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Summary

During this grant period we have investigated two different aspects of active

antenna array design. The first of these involved the study of transition between

monolithic microwave integrated circuits and rectangular waveguides. The second

aspect of the study was concerned with the investigation of crosstalk in

multiconductor transmission lines.

We have formulated the boundary value problem associated with a

discontinuity in a microstrip line. This entailed, as a first step, the derivation of the

propagating as well as evanescent modes of a microstrip line. We have completed this

task and have also derived the solution to a simple discontinuity problem: change in

width of the center strip. Currently, we are in the process of refining this solution.

As for the multiconductor transmission line problem, we have developed a

computer algorithm for computing the crosstalk noise from the signal to the sense lines.

The computation is based on the assumption that these lines are terminated in passive

loads. During the next grant period we plan to generalize this program to the case

where the lines are terminated by active logic gates.



1. CHARACTERIZATION OF MMIC DEVICES FOR ACTIVE ARRAY ANTENNAS

1.1. Introduction

During the past year, the University of Illinois has been involved in the study

of transitions between monolithic microwave integrated circuits (MMICs) and

rectangular waveguide. This problem occurs in the design of active array antennas,

where the gain and amplitude of the individual array elements are controlled by

MMICs. In this report, we will summarize the progress that has been made on this

problem to-date.

Transitions between MMICs and rectangular waveguides should have several

properties. First, they should have a low insertion loss. Next, they should be

structurally and thermally sound. Finally, these transitions should maintain the

inherent reproducibility of the integrated circuit. A number of possible candidates for

these transitions are shown in Figures 1 and 2. In order to determine which of these

various transitions are likely to offer the best characteristics, it is necessary first to

analyze them for insertion loss and return loss. We propose to achieve this by first

breaking up a transition into a succession of abrupt discontinuities. If we can calculate

the S-parameters of a single discontinuity, we should then be able to determine the

characteristics of a cascade of such discontinuities. The purpose of this study will

initially be to develop the tools necessary to study these abrupt discontinuities in

printed circuits.

Abrupt printed circuit discontinuities may take a number of forms. The

theory which is developed is general for many different types of discontinuities, as will

be discussed later. For the present, however, it is necessary to begin by studying the

most simple example of this discontinuity one can find. This turns out to be an abrupt

change in the strip width of a shielded microstrip. A cross section of uniform shielded
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Figure 1. Typical substrate-to-waveguide transitions.
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microstrip is shown in Figure 3, and a discontinuity in the strip width is shown in

Figure 4. By studying this structure, it is hoped that the tools necessary to study a

more realistic transition, such as the fin-line stepped taper shown previously in

Figure 2, will be developed.

The method to be used in the analysis of abrupt discontinuities involves mode

matching in the plane of the discontinuity. In order to achieve this, one begins by

generating the dominant and first few higher-order modes in each of the two microstrip

lines. Next, one matches the tangential electric and magnetic field components in the

plane of the discontinuity. Finally, one calculates the mode coefficients, which yield S-

parameters and equivalent circuits of the discontinuity.

The study begins now with the analysis of the uniform microstrip.

1.2. Analysis of a Uniform Microstrip

The first step in the analysis of a uniform microstrip involves finding a Green's

function which relates currents on the strip to the electric fields at all other points in

the cross section of the line. This is accomplished by solving a two dimensional

Helmholtz equation in regions I and II

= 0 (l.a)

(l.b)

€; = er x<0

In the above equations, i denotes the region, and 0, and i/f, are the electric and magnetic

scalar potentials in each region.

It is convenient to solve the above equation in the spectral domain, so one takes

the Fourier transform of all potentials and fields as
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Figure 3. Cross section of shielded microstrip.
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Figure 4. Top vie^v of a discontinuity in the strip width on a microstrip.
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By matching boundary conditions on the shield walls and on the center conductor, one

obtains an equation of the form

Z2Z(<*n,/3) Z«(an,j3)

Z«(an,)3) Z,, (<*„ .0) /,(«„)
(3)

This equation relates the current in the plane y = 0 to the electric fields in this plane.

The dyadic Green's function, Zi;(an,/3X consists of relatively simple expressions in

terms of hyperbolic sines and cosines.

