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Summary

During this grant period we have invéstigated two different aspects of active
antenna array design. The first of these involved the study of tramsition between
monolithic microwave integrated circuits and rectangular waveguides. The second
aspect of the study was coﬁcemed'. with the investigation of crosstalk in
multiconductor transmission lines.

We have formulated the boundary value problem associated with a
discontinuity in a microstrip line. This entailed, as a first step, the derivation of the
.propagating as Wei] as evanescent modes of a microstrip line. We have completed this
task and have also derived the .;»olution to a simple vdiscont'muity problem: change in _ ‘
width of the center strip. Currently, we are in the process of refining this solution.

“As for the multicdnductor transmission line problem, we have developed a
computer algorithm for computing the crosstalk noise from the signal to the sense hnes
The computation is based on the assumption that these lines are terminated in passive
loads. During the next grant pex;iod we plan w0 generalize this program to the case

where the lines are terminated by active logic gates.



1. CHARACTERIZATION OF MMIC DEVICES FOR ACTIVE ARRAY ANTENNAS

1.1. Introduction
| During the past year, the University of Illinois has been involved in the study
of transitions between monolithic microwave integrated circuits (MMIC’s) and
rectangular waveguide. Th1s problem occurs in the design of active array antennas,
Wl\lere the gain and amplitude of the individual array elements are controlled by
MMIC’s. In tlﬁs Teport, we will summarize the progress that has been made on this
problem to-date. |
Transitions between MMIC'’s and rectangular waveguides should have several
properties. First, they should - have a low insertion loss. Next, they should be
stfucturauy and thermally sound. Finally, these transitions should maintain the
inherent reproducibility of the integratéd circuit. A number of possible candidates for
these transitions are shown in Figures 1 and 2. In order to determine which of these
~various transitions are likely to offer the best characteristics, it is necessary: ﬁrs; to
analyze them for insertion loss and return loss. We propose to achieve this by first
breaking up a transition into a succession of abrupt discontinuities. If we can calculate
the S-parameters of a single discontinuity, \Qe ghould then be able to determine the |
characteristics. of a cascade of such diseontinuiti&. The purpose of this study will
initially' be to develop the tools neces&rsr o stﬁdy these abrupt discontinuities in
printed circuits. |
Abrupt printed circuit discontinuities may take a number of fom;. The
theory which is developed is general for many different types of discontinuities, as will
be discussed later. For the present, however; it is necessary to begin by studying the
most simple example of this discontinuity one can find. This turns o;lt to be an abrupt

change in the strip width of a shielded microstrip. A cross section of uniform shielded
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Figure 1. Typical substrate-to-waveguide transitions.
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microstrip is shown m Figure 3, and a discontinuity in the strip width is shown in
Figure 4. By studying this structure, it is hoped that the tools necessary to study a
more realistic transition, such as the fin-line stepped taper shown previously in
Figure 2, will be developed.

The method to be used in the analysis of al">rupt discontinuities involves mode
matching in the plane of the discontinuity. In order to achieve this, one begins by
generating the dominant and first few higher-order modes in each of the two microstrip
lines. Next, one matches ther tangential electric and magnetic field components in the
- plane of the discontinuity. Finally, one calculates thg mode coefficients, which yield S-
parameters and equivalent circuits of the discontinuity.

The study begins now with the analysis of the uniform microstrip.

1.2, Aﬁélysis of a Uniform Microstrip

The first step in the analysis of a uniform microstrip involves finding a Green’s
function which relates currents on the strip to the electric fields at all other points in
the cross sectioﬁ of the line. This is accomplished by solvmg a two dimensional

Helmholtz equation in regions 1 and II

(V2+ k2 [3% =0 (12)
ki = w\/ Mo e,- (l.b)

€; x>0
€& =1ee x<0 (1<)

In the above equations, i denotes the region, and ¢; and y; are the electric and magnetic
scalar potentials in each region.
It is convenient to solve the above equation in the spectral domain, so one takes

the Fourier transform of all potentials and fields as
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Figure 4. Top view of a discontinuity in the strip width on a microstrip.



