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DYNAMIC ANALYSIS OF EVOLUTIVE CONSERVATIVE

SYSTEMS. DISCUSSION OF "EIGENMODE

CROSSINGS"

H., J.-P. Morand

ANNOTATION

Following an analysis of the close link that
exists between the symmetries of a dynamic system and
the multiplicity of its natural vibration fre-
quencies, we show , on variational grounds, that
for a system with a fixed symmetry, the natural
frequencies associated with natural modes of a
given type of symmetry do not cross each other
during the evolution of this system.

The theoretical method has been put to use
numerically and applied to the analysis of the
evolution of the axisymmetric hydroelastic modes
of the "Ariane" launcher during first-stage
combustion.
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DYNAMIC ANALYSIS OF EVOLUTIVE CONSERVATIVE
SYSTEMS*. DISCUSSION OF "EIGENMODE
CROSSINGS"

i.

H., J.-P. Morand**

INTRODUCTION

To set the stage, let us consider the evolution of the /2* **

longitudinal modes of vibration of a liquid propellant 	 '^	 r
launcher during combustion of one stage. In practice, it

is convenient to characterize the configuration of such an

evolutive dynamic system by means of the draining rate of

the propellants in the functioning stage. We might -think 	
f

that the change, a priori considerable, of the natural

frequencies resulting from changes in the mass of the vehicle 	 n
J

r
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is necessarily accompanied by frequencies crossing each other

,.n (Figure 1). However, when the experimenters track the natural

frequencies of an evolutive system,they observe, in fact,

events of the -type depicted in Figure 2 and that we have

agreed to g all "modal interaction".

AP
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con figuration

Fig. 1 - Frequency crossing. 	 Fig. 2 - "Modal interaction".

One of the goals of this study is to show -as if there was

a need!- that experimental reality matches theoretical reality

and that, with the exception of relatively academic: cases

that we will discuss, the eigenmode crossings must be

considered as "accidental" with respect to modal interaction

events.

If we were only discussing the physical reality of eigenmode

crossings, our intent could appear to be somewhat academic

and provide only a principle for plotting curves describing

the evolution of frequencies. However, it happens that during

modal interaction, the ability to excite a mode of vibration

F.
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with a given type of excitation can undergo "catastrophic"

variations.; And this excitability measured by the effective

mass µe (defined below) proves to be playing an essential

function in predicting pogo instabilities of launchers using

liquid propellant for which we now recall the hydraulic and

mechanical origins (ref. 1).

In flight, the thrust provided by the engines can fluctuate

slightly on either side Lf an average value. These

fluctuations induce vibrations in the launcher structure,

thus subjecting it to accelerations around natural resonant

frequencies.	 These accelerations of the structure are in

turn coupled to the system supplying fuels which oscillate

at the resonant frequencies of the tanks and the supply lines /?

to the engines.	 These last oscillations generate pressure

peaks in the propellants. 	 These pressure peaks act on the

engines by causing the propellant flows to vary, thus causing

thrust	 fluctuations	 at	 the frequency of the pressure

fluctuations.	 If the natural frequencies of the sL,:ucture

and of the propulsion systems coincide, the pressure

fluctuation resulting from the thrust fluctuation increases.

It can even diverge if the thrust fluctuation generates a

pressure fluctuation greater than the one that created it: it

is the pogo instability.

This basic analysis clearly shows why the investigation of

the pogo stability loop requires, in particular, that the

frequencies and the natural forms of hydroelastic vibrations

of the launcher be known.	 The parameter measuring the

5
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sensitivity of a vibration mode of the tank system to an

excitation at the anchor point M for the engine structures

is the "effective mass" Ng defined by:

u2po	 (1)

with µg designating the generalized mass of the vibration

mode for an arbitrary normalization and u 2 (M)being the square

of the modal amplitude of the displacement of the anchor point

M.

Now, we are going to analyze the interactions of modes, as

well as resulting effective mass variations, in the general

case of an evolutive conservative dynamic system. By

conservative dynamic system, we essentially mean a system

with harmonic variations described by a variational principle

involving a potential energy and a kinetic energy that can

be expressed as quadratic forms of acceptable displacements.

N.B. The qualifier "conservative" implies that we neglect

any dissipating effect in the vibration study and that, in

the case of a system varying as a function of time, the

mechanical characteristics of the system (stiffness, mass)

can be considered as constant over several periods of the

vibrations under study. In concrete terms, in the case of

the Ariane launcher, the combustion time for the first stage

is 140 seconds whereas the period of the vibrations studied

is less than one tenth of a second; it is therefore proper

in such a situation to compute the vibrations at a given time

by	 freezing	 the	 draining rate ti which describes the

6
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corresponding instantaneous configuration.

During the first part of this study we will try to define,

as generally as possible, the forms and natural frequencies

of such a dynamic system.

We will consider the close link that exists between the
i

multiplicity of the natural frequencies and the symmetries

of a dynamic system. This indispensable tendency to decrease

will enable us, on the one hand, to show theoretical cases

of natural frequency crossings and, on the other, to state

in a constructive manner the problem of the evolution of the
Ct

h'

vibration modes of a system.

i
a

*i	 r

We will then show how a so-called "two-mode" approach to the

r
solution of the variational problem governing the natural 	 €

forms and frequencies makes it possible to prevent the
'r.

expected frequency crossings in the one-mode approach.

i

We	 will	 also	 give a geometric interpretation of the
f

interaction of the two modes and of the remarkable nature

of the effective mass that can result from it. 	 /3

During the second part of this report, we will illustrate

f' the general analysis outlined above by applying it to the

discussion of the evolution of the hydroelastic modes of the

Ariane launcher during first-stage combustion.