Before proceeding to the solution of this equation for /3, one should first look at

the methods for generalizing the above Green's function. The above method is

satisfactory for configurations with one dielectric layer and one strip. But a method

developed by T. Itoh [l] gives a technique for generating a Green's function for

structures with an arbitrary number of dielectric layers and conducting strips. His

technique is called the Spectral Immitance Approach. While a detailed explanation of

the technique is beyond the scope of this paper, it may be stated that the the technique

involves the separation of the fields in each dielectric region into TEy and TMy

components in the spectral domain, and the subsequent formulation of analogous

transmission lines in the y direction for the decoupled TE and TM fields. This

generalization extends the applicability of the techniques presented in this paper to a

large class of printed circuits.

Next, one must find the solution to the integral equation shown in Equation (3).
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The solution is effected by the spectral Galerkin technique [2], in which a moment

method solution is brought about in the spectral domain. Hence, the current on the

strip is expanded in terms of basis functions, which are non-zero only on the strip, as

£ ,. cos((f- l )g(3C/5)- l )1, c, - -
i=i vi — (x/sr

•& j sin (i TT (x /j ) — 1)£ di - .
<=i VI —(x/s)2

f ,
(4.b)

One then takes the Fourier transform of these currents and substitutes the result into

Equation (3). Next, the inner product of the resulting equation is taken with the

individual basis functions, and ParsevaFs theorem is used to eliminate the right-hand

side. The resulting matrix equation may be solved by setting the determinant equal to

zero and solving for j3 with Newton's method.

The accuracy of this method is determined by the number of basis functions

and the number of spectral terms one can calculate within a reasonable amount of
v_

computer time. For the dominant mode and lower-order evanescent modes, a small

number of basis functions and spectral terms is probably satisfactory. For evanescent

modes of larger order, it is likely that more basis functions and spectral terms are

required to achieve reasonable accuracy.

Sample calculations were carried out in order to calculate the dominant and

first two evanescent modes of microstrip. These results are shown in Figure 5. One

would like to compare these modes to other results, but little data are available on

microstrip modes. The microstrip mode calculations that are available deal with

propagating modes, but do not present data on evanescent modes [3][4\. There does

exist, however, one paper which presents calculations of fin-line for both propagating

and evanescent modes [5J. In order to adapt our analysis to fin-line, we need only

change the dyadic Green's function, Zfj. This was done, and a dispersion curve was
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calculated, which is shown in Figure 6. Clearly, satisfactory agreement with the

results in Reference 5 has been achieved. Since the microstrip calculation is quite

similar to the fin-line calculation, it is believed that the microstrip mode calculations

should also be reasonable.

Once the modes have been found and verified, the next step is to calculate the

characteristic impedance of the uniform line. This is done for two reasons. First, it

gives added confirmation that the dominant mode calculation is accurate. Second, it

gives a first-order approximation to the input impedance at a discontinuity. This result

is useful as a comparison for results obtained with the mode matching technique. Since

the characteristic impedance is defined only for TEM lines, one must be careful to

choose a definition of characteristic impedance which is useful experimentally. The

definition most commonly chosen is the power-current definition

P = Vz Re // E x H' dx dy (5.b)

x (5.c)

An alternative definition is the voltage-current definition

y
20 = — (6a)

o
V =- f Ey(y}dy ,=0 (6.b)

-d

Calculations were performed with both of these definitions, and are plotted in Figure 7.

They correspond very well with data already published in Reference 4.
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1.3. Analysis of Discontinuities with Mode Matching

Among the techniques for studying waveguide discontinuities, mode matching

seems one of the most promising [6]. This technique is suitable for calculating the

characteristics of abrupt discontinuities, such as those in Figures 2 and 4. In addition,

this method is easily adaptable to a cascade of abrupt discontinuities by using

generalized S-parameters. Finally, it may be possible to model a smooth taper as a

cascade of step discontinuities. Hence, the mode matching technique is capable of

solving a wide variety of problems.

The mode matching technique begins by using the modes of the uniform

microstrip calculated in the previous section. This involves finding the transverse fields

for each mode and in each of the two waveguides,

«io 0* .y) = exia (n ,y) £ + eyia (n ,y) y (7a)

hia(n,y) = hzia(n,y)x + hyia(n,y)y (7.b)

where i denotes the mode number, and a denotes that we are referring to the input

•waveguide. Similar expressions hold for the output waveguide. At the point of the

discontinuity, these transverse fields must be continuous. Enforcing this boundary

condition, one obtains

,ea, + E a,-«« = £ *>,«6;
i=2 J=l

— oo __ oo

(1-p) a ,/ia, - E a, h^ = E bjebj (g.b)
i=2 ;=i

where p is the reflection coefficient of the dominant mode, and a, and bj are the

amplitudes of the modes in waveguides a and b, respectively. At this point, one takes

appropriate inner products of Equation (8) and forms a matrix equation for p and for



14

the mode coefficients a, and bj. Once these have been found, equivalent circuit

parameters, Zn and Yn, are calculated as shown in Figure 8. The circuit has now been

characterized completely.