dn,y)= f ¢ (x,y)e’ " dx ' (2a)
qs(x,y):_zl3 T B(n,y)e o (2.b)
a, =_nb_‘rr A : (2<)

By matching boundary conditions on the shield walls and on the center conductor, one

obtains an equation of the form

-Zzz (an ’B) sz (an ’B) Jz (an ) Ez (an vB) ( )
= : 3) .
Z,,(a,,8) Z,,(a,,B) | | 7+ (c,) E, (a,,B)

This equation relates the current in the plane y = 0 to the electric fields in this plane.
The dyadic Green’s funétion, Z;;(ay, ,B), consists of relatively simple expressions in
terms of hyperbolic sines and cosines.

Before proceeding to the solution of this equation for B,‘ one should first look at
the methods for generalizing the above Green’s function. The above method is
satisfactory for configurations with one dielectric layer and one strip. But a method
developed by T. Itoh [1] gives a technique for generating a Green’s function for
structures with an arbitrary number of dielectric layers and conducting strips. His
technique is called the Spectral Immitance Approach.A While a detailed explanation of
the technique is beyond the scope of this paper, it may be stated that the the technique
involves the separation of the fields in each dielectric region into TE, and TM,
components in the‘ spectral domain, and the subsequent formulation of analogous
tMon lines in the y direction for the decoupled TE and TM fields. This
generalization extends the applicability of the techniques presented in this paper to a
large class of printed circuits.

Next, one must find the solution to the integral equation shown in Equation (3).



The solution is effected by the spectral Galerkin technique [2], in which a moment
method solution is brought about in the spectral domain. Hence, the current on the

strip is expanded in terms of basis functions, which are non-zero only on the strip, as

S = 3o @G 7 G/s)~1)

hor V1-(z/s 2 (42)

AV . -
J.(x) = 4 sin (i (x/s)—1) ab
* igl v1—=(x/s)? ' (45)

One then takes the Fourier transform of these currents and substitutes the result into
Equation (3). Next, the inner product of the resulting equation is taken wifh the
‘mdiQidual basis functions, and Parseval’s theorem is used to eliminate the right-hand
side. The resulting matrix equation mﬁy be solved by setting the determinant equal to
zero and solving for 8 with Newton'’s method.

The accuracy of this method is determined by the number of basis functions '
and the number of spictra.l terms one can calculate within a reasonable amount of
computer time. For the dominant mode and lower—order evanescent modes, a small
number of basis functions and spectral terms is probably satisfactory. For evanescent
modes of larger order, it is likely that_more basis functions and spectral- terms are
required to achieve reasonable accuracy.

Sample calculations.were carried out in order to calculate the dominant and
first two evanescenf modes of microstrip. These results are shown in Figure 5. One
would like to compare these modes to other results, but little data are available on
microstrip modes. The microstrip mode calculations that are available deal with
propagating modes, but do not present data .on evanescent modes [3][{4] -There does
exist, however, one paper which presents calculations of fin-line for both propagating
and evanescent modes [5]. In order to adapt our analysis to fin-line, we need bonly

change the dyadic Green’s function, Z;;. This was done, and a dispersion curve was
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calculated, which is shown in Figure 6. Clearly, satisfactory agreement with the
results in Reference 5 has been achieved. Since the microstrip calculation is q;.lite
similar to the fin-line calculation, it is believed that the microstrip mode calculations
should also be reasonable.

Once the modes have been found and verified, the next step is to calculate the
characteristic impedance of the uniform line. This is done for two reasons. First, it
gives added confirmation that the dominant mode calculation is accurate. Second, it
gives a first-order approximation to the input impedance at a discontinuity. This result
is useful as a comparison for results obtained with the mode matching technique. Since
the characteristic impedance ‘is defined only for TEM lines, one must be careful to
choose a definition  of ‘characteristic impedance which is useful experimentally. The

definition most commonly chosen is the power-current definition

_ 2P

Z, =
172 (52)
"P=%Re [ [E xH dx dy (5.b)
I=[71()dx . (5.)
An alternative deﬁm'fion is the voltage-current definition
=¥ : o
zZ, = T | . (6a)
0 ' :
v=-[E®Gd -0 (6.5)
-

Calculations were performed with both of these definitions, and are plotted in Figure 7.