7
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We will present some numerical results involving an analytical

simplification of the evolution problem of the vibration modes

of a liquid launcher valid for the investigation of the

configurations close to a configuration for which we know

the modes of vibration (in the present case these natural
4

modes have been computed using the method of finite elements). I
{	 1. - VARIATIONAL MODELING OF AN EVOLUTIVE DYNAMIC SYSTEM

1.1.	 Varational	 formulation	 of a problem of harmonic	 t

vibrations.

In order, to introduce the general principles that enable us

to describe a general conservative dynamic system, let us

^	 consider,	 as an example, the classical problem of the j

determination of the elastic vibration modes of a body (ref.

2) occupying a domain 0 (volume) and embedded over a portion

I' of its boundary 8f2.

By definition, a natural mode of vibration is a stationary 	 E

solution of the problem of small motions of the body about 	 !t
r

its static equilibrium position. 	 if u(M,t) designates the

displacement at time t of the particle of matter located at

point M at equilibrium, we become interested in the solutions 	 yj

of the dynamic problem of the torm: 	 ^I

4	 91K t) = u 04) cos (wt + cp)	 (2)

with y independent of M. 	 Such a solution, when it exists,

expresses a harmonic vibration, in phase, of every point of
r^1

the elastic body.

8
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For a body with finite dimensions we can show that such

solutions exist for certain discrete values of w: waw t y,wx ,

.., w n ..., that constitute a series of numbers. w  is called
k

a natural pulse and the associated field un (9) is called a

natural form.

i
In the particular problem considered, if we designate with

ua ( a=1,2,3), the cartesian components of a certain natural

:Form u , aa^ the cartesian components of the Cauchy stress

t	 tensor considered as a function of the displacements by means

of the behavior equation for the hyperelastic material,

r	 Xa the cartesian coordinates of a point in space, and n a the

components of the unit line perpendicular to 80 and external
. 	 f

F6	 to Q , w the natural pulse, the couple (u,w) satisfies the

equations:

30-0 + Pwz «« = 0 at every point of SZ(3 )
8xa

°«R nQ " 0 over aQ - P	 (4)

ua =0	 over r	 (a=1,2 1 3)) (5)

(p = density per unit volume of the material)

It is convenient to write the preceding problem in an

equivalent form by means of the virtual works principle.

For this, we introduce the class C of the fields of regular

vectors defined over r and equal to zero over P. The dynamic

V problem is now stated as follows:.

Find w and uEC so as to satisfy the equation

C

7

r
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fn ao(u) e.0(Su) ^- W2 f^ p u"(Su)a = 0
	

(6)

regardless of the 6uEC
au",	 auk \

(with a„p(u)= az + axoi Ja

We say that C is the class of the "admissible forms” of the

problem and that the condition at the limits (5) satisfied

by the u elemen"s of this class is essential.

As for the conditions at the limits (4), we observe that it

no longer appears explicitely in equation (6): indeed, we

can show that it results from satisfying the variational

principle (6). This condition at the limits (4) which is

included in the variational principle (6) is qualified as

natural.

Finally, let us consider the ratio [ w2]

I
) Q"o) E", (u)

[W2) =	
^J 

n	 -	 (7)

	

1 (^	 u2
2 J sz p

considered	 as	 a	 function	 of u E 0-; 1 f^ 6ap eRC, and fn put

constitute quadratic forms of u EC which have a direct

physical meaning.	 Then, let us introduce into expression
2

(7) for w a field of the type U  + E6u, u  being a solution

of (6) for a "natural value k n = wn 11 and 6u any class C

field.	 We	 can	 then	 check,	 by	 noting	 that

fUag(u) ep,Ou) and pu 5U , are syimtrical bilinear forms, that the term

10
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in	 c of	 the	 development of 101 is zero.	 Stated otherwise,

we	 note	 that	 the	 function (7) defined over e is stationary

at	 points un of	 C and	 that the value takt ,.,n by this function

at	 such points is equal to	 W2	 The reciprocal is direct; ton
give	 a	 general	 problem	 statement	 that	 we	 will	 use as a

starting	 point	 for	 the analysis of the conservative dynamic

systems,	 we	 introduce	 two	 symmetrical	 bilinear	 forms

K(a,v)&M(u,v)	 defined	 for	 a	 class	 of	 acceptable	 forms	 C

verifying	 certain	 conditions	 at	 the	 essential limits.	 We

will	 call	 the	 natural	 form a n of	 the	 dynamic	 system

described	 by	 K	 and	 M	 any stationary point of the function

Cwt I	 defined below:

[w21	 U e e
-711(p	 (8)
0

(formal, way of writing the condition for the standing state)

The	 value Of	 [W21 at	 such points of C is the square of the

associated natural pulse	 w (For the general study of the

dynamic systems, we will use the standard printing character

u to designate an acceptable form of C	 /5

1.2. Classification of the types of an evolution problem.

We will now consider a conservative system depending

continuously on a real parameter t and we propose to analyze

how the natural forms u n and the natural pulses w n evolve as

a function of T.

OF, ROUE
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We are led to distinguish between two main categories of

mathematical problems.

Category A: "evolution of operators".

By definition, it includes cases where the C class of the

admissible forms is independent of T and where operators K

and M are dependent on r .

Let us note that stating that C is constant means in practice

that the domains (volume, surface, ....)over which the unknown

fields of the problem generally noted as "u" are defined are

constant, and also that the conditions at the essential limits
k

satisfied by u are constant.

As a typical example of a problem of this category, we can	 4
i

mention the probleta of the determination of the vibration

modes of a homogeneous body occupying a volume 0 and embedded

over a fixed portion P of its boundary as a function of the

density of this body, the elastic characteristics (behavior
6

equation) being assumed as constant. Moreover, in this case;

only	 the operator. 	 Al (14 , u) = f p« v	 depends ( linearly) on	 !^
i

T = P .	 li

Category B: "evolution of the class V.

We group in this category the problems of the perturbation

12
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of conditions at the essential limits (the domains remaining

constant) and the problems of the perturbation of the

boundaries of domains for which the domains depend

continuously on a parameter T.