When using the above method, it is necessary to find an alternate method of

calculating the equivalent circuit parameters. This gives approximate values for Zn

and Yn, against which one can compare the results derived from the mode matching

technique. The only alternate method in the literature which treats this problem uses a

static technique, which is valid only for lower frequencies. An example of this

technique is shown in Reference 7. Therefore, a lower frequency case was chosen for

the initial study, in order to be able to compare the results with other sources. If the

validity of the mode matching technique can be demonstrated at lower frequencies, one

may assume the technique is valid also at higher frequencies.

By calculating a low frequency case, one is able to compare the results for Zn

and Yn to calculations made with other methods. In this case, Zn is approximated by

the normalized characteristic impedance of waveguide 2, relative to waveguide 1. The

power-current definition of characteristic impedance is used, as shown in Equation (5).

Furthermore, one can get an approximation to Yn by referring to the junction

capacitances calculated in Figure 8.

A sample case of a microstrip discontinuity calculation is shown in Figure 8.

The equivalent circuit parameters, Zn and Yn, are plotted as a function of the number

of waveguide modes used. The convergence of the normalized input impedance, Zn, to

its correct value has been demonstrated. The input admittance Yn, however, seems to be

dependent upon the number of modes used in each guide. It is necessary to get Yn to

converge in order to obtain the junction capacitance. It is likely that improved

convergence of Yn can be obtained by improving the efficiency of the inner product

calculation, thus allowing the use of more modes in the mode matching technique.
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There are many areas in this technique •where additional study is needed. First,

the sensitivity of the final answer to the number of spectral terms, the number of basis

functions, and the number of modes used must be checked. Next, it is necessary to

eliminate the dependency on the number of spectral terms used, by implementing an

asymptotic form for the calculation of spectral terms of very large order. This change

should reduce the computation time significantly. Finally, this technique should be

applied to a variety of different structures such as those shown shown in Figures 1 and

2, and other structures useful in transitions between printed circuits and rectangular

waveguides.

In summary a model for analyzing several types of transitions was described.

The model involved the breakdown of transitions into a cascade of abrupt printed

circuit discontinuities, whose S-parameters were determined with mode matching
j

techniques. The initial results presented in this report demonstrate the method to be a

promising one, although further work is still needed.
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2. CROSSTALK IN HIGH SPEED DIGITAL CIRCUITS AND INTERCONNECTIONS

2.1. Introduction

The present trend toward high density packaging and the implemention of

high speed digital devices have led to increasing demands for the characterization of the

digital circuits and interconnections from the point of view of cross-talk and distortion

of signal pulses propagating in these circuits. Our objective in this effort has been to

develop models for predicting the coupling in multiconductor transmission lines and

estimating the signal distortion due to mismatch in these lines. The signal corruption

engendered by the cross-talk and the reflection due to terminations can introduce false

logic levels and undesired triggering of logic gates. Hence an accurate estimation of the

signal distortion and the noise is important in designing high speed digital circuits.

Since the introduction of electromagnetic couplers, several models for coupled

lines have been proposed [8J. A frequency domain characterization [9] was performed

using an integral equation technique to compute the capacitance and inductance matrix

for coupled lines. Bryant and Weiss [10] established the relationship between the

electrical and geometrical parameters of coupled microstrip pairs using the Green's

function approach. Krage and Haddad [ll], [12] determined the inductive and coupling

coefficients as well as the directivity for various geometries of coupled lines.

Hammerstad and Jensen [13] succeeded in implementing a model with errors less than

that caused by physical tolerance and recently Kirshing and Jansen [14] reported

reported frequency dependent expressions for microstrip pairs with excellent accuracy.

Semiempirical equations for even and odd mode expressions for the design of such

coupled structures were also derived [15]. Various authors extended the analysis to

three-line couplers [16], [17] and, recently, Chan and Mittra [18] used a spectral-

iterative technique based on the conjugate gradient method to compute the inductance
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capacitance matrices of n -line microstrip structures.

