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ABSTRACT

Results of an investigation into methods of controller design
for an individual helicopter rotor blade in the high
forward-flight speed regime are described. This operating
condition poses a unique control problem in that the
perturbation equations of motion are linear with coefficients
that vary periodically with time. The design of a control
law was based on extensions to modern multivariable systresis
techniques and incorporated a novel approach to the
reconstruction of the missing system state variables. The
controller was tested on both an electronic analog computer
simulation of the out-of-plane flapping dynamics, and on a
four foot diameter single-bladed model helicopter rotor in
the M.I.T. 5x7 subsonic wind tunnel at high levels of
advance ratio. It is shown that modal control using the IBC
concept is possible over a large range of advance ratios with
only a modest amount of computational power required.
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1. INTRODUCTION

1.1 The Individual-Blade-Control Concept

To further expand the utility and performance of the

modern helicopter, improvements must be made in the response

of the aircraft to the many and varied disturbances present

in its normal operation. These responses are primarily of

aerodynamic origin, and are transmitted to the vehicle

through its rotating blades. Thus, if sufficient action is

taken at the source of these problems, it would appear

possible to considerably improve the helicopter's handling

qualities, reduce vibration and increase overall stability.

Recent efforts to apply active control technology to rotary

wings have shown promise in reducing response due to

atmospheric turbulence [Ham and McKillip,1980; Zwicke,1980],

retreating blade stall [Ham and Quackenbush,1981], vibration

suppression [Shaw and Albion,1980; Wood,1983], blade-fuselage 	 { c

interference [Rahnema,1981], and flap-lag modal	 damping

enhancement [Ham, Behal and McKillip, 1983].

These applications have all used the method of active

pitch control to produce counteracting aerodynamic forces,	 r

but the generation of the control actuation can be divided

into two fundamentally different approaches. The first and

hA
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currently more widely used in vibration suppression is

Higher-Harmonic-Control (HHC) [Shaw and Albion,1980;

Wood,1983; Molusis, Hammond and Cline,1981; Johnson,1982;

Taylor, et. al.,1980], where integral multiples of rotor

rotational frequency are appropriately scaled and phase

shifted so as to generate pitch commands, either open- or

closed-loop, that approximately cancel the harmonics of

vibration passed down from the rotor to the fuselage. The

second	 and	 more	 versatile	 of	 the	 two	 is

Individual-Blade-Control (IBC) [Ham and McKillip,1980; Ham

and Quackenbush,1981; Rahnema,1981; Ham, Behal and

McKillip,1983; Kretz,1976; Ham,1980; Guinn,1982; Ham,1983],

involving the use of actuators on each blade to control the

pitch individually in the rotating frame of reference. This 	 1

latter approach is essentially a "broad-band" control of the

rotor blade dynamics, as opposed to the HHC limitation of	 '.

discrete frequency disturbance suppression, and as such is

capable of aeroelastic control of the blade modal responses 	 1

to both external disturbances and pilot commands.

However, this increased functionality of the IBC concept

is not without its price. Since the control and the motion

sensing of the IBC system is done in the rotating blade's

frame of reference, the equations describing the dynamics

will contain coefficients that are periodic functions of

limp-
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blade azimuth angle due to the rotor's non-uniform flowfield

in forward flight [Johnson,1980; Cessow and Meyers,1967].

This time dependence of the system dynamics thus makes the

use of standard time-invariant controller design techniques

' invalid for flight speeds exhibiting moderate levels of

periodicity. Hence, a definite need exists for rules and

guidelines in the selection of a controller design for

systems with periodic coefficients if the IBC concept is to

become a piece of flight hardware.

1.2 Periodic Coefficient Systems

The linearized small displacement equations of motion of

the rotor blade containing periodic coefficients are by no

means unique -- the general form of the solution to linear

periodic equations was first stated in a set of theorems over

a century ago, known collectively as Floquet theory

[D'Angelo,1970; Meirovitch,1970; DeRusso, Roy and

Close,1965]. Common special cases of these equations are

Hill's equation and the Mathieu equation, both only

second-order, with the second a subset of the first [Magnus

and Winkler,1979]. Applications of such equations to

physical phenomena abound, ranging from astronomy and orbital

mechanics [Meirovitch,1970; Kern,1980; Nishimura,1972; Wiesel

and Shelton,1983], electric circuits and solid-state physics

-	 :rte°'rW^L,&s ^=-	 n.. -
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[F..aug,1972]	 to	 biolgical	 cycles	 [Emanuel	 and

Mulholland,1976], aircraft cruising	 flight optimization

[Evans,1980; Gilbert,1982; Speyer and Evans,1981], chemical

reactor process control [Fjeld,1969; Rinald1,1970;

Marzollo,1972], and parametrically excited mechanical systems

[Wang,1983; Peters and Hohenemser,1971; Nafeh and Mook,1979].

Analytic solutions for these equations are not possible,

except for a few scattered special cases [Wu,1980; Dasarathy

and Srinivasan,1968; Junkins,1978] and so one often needs to

resort to numerical methods to integrate these equations

forward in time [Friedmann, Hammond and Woo,1977; Gaonkar,

Sinha-Prasad and Sastry,1981; Vepa and Balasubramanian,1980;

Dugundji and Wendell,1983]. Approximate methods such as

those of peturbation theory [Nafeh and Mook,1979;

Johnson,1972; Nafeh,1981], or a similar technique of harmonic

expansion [Dugundji and Wendell,1983; Peters and

Ormistron,1975; Hohenemser and Yin,1972; Wendell,1982] are

possible if one is interested either in solutions valid over

a short time interval or at steady-state.

1.3 Periodic Control Theory

Due to the time-varying nature of the equations, control

systems are not easily designed for periodic processes using

I

I
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classical frequency-domain approaches. 	 However, modern

control theory [Bryson and Ho,1975; Kwakernaak and

Sivan,1972] is capable of handling time-varying system

dynamics and thus is a likely candidate for attempts to

extend the theory to handle periodic systems. The technique

of modern control design consists of formulating the control

requirements as a constrained optimization problem, where the

function to be minimized is an expression that trades off

system performance with the cost of controller activity.

This cost functional is typically a scalar that exhibits

quadratic dependence upon both state and control deviations,

and the constraint is that the system be governed by the

state equations of the plant being controlled. The weighting

factors in the cost function can be used to achieve various

purposes, such as state-control pertur'.)ation tradeoffs, pole

placement, output regulation, implicit model following and

neighboring-optimal control [Stengel,1981]. An attractive

additional benefit is that modern control and state-space

techniques are equally capable of including the many degrees

of freedom and multiple inputs and outputs present in the

helicopter rotor. Like all design, methodologies, it is not

without its faults. Although the technique does

"automatically" compute a feedback scheme that is in some

sense "optimal" for the given cost function, a fair amount of

:1

t
t

}
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i

iteration and insight is often necessary in order to specify

a mathematical relationship that truly represents the design,

objectives of the controls engineer	 [Widnall,1968;

Stein,1979] .

Of the literature in the controls field relating to

periodic control, most concerns the periodic operation of a

time-invariant nonlinear system to maximize some measure of

performance [Marzollo ,1972]. The two most notable examples

of this are chemical process control 	 [Fjeld,1969;

Rinaldi,1970]	 and aircraft cruising flight extension

[Evans,1980; Gilbert,1982; Speyer and Evans,1981]. In this

Instance, a technique is developed to determine the necessary

conditions under which control of a process can be improved

if it is operated under oscillatory conditions instead of at

a steady-state. For these problems, the performance function
i

Is maximized over one period, with the period left as a free

parameter and the states of the process forced to be equal at

the completion of one cycle.

Closer to the problem at hand are biological system

control problems (since they operate cyclically with a fixed

period) [Emanuel and Mulholland,1976], but often these are

characterized by state variables that are constrained to be

non-negative, such as species populations, or to having

i	 1

r
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performance criteria that are non -quadratic in the state

deviations. Other examples, such as [Wang,1983], address the

control of a time-periodic system using state-dependent

inputs. Examples of pole-placement techniques for linear

periodic systems can be found [Kern,1980; Wiesel and

Shelton,1983; Meyers,1982; Wolf,1982], but they are all done

without the use of a cost function and as such provide no

indication of the effects of various weighting parameters

upon the closed-loop dynamics. To the best of the author's

knowledge, only [Liebst,1981] addresses the

Linear-Quadratic-Regulator (LQR) problem in the context of a

periodic coefficient system, but it too falls short in that

it gives no indication of system stability or eigenvalue

movement with various cost constraints.

1.4 Scope of Current Research

The motivation for this thesis was first encountered

during the author's work in [Ham and McKillip,1980], where

the wind tunnel model rotor operating under an early feedback

controller design exhibited a pronounced parametric

excitation at half rotor rotation frequency. Subsequent

analysis using Floquet theory showed this result to be

predictable, and thus all feedback controller designs were

henceforth checked to ensure that they would not possess

I

1_^	 i
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similar N/2-per -revolution resonances. For moderate levels

of feedback gain and low advance ratios, this aorroach proved

to be adequate for IBC applications involving the control of

single-mode response [Ham and Quackenbush , 1981; Ham, Behal

and McKillip , 1983; Biggers , 1974'j.

Applications of the IBC concept to vibration reduction,

due to the added complexity of including two out-of-plane

modes of response, necessitated the use of state -variable

techniques in the controller design. Since this application

had a low forward-speed flight condition as its design point,

the effects of periodicity were once again neglected in the

feedback design phase. The benefits of a simplification to a

linear time-invariant form were somewhat overshadowed by the

requirement within modern control theory to have all state

variables of the problem available for measurement. Since

this was quite impossible, attention was then focused on how

to best make amends for this lack of information.

Research into observer theory showed that in order to

best estimate these states given the measurements available,

one must construct a dynamic model of the process to be

observed, and drive the model with weighted errors between

the expected output and the actual measured ciitput of the

system [Bryson and Ho,1975; Kwakernaak and Sivan ,1972]. This

.I

I
1
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then requires one to build a dynamic element, (often

electronic) that has the same order as that of the physical

system, often a rather severe constraint. Given a suitable

selection of effectively noise-free measurements, however, it

Is possible to construct a lower-order approximation to this

observer [Luenberger, 19661. If one merely wishes to

feedback a particular linear combination of these state

variables, even further reduction of system complexity may be

possible [Melsa and Jones,1970].

Use of these "minimal-order" observers in early IBC

vibration controller designs resulted in systems with poor

performance. After other competing designs were generated

via this same technique, it was discovered that the

observer's gains were highly sensitive to variations in the

plant parameters. This sensitivity was due not only to

variations in actual coefficients, but also to the assumed i
model structure, stemming from the use of blade-mounted

accelerometers as sensors for feedback control.

For most physical systems represented in state-variable

notation, pure acceleration is not a state-variable in

itself, but instead is a linear combination of the

displacement and velocity states of the plant as well as any

control or disturbance inputs. Since the accelerometer



Page 20
r.

measurements are assumed to be relatively noise-free, any

unmodelled effects or disturbance dynamics such as tunnel	 i

turbulence are propogated directly into the estimation error,

and as such could conceivably force the rotor blade to

exhibit erratic behavior. This effect could easily be

compounded by the neglected periodic variation of the

j	 coefficients in the math model of the rotor dynamics. Thus a
i

strong need exists for some guidelines concerning what level

of approximation is sufficient for adequate feedback

f	 controller design of such a complex system.

The chapters in this thesis fill this gap in knowledge

and experience in designing modern control systems for

linearly periodic systems through a methodical series of

investigations culminating in the periodic control of a model

helicopter rotor in forward flight. First, the equations of	 k

motion for a single helicopter rotor blade in forward flight

are presented in chapter 2, along with a description of the

mathematical nature of linear periodic coefficient systems. 	 ^.

Chapter 3 presents modern control theory in the context of
}

periodically varying systems, with some numerical results

concerning trends in closed-loop pole locations with changes	
i

in the cost function. An extension is made in the theory to

handle implicit-model-following controller design	 for

periodic systems, and an efficient computational technique
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for calculating the feedback and feedforward gains is

outlined.

In chapter 4, the system identification problem for

• linear periodic systems is treated in two parts. First, a

novel technique for estimating rotor states using position

and acceleration measurements is described. The method is

unique in that it contains no periodically varying elements

in its observer structure. Second, a least-squares procedure

for extracting the periodic system coefficients is explained.

The regression uses the state estimates of the observer in

Its computations. Chapter 5 is devoted to describing the

hardware used in the various experiments conducted in the

thesis. The analog computer board that simulates the

	

out-of-plane rotor flapping dynamics is diagrammed, and then	 t

the actual model helicopter rotor system is described.

Chapter 6 contains experimental results.	 These

encompass work done on the analog simulation concerning state

	

estimation, parameter identification and closed -loop control,	 ^~

as well as data from the actual rotor at high advance ratios.

Parameter identification trials and closed-loop controller
4

results are detailed for the wind tunnel test data, and

comparisons both with theory and with the results from the

simulation tests are made. Conclusions from the research are

I

i
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drawn in chapter 7, and recommendations for areas of further

work are given.

i
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2. EQUATIONS OF MOTION AND PERIODIC SYSTEM MATHEMATICS

2.1 Introduction

In this chapter the equations of motion describing the

rigid out-of-plane flapping dynamics of a single articulated

rotor blade in forward flight are derived. The asymmetrical

nature of the tangential flow field will be shown to give

rise to damping, stiffness and control terms that are

periodic in blade azimuth angle. To simplify the analysis, a

quasi-steady approximation has been used, with no allowances

for the effects of compressibility, stall, or blade tip

losses in the calculation of the aerodynamic forces present.

Only one mode is considered, since: (1) consideration of

additional elastic out-of-plane modes would only cloud the

picture of the effect of various control designs; (2) the

model rotor blade to be tested is in itself very stiff,

having a nondimensional bending stiffness near seven times

rotor rotation frequency, approximately twice the ratio of a

full-size blade; (3) in-plane motion, while not having a high

natural frequency, is rather small in magnitude and is not of

major importance for an articulated rotor; and (4) effects of

torsional flexibility are discounted, since the IBC concept

requires broadband control of blade pitch from the outset.

to. s

i
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Following a description of the plant dynamics to be

controlled, an outline of the available mathematical tools to

deal with such peculiar systems is given. This includes a

formulation in state-variable notation [DeRusso, Roy and

Close,1965] which has proved to be very convenient for

handling multi-dimensional control and systems problems.

Floquet theory is introduced along with the importance of the

state transition matrix for one fundamental period, and

computational techniques for obtaining this matrix and

thereby determining system stability are presented.
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2.2 Derivation of the Rotor Flapping Equations

Several methods exist for arriving at the equations

describing the flap motion of an articulated blade in forward

flight [Sissingh , 1970; Johnson,1980], but perhaps the easiest

	

► .i 	and most direct is simply to invoke D'Alembert ' s Principle

'i and consider the moments about the flapping hinge at the hub,

as sketched in figure 2.1. In figure 2.1.a can be seen an

Instantaneous view of the rotor blade as it would appear

looking down the shaft from the top of the rotor. Figures

2.1.b and 2.1.c show projections of the side and end view,

	

'	 respectfully. Since the flapping hinge cannot sustain a

torque about its axis, the sum of the moments about this

J
point will equal zero.	 These moments are due to: (1) the

centrifugal forces acting radially from the shaft; (2) the
a inertial reaction of each infinitesimal mass to flapping

i motion acceleration; and (3) the distributed lifting airloads

along the blade span. If one invokes the small-angle

assumption that cosines of angles are equivalent to unity and

sines of angles are approximately equal to the radian measure

of the angles themselves, one arrives at the expression:

R	 R	 R
• .	 2	 f 2	 dT

(r- ) m dr +	 /^1^. m r (r- r) dr =	 (r-^) -dr- dr

(2.2.1)

1

a.

0
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where : nl is the spanwise distributed blade mass
I is the flapping angle
SL is the rotation frequency
r is the distance measured from the shaft
R is the total rotor radius

is the hinge offset divided by rotor radius

dT
---- is the spanwise 1 •ift distribution
dr

The spanwise lift distribution is calculated by considering

the local flow about a two-dimensional section at an

arbitrary radius as in figure 2.1.c. For the quasi -steady

case, this is just the product of the dynamic pressure and

the chord times the lift coefficient, which itself is just

the product of the lift curve slope times local angle of

attack. Thus one has:

dT	 2
-- - = 1/2 * /0 * U * c * a * e -
dr	 /

(2.2.2)

where:	 is the air density
U	 is the local flow velocity magnitude
c	 is the chord
a	 is the 2D lift curve slope
6	 is the pitch angle of the blade

is the angle between the local velocity
and a plane perpendicular to the shaft

If one again invokes the small angle assumption, the local

flow angle 9 is approximately equal to its tangent. Also,
the magnitude of the local velocity can be approximated by

the tangential velocity for most of the rotor. Incorporating

both of these approximations gives:

^^ 1

i

.	 r	 I

1
,,	 i

...	 t i OW 4V- 'T- ,W 0 .r . -
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dT
1/2 *	 * a * c * U * U * e - U

	

dr	 I/	 T	 T	 P
(2.2.3)

where:	 U = ILr +	 *SIR*sin (^ )
	T 	 ( the tangential velocity )

U = r/5 + /'^*XLR*cos ('N ) */S + X*SIR
	P 	 ( the pd endicular velocity-	 )

V*cosA .7 / R
( non imensional forward flight speed )

A = V*sin ( a ) / R
( non imensional inflow velocity )

SIR = tip velocity of the rotor
V = forward flight speed
oc = shaft tilt into the wind,

positive forward

Substitution of (2.2.3) into (2.2.1) will result in a

proliferation of symbols, which can be reduced by

non-dimensionalization according to the following steps.