In the rest of this report, we will only consider problems

of the first category. Yet, the example of liquid-propellant

launchers that we propose to treat seems to typically belong

to the second category! Nevertheless, we will show that

through a judicious choice of the unknown fields, we can go

back to a problem of the evolution of operators.

The first question that we wish to answer is the following:

when T varies, can two distinct natural frequencies for

T= 0 that remain continuous as a function of T merge for a

particular value of T ? 	 In other words,, can there be a

frequency crossing in the evolution curves for the natural

frequencies of the dynamic system as a function of T ?

We observe that such a crossing (Figure 1) must be accompanied

by a degeneracy (or multiplicity) of a natural frequency.
I

Therefore, we are naturally led to analyze under which

conditions such a degeneracy is predictable.

1.3. Degeneracy and symmetry

We can say that as a general rule the degeneracy of the

13
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natural, freque°.cies of a system is closely linked to the

V	 symmetries of this system. To-define this link, we will now

recall a few results from the "group theory" , (ref. 3 ) .	 /6

Let G be the group of the symmetries that keeps a dynamic 	
r

system constant. In concrete terms, in the case of a bounded	 i

system, the possible symmetries are by necessity one of the

tyr-es: rotations about an axis, planes of symmetry or center

of symmetry, with the exception of translations for obvious

reasons.

Let us then designate as E 	 the entire set of natural forms

corresponding to a natural pulse W. Let us choose within

E a base ^,, q7► p X311 ... , % of natural forms so that any natural

form V E,a can be represented in a unique manner through a

linear, combination of these n forms (n is by definition the

multiplicity of W).

Under these conditions, to state that the system studied is

fixed with a aE G symmetry means that if cp is a natural form,

the a pp form obtained "by forcing the symmetry operation con

the natural form 0 "" is also a natural form for the same

frequency and, consequently, belongs to E W . For any ^eEm.

We can therefore write act in the form of a linear combination

Of	 111 ^21 03t . . On

We thus verify that for any element of symmetry ac-:-G there	 ti

is a certain linear substitution denoted. as To within E
W

14
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Such an identity a : T• To which associates anycelemeTot of

the G group, a linear substitution in the vector, space EWis

called a linear representation of the G group within Ew.

We can then attempt to decompose E  into a sum of separate 	 3

spaces E(WI)+E(2)+... +E(n) 	 which are independently constant

within G.

We show that there is such a unique ultimate decomposition

and we say that it provides the reduction of the

representation T inside w

The identity a: T - T:J induced in each "irreducible sub-space"

E ( j ) is called an irreducible representation.

The dimension of the E ( j ) space is called the dimension of

the corresponding irreducible representation.

The theory of

for framework

complexes, and

b by C there

representations

on the body of

above.

the linear representation of the groups has

the	 vector spaces on the body of the C

to an irreducible representation of dimension

can correspond some physically irreducible

of dimension 6 or 26 in the vector spaces

the real numbers like the E  space considered

This remark is significant when this theory is to be applied

to the classification of the natural modes of a conservative

15
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sNistem and to the anticipation of the multiplicity of the	 4,

natural frequencies.

In the discussion that will follow we will use the following

two results:

"

	

	 The natural modes of a conservative dynamic system depicting

a group with G symmetry are classified by type depending on

the irreducible representations r f in G.
,p

,	 f
i

The n degeneracy of a natural space F W of type Ti is simply

connected	 to	 the dimension 6	 of	 the	 irrreducible

p:

	

	 representation considered (n = 6 1 or n =26, depending on the

cases).
4

Iii order to illustrate the purely geometrical meaning of the

	

normal degeneracies of the natural frequencies ; let us mention	 I

two theorems valid for the finite groups.

	

Burnside's Theorem: the sum of the squares of the dimensions 	 i
ti

of all the distinct irreducible representations of a finite

group is equal to the number of elements of that group.

The number of irreducible representations of a finite group

Y.

	

	 is equal to the number of classes of that group (let us recall

that we call a class from a G group a sub-set of G composed /7

of elements that are "conjugate" elements of a given element
Kra

a, that is to say generated by x - ^ax	 x covering G; the

16
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set of classes constitutes a partition of the group),

The preceding discussion enables us to consider some cases

of evolution of the dynamic systems necessarily leading to

theoretical mode crossings: that is the case of systems such

that for a certain value of T, a sudden change of symmetry

takes place.

For example, let us consider the modes of vibration of a

rectangular plate with sides a and b as a function of a= T	 o

(a constant). We observe that for T= 1 (square plate) the

symmetry group of the structure acquires a fourth-order axis

of rotation perpendicular to the plate at its center. But
3

it happens that the symmetry group of the square plate has 	 !y

real irreducible two-dimensional representations whereas the

symmetry group of the rectangular plate allows only real	 )

irreducible one-dimensional representations. 	 Consequently,
f
4

we	 expect,	 on	 the basis of these purely geometrical

considerations, that for T = 1, certain vibration frequencies

of the rectangular plate merge in pairs. 	 a

I

- We eliminate in the rest of our report such a case of

theoretical crossings by considering only evolutive dynamic

systems that have a symmetry group independent of T.

In accordance with a remark made above, we can classify the

various natural modes of a dynamic system according to the

various irreducible representations of the symmetry group.

17
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- We can demonstrate that the determination of the natural

modes of distinct types Tj can take place by means of distinct
variational formulas of type (8); in addition, we can arrange

it so that each natural frequency with a given natural

multiplicity (which only depends on the irreducib;e

representation TP app-:ars only once among the solutions of

this variational formula.