In the prediction of signal propagation, early contributors [19H21] used a weak

coupling approximation to predict the transient response in coupled pairs . Paul [22],

[23] derived matrix chain parameter identities for the analysis of multiconductor

transmission lines in the frequency domain for sinusoidal excitation. Using a similar

technique, Zysman and Johnson [24] derived an equivalent circuit for two coupled

lines. Chang [25] implemented a circuit model to describe the transient response of an

n-conductor system using a congruence transformer approach. Such a model was

implemented on CAD programs [26] to analyze the cross-coupling response of

interconnections in high speed digital circuits. The above and several other equivalent

circuit techniques have been proposed to describe terminal variables of multiconductor

systems. However, no closed-form expression relating the transients to the position

along the lines has been made available.

In the present study, we utilize the inductance and capacitance matrices of an

n-line system terminated -with passive linear impedances to derive the time- and

position-dependent expressions for the transient response. The first step in our approach

is to determine the- modes of propagation of the network. Next, a Fourier integral

analysis is applied to the system and the time-domain solutions are obtained. Finally,

the accuracy of the method is evaluated by comparing the theoretical results with

measurements.

2.2. Formulation - Natural Modes

The basic differential equations governing the propagation of voltages and

currents in an n -line system can be written in a matrix form as
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(9)

do)

where V and I are column vectors of dimension n representing the line voltages and

currents with [V^ = Vf and, [l\i = // which are the voltage and current on the ith

line respectively. L and C are square matrices of dimension n representing inductance

and capacitance per unit length respectively, with [L],j = X ( l ) if i=j and

[L];; = L^"1 • if i =j . L^s) is the self inductance per unit length of an isolated line and

Lj'f^ is the mutual inductance per unit length between ith and jth conductors.

Similarly, [C\ } = C u > + £ C jm > Ot =i ) if i = y , and [Cl ̂  = - C> > if i = ;' , where
k =1

C( l) is the self capacitance per unit length of a single isolated line and C^m), the

mutual capacitance between ith and jth lines. These self and mutual parameters can

be measured using TDR techniques [27]. Since the lines are identical, L and C are

symmetric matrices. Equations (9) and (10) can be combined to yield

(11)a*2 &2

J&=CL£L (12)e^2 &2

In general, LC and CL are not equivalent; moreover, L and C being symmetric

does not imply that LC or CL are symmetric. However it is known [23] that there

exist square matrices E and H which premultiply both sides of (11) and (12) to yield

(13)
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(14)

where ELCE"1 and HCLH"1 are diagonal matrices of order n . Since LC is the adjoint

matrix of CL, it can be shown that

ELCE-1 = HCLH'1 = A,,,2 (15)

Therefore (13) and (14) can be rewritten as

(16)

• . (17)
*V»- ^ 2bt~ ~
ĵ"- \jr

where

Vm = EV (18)

Im = ffl (19)

Equations (16) and (17) give the relations between the modal voltage and

current matrices, Vm and !„,. A,,, is a diagonal eigenvalue matrix whose elements are

given by {Ami; = l/vmi, where vmi is the velocity of propagation of the ith mode. The

ith row of E and H are the voltage and current eigenvectors associated with the ith

mode whose modal variables are given by [Vm]j l and [Im], i respectively. For the case

where L and C are symmetric, there exist n distinct modes of propagation associated

with n real eigenvalues and the set of linearly independent (real) eigenvectors forms a

basis in n -dimensional space. In general, the entries of E and H depend on the entries

of both L and C Otherwise, E and H are equivalent. The line variables can be

recovered by using
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I =

V = H-'

(20)

(21)

If harmonic variation with time is assumed, the solutions to (16) and (17) have

the form

A+ e B

- e B

(22)

(23)

_JUX

m \ • = e v"" , <a is the•where C m is a diagonal matrix of order n with [6

angular frequency and A and B are modal coefficient column vectors of order n

associated with the forward and backward waves respectively. Making use of these

equations in (9) and (10) for forward and backward waves separately, one gets

Zm = (24)

Zm is the modal impedance matrix (dimension n ) which relates modal voltage

and current waves. Analogously, a line or characteristic impedance matrix Zc can be

denned by requiring V = ZCI for forward and backward waves separately. When

combined with the above relations, one finds

Zc = E-1ZmH = (25)

Since in general, E and H are not equivalent, Zm and Zc contain off-diagonal

elements which account for the interdependence of modal and state variables.
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23. Transient Response

The previous section presented the development of the expressions for the

various matrices associated with a multiconductor transmission line system, the

relationships between these matrices and the solution for a time-harmonic excitation.