They correspond very well with data already published in Reference 4.
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1.3. Analysis of Discontinuities with Mode Matching

Among the techniques for studying waveguide discontinuities, mode m'atch.ing
seems one of the most promising {6) This technique is suitable for calculating the
characteristics of abrupt discontinuities, such as those in Figures 2 and 4. In addition,
this method is easily adaptable to a cascade of abrupt discontinuities by using
generalized S-parameters. Finally, it may be possible to model a smooth taper as a
@ade of step discontinuities. Hence, the mode matching technique is capable of
solving a wide variety of problems. _

The modevmatching technique begins by using the modes of the uniform
microstrip calculated in the previous section. This involves finding the transverse fields

for each mode and in each of the two waveguides,

&lny)=éulny)x +é,(ny)y (7a)

Fia(n,y) = hog(ny) £ + hy(ny) 3 | (7.6)

where i denotes the mode number, and a denotes that we are referring to the input
waveguide. Similar expressions hold for the output waveguide. At the point of the:
discoxitinuity, these transverse fields must be continuous. Enforcing this boundary

condition, one obtains

(+pase,, + Y ae; = L b,&,; (82)
i=2 j=1 ~
(l—p)alga, - Eai}-{m' = 2 bje—bj (8.b)
=2 j=1

where p is the reflection coefficient of the dominant mode, and a; and b; are the
amplitudes of the modes in waveguides a and b, respectively. At this point, one takes :

appropriate inner products of Equation (8) and forms a matrix equation for p and for
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the mode coefficients a; and b;. Once these have been found, equivalent circuit
parameters, Z, and ¥, are calculated as showﬂ in Figure 8. The circuit has now been
characterized completely.

When using the above method, it is necessary to find an alternate method of
calculating the equivalent circuit parameters. This gives approximate values for Z,
‘and Y, , against which one can compare the results derived from the mode matching
technique. The only alternate method in the literature which treats this problem uses a
static technique, which is valid only for lower frequencies. -An ex@ple of this
technique is shown in Reference.7. Therefore, a lower frequency case was chosen for
the initial study, in order to be able to cbmpare the results v;vith other soufces., If the
validity of the mode matching technique can be demonstrated at lower frequencies, one
may assume the technique is valid also at higher frequencies.

By calculating a iow frequency case, one is able fo compare the results for Z,
and Y, to calculations made with other methods. In this case, Z, is approximated by
the normalized characteristic impedance of waveguide 2, relative to waveguide 1. The
power-current definition of characteristic impedance is used, as shown in Equation (5).
Furthermore, one can get an approximation to Y, by referring to the junction
capacitances cﬁlculated in Figure 8.

A sample case of a microstrip discontinuity calculation is shown in Figure 8.
The equivalent circuit parameters, Z, and Y, are plotted as a function of the m.xmber.
of waveguide modes used. The convergence of the normalized input impedance, Z,, to
its correct value has been demonstrated. The input admiftance Y ., however, seems to be
dependent upon the number of modes used in each guide. It is necessary to get Y, to
converée in order to obtain the junction capacitance. It is likely that improved
convergence of Y, can be obtained b3; improving the efficiency of the inn;r product

calculation, thus allowing the use of more modes in the mode matching technique. .
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There are many areas in this technique where additional study is needed. First,
the sensitivity of the final answér to the number of spectral terms, tﬁe number of basis
functions, and the number of modes used m.ust.be checked. Next, it is necessary to
eliminate the dependency on thé number of spectral terms used, by ixﬁplementing an
asymptotic form for the.calculation of spectral terms of very large order. This change
should reduce the computation time significantly. Finally, this technique should be
applied to a variety of different structures such as those shown shown in Figures 1 and
2, and other structures useful in transitions between printed circuits and rec.tangﬁlar
waveguides.