We will not consider here the con

consequences of these last statements

computation of the vibration (or buckling)

displaying symmetries (repetitive, for

limit ourselves to draw the following

useful for the purpose of this report:

Given an evolutive dynamic system with a constant geometry

G; then, the natural modes and frequencies of distinct types

T1 being governed by distinct mathematical problems, nothing

prevents the natural frequencies of type T j to "cross" natural

frequencies of type Tk
/ T,.

siderable practical

with regard to the

modes of structures

example); we will

conclusion that is

,l

r

1.4. Definition of the evolution problem

In order to set aside from the discussion the two cases of

theoretical crossings analyzed above, when we again tall-, of

the evolution of natural frequencies within this report, we

will mandatorily imply that we are considering the evolution

18
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of the natural frequencies and forms of a given Tj type for

a dynamic system of a fixed symmetry group G.

Let us consider a diagram showing the evolution of natural

frequencies as a function of a parameter T as depicted in

Figure 3.

We propose to analyze the evolution of the natural modes and

frequencies in the neighborhood of a value of T that we choose

as equal to zero, thanks to a judicious translation of the

parameter T.

frequency

0

/8

Figure 3. - Evolution

of natural frequencies

T

evolution parameter T

In accordance with a remark in the preceding paragraph, we

will assume, without the restriction of a generality, that

formula (8) has been selected so that the natural frequencies

are not degenerated (except perhaps at frequency crossings,

if they exist !?).

In order to simplify	 notations, we will also assume that

19
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f

p	 only the operator M 1 .5 dependent of T and we will even limit 	 t`

ourselves to a linear dependency (these two simplifications

are optional and the reader will be able to adapt the

x following analysis to the general case). We will also use

the notation Xi for the natural value that is the square of

a natural pulse w^.

For ti =0 the natural values X M are governed, as well as the	 i
ti

fa	
corresponding	 varational	 forms u^o) by the variational

principle:	 g

K(u -' I' ) a	 (9)

For z A0 the natural values Xt are governed, as well as the

new forms obtained ut, by the variational principle

a,	 K(u , u)0=6[A ]=SAI(u,11)+TV(ct,u)	 uEG' (10)	 r

TV is	 the	 finite	 perturbation	 constituted
7

by the increase

of the quadratic form M(u,u).,

- We	 assume	 that for	 T =O,	 problem	 (9)	 is resolved.	 It is

convenient	 for the considerations that will follow to assume

that	 the	 u( 0)	 series is normalized so that

i

M(u^ O)	A 0)	 =1;
r

r indeed,	 if	 V a non-normalized series, it is sufficient

(0) (0)	 (0)	 (0))) 1/2to define	 u^ = v^	 /(M(v^ ,v^ In consideration

of	 this	 convention,	 the orthogonality relations through the

solutions of	 (9) are written
^a

20 .
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tU(tt(°), 11(0)) = ar/

K(0 0) , uc0)) v A^°} at

(6ij Knonecker's symbol)

(11)

^ 6

1.5. Variational resolution of the perturbed problem

We wish to resolve problem (10). We then assume that the

u^0) series makes it possible to represent with as much

accuracy as we want an admissible form ac-C.	 /9

Therefore we can look for the solution of problem (10) in

the form of a linear combination

N

r—I

the ai values being determined by i-he condition of

stationarity of [X*]. It is proper to verify that the "best

values of a i l ' for a given N satisfy the equation at the

following natural values where X* is the corresponding natural

value.

NO) ar! 
a/ - X* [arl + T V(ttt^ ) P u%^))) al - ^	 ( 13)

(i and 9 varying from 1 to N ) .

The preceding method of resolution makes it possible, through

the introducti ln of an increasing number N of natural forms

of the u^0) series, to determine with an arbitrary accuracy

the solution of the perturbed dynamic problem.

21
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Also,	 let us note that LX *a being stationary at the ut points

of C ,	 any	 error	 of	 order c	 in the natural form u* is not

t	 accompanied	 by	 an	 error	 in	 e x in	 the natural value	 X*.

Therefore,	 it	 is	 reasonable to expect accurate estimates	 )f

the	 natural	 frequencies,	 even with	 relatively
e

rough

approximations of the natural formsp (ref.	 4).

t

1.6. One-mode approximation
i
I

>i
The simplest approximation that we could make to solve (10)

consists of stating that u( 0) is, as a first approximation,

a natural form of the perturbed system (10). The correspond-

.»	 ing natural value is then obtained by injecting the "test

function" u(0) 	into the expression for the Rayleigh quotient

L 01.	 This estimate will be annotated X p) ; taking (11)

into account, we therefore have: 	 {

F

X(0)

^`r	 Arlo	
1 + ,r V(c1co) 

^r
uco))	 (14)

r 

By repeating this computation for each natural form ulo),

we obtain for each value of i what we will call the estimate

of the evaluation of the natural values in the one-mode

approximation.	 In Figure 4, we have depicted a typical

variation of these estimates; let us assume that the

examination of the approximate evolution curves thus obtained

leads to a frequency crossing for T = io (Figure 4).

In the neighborhood of such a value, it is legitimate to

22
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(0)

11^

X(0)
I

(0)

Vj

Ni
(0)

question the validity of the one-mode approximation. We are

then led to improve our method for estimating the solutions

of equation (10) as follows:

1.7. Two-mode approximation

We wish to examine "under a magnifying glass" the area of

the diagram (Figure 4) enclosed by the dotted line. The

simplest refinement of the preceding model consists of looking

(0)for the solution of equation (10) in the form ajui 0) + a
Y i I

i and j being the modes involved by this crossing possibility. /10

To

Figure 4.-Evolution of the

natural values in the "one-

mode l ' approximation.

T)

P
I T)

To

Figure 5.-Evolution of

the , natural values in

the"two-mode" approxi-

mation.

The best ai and aj verify equation (13) which is explicitly

written:

-1
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x(io)	 0	 Ili I = X [ 1 + r Vi, r Vij	 at

0	 ^;°)	 ai	 r Vii 1 + r V#	 10'i

(we have used the abbreviated notation Vi! for V(u!'^u(')L).