When the applied signals are arbitrary (nonsinusoidal, nonperiodic), the response will

contain contributions from all frequencies. In this case, the coefficient vectors are

functions of frequency and the time domain solutions for modal voltages and currents

are obtained via integration in the frequency domain as follows:

e VMA(O>)+ e

e VmA(o>)- e VmB(a>)

(26)

(27)

The above equations can be rearranged in terms of the forward and backward voltage

waves V * and V ~ to read

(28)

(29)

where

+00

(30)

(31)
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The matrix products 6 m A(o>) and 6 m B(w) are the Fourier transforms of

V,J and V ~ respectively, and, therefore, satisfy the relations

JMX +°°

Vm A(o>) = J- V *(* jc) e-/» A (32)mv

0

(33)

We then apply the boundary conditions at x =0 and x =1 (see Fig. 9). This

yields

ZsZd-
lV5(i) = E-lVM(f ,0) + ZsH-'IJ' ,0) (34)

0 = E-VJitJ. ) - ZiH-'I^t ; ) (35)

Zs and Zj. are the source and load impedance matrices respectively. They are

constructed such that [Z.-%=(ZI-
(l«)r1+r(Ziim)rl(*=O if i=j ,

k =i

K,-1lv=-(Z,-y»'jr1 if i=j and [ZL-J],7=(Z,^)r1+i:(Z^'"))-1a=i) if t= j ,
*=i

[ZL~1lv=-(2,^m))~1 if i=j. Zd is a diagonal matrix with [Z^ =-Z^ \ Z^ and

Z/i? ' are the resistances between ith line and ground at the source and load terminals

respectively, whereas Zj(fm ) and Z,yim > are the resistances between ith and jth lines at

the source and load terminals respectively. Vs(t) is the column vector associated with

the n arbitrary voltage sources at x = 0. A more general situation involving, in

addition, voltage sources at the load terminals could be solved by using superposition

and, hence, is not treated here. Taking the transforms of (34) and (35), and, using Eqs.

(28X31), we obtain
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' " h

Figure 9. Schematic of an n-line multiconductor array.



B(a>)

0 = E
_>1

e VmA(o>)+ e

_J«L

•-JHL

6 mA(a>)- e mB(a>)

where Ws is the Fourier transform of Vs(t), defined by

= - vs(t) e-

Equations (36) and (37) can be rearranged and combined to give

25

(36)

(37)

(38)

A(O)) =

J6>1 J«1>1

in-r se
 V mrLe Vm

_J»L _Ji*L

-i
TWs(o>)

(6>)= - e V mrLe

(39)

(40)

where ln designates the unit matrix of order n. The matrices Ts , I"L and T are

respectively the source reflection coefficient, the load reflection coefficient and the

transmission coefficient defined by

= [ ln + EZsL-1E-'Am

= l

ln -

ln -

T = l +
1-1

EZ.Z,,-i

(41)

(42)

(43)

As can be anticipated, if the lines are terminated at the load end with a

network equivalent to the characteristic impedance of the system
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= Zc = E^An^EL. See Eqs. (24) and (25)), then TL = 0 and no reflection occurs.

This is the familiar result of the single line case. Such a situation can also be achieved

with the source impedance network to eliminate re-reflections. In the general case

•where reflections occur at both ends, Fs and FL are not diagonal, and Eqs. (39) and (40)

cannot be simplified further. However, one can rewrite A(w) in a geometric seriest as

A(cu)« E
t=o

FcC T, 6

_J5«L
r se

 V mrLe

r e m r e TWs(oO
(44)

Making use of this relation, V* and Vm can be obtained using the inverse

transform relations, (30) and (31)

in + rs8(t——)* rL8(t——) + ••• * TV,(t)

= s(t-—
vm

rss(t——)* rL8(t—^-
H')

TVs(t) (45)

- 8(t-^-) * rLS(t-37-) *

oo

E
t=o

*(«)
TVs(t) (46)

