
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

F

t

Y

^i

i

a

ti

I
I

A

p

IL

i

j

,

(NA'SA-CH-^1739 87) 	 CCNILGI, lSL'T ODOI,OGIES,, ,; CR 	 N84-3440
LAW,E SPACE STRUCTURES .Final .Report, period
end ay Sep. 1983 (Old Dominion Univ.,
Norfolk, Va.) 38 p HC 403 /MF A01	 CSCL 22B	 UnLlas

z	 G3/18 01052
0	 DEPARTMENT OF ELEC'T'RICAL ENGINEERING
-^-^	 SCHOOL OF ENGINEERING

OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA

z
OD
0LL	 CONTROL METHODOLOGIES FOR

LARGE SPACE STRUCTURES

U
Q

By

Griffith J. McBee, Principal Investigator

and

 t n '
Cl)	

Edmond AL o Ii

w
Final Report

z	 For the period ended September 1983

M

z©	 Prepared for the
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

Under
Research Grant 'STAG-1-318
Dr. Raymond C. Montgomery, Technical Monitor
FDCD - Spacecraft Controls Branch

i

ff
i

August 1984

^y
1	 r

rq'
J i'

t

3

- 5

X

DEPARTMENT OF ELECTRICAL ENGINEERING
SCHOOL OF ENGINEERING

-,	 OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA

CONTROL METHODOLOGIES FOR
LARGE SPACE STRUCTURES

By

Griffith J. McRee, Principal Investigator

and

Edmond Altonji

Final Report
For the period ended September 1983

R^^
^G^

Prepared for the
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

Under
Research Grant NAG-1-318
Dr. Raymond C. Montgomery, Technical Monitor
FDCD - Spacecraft Controls Branch

Submitted by the
Old Dominion University Research Foundation
P.O. Box 6369
Norfolk, Virginia 23508

August 1984

4

1

x^ ^	

tee.

	
Y	 ^..

Y

i

9

4 .
TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... 1

1. INTRODUCTION ... 2

2. ANALOG	 SIMULAT. ION .. 2

2 .1	 Motor Model 3...
2 .2	 Compensator ... 3

3. DIGITAL	 DEVELOPMENT	 SYSTEM 8

3 .1	 System Description.......... 8
3.2	 System	 Connect ...0 8
3.3	 MC68000 Microprocessor Description	 006.00.00.0#00 8

4. DIGITAL	 LOOP	 OVERVIEW .. 10

5. SOFTWARE	 DESIGN .. 12

5 .1	 Program	 Initialization.............. ... so* o 0 12

6. MOTOR	 SPEED	 MEASUREMENT 6 6. ... 4 15

6.1	 Reference	 Service	 Routine.0.6.. 00 15
6.2	 Motor Velocity	 (Main Program) 0..0,...... 17

7. ANALOG TO DIGITAL CONVERSION - ATOD 23

8. DIGITAL	 COMPENSATOR 6..6.......6....	, 27

9. COMMENTS	 ON	 THE	 SYSTEM 6......... 31

APPENDIX I:	 PERIPHERAL INTERFACE DEVICE (PID) 32

APPENDIX II:	 PROGRAMMABLE TIMER MODULE (PTM) 33

APPENDIX III: 	 SYSTEM MEMORY MAP 35

r;

r ^'

r

4

ii

^i

0
1	

p

V^^a	 A

q ^

ACKNWAMGEMENTS

This report describes work done at Old Dominion University under Contract

NAS1-318 to the NASA--Langley Research Center. The work should be considered as

preliminary to the larger tasks of integrating the controlled motor system

described herein into the system which will dampen oscillations of a large free

plate in space. The authors are responsible for the recording of the

information in this report; however, several others should be credited with

signs-f icant contributions to the work. First, our thanks go to Dr. Ray

Montgomery of the Langley Research Center who provided us with the development

system as well as invaluable advice on its use. Two other graduate students at

Old Dominion University played significant roles in this work. Sophie Capelle

did much of the initial conceptual work and Mark Motter later became a

significant factor in the digital system implementation. Our thanks also go to

these two without whom this work would not have been accomplished.

itl

tf

t

2

The objectives of this research were to develop techniques of controlling a

do-motor drivon flywheel which would apply torque to the structure to which it

was mounted. The motor control system was to be implemented using a

microprocessor based controller. The purpose of the torque applied by this

system was to dampen oscillations of the structure to which it was mounted..

Before the work was terminated due to the unavailability of equipment, a
t

system was developed and partially t^sted which would provide tight control of

the flywheel velocity when it received a velocity command in the form of a	 t

voltage.

The procedure followed in this development was to first model the motor and

flywheel system on an arFlog computer located at Old Dominion University. then,

prior to the time the microprocessor development system was available, an analog

control loop was designed and tested. When the microprocessor development
byy
J

system became available, the analog control loop was replaced by the

microprocessor and the system was partially tested.

2. AN& (7y STM=-1ON

2.1 Motor Model

From tests and specifications on the motor, the following transfer function

for the motor was determined. (See Fig. 2)

K
JS + B

where

K = 4.02 oz ,WA
J = 5.096 x 10-2 oz in s2

B=2.0 x 10-3 oz ins

A current amplifier was employed to power the motor. Its gain, G, was 0.5.

t

fir.