In summary a model for analyzing several types of transitions was described.
The model involved the breakdown of fransitions into a cascade of abrupt printed
circuit discontinuities, whose S-parameters were determined with mode matchiﬁg
techniques. The initial results préented in this repoi't .demonstrate the metﬁod to be a

promising one, although further work is still needed.
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2. CROSSTALK IN HIGH SPEED DIGITAL CIRCUITS AND INTERCONNECTIONS

2.1. Introduction

The present trend toward high density packaging and the implemention of
high speed digital devices have led to increasing dem#nds for the characterization of the
digital circuits and interconnections from the point of view of cross-talk and distortion
of signal pulses proéagating in these circuits. Our objective in this effort has been to |
develop models for predicting the coupling in multiconductor transmission lines and
estimating the signal distortion due to mismatch in these lines. The signal corruption
engendered by the cross-talk and the reflection due to terminations can introduce false
logic levels and undesired triggering of logic gates. Hence an accurate estimatibn of the
signal distortion and the noise is important in designing high speed digital circuits.

Since thg introduction_ of electromagnetic couplers, several models for coupled
lines have been propdsed (81 A frequency domain characterization {9] was performed
using an integral equation technique to compute the capacitance and inductance matrix
for éoupled lines. Bryant and Weiss [10] established the relationship between the
electrical and geometrical parameters of coupled microstrip pairs using the Green’s
function approach. Krage and Haddad [11], [12] determined the inductive and coupling
coefficients as well as the directivity for various geometries of coupled lines.
Hammerstad and Jensen [13] succeeded in implementing a model with errors less than
. that caused by physical tolerance and recently Kirshing and Jansen [14] reported
reported frequency dependent expressions for microstrip pairs with excellent accuracy.
Semiempirical equations for even and odd mode expressions for the design of vsuch
coupled struc-tures were also derived [15] Various authors extended the analysis to
three-line couplers [16] [17]. and, recently, Chan and Mittra [18] used a spectral-

iterative technique based on the conjugate gradient method to compute the inductance
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capacitance matrices of n -line microstrip structures.

In the preciiction of signal propagation, early contributors [19H21] used a weak
coupling approximatioﬂ to predict the transient response in coupled pairs . Paul [22},
[23] derived matrix chain parameter identities for the analysis of multiconductor
_ti'ansmission lines in the frequency domain for sinusoidal excitation. Using a similar
technique, Zysman.and Johnson [24] derived an equivalent circuit for two coupled
-lines. Chang [25] implemented a circuit model to describe the transient response of an
n-conductor system using a congruence transformer abproach. Such a2 model was
implemented on CAD programs [26] tw analyze the cross-coupling response of
interconnections m high speed digital circuits. The above and several other equivalent
circuit techniques have been proposed to describe terminal variables of multiconductor
systems. However, no closed-form expression re.lating the transients to the position
aloﬁg the lines has been made available.

In the present study, we utilize the-inductance and capacitance matrices‘of an
‘n-line system terminated with passive linear impedances to derive the time- and
position-dependent expressions for the transient response. The first step in our approach
is to determine the- modes of propagation of the network. Next, a Fourier integral
analysis is applied to the. system and the time-domain solutions are obtained. Finally,
the accuracy of the method is evaluated by comparing the theoretical results with

measurements.

2.2. Formulation - Natural Modes
The basic differential equations governing the propagation of voltages -and

currents in an n -line system can be written in a matrix form as
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_%;’JL% | ‘ ()

where V and I are column vectors of dimension n representing the line voltages and
currents with [V}, = V; and, [I};; = Z; which are the voltage and current on the ith
line respectively. L and C are square matrices of dimension n representing inductance
and capacitance per unit length respectively, with [L]; = L¢) if i=j @d
L) i = Li§’") ifi=j. L) is the self inductance per tmi; length of an isolated line and
L™ is the mutual inductance per unit length between ith and jth conductors.