First, (2.2.1) is divided by the blade inertia about the

flapping hinge. Second, the aerodynamic parameters are

lumped together into a unit-less quantity called a Lock

number. Third, the span is nondimensionalized by rotor

radius and the flap natural frequency by rotor rotation

frequency. If the inflow effects are neglected for now, the

result is:

+ M. 	 + M	 M e

/11	 (2.2.4)

where the coefficients are:

. ".

1	 j

i

n 	 .

'D
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M.
/S/ =	 ---	 ( x + ^leain	 x (x) dx
/1L	 2

2

M/0-_
	 { y + -2- (,cc cos ^) R

f( x + Iksin ) 7j (x) dx }

2

e	 2	 JJJ

and the nondimensional flapping mode shape is:

(x) _ -x-- -
I	 1 -

and:	 is the nondimensional flapping frequency

4
/0 acR

_ ------- is the Lock number
I
1

I	 is the inertia about the flapping hinge
1

These integrals must be evaluated with some care in

order to accurately treat the direction of the incremental

lift force on the blade section. As shown in figure 2.2, the

various tangential flow regimes of the rotor blade can be

broken down into three areas on the rotor disc. At certain

combinations of span, azimuth angle and forward flight speed,

the local flow direction at a section will be directed from

the trailing edge to the leading edge. For high levels of

),I-- rAk-.60ir 4ob • ^,
	 —	 —	

-
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forward flight speed, it is possible that the full span of

the blade is in such a state. These three areas, then,

correspond to: (1) normal flow, encountered over azimuth

angles such that ( -xi 
<1144 

*sin ( ^) <"^ ) ; (2) mixed flow,

where part of the span is in normal flow and part is in

reversed flow, encountered over the the range of azimuth

angles such that ( -1 </O-*sin( ^1 ) < -xi ); and (3) reversed

flow, where the full blade span is in reversed flow, valid

where (1c. *sin (^k) < -1 ) . This third category can obviously

only exist for rotors operating at advance ratios greater

than unity. The integration limits on these integrals are

then:

1
(1):	 J ( ) dx	 --- for normal flow,

^	 s
(2) :	 ( ) dx -	 T ) dx	 or	 i

1	 '^ sew 
Y	 ^

/ ( ) dx - 2 J( ) dx --- for mixed flow, and

1	 '
(3):	 -	 ( ) dx	 --- for fully reversed flow.

j

The results of performing such integrations are given in

figure 2.3, where the effect of an offset flapping hinge is

included in the evaluations. Plots of these three moment 	 1

coefficients can be seen in figure 2.4a, 2.4b and 2.4c as a

a
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function of advance ratio.

A few important aspects can be seen in these three time

histories of the flapping equation coefficients. Most

apparent is the increase of higher harmonic content in each

of the coefficients with increasing advance ratio. This is

due to the fact that all the periodic terms in the

coefficients enter the expression as products of advance

ratio and sines or cosines of azimuth angle. As advance

ratio increases, these terms dominate the coefficient's

character. Second, the flap damping term never changes sign,

although its value does become quite small for certain

regions near the boundary between regions (2) and (3) on the

retreating side. This makes sense since the local velocity

due to any flapping motion would produce section angle of

attack changes, generating in-phase lift forces that would

oppose the motion (for the quasi-static case). And finally,

the control moment due to changes in pitch angle can be seen

to pass through zero on the retreating side for high advance

ratios.	 This is due to the lift in the normal regime on the
I

outboard span of the blade exactly cancelling the lift in the

` reversed flow region on the inboard section. These first two

observations will help the evaluation of the parameter

identification results that follow in a later chapter, and

the last effect will be seen to produce singularities for
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certain types of controller designs.

,m
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2.3 Mathematics of Periodic Linear Systems

2.3.1 Introduction

In this section, the somewhat peculiar nature of systems

of linear differential equations having periodic coefficients

will be described. Much of the material presented will be

drawn directly from [Dugundji and Wendell, 1983] and

[Johnson, 1980, ch.8], but the motivation for its inclusion

here is to make the thesis self-contained and the notation

consistent.

Analyses of periodic coefficient systems are very often

approximate due to the considerable added complexity of

having to deal with time-varying parameters. These

techniques range from perturbation-type methods, where the

periodicity is assumed to be of small size relative to the

mean parameter values, to harmonic-balance and multimode

methods (called "multiblade" for helicopter problems), where

a truncated Fourier expansion is substituted into the

governing equations in order to determine its free

coefficients. The techniques that follow in this section are

"exact", in that the approximations present are in the

problem formulation and not in their mathematical solution.

This is not to say that periodic linear systems are exactly

I^

1
i

'i
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solvable -- the expressions given below are exact, but in

virtually all cases they must be evaluated numerically on a

computer, a process which is never exact due to numerical

truncation effects.

2.3.2 State Variables and the Transition Matrix

Modern control techniques are fundamenta ny used with

systems described in state-variable notation. The primary

advantage of such a system is in economy of representation --

extremely complex linear (and nonlinear) lumped-parameter

systems with multiple inputs and outputs can be described

with just two matrix-vector equations. The selection of

states describing a system, however, is not unique, and can

be chosen for computational convenience or physical

significance. In most engineering applications for

rotorcraft, these states are the displacements and velocities

of the modal degrees of freedom under analysis. For a linear

system, the n states x(t) can be related to the m inputs u(t)

and the 1 outputs y(t) according to:

x (t) =	 A (t) x (t) +	 B (t) u (t) (2.3.1)

y (t) =	 C (t) x (t) +	 D (t) u (t) (2.3.2)

If just the homogeneous terms of (2.3.1) are retained, a

1
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x (t) _ 6 (t, t0) x (t0) (2.3.3)
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set of solutions can be obtained for any particular initial 	 is

condition on x(t) by direct integration of the equations of	 :I

motion. If n such solutions are obtained for the n initial

conditions characterized by having all zeroes except for a 1

in the i-th location, one can combine them column-wise to

form the state transition matrix (STM) for this homogeneous

system. This matrix relates the homogeneous solution at some

time t to the solution at a previous time t0 according to:

and since it is composed of solutions to (2.3.1), the state

transition matrix must obey the same equation:

i (t, t0) = A(t) 6 (t, t0) 	 (2.3.4)

Other properties of the STM include:

6 (t2 , t1) d5 (t1, t0) _ 6 (t2, t0)	 (2.3.5)

6 (t, t) = I = 6 (t, t0) 6 (t0, t) 	 (2.3.6)
-1

6(t,t0) _ 6(t0,t)	 (2.3.7)

For the time-invariant case, the STM is not dependent

explicitly on the two time parameters, but instead on the

time interval (t-t0). If one performs a Taylor-series

expansion about t0, one can show that:

I

-	 -ti
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6(t-t0) = exp( A(t-t0) )	 (2.3.8)

where the matrix exponential is defined according to the

Infinite series:

2 2
exp( At } = I + At + (1/21) A t + ...

n n

	

+ (1/n!) A t + ...	 (2.3.9)

or,

j
inf j (t-t0)

6(t,t0) = sum A ------	 (2.3.10)J=O	 j!

For the general time-varying case, a similar but more

complex relationship exists for the STM, as shown in [Blair,

1971] :

j
inf	 (j)	 (t-t0)

6(t,t0) = sum [A(t) - DI] I ------- 	 (2.3.11)
J =O	 j!

where D is the operator notation for d( )/dt and the

parenthetical superscript (j) denotes the recursive but
non-commutative operation of the nxn matrix operator

[A(t) - DI] . For example,

2
[A(t) - DI] = [2 (t) - DI] [A(t) - DI]	

2
= A (t) - A (t) DI - DA (t) + D I

2
= A (t) - A (t)
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since DI = 0. Alternate methods to generate the STM for

time-varying systems are direct integration of (2.3.3), or a

stepwise approximation by breaking the time interval under

consideration into several discrete steps, and forming the

product:

6 (t, t0) = 6 [tn, t (n-1) ] x 6 [t (n-1) , t (n-2) ]
x ... x 6[t1,tO]	 (2.3.12)

where the STM 6[tj,t(j-1)] is the result of holding the

system matrix constant from time t(j -1) to t(j).

Periodic systems are special cases of these time-varying

systems, in that the coefficients are cyclic functions of

time:

A (t+T) = A(t);  B (t+T) = B(t),  etc . with T = period

Floquet's theorem states the form that the STM takes for

periodic systems, but not the analytic solution:

-1
6 (t, t0) = R (t) exp{ Q* (t-t0) } R (t0) (2.3.13)

where R(t) is a periodic matrix with period T, and Q is a

constant matrix. This can be proved by noting that

6(t+T,tO) is also a solution to (2.3.3), and letting

d5(tO+T,tO) = M, giving:

6 (t+T, t0) = L (t+T, tO+T) M	 (2.3.14)

The matrix M is given various names throughout the

1

s

r .i
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literature, but we will call it the Floquet transition matrix

(FTM) . If we now set M = exp( QT ), we obtain from (2.3.14) :

d5 (t+T, t0) _ 6(t,tO)  M	 (2.3.15)

since 6 (t+T,tO+T) _ 6(t,tO). Now if we define:

R (t) = 6(t,tO)  exp( -Qt }	 (2.3.16)

we obtain:

R (t+T) = 6 (t+T, t0) exp( -Q (T+t) }

= 6(t,tO) exp( QT } exp( -Q(T+t) }

= 6 (t,tO) exp( -Qt } = R (t)

and thus R (t) is periodic in T.

2.3.3 Eigenvalues and Eigenvectors of Periodic Linear Systems

Just as the dynamics of time-invariant systems of

equations are governed by the homogeneous system's

eigenvalues, the properties of a periodic linear system are

directly influenced by the eigenvalues of the Floquet

transition matrix. To see this, one need only employ a

result from the Cayley-Hamilton theorem for matrices in order

to show that any analytic function of a matrix is related to

a transformation of the result of applying that same function

to the matrix eigenvalues, or:

-1
f(A}=X f(E )X	 (2.3.17)

A
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In order to interpret these results, one mus t_ remember

that the actual physical response of a system governed by

real coefficients must also be real. Hence it is the Rr_QdUgt

of the eigenvectors and the exponentiated eigenvalues and not

the eigenvalues themselves that determines the system output.

Addition of a multiple of the funcaniental frequency to an

eigenvalue of Y corresponds to multiplying that mode by

exp{ -12pi(n)t/T }. This is fully consistent with the

results developed, since Floquet theory only requires that

the mode shape be periodic, and there is no specification as

to how the periodicity is apportioned between the eigenvalue

and the eigenvector.

The only question left begging is how to determine what

multiple of the fundamental must be added to the elgenvectors

of Y. This decision can be made readily if the system

becomes time-invariant at some limit, such as the helicopter

rotor does in rover. For this case, the location of the

time-invariant eigenvalues of the rotor can be found readily,

and the eigenvalues of the periodic system can be constrained

to vary in a continuous fashion from the hover roots with

changes in advance ratio. An automated technique, from

[Johnson, 1980], is to require the mean value of the

eigenvector to have the largest magnitude; then the harmonic

of largest magnitude in the eigenvector corresponding to the

I - ;,- .- 

- 0)  11
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where A is a matrix with X as its matrix of eigenvectors and

	

E as its matrix of characteristic values, or eigenvalues. 	 J

Thus, for the time-invariant case, the STM is:

6 (t, t0) = X exp( E (t-t0) ) X	 (2.3.18)

For this system to be stable, the homogeneous solutions

should either remain at a steady value or decrease with time.

In order for this to happen, the matrix exponential should

not be an increasing function, which implies that none of the

eigenvalues in E have positive real parts.

For periodically varying systems, the STM wai shown to

be:

-1
6 (t, t0) = R (t) exp( Q (t-t0) ) R (t0) (2.3.13)

and if we use S and Y as the eigenvector and eigenvalue

matrices of Q, we can then write:

I

-1 -1
4b(t,t0) = R(t) S exp( Y(t-t0) } S R (t0) (2.3.19)

So, since the product R(t)S is periodic in time, the

stability of the system is again determined by the

eigenvalues of Y, with positive real parts in any elements of

Y producing unbounded solutions.

For time-invariant systems,	 standard methods are

Be
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available to compute the eigenvalues of A and thus determine

the system's stability. Unfortunately for periodic linear

systems, no similar technique exists to determine Y given

A(t) . However, from (2.3.15) we have a relationship for the

Q matrix in terms of the FTM:

-1
M = exp{ QT } = S exp{ YT } S	 (2.3.20)

so one can write:

Y = --- Log{ S M S } _ --- Log{ Z }	 (2.3.21)
T	 T

where Z is the diagonal eigenvalue matrix of M and S is its

eigenvector matrix (the same as for Q). In order to evaluate

the stability of a periodic linear system, then, it is 	 t

necessary to first obtain the FTM (M) through any means

	

	 tt
f`

available, typically via integration of the homogeneous

equations over one period. The system is declared stable if

the real parts of the eigenvalues in Y are all non-positive.

Since the eigenvalues of Y are related to those of Z

through the complex logarithm, it is clear that this same 	 I

stability criterion is met if the eigenvalues of Z all have

magnitude less than unity. This becomes even more obvious if

one considers the behavior of the STM over several periods.

In this case, since the STM at any time is related to the STM
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over one period according to:
I	 r

€	 n
t	 6(t+nT,tO) = 6(t,tO) M 	 (2.3.22)

 nso, 6(t+nT,tO) = 6(t,tO) S Z S -1	 (2.3.23)

and any eigenvalue of magnitude greater than one will cause

the STM to grow unbounded with time.

But perhaps the most peculiar behavior of periodic

linear systems is due to the nature of the complex logarithm.

Since the logarithm value is dependent upon the branch over

which it is defined, the eigenvalues of Y can have a multiple

of (2pi/T) added to their imaginary part without affecting

the system stability:

12pi
y = -T [ In I z I + i /(z) ] + n -T i ( 2.3.24)

The eigenvalues of Z can take on three possible values, since

M is a real matrix: they can be part of a complex conjugate

pair, yielding a complex conjugate pair in Y; they can be

positive real, yielding a root of Y at some integer multiple

'r

	

	 of the fundamental frequency [(n)2pi/T]; or, they can be

negative real, yielding a root at some multiple of the half

of the fundamental frequency. [(n+..5)2pi/T]. This implies

that it is entirely possible to have eigenvalues of Y which

are complex but have no corresponding conjugate.

IM

1
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In order to interpret these results, one mus t_ remember

that the actual physical response of a system governed by

real coefficients must also be real. Hence it is the Rr_QdUgt

of the eigenvectors and the exponentiated eigenvalues and not

the eigenvalues themselves that determines the system output.

Addition of a multiple of the funcaniental frequency to an

eigenvalue of Y corresponds to multiplying that mode by

exp{ -12pi(n)t/T }. This is fully consistent with the

results developed, since Floquet theory only requires that

the mode shape be periodic, and there is no specification as

to how the periodicity is apportioned between the eigenvalue

and the eigenvector.

The only question left begging is how to determine what

multiple of the fundamental must be added to the elgenvectors

of Y. This decision can be made readily if the system

becomes time-invariant at some limit, such as the helicopter

rotor does in rover. For this case, the location of the

time-invariant eigenvalues of the rotor can be found readily,

and the eigenvalues of the periodic system can be constrained

to vary in a continuous fashion from the hover roots with

changes in advance ratio. An automated technique, from

[Johnson, 1980], is to require the mean value of the

eigenvector to have the largest magnitude; then the harmonic

of largest magnitude in the eigenvector corresponding to the

I - ;,- .- 
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principal value of the eigenvalue gives the frequency n2pi/T.

Finally, it should be mentioned that it is possible to

consider the periodic system in terms of modal coordinates,

by transforming the equations of motion using the

substitution R (t) S v (t) = x (t) .	 Upon substitution into
(2.3.1), one obtains:

-1
v (t) = Y v (t) + [ R (t) S ] 8 (t) u (t)

y (t) = C (t) R (t) S v (t) + D (t) u (t) (2.3.25)

and the homogeneous equations are now amenable to standard

analysis techniques for time-invariant systems. Note,

however, that one is still left with a periodic control and

output matrix, and thus standard time-invariant optimal

control techniques are still not applicable for this modified 	 l

form.