We note immediately that the preceding couple of equations

is formally identical to the equations governing the

vibrations of a system composed of two coupled harmonic

oscillators. The natural frequencies of the two oscillators

in question are precisely the frequencies obtained in the

one-mode approximation according to (14).

The detailed discussion of the problem at the natural values

being elementary, we will only indicate the resulting

consequences within the scope of our analysis; they are easily

understood thanks to the analogy that have just mentioned.

- As long as the natural frequencies of the oscillators are

sufficiently removed, the effect of the TVi coupling on the

natural modes and frequencies is negligible: in our problem,

that means that outside the area bounded by the dotted line,

the estimates of the frequencies in the one-mode approach

are very close to the exact values.

On the other hand, the TVi1 interaction plays a crucial role

"when the frequencies of the two harmonic oscillators are

24

1-1	 i

r-



r

^Y
very close":	 in fact, the interaction effect is to reveal

a "forbidden frequency range" (or "gap" in English-language

terminology)	 where the one-mode approach allowed for a

t^	 prediction of a frequency crossing!

We should now check that the simultaneously consideration

of an increasing number of u (0) modes to solve (10) does

not modify the. qualitative conclusions depicted in Figure

5.	 There also remains the analysis of the interaction /l]

situations with more than one mode but this is outside the

`,	 scope of the work that we have set for ourselves here.

The entire preceding discussion bears on the fact that when

TV(u^ 0 ^u^ 0)	 reaches zero, it cannot do so accidentally.
r

If we had not taken care to consider only modes of a T j type

of a system of symmetry G 	 it would have been otherwise.
j

r

indeed, V is by hypothesis an operator that is constant within
r

G (since it respects the fixed symmetries of the system
r	 .

considered); but there is a theorem in theoretical physics under 	 $'

the name of 116election rule" which is stated as follow;3:

Given two natural forms u [a] and u` b] belonging to two

natural	 sub-spaces	 that	 transform	 into two different
i

irreducible representations a and Tb of the G group, and

given a bilinear operator that is constant within G ; under

these conditions V(u[a]u`b])	 is equal to zero.

It is from this property that we have the uncoupling of the

mathematical problems caused by the search for the modes
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y	 Jj



a

c' ji

of distinct types that we have previoulsy mentioned. het

us return to the physical interpretation of Figure 5. if

we "follow" the natural form u.(T), we note that outside the
9

area defined by the dotted line, this form differs very little

from uf (0) as long as T < TO and that it is very close to

u1 (0) for T > To.	 On the other hand, for T	 To it has the

hybrid characteristics of aj (0) and uf(0).
"

The reversal. of the physical characteristics of the vibration

modes takes place naturally for the solution corriaponding	 t

to the lower branch (U4(T)).

This reversal of physical characteristics of the vibration

modes of a structure within an interval, of variation of the

parameter T which defines its configuration is a

characteristic of a two-mode interaction.

1.6. Geometrical interpretation

We can give the following geometrical interpretation of an

interaction event which will be use:E:..l in discussing the

evolution of the effective mass µ e . When using the approach

consisting of having the dependency in T of the dynamic system

rely entirely on M( u,u), it is convenient to consider that

the ui (T ) series constitutes a base of C that is orthogonal

to the direction of the scalar productK(u,v) (on the condition

of removing from the discussion the rigid body modes that

have a zero "length" for the "standard" associated with this

26
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scalar product).

4

"qj	 We can then condense the description of the evolution of the

two natural

interaction,

simultaneous

perpendicular

within the pl

mode solutions of (15) by saying that during the

the	 directions Of U,( T )Uj ( T ) perform a

rotation of about 90 degrees while remaining

to each other and while remaining located

ane defined by Uj (0) and uj(0).

1,9. Evolution of the effective Mass during a modal interaction.

We wish to show that during a two-mode interaction, the

effective mass p e can become infinite for one of the modes.

Let us return to the simple case of a structure excited at

a point M along a given direction A, which was useful to us

in introducing the concept of an effective mass (1). Let

us then consider within C all of the admissible forms u such

that the displacement UM along the direction A of the

excitation force is equal to zero. All of these represent

a hyperplane of C	 If we represent the plotted line D of /12

this hyperplane in the plane generated by U i ( 0) and YO)
(Figure 6) we note that during the rotation as a unit of the

couple of the directions of ai (T) uj (T), the end of one of

the two representative vectors crosses the line D for a given

value of T	 Consequently, for this value of r the effective

mass p e is infinitel

This same geometrical interpretation makes it possiblo to

27
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Figure 6 . Geometrical

representation of the

evolution of the natural

forms.
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interpret the effective mass minimum of the other mode

sotietimes observed in the neighborhood of a modal inter-

section.	 In practice, these properties are not observed with

such clarity:	 that is because we are seldom in the presence

of " pure"' two-mode interactions and. because the interactionsY

with the other modes can alter this simple scheme. We will

presont in II a concrete example of such "catastrophic"

variations of the effective mass resulting rom the precedin gg	 p	 g

i	 interpretation.

2. - APPLICATION TO LIQUID-PROPELLANT LAUNCHERS

As we have indicated in the introduction, a liquid-propellant

launcher is a typical example of an evolutive system (and

it is within this frame of reference that we have approached

the problem); let us recall that in the case of the Ariane

launcher the mass of the propellants at first-stage ignition

represents about 90% of the total maso of the vehicle!
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Moreover, we can assume with good reliability that such a

dynamic system is symmetrical about its axis, that is to say,

in a precise way, that it has as G symmetry group, the

rotations of any angle about the axis of the launcher and

all of the planes of symmetry passing through this axis.

For a system displaying such symmetries, we know that the

modes are classified by categories depending on the value 	 j
a
I

of a circumferential whole number n which constitutes a

numbering of the different irreducible representations (real)

of G	 In accordance with the general conclusions presented 	 +

in I, nothing prevents the natural frequencies of modes with

different n's to cross each other.