Similarly, [C};; =C*) + § C{™ (k=i)ifi=j,and[C}; = —C™)ifi = j , where
k=1

C) is the self capacitance per unit length of a single isolated line and Ciﬁ"' ) the
mutual capacitance between ith and jth lines. These self and mutual parameters can
be measured using TDR techniques {27} Since the lines are identical, L and C are

symmetric matrices. Equations (9) and (10) can be combined to y'ield

%‘: = Lc%tiz 4 1)
giz = CL—giz (12)

~ In general, LC and CL are not equivalent; moreover, L and C being symmetric
does not imply that LC or CL are symmetric. However it is known [23] that there

exist square matrices E and H which premultiply both sides of (11) and (12) to yield

9’EV

2

= ELCE"‘aatﬂz | (13)
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OHI _ Han-l;‘z.*_z'l (14)

ax2

where ELCE™! and HCLH™! are diagonal matrices of order n. Since LC is the adjoint

matrix of CL, it can be shown that

'1'::1.c12-l =HCLH! = A2 (15)

Therefore (13) and (14) can be rewritten as

82Vm 62Vm ]
57 = A2 =7 (16)
o _ p 287m an
ox? o
where
Va=EV ' (18)
I, =HI o (19

Equations (16) and (17) give the relations between the modal voltage and
current matrices, V, and I,. Ap is a diagonal eigenvalue matrix whose elements are
given by {A_]; = .1/v,,,,~ » Where v, is the velocity of propagation of the ith mode. The
ith row of E and H are the voltage and current eigenvectors associated with the izh
mode whose modal variables are given by [V ], and [I,]; respectively. For the case
~where L and> C are symmetric, there exist n distinct modes of propagation associated
with n real eigenvalues and the set of linearly independent (real) eigenvectors forms a
basis in n -dimensional space. In general, the entries of E and H depend on the entries
of both L and C. Otherwise, E and H are equivalent. Thel line variables can be

recovered by using
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I=E'V, ‘ (20)

V=H1, 1

If harmonic variation with time is assumed, the solutions to (16) and (17) have

the form
X o4
. 22
Vatx)=|€e ™A+ e "™B|esw (22
—Jex $ 2%
A 23
Ltx)=Z,"'|e ""A—- e "™B|e/w 23)
s JoX . 5 JO% Jox
where € '™ is a diagonal matrix of order n with [€ ™), = ¢'™ , w is the

angular frequency and A and B are modal coefficient column vectors of order n
associated with the forward and backward waves respectively. Making use of these

equations in (9) and (10) for forward and backward waves separately, one gets

Z, = A, ~'ELH"! ' (24)

Z,, is the modal impedance matrix (dimension n) which relates modal voltage
and current waves. Analogously, a line or characteristic impedance matrix Z, can be
defined by requiring V = Z.I for forward and backward waves separately. When

combined with the above relations, one finds

Z.=E'Z_H=E'A,"'EL (29

Since in general, E and H are not equivalent, Z, and Z. contain off-diagonal

elements which account for the interdependence of modal and state variables.
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2.3. Transient Response

The previous section presented the development of the expressions for the
various matrices associated with a multiconductor transmission line system, the
relationships between these matrices and the solution for a time-harmonic excitation.
When the applied signals are arbitrary (nonsinusoidal, nonperiodic), the response will
contain contributions from all frequencies. In this case, the coefficient vectors are
functions of frequency and the time domain solutions for modal voltages and currents

are obtained via integration in the frequency domain as follows:

oo _E +ﬂ ‘
Vat)=[ | € AW+ e "Bw|evdw (26)
Ix)=2,"" e AW - € ™B|edw @7

The above equations can be rearranged in terms of the forward and backward voltage

waves V1 and V1 to read

Valt x)=V2iex) + Vit x) (28)
Lx)=2Z," [ Ve x) =Vt x) (29)
where
o _jex
v,:(t,x)=f e ™mAwe*dow (30
+co +‘E¥_ .
Vato)=[ e TBwede (31)

—co
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—ex L2
The matrix products € ™ A(w)and € ™ B(w) are the Fourier transforms of

V& and V7 respectively, and, therefore, satisfy the relations

_iex +oo
e mAw=1[ vitx)ea (32)
27~
. e
e ™Bw) = Lf Vit x)e /*dt (33)
. 27T o .