3

0

Thus

W = GK - 40
Vin Js+B

W
 s+0.04

01jlGmALe =;' 	 G

OF
POOR QUALITY

2.2 Compensator

it is desirable to move the pale further fran the imaginary auks to speed

up the transient response time. To accomplish this output feedback and a lead

compensator is used.

Compensator: C(S) - A (s + 0.04)
s -(S+ 5)

This provides a settling time of 1.6 seconds (to within 2% of steady state

value). Choosing a damping coefficient of ^ = 0.707, we obtain the root locus

in Fig. 1.

i

Closed loop
pole position ^-s
for an open

loop gain of 12.5

-5 	 -2.5	 0

For an open loop gain of 12.5,

40A = 12.5, A = 0.312

thus,

C(s) =
0.312(s + 0.04)

s(s+5)

Fig. 3 shows the actual motor model with the compensator. Fig. 4 describes

the response time of the motor to a, step input without the compensator. Fig. 5

describes the response time with the evapensator.

ORIOTIrl
-)F po,,%j

E-

E-4

P4O
^A

Q)

CH
Q).H	 C\j

Q1 rH
P4

r%4

.OAA
CO

1;4

0

W

A.-Jo

p0

00
b4D

0

5

^g

T

O

A
M
sa

t
0

a

a

r

K
e ^ o

J

Yu
0 c+T

p^+ rn

LL-
i]

a

O' U

b
s cv

^+ a

o 0

i

v	 '4¢O

3I° -+ ` 4
u

' ^:X ^'?^.'^i}.+ii1►'L'.7 fir' ". ^" .S:	 ^ ^ -r.'^il	 .: .^^... °^.	 ^^

a
i
i
I•^

r

v

3I

0

6

RPM,
1000

900

8-0-0

700

600

500

,L,,00

300

200

100

SEC
Fig. 4

OF POOR
MOTOR SPEED vs TIME
Conditions;
1. Motor driven by current amplifier

only.
2. Step input with flywheel.

yPPM

1000

gooConditions:
1. Motor driven by compensator

and current amplifiers
2. Flywheel attached to motor.

7

MOTOR SPEED vs TIME (1)

INPUT VOLTAGE vs TIME (2)

	

)0	 .

	

)0	 r

c

)0

)0

)0

)0

200

100

;EC

G

i
Fig. 5

.r_

0

t

p ^^

3.	 DMITAL MVELnBM= av=

3.1	 System Description

. The M68KDM design module was used to develop the digital control loop.	 On-

board components include the following;

One Motorola M68000 16-bit microprocessor

32-kbytes of RAM

One 8-kbyte System Monitor (MACSSUG) ,1

Two Synchronous Comm mication Terminals (FACIA)

Two 16-bit Peripheral Interface Devices (PID)

" One Proarmnable Timer Module (PTM) with three timers (TL,M, i)

The system includes an assortment of pin-outs for control signals, voltages

and ground terminals. 	 The system clock and baud rate can be changed to suit

k user requirements as well.

3.2	 System Connect

F

The NASA-LRC computer aas connected through the "Host" ACIA, and our

terminal was connected through the "Terminal" ACIA. 	 With this arrangenentr only

one command was necessary to switch between the NASA computer and the M68KDM.
E

This made programming easier since it was possible to jump quickly frm.	 the
1,

assembler to the microprocessor to check programs. 	 The NASA -LRC made available
x^

r
4

compilers that handle both Pascal and MC68000 assembler code. 	 It is even
j

possible to use both in the same program by linking then in the downloading
1

process.	 For our purposes the assembler code was sufficient, though we did
a

experiment with the Pascal and found it very useful for more complicated

programming.

.^	 3.3 MC68000 Microprocessor Description
t

A more detailed explanation of the microprocessor itself will prove helpful

!	 in understanding the programming. The following facilities are available to the

61
Ur

Y	 A

4^}

32-bit Data Registers

32-bit Address Rojgi.sters
32-bit Stack; Pointers (Supervisor/User)

16-bit Status Register
Program Counter
16-Mbyte direct addressing range
56 powerful instruction types
Operations on five main data types
Memory mapped I/O
14 Addressing modes

Registers

(8)

(7)

A

	 (2)

(1)

The data registers can be used for byte (8-bits) , word (3.6-bits) , or long

word (32-bii;s) data operations. The address registers and stack pointers can be
	 f

s

used as base address register, and software stack pointers. These same

registers +;an also be used for word and Long word address operations. Any and

all of the ;registers can be used as index registers.

The status register contains the condition codes on the lower byte. The

upper byte contains an 8-level priority interrupt masking ability,

Supervisor/User state control, and "trace mode state control. The trace mode

state can 'ire used to single step through a program displaying all registers

after each step. There are still six unused bits in the status register. These

make room for any extensions of the MC58000 family. Understanding this register
s	 f

is critical, in programming.