In this case, we are mainly interested in the evolution of 	 i

tt, a vibration modes called longitudinal or axisymmetrical

OL =0).	 The corresponding irreducible reproduction of G being	 s

one-dimensional, these modes have a natural degeneracy of
,

1.	 The practical interest of these modes in the discussion	

^I

of the pogo instabilities of the launcher lies in the fact

that they are the only ones that have a pressure fluctuation
f;

along the axis of the vehicle, in the immediate neighborhood

of which the fuel lines of the propulsion systems are actually

located.	 /13

2.1. Hydroelastic vibrations: generalities

From a mechanical standpoint a liquid-propellant launcher
i
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can be represented by an elastic structure containing a liquid

that we will assume to be incompressible and perfect.

In order not to burden this report we will not consider here

the effects of the stresses induced by the internal

pressurization (reference 5) in particular, as well as the

accoustical effects associated with the compressibility of

the liquid and of the gas used for pressurization (reference

6).	 In addition, we will neglect the effects due to gravity

g and to the launcher acceleration 'y .

This last approximation is fundamental to the analysis that

will follow and therefore requires several clarifications.

Given a hydroelastic system in an apparent gravity field

g+-y (we neglect coriolis forces); it is convenient to

introduce two types of vibration modes defined as follows:

- The hydroolastic modes computed by neglecting the potential

energy terms associated with g+j.

- The sloshing modes of the liquids computed by assuming the

structure to be rigid and immobile.

These two series of modes that we can consider as

near-solutions to the entire problem must be considered as

constituting a base for the admissible forms G of the real

problem	 or,	 if v7e wish, as a system of "generalized

coordinates" for the solution of this problem.
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The	 coupling	 between	 these	 near-solutions	 coming	 from
r'

satisfying	 the	 variational	 principle	 of	 the exact problem

then	 leads	 to	 the	 discussion of a problem with the natural

values	 of	 type	 (13).	 With a one-mode approach, we will say a

that	 the	 effect	 at the lowest order of this coupling	 leads a

to	 a renormalization of the natural frequencies of each mode;

with	 a	 multi-mode	 approach, we will speak of an interaction

between	 hydroelastic modes and sloshing modes.	 An exact pogo

mode can then be described as a hydroelastic mode "surrounded"

by sloshing modes. 	 This representation of the vibration modes
r

r
ra

of complex structures based on the description of the resonant

excitations	 in	 quantum	 physics	 can	 then be applied to the

computation	 of	 the	 effects	 of apparent gravity g+-y	 on the

pogo	 modes	 of	 a	 liquid-propellant launchor in flight or of

undergoing vibration testing. Imodes

2.2. Hydroelastic vibrations: variational formula.

We will now show a heuristic derivation of the variational
i

principle governing the hydroelastic modes in "weightless-

ness".	 With regard to the rigorous derivation of the

d t v ariat ionaltreatmentequations for this problem an	 heir 

the reader will consult reference [8].

To be able to use the method developed in Part I, we need

a type (8) variational principle defined over a class of

acceptable forms that does not depend on the fuel level of

31
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the elastic structure.

Figure 7 graphically depicts an elastic medium occupying a
r

domain 0 in contact with a liquid with a density of pF^

occupying a domain n  , along a surface E. P designates the

exposed (or free)surface of the liquid (we will again use

the bold letter u to designate a vector field).

Our objective now is to modify the Rayleigh principle (7)
t

governing the vibrations of an elastic body so as to take

into account the effect of the liquid on the wall E of the

elastic structure.	 To the denominator !J u 2 	there must /14
Q

therefore be added an additional term rn 
pF 

uF associated

with the displacement uF of the particles of the liquid.

But, in the approximation of an incompressible perfect fluid,

U  derives from a displacement potential y(reference 8)

uF = grad ^0	 (15)

which	 has	 a	 modal amplitude	 simply	 related to the

non-stationary pressure n according to (reference 8):

P = PF 
W2

Ô
	

(linearization of the Bernouilli Theorem) 	 (16)

for g=0

In addition, 9 verifies the following equations:

A^p=0

= U. n	 over E
all (17 )

'P = 0	 over P
9
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expressing, respectively, the incompressibility of the liquid,

the condition of the ,contact between the wall and liquid over

E , and the zero value of the fluctuation of the pressure

over the exposed surface r.

We then note that the preceding equations (17) make it

possible to formally "express" N "as a function" of the

displacements of the structure along the contact surface

E.

Consequently, the following equality,

MA (" , 11)	 r pF, 11F, f P. (grad ^)2	t! E e	 (18)np	
StF,

defines a quadratic form of the displacements of the elastic

structure. The notation MA has been selected to underline

the connection between the quadratic form formally defined

by (18) and the concept of added mass (reference 9).

z	 z

r
h — —

n	 r* Anf b E
h-eh ---

^F

11^,^ 'I-- 
E"

0
Notationss ^F — QF + An

E = E"+ DE

7.-Graphical representation Fig. 8,.-Representation of

a hydroelastic system.	 the liquid domains for two

_fuel levels.
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It is then possible to demonstrate that the stationarity

principle

1

2	 Oii(u) Eij(")

	

0= 6(w2) -g 	 R	
;	 "E C',	 (19)1

n

where [w2 ] is a function of only the structure displacements,

totally defines the natural forms ui and the natural pulses

W, associated with the hydroelastic vibration modes

2.3. Evolution of the hydroelastic modes

We now consider a fuel level configuration of an elastic

structure temporarily defined by the vertical dimension of

the horizontal exposed surface of the liquid. In the new

configuration the liquid occupies a domain Mp has an exposed

surface F* and wets the structure over a surface E*. We

designate by means of ASZF(Figure 8) the variation of the fluid

domain bounded by the exposed surfaces rand r* and the contact

surface AE.