's in

1	 ^
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3. PERIODIC CONTROL CORY

3.1 Motivation for the LQR Approach

The control laws design*d for the I.B.C. rotor in this

thesis are all formulated as a solution to a

calculus-of-variations problem, in accordance with the

techniques of so-called "modern" control system design. This

formulation consists of ecpressing the controller design

objectives as the time integral of quadratic functions of

both state variable perturbations and cc^trol expenditures,

with the state variables constrained to obey a specified set

of dynamical equations. This particular method of controller

design became popular with the advent of the widespread use

of digital computers, allowing a numerical solution to rather

complex problems to be obtained within a reasonable amount of

time.

These "modern" approaches enioy some advantages over

traditional frequency-domain (or, "classical") control design

techniques due to their ability to handle a wider variety of
	

I

design problems.	 State-variable formulations of the system 	 I

dynamics permits one to formulate the optimization problem as

a vector-matrix equation and thus allow treatment of almost
	

11
arbitrarily-large (but finite) order systems, having several

O1
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Inputs and outputs. A time-domain representation of the

plant dynamics makes it possible to treat time-variable

systems, something not generally available to the analyst

using frequency-domain Laplace variable concepts.	 And

finally, given a predetermined quadratic performance

criterion, the feedback gains for all of the state variables

are computed uniquely. Since the issue of requiring all the

state variables be measurable is intimately related to the

area of system identification, we will defer discussion of

this latter topic until a later chapter.

This need for a predetermined measure of performance

within modern controller design is sometimes one of the

technique's toughest requirements. The dynamics of the

closed-loop system is totally dependent upon the mathematical

representation of the quadratic performance index, such that

an inappropriate choice of weighting parameters will most

assuredly result in a controller with poor performance. The

designer is thus required to express his control objectives

In terms of an analytic scalar function of the system's state

and control variables, thereby reducing all issues concerning

speed of response and amount of control effort expended to a

single number. Such a representation of design objectives is

not often easily obtained, and it is in this area where much

of the iteration of a control law design takes place.
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M,
General guidelines exist for how one might initially

approach construction of a performance function, the most

common being the weighting of each state ' s squared deviation

by the squared inverse of its maximum allowable value [Bryson

and Ho,1975]. Other techniques are also available, such as

penalizing state rates to limit system bandwidth, but these

as well as more complex methods [Stein, 1979] are all for

time-invariant systems. There is a definite lack of (and in

our case, a clear need for) guidelines in the selection of

the terms within the cost function for periodically time

varying linear-quadratic control systems. Our approach to

this problem will be to attempt to gain some insight into the

various effects present in such a selection by considering

single degree of freedom systems with time-varying

parameters. E

I

1^	 i
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3.2 Derivation of the Gain Equations

Formulation of the optimization problem for modern

control has been done in countless texts and technical

_ reports for the past twenty years. Instead of presenting the

reader with yet another example of vector calculus

manipulations, we will include an extremely curt set of

equations representing the fundamental relationships, with

the main motivation being one of standardization of notation.

This is necessary in order to put the extensions to the

theory that are developed later in the chapter into the

proper perspective. For the complete derivation of the

control problem the reader is referred to [Kwakernaak and

Sivan,1972] or, [Bryson and Ho,1975].

Given the system:

x (t) = A (t) x (t)	 + B (t) u (t)	 (3.2.1)

with the performance index (a.k.a. cost function):

J = 1/2 / [ x (t) Q (t) x (t) + 2x (t) M (t) u (t) +

°	 u (t) R (t) u (t) ] dt (3.2.2)

the optimal control law is a linear feedback of the state

variables according to:

u (t) _ -R (t) 1 [ B (t) P (t) + M (t) ] x (t) (3. 2. 3)

>;I
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where the matrix P(t) is the solution to the matrix Riccati

equation:

P = - (A - BR M ) P - P (A - BR M ) + P (BR B ) P

+ (-Q + MR M )	 (3.2.4)

It can be shown that the matrix P(t), often called the cost

matrix, is related to the optimal cost to control through:

J (t) = x (t) P(t) x (t) , P (tf) = Pfinal

with P(tf) representing ::.he cost matrix at the final time;

for the cases consid-:red here Pfinal is unimportant as it is

assumed zero. Mt,- `hat we have omitted the explicit

dependence on times from moss. of the matrices.

This equation is obtained after one adds the governing

system dynamic equations as a constraint to the cost function

using a Lagrange multiplier vector 1(t), and then minimizes

the combined expression with respect to the control. This

procedure produces two coupled first-order linear

differential equations in the state vector and the multiplier

(or, adjoint) state vector:

-1	 -1	 _
r x i	 r (A- BR M )	 (-BR B )	 I rxI
I	 1 =	 I	 -1	 -1	 11	 1 (3.2.5)
t 	 L(-Q +MR M) - (A - BR M) J L 1 J

The solution to this set of equations is complicated by the

of
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fact that it is a two-point boundary-value problem, with

initial conditions given for the state vector and final

conditions specified for the adjoint state vector. One

technique around this problem is to combine the two equations

through the cost matrix according to:

1 (t) = P (t) x (t)	 (3.2.6)

and the above Riccati equation is generated. Though the

resulting matrix equation is nonlinear, P(t) is only

specified at the final time (in our case, infin'te) in the

cost function integral, and thus can be solved through

Integration.

:M

i

1

I

i
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3.3 Solution of the Matrix Riccati Equation
A

3.3.1 The Time-Invariant Case

'	 The above nonlinear matrix differential equation has	 no

analytical solution except for a very few special cases. 	 For

the general case, one must resort to integrating the 	 Riccati

equation	 backwards	 in time to obtain the feedback gains for

the optimal closed-loop system.	 Since the upper limit in the

cost	 function	 for	 the problem considered here is infinite,

however, it can be shown that	 for	 most	 well-posed	 control
i

problems	 [Kwakernaak and Sivan,1972] that after a sufficient

Integration	 time	 these	 feedback	 gains	 will	 approach	 a

steady-state	 value	 for time-invariant systems, and thus the

rate of change of the cost matrix will become zero.

In this instance, it then becomes 	 possible	 to	 replace

the	 terminal	 condition on the adjoint state vector with the

Initial condition:

l(0) = P X(0)	 (3.3.1) E

and then consider the solution to	 the	 Ricatti	 equation	 as 4

resulting	 from a combination of the solution of the original

coupled set of first-order linear differential	 equations	 in

the state and adjoint state variables. 	 Since the cost matrix

.	 is constant, it becomes possible to diagonalize	 this	 system

I

1
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using its eigenvectors, and thus yield a "spectral" solution

for the steady-state cost matrix. Details of this procedure

are given in [Kwakernaak and Sivan, p.243]. The main

requirement of this technique is the use of an accurate

eigen-system extraction algorithm.

3.3.2 The Time-Varying Case

Just like the time-invariant case, no standard analytic

solution to the Riccati equation exists for the case of a

system governed by time-varying dynamics. This is even true

for the extremely simple special case of a general scalar

time-varying system described by a first-order differential

equation. However, since we are interested in a small subset

of these time-varying systems -- namely, those that are

linear but have plant parameters that vary periodically --

one is not restricted to only using straightforward numerical

integration of the Riccati equation.

The behavior of the backward integration of the cost

matrix reveals, for sufficiently long integration intervals,

an asymptotic approach to a periodic steady-state value for

linearly periodic systems. Because of this, it becomes

possible to incorporate the results of Floquet theory and

impose constraints upon the form of the solution to equation

J
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(3.2.5). These conditions show, as was discussed in section
2.3 on linear periodic systems, that once the homogeneous

solution to this linear equation is obtained over one period,

it is known for all time. Based upon this result,

[Nishimura, 1972] develops 'a hybrid scheme whereby one

integrates the coupled system of state and adjoint state

variables over one period, and then uses the

elgenvalue/eigenvector content of this result to reconstruct

the steady cyclic behavior of the optimal feedback gain

matrix. This then allows one to generate the steady periodic

(albeit numerical) solution to the Riccati equation after

only at most two periods of integration passes of equation

(3.2.5). A descriptiont of the algorithm, along with the

extensions for handling implicit-model-following designs, is

given in a later section.

Of some interest concerning special cases of periodic

control problems is [Wu, 1980], where the theorem that all

time-varying systems are reducible to a solvable form is

proved. It is shown that for certain restriced classes of

time-varying linear systems, a direct analytic solution is

possible, and that this "solvability" is not an inherent

property of a particular system, but is only related to how

that system is represented in equation form. The solution

technique consists of first transforming the system to a

I,
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time-invariant representation, and then using standard

techniques for time-invariant systems of equations. Since a

linear system is invariant under a non-singular (and possibly

time-varying) state variable transformation, the conclusion

Is then reached that all one needs to do to solve a linear

periodic system is to discover the appropriate state

transformation so as to achieve the time-invariant

reformulation. This transformation is, however, just the

"modal" transformation for periodic systems as described in

chapter 2, and is non-unique and therefore not directly

computable.

Thus, to compute the optimal closed-loop gains in a

linear-quadratic control design for a periodic system, one

must integrate the equations numerically, and Nishimura's

hybrid method appears to be the best technique available in

terms of speed and accuracy. In order to generate guidelines

for sclecting cost function parameters in LQR design for

linearly-periodic systems, we will now consider trends

established by performing numerical experiments upon some

simplified examples of linearly periodic systems. 	 i
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3.4 Numerical Results

3.4.1 Scalar System Case

The same computer program that solved for the periodic

"optimal" gains for a given system was also capable of

computing the closed-loop system's eigenstructure. This

capability made it possible to observe the effect of various

cost functions both on closed-loop pole locations and on the

periodic eigenvectors. Outputs of the program included

eigenvalues of the Floquet Transition Matrix (FTM) and their

associated complex logarithm. In order to properly interpret

the values of these "poles", some discussion is necessary.

As was pointed out in chapter 2, the FTM represents the

state transition matrix of a periodic system over one cycle.

If one represents the system in modal form, the new dynamics

matrix is just a diagonal matrix of the complex logarithms of
	 r 

4

the eigenvalues of the FTM (see equation (2.3.25)). These

elements are roughly equivalent to what would be the

Laplace-domain poles for a time-invariant system (the s-plane

poles). The difference here is that the modal variables are

periodic functions of time. Similarly, if this system is now

discretized with a time-step of one fundamental period, the

discrete-time dynamics matrix is a diagonal matrix with the

jP 1
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elements being these same eigenvalues of the FTM. Thus, the

controls engineer new to the field of periodic systems cannot

help but draw parallels between discrete-time systems and the

properties of the FTM poles. The same unit circle criterion

for stability applies for the "Floquet poles" on tre complex

plane as for discrete system poles on the z-plane. Also,

poles near the origin on the Floquet plane indicate fast

(although periodic) modes are present in the system, just as

they would be for the discrete-time counterpart. Even the

ambiguity concerning the appropriate branch cut for a

particular periodic mode can be thought of as a form of

aliasing. Oscillatory modes with a natural frequency greater

than the fundamental frequency of the periodicity (such as a

flapping mode for a rotor with either an offset hinge or

semi-rigid hub) will produce poles in the Floquet plane that

exhibit "frequency folding" due to	 the	 sampling	 I

(discretizing) rate being slower than twice their fundamental

oscillation.

The purpose of this section is to provide some

guidelines through example as to how various choices of cost	 i

function in the problem statement influence the movement of 	 r

poles, and the nature of their associated eigenvectors, in

the closed-loop system. Such correlation is possible for

time-invariant	 systems	 [Kwakernaak and Sivan,1972],

41111r 4;
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especially single-input systems, but nothing is available for

periodic systems. The reasons for this lack of knowledge

become clear upon attempting to deduce such a relationship

analytically for even the simplest case -- a first-order

dynamic system. Whether one attempts to compute the feedback

gain through solution of a nonlinear, scalar, periodic

Riccati equation or a linear, second-order set of adjoint

equations (as in Nishimura's approach), the result is the

same: no general analytic solution exists for the gain

function (and hence the closed-loop pole).

As an initial step, a first-order system of the form:

x (t) = a (t) x (t) + b (t) u (t) 	 (3.4.1)

where:	 a t	 -1. + 1. *cos (t)
b t; = 1.

was considered, with the cost function consisting of

quadratic penalties on the state and control deviations, but

no cross-cost penalty on products of control and state. The

state transition matrix for a scalar periodic system! Is an
analytic function:

I

t(t. to) = exp(f o(t) dt }	 (3.4.2)
to

and thus the FTM for a scalar system is directly computable

as the exponential of the product of the constant part of

M
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a(t) and the fundamental period. Thus the Floquet-plane pole

for this open-loop system will be at exp( -2*pi } and the

Laplace-plane pole at -1. If we set the initial time t0 at

the origin, the transition "matrix" is:

40(t,0) = exp( -t }*exp( sin(t) ) (3.4.3)

and the periodic eigenvector can be seen to be exp( sin(t) }.

To get a feel for the effects of periodicity on the pole

locations, the penalty weight was increased on the state

deviations from zero (open-loop) both for the system of

(3.4.1) and for a similar scalar system with the periodicity

removed. The following behavior in the poles was obser••

(with Wuu=1.0):

Time-invariant
Wxx
---

F-plane pole
------------

L-plane pole
------------

L-plane pole
--------------

0. 1.868e-03
(

-1.0 -1.0
.01 1.777e-03 -1.008 -1.005
0.1 1.180e-03 -1.073 -1.049
1.0 8.128e-05 -1.499 -1.414
3.0 2.000e-06 -2.089 -2.000

It can be seen that the closed-loop Laplace-plane poles of

the periodic system exhibit the same trend toward infinity as

their time-invariant counterpart, but the rate appears to be

faster for the same level of state penalty. Figure 3.1 shows 	 r

the periodic gain function associated with the case of Wxx =

3.0	 and	 its associated spectrum.	 In figure 3.2 the

Jll
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corresponding periodic eigenvector for this case and for the

open-loop case are plotted together.

Several items from this very simple case are of

Interest. First, since the periodicity appears only in the

dynamics "matrix" and not in the control term, it is possible

to cancel the periodicity of this system completely using a

gain of the form:

k (t) = k0 * cos (t)	 (3.4.4)

where k0 is chosen to give the system any closed-loop

response time desired. Since this is not the optimum choice,

one may infer that the control penalty for such a design

would he too great. Second, by merely placing weights on the

actual state perturbations and control effort, the

periodicity of the closed-loop system was reduced, as

evidenced by the reduction of periodicity of the eigenvector.

This has intuitive appeal, since a periodic system forced by

a single frequency would produce a response (although often

negligible) at an infinite number of frequencies related to

sums and differences of integer multiples of the fundamental 	
I ;

and the excitation frequenc.. ,̂ -a. The time-invariant system,
i

however, would exhibit only a response at the excitation

frequency, and thus would concievably produce a lower "cost"
	

i

for the same disturbance.

i
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Finally, the increase in the closed-loop modal time

constant over the constant-coefficient case might be

explained by considering the equivalent modal form for

(3.4.1) as in (2.3.25).	 Substituting the mode x(t)

exp{ -sin(t) }*v (t) into the equations yields:

v (t) = f -1 ] *v (t) + exp{ -sin (t) }*u (t)
(3. .5)

The cost function is transformed as well:

	

J= (1/2)	 v a	 -sin(t)	 Wxx a	 -sin(t)	 v
0

+ u*Wuu*u } dt	 (3.4.6)

so that one has constant-coefficient dynamics, but a periodic

control term and state cost. If one now considers only the

constant values in the above two expressions, it is clear

that there is an increase in modal state penalty, as well as

an increase in the control term (called "control power").

Thus, one could argue that the effective cost of control has

been made "cheaper" due to both of these effects, giving rise

to a faster =ime constant.

So, even for this almost trivial example, the

interaction between speed of response and level of

periodicity are by no means obvious. However, it appears in

the limit as control cost becomes negligible, the periodic

system exhibits closed-loop behavior similar to its

1

i
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constant-coefficient counterpart: namely, the Laplace-plane

pole approaches infinity and the periodicity is reduced.

Similar effects for certain weighting functions will be shown

for higher-order systems considered in the next section.

3.4.2 Higher Order Systems

Since the eventual application of the design aspects of

this thesis was the IBC helicopter rotor, and since

relatively simple periodic coefficient structures do not

necessarily imply a simple controller function, it was felt

that economy of effort could be served by using the IBC rotor

dynamics as an example of a higher order system. This choice

had other advantages as well. The influence of periodicity

can be observed by merely altering the advance ratio within

the equations; at hover, the flapping dynamics are described

by a second order constant-coefficient equation. Forward

flight progressively increases the harmonic content in the

spring, damping and control terms. Thus, comparison with the

hover poles for a particular cost function is a convenient

t4:.tchnique for inferring the effect of periodicity. However,

it should be noted that for periodic systems other than the

helicopter rotor, the detailed variations due to periodic

coefficients are likely to be markedly different -- we are

only trying to illustrate global effects here.