The a>>ndition codes have a direct effect on any testing procedures. It is,

therefore, very important to note the bffects on the condition codes of any

instruction before a decision block in the program. Understanding the interrupt

i!

	 masking system is also important. Whenever an interrupt is serviced, that level
aI

of interrupt, and all those below, are autowatical.ly masked until a Return from

Exemption (RTE) is served. In this way the interrupt: remains the higher
IN

priority routine. Only an interrupt of higher priority can be serviced at this

time. This register is depicted in the following figure:

4

40

10

0

bit:	 15 13	 10 8	 4	 0

-F--"'--" (T M^VTrace Mode	
j
I I 1

0
V	 X1N1 l ..0

supervisor/user •	 #
Interrupt Mask
Condition Codes

////// r- unused

The 5 main data types mentioned are as follows:

1. Bit
2 ► BCD Digits (4-bits)
3. Bytes
4. Words
S. Long Words

ORIGINAL PA V-2

OF POOR QUAU il

U

The 14 addressing modes are derived f ran the following 6 basic types:

1. Register Direct
24 Register Indirect
3. Absolute
4. Immediate
5. Program Counter Relative6. 1*! ""':^':d
, 9o'f: -vrf ul aspect of the register indirect addressing mode is the

capability of post-incrementing, pre-decrementing, offsetting, and indexing.

This is by no means a comprehensive look at the MC68000's capabilities.

However, it does lend insight into the power and versatility of this one 64-pin

chip. Especially useful, and equally complex, is the variety of interrupt and

exception processing control available. Combining these with the 1000 plus

instruction set leads to quick decision making and data processing.

Some specifics involving the PM's and the PTM can be found in Appendices I

and II.

4. DIGITAL LOOP =IEW

The closed loop system as shown in Fig. 2 was modified to accomm odr to tLe

digital device in the control loop. (tea Fig. 6) The motor velocity which is

represented by an analog voltage in the analog computer was converted to a

0

--.r. ,•r	 ^-. ,,

4

11

Conceptual System ;how

SI

i

G 4

i

S

i

L-^

Fetch Value of
Error Signal (ATOD)

Determine Present
Motor Speed

Determine New Motor
Model Input

Compensate and Deliver
Signal to Motor

Ficr. 6

12

digital signal by applying it to the input of a voltage-to-frE;quency converter

followed by a D flip flop. The output of the flip flop is a rectangular wave

whose pulse length is inversely proportional to the motor velocity. By counting

clock pulses gated by this flip flop output, a digital nianber indicating motor

velocity is developed. This process is explained in the sequel (para graph 6.2).

The motor velocity is compared with a voltage which will be a measure of

the desired motor velocity. This voltage is called the reference signal. It

will be normalized and digitized as explained (paragraph 6.1) and the comparison

made in the microprocessor. This comparison will produce an error signal and

this signal will be used to actuate the motor. In the case where a compensating

filter is not present, an offset will have to be added to the error which will

keep the motor running at a nominal speed when the error is zero. Since the

c	 nsasating filter adds an integration, the offset can be dropped.

A digital filter was developed to do the compensating. This filter accepts

the error signal from the comparison operation and produces the digital

equivalent of the actuating voltage. This, after D to A conversion is input to

the power amplifier driving the motor.

5.	 S1OE WARE .nFqT1rGjNN

5.1 Program Initialization

The initialization procedure for the program need only be processed once.

This sets up all necessary addresses, ports timers, and any initial values used

in the main program. The following description steps through the initialization

process. Upon examining the program comments, one can follow the process.
,

The first part of the initialization involves setting label addresses. It

is often easier to remember a label than an address. This is done for all

often-used addresses. When programming then only the label need be used. The

__ . Mr

13

assembler will place the correct address. These labels represent control

registers, data registers, and scratch-pad memory locations.

The second part of the procedure involvos the actual initialization.

First, both parts of PID 1 are set as output ports. The control interrupt input

lines CA1 and CB1 are set to be positive-edge triggered. After each port is

initialized, the peripheral data registers of each is cleared of any "floating

data".

PID 2 is initialized in the same manner. However, the most significant bit

of port B iF set as an input. The remaining seven are set as outputs.

The next step is to program the timers. An explanation of how these are

programmed can be found at the end of this report. The final step in this

process is to assure the timers are enabled by clearing the least significant

hilt of timer number 1 (TL) .

All that ranains is to set initial values for any variables used, and to

set memory locations for exception processing routines. In the following

program can be found all the initialization for the active programming done.

Later in the report routines that were unable to be implemented due to logistic

problems will be discussed. Any further initialization needed for these

routines will be discussed in their respective sections.

The program is now ready to begin,

procedure will never be entered again.

head of the main program.

Once in the main program, this

Instead we will always branch to the

'o

or V ..

a ;
14

Initialization Program:

LABEL	 I OP CODE I	 OPERAND	 I COMMENTS

a

PIAD
PIAC
PIBD
PIBC
PIBD2
PIBC2
PTMCRI
PTMCR2
PTMCR3
PTMC2
PTMC3
MSBB3
INIT
BUF
REF
SVBT
CLBT

EqU	 I	 $3FF41	 ISET LABELS
$3FF45	 1	 "
$3FF43	 I

I	 $3FF47	 I
$3FF42	 I	 ' ►
$3FF46	 I

I	 $3FF61	 I

"	 1	 $3FF63	 I
$3FF61	 I

$3FF69	 I

' ► 	 I	 $3FF6D	 I
"	 1	 $3FF6D	 I

$6000	 I	 ' ►

1	 $6010	 ("