Let	 MX(u ,u) be the quadratic form of the "added masses" for

this new configuration. It is convenient to formally

introduce the increase of the quadratic form MA between the

configurations defined by r and r* according to:

AMA(",")=M,*^("-u)-MA(u•") ;u E G.	 (20)
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The variational problem governing the hydroelastic vibrations

U*, W* of this new problem can then be written:

*2
	

U 1,01) Cl/61)	
EO -S[w ]^g	 a G',	 (21)

'	 2 Nh (u , u) + 2 N^I^ (tt , u) + fit pug

By looking for its u* solutions in the form of a linear

q	 combination Eaj uj and by noting the orthogonality relations

(see equation (11)) verified by uj	 the "best"aj and the

Y,	 associated natural frequencies verify the following equation

analogous to (13):

w^ S t/ a/ 	 cv
2
 (8 t/ -!- G1 A1A (" t, tt /A a/	 0	 (22)

By using discretization and reduction techniques associated

t with the method of finite elements (see [81 and [61) we can

compute AMA (a ,uj ) directly and properly reach the numerical

solution of the preceding natural value problem over a

truncated bate of natural forms u 0 ,u
I
,...uN . This method

is being developod at ONERA for the computation of the

hydroelastic modes of liquid-propellant launchers.	 It should

make it possible to compute "by finite elements" (very
)

accurate but rather burdensome method) only a limited number

of launcher configurations and to have access to the dynamic

characteristics for intermediate configurations through this
r

i	 simple variational method and we could also show that it is

t d	 h	 hods called "of dynamic sub-structuring".	 /16related to the met 	 "y	 g
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Within the scope of this report, we will again simplify 	 r'.

problem (19) and establish an analytical expression of 4MA, J

u	 valid for r* configurations very close to P.

4f

	4.	 We start from an exact expression of 4MQ (u,u) obtained by	 't

using definition (18) of MA and the properties of ^ and ►p*
4	F	 expressed by equations (17):

"'Y-4 (" I «) ` J » pd,(grad ^p*)2 _ r 
P„(grad X0)2

	

^	 s^F,	 ,J six

8 ^,

	
(23)

ph `p cal — J 	 pr `p 
11,

 n	 p

	

`	
° b

cp* is of course the solution of equations (17) for the same

value of u C, but for the Q r domain bounded by P* and E*).

We now propose not to keep the oh terms of equation (23) and

to neglect the higher-order terms.

Discussion of the term J y, aG* I 	 in the neighborhood of	 x

P, taking into account the zero value condition of ►P over

P (17), we can, within this order of approximation, replace
E

(P with 	 BZI ► and neglect the difference between L and

az I

Discussion of the term	
J	

^p u.11 of is "of the same order	 I
°^

as” 4h	 the same force; consequently this term brings only

'r
negligible contributions.

Finally, we will write for very small changes in level oh:

2
AMA (" , u) w — All 	

p^. 
3 Z)

I(24)

oItGINAt.'a^
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To discuss the practical interest of this approximated

expression, let us now consider the case of a

liquid-propellant launcher in flight. We usually introduce

the draining rate parameter ti to characterize the fueling

configuration of the operating stage. This T parameter is

defined as follows: given M0 the total mass of fuel at

ignition of the operating stage considered, and M the mass
s

of the fuels of that same stage for a certain flight

configuration, then, by definition:

10o	 NM 	

s

0
(25)

respectively designate the initial masses ofIf M, and M 2 	 4

fuels 1 and 2 (Mo = M I + M 2 ) 1 it will be useful, later, to

introduce the respective mass ratios o,c fuels 1 and 2:

i
M I	 Al2

X ' - /vr, + /1r2 ' X2 - / " I +'Yf 2	
( 2 6 )	

It
It

We can now transform the analytical expression (24) of AMa

to approach the study of the evolution of vibrations of liquid 	 I

launchers. By using the preceding definitions, the matrix

elements of AMa that enter into the solution of (22) can then

be written, by introducing the notation a^'^cp jaZ I to designate

the vertical displacement of the exposed surface of the tank

for fuel 1 for the ith mode, and <> for the average surface

value of a quantity:	 /17
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(27) 

Ab1	 (u , r^A	 l	 ^)	 A r 100 '—
i	 aI, az 1)

+ 
X2 ^al2 aX2

2.4 Tangent to the frequency evolution curves.

For an infinitesimal small AT = cof the draining rate, the

analytical expression (27) for AMA is correct for order c,

and we can use it within the one-mode approximation, to

compute the frequency variation for order c , and hence, the

derivative 8w / OT. By calling F the frequency w/2n, and by

designating with µ9 the generalized mass of the mode "being

followed' (for an arbitrary normalization), we obtain:

aF _ F 
MO (X ( '72 ) + X2 ( 2))

7r_ Zoo µg	 i
	

(28)

where <nfi> (resp 
<nz

>. , designates the average surface quadratic

value of the vertical displacement of the exposed surface

of the tank (resp 2).

This last expression (28) can be subjected to a direct

physical interpretation which simultaneously thrusts light

on the approximation (24)(27). Indeed, we can verify that

the terms inside parentheses give, for a variation in the

draining rate, the amount of mass removed at the exposed

surface of each reservoir where the modal amplitude of the

displacements (vertical) is precisely 9 11 and 92 (resp). From

this stan1point (28) is nothing but "the formula of the

^1
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displaced	 frequencies)	 well known to experimenters. 	 (we note

the	 expected	 result DF/a ,► > 0 expressing the fact that during

the	 emptying	 of the tanks, the natural vibration frequencies

can only increase). 13

2.5. Hydroelastic modal interactions.

Expression	 (27)	 clearly	 shows why two hydroelastic modes of

the	 same	 type,	 lot	 us	 say longitudinal for the purpose of

illustration,	 necessarily	 "interact"	 during	 the evolution.