J.I
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In order to interpret the implication of various

closed-loop pole locations on blade dynamics, it may first be

helpful to review the nature of the unaugmented rotor

flapping behavior as advance ratio increases. As mentioned

previously, the equation describing the rigid out-of-plane

motion of the blade becomes time-invariant at hover. Due to

the strong centrifugal stiffening effects of rotation, the

undamped natural frequency of this second-order system is

close to that of the rotation frequency. For articulated

blade with a hinge offset, or for hingeless rotors, this

frequency is slightly	 greater	 than	 unity	 when

nondimensionalized by rotation frequency. Damping for this 	 ►

motion, in the absence of any external mechanical devices, is 	
i

due to aerodynamic effects, namely local angle of attack

changes along the span due to flapping motion. The damping

coefficient value can be seen (equation 2.2.4 to be

directly proportional to the Lock number. Most helicopters

in use today have blades with Lock numbers ranging anywhere

from around 5 to 10, depending upon the particular hub
E

geometry, and thus have less than critical damping. This
I

means that the hover poles are a pair of complex conjugates 	 1

In the Laplace-plane (or, for that matter, the Floquet-plane

as well) .
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As forward flight speed increases, however, the

periodicity enters in such a fashion to initiate a shift in

these poles toward the real axis for both Floquet and Laplace

complex planes. In most cases, however, they never make it,

and instead lock onto the line representing +j or -j in the

Laplace-plane. As advance ratio increases still further,

these poles cease to be complex conjugates (for the

Laplace-plane case), and one becomes more stable along this

line while the other becomes less stable. This odd behavior,

characteristic of periodic systems, can be described as

having the system instability lock onto a particular

frequency. Such pole movement seems perfectly acceptable

when viewed in the Floquet-plane, as the roots are seen to

coalesce on the real axis prior to splitting and moving away

from each other. A sketch of this migration can be seen in

figure 3.3 for a typical rotor.

Three different forms of direct state weighting were

used in the design studies to be described here. These

correspond to (1) penalties on flapping position deviations

only, (2) penalties on flapping rate deviations only, and (3)

equal penalties on both flapping position and flapping rate.

For the rotor equations of motion expressed as:

+ Al	 + AO('i)*	 = BO(H*A (3.4.7)

t.

i'
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where primed quantities represent derivatives with respect to

azimuth angle, we have in state variable form:

-d- i i - i o	 1' I I I	 Io	 I e
d	 L ( 3L -A0 -Al J L!n' J	 (_ BO j

(3.4.8)

These three cases then correspond to weighting matrices

having the forms:

(1) Wxx = 1 x 0 1	 Wxu = 1 0 1	 Wuu = 1 1 1

1 0	 0 1	 1 0 1

(2) Wxx = 1 0 0 1	 Wxu = 1 0 1	 Wuu = 1 1 1

	

1 0 x l	 I o
(3) Wxx = 1 x o l	 wxu = I o I	 Wuu = 1 1 1

1 0	 x l	 1 0 1

where the variable x was varied from zero to some large

value. These were used as inputs to the gain calculation

program for eight different advance ratio cases and five

levels of weights. In order to discern the trends present in

the results, we will first consider the effects of advance

ratio upon a fixed weighting structure, and then look at the

effects of an increase in the weighting value for fixed

advance ratio.

Figure 3.4a plots the Laplace-plane poles for the

position-only weighting structure. The lines of pole

movement indicate the locus of constant values of this

weighting parameter with increases in advance ratio. The

I	 j
I
I
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plotted poles represent an advance -atio increase form zero

(hover) to 1.4 in steps of 0.2. Thus, the x--0.0 locus

represents the variation of the Laplace poles for the

open-loop case (since no penalty on the state produces no

regulation action and thus zero feedback gain). This

particular locus shows typical behavior for an articulated

rotor. As the weighting value is increased, however, quite

different trends are present. The locus of Laplace-plane

poles appears to undergo a rotation with increasing position

penalty. This rotation is stabilizing, in that increases in

weighting values produce closed-loop poles with more negative

real parts for the same advance ratio. This fact is even

more evident in a later figure. Also of interest from the

figure is the fact that, for high levels of position-only

weights, the response time of the closed-locp system is

actually faster for increasing levels of periodicity given

the same cost value. This second result corresponds to the

observation made on the scalar system: increased levels of

periodicity appear to produce "optimal" systems with faster

responses given the same levels of cost.

Figures 3 . 4b and 3.4c show these same constant-cost loci

plotted on the upper half of the Floquet-plane (the complex

poles in the Floquet-plane always have a complex conjugate

since the STM is a real matrix). The same two trends are

s^
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equally evident here: the rotation of the loci toward the

origin and away from the unit circle is stabilizing, and the

poles corresponding to the higher advance ratios move closer

to the origin for moderate levels of position weighting,

indicating a shorter system response time.

The next weighting function considered was a rate-only

penalty on the flapping motion. Figure 3.5a shows the

constant-weight loci for increasing advance ratio. Once

again, increases in penalty values are stabilizing, since

each locus is further to the left on the real axis for

increasing rate cost. The character of each locus is quite

different, however. Instead of rotating away from the

Imaginary axis, they keep their general shape and, for high

levels of weight and/or advance ratio, exhibit the same

"lock-in" behavior seen previously for the unaugmented

flapping dynamics. Figures 3.5b and 3.5c show this effect in

the Floquet-plane. The stabilizing influence of higher cost

values is apparent, but almost all loci show the "lock-in"

phenomenon.

The third and final cost structure was an equal penalty

on both position and rate deviations. Since this is

analogous to a penalty on both potential and kinetic energy,

it can be used a a means of limiting closed-loop "bandwidth"

i
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(see [Widnall,1968], p.93). It also serves to bridge the gap

between the purely position weighting and purely rate

weighting schemes considered. The results for this structure

are seen in figure 3.6a, where the Laplace-plane poles are

plotted for constant cost values with increasing advance

ratio. The shape of the loci is similar to those of figure

3.5a, but their location is further away from the imaginary

axis, indicating an increase in stability over the pure rate

weighting scheme. The "lock-in" behavior is also delayed a

bit longer in this instance, occurring at a higher penalty

value for the same range of advance ratios. Figures 3.6b and

3.6c document this result for the Floquet-plane poles.

^.^	 Perhaps more familiar to the controls engineer are the

i^ next set of loci, where the flight condition is fixed (i.e.,

constant advance ratio) and the weighting parameter is

Increased from zero, the open-loop case. Figure 3.7a show

the Laplace-plane root loci for the three forms of cost

function considered for the hover condition. All three of

these curves represent constant-coefficient system pole

locations, and thus provide a known point of comparison for

the effects of system periodicity. Several aspects should be

pointed out. First, the position-only weighting generates

closed-loop poles for this second order system -that approach

a Butterworth-type structure, namely, a damping ratio of 0.7

r ,.=
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with a frequency that increases with position penalty

[Kwakernaak and Sivan,1972]. Second, the rate-only weighting

can be seen to drive the system to a reduced frequency and

increased damping, such that in the limit the two poles of

the system would coalesce on the real axis, and then split.

One of these poles would approach the origin and the other

would head toward negative infinity. Finally, the

bandwidth-weighting structure forces the closed-loop pole to

an increased damping level at approximately the same

frequency. Floquet-plane equivalents of this behavior are

given in figure 3.7b.

At an advance ratio of 0.6 these trends are still

present, as is seen in figures 3.8a and 3.8b, but the rate-

and bandwidth-weighting curves begin to suffer a stability

degradation from the higher periodicity. It should be

emphasized, though, that this stability degradation is in the

general shape of the loci, and not for the specific value of

cost. And finally, figures 3.9a and 3.9b show, on a

different scale, the movement of poles for a high advance

ratio condition, namely mu=1.4. The open-loop roots that

have coalesced on the +j and -j lines on the Laplace-plane

are first driven away from this "lock-in" point, and then for

large bandwidth- and rate-penalties, return to the same

branch line, but at a more stable location.
rn
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r
q

As a final check on the effects of periodicity, figures

3.10a and 3.10b show the real and imaginary part of one

element of the eigenvector matrix for the closed-loop system

at an advance ratio of 1.4. The dominant two-per-revolution

(2P) behavior present in the open-loop response is suppressed

for all cost functions shown, but the response modes that

result are still very much periodic. Just as was true for

the scalar system, increases in penalty weights influence

both the eigenvectors and their response times in a rather

complex fashion.

In summary, then, these numerical exercises have

produced the following set of "rules of thumb" for periodic

system controller design:

(1) the movement of closed-loop poles with increases in

penalty weights is similar to that of constant-coefficient

systems -- displacement-only penalties produce

Butterworth-type responses, rate-only penalties generate loci

with the same qualitative damping increases, and the

combination of the two appears to limit the modal response

time;

(2) increases in levels of periodicity, such as increased

forward flight speed in the case of a helicopter rotor, tend

to produce facer modal response times for the same numeric

values in the cost function -- the level of increase appears

I

=o



J, _ Mr c.I	 - — jP

.

rf

Page 58

to be a complex function of both the actual values of the

penalty weights and the level and type of periodicity. The

reasons for this effect are probably due to an increased

level of modal "control power" in the examples considered,

making the cost of control "cheaper" for the same level of

modal acceleration.

(3) optimal control theory using penalties on squared

deviations in states and controls forces a periodic system to

a closed-loop structure that has a smaller relative level of

periodicity. This reduction in periodic nature is not at

present predictable, and must be determined through numerical

means. The unsatisfactory nature of this last result brought

about a search for more attractive design techniques in the

selection of a performance index, as is outlined in the next

section.

: n

I
I
jI

i

1
i



i

Page 59

3.5 Model-Following Systems

3.5.1 Introduction

As any helicopter engineer knows, a successful rotor

system must be designed and built with careful attention

given to its aeroelastic properties. Control over the many

natural frequencies present in the rigid and elastic modes

must be maintained in order to limit vibration, reduce blade

stresses and prolong blade life. This includes the avoidance

of resonances at integer multiples of rotor rotation

frequency to prevent large modal excitations due to the

aerodynamic forcing of the harmonic rotor wake. As was

demonstrated in the previous section, standard LQR approaches

to penalize excursions in flapping response with diminishing

penalties on controller action will result in closed-loop

systems with a high bandwidth. This is not particularly

desirable, because: (1) there may be interaction effects with

other modes not accounted for in the math model that are

destabilizing at such high bandwidth (gain) values; (2) the
{

closed-loop natural frequencies may fall close to an integer

multiple of rotation frequency and thus promote possible

aerodynamic forcing; and (3) high penalties on system

periodicity produce large gain values that may be difficult

to implement in the controller hardware.

J
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Problems exist even for the other cost functions

considered that included some penalty on state rate

deviations. While these provide a means of reducing

controller bandwidth, they do not offer much promise in

specifying the level of periodicity in the closed-loop

system. Thus, tight control over a mode would require an

excessive amount of iteration in order to generate the

desired eigenvector structure.

Because of these drawbacks, a straightforward LQR

approach to rotor blade modal control could run into serious

difficulty. However, many other cost functions are possible

for controller design using modern methods, the most useful

for this case probably being model-following.

Model-following entails expressing in the cost function a

desire for the plant being controlled to possess dynamics

similar to some prototype system. This prototype can be

either be a physical (often electronic) system, such as for

explicit model-following [Tyler,1964], or an implied dynamic

structure, as realized through selection of the elements in
	 ,f

the weighting matrices [Kreindler and Rothschild,1976;

Kriechbaum and Stineman,1972]. The appeal of this technique

for periodic system control is twofold. First, the desired

pole locations of the closed-loop system can be achieved by

incorporating them into the model, and then driving the

^.J
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system to emulate the model through liberal weighting of the

difference between the two in the cost function. Second,

control over the level of periodicity can be achieved through

the same technique -- proposing a model with as much (or as

little) periodicity desired and penalizing the deviations

f.-om it.

This latter feature is especially attractive 	 for

helicopter rotor control. Since the lift, propulsion and

control of the helicopter are all accomplished through the

rotor system, increased control over the blade response to

pilot commands, flight condition and atmospheric disturbances

would provide a better handling vehicle. Pilot stick

deflections are essentially magnitude and direction commands

on the rotor thrust vector -- any deviation of this resultant

force from the desired constitutes degraded performance.

Such a deviation might come from a sub- and super-harmonic

response of the periodic blade dynamics, trRnslating into a

wobbling of the Lip-path-plane of the rotor and possible

Instability at high forward speed. For this reason, then,

the periodic nature of the flapping dynamics is considered a

nuisance, something to be reduced through feedback control.

The model used as the prototype for this design study

(and subsequent test) was that of the hover flapping

d
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dynamics, although this choice is somewhat arbitrary. This

particular choice of model has the advantage that: (1) the

feedback gains go to zero at hover; (2) the model is a

constant-coefficient system, helping to reduce the

periodicity of the closed-loop system in forward flight (and

augment its stability); (3) the bandwidth of the model is

well defined and thus should produce a controller without

modal interaction problems; and (4) a stability-augmentation

system for a full-scale helicopter would be greatly

simplified if the rotor dynamics, due to inner-loop control,

were relatively constant throughout the flight envelope.

3.5.2 Implicit-Model-Following with Input Feedforward

As mentioned above, model-following for linear-quadratic

regulator design can take two forms, either explicit or

Implicit. In explicit-model-following, an external analog

system is used as a prefilter, or command generator, to

provide reference signals for the system being controlled.

The cost function is a simple weighted quadratic in the

difference between the outputs of this analog system and the

actual plant. The resulting controller has not only feedback

gains on the state variables of the plant, but also

feedforward gains on the states of the analog model. This is

an unfortunate (but not very surprising) result, since it

I
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requires the construction of additional hardware for the

analog model, as well a means of implementing the feedforward

gains.

Implicit-model-following, however, is not so demanding

on closed-loop system complexity. By formulating the cost

function to penalize the difference between the time

derivative of the state vector and the desired model

accelerations, a set of weighting matrices is arrived at that

are functions only of the plant state and control vectors.

This results in a set of gains that are only as numerous as

the number of states. For a constant-coefficient plant, this

saving in hardware may not be significant; for a periodic

system it could be substantial due to the need to program

time-varying gains. Because of this reduced hardware

requirement, the approach taken in this thesis was to use the

Implicit-model form.

The model-following approaches described in the previous

paragraphs are regulator-type designs, in that no mention was
i

made of including command inputs. These can be incorporated 	 I ;
t

through various means, such as augmenting the state with a
I

vector differential equation whose initial conditions can be
I

altered to produce typical command histories [Anderson and
I

Mocre,1971], or by including the command signal explicitly in 	 j

1Fm
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the model dynamics [Kriechbaum and Stineman,1972]. Due to

our ever-present constraint on system order, we will develop

the gain equations for the latter approach.

Given the system:

x (t) = A (t) x (t) + B (t) u (t) 	 (3.5.1)

and the model:

x (t) = F x (t) + G d (t)	 (3.5.2)
m

where d(t) represents input commands to the model, consider a

cost function penalizing deviations in accelerations

according to:

J = (1/2) f ( ( x - x ) ' Q ( x - x ) +u 'Ru ) dt
m	 m	 (3.5.3)

Substitution of (3.5.1) and (3.5.2) into the above integral

gives, after some algebra:

J = (1/2) f { xWxx x + u Wuu u + dWdd d
+ 2 xWxu u - 2 xWxd d - 2 dWdu u } dt

(3.5.4)

E 6,

in
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where:	 Wxx	 = ( A - F )Q ( A - F )

Wuu =	 (R +BQB)

Wdd	 = G H Q G

Wxu =	 ( A - F )Q B

Wxd =	 (A - F )QG

Wdu =	 G'Q B

I

Next, the derivation follows the standard steps: append

the dynamical equations of the plant to the cost function as

a constraint, integrate by parts, and take the first

variation in cost with respect to the control, state, and

adjoint variable (see [Bryson and Ho,1975] or [Kwakernaak and

Sivan,1972]). Variations in the input variable d(t) are not

allowed because it is external to the system, and can be

thought of as an unknown disturbance. This results in three

equations relating the input d(t) and the control u(t) to the

state x (t) and ad joint state 1 (t) :

1 = - Wxx x - Wxu u + Wxd d - A' 1

U = Wuu { - Wxu x - B 1 + Wdu d }

x= A x + B u
(3.5.6)

and upon substituting for u(t):

I
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-1	 -1 ,
x 1	 r [ A - B Wuu Wxu ]	 [ -B Wuu B ]	 -i r x

L 1	 l [ -Wxx + Wxu Wuu Wxu ] [ -A + Wxu Wuu B ] .J L 1 ^J

-1
[ B Wuu Wd+ 1	

-1]	 [ d J (3.5.7)
L [ Wxd - Wxu Wuu Wdu ] J

Comparison with equation (3.2.5) will show that the only

difference here is in the extra term due to the model input.