1	 $6020	 1	 ►►
11	 1	 $6030	 1	 "

"	
1	 $6040	 ("

MOVE.B 1#%00101010,PIAC	 IPIAD---) Data dir. register
MOVE.B 1#$FF,PIAD	 1Conf'ig entire port as output
MOVE.B 10600101110,PIAC	 IPIAD—^ Data register
CLR.B	 IPIAD	 I
MOVE.B 1#0600101010 9 PIBC	 I
MOVE.B 1#$FF,PIBD	 1	 Same as PID1-A
MOVE.B 1# 010'00101110 1PIBC

CLR.B	 1PIBD	 i

MOVE.B 1#%00101010 9 PIBC2 I
MOVE.B IWF,PIBD2	 IMSB--). input,remainder out
MOVE.B j#%OO101110,PIBC2 I

CI_R.B	 I PIBD2	 I

MOVE.B J#%10010010,PTMCR21Aceesses T3 control register
MOVE.B 1#0610010011,PTMCR31Sets T3 timing mode
MOVE.B J#%10010011,PTMCR21Accesses T1 control register
MOVE.B 1#$ D2,PTMCR1 	 IEnables all timers
MOVE.W 1#$FFFF,INIT	 I
MOVE.W UNIT, DO	 1	 Sets init value
MOVE.L I#MSB03 9 AO	 1	 in T3 latch
MOVEP.WIDO,o(AG)
MOVE	 j#$80BOpSVBT	 (Saves a bit in ATOD
MOVE	 1#$7F7F9CLBT	 IClears a bit in ATOD
MOVE.L I#AINT,$006C	 1$006C E— <AINT>
MOVE.L I#BINT 9 $0070	 1$0070 F---<BINT>
MOVE.L I#BNDCHK,$0018	 1$0018 <---<BNDCHK>

ORIGINAL	 E2

OF POOR QUAUIV,

G
i

r

i

A

ti

K

i

a

y

15

a

!	 0 j

6. MfPRR SPEED MEASEMBE T

Mounted on the flywheel in the torque system is a printed disk with black

and white segments alternately spaced around the circumference. There are

exactly 60 black and white pairs evenly spaced. When the flywheel spins an

electrooptical pickup produces a rectangular pulse train with the pulse lengths

being inversely proportional to the wheel velocity. The voltage to frequency

converter coupled with the D flip flop is analogous to this system in the

simulation. The value of motor velocity, after this transduction, is to be

compared with the reference velocity.

This routine constitutes what might be called the Main Program. For

variations of the program additions to or deletions from this routine will be

made. Our objective is to sample the reference signal, compare it to the mrAor

speed and teed the difference to the compensator-motor model.

6.1 Reference Service Routine

To determine the signal needed to send back to the motor, use was made of

the PTM on board the M68KDM. Of the three timers available, two are used. 22

is used as a continuous clock to regulate the sampling time of the reference

signal. The lowest sampling rate while using just one countdown clock is

approximately 12.2 Hz. Assuming a maximum sinusoidal input frequency of 100 Hz,

this sample time is quite adequate. This sample time corresponds to a latch

input of $FFFF when using the internal clock input of 8x10 5 Hz. This clock

(T2) will then initiate a priority four interrupt (BIINT) every 82 msec. When

servicing this interrupt request the subroutine ATOD will be called to take a

sample of the reference signal.

A ATOD is designed to perform an analog-to-digital conversion on any positive

voltage level between 0. and 10. (This routine is discussed in Section 7).

Since it is possible to have a reference that is negative, the digital reference

d

s

$FF

$80

$00

ORIGINAL E^ t°
OF POOR C^UAL i ^

voltage (REF) has to be manipulated in the service routine before it can be used

to determine an error in the main program.

A description of this reference signal, and what is actually sampled will

help at this point. A graphical explanation is easiest to understand. A

typical signal showing maximum and minimum values is in Fig. 7.

reference signal

16

41

+5v

-5V
Fig. 7. Actual Reference Signal

Before performing the A/D conversion, we add a +5 volt do offset to assure

a positive signal. (See Fig. 8) The A/D conversion is then made.

Fig. 8. Sampled Reference Signal

REF f rom ATOD is a 4-byte word. In order to assure the most significant two

bytes are $00 a logic OR operation is performed on RED' and $FF00. REF is now a

two byte positive digital equivalent to our signal. The manipulation can now be

done to give us a workable error.

i

0

17

The zero axis corresponds to $80. Since the conversion takes place on a

r full two byte scale, it must be scaled down. Otherwise the motor will

constantly be over driven. At the same time the offset must be removed to allow

a negative error. Hence, the following is done in the service routine.

REF + REF - $80
 $OA

REF is now a usable digital equivalent of the sampled reference signal. This

value will be used in the main program to determine the error to be sent back to

the motor.

6.2 Motor Velocity (Main Program)

To determine the motor speed use was made of timer 3 (T3) . T3 is used to

measure the pulse width of the output of the voltage-to-frequency converter.

The length of this pulse is inversely proportiornal to the speed of the motor.