Indeed,	 the	 average	 values	 of	 the	 products	 of	 vertical

displacements	 of	 the	 exposed	 surface	 of	 each tank do not

generally add to zero when we consider any two modes.

2.6. Application to the flight of the Ariane launcher.

We	 have	 numerically	 applied	 the solution to equations	 (22)

simplified	 by	 the	 analytical, approximation (27) and we have

applied	 it	 to	 the case of first-stage combustion (L 140) of

the Ariane launcher.

Figure 9 represents the results of computations by finite

elements (reference 10) of the asymmetrical hydroelastic modes

of the whole launcher for four flight configurations of the

first stage (points o). On this same figure, arrows have

been placed to reflect the tangents to the frequency evolution

curves computed by means of analytical expression (28) by

using the displacements of the exposed surface and the

generalized masses resulting from computations by finite

39
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40

0
1^p u I ,

elements (reference 10) .	 F:4 I.

Finally, the numerical results obtained thanks to the method

of mode interaction that we have just presented have been

indicated	 by	 means of crosses.	 The continuous curves /18

represent the most reasonable frequency evolution curves that

we could plot considering the additional information obtained

by means of the modal interaction model.

Figure 9.- Evolution diagram of the axisymmetrical vibration

frequencies of the Ariane launcher (first-stage combustion).

o	 -omputation by finite elements

+	 variational resolution of the approximate evolution

problem.

Considerations to be noted:

- With respect to the bold move consisting of describing

AM by means of its linear portion (27) for such an amplitude

in the draining rate variation, the agreement between the

r



i

estimates obtained from different reference configurations

(30% and 50%) can be considered as very satisfactory, at least

for the first hydroelastic modes.

- We observe a "strong" modal interaction between modes

#3 and 04 between the 50/ and 70% configurations.

Diagram 9 includes modes of a practically constant

t
frequency. This means, from (28), that in practice such modes

are not accompanied by any displacement of the exposed surface

inside the tanks in use. The examination of the natural forms

then makes it possible to verify that these modes are

"localized" to the structures of the upper stages.

- These "constant" modes interact correlatively very

little with the others (very small AM A (ui ,uj )): we are then

in the presence of weak mode interactions giving rise to an

extremely small frequency interval. Therefore, we can

eliminate without risk such modes from the study of the

evolution. Rhis remark must make it possible to consider

the computation of the pogo modes of a liquid-propellant

launcher on the basis of pogo modes computed for a given

configuration and selected as a function of the sufficiently

rapid evolution criteria based on equation (28). This

observation will be used profitably in the computations of

finite evolution of the pogo modes by means of the method

described above and which must lead to a "model with n

significant pogo modes" of a liquid-propellant launcher. 	 /19
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2.7. Evolution of the effective masses.

V,Iate 10 depicts the evolution of the effective mass of the

modes (cef ined for a normalization along the vertical

displacement of the first-stage engine assembly) for an

increasing	 number	 of	 "test	 forms" injected into the
t.'

approximate variational principle. 	 We note, and that is

predictable, that while taking into consideration a relatively

restricted	 number of modes makes possible a reasonable
rl

estimate of the natura.. frequencies, the precise estimate 	 e

of	 the evolution of the effective masses requires the

simultaneous taking into consideration of a la;.ye number of

natural forms.	 /20

These diagrams make possible the observation of effective

mass singularities and of minimum values of µ e for certain	 t

modes, in the neighborhood of a strong mode interaction.	
f

N.B. The evolution of the first pogo mode (at non-zero
f

frequency) is sensitive to the overall translation mode at

a zero frequency (mode #0). The reader will be able to check

that the interaction between this translation mode and the

hydroelastic modes resulting from satisfying the variational

c'	 19	 t	 as sociated 	 t t	 c';^ra.n a.ple (	 ) is direc tly as oc.^.ate wi th he princip le o

the conservation of momentum which, in the case

of small motions of a free system, leads to the immobility

of the center of gravity of this system. ~ Is1
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Figure 10. - Variational extrapolation of the vibratory

characteristics of the Ariane launcher in the neighborhood

of configurations computed by finite elements. Evolution

of the frequencies F and of the effective masses P, as a

function of the (umber of test natural forms.
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CONCLUSION

During this study, we have used as theoretical cases of

frequency crossings the case of the merging of natural

t frequencies of modes with different types of symmetry, and

the case of the merging of natural frequencies of certain

modes of a system for a particular configuration corresponding

to a sudden increase of the symmetries. 	 f.

Outside of these cases, frequency crossings can constitute
8

t

only accidental events by comparison with the modal inter-

	

''	 actions revealed by the frequency evolution curves of the

modes of a given type of symmetry, in the case of highly

	

t	 "s

evolutive	 systems	 such	 as liquid-propellant launchers,
>t

missiles, etc...

ri

This study seems to us to be equally as useful for the

analysis of the modal interactions caused by a perturbation

brought on by the measurement itself in the case, for example, 	 r "
i

of the experimental technique of shifted frequencies.

The variational method for treating evolutive conservative

{
dynamic systems can be also applied to cases where the study

	

I	

of secondary effects is involved such as a change in the

rigidity	 of	 a	 launcher structure resulting from tank

pressurization	 (the T parameter	 is	 then the internal

pressure).
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This method could	 then be extended to the case of
r^

non-conservative systems (by dropping variational reference

(8)), a problem of this type arising particularly in the case

of aeroelastic instabilities of aircraft (reference 11).

Finally, it is indispensable to mention that real structures

do not have a perfect symmetry ;ind that, consequently, the

crossings of theoretical frequencies can be observed

experimentally only as events of "weak" modal interaction

which result, therefore, as a forbidden frequency band that
4

is narrower with a smaller departure from perfect symmetries.
r

These remarks must be taken into consideration to properly

approach the problems of mode identification. 	 /21

t
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