As was done for the homogeneous equation of (3.2.5), we will

assume the solution for the adjont variable to be a linear

function of the state variable, but we'll also include an

inhomogeneous part due to the model input:

l(t) = P (t) x (t) - S (t) d (t)	 (3.5.8)

which upon taking the derivative becomes:

1 (t) = P (t) x (t) + P (t) x (t) - S (t) d (t)
(3.5.9)

Since the model input is a measurable but unpredictable

quantity, the best estimate of its derivative is zero;

therefore it does not appear in equation (3.5.9) [Kriechbaum

and Stineman,1972]. Substituting into (3.5.7) gives:

41
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_ 1	 -1 ,

Px + P[ A - B Wuu Wxu ]x + P[ -B Wuu B ]Px - PSd

+ P[ B Wuu Wdu ]d - id = [ -Wxx + Wxu Wuu Wxu ]x

[ A - B Wuu lWxu ]Px + [ A - B Wuu lWxu ]Sd
-1

+ [ Wxd - Wxu Wuu Wdu ]d
(3.5.10)

If the cost were truly at a minimum, then the above

equation must be true regardless of the variation in x or the

value of d. Thus, we can separate out all the dependence

upon these two quantities, giving two separate equations:

	

-1	 0	 -1	 , ,

-P = P[A - B Wuu Wxu ] + [ A - BWuuWxu ] P
-1	 -1

- [ -Wxx + Wxu Wuu Wxu ] + P[ -B Wuu B ] P
(3.5.11)

	

-1	 , ,	 -1 ,
S =	 [ A - B Wuu Wxu ] S + P[ -B Wuu B ]S

-1	 1	 -1	 ,
- P[ B Wuu Wdu ] + [ Wxd - Wxu Wuu Wdu ]

(3.5.12)

and the control is then:

-1	 1	 -1	 ,

u = -Wuu [ Wxu + B P ] x + Wuu [ Wdu + B S ] d
(3.5.13)

Se,-.:ral observations concerning the form of these

equations can be made. First, the Riccati equation for the

state cost matrix, (3.5.11), is unchanged from the form of

(3.2.4). The only differences are the actual values for the

cost matrices. From (3.5.4), one may note that these cost

ism
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r.
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M

r

i

matrices are independent of G, the input matrix in the model

dynamics. Second, equation (3.5.12) for the variation of S,

the state and model input cross-cost, is linear and depends

explicitly on both the G matrix and the solution to the

Riccati equation (3.5.11). And finally, the expression for

the optimal control shows a feedback gain for the states that

depends on P and a feedforward gain for the model input that

depends on S. Only the feedforward gain is influenced by the

choice of the model input matrix G.

Since the homogeneous equations were shown to have an

efficient "spectral" solution that could be calculated after

at most two integration passes of equation (3.2.5) over the

fundamental period [Nishimura,1972], it would be very

desirable to develop a similar technique for handling the

calculation of the feedforward gains. Fortunately, one was

found by incorporating a combination of the method of

[Nishimura,1972] with the algorithm for initial conditions of

[Dugundji and Wendell,1983].

:m

n

Following the lead of	 [Nishimura,1972],	 if one	 ►I
represents equation (3.5.7) in the form:

r x	"I r x ^	 r M(t) i
=	 1 A (t ) I I	 I +	 I ------

L 1 J	 L	 J L 1 J	 L N (t) J	 (3.5.14)
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one can numerically compute this system's (2nx2n) augmented

state transition matrix, where n is the dimension of both

x(t) and 1(t) [Friedmann, Hammond and Woo,1977]. 	 Call this

• matrix B (t,t0). If one solves for the eigenvalues and

eigenvectors of the resulting Floquet transition matrix for

this 2n system, and then separates them into stable and

unstable modes, the steady-state periodic solution to the

Riccati equation of (3.5.11) can be shown to be:

-1
P (T) = T21(T) Tll (T)

and:
P (t+T) _ [ B21 (t, 0) *Tll (T) + B22 (t,0) *T21(T) ]

-1
* [ Bll (t,0) *Tll (T) + B12 (t,0) *T21 (T) ]

(3.5.15)

where the matrices T11 and T21 represent the 	 (2nxn)

eigenvectors associated with the stable modes of the FTM.

This is only the solution to the homogeneous part of

(3.5.14). One then solves for the (2nxm) ,Rsjr=ujar periodic

solution of (3.5.14) using [Dugundji and Wendell,1983]; call

the	 transpose of this	 (2nxm)	 time-varying matrix

[ Xp' I Lp' ], where m is the dimension of the model input.

Then (with considerable hindsight) one has the solution to

the cross-cost matrix S as:

S (t) _ -Lp (t) + P (t) Xp (t) 	 (3.5.16)

Verification of this result can be done by taking the

t.
r

1

i

i
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derivative of (3.5.16), substituting the two equations of

(3.5.14) and the Ricattl equation of (3.5.11), and comparing

the result with (3.5.12).

This process can be improved upon by combining the

solution for the particular form of (3.5.14) with the

procedure for determining the (2nx2n) state transition matrix

by integrating the augmented matrix:

f	 I X ( t ) -1
Z (t)	 =	 I B (t) I ------1	 (3.5.17)

(2nx (2n+m))	 L	 I L (t) „ j

with the initial conditions:

B(0) = I (2nx2n)	
X(0) 	 L(0)  = 0

 (nxm)

over a modified form of (3.5.14):

z (t)	 =	 A (t) * z (t) + 1 0	 I-
L (2nx2n) I

Where I represents the identity matrix.

integration, one has:

M (t)

N (t) J (3.5.18)

After one cycle of

F	 I X (T)
Z (T) =	 I FTM	 I	 (nxm) I	 (3.5.19)

L	 (2nx2n) I L (T)
(nxm)

Then from [Dugundji and Wendell,1983] one obtains the initial

conditions for the particular solution as:

XP (0 )	 _ F	 1 T- (T) I

L Lp(0) J	 LI (2nx2n) - 
FTM

(2nx2n)J LL T) J
3.5.20)

I
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Upon finding the eigenvalues and eigenvectors of the FTM, one

need only preform a second integration pass over equation

(3.5.18) to solve for the matrices P (t) and S(t). 	 In this

way, the number of integration passes can be reduced by one,

a considerable saving for high-order periodic systems.

3.5.3 Numerical Results for Implicit-Model-Following

In order to see the effects o.`, a model-following design

on a periodic system using a constant-coefficient model, the

same scalar example of section 3.4 was used. As the,

weighting matrix Q was varied, the following behavior in the

poles was observed (with R=1.0):

Q	 F-plane pole

0. 1.868e-03
.01 1.822e-03
0.1 1.552e-03
1.0 1.231e-03
3.0 1.392e-03
10. 1.642e-03
100. 1.839e-03

(R=0 . ) 1.867e-03

L-plane pole

-1.0
-1.004
-1.029
-1.066
-1.047
-1.020
-1.010
-1.000

This behavior is typical of model-following designs for

periodic plants that posers enough controllability to allow

an exact model matching. This can be seen in figure 3.11,

where the gain function for the case of no control penalty

(R=O.) is plotted. The curve is a perfect cosine function,

I	 ^

i'
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which exactly cancels the system's periodicity, as can be

seen in figure 3,12, where the open- and closed-loop

eigenvector are shown.

For the helicopter rotor operating at a high-advance

ratio, however, exact model matching is not always possible.

A good example of this can be seen in figure 3.13, where one

of the rotor feedback gain functions for an advance ratio of

1.4 is plotted for increasing values of state penalty, Q.

Even though the flapping dynamics represent a higher-order

system, the fact that the equations are written in a

control-canonical form (meaning the states are just the

various time derivatives of the displacement) reduces the

model-matching cost term in (3.5.3) to a scalar. The most

striking feature of this plot is the manner in which the gain

values approach singularities on the retreating side of the

rotor azimuth. This can be explained by referring to the

control power term in the equations of motion in figure 2.4c.
H

At this high advance ratio, the control term can be seen to

cross through zero twice on the retreating side. Thus, in	 j

order to force the closed-loop system:

x = [ A (t) - B (t) K (t) ] x + [ B (t) K  f (t)- I d	 i
(3. .20)

i

to act like a constant-coefficient system, the gain would

o^
No
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have to become infinite to cancel the periodicity of A(t) at

that particular azimuth angle.

This result raises the question of controllability for

linear periodic systems. [D'Angelo, 1970, ch.4] defines

several types of controllability, all of which are rather

difficult to assess without substantial computational

resources. The strongest level is "uniform controllability",

where the state can be driven through impulsive inputs in an

infinitesimal time to another desired state at any instant

over some specified time interval. Clearly the above example

falls short of this ideal, since it is uncontrollable at two

specific azimuth locations on the retreating side. All is

not lost, however, as these two points are isolated instants

and not continuous stretches of time, and thus limit this

example to a case of "total controllability". Quite

reasonable results can be achieved even for this case, as can

be seen by the plot of the real part one of the eigenvectors

of the closed-loop system in figure 3.14. Significant

reductions are realized in the system's periodicity for

moderate levels of model-matching cost and feedback gains.

The closed-loop pole locations for fixed cost and

varying advance ratio are shown in figures 3.15a for the

Laplace-plane and 3.15b and 3.15c for the Floquet plane. 	 It

1

1	 1
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is evident that the effect of increasing advance ratio is

diminished for larger cost values, as the poles do not shift

nearly as much as for previously considered controller

designs. This is indeed an attractive feature for helicopter

rotor control, and thus this approach was used for the

controllers demonstrated in the following sections of this

thesis.

f

I	 j
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4. OBSERVER CESICN AND PARAMETER IDENTIFICATION

4.1 Introduction to Observer Theory

Most control system engineers, if they have produced a

design using modern control theory state-space concepts, have

had to wrestle with the following problem upon completion of

their choice of a candidate regulator: riot all the state

variables of the system are available for measurement. The

most frequent. situation is that just a few are measurable,

and even these may be constrained to be measurable only in

certain linear combinations. This general situation can be

represented by the linear time-varying set of equations:

x (t)	 = A (t) x (t) + B (t) u (t)	 (4.1 .1)

y (t)	 = C (t) x (t) + D (t) u (t)	 (4.1 .2)

where x(t) is the n-dimensional state vector, u(t) the

m-dimensional control vector, and y(t) is the 1-dimensional

measurement vector. 	 This predicament is not unsolvable

within the context of the theory, but the solution is often

the most complex element of the controller design process. 	 I

One obvious way to generate the estimates of the state

variables is to integrate the equations (4.1.1-2) forwarl in

time. This simplistic approach is, in general, doomed to
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failure because it requires both an exact representation of

the actual system dynamics and the knowledge of the initial

conditions of the state variables. Such a technique makes no

use of the current value of the measurement and as such

becomes susceptible to any and all errors introduced through

disturbances acting on the actual system. Furthermore, if

the system being modelled is unstable, these errors are

likely to grow without bound.

Observer theory incorporates the concept of negative

feedback to force the errors in the state estimates to

approach zero exponentially with time. This is done by

driving a model of the system with an input proportional to

the difference between the actual measurements and the

predicted values based on the current state vector estimate.

That is, we formulate the system (for the continuous-time

case) as:

x (t) = A (t) x (t) + B (t) u (t) + K (t) [ y (t) - C (t) x (t) ]
(4.1.3)	 I

where:
y (t) _	 (t) x (t)	 (4.1.4)

If we define the estimation error as:

I

e (t) = x (t) - x (t)

then the error is governed by:

I'm
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e (t) _ [A (t) - K (t) C (t) ] e (t)	 (4.1.6)

The choice of this proportionality constant K(t) determines

the speed in which these errors are reduced, and can be

selected using any of several methods, the most popular being

the Kalman Filter. But perhaps the most important result

from observer theory is the fact that use of the state

estimates instead of the actual states for feedback does not

alter the closed-loop stability of the system. The poles of

the combined observer-controller are those of the

state-feedback controller, plus those of the observer error

dynamics. The only consequence of using an observer is often

a deterioration of the transient response of the complete

closed-loop system. This result is called the "separation

principle" and allows one to perform independent designs of

the state feedback gains and the observer dynamics.

A Kalman Filter is a technique for producing the best

linear estimate of a state vector given the a-priori

knowledge of the random processes perturbing the system to be

observed, the knowledge of the structure of the noise

corrupting the measurements, and the exact model of the plant

dynamics relating the various physical quantities. It can be

shown that the formulation of the Kalman Filtering problem is

"dual" to that of the optimal controller problem, in that the

AM
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optimization equations only differ through a sign change,

representing a forward propogation of time instead of a

reverse one [Kwakernaak and Sivan, 1972, p.364]. The

proportional feedback gains on the measurement errors (known

as "residuals") are computed as representing the best

tradeoff between reduced sensitivity to sensor noise and

increased ability to quickly track changes in the state

vector.

The requirements for implementing a full Kalman Filter

for a complex plant are often too severe in terms of required

a-priori knowledge and system order to warrant its use in a

feedback controller design. In the context of helicopter

rotor control, a full-blown Kalman Filter would necessitate

modelling several rotor blade modal degrees of freedom along

with the highly complex dynamics of the rotor wake, including

any effects of gusts, dynamic inflow, returning tip vortices,

and so on. Such a model, even if made reasonably accurate,

would be so complex and costly as to render its use in a

control design impractical. Thus, techniques to generate a

simpler, sub-optimal estimate of the state vector would be

very valuable.

One step in this direction is the method attributed to

[Luenberger,	 1964,	 1966].	 He showed that,	 for a

'V
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deterministic system with noise-free measurements, it is

possible to reconstruct the state of a system using a dynamic

element with an order less than that of the full state

vector, given certain restrictions on how well the

measurements span the state-space. Since there are no

considerations of stochastic effects upon mean square state

reconstruction error, the feedback gains can be chosen

arbitrarily so as to achieve any desired response

characteristics. This dynamic element, however, is related

to the actual plant equations through a (possibly

time-varying) transformation, and thus depends on the

knowledge of the parameters of the system being observed.

And for some choices of transformations, this relationship

can be highly sensitive to small changes in these parameters.

4.2 Observers for Rotor Control

Put in the context of a complex helicopter rotor system,

the Luenberger observer simplification is not much of an

improvement -- the only real change is in the elimination of

a need for noise specificaticns and a possible reduction in

observer hardware. Since the blade dynamics will be changing

with flight condition (most notably with forward flight

speed), any estimation technique that depends strongly upon

accurate knowledge of the process dynamics will have to

AW ti	 ^
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change as well. This is even further complicated by the fact

that, just like the rotor blade equations of motion, the

observer equations will be periodic with blade azimuth angle.

The state-variable controller design process has thus

produced a requirement not only for periodic state feedback

gains, but also for these to be cascaded with a flight

condition-dependent periodic dynamic system acting as a state

estimator.

Various techniques for solving this difficulty have been

proposed by helicopter dynamicists. [DuVal, 1980] has

suggested throwing out any plant dynamics and just using the

f	
observer gains to form the structure of the estimator.

i
[Fuller, 1981] uses a states transformation technique to

reformulate the system to a constant-coefficient set of

equations. Both of these techniques concern generating
f
t	 estimates of the lower harmonics of blade flapping motion,

and as such are limited to frequencies less than half that of 	 f

the highest term in the truncated series approximation.
i

Also, by eliminating the interaction between the state	 E

variables present in the full rotor dynamics equations, these

estimators lack any "feedforward" effects from disturbances

or inputs present in a standard Kalman filter. That is, the
y

state estimates will change only through the output error

term, and as such must always lag the actual state values.

1,
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Since it is exactly these feedforward terms that allow one to

Invoke the "separation principle" in the controller design,

use of these estimators for feedback control must be done

only after the total system closed-loop stability is checked.

The solution presented in the following pages to this

problem arose out of the need to adequately describe the

sensor complement present in the Individual-Blade-Control

model rotor system. The two available sensors for

out-of-plane blade motion detection are a tip-mounted

accelerometer, with its sensitive axis perpendicular to the

blade surface, and a strain gauge mounted at the flapping

hinge for measuring blade root angle. As can be seen in

figure 4.1, this particular choice of location for the

accelerometer results in its output being proportional to

out-of-plane position as well as acceleration, due to its

orientation in a centrifugal force field. If the rotor blade

motion is described by an infinite series of time-varying

modal displacements, then the ratio of these two effects is

determined by the mode shape slope and displacement at the

tip for each blade mode considered. 	 Tha'L is, if the

out-of-plane displacement is:

II

inf
z (t) = sum 

-7i 
(x) gi (t)
	

x=r/R	 (4.2.1)

iH



r	 ^:

Page 82

then the accelerometer senses:

2

inf	 d g(t)	 2-d^(x)
accel (t) = sum {	 (x) ----2- + r^ - i-- g (t) }

i=1	 li	 dt	 dr	 i
(4.2.2)

If we restrict ourselves to considering only the first

out-of-plane mode of the blade, namely, rigid flapping, then

this infinite sum is truncated at the first term, and we have

a sensor that gives a signal that is a linear combination of

flapping position and acceleration. Looking back at egriation

(4.1.2), one notices that the standard form for representing

a sensor's output is as a linear combination of states and

controls, but it is immediately apparent that this has been

complicated by using an accelerometer. Since modal

acceleration is not a state variable but a timL- derivative of

a state, one must represent the sensor by incorporating the

system dynamics in the observation matrices. Thus, for an

accelerometer that senses the combination:

accel (t) = Hl x (t) + H2 ;(t)	 (4.2.3)

then this can be reconfigured to be:

accel (t) = H1 x (t) + H2 { A (t) x (t) + B (t) u (t) }
(4.2.4)

or,

acce1 (t) _ { Hl + H2 A (t) } x (t) + { H2 B (t) } u (t)
(4.2.5)

a

4

I
i
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This is indeed an unfortunate situation. Whereas before

we had a sensor that was related to a combination of the

state veccor and its time derivative, now the representation

of the sensor content is directly dependent upon the

description of the system dynamics, including all its

elements of periodicity and variation with flight condition.

