9 9 \
T T F 1 , PN 1l o - l p . r ^ i - , i » i3 2 2 y 62 /

*

W or ^ i o \ ' ' ' /

p* = -^ (i + .7746 PN2) (A. 13)

n = no + F4(PN, nQ) * (A. 15)

(A.16)
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Constants

R = 4i = 1.538 x 10~3
0 DO

Y = 1.4

R = 12 x 53.3 = 639.6

V2 = 42844

V3 = 2570

N = 16042

KP = 1.5

KM = 15.0

L = 9.64 x 10"4

n0 = 0.10 or 0.05

A. = 30.08

a = 40

t^ = arbitrary

t2 = tj_ + .072

t, » t, + .144
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APPENDIX B

TURBOFAN EQUATIONS

Note: * denotes state equations
** indicates where inputs enter

B.I Equations

R(WT)

2T
(B-2)

R(wr?H)
P2H = V (B'3)^H .2H

wr,
Tr = u-1 . (B.4)
1 W

(B.5)
2T

(B'6)
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T2T = f(WFC' PNFc'

- ffW PNP T P ^- r^H.-p, rnr , i., r<;
i Vx v. X -L

f ( \ j pwc T p \1 v™pr5 rrir
r> ' 1» r 1 /r v/ \* x ^

WFT - <P2T

WFH

i f W. >0

if W1 < 0

2T FT

T c = T l 1 f W F H < 0

T2H if WFH

(8.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)
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- PEXIT)/PDUCT

92= T2H / TSTD. J 9 2 = T 3 / T S T D . (B'26)

5 2 = P 2 H / P S T D I 6 2 = P 3 / P S T D " "c < ° (

(B.28)

P3 = f(Wcc, PNCC, P2N, T2N) (8.30)

T3* - f("cc' PNCc' P2N>

Wc = (P - P 3 ) /L C (B.32)

^metal - WV(T2H - .1.11 TQ) (B.33)

U^ = y(Ta W^ - Tb Wx - T^ WD) (B.34)

where: Ta = T~,- . > 0
WFT

= T 2T <°

T, = T,, . > 0b 2T w

= T2T C <°
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U2H " ^Ta WFH -Tb W c - T c

where: T, = T9u . > 0
W

= T F H < 0

. >0

C < 0

f/a = Wfs/Was (B.36)

a/f = l/(f/a) (B.37)

(B.38).

G = 1 if G > 1

G = 0 if G < 0

Jfb = (1 - G) Wf (B.39)

Wfb

0 normal
W - K (1 t- AA) PJ

AA = dA if AAP3 < 0 AAP3is measured

input (B.41)
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CP " aTave + b Tave = (T3 + T3 ) / 2

•W._ = W - W. / ( f / a + 1)
do c (.

u u ^/a u
af wf ( f /a + 1) wc

* •
3 ~ P 3 c 3 e burn

/

W,- = - (W. - WJ / ( f / a + 1)
do u u

* * f I ̂  * *
W U f W U 1wfs " wf (fa + 1) ^we wcj

WH3 = Y[Cp(T3 Wc - T3 We) * Qburn]

(B.43)

(B.44)

|> if Wc > 0

(B.45)

(B.46)

.

(B.47)

(8.48)

if Wc < 0

(B.49)

Cp . aT3 + b (B.50)

Note: (*) denotes a state equation.

B.2 Functions: Fan (f̂ , f^> fo>

(If Wpc/PNFc < 280: stall) (B.51)

= 1.630 10 3 WFc/PNFc
(B.52)

0.11

K = KPF Wpc > 0
•

K = KNF WFc < 0
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* * PNF

Pzr,P2H=(1.073)(P1) (B.53)

350: recover (8.54)

2T PNFc factor) factor = F1(WFc/PNFc) (8.55)

2H PNFc factor) factor = F2(WFc/PNFc) (8.56)

* *
(8.57)

8.3 Functions: Compressor

.if W /PNC < 31: stall
\ \*\* \f

= 1.714 x 10 W / P N C (8.58)

1.54

K = KPC W > 0

K = KNC VJ < 0

(B.59)

= (1.206) P2H (1 + 0.8528 PNC^) (8.60)
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.286

T3 ~ T2H

n = n

= .4031

if W /PNC > 33: recover )cc c /

*p _ p
*3 ~ *2H PNCc factor) factor = F3 (WCC/PNCC)

T = T2H (1 + PNC factor) factor = F4 (WCC/PNCC)

Note: All functions Fi are 1-dimensional interpolations

B.4 Parameters

PQ = 15.2

Pexit - 14'7

Pv = 0.48
A

T0= 519.

R = 640.

r = 1.4

(B.61)

(B.62)

(B.63)

(B.64)

(B.65)
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STD = 14.7

TSTO = 519.

Ro = 1.6458 x 1Q-3

*DUCT - 2.1756 x Io-

Rx a 1.0 x 1Q-2

Vl * 20000.

V2T " 109189

2H * 2641

= 3319

1H - 2.679

Lc = 1.427 >

= .899

1.0

» 0.5
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KNC = 50,0

hA = 0.6672

n0 » 0.1

Stoi = 15.

a = 2.629 x 10"5

b = 0.2246

HV . 18400.

Knoz - 8'49
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