We then apply the boundary conditions at x=0and x =l (see Fig. 9). This

yields

Z,Za ' Vt) = E"'V (¢ 0) + ZH (¢ ,0) (34)

0=EW_(t])-ZH (¢t }]) (35)

Z, and Z,; are the source and load impedance matrices respectively. They are

constructed  such  that [Z,71),=(Ze)) "+ T (Zem Y (e=i) i i=j,
k=i

[Z,1,=—(Z$™) ™ if i=j and [Z7),=(Z2e) '+ £z (e=i) if i=j,

k=i

(Z,");= --.-(Z,«(J»J'”")"l if 'i= j. Zs is a diagonal matrix with [Z4); =Z,¢). Z(s¢) and
Z;12) are the resistances between ith line and ground at the source and load terminals
respectively, whereas Z,*"’ and Z,:(J.’-’"’ are the resistances between ith and jth lines at
the source an_d load terminals respectively. V(t) is the column vector associated with
the n arbitrary voltage sources at x =0. A more general situation involving, in
;ddition, voltage sources at the load terminals could be solved by. using superposition
and, hence, is not treated here. Taking the transforms of (34) and (35), and, using Eqgs.

(28)(31), we obtain
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Figure 9. Schematic of an n-line multiconductor array.
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22,7 'W,w) = B W) + n(«»)] + ZLIE Ay | A-BW)| (36)
ol .-l
0=E!| e ™Al + € ™Bw
. .
i o Yo (37
—-ZL7'E7IA | € "Alw)— € "Blw)
where W is the Fourier transform of V(t), defined by
m .
W =="[ verwa (38)
2T o
Equations (36) and (37) can be rearranged and combined to give
et e
A(O)) = ln - rs e Vm I'l_ e Yo TWS((U) (39)
el ot

40)

Blw=—¢€ *"r e ™A

where 1, designates the unit matrix of order n. The matrices I's , I'y and T are

respectively the source reflection coefficient, the load refiection coefficient and the

transmission coefficient defined by

ry= 1, + ez, [ 1, - EzitE @
I, = l 1, + EZLEA, l" I 1, — EzLi_flE—'Am] @)
T= [ 1, + EZL'E~'A, ]_IEZSZ{‘ | (43)

As can be anticipated, if the lines are terminated at the load end with a

network equivalent to the characteristic impedance of the system
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(Z, =2, = E7'A,'EL. See Egs. (24) and (25)), then I} = 0 and no reflection occurs.
This is tht; familiar result of the single line case. Such a situation can also be achieved
with the source impedance'network to eliminate re-reflections. In the general case
where reflections occur at both ends, T'g and T} are not diagonal, and Eqgs. (39) and (40)

cannot be simplified further. However, one can rewrite A(w) in a geometric serjest as

el _ja 2

Alw=|1,+Tge '°r, e ™+

—Jol —dol

rse *re '™ (44)

+ ---|TW,(w)

o
rse '°r e V"‘] TW(w)

o0

Alw) = Y,

k =0

¢

Making use of this relation, V& and V7 can be obtained using the inverse

transform relations, (30) and (31)

Ve x) = 8t—2)% |1, + T8——L1) * 186—-1-) + - [ *TV(0)
Vo Va Vm
- k(%)
= 8—2)* 3| rese-1* rise-Ly|  * TV (45)
Vm k=0 Vm Vm
Vo x)= —8(t—1%2)* r s(t—-L)*
Vm Vm
oo 1 l k(*) )
2 I'SS(t——) * FLS(t——) * TVs(t) (46)
£=0 Vm m

In these expressions, 8(t L ), 8(t—=-) and 8(t—1=%) are diagonal matrices
Vm Vm i m

of order n with diagonal elements [8(t—-;l—)],-,- = 8(t vl ), [8(t vx )i = 8 -v—x-

m mi

and [S(t—‘lv_—x)]i,- = 8(t—lv_x) respectively, 8(¢ —7) being the unit impulse function

m m

t In a more rigorous manner,the necessary conditions for convergence of the geometric series must, a
priori, be established. If the ratio for the series is diagonalizable, these conditions require that the magnitude of
the associated eigenvalues be less than unity. In all cases however, convergence can be tested numerically be-
fore applying the geometric series expansion.
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occurring at ¢ =7. The symbol ¥ designates a convolution and the exponent k(*)
indicates that the term within brackets is being convolved with itself k& —1 times,