T3 decrements from its initial value ($FFFF) until stopped. This count

represents the pulse width. Use was made of pi's option that will enable its

clock frequency to be at 10 5 Hz. With the V/F output tied to the gate input of

13 the timer acts as follows. (See Fig. 9)

4

gate input

1 3A 1
2

s

Fig. 9. Velocity Transducer Gating

1. Initial value loaded into 73 ($FFFF).

2. Counter enabled, thus decrementing initial value, 10 5 counts per

second.

3. Interrupt triggered, decrementing has stopped.

4. Count is held until reinitialized by (1). Microprocessor fetches

count.

K4:	 s n

	 0

4

18	
qnjIb 67

The interrupt created by this clock is of priority 3. This assures

that a constant sampling time (priority 4) is maintained. The priority 3

interrupt (AINT) increments a flag (DO) and then returns to the main program.

In the main program we wait for two of these interrupts (DD=2) before fetching

the count from T3. This assures us that we have not begun decrementing before 	 t

the initial count is set.

Once the proper decremented count is reached, it is subtracted from the

initial value, resulting in the actual count. Since this count is inversely

proportional to the actual motor velocity, we subtract REEF f rom the count. r

Before sending this digital voltage back to the motor model, we first must make

some changes and check the bounds to be sure the error is between $00-$FF

(remember, the D/A converters operate on positive numbers only). 	 m

First, $80 must be added to move the zero point to mid-range of the scale.

When the compensating integrator is put in the loop, this offset should be

removed and the pure error signal fed to the digital filter. After offsetting

we use a Check Register Against Bounds command which assures that we do not

overflow our D/A range. This command holds the error signal being sent back to

the motor to within its respective bounds given an overflow at those bounds.

This is a powerful and very useful command. The last step is to send the error

signal to the motor model, and then return to the top of the program to repeat

the routine.

At this point in the development, testing was interrupted when the

development system ;;as called "back to NASA-LRC for another task. Before its

recall this system was displaying intermittent spurious outputs. Several
1

components were replaced a•,d this problem was corrected.

The testing which was in progress when the equipment was returned would

have answered several questions. These concerned the scaling of the ATOD result

r

q

19

f

and its effect on the motor actuating signal and another method of transduction

of the motor velocity.

A flow chart of the main program as well as the exception processing

routines is shown in Figs. 10 and 11 respectively. These are followed by the

routine itself in assembler code.

a

a

5M	 T--f"
0.+P

T

Main Program - PULSE WIDTH FLOW

Initialization
r

{

Clear Count Flag

op E Enable AINT
r

Enable BINT	 ''

ount Flag
42

Disable AINT

I	 `
s>

Compute new motor
model-compensator input

Add +5 volt do offset

Check bounds

Send new value

Fig. 10	 a

'(

4

a4

+.errs-..f:.

*xr-r

AN

zl

ARTT

Count	 Count* 1

Clear TRQ

RTE

a

BTNT

Clear IRQ

JSR ATOD

Clear Most Significant
Byte of REF

REF 4-- REF-$801
L UQA .J

RTE

BNDCHK

Negative
Error? /

Error ,F--__,$ PIP

(iD*-
Fig. 11

G Error 4-- $00 1

OF PU6R

. .. o s+ °'^i^: , " ` ""`^^3 fir... ^ 1^ , jt	 ^ sr. 1..r.4	 ..: ^.^►^... ^. '!•.: ^ r

s

^a
Main (Pulse Width) Program

.0

u

22

LABEL (OPCODE	 (OPERAND	 (COMMENTS

START C	 CLR	 I DO	 I Clear count	 flag
MOVE.B) #$2F,PIAC	 I Enable AINT	 (l trigger)

WAIT I	 MOVE.B I	 #$2F,PIBC	 I Enable BINT	 trigger)
CMPI (#2,DO	 I Count	 flag	 =	 2?
BNE I	 WAIT	 I If not branch	 to wait

I	 MOVE.B I	 #$2E,PIAC	 I Mask AINT
MOVE.L (#PTMC3,AOI 1	 Fetch	 final	 value in

I	 MOVEP.W I	 O(AO),D2	 I f	 T3	 to	 date	 register D2
I	 MOVE.W i	 INIT,BUF	 I BUF<-- INIT

SUB.W I	 D2,BUF	 I BUN-- BUF-D2
I	 MOVE.W I	 BUF,D3	 I D3----BUF
I	 SUB.W I	 REF,D3	 I D3---- D3	 -	 REF
I	 ADDI I	 #$0080,D3	 I D34--D3+$80

i	 CHK (#$OOFF,D3	 I If $FF<D3<$00 OMP to 	 BNDCHK
I	 MOVE.B I	 D3 9 PIBD	 I Sends error to output port B PIN
I	 BRA I	 START	 I Repeat procedure

HINT (MOVE.B I	 P1AD,P1AD	 I Reads	 PIAD	 to	 clear	 interrupt	 request
I	 ADDI (#1,DO	 I Increment	 count	 flag
I	 RTE I	 I Return	 from ex.eption

BINT (MOVE.B I	 PIBD,PIBD	 (Reads PIBD	 to	 clear	 interrupt	 request
I	 ORI I	 #$FFOO,REFI REF<— (REF)OR(FFOO)
I	 MOVE I	 REF,D7	 i D7<-- REF
I	 SUB.T (#$80,D7	 I REF-- REF-$801
I	 DIVS I	 #$OA,D7	 I
MOVE.W I	 D7,REF	 I

i	 RTE I	 I Return	 from exception

BNDCHK I	 BMI I	 NEG	 I Branch to NEG if error	 negative
MOVE.B i	 #$FF,D3	 i Otherwise	 error	 (D3)4--$FF
BRA C	 HOME	 I Return

NEG (MOVE.B I	 #$OO 9 D3	 I Error	 (D3)4-,$00
HOME I	 RTE I	 I Return	 from exception

.