An observer or Kalman filter design based upon this set of

equations would be complex indeed! Fortunately, there are

techniques to circumvent such difficulties, two of which are

described in the next section.

4.3 Incorporation of Accelerometers into Observer Design

For a lumped-parameter system, if one knows the lumped

mass and inertial properties of,a system incorporating an

accelerometer sensor, it becomes possible to solve for the

applied forces and moments acting on it. These include any

control actions or disturbances of the plant, and thus could

supply a predictive quality, or "lead", for any observer

using an accelerometer in t^4 estimation task. It is with

this concept in mind that the following two approaches were

developed. The first consists of treating the accelerations

as a Brownian motion process, with modal acceleration

represented as a state variable in the process dynamics; the

second considers the acceleration as a deterministic input

r
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into the system, which can be accurately measured.

To illustrate both of these procedures, we shall

consider a very simple example of observing the states of a

second-order system using measurements of acceleration and

position. Given a system described by:

d-- I x i - i 0	 1-i i x i+	 0 	 u(t) (4.3.1)
dt L. x J 	 L1 -1J L x J	 L 1 J
y (t ) = r 1 0 1 r x	 . r 0 i

I 11 • I + I	 I U(t)	 (4.3.2)
L -1 -1 J L x J	 L 1 J

we shall construct an observer based on the assumed model:

F 	 0 1 0' x1 r01
d =

---	 I x j	 10	 0	 1 1 1 x 1+ I 0 1 W(t)
dt	 I"	 I	 I	 I	 I	 I

L x J	 L0	 0	 0 J L x J	 L 1 J (4.3.3)
Y(t) _	 1 0 0 1 r x 1	 r vi (t) I

I	 I	 I	 -	 I +	 I	 1	 (4.3.4)
L 0 0 1	 I" I	 L v2 (t) 1

L x J
where w(t) represents a zero-mean gaussian process noise, and

vl(t) and v2(t) represent zero-mean gaussian sensor noises.

As mentioned in a previous section, an observer for this

system model would have the form of equation (4.1.3), with

the gains K(t) chosen according to any of several methods.

Since the gains for this problem comprise a 3x2 matrix, the

selection of specific values for a prespecified set of pole

V

I

I
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locations is non-unique. To illustrate one such example, if

we place the poles of the observer in a Butterworth pattern

at a frequency of approximately five times as fast as the

natural frequency of the process being Dbserved (so as to

minimize the transient effects when used in closed-loop

control), one such set of gains is:

K = r 10.0 -12 .0 -i
1 -10.0 -24.0 1
L 5.0	 0.0 j

producing observer pole 	 locations	 at	 (-5.0,0.0j),

(-2.5,4.33j) and (-2.5,-4.33j). While this may seem

acceptable on the surface, the fact that we have violated the

separation principle warrants our checking the response of

this observer design against the actual process dynamics.

	

To do this, we'll extend the notation representing the	 i

various dynamic elements present to include the observer as:

	

x (t) = F x (t) + K [ y (t) - H x (t) ]
	

(4.3.5)

or,	 t

x (t) _ [ F- K H] x (t) + K y (t)

but since, from (4.1.3) ,

y (t) = C (t) x (t) + D (t) u (t)

then this can be combined into:

(4.3.6)	 IN

(4.1.3)
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x (t) _ [ F- K H] x (t) + K C (t) x (t) + K D ( t) u (t)
(4.3. 7)

If one combines (4.3.7) with (4.1.1) into an augmented

state vector representing the actual state variables and the

states of the observer, the result is:

d r x i	 F	 A(t)	 0	 r x I	 rB(t) 1
+	 u t

dt ^xa	 L KC (t) [F - KH ]J L x J	 LKD(t) 1 ( )(4.3.8)

Since control inputs are not considered in the assumed plant

dynamics for the above observer design, a reasonable measure

of performance would appear to be how well the observer

output can track changes in state due to sudden control

inputs. The tracking ability of the observer would thus also

represent how well it would respond to various other

disturbances such as gusts and rotor wake effects.

A digital computer simulation of the above combined

system was run to compare the actual state vector respose to

a step input in control. with the estimated values from the

third-order observer. In order to provide an adequate test

case, an initial condition was imposed upon the two state

variables of position and velocity of -1. and -0.5

respectfully, with a unit step input applied at t = 0.0.

This is necessary because observer theory shows that if an

^^	 1
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exponential observer is given the proper initial conditions,

it will track the states perfectly in the absence of external

disturbances. Since it is not available directly for

measurement, it was felt that the velocity of the system

would provide a suitable state for comparisons among the

actual system and the estimates of the various observers

considered.

Such a comparison can be seen in figure 4.2a and 4.2b,

where the output of the third-order observer with the above

gain matrix is plotted along with the actual velocity

response of the system. The performance of this

pole-placement observer design is terrible -- not only does

the transient response differ markedly from the actual

velocity of the plant, but this particular observer

approaches a non-zero steady-state velocity estimate.

Investigation of the gain matrix reveals why this is so:

since the zero value in the bottom right corner precludes any

accelerometer feedback to the acceleration estimate, a bias

on the accelerometer output would go unchecked and directly

Influence the velocity estimate. Because straightforward

picking of gain values just to place poles can result in such

poor results, an alternate approach to observer design is

needed.

i !'
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In order to improve how the measurements are blended to

provide an accurate set of state estimates, the gains for the

system (4.3.3) and (4.3.4) were calculated using Kalman

Filter techniques, with the measurement noises vl(t) and

v2(t) assumed to have equal covariances. After some

iteration on the assumed value of the process noise

covariance, the following gain matrix was produced:

K = r 1.414	 3.024e-02
1.0	 1.0

L 3.024e-02 3.163e+01

which results in closed-loop observer poles of (-31.6,0.j),
i

(-0.707,0.707j) and (-0.707,-0.707j). The response of this

observer design is shown in figure 4.2c. In this case we

have significantly improved the velocity estimate, both in

transient capture capability and steady-state response,

indicating a much better utilization of the sensor

Information. This observer design technique could thus

probably be used in a state-feedback control design, provided
3

its response times were made reasonably fast with respect to

the closed loop regulator time constants.

1
But even this design can be improved upon. As one can

see, we have been considering an observer that is one order

higher than that of the actual system being observed. 	 This	 !

extra "state" of the observer represents an estimate of the
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acceleration of the plant, but since this value would not be

used for feedback control purposes (in the designs considered

here), generation of this value is somewhat pointless. As an

• alternative, if one is willing to assume that process noise

dominates the stochastic elements present in the system, we

can treat the acceleration as a measurable, "deterministic"

quantity and use it to drive a system modelled by the

equations:

d r x ir 0 1 1 r x l 	 r 0 1 	 r 0^
dt L x J 

_ 

^ 0 0 J L x 
J + L 1 1 accel (t) + L 1 J W(t)

(4.3.9)
y (t) = L 1 0 3r x 1 + j 1] vi (t)	 (4.3.10)

1•I
L x J

g.

Trading off the values of the process noise covariance

with the position sensor covariance produced a design with a

gain matrix of:

K = r14.141
L 100.0 1

and observer poles of (-7.07,7.070. The tracking

performance of this observer design is illustrated in figure

4.2d, where the velocity estimate is almost indistinguishable

from the actual system response. This observer structure

would also appear to be a good candidate for use in a

feedback controller design. The advantage of this approach
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Is a reduction in observer hardware without a deterioration

In performance.

4.4 Observing the states of a time-varying plant

Since the ultimate purpose of these observer designs is

to generate state estimates of a time-varying rotor system,

it seems most appropriate to test them against the actual

values present in such a complex environment. This

validation procedure, however, is complicated by the fact

that the M.I.T. Individual-Blade-Control model rotor system

has no means of measuring flapping rate -- if it did, the

need for an observer would then not exist! Instead, an analog

simulation of the full out-of-plane rigid flapping equations

of motion was built up from operational amplifiers and

Integrated circuits, as outlined in chapter 5, to serve as a

test bed for both observer design and controller

implementation. This simulation includes the effects of

reversed flow and pro-r ides as output several voltages

representing all the rotor states, controls, sensor outputs,
I

and periodically-varying equation coefficients -Present in the

linearized small-displacement flapping equation of motion.

The second-order observer designed in the previous

section was also built from analog hardware and connected to
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the "sensor" outputs of tha analog simulation. These

"sensor" signals represent the outputs from the flap strain

gauge and the tip accelerometer. Since the observer was

designed on the assumption that the acceleration was directly

measurable, the centrifugal component of flapping

displacement had to be subtracted out of the simulated tip

accelerometer signal prior to incorporation into the observer

structure. This by no means presents any difficulty, as the

	

portion of the tip accelerometer signal multiplying flapping	 t

displacement is time-invariant, being neither a function of

azimuth nor flight condition.

	

Just as was done previously for the digital computer 	 t

simulation trials, the flapping rate signal was selected as

	

the means of comparison for evaluating the observer's 	 !

tracking performance. In order to provide adequate testing

of transient conditions, a square-wave was fed into the pitch

signal of the analog simulation, and the resulting flap rate
4

and flap rate estimate were observed. These signals, along

with the once-per-revolution timing pulse, are plotted in

figure 4.3, representing a rotor operating at an advance

ratio of 1.14. The results are similar for all other advance

ratios and all other types of external forcing functions: the
i

	

flapping rate signal is essentially perfectly reconstructed. 	
ti

	There is no doubt that use of this quantity in a	 j

I.,	 i

{



Page 92

state-feedback controller would produce satisfactory results,

i
	

as it tracks even small detailed fluctuations in state due to

the pitch forcing.

This most fortunate result has interesting implications.

Since a time-invariant observer incorporating acceleration

measurements is capable of adequately observing the state of

a complex, time-varying plant, one then wonders if similar

techniques are equally applicable to nonlinear or even
Ft

nonlinear and time-varying systems as well. Of equal

interest is how to estimate additional modal degrees of
M.

freedom using the same type of sensor complement, and how to

attribute the measurement residuals to the various modes.

This latter question appears to be solvable using the

second method outlined above, that of forcing a

"double-integral" plant with a modal acceleration and

correcting its output with a position measurement. Since all

that is really needed for such an application is an accurate

measurement of the particular modal acceleration and

displacement, one does not even need to simultaneously

estimate the dynamics of the lower-order modes. This can be

best seen if one considers the modal content of each of the

sensors.
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For a system of, say, two modes 	 instead	 of	 one,	 aach

accelerometer	 will	 measure	 some	 linear combination of the

t modal accererations that will depend upon its location on the

structure.	 Thus,	 if	 two	 accelerometers	 are	 located	 at

different points on	 the	 structure,	 their	 outputs	 can	 be

combined so as to solve for each modal acceleration, provided

their outputs do not also contain modal position 	 information

as	 well,	 such	 as	 in equation (4.2.2).	 This same argument

holds for requiring two position sensors in 	 order	 to	 solve

for	 the	 two	 modal	 displacements.	 For	 the	 case	 of the

i Individual-Blade-Control	 rotor,	 since	 the	 accelerometers

jcontain modal	 displacement information as well, one can add

two additional accelerometers to the previous complement of a
7

tip	 accelerometer and root angle transducer, and still solve

for the two modal accelerations and displacements uniquely.

Once one has the individual modal acceleration and

displacement information, one need merely design an observer

such as that of (3.3.9-10), with a bandwidth picked to be

sufficiently faster than the mode's natural frequency.

Unlike a conventional Kalman Filter, there is no need to

estimate the lower modal states, and thus the observer need

only be of order two for any mode desired. However, we have

reduced the complexity of the Kalman Filter approach, with

all its possible time-variation and higher order, at the

r
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se of additional sensors. For some plants, this may not

ustifiable, but for helicopter rotor control, the

tages appear to outweigh the additional cost of more

rs.

I
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4.5 Periodic System Parameter Identification

Even with perfect measurements of the system state

variables, any controller design based on modern techniques

would be doomed to failure if the mathematical model for the

plant being controlled were grossly in error. This applies

equally for periodically time-varying systems as well as for

time-invariant ones. Fortunately, given the accurate state

variable estimation results of the previous section,

extracting the periodic coefficients of the flapping equation

(or for that matter, any reasonably uncoupled modal response)

can be reduced to a basic least-squares procedure. The

technique described below is equally applicable to any other

type of time-varying dynamics, provided that the time

variation of the coefficients can be described using weighted

linear combinations of orthogonal time functions.

Given the flapping equation of the rotor in the rotating

frame as:

"'40 + Al	 + AO	 BO (^-) *e	 (4.5.1)

where the primes( indicate differentiation with respect to

azimuth angle, the periodic coefficients Al, AO and BO can be

represented as an infinite sum of trigonometric functions of

azimuth according to:

• n

I

^j
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^1

inf
A10 = A10 + sum { Alcn*cos (ng + Alsn*sin (ng }

n=1

inf
AO M = A00 + sum { AOcn * cos (n P) + AOsn*sin (n$4 ) }

n=1

inf
BO(' ) = BOO + sum { BOcn*cos (nf) + BOsn*sin (nY-) }

n=1	 (4.5.2)

If these expressions are substituted into equation (4.5.1)

and the resulting products of state variables and coefficient

harmonics are expanded, one obtains (after solving for the

acceleration):

+/3*cos ('-) + //3*sin (^) +^3*cos (2^) +

/3*sin (21 ) + *cos (3^) + ... +/3 +//3 *cos (^) +
^/*sin (^) +/3 *cos (2¢) +/j*sin Q2 ) + ... +

6 + &*cos (^) + 6*sin (^) + 6*cos (2^) +
®*sin (2^) + G*cos (3^) + ... ] *

[ -A10 -Alcl -Alsl -Alc2 -Als2 -Alc3 ... -AOO -AOcl
T

-AOsl -AOc2 -AOs2 ... BOO BOcl BOsl BOc2 ... ]
(4.5.3)

This equation is linear in the parameters representing the

harmonics of the periodic coefficients. Since the observer

structure outlined in the previous section provides accurate

estimates of the states and modal acceleration, if we measure

the control input (as we must) we can treat these harmonics

as the unknowns in our problem. This then gives us a linear

W;
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equation in as many unknowns as we care to estimate,

corresponding to the number of harmonics desired to represent

the periodic coefficients.

Since this equation is valid over any azimuth angle,

substitution of the rotor states, control input and

accelerations into (4.5.3) for many different azimuth

locations will provide as many or more equations than

unknowns that are needed to solve for these coefficients

uniquely. Due to the complex nature of the rotor wake, a

least-squares approach was used in order to reduce the

variance in these estimates due to process noise. If one

rewrites (4.5.3) in vector form and solves for the error

between the measured acceleration and that predicted from the

coefficient values, one has:

E = Y - [ dY/dA ] *A	 (4.5.4)

where:	 E is a (mxl) vector of prediction errors
Y is a (mxl) vector of measured accelerations
[ dY/dA ] is a (mxn) matrix of products of

states and controls with sines and cosines	 +
A is a (nxl) vector of harmonics of coefficients
m is the number of data points (azimuth

locations) considered
n is the number of harmonics to estimate

and to minimize the sum-squared error in the estimate, one

takes the first derivative of the square of (4.5.4) and

equates it to zero. This results in the traditional "normal

equations":
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T	 -1
A = { [ dY/dA ] [ dY/dA ] } * [ dY/dA ] *Y

(4.5.5)

In order to reduce the effects of unmodelled

accelerations or sensor noise, many data points should be

used. This will cause the data-dimension (m) of the vector Y

and of the matrix [ dY/dA ] to grow to an unacceptable size

in terms of storage requirements unless the following steps

are taken. Since the dimension m gets "absorbed" in the

inner products of [ dY/dA ] with itself and in [ dY/dA ] with

Y, one can treat these two products as "buffers" of dimension

(nxn) and (nxl), and sum each new data point vector into them

according to:

	

-1	 m	 T
A = U * V	 U = sum [ dY /dA J [ dY /dA ]

1=1	 1	 1

m
V = sum [ dY /dA ] Y

i=1	 1	 1	 (4.5.6)

where i represents a single azimuth angle. 	 It should be

noted that U is formed by summing 4SlLtaL products of

sensitivity vectors.	 In this way the largest storage

dimension is just n, the number of coefficient unknowns.

To test this approach, a computer program was written

that would solve for the periodic coefficients given the

desired number of harmonics and the data files of rotor
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state, acceleration and control input. The analog simulation

described in chapter 5 was once again used to generate time

histories for such testing purposes, and the results can be

• seen in figures 4.4a, 4.4b and 4.4c. The analog model was

excited using a swept-sinewave source on the pitch simulation

channel, and the outputs representing flap and tip

accelerometer signal were fed into the second-order observer

to generate flapping acceleration and rate estimates. These

signals as well as the actual coefficient voltages were fed

into the PDP-11/03 computer, digitized, and stored as data

files. The estimated coefficients compare quite favorably

with the actual measured values, indicating the validity of
i

this technique.