Qf P =1and[f @I = £ (¢)). If we recall from transform theory

Sit—u)* 8t —w)=8¢—u+v) 47

Me—u)* f@)=f(t—u) ‘ (48)

then the evaluations of (45) and (46) are reduced to a simple sequence of matrix
multiplications in which the only time dependent factors are the delayed and
attenuated versions of the applied signals represented by V(t). For an arbitrary time

t, the voltages and currents are given by

Vit x) = E! [V,;’(t,x) + Vi x )] (49

It x) =L7E7'A, [ Vil x) = Vol x )l | , (50)

In most practical cases, the source and load reflection ceﬁicienté are not very
large; hence, only the first few .terms of the infinite series need be retained in (45) and
(46). However, in the event the mismatch is significant and the refiection coefficients

-are large, it becomes necessary to include more terms in the representation for V}(z ,x )
and Vg(z,x). Equations (45) through (50) can be programmed on a computer to
simulate the transient response of an 7 -line system for which the coupling parameters,
the eigenvalues and the eigenvectors are known, and the terminations and the

excitations are specified.
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2.4. Application - Pulse Response Simulation

Many digital applications involve situations in which one or several
transmission lines are excited with a pulse. Waveform distortions and cross-coupled
signals are then observed at every point along the lines. In order to implement a
realistic model for such phenomena, a four-line stripline structure (see Fig. 10) was
fabricated on glass-epoxy (dielectric constant = 4.5). The characteristic impedance of
each line was designed to be 70v Q. First the propagation characteristics were measured
in order to determine the self and mutual parameters and set up induct'ance_and
capacitance matrices. The eigenvalues and eigenvectﬂ;rs associated Wwith the matrix
product LC were computed using an IMSL routine. Then, the lines were terminated as
shown in Fig. 11 and the modal and state variables were computed using Egs. (45)-(50).
Finally the responses at x = 0 were plotted for each line and compared with the actual
waveforms. As can be seen from Figs. 12 and 13, the. agreement is very good within
éxpérimental errors. For fhe shown configuration, 4 iterations were needed to attain
sufficient agreement. Other simulations were performed for microstrip as well as 7-line
structures. In all cases, satisfactory agreement was obtained between theory and
experiment. A

The construction of the inductance and capacitance matrices requires the
knowledge of the mutual parameters between any two conductors of the system. In
practice, only the self and mutual parameters between adjacent lines need to be
measured. Mutual coefficients between lines separated by another conductor can be
aéproximated by extrapdlation since they do not inﬂueﬁce the response of the system
' significantly. From the geometry of these structures (microstrip and stripline) it can be
anticipated that the mutual capacitance between two conductors decreases much faster
than the mutual inductance as the number of conductors separating them and the

spacing increase. This' suggests that the cross-coupling in these multiconductor



h=23 milé
w= 8 mils 456}55
s$=

12 mils Conductor

///I/II/IIIII/IIIIIIIIIIIIIIIIIIIIIIIII”””””’III‘
“h ) ) € - . Duelectnc

2h. ] = = - =

A T s - Conducfor

I//IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIA

Conductor
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Figure 11. Schematic of 4-line coupler circuit used for experiment.
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Figure 12. Simulated waveforms of the voltage at the near end (x =0) for each line of

the network of Fig. 11. Applied pulse magnitude: 2V, rise and fall time: 2
ns, pulse width: 30 ns.
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structures is predominantly inductive. v

-The preceding simulations also used pulses with rise times in the order of 1
nﬁnosecond. The bandwidth associated with such speed is nearly 3 GHz. The variations
of the line parameters were assumed to be negligible over this range. For much faster
pulses however, the self and mutual coefficients become strong functions of frequency
and the above analysis is no longer accurate. In this case the frequency dependence of

the line parameters must be determined before using a numerical approach.

25. Conciusion

Simple closed-forms expressions for the propagation of transients in paré.llel
" conductors have been derived. These expressions describe the voltage and current at
any point of a multiconductor system for which the coupling parameters are known.
The analysis assumes that the terminations are real and passive and .that the line
parameters are invariant with frequency or time. Various experiments using pulse
excitation were performed on microstrip and stripline structures aﬁd the agreement

was found to be excellent for rise times and fall times less than one nanosecond.
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