__ o

i-

23

I

7. ANALOG TO DIGITAL CONVERSION - ATOD

In order to assure a comstent conversion time the successive
approximation technique for the analog to digital conversion
was used. The conversion is based on a 0-10 volt range. This
range, using 8 bits, provides the following quantization level:

10 = 0.04 volt

The hardware was available to use 16 bits, however, it can be
seen that using only 8 bits is not only sufficient from a
quantization level viewpoint, but also saves time. The faster 	 a
a conversion is made, the more time there is available for
other programming.

The method of successive approximation is quite simple. The 	 5
idea is to successively split the 8 bit digital signal. On
each split the signal is sent to a D/A converter where it is
compared to the analog signal being sampled. For each test,
a decision is made whother to keep the last bit tested. The
process is outlined below:

,it	 Th y MSB of data is set high.
2. If the comparator output is high; the bit is S Vcd.

Otherwise it is cleared.
3. Continue the above process until each successive bit

has been tested.

A comparator is used to compare the error signal (after the
previously mentioned +5 volt do offset) and the test signal.
The test signal is greater than the error on a high comparator
output, and less than the error on a low output. Since the
M68KDM operates at such a high speed, a short delay was neces-
sary between sending the test signal and .reading the comparator
ouitput. This enabled the external circuitry time to perform
its function.

Following is	 a description of the terminology	 used in both the
t1ow chart and program.	 The flow chart	 is shown in Figure	 12.

D4 (Data	 register 4)
D4 contains the output of the comparator.	 It is	 read
through PID2- 8.

D5 (Data	 register	 5)
D5 is used as a counter to determine when all 8-bits have
been	 tested.

,.'
D6 (Data	 register 6) .,

D6 contains the test	 signal. Only	 the least significant
8-bits	 are used.

x n P# ' ^^ 3 0161 r ill"' I"3 i ® .^. w^	
^.+. s	

: ^	 - r_._	 c t±n^" tnel

r'

24

SVBT (Save bit)
SVBT is initialized in the initialization routine to $8060.
It is used to set up each successive bit to be tested. It
must then be rotated to each next bit to bo tested, A log-
ical OR operation is then performed on SVBT and the 8-bit
test signal.

CLOT (Clear bit)
CLOT is initialized in the initialization routine to $7F7F.
It is rotated to follow the bit being tested. When this
bit has to be cleaned (comparator ou;:put low) a logical AND
operation is performed on the test signal and CLOT. Though
only the least significant 2-bytes are needed, both CLOT and
SVBT are 4-bytes to simplify rotation.

REF	 (Reference voltage)
REF contains the final digital voltage equivalent to the
error signal. To simplify programming, REF is constantly
updated. Using a number of test and branch statements may
speed up the conversion process by addressing REF ,just once
for each sample.

The routine has proven quite accurate and presented few problems,
Equipment problems did not permit the opportunity to note the
actual conversion timlet

a

Y

h

.

a

e^

25

1-1

ATOD Flow

	
y

Count = 8
ar

Data--- SVBT

Output data to D/A
4. I

Delay

I
Read Comparator

Comparator
0 ? ,,,

IAND Data with CLBT

REFS-- Data

ROR SVBT

OR SVBT with Bata

I
REF---Data

1

ROR CLBT

-F-
Count 0 Count - 1

Count
#0?,

T̂l ,

Fig. 12

26

F

^d

y E

ATOD Program
Fi

LABEL I	 OPCODE I	 OPERAND I	 COMMENTS

ATOD I	 MOVE I#B,D5 I Set	 count
I	 MOVE ISVBT,D6 ISet	 MSB	 to	 be	 tested

COOP I	 MOVE.B I D6 1 PIAD I	 Send	 8-bit	 test	 to	 D/A
I	 NOP
i	 NOP I I	 Delay	 for	 external

!
i	 circuitry

I	 NOP
I	 MOVE.B IPIBD2,D4 (Read	 comparator	 output
I	 CMPI J#O,D4 ICompara^or	 =	 07
I	 BNE (NEXT I If	 not	 save	 last	 test	 bit
I	 ANDA ICL BT,D6 (Clear	 last	 test	 bit
I	 MOVE I D6, REF I REFE-- D6

NEXT I	 ROR ISVBT (Move	 to	 next	 test	 bit
I	 OR.B ISVBT,D6 ISet	 next	 test	 bit
I	 ROR ICLBT (Follow	 test	 bit	 with	 CLBT

SUBI I#lp D5 (Decrement	 count
CMPI I#Oj D5 (Finished	 conversion?