'1
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5. EXPERIMENTAL APPARATUS

5.1 Analog Simulation

' In order to both test concepts and validate controller

designs, it was felt necessary to construct an electronic

circuit that would produce signals much like that of the

Individual Blade Control rotor in the wind tunnel. This

circuit card was designed to have coefficients that were

periodic functions of time similar to those of the actual

model. During the early stages of design it was found that

by incorporating several voltage multiplication integrated

circuits (IC's) it would indeed be possible to simulate the

single flapping mode equations. Through a series of

comparitor IC's described below, it was even possible to

Include the effects of reversed flow in the coefficients.

Construction of the simulation was done on a single

plug-in card that was compatible with the instrumentation

rack used in the actual rotor signal processing. This was

initially intended to allow its use as a dynamic element

within a full-blown Kalman filter state estimator, although

this later proved to be unnecessary. The rack mounting

provided the card ' s supply voltages, and all other voltages

representing rotor states and coefficients were brought to a

11^	 i
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central terminal strip at the front of the instrument

cabinet. A photograph of the simulation card can be seen in

figure 5.1

The layout of the circuit, shown in block — diagram form

in figure 5.2, was done in four segments: timing generation,

coefficient computation, coefficient selection, and blade

flapping simulation. This division was used in order to

reduce the parts count of the simulation as much as possible.

As was explained in chapter 2, the rotor blade passes through

at least two and possibly three different regions of

tangential airflow as it rotates about the shaft. The

aerodynamic moments created about the flapping hinge for

these cases of normal, mixed, and reversed flow can be

D1
	

expressed analytically, although each coefficient formula is

only valid for that particular region. In order to

accurately express this periodic variation of coefficients

analytically for the entire azimuth, many harmonics would

have to be retained. This would create the need for an

unacceptably large number of IC's, and thus the design

incorporated an analog switching network to select the

appropriate equation coefficients for the current azimuth

angle of the simulation.

Inspection of the coefficient equations in chapter 2

^;	 11
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reveals that, for the case of no hinge offset, each region's

variation with azimuth angle is constrained to polynomials in

the product of advance ratio and the sine of the azimuth

angle. Thus, given an input sinusoid with amplitude

proportional to advance ratio, one may readily generate the

higher terms of the polynomial using analog multiply IC's.

Weighted values of these products of sinusoids were then

combined using standard operational amplifiers to produce

voltages that corresponded to the expressions valid for each

flow region. These were fed simultaneously to a set of

analog multiplexers that would select whichever of the three

voltages (three for each of three coefficients) was

appropriate at the particular azimuth angle of the

simulation.

Timing for the circuit was accomplished using a

commercially available function generator IC, capable of

oscillating at a frequency set by external passive

components. Outputs of this IC included a fixed -amplitude

sine wave and square wave. Since a cosine wave was also

needed for the coefficient generation (in the aerodynamic

flapping spring term), a constant-amplitude phase lead

network was built to shift the sine wave signal by 90

degrees. As such a network's phase shift is not independent

of frequency, it became necessary to fix the oscillator

• P
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frequency to a specific value. This was set to 5 Hertz in

order to match the rotation speed of the actual model rotor. 	 i

The oscillator's sine wave was input to an amplifier to

vary its amplitude according to an "advance ratio" set by a

dial potentiometer on the front panel. Since the transition

between different flow states of the blade (and hence its

coefficient expressions) is directly dependent upon this

value, this was also used as a control voltage for input to

the comparitor IC's that generated the select voltages that

drove the multiplexers. This same amplified sinusoid was

used for the polonomial term generation as described earlier.

Finally, the blade dynamics were simulated using

standard op-amps as with most analog computers, but the

coefficients for the system were taken from the outputs of

the multiplexers. These were fed into another set of analog

multiply IC's in order to permit time-varying dynamics. The

integrators in the simulation were scaled to keep these	
I +^. N

coefficient voltages to values well within those of the power

supply. Also, the voltages representing the flap angle and 	
t i

flap acceleration were combined to simulate the blade tip
	 t

accelerometer signal. This voltage, along with the voltages

representing the rotor blade flap angle, flap velocity, flap

acceleration, pitch angle, coefficient values, sine and

_30
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cosine waves and the square wave timing signal, were all

brought to a terminal strip on the front panel. This

arrangement allowed rapid evaluation of candidate control

laws as well as verification of the response of the modal

state estimator.

5.2 Model Rotor Hardware and Instrumentation

The Individual Blade Control model rotor used at M.I.T.

is a four foot diameter single -bladed rotor with two opposing

counterweights. The blade flapping hinge is offset slightly

from the shaft centerline and attached to a fully articulated

hub incorporating a spherical bearing arrangement, permitting

flap, lag and pitch degrees of freedom to have coincident

axes. A steel flexure attached to this hub allows

measurement of blade flap and pitch angle through a set of

strain gauges mounted on its surface. Mounted within the

blade structure at the tip is a miniature accelerometer, with

its sensitive axis oriented perpendicular to the blade

surface. This location permits measurement of both flapping

displacement as well as flapping acceleration, as described

in an earlier chapter. Blade pitch control is achieved

through a series of pushrods and gears driven by a shaft

mounted DC motor, with a servo loop closure formed around the

pitch angle strain gauge and the motor ' s integral tachometer

Nr
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signal.

The model rotor hub geometry and pitch actuator were

unchanged from that used for a previous gust-response test

[Ham and McKillip, 1980]. For completeness, the pertinent

blade inertial and geometric properties are presented in

figure 5.3. However, since the rotor no longer needed to

align with external gust generators, a new housing was

constructed for the slipring assembly at the end of the shaft

that permitted a vertical shaft orientation. This

eliminatedd spurious once-per-revolution gravity effects on

the tip accelerometer sensor allowing operation at lower

rotation speeds on an existing rotor test stand within the

M.I.T. acoustic wind tunnel. Figure 5.4 shows the

single-bladed model rotor and rotor stand, along with a

simulated fuselage forebody attatched to the upstream side.

While the rotor hardware was unchanged from the gust

alleviation tests, the instrumentation complement for

acquiring, displ. ing and processing the wind tunnel data was

vastly improvec..	 Figure 5.5 details the signal paths from	 I

the rotor sensors to the amplifiers, signal conditioners and	 r

data recorders used in the experiment. Central to the

experiment was the signal conditioning rack.	 This unit

contained the pitch and flap strain gauge differential

^^ 1
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amplifiers, the tip accelerometer amplifier, the servo motor

current amplifier and power supply along with the servo

feedback controller card, the instrumentation amplifier power

supply, and a set of timing circuitry capable of measuring

rotor rotation and supplying a squarewave at rotation

frequency and another squarewave at an integer multiple of

rotation frequency.

Attached to this rack were an FM tape recorder for

saving analog voltage data; a Nicolet 660B dual-channel

spectrum analyzer for transfer function, power spectrum and

quick-look data analysis; a set of oscilloscopes for rotor

sensor monitoring; and a PDP-11/03 minicomputer for digital

data collection and storage. This same computer was used to

generate the synchronized periodic feedback control, and

because of the time-critical nature of this task, the

computer data collection for closed-loop tests was done

off-line using the signals collected on the FM tape recorder.

A typical experiment run consisted of the following set

of procedures. First the pitch servo was energized and the
I	 I

rotor brought up to rotation speed using the hydraulic drive 	 I
I

system mounted in the tunnel. Then the wind tunnel speed was

increased while the rotor collective pitch was adjusted to

minimize the flapping response of the blade.. 	 A
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swept-sinewave source was fed into the blade pitch command

summing junction, and a set of open-loop analog data was

stored on the four -channel FM tape recorder, consisting of

the 1/rev timing squarevave, the excitation signal, the

flapping gauge signal, and the tip accelerometer voltage.

These last two signals were also simultaneously fed into the

analog observer, whose outputs were in turn brought to the

8-channel anti-allasing filter box. After a record of

sufficient length was captured, a prog ram was run on the

computer to compute the feedback control law based on the

state estimates from the observer. The control command was

output through a digital-to-analog converter board to the

pitch servo summing junction, and used a precomputed set of

feedback gains stored in memory. A digital controller was

used as the computation speed required for the multipl:_cation

operations was well within the capability of the

minicomputer. A listing of the computer control pr-)gram for

the PDP-11/03 is given in an appendix.

The same four voltages were then stored on the tape

recorder, and the spectra of the pitch and flap channels were

monitored to observe the effect of controller action on the

system. Upon tunnel and rotor shut-down, the cables were

swapped and the tape recorder was played back into the signal

conditioning rack to generate the timing pulses for the

I
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analog-to-digital converter board. These same signals were

fed into the observer circuitry, and the whole complement of

sensor and state estimate data was fed through an

eight-channel low-pass anti-aliasing filter box and into the

computer. The data files resulting from the digitized data

were used for subsequent analysis and parameter

identification experiments, the results of which appear in

the next chapter.

i!!
I.
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6. EXPERIMENTAL RESULTS

6.1 Introduction

Classical representations of system dynamics, such as

transfer functions, cannot easily be used to describe systems

with periodic coefficients. Familiar concepts such as phase

and gain margin are not applicable since these systems

exhibit responses at several frequencies to a single

excitation frequency. Because of this, a higher level of

sophistication is necessary to quantify the character of a

periodic plant. In chapter 4, a unique direct parametric

representation was shown to be possible, due to the relative

ease of reconstruction of the missing state variables. This

same technique will be used in this chapter. By comparing

the identified periodic coefficients for open- and

closed-loop time response tests on the experimental

apparatus, we will be able to judge the effect of a

particular control law on system performance.

Prior to actual wind tunnel tests of the rot4

series of control laws were tested on the analog

All the closed-loop controller	 designs

model-following structure, with the model

time-invariant dynamics. Thus, the closer the

	

:)r model, a	 I

	

simulation.	 r

were of

possessing

identified
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coefficients approached a constant value, the more the

closed-loop system behaved like the desired model. The next

two sections of this chapter illustrate exactly this behavior

for both the simulation and the actual rotor.

6.2 Analog Simulation Results

The test procedure for the analog simulation was very

similar to that for the wind tunnel model as described in

chapter 5. First, a swept-sinewave excitation was fed into

the pitch channel of the simulation, and this signal as well

as the simulated flap channel and tip accelerometer channel

were stored on an FM tape recorder. After a sufficient

amount of data was collected, these signals were played back

as input to the observer. These signals, as well as the

observer's estimates of simulated flap rate and acceleration,

were then brought to the 8-channel anti-aliasing filter box,

digitized and stored in a data file in the computer. After

several of these files were collected, the coefficient

regression routine was run on them, and the fitted values as

well as statistical goodness-of-fit parameters were printed

on a hard-copy terminal. Then the digital controller was

turned on and the entire process repeated. A plot of a

typical data file for use in the coefficient identification

process can be seen in figure 6.1. It should perhaps be

r ^
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noted that the regression only uses four of these channels

directly: the excitation signal, and the flap angle, flap

rate and flap acceleration signals..

In order to provide a suitably harsh test environment,

the simulation was run at an effective "advance ratio" of

1.4, corresponding to the highest advance ratio to be

experienced by the model in the wind tunnel. This test

condition provided the highest level of periodicity present

in the system to be controlled, and hence the largest gains

and greatest controller effort required. Inspection of

figures 6.2a, 6.2b and 6.2c reveal that this simulation

operating point posed no problem for the controller, as the

periodicity can be seen to be reduced for the control power,

spring and damping terms of the system.

Closer inspection of these figures shows that in some

cases the mean levels of the parameters were reduced. This

is not a destabilizing effect of periodic control, but

instead a consequence of the particular model chosen for the

performance function; a model with higher damping would have

produced higher damping levels in the closed-loop system.

The limiting factor in model-following ability appears to be

associated with the controllability issue addressed earlier.

Systems that do not posess full controllability over all

• A

I
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azimuth locations cannot be made to match a model perfectly.

As a final check of the reduction of periodicity in the

system, a single frequency excitation was fed into the

simulation for both the open- and closed-loop cases. The

resulting input and output power spectra are shown in figures

6.3a and 6.3b. Not only is the subharmonic just below the

fundamental (at 5Hz) reduced, but responses near twice the

fundamental and at very low frequencies are eliminated

entirely. This would indeed be a desirable property for the

out-of-plane flapping dynamics of the rotor.

6.3 Wind Tunnel Model Results

Given the successful demonstration of the control

concept on the analog simulation, tests were run on the

actual rotor in the wind tunnel. Open-loop excitation runs

were performed first to extract the system coefficients on

which to base the control design. Initial efforts to

estimate these periodic parameters were hampered by the

presence of extraneous fluctuations and strong levels of

periodicity in the transducer signals. Due to the controlled

and benign nature of the analog simulation, no special

measures were found necessary to identify the parameters for

that situation. For the rotor data, however, two additional

I	 I

i

1
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features had to be incorporated in the parameter estimation

scheme: inclusion of additional " forcing" terms, and a change
in sampling speed.

The need for additional terms in the identified model

can be best understood by considering the effect of a bias

present in any of the pitch, flap, flap rate or flap

acceleration signals of equation (4.5.1). These biases would
get multiplied by the periodic coefficients and show up as

spurious harmonics present in the flapping acceleration

estimate. By combining the effects of all these biases, one

can account for their contribution to the estimation error

quite easily. If (4.5.3) is extended to include the terms:

... + 1 + cos (¢ + sin (Y-) + cos (2?') + sin (2^) + cos (3^)
+ ...] * [ 	 flc fls f2c f2s f3c ... ]	 }'-^

then these free coefficients can be solved for at the same

time as the periodic parameters using the same technique.

Incorporation of these additional terms into the math model

also accounts for responses due to any higher harmonic rotor

wake effects.

Even though the non -dimensional first out-of-plane
bending frequency was at seven times rotor rotation speed,

the tip accelerometer was corrupted by a significant amount

of vibration energy. This tended to force the initial

O
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parameter estimates to have a larger higher harmonic content

than was predicted by the quasi-steady theory. In order to 	
:z

eliminate this effect, the FM tape recorder was played back

at a higher speed through the anti-aliasing filters, and the

data was sampled at 32 samples per revolution, half its 	 •

normal rate. This effectively doubled the number of rotor

cycles present in any given data file, and significantly

improved the quality of the identified parameters. It should

be pointed out that the time constants of the observer had to

be appropriately reduced in order to allow it to track the

higher frequencies present.

Results of the parameter estimation routine are plotted

In figures 6.4a, 6.4b and 6.4c for open- and closed-loop

cases at an advance ratio of 1.4. Even for this severe case

of reverse flow over the rotor, the periodicity of the system

can be seen to be reduced. All the coefficients exhibit

tendencies to approach a constant value with the addition of

closed-loop control. The level of reduction is not as

dramatic as for the analog simulation due to the model

blade's low Lock number (requiring a higher gain value) and 	
I

the particular choice of model-following cost. However,

these results show that periodic control of rotor blade

dynamics in the rotating frame is definitely possible even

for rather extreme flight conditions.
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-	 7. CONCLUSIONS AND RECOMMENDATIONS 	 11

7.1 Conclusions from the Research

This study has been concerned with the modal control of

an individual helicopter rotor blade in the high

forward-flight speed regime. This operating condition poses

a unique control problem in that the perturbation equations

of motion are linear with coefficients that vary periodically

with time. The design of a control law based on extensions

to modern multivariable systhesis techniques was aided by a

novel approach to the reconstruction of the missing system

state variables. The controller was tested on both an

electronic analog simulation of the out-of-plane flapping

dynamics and on an actual model rotor in a wind tunnel.	 f

Results of these experiments indicate that periodic control

of helicopter rotor blades in the rotating frame is possible

using a modest amount of computational hardware. The ability

to reduce the level of periodicity within the system has

direct applications for stability enhancement and handling
I

qualities improvement of modern helicopters 	 having

individual-blade-control.

Several contributions to the expanding field of periodic

system dynamics have been made as a consequence of this
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investigation:

(1) Sensitivity	 studies	 have	 been	 shown	 for

Linear-Quadratic-Regulator	 control	 designs	 for	 both

simple and complex periodic systems. 	 While	 these	 have

been	 numerical	 in	 nature,	 trends	 in	 the movement of

closed-loop poles and variations in eigenvector structure

have	 been	 identified for various types of cost function

selection.	 Such information is important to the controls

engineer in an initial approach to controlling a periodic

system.

(2) Implicit-model-following control 	 design	 techniques	 were

extended	 to	 handle	 periodic	 time-varying systems.	 An

efficient spectral method of calculating these gains 	 was

also	 derived,	 enabling	 rapid	 iteration	 over	 many

candidate	 control	 laws	 in	 a	 short	 time.

Implicit-model-following	 is	 a valuable tool for systems

that do not benefit from their inherent periodicity, such

as rotor blade flapping behavior.

(3) A novel	 method	 of	 incorporating	 an	 accelerometer	 for

observing	 the	 state	 variables of a time-varying linear

system was developed. 	 TI:^ observer	 has	 the	 attractive

property of having constant coefficients in its structure

and	 not	 requiring	 an	 accurate	 model	 of	 the	 plant

dynnnics.	 It	 does	 require,	 however,	 an	 accurate

r

r
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description of the sensor dynamics (if present) and modal
Ji

content over the bandwidth of its response.

(4)A simple technique to estimate the parameters of a linear

periodic system using the aforementioned modal observer

was described. The harmonic representation of the plant

coefficients permits a linear-in-the-parameters

formulation of the estimation problem, with its

corresponding efficient one-step solution of a set of

linear simultaneous equations.

(5) A practical periodic controller was demonstrated for two

systems: the first a periodically varying electronic

analog computer, and the second a wind tunnel model

helicopter rotor system. The controller was shown to be

of rather simplifi3d form, suitable for microprocessor

implementation.

7.2 Recommendations for Further Investigations

Results from this thesis have suggested several

interesting applications and extensions of the above
I

developments in the areas of periodic systems, rotorcraft

dynamics, and control and estimation of time varying plants:

Most input-output response investigations of linear

periodic systems require a numerical integration of the
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k
equations of motion to determine system stability and

	 , n

M 
transient behavior. This is a time-consuming process that

does not yield trend information until after many different

cases have been studied. No equivalent to time-invariant

frequency response techniques yet exists for a non-parametric

analysis of periodic systems. However, since any linear

periodic system can be thought of as a collection of transfer

functions for each sub- and super-harmonic type of response

[Johnson,1980], it appears possible that a technique could be
L!

developed to estimate these transfer functions from response

data using Fast-Fourier-Transform analysis of the spectral

content of the input and output signals. This approach was

not pursued in this investigation since the methodology for

developing a control law from this information does not exist.

However, such a procedure would be valuable in quick

processing of data from periodic systems.

An alternative to the above procedure might be the use of

nonstationary spectral analysis techniques (as is used for

digital speech processing) to estimate a periodically varying

transfer function for periodic systems. This might permit

standard classical design techniques to be used for each

analysis interval and the results combined in a periodically

varying control law. This is similar to the case of a

perfect-model-following design, as was demonstrated for the

1
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scalar example in chapter 3.

The encouraging results of chapter 4 suggest possible

applications of accelerometer-based observers to estimate

	

states of non-linear and alternate time-varying systems.	 .

Since the modal content of acceleration sensors is often given

In kinematical relations, it appears that such a use would be

equally successful. The benefit of using this technique,

however, would only exist for systems where computation

complexity was more costly than sensor installation.

An additional benefit of this observer structure might be

Its ease of incorporation into adaptive control systems.

Since all of the modal states and accelerations are avaliable

for processing, it may be possible to accurately determine the

system coefficients on-line using a minimum amount of data.

This type of identification scheme would need to have a

response time sufficiently faster than both the observer and

the plant being controlled. The problem of generating

feedback gains for such a complex structure would be more

	

complex, however, due to the necessity of ensuring stability 	
1

over its full operating range.

Finally, use of accelerometer-based observers for

parameter estimation of rotor systems appears to be easily

extendable to handle estimation of external forcing functions.

D ^
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The residual in the acceleration estimate can be attributed to

unmodelled aerodynamic loading as well as neglected higher

modes of response and sensor bias. Should an additional

transducer be available (such as a hot-wire probe, for

example), the methods of section 4.5 could be used to

determine the correlation between various external effects

(e.g. fuselage upwash or blade-vortex interaction) and rotor

blade modal responses.

!,

1
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Fig. 2.1a: Top view
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Fig. 2.2: Rotor flow regimes in high speed forward flight
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The flapping equation is:

+ M.n + M^ /3 = Me 9
X^2 	(SX	 I

L

where the coefficients are:

M.	 ( )	 -1- - - 1- (	 2	 3 )

/SL	 8	 24
1	 1	 2

	

+ ,A4 sin	 6- - -2- (	 +	 )

1	 1	 3

(2)_ ^ ( 1 ) ] + 0 (-1---) 
12 Gain (^') -^) (^ ain (^') + ^ )

(3)s	 - [ ( 1 ) ]

2M' _ (1) : y +	 *Mcos (^) '1' ( 1 + '1' ) ( 1	 )
//	 6	 2

1
+ / Asin	 --(

4	
1 - 2^ ( 1 +	 )

1	 1	 3
(2) ( ( 1 ) ]	 (-' ) /,XAcoa (	 -6- (1tcsin 

(3):	 -E ( 1 ) ]

Me = (1) ;	 -1- - -1	 2

	

-(++3)
8	 24

sin (^) (-1- - -1- (	 + 2 ) ] + (/,sin (fl)	 - - -2 ( -11-+	 )
3	 6	 ^	 4	 4

1	 1	 4

(2) (1) ]	 (-----) -- ( /A is 	 + )
1-^	 12

(3):	 - C ( 1 ) ]
Fig. 2 . 3: Single blade flapping moment coefficients
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GAIN FUNCTION FOR SCALAR EXAMPLE
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Fig. 3.1: Feedback gain for scalar example
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0. L. AND C. L. EIGENVECTOR OF SCALAR EX.
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Fig. 3.2: Eigenvector of scalar example
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Fig. 3.3: Pole migration with increasing advance ratio
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Fig. 5.5: Instrumentation schematic for data collection
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APPENDIX - Digital controller computer program listing

i

I
i

i

.LIST	 TTM

.TITLE	 CNTRL
1
1 CNTRL(NPTSPNCHANSrTABLE.CHNLST.ISHFT)
1 MAC RU kOUTINE TO OUTFUT THE
1 SUM OF THE PRODUCTS OF GAINS 	 IN'TABLE'
1 WITH VALUES FROM THE A/D CONVERTER.
1
1 THIS ROUTINE WILL CYCLE THRPUGH ITSELF AND REPEAT
1 INDEFINITELY UNTIL A KEY	 IS STRUCK ON THE	 TERMINAL,	 WHICH
1 WILL CAUSE AN EXIT.	 ALSO.	 IT	 IS ASSUMED THAT THIS ROUTINE
1 IS CALL FROM A FORTRAN MAINLINE. AND THUS NO REGISTERS
{ ARE SAVED.
1

1 THE	 Ia2 DATA TABLE IS ASSUMED TO BE IN A 'PACKED* FORMI
1 1HAT	 ISP	 THERE ARE NO CHANNELS TO FE SKIPPED -- THE
1 FIRST CHANNEL FOR THE NEXT POINT IMMEDIATELY FOLLOWS
1

.GLOBL	 CNTRL

.MCALL	 kEGDEF

.kEGDEF
nssa a• a, n asaarassasssttssasatatttstassatsassssaasssaasasssasssss•
1
1 CNTRL (NPTSPNCHANS. TABLE, CHNLSTP!SHFT) 	 ---
1
CNTRL: MOV	 Q2(RZ),NFTS	 :SAVE NPTS

MOV	 P4(R5).NCHANS	 ;AND I OF CHANNELS
MOv	 6(RS).TADLE	 FSAVL	 TABLE POINTER
MOv	 B.(R5).RI	 ;SAVE CHANNEL FOINTER
MOV	 Y10.(R5).1SHFT	 iSAVE NO.	 OF	 SHIFTS

1 ^

1 DTSAbLE TERMINAL INTERRUPTS AS WAS DONE FOR I
'TBLDMP.MAC' I

i
MOV	 PRCSk.TTCSR	 ;SAVE OLD TTY CNTL PEG
CLk	 PkCSR	 ;DISABLE	 ).bl-	 INT	 FOk NOW
MOV	 PKCSK.LPCSk	 ;SAVE LF. CONTROL REG
CLR	 PXCSk	 ;DISABLE	 F').1NTLR	 INT
MOV	 I•I6UPHANU	 iPUSH OLD RFD HANDLER LOC
MOV	 U662PSTAT	 iAND STATUS ONTO :;TACK.

1 '
1 NOW LOAD	 OWN TERMINAL KEYBOARD INTERRUPT HANDLER.
1 UPON SENSING A PRESSED KEY. RU WILL BE LOADED WITH
1 A ZEBU VALUE.	 SO INITIALIZE	 IT NUW.

MOV	 •1.KFLAO	 ;INITIALIZE KBD	 INT FLAG
MOV	 •KBDSRV.v#60	 :LOAD KBI , SEkV HANDL AUDR
MOV	 0340.0062	 ;SET	 PRIORITY	 TO	 7
MOV	 •100.PRCSR	 ;ENAPLE KbIl FOR	 INT'S.

1
1 SET UP A/D CHANNEL TABLE
1
SETUP: MOV	 NCHANS.RS	 :COPY CHAN COUNT

MOV	 OCHNLST.R2	 ;FOINT TO CHANNEL LIST
MOV	 (RI)+.fR2	 ;GET CHAN NO.	 AND
SWAB	 PR2	 1PUT	 IN FITS	 6-11.
BIS	 I120P(R2)4	 ;SET	 FOR	 STI1	 S1ART

$ON FIRST	 CHANNEL.
DEC	 RS	 ;PUMP CHAN COUNT
PEG	 LOAD	 ;BRANCH IF ONLY 1 CHANNEL

MVCHN: MOV	 (kl)4PWR2	 $GET CHAN NO.	 AND
SWAB	 PR2	 ;F'UT	 IN PITS	 8-11.
BIS	 I101.(R2) ♦ 	 ;ENABLE	 DONE	 INTEkk'UF'TS
SOB	 R5.MVCNN	 ;FINISH OFF All	 CHANS
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1
1 SET UP INTERRUPTS AND CONTROL WORDS
1
1 > SET UP CLOCK ST#2 TRIGGER HANDLER
1
LOADI MOV15T2SRV,QST2VEC IPOINT TO ST#2 HANDLER

MOV	 :200rQBT2FSW ;WITH PRIORITY OF ♦.
1
1 > AND THE A/D DONE HANDLER ...
1

MOV	 /ADSRV*@ADVEC ;A/D DOME INT HANDLER
MOV	 4200,QADPSW IPkIORITY LEVEL 4
MOV	 TABLE,R1 ;POINT TO TAbLE bASE ADDR
MoV	 NPTS,000NT ISET POINT CUUNT
MOV	 tCHNLST,RO (POINT TO 1ST A/D CHAN
MOV	 NCHANS,k3 ISET CHANNEL COUNT
MOV	 •STK&T,R4 $SET A/D STACK POINTER
CLR	 SIGHI ;CLEAR SUMMATION bUF
CLR	 SIGLO ;HI AND LO WORDS.

1
1 START CLOCK AND CONVERSIONS
1

MOV	 •60002,RKWCSR ISET CLOCK FOR ST2 INT ENA
WAIT: TST	 KFLAG IWAIT FOR KEYFOARD	 INPUT

NNE	 WAIT ;BkANCH IF NUNE FOUND
1

MOV	 HANII,0060 ;HAND FOR K&D INTO PLACE,
MOV	 STA70462 ;POP OLD KPD STAT REG
MOV	 TTCSk,RkCSR IRESTOkE hbD CNTL REG
MOV	 LF•CSK.VXCSR ;kESTORE LP CNTL PEG
CLR	 VKWCSR ;CLEAk CLOCK
CLR	 QADCSR ;AND A/D
RTS	 PC ;RETURN FROM CNTRL.MAC

ittttRRtt RRltrttt ♦ tttRltttlttf if#itttlt RffltRf#tftf #ffrtf tsR t/Rl

1

1 KEYBOARD INTERRUPT HANDLER: ZERO ALL D/A
1 CHANNELS AND THEN DISAPLE
1 INT kEO AND SET RO TO ZERO.
1
KMDSkVI MOV	 04,k5 ;COUNTER FOR D/A CHANS

MOV	 D:AbUF,R2 ;F•O1NT	 TO	 D/A REGS
KLP: MOV	 4204G.,(R2)+ IZEkO EACH ONE

SUP	 RS.KLP ;FOR ALL FOUF	 CHANS
CLR	 RkCSR iDISAbLE	 INTERkUPT REG
CLR	 RKWCSR ;111SA14LE	 CLOCK	 INT	 TOO
CLR	 KFLAG ISET KPD FLAG -	 *YES'
RTI

Itlt n ttfltrllftRtltRn tlRitttfRttltrfftrttfttr#tttlrRttttlR#tt#R
1
1 ST92 EVENT INTERRUPT HANDLERI
i START A/D. THEN RESET	 IAELE POINTER
1 AND POINT COUNTER.	 THIS	 IS IN EFFECT THE
1 RE-SYNCHRONIZATION ROUTINE.
1
ST2SRV: MUV	 iRO)+,PADCSR (POINT TO MUk ADDRESS

PIS	 s1,QADCSR ;AND START CONVFkSION.
CLR	 QKWCSR ;DISAPLE STOZ	 INT REG
RTI ;RETURN FROM ST12	 INT.

;flrsststttsrlsssssrtsstal/ututsruRRSetltfssn•Rtssasrnrttt•
1
i A/D DONE	 INT HANDLERI
1
ADSRVI MOV	 PADbPRr-(R4) $PUSH CONVERSION ON STACK

DEC	 RS iPUMP CHAN COUNT
I PEG	 i1 ;bkANCH IF AL6 CHAN DONE,OR

MOV	 __	 (R0)+,QADCSR ;START NEXT CHAN

;

I A
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RTI $AND EXIT.
I	 I MOV NCHANSrR3 (RESET CHAN COUNT
2^f MOV IR4)+PR2 $DET LAST CONVERSION

SUS 01000.:2 ISUBTkACT O':SET
MUL (R1)+rR2 (MULTIPLY PY GAIN
ADD R3rSIGLO $ADD IN I.OWER WORD
ADC SIOHI (AND CARRY;,THEN
ADD R'PSIGNI :ADD IN HIGH WORD
SOS RSP2t #DO FOR ALL CHANS
MOV SIOLOrR3 :COPY LO WORE, OF SUM
MOV SIGHIrR2 IAND HI WORD OF SUMP
ASHC ISHFTrR2 IMULT.	 BY ZttISMFTr	 AND
NEO R2 IFLIP S104 AND
ADD t1000vR2 ;ADD	 IN OFFSET
MOV iDUMP TO V/A CHANNEL
CLR

R%,9D2ABUF
SIGHI IZERO SUMMATION

CLR SIGLO IPUFFEk WORDS
MOV NLHANS.RS iRE-kESET CHAN COUNT
MOV tCHNLSTPRO ;POINT TO TOP OF CMNLST
UEC COUNT #PUMP POINT COUNT
BEO 4t ;BRANCH IF NF'TS DONE
MOV (RO) +r @ADCSR IOk RESET A/D FOR ST1.
kTI ;AND EXIT.

461 CLR PADCSR ;TURN OFF A/D INT
MOV TAPLE.R1 $POINT TO IAPLE BASE ADDR
MOV NPTSrCOUNT #SET	 F'OINT	 COUNT
MOV 060002PWKWCSR ISET CLK FOR ST2 INT ENA
RTI

;tsnstaaatasaaaasatstatsaatu s utsatstaatsssasatttsassastaa atat
$
I :TOkAGE AND LOCATION DEFINITIONS
1
ADVEC: 400 iA/0 DONE INT VEC ADDR
ADPSW: 402 ;A/11	 INT	 PSW
KWVEC: 440 ICLK	 INT VEC AIlDR

KWPSWI 442 ;CLK	 INT PSW
ST2VEC: 144 iST:	 INT VEC ADDR
ST:PSW: 446 #S72	 INT F'SW
ADCSR: 170400 $A/D CONTROL REG
ADBPk: 170402 $A/1'	 BUFFEF 	 REG
[12ABUF: 170440 $U/A CHAN	 'A'	 OUTPUT BUF
KWCSk: 1701:0 $CLOCK STATUS REG
KWPPR: 170422 $CLOCK BUFFER REG
RCSRI 177560 ;KEYED LNTL STAT REG
XCSR: 177564 $Fk'INTEk CNTL STAT 	 REG
1
T1CSR: WORD 0 ISTORAGE FOR R'CSR
LPCSR: .WOkD 0 ISTUk'AGE !OR YCSR
HANDS WORD 0 $OLD KEYBOAPf, HANDLEk
SIATI WORD 0 IULD KEYBUARD ,STATUS
1
NPTS: WORD 0 ;NO. PTS/REV
NCHANS: .WORD 0 SNO.	 A/D INPUT CHANS
TABLE: WORD 0 IAD1lk OF	 DATA	 TABLE
CMNLST: .PLKW 16. $MODIFIED CHANNEL LIST
ISHFT: WORD 0 $GAIN-(2atI5HIFT)/65536.
COUNTI WORD 0 ;COUNTER FOk t POINTS
KFLAO: WURD 0 SKEYPOARD INT RED FLAG.
S1GLO: WURD 0 ISUMMATION BUF LO WOkD
SIGMI: WORD 0 {SUMMATION BUF HI WORD
1
STKTP: BLKW S. #STOkAGE FOR A/D PUF STACK
STKST: WORD 0 ;BOTTOM OF A/D STACK
1

.END
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