In these expressions, 8(t -- -), 8(t — — ) and S(t -- — ) are diagonal matrices
in * m * jn

of order n with diagonal elements [8(t — —)]» = 8(f — —\ [8(t — —^ = &t — £-)
V V . V V •* m "mi * m 'mi

and [8(t — — )]&• = 8(f — =^-) respectively, 8(f— r) being the unit impulse function

t In a more rigorous manner.the accessary conditions for convergence of the geometric series must, a
priori, be established. If the ratio for the series is diagonalizable, these conditions require that the magnitude of
the associated eigenvalues be less than unity. In all cases however, convergence can be tested numerically be-
fore applying the geometric series expansion.
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occurring at t =T. The symbol * designates a convolution and the exponent k (*)

indicates that the term within brackets is being convolved with itself k— I times,

d/ (f )]*• > = 1 and [/ (r )]l(> > = / (t)). If we recall from transform theory

8(r -u) * S(r -v) = S(r -fc +v D (47)

8U-u)* / ( r ) = /(«-«) (48)

then the evaluations of (45) and (46) are reduced to a simple sequence of matrix

multiplications in which the only time dependent factors are the delayed and

attenuated versions of the applied signals represented by Vs(t). For an arbitrary time

t, the voltages and currents are given by

(49)

Vfajr) — V~(t j r}\ fSfV)v mv **• ' • m*-' ** ^ V Jv^

In most practical cases, the source and load reflection cemcients are not very

large; hence, only the first few terms of the infinite series need be retained in (45) and

(46). However, in the event the mismatch is significant and the reflection coefficients

are large, it becomes necessary to include more terms in the representation for V*fa jc )

and V^(f^c). Equations (45) through (50) can be programmed on a computer to

simulate the transient response of an n -line system for which the coupling parameters,

the eigenvalues and the eigenvectors are known, and the terminations and the

excitations are specified.
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2.4. Application - Pulse Response Simulation

Many digital applications involve situations in which one or several

transmission lines are excited with a pulse. Waveform distortions and cross-coupled

signals are then observed at every point along the lines. In order to implement a

realistic model for such phenomena, a four-line stripline structure (see Fig. 10) was

fabricated on glass-epoxy (dielectric constant = 4.5). The characteristic impedance of

each line was designed to be 70 fl. First the propagation characteristics were measured

in order to determine the self and mutual parameters and set up inductance and

capacitance matrices. The eigenvalues and eigenvectors associated with the matrix

product LC were computed using an IMSL routine. Then, the lines were terminated as

shown in Fig. 11 and the modal and state variables were computed using Eqs. (45X50).

Finally the responses at x =0 were plotted for each line and compared with the actual

waveforms. As can be seen from Figs. 12 and 13, the. agreement is very good within

experimental errors. For the shown configuration, 4 iterations were needed to attain

sufficient agreement. Other simulations were performed for microstrip as well as 7-line

structures. In all cases, satisfactory agreement was obtained between theory and

experiment.

The construction of the inductance and capacitance matrices requires the

knowledge of the mutual parameters between any two conductors of the system. In

practice, only the self and mutual parameters between adjacent lines need to be

measured. Mutual coefficients between lines separated by another conductor can be

approximated by extrapolation since they do not influence the response of the system

significantly. From the geometry of these structures (microstrip and stripline) it can be

anticipated that the mutual capacitance between two conductors decreases much faster

than the mutual inductance as the number of conductors separating them and the

spacing increase. This' suggests that the cross-coupling in these multiconductor
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Figure 10. Cross-section of stripline test structure with four coupled lines.

x=0 x =

Figure 11. Schematic of 4-line coupler circuit used for experiment.
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Figure 12. Simulated waveforms of the voltage at the near end (jc =0) for each line of
the network of Fig. 11. Applied pulse magnitude: 2V, rise and fall time: 2
ns, pulse width: 30 ns.
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Figure 13. Experimental waveforms at x=0 observed at the near end of each line for
the network of Fig. 11.
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structures is predominantly inductive.

The preceding simulations also used pulses with rise times in the order of 1

nanosecond. The bandwidth associated with such speed is nearly 3 GHz. The variations

of the line parameters were assumed to be negligible over this range. For much faster

pulses however, the self and mutual coefficients become strong functions of frequency

and the above analysis is no longer accurate. In this case the frequency dependence of

the line parameters must be determined before using a numerical approach.

2.5. Conclusion

Simple closed-forms expressions for the propagation of transients in parallel

conductors have been derived. These expressions describe the voltage and current at

any point of a multiconductor system for which the coupling parameters are known.

The analysis assumes that the terminations are real and passive and that the line

parameters are invariant with frequency or time. Various experiments using pulse

excitation were performed on microstrip and stripline structures and the agreement

was found to be excellent for rise times and fall times less than one nanosecond.
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