I	 BNE (LOOP IIf	 not	 continue	 process
RTS I (Return	 from subroutine

.^/ R(z)	 E(z)TY C(s)

Microprocessora

0

#	 2 7

x	 8. DIGITAL COMPENSATOR

"	 The analog compensator can easily be programmed into the
microprocessor without changing the system block diagram signifi-
cantly. However, more of the functions will be implemented in
software as shown below:

Design:

We know	 D(s) = 0.32 (s+0.04)
8 s +5-

Using Pole-Zero mapping; z=esT

T = 0.082 sec.

D(z) = K(z-0.9677)(z+1)
(z-1)(z-0.663-77—

Solving for K

sD(s)1	 = (z-1)D(z)'^ IS=0	 =

(0.32)(0.04) = K(0.0323)(2)
5	 0.3363

K = 0.1333

Hence,	 D(z) = U(z) = 0.1333(z-0.9677)(z+1)
E Tz7	 (z-1)(z-0.66 _3_7_

U(z)1z 2 -1.6637z+0.6637 = 0.1333E(z)1z2+0.0323z-0.9677

U (z) 11_1.6637z- 1 +0.6637z 2]= 0.1333E(z)11+0.0323z-1-0.9677z-21

This leads to the difference equation:

u(k)=0.1333e(k)+0.0043e(k-1)-0.1290e(k-2)+1.6537u(k-1)-0.6637u(k-2)

It is immediately apparent that there will be a problem on
initially starting our system.	 The output of this filter, and the

OF POOR QL?ALl'i'V

1

2 8

corresponding input to the motor, depends upon previous inputs and
outputs.	 This problem will be handled in the initialization routine.
We will set up initial values assuming the motor is operating at its
steady state 1000 Hz rate. This then suggests that:

W_ _ 40
V	 s + .04

at steady state:	 s = 0, co = 1000

1000	 40
V A4

V = 1

At steady state E(z) = 0, therefore e(k) = 0. 	 Assuming
e(k-2) = u(k-2) = 0:

u(k) = 0.0043 e(k-1) + 1.6636 u(k-1)

Letting u(k-1) = e(k-1), and u(k) = 1

u(k-1) = e(k-1) = (0.5995)10
	

^I

The routine is designed to be compatible with the labels and
registers used in the existing main program. 	 The digital filter
will be inserted just after the error calculation in the main pro-
gram.	 This location has been noted on the Pulse Width flow chart
with an asterisk.

The, multiplication will be done using the ALU board supplied.
The documentation for this board is not readily available. There-
fore, the multiplication procedure will be displayed as a separate
block.	 The flow chart is shown in Fig. 13 followed by the program
in assembler code.

An

29

,0 L% AM'..
wr r .0

ORIGINAL
OF, POOR QWi.

Digital Filter Flow

^:,jk

base /0

1-1^

Fig. 13

tj.

m a

34

Compensator Program

LABEL IOPCODE	 I	 OPERAND I	 COMMENTS

EO IEQU	 1$5000 I
E1 IEQU	 1$5002 1
E2 IEQU	 1$5004 1	 This	 section	 is	 in	 the
UO IEQU	 1$500A I initialization	 routine
U1 IEQU	 1$5006
U2 IEQU	 1$5008

1MOVE.B	 I(0.5995)1o ,E1 I
IMOVE.B	 1 #$OO,E2 I Initializes	 filter	 values
IMOVE.B	 I(0.5995) 10 ,U1 I
1MOVE.B	 1 #$OO,U2 I
I	 I

FilterlMOVE.B	 ID3,EO
I	 I

I
le(k)+- error
!

IEO	 (0.1333)„EO I
I E1	 (0.0043),o E1
IE2	 (-0.1290),OE2 IALU	 multiplication
1U1	 (1.6637),,,U1 I
IU2	 (-0.6637)	 U2 I

IMOVE.B	 IU2,AO I}.	 Sets	 up	 first	 addition
IMOVE.B	 IEO,UO I

FLOOD (ADD.B	 (AO,UO 1Add
(SUB.I	 1 #2,$AO lNext	 addition
ICMPI	 1#$5000p$AO !,Finished?
IBNE	 IFLOOP lIf	 not	 branch	 to	 continue
IMOVE.B	 IUO I D3 (Data	 register	 3	 gets	 filter	 output
IMOVE.B	 IE1,E2
(MOVE.B	 1EO,E1 I	 Set	 values	 for	 next	 sample	 time
(MOVE.B	 1U1,U2 l difference	 equation	 calculation
(MOVE.B	 IUO,U1 i

Fl

>n

N

.

}

.+ .

0

31

9. dOMMEN!.'S CN THE SYSTEM

The procedures and programming discussed assume the motor is running near

its steady state speed. A separate start-up routine will have to be devised to

accomplish this.

There were some problems encountered on the project. Exception processing

initially proved to be quite a challenge. The documentation supplied did not

clearly explain how the MPU determines a vector address for servicing these

exceptions. Since most of our control depends on interrupt servicing, the

problem had to be overcome before any real progress was made. With help from

the people at NASA-LRC, the problem was solved. Understanding the Trap Error

exception was even more difficult than that of the interrupt exception. For

most of the different Trap Errors possible the vector address for the service is

floating. It does not remain the same, but changes with respect to the program

counter and previous instruction handled.

Wirewrapping on the M68KDM was not a big problem. The documentation was

vague here also, but examination of the board's schematic diagram answered these

questions. The IRQ lines and inputs had to be wirewrapped to the peripheral

devices and the MPU. The data sheets on these peripheral devices provided clear

and concise instructions for their use and programming. There were only a few

small problems involving the instruction set. Same of the peripheral camrands,

subtraction, and division required careful manipulation. Except for the

material on exception processing the system documentation was generally

satisfactory.

b

t
V̂

{
32

Appendix I

Peripheral Interface Device (PID)

There are six addressable registers within each PID, three
for each of the two ports. Ports A and B each contain a data
direction register (DDR), control register (CR), and a peripheral
data register (PDR).	 Each port also has an interrupt input
control line (CAI/CB1) and an input/output peripheral control
line (CA2/CB2). The DDR and PDR each share the same memory
address. Bit-2 of the control register determines which of these
is being addressed.	 This control register is programmed to
determine how the control lines are used.
Control Register (A/B)

7	 6 1 5 1 4 1 3 1 2 1 1 1 0

IRQ1	 _,_JI
IRQ2
C2(A/B) control
DDR(A/B) access
C1(A/B)	 control

Bit-0	 1	 Interrupt enabled
0 Interrupt masked

Bit-1	 1	 Interrupt positive edge triggered
0 Interrupt negative edge triggered

Bit-2	 1 DDR selected
0 PDR selected

Bits-3,4,5 Determine control and interrupt reaction to CA2/CB2.
This control differs slightly for each port.

Bits-6,7	 Set on active transition of respective interrupt and
control signal.	 These interrupt requests can only be
reset by a read peripheral data operation on that
port.

To initialize each port, the following procedure is used:

1. Select DDR
2. Program input/output lines
3. Program control lines, select PDR
4. Set initial data values at port

V

o

33

Appendix II

Programmable Timer Module (PTM)

The PTM contains three separate tamers. The three operate in-
dependently of each other and are essentially the same. Each
can use the internal 0.8 MHz clock source or an external clock.
Each has accessible:

(1)	 8-bit Control Register
(1)	 16-bit Latch
(1)	 16-bit Decrementing Counter

T3 has the added option of a divide clock by 8 function. This
was used along with the internal clock to produce a 0.1 MHz
clock. The latch is used to preset the count for the timer.
The counter, when enabled, is then decremented from this initial
value until disabled. The gate input is used to trigger the
counter.

There are a number of control word formats which set up dif-
ferent timing mechanisms. The PTM is very useful, in that it
operates :independently of the microprocessor, thus, freeing the
microprocessor for other tasks. Upon comleting its function,
the timer signals the MPU to fetch its data, and may then con-
tinue another function.

The control registers for T1 and T3 share the same address.
T2's control register selects which is being addressed. An
explanation of the register control notation follows:

CR1 T1 Control Register
CR2 T2 Control Register
CR3 T3 Control Register
CRX All Three Control Registers

The number immediately following these three characters refers
to the specific bit in the control register. The following
figure depicts the individual bit assignments for any given
timer function.

s

i

f,

F

0

t

0

d

34

TIMER PROGRAMMING

17

.

BIT	 I VALUE {	 DESCRIPTION

CR10	 I 0 I	 All	 timers	 enabled
f 1 I	 Timers	 held	 at	 preset	 state

CR20 I	 0 I	 CR2 may	 be written	 to

I 1 I	 CR1	 may	 be	 written	 to
CR30 I	 0 I	 T3	 clock	 not	 prescaled

1 T3 clock prescaled	 by + 8

CRX1) f	 Clock	 Source
I	 0 I	 External	 clock

1
I

I	 Internal	 clock
i

CRX2 i I	 Counting Mode Control
{ 0 I	 Normal	 16-bit	 mode

f

1 I	 Dual	 8-bit	 mode

CRX3,4 0 5	 I f	 Counter Mode	 and	 Interrupt
Control	 (see	 below)

CRX6	 I I	 Interrupt	 Enable
f	 0 I	 Interrupt	 masked

1 i	 Interrupt	 enabled

CRX7	 f I	 Output	 Enable
f 0 I	 Output	 masked

{ 1 I	 Output	 enabled

CRX3 CRX4 CRX5

0	 0
0	 1
1	 0
1	 1	 ^

(determines ad

Timer Operating Mode

Continuous
Single Shot
Frequency Comparison
Pulse Width Comparison

ditional timer Functions)

f	
1

35

0

Q G

'aE	 ,i	u v

Appendix III

SYSTEM MEMORY MAP

$3FFFF F	 I/O (2 kbytes)

$21FFF

$20000	
MACSBUG, System Monitor

$07FFF
$3FF6D

$3FF40

$7000

$5000

$3000

$06FF

$0400

$0070
$006C

$0018
X0000

Peripheral Device Registers

Scratch	 Pad

1

ff
	

ff,

Bound Check
BINT
AINT

Main Program
Initialization

MACSBUG, System Monitor

Priority 4 interrupt	 (BINT)
Priority 3 interrupt	 (AINT)

/ ^	 C
i

Bound Check Service	 Vector

	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf

