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ABSTRACT

Results of an investigation into methods of controller design
for an individual helicopter rotor blade in the high
forward-flight speed regime are described. This operating
condition poses a unique control problem 1in at the
perturbation equations of motion are linear with coefficients
that vary pericdically with time. The design of a control
law was based on extensions to modern multivariable systhesis
techniques and incorporated a novel approach to the
reconstruction of the missing system state variables. The
controller was tested on both an electronic analog computer
simulation of the out-of-plane flapping dynamics, and on a
four foot diameter single-bladed model helicopter rotor in
the M.I.T. 5x7 subsonic wind tunnel at high levels of
advance ratio. It is shown that modal control using the IBC
concept 1s possible over a large range of advance ratios with
only a modest amount of computational power required.
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1. INTRODUCTION

1.1 The Individual-Blade-Control Concept

To further expand the utility and performance of the
modern hellcopter, lmprovements must be made in the response
of the alrcraft to the many and varied disturbances present
in 1its normal operation. These responses are primarily of
aerodynamic origin, and are transmitted to the vehicle
through 1its rotating blades. Thus, if sufficient action is
taken at the source of these problems, it would appear
possible to considerably Iimprove the helicopter's handling
qualities, reduce vibratlion and increase overall stability.
Recent efforts to apply actlve control technology to rotary
wings have shown promise 1in reducing response due to
atmospheric turbulence [Ham and McKillip,1980; Zwicke,b1980],
retreating blade stall [Ham and Quackenbush,1981], vibration
suppression [Shaw and Alblon,1980; Wood,1983], blade-fuselage
interference [Rahnema,1981], and flap-lag modal damping
enhancement [Ham, Behal and McKillip, 1983].

These applications have all used the method of active
pitch control to produce counteracting aerodynamic forces,
but the generation of the control actuation can be divided

into two fundamentally different approaches. The first and
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currently more wldely used in vibration suppression 1is
Higher-Harmonic-Control (HHC) [Shaw and Albion,1980;
Wood,1983; Molusis, Hammond and Cline,1981; Johnson,b1982;
Taylor, et. al.,1980], where Iintegral multiples of rotor
rotational frequency are appropriately scaled and phase
shifted so as to generate pitch commands, either open- or
closed-loop, that approximately cancel the harmonics of
vibration passed down from the rotor to the fuselage. The
second and more versatlle of the two is
Individual-Blade-Control (IBC) [Ham and McKillip,1980; Ham
and Quackenbush,1981; Rahnema,1981; Ham, Behal and
McKillip,1983; Kretz,1976; Ham,1980; Guinn,b1982; Ham, 1983],
involving the use of actuators on each blade to control the
pitch 1individually in the rotating frame of reference. This
latter approach is essentially a "broad-band” control of the
rotor blade dynamics, as opposed to the HHC limitation of
discrete frequency disturbance suppression, and as such |is
capable of aeroelastic control of the blade modal responses

to both external disturbances and pilot commands.

However, this increased functionality of the IBC concept
is not without its price. Since the control and the motion
sensing of the IBC system i1s done in the rotating blade's
frame of reference, the equations describing the dynamics

will contaln coefficients that are perlodic functions of
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blade azimuth angle due to the rotor's non-uniform flowfield
in forward flight [Johnson,1980; GCessow and Meyers,b1967].
This time dependence of the system dynamics thus makes the
use of standard time-invarlant controller design techniques
invalid for flight speeds exhibiting moderate 1levels of
periodicity. Hence, a definite need exists for rules and
guidelines in the selection of a controller design for
systems with perlodic coefficlents 1f the IBC concept 1s to
become a piece of flight hardware.

1.2 Perlodic Coefficlent Systems

The linearized small displacement equations of motion of
the rotor blade contalning perlodic coefficients are by no
means unique -- the general form of the solution to linear
periodic equations was first stated in a set of theorems over
a century ago, known collectively as Floquet theory
[D'Angelo, 1970; Meirovitch,1970; DeRusso, Roy and
Close,1965]. Common special cases of these equations are
Hill's equation and the Mathieu equation, both only
second-order, with the second a subset of the first [Magnus
and Winkler,1979]. Applications of such equations to
physical phenomena abound, ranging from astronomy and orbital
mechanics [Meirovitch,1970; Kern,1980; Nishimura,b1972; Wiesel
and Shelton,b1983], electric circuits and solid-state physics



Page 4

[Haug, 1972] to blolgical cycles [Emanuel and
Mulholland,1976], aircraft cruising flight optimization
[Evans,1980; Cillbert,1982; Speyer and Evans,b1981], chemical
reactor process control (Fjeld,1969; Rinaldi,1970;
Marzollo,1972], and parametrically excited mechanical systems
[Wang,1983; Peters and Hohenemser,1971; Nafeh and Mook,1979].

Analytic solutions for these equations are not possible,
except for a few scattered speclal cases [Wu,1980: Dasarathy
and Srinivasan,b1968; Junkins,1978] and so one often needs to
resort to numerical methods to Iintegrate these equations
forward in time [Friedmann, Hammond and Woo,1977; Gaonkar,
Sinha-Prasad and Sastry,1981; Vepa and Balasubramanian,1980;
Dugundji and Wendell,1983]. Approximate methods such as
those of peturbation theory [Nafeh and Mook,1979;
Johnson,1972; Nafeh,1981], or a similar technique of harmonic
expansion [Dugundji and Wendell, 1983; Peters and
Ormistron,1975;: Hohenemser and Yin,1972; Wendell,1982] are
possible 1if one is interested either in solutions valid over

a short time interval or at steady-state.

1.3 Perliodic Control Theory

Due to the time-varying nature of the equations, control

systems are not easlly designed for perlodic processes using
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classical frequency-domain approaches. However, modern
control theory [Bryson and Ho,1975; Kwakernaak and
Sivan,1972] 1is capable of handling time-varying system
dynamics and thus is a 1likely candidate for attempts to
extend the theory to handle periodic systems. The technique
of modern control design consists of formulating the control
requirements as a constrained optimization problem, where the
function to be minimized 1s an expression that trades off
system performance with the cost of controller activity.
This cost functional 1is typlically a scalar that exhibits
quadratic dependence upon both state and control deviations,
and the constraint 1s that the system be governed by the
state equations of the plant being controlled. The welghting
factors 1in the cost function can be used to achieve various
purposes, such as state-control perturhation tradeoffs, pole
placement, output regulation, 1implicit model following and
neighboring-optimal control ([Stengel,1981]. An attractive
additional benefit 1is that modern control and state-space
techniques are equally capable of including the many degrees
of freedom and multiple 1inputs and outputs present in the
helicopter rotor. Like all design pethodologies, it 1is not
without its faults. Although the technique does
"automatically” compute a feedback scheme that 1is in some

sense "optimal” for the given cost function, a fair amount of
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iteration and insight 1s often necessary in order to specify
a mathematical relationship that truly represents the design
objectives of the ~controls engineer [(Widnall,b 1968;
Stein,1979].

Of the literature in the controls fleld relating to
perlodic control, most concerns the periodic operation of a
time-invariant nonlinear system to maximize some measure of
performance [Marzollo,1972]. The two most nQtable examples
of this are chemical process control [Fjeld, 1969:;
Rinaldi,k 1970] and aircraft cruising flight extension
[Evans,1980; Gilbert,1982; Speyer and Evans,1981]. In this
instance, a technique 1s developed to determine the necessary
conditions under wnich control of a process can be improved
if it is operated under oscillatory conditions instead of at
a steady-state. For these prbblemé, the performance function
1s maximized over one period, with the period left as a free
parameter and the states of the process forced to be equal at

the completion of one cycle.

Closer to the problem at hand are blological system
control problems (since they operate cyclically with a fixed
period) [Emanuel and Mulholland,1976], but often these are
characterlized by state varliables that are constrained to be

non—-negative, such as specles populations, or to havirg
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performance criteria that are non-quadratic 1in the state
deviations. Other examples, such as [Wang,1983], address the
control of a time-periodic system using ;;ate—dependent
inputs. Examples of pole-placement techniques for linear
periodic systems can be found [Kern,1980; Wiesel and
Shelton,1983; Meyers,1982; Wolf,1982], but they are all done
without the use of a cost function and as such provide no
indication of the effects of various welghting parameters
upon the closed-loop dynamics. To the best of the author's
knowledge, only [Liebst,1981] addresses the
Linear—Quadratic-Regulator (LQR) problem in the context of a
periodic coefficlient system, but it too falls short 1in that
it gives no indicatlion of system stabllity or eigenvalue

movement with various cost constraints.

1.4 Scope of Current Research

The motivation for this thesis was first encountered
during the author's work in [Ham and McKillip,1980], where
the wind tunnel model rotor operating under an early feedback
controller design exhibited a pronounced parametric
excitation at half rotor rotation frequency. Subsequent
analysis using Floquet theory showed this result to be
predictable, and thus all feedback controller designs were
henceforth checked to ensure that they would not possess
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similar N/2-per-revolution resonances. For moderate levels
of feedback gain and low advance ratios, this aprroach proved
to be adequate for IBC applications involving the control of
single-mode response [Ham and Quackenbush,1981; Ham, Behal
and McKillip,1983: Biggers,1974].

Applications of the IBC concept to vibration reduction,
due to the added complexity of including two out-of-plane
modes of response, necessitated the use of state-varliable
techniques 1in the controller design. Since this application
had a low forward-speed flight condition as its design point,
the effects of perlodicity were once agaln neglected in the
feedback design phase. The benefits of a simplification to a
linear time-invariant form were somewhat overshadowed by the
requirement within modern control theory to have all state
variables of the problem avallable for measurement. Since
this was quite impossible, attentlion was then focused on how
to best make amends for this lack of information.

Research into observer theory showed that 1in order to
best estimate these states given the measurements avalilable,
one must construct a dynamic model of the process to be
observed, and drive the model with weighted errors between
the expected output and the actual measured cutput of the
system [Bryson and Ho,1975; Kwakernaak and Sivan,1972]. This
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then requires one to build a dynamic element, (often
electronic) that has the same order as that of the physical
system, often a rather severe constraint. Given a sultable
selection of effectively noise-free measurements, however, it
is possible to construct a lower-order approximation to this
observer [Luenberger, 1966]. If one merely wishes to
feedback a particular 1linear combination of these state
variables, even further reduction of system complexity may be
possible [Melsa and Jones,1970].

Use of these "minimal-order" observers in early IBC
vibration controller designs resulted in systems with poor
per formance. After other competing designs were generated
via this same technique, it was discovered that the
observer's gains were highly sensitive to variations in the
plant parameters. This sensitivity was due not only to
variations in actual coefficlents, but also to the assumed
model structure, stemming from the use of blade-mounted

accelerometers as sensors for feedback control.

For most physical systems represented in state-variable
notation, pure acceleration 1s not a state-variable in
itself, but instead is a 1linear combination of the
displacement and velocity states of the plant as well as any

control or disturbance inputs. Since the accelerometer
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measurements are assumed to be relatively nolise-free, any
unmodelled effects or disturbance dynamics such as tunnel
turbulence are propogated directly into the estimation error,
and as such could conceivably force the rotor blade to
exhibit erratic behavior. This effect could easily be
compounded by the neglected periodic variation of the
coefficients in the math model of the rotor dynamics. Thus a
strong need exists for some guldelines concerning what level
of approximation 1s sufficlent for adequate feedback
controller design of such a complex system.

The chapters in this thesis fill this gap in knowledge
and experience in designing modern control systems for
linearly periodic systems through a methodical serles of
investigations culminating in the periodic control of a model
helicopter rotor in forward flight. First, the equations of
motion for a single helicopter rotor blade in forward flight
are presented in chapter 2, along with a description of the
mathematical nature of linear periodic coefficient systems.
Chapter 3 presents modern control theory in the context of
periodically varylng systems, with some numerical results
concerning trends in closed-loop pole locations with changes
in the cost function. An extension is made in the theory to
handle Iimplicit-model-following <controller design for
perlodic systems, and an efficlent computational technique
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for calculating the feedback and feedforward gains 1is
outlined.

In chapter 4, the system 1identification problem for
linear perliodic systems 1is treated in two parts. First, a
novel technique for estimating rotor states using position
and acceleration measurements 1s described. The method is
unique in that it contains no periodically varying elements
in its observer structure. Second, a least-squares procedure
for extracting the periodic system coefficlents 1s explained.
The regression uses the state estimates of the observer in
its computations. Chapter 5 1s devoted to describing the
hardware used 1in the varlous experiments conducted in the
thesis. The analog computer board that simulates the
out-of-plane rotor flapping dynamics is diagrammed, and then
the actual model hellcopter rotor system is described.

Chapter 6 contains experimental results. These
encompass work done on the analog simulation concerning state
estimation, parameter ildentification and closed-loop control,
as well as data from the actual rotor at high advance ratios.
Parameter identification trials and closed-loop controller
results are detalled for the wind tunnel test data, and
comparisons both with theory and with the results from the

simulation tests are made. Conclusions from the research are




Page 12

drawn in chapter 7, and recommendations for areas of further

work are given.



Page 13

2. EQUATIONS OF MOTION AND PERIODIC SYSTEM MATHEMATICS

2.1 Introduction

In this chapter the equations of motion describing the
rigid out-of-plane flapping dynamics of a single articulated
rotor blade in forward flight are derived. The asymmetrical
nature of the tangential flow field will be shown to give
rise to damping, stiffness and control terms that are
perlodic in blade azimuth angle. To simplify the analysis, a
quasi-steady approximation has been used, with no allowances
for the effects of compressibility, stall, or blade tip
losses in the calculation of the aerodynamic forces present.
Only one mode 1is considered, since: (1) consideration of
additional elastic out-of-plane modes would only cloud the
picture of the effect of various control designs; (2) the
model rotor blade to be tested 1is 1in 1itself very stiff,
having a nondimensional bending stiffness near seven times
rotor rotation frequency, approximately twice the ratio of a
full-size blade: (3) in-plane motion, while not having a high
natural frequency, 1s rather small in magnitude and is not of
major importance for an articulated rotor; and (4) effects of
torsional flexlibility are discounted, since the IBC concept
requires broadband control of blade pitch from the outset.
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Following a description of the plant dynamics to be
controlled, an outline of the avallable mathematical tools to
deal with such pecullar systems is given. This includes a
formulation in state-varliable notation [DeRusso, Roy and
Close,1965] which has proved to be very convenient for
handling multi-dimensional control and systems problems.
Floquet theory 1s introduced along with the importance of the
state transition matrix for one fundamental period, and
computational techniques for obtalning this matrix and
thereby determining system stabllity are presented.



Page 15

2.2 Derivation of the Rotor Flapping Equations

Several methods exist for arriving at the equations
describing the flap motion of an articulated blade in forward
flight [Sissingh,1970; Johnson,1980], but perhaps the easlest
and most direct 1is simply to invoke D'Alembert's Principle
and consider the moments about the flapping hinge at the hub,
as sketched in figure 2.1. In figure 2.l1l.a can be seen an
instantaneous view of the rotor blade as it would appear
looking down the shaft from the top of the rotor. Figures
2.1.b and 2.1.c show projections of the side and end view,
respectfully. Since the flapping hinge cannot sustain a
torque about its axis, the sum of the moments about this
point will equal zero. These moments are due to: (1) the
centrifugal forces acting radially from the shaft; (2) the
inertial reaction of each infinitesimal mass to flapping
motion acceleration; and (3) the distributed 1ifting airloads
along the blade span. If one invokes the small-angle
assumption that cosines of angles are equivalent to unity and
sines of angles are approximately equal to the radian measure

of the angles themselves, one arrives at the expression:

R R R

; [fepiae - z [psl arep o é [epe

{2.2.1)
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1s the spanwise distributed blade mass

is the flapping angle

is the rotation frequency

is the distance measured from the shaft

is the total rotor radius

is the hinge offset divided by rotor radius

where:

WD DO

-;—- is the spanwise 1ift distribution
r

The spanwise 11ft distribution is calculated by considering
the 1local flow about a two-dimensional section at an
arbitrary radius as in figure 2.1.c. For the quasi-steady
case, thls 1is Jjust the product of the dynamic pressure and
the chord times the 1lift coefficient, which itself 1is just
the product of the 1lift curve slope times local angle of

attack. Thus one has:

b 1/2 * * UZ * * * [ O 2]
dr /a
(2.2.2)

where: /0 is the air density

U is the local flow velocity magnitude

c is the chord '

a is the 2D 1ift curve slope

© is the pitch angle of the blade

@ is the angle between the local velocity

and a plane perpendicular to the shaft
If one again invokes the small angle assumption, the local
flow angle @ 1is approximately equal to its tangent. Also,
the magnitude of the local velocity can be approximated by
the tangential velocity for most of the rotor. Incorporating

both of these approximations gives:

r - Y
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dT
-;;- = 1/2 * /° *atct UT * [ U&' e - UP ]
(2.2.3)
where: U =0r + t/«~"-ﬂ-R"s.lr'n( #)
T ( the angential velocity )
U = *(LR*cos ( + A*QR
P . p‘/“ ndicular velégity
= cos
-~ non 1mensiona1 forward flight speed
A 6* | R ght P )
= sin
( nonéimensional inflow velocity )
SR = tip velocity of the rotor
V = forward flight s
& = shaft tilt into the wind,

positive forward

Substitution of (2.2.3) into (2.2.1) will result in a
proliferation of symbols, which can be reduced by
non-dimensionalization according to the following steps.
First, (2.2.1) is divided by the blade inertia about the
flapping hinge. Second, the aerodynamic parameters are
lumped together into a unit-less quantity called a Lock
number. Third, the span 1s nondimensionalized by rotor
radius and the flap natural frequency by rotor rotation
frequency. If the inflow effects are neglected for now, the

result is:

f.i2+ /5/%+ 3;5/5=M9

where the coefficients are:

(2.2.4)



Page 18

/ﬂ— -g—/(x*/&lin)‘ ) x7(x) dx

{V2+ _;x_ (/ucoty)*

/(x#/asin‘/’)‘){(x) dx )
¥ 2
Me Y /( x +/u.ain‘f ) N(x) dx

and the nondimensional flapping mode shape is:

D>
N
!

e =
1% 7 3Ty
and: y% is the nondimensional flapping frequency
/° acR
MR e is the Lock number
I1
I is the inertia about the flapping hinge

1

These integrals must be evaluated with some care in
order to accurately treat the direction of the incremental
11ft force on the blade section. As shown in figure 2.2, the
various tangential flow regimes of the rotor blade can be
broken down into three areas on the rotor disc. At certain
combinations of span, azimuth angle and forward flight speed,
the local flow direction at a section will be directed from
the tralling edge to the leading edge. For high levels of
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forward flight speed, it is possible that the full span of
the blade 1is in such a state. These three areas, then,
correspond to: (1) normal flow, encountered over azimuth
angles such that ( -xi </At'sin(jﬁ) <//¢ ): (2) mixed flow,
where part of the span is in normal flow and part is in
reversed flow, encountered over the the range of azimuth
angles such that ( -1 < A *sin(¥) < -xi ): and (3) reversed
flow, where the full blade span is in reversed flow, valid
where (/AL'IIH(?L) < -1 ). This third category can obviously
only exist for rotors operating at advance ratios greater
than unity. The integration limits on these integrals are
then:

1
(3): -'j/ ( ) dx === for fully reversed flow.

t

The results of performing such integrations are given in
figure 2.3, where the effect of an offset flapping hinge is
included in the evaluations. Plots of these three moment

coefficlents can be seen in figure 2.4a, 2.4b and 2.4c as a
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function of advance ratlo.

A few important aspects can be seen in these three time
historles of the flapping equation coefficlents. Most
apparent is the lncrease of higher harmonic content 1in each
of the coefficlients with increasing advance ratio. This is
due to the fact that all the periodic terms in the
coefficlents enter the expression as products of advance
ratio and sines or cosines of azimuth angle. As advance
ratio Iincreases, these terms dominate the coefficient's
character. Second, the flap damping term never changes sign,
although 1its value does become quite small for certain
reglons near the boundary between regions (2) and (3) on the
retreating side. Thls makes sense since the local velocity
due to any flapping motion would produce section angle of
attack changes, aenerating in-phase 1lift forces that would
oppose the motion (for the quasi-static case). And finally,
the control moment due to changes in pitch angle can be seen
to pass through zero on the retreating side for high advance
ratlios. This is due to the 1lift in the normal regime on the
outboard span of the blade exactly cancelling the 1lift in the
reversed flow region on the lnboard section. These first two
observations will help the evaluation of the parameter
ldentification results that follow in a later chapter, and

the last effect will be seen to produce singularities for
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certain types of controller designs.
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2.3 Mathematics of Periodic Linear Systems

2.3.1 Introduction

In this section, the somewhat peculiar nature of systems
of linear differential equations having perliodic coefficients
will be described. Much of the material presented will be
drawn directly from [Dugundji and Wendell, 1983] and
[Johnson, 1980, ch.8], but the motivation for 1its 1inclusion
here 1is to make the thesis self-contained and the notation

consistent.

Analyses of periodic coefficient systems are very often
approximate due to the considerable added complexity of
having to deal with time-varying param;;ers. These
techniques range from perturbation-type methods, where the
periodicity is assumed to be of small size relative to the
mean parameter values, to harmonic-balance and multimode
methods (called "multiblade" for helicopter problems), where
a truncated Fourler expansion 1is substituted 1into the
governing equations in order to determine its free
coefficients. The techniques that follow in this section are
"exact"”, in that the approximations present are in the

problem formulation and not in their mathematical solution.

This 1s not to say that perlodic linear systems are exactly
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solvable -- the expressions given below are exact, but in
virtually all cases they must be evaluated numerically on a
computer, a process which 1s never exact due to numerical

truncation effects.

2.3.2 State Varliables and the Transition Matrix

Modern control techniques are fundamentaIly used with
systems described 1in state-varlable notation. The primary
advantage of such a system is in economy of representation —-
extremely complex 1linear (and nonlinear) lumped-parameter
systems with multiple inputs and outputs can be described
with just two matrix-vector equations. The selection of
states describing a system, however, 1is not unique, and can
be chosen for computational convenlience or physical
significance. | In most engineering applications for
rotorcraft, these states are the displacements and velocities
of the modal degrees of freedom under analysis. For a linear
system, the n states x(t) can be related to the m inputs u(t)
and the 1 outputs y(t) according to:

x (t)
y(t)

A(t) x(t) + B(t) u(t) (2.3.1)
C(t) x(t) + D(t) u(t) (2.3.2)

If just the homogeneous terms of (2.3.1) are retained, a



Page 24

set of solutions can be obtained for any particular initial
condition on x(t) by direct integration of the equations of
motion. If n such solutions are obtained for the n initial
conditions characterized by having all zeroes except for a 1
in the 1i-th location, one can combine them column-wise to
form the state transition matrix (STM) for this homogeneous
system. This matrix relates the homogeneous solution at some

time t to the solution at a previodé time tO0 according to:
x(t) = &(t,t0) x(t0) (2.3.3)

and since it 1s composed of solutions to (2.3.1), the state

transition matrix must obey the same equation:

&(t.t0) = A(t) &(t.t0) (2.3.4)
Other properties of the STM include:

&(t2,t1) &(t1,t0) = &(t2,t0) (2.3.5)
B(t.t) = I =3(t,t0) 5(t0,¢) (2.3.6)
5(t.t0) = &(t0.t) (2.3.7)

For the time-lnvarlant case, the STM is not dependent
explicitly on the two time parameters, but instead on the
time interval (t-t0). If one performs a Taylor-series

expansion about t0, one can show that:
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&(t-t0) = exp{ A(t-t0) } ) (2.3.8)
where the matrix exponential 1s defined according to the

infinite serles:

2 2
exp{ At } =1 + At + (1/2!) At + ...
+ (1/n!) Aétn+ coe (2.3.9)
or,
b
inf j (t-t0)
&(t,t0) = sum A -—————- (2.3.10)

j=0 It

For the general time-varying case, a similar but more
complex relationship exists for the STM, as shown in [Blair,
1971]:

b
inf (3)  (t-to0)
&(t,t0) = sum [A(t) - DI] I —————- (2.3.11)
3=0 3!
where D 1s the operator notation for d( )/dt and the
parenthetical superscript (j) denotes the recursive but
non-commutative operation of the nxn matrix operator

[A(t) - DI]. For example,

[A(t) - DI] [g(t) - DI] [A(t) - DI]
Az(t) - A(t)DI - DA(t) +D I

A (t) - A(t)
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since DI = 0. Alternate methods to generate the STM for
time-varying systems are direct integration of (2.3.3), or a
stepwise approximation by breaking the time interval under
consideration 1into several dliscrete steps, and forming the
product:

&(t,t0) ~ &[tn,t(n-1 &[(t(n-1).t(n-2
(£.%0) bee x(?..)i G?tlFté? ) -E(n )](2.3.12)
where the STM &[tj.t(j-1)] is the result of holding the

system matrix constant from time t(j-1) to t(Jj).

Perlodic systems are speclal cases of these time-varying
systems, in that the coefficlents are cyclic functions of

time:

A(t+T) = A(t); B(t+T) = B(t), etc. with T = period
Floquet's theorem states the form that the STM takes for

perliodic systems, but not the analytic solution:

&(t,t0) = R(t) exp{ Q*(t-t0) } il(tO) (2.3.13)
where R(t) 1s a periodic matrix with period T, and Q 1is a
constant matrix. This can be proved by noting that
&(t+T,t0) 1is also a solution to (2.3.3), and letting
& (t0+T,t0) = M, giving:

& (t+T,t0) = &(t+T,t0+T) M (2.3.14)

The matrix M 1s gliven various names throughout the
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literature, but we will call it the Floquet transition matrix
(FTM). If we now set M = exp{ QT }, we obtain from (2.3.14):

&(t+T,t0) = &(t,t0) M (2.3.15)
since & (t+T,t0+T) = &(t,t0). Now if we define:

R(t) = &(t,t0) exp{ Qt } (2.3.16)
we obtain:
R(t+T) = &(t+T,t0) exp{ Q(T+t) }

&(t,t0) exp{ QT } exp{ —Q(T+t) }
d(t.t0) exp{ —Qt } = R(t)
and thus R(t) 1is periodic in T.

2.3.3 Eigenvalues and Eigenvectors of Periodic Linear Systems

Just as the dynamics of time-invariant systems of
equations are governed by the homogeneous system's
elgenvalues, the properties of a periodic linear system are
directly influenced by the eigenvalues of the Floquet
transition matrix. To see thlis, one need only employ a
result from the Cayley-Hamilton theorem for matrices in order
to show that any analytic function of a matrix is related to
a transformation of the result of applying that same function
to the matrix elgenvalues, or:

-1
f{A}=Xf{E} X (2.3.17)
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In order to interpret these results, one must remember
that the actual physical response of a system governed by
real coefficients must also be real. Hence it is the product
of the elgenvectors and the exponentiated eigenvalues and not
the eigenvalues themselves that determines the system output.
Addition of a multiple of the funcamental frequency to an
elgenvalue of Y corresponds to multiplying that mode by
exp{ -12pi(n)t/T }. This 1s fully consistent with the
results developed, since Floquet theory only requires that
the mode shape be periodic, and there is no specification as
to how the periodicity is apportioned between the elgenvalue

and the eigenvector.

The only question left begging ls how to determine what
multiple of the fundamental must be added to the elgenvectors
of Y. This decision can be made readlly if the system
becomes time-invariant at some limit, such as the helicopter
rotor does in hover. For this case, the location of the
time-invariant eligenvalues of the rotor can be found readily,
and the eigenvalues of the perliodic system can be constrained
to vary 1in a continuous fashion from the hover roots with
changes in advance ratio. An automated technique, from
[Johnson, 1980], 1is to require the mean value of the
elgenvector to have the largest magnitude:; then the harmonic

of 1largest magnitude in the eigenvector corresponding to the
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where A is a matrix with X as its matrix of eigenvectors and
E as 1ts matrix of characteristic values, or elgenvalues.

Thus, for the time-invariant case, the STM is:

B(t,t0) = X exp{ E(t-t0) } X (2.3.18)
For this system to be stable, the homogeneous solutions
should either remain at a steady value or decrease with time.
In order for this to happen, the matrix exponential should
not be an increasing function, which implies that none of the

eilgenvalues in E have positive real parts.

For periodically varying systems, the STM was shown to

5(t.t0) = R(t) exp{ Q(t-t0) } R (t0) (2.3.13)
and 1f we use S and Y as the elgenvector and elgenvalue
matrices of Q, we can then write:

5(t,t0) = R(t) S exp{ Y(t-t0) } § R (t0) (2.3.19)
So, since the product R(t)S 1is periodic in time, the
stabllity of the system 1s again determined by the
eigenvalues of Y, with positive real parts in any elements of

Y producing unbounded solutions.

For time-invariant systems, standard methods are
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available to compute the eigenvalues of A and thus determine
the system's stability. Unfortunately for periodic linear
systems, no simllar technique exists to determine Y given
A(t). However, from (2.3.15) we have a relationship for the
Q matrix in terms of the FTIM:

=1
M=exp{ QT } =S exp{ YT } S (2.3.20)

SO one can write:

1 -1 1
Y= Log{ S MS } = ry Log{ Z } (2.3.21)

where Z is the diagonal elgenvalue matrix of Mand S 1is 1ts
eigenvector matrix (the same as for Q). In order to evaluate
the stability of a periodic 1linear system, then, 1t 1is
necessary to first obtain the FIM (M) through any means
avallable, typically via Iintegration of the homogeneous
equations over one period. The system is declared stable if

the real parts of the eigenvalues in Y are all non-positive.

Since the eilgenvalues of Y are related to those of 2Z
through the complex logarithm, it is clear that this same
stabllity criterion is met if the elgenvalues of Z all have
magnitude less than unity. This becomes even more obvious 1if
one considers the behavior of the STM over several perlods.

In this case, since the STM at any time is related to the STM
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over one perliod according to:

& (t, t0) M (2.3.22)

n -1
so, &(t+nT,t0) = &(t,t0) S Z S (2.3.23)

& (t+nT, t0)

and any eigenvalue of magnitude greater than one will cause
the STM to grow unbounded with time.

But perhaps the most peculiar behavior of perlodic
linear systems is due to the nature of the complex logarithm.
Since the logarithm value 1s dependent upon the branch over
which it is defined, the eligenvalues of Y can have a multiple
of (2pi/T) added to their limaginary part without affecting
the system stability:

1 2pi
y= = (In|z] +1 /(2) ] +n = 1 (2.3.24)

The eigenvalues of Z can take on three possible values, since
M 1is a real matrix: they can be part of a complex conjugate
pair, ylelding a complex conjugate palr in Y: they can be
positive real, ylelding a root of Y at some integer multiple
of the fundamental frequency [(n)2pi/T]: or, they can be
negative real, ylelding a root at some multiple of the half
of the fundamental frequency. [(n+.5)2pi/T]. This implies
that it 1is entirely possible to have elgenvalues of Y which

are complex but have no corresponding conjugate.
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In order to interpret these results, one must remember
that the actual physical response of a system governed by
real coefficients must also be real. Hence it is the product
of the elgenvectors and the exponentiated eigenvalues and not
the eigenvalues themselves that determines the system output.
Addition of a multiple of the funcamental frequency to an
elgenvalue of Y corresponds to multiplying that mode by
exp{ -12pi(n)t/T }. This 1s fully consistent with the
results developed, since Floquet theory only requires that
the mode shape be periodic, and there is no specification as
to how the periodicity is apportioned between the eigenvalue

and the eigenvector.

The only question left begging ls how to determine what
multiple of the fundamental must be added to the elgenvectors
of Y. This decision can be made readlly if the system
becomes time-invariant at some limit, such as the helicopter
rotor does in hover. For this case, the location of the
time-invariant eligenvalues of the rotor can be found readily,
and the eigenvalues of the perliodic system can be constrained
to vary 1in a continuous fashion from the hover roots with
changes in advance ratio. An automated technique, from
[Johnson, 1980], 1is to require the mean value of the
elgenvector to have the largest magnitude:; then the harmonic

of 1largest magnitude in the eigenvector corresponding to the
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principal value of the eigenvalue gives the frequency n2pi/T.

Finally, it should be mentioned that it is possible to
consider the periodic system 1n terms of modal coordinates,
by transforming the equations of motion wusing the
substitution R(t)S v(t) = x(t). Upon substitution into
(2.3.1), one obtains:

v(t) Yv(t) + [R(t)S ila(t) u(t)
y(t) C(t) R(t)S v(t) + D(t) u(t) (2.3.25)

and the homogeneous equations'aro now amenable to standard

analysis techniques for time-invariant systems. Note,
however, that one is still left with a periodic control and
output matrix, and thus standard time-invariant optimal
control techniques are still not applicable for this modified

form.
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3. PERIODIC CONTROL THEORY

3.1 Motivation for the LQR Approach

The control laws designed for the I.B.C. rotor in this
thesis are all formulated as a solution to a
calculus-of-variations problem, in accordance with the
techniques of so-called "modern" control system design. This
formulation consists of expressing the controller design
objectives as the time Iintegral of quadratic functions of
both state variable perturbations and cecntrol expenditures,
with the state variables constrained to obey a specified set
of dynamical equations. This particular method of controller
design became popular with the advent of the widespread use
of digital computers, allowing a numerical solution to rather
complex problems to be obtained within a reasonable amount of
time.

These "modern" approaches enjoy some advantages over
traditional frequency-domain (or, "classical") control design
techniques due to their abllity to handle a wider varlety of
design problems. State-varlable formulations of the system
dynamics permits cne to formulate the optimization problem as
a vector-matrix equation and thus allow treatment of almost

arbitrarily-large (but finite) order systems, having several
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inputs and outputs. A time-domaln representation of the
plant dynamics makes it possible to treat time-variable
systems, something not generally avalilable to the analyst
using frequency-domain Laplace variable concepts. And
finally, glven a predetermined quadratic performance
criterion, the feedback gains for all of the state variables
are computed uniquely. Since the issue of requiring all the
state varlables be measurable 1s intimately related to the
area of system 1identification, we will defer discussion of

this latter topic until a later chapter.

This need for a predetermined measure of performance
within modern controller design 1is sometimes one of the
technique's toughest requirements. The dynamics of the
closed-loop system is totally dependent upon the mathematical
representation of the quadratic performance index, such that
an linappropriate cholce of welghting parameters will most
assuredly result in a controller with poor performance. The
designer 1s thus required to express his control objectives
in terms of an analytic scalar function of the system's state
and control varlables, thereby reducing all issues concerning
speed of response and amount of control effort expended to a
single number. Such a representation of design objectives is
not often easlly obtained, and it is in this area where much

of the iteratlion of a control law design takes place.
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General guldellnes exist for how one might 1initially
approach construction of a performance function, the most
common being the weighting of each state's squared deviation
by the squared inverse of its maximum allowable value [Bryson
and Ho,1975]. Other techniques are also available, such as
penalizing state rates to limit system bandwidth, but these
as well as more complex methods [Stein, 1979] are all for
time-invariant systems. There is a definite lack of (and in
our case, a clear need for) guidelines in the selection of
the terms within the cost function for periodically time
varying linear—-quadratic control systems. Our approach to
this problem will be to attempt to gain some insight into the
various effects present in such a selection by considering
single degree of freedom systems with time-varying

parameters.
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3.2 Derivation of the Gain Equations

Formulation of the optimization problem for modern
control has been done in countless texts and technical
reports for the past twenty years. Instead of presenting the
reader with yet another example of vector calculus
manipulations, we will include an extremely curt set of
equations representing the fundamental relationships, with
the main motivation being one of standardization of notation.
This 1s necessary 1in order to put the extensions to the
theory that are developed later 1in the chapter 1into the
proper perspective. For the complete derivation of the
control problem the reader is referred to [Kwakernaak and

Sivan,1972] or, [Bryson and Ho,1375].
Civen the system:

x(t) = A(t) x(t) + B(t) u(t) (3.2.1)

with the performance index (a.k.a. cost function):

3= 12 [ixmemx® + xloMEuE)
- u(t)R(t)u(t) ] dt (3.2.2)
the optimal control law is a linear feedback of the state

variables according to:

-1, .
u(t) = -R(t) [ B(t)P(t) + M(t) ] x(t) (3.2.3)
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where the matrix P(t) 1s the solution to the matrix Riccati

equation:

. -101 -10 -1'
P= - (A-BR M) Pl- PA-BR M) + P(BR B )P
+ (Q+MR M) (3.2.4)
It can be shown that the matrix P(t), often called the cost

matrix, is related to the nptimal cost to control through:

J(t) = x(t) P(t) x{t), P(tf) = Pfinal
with P(tf) representirg :he cost matrix at the final time:;
for the cases consid<red here Pflnal 1is unimportant as it is
assumed zero. Motz That we have omitted the explicit

dependence on time from most of the matrices.

This equation is obtained after one adds the governing
system dynamic equations as a constraint to the cost function
using a Lagrange multiplier vector 1(t), and then minimizes
the ccmbined expression with respect to the control. This
procedure produces two coupled first-order linear
differential equations in the state vector and the multiplier

(or, adjolnt) state vector:

—1, .

1 T(A-ER M) (-BR B) 7 [x]
I | -1, -1, .| | _ 1 (3.2.95)
d L(Q+M M) -(A-BR M) | [1]

The solution to this set of equations 1s complicated by the

- X

|r
L



Page 38

fact that it 1s a two-point boundary-value problem, with
initial conditions given for the state vector and final
conditions specified for the adjoint state vector. One
technique around this problem 1s to combine the two equations

through the cost matrix according to:
1(t) = P(t) x(t) (3.2.6)

and the above Riccatl equation 1s generated. Though the
resulting matrix equation 1is nonlinear, P(t) 1is only
specified at the final time (in our case, infinite) 1in the
cost function 1integral, and thus can be solved through

integration.
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3.3 Solution of the Matrix Riccatl Equation
3.3.1 The Time-Invariant Case

The above nonlinear matrix differential equation has no
analytical solution except for a very few speclal cases. For
the general case, one must resort to integrating the Riccati
equation backwards in time to obtain the feedback gains for
the optimal closed-loop system. Since the upper limit in the
cost function for the problem considered here is infinite,
however, it can be shown that for most well-posed control
problems [Kwakernaak and Sivan,1972] that after a sufficient
integration time these feedback gains will approach a
steady-state value for time-invarlant systems, and thus the

rate of change of the cost matrix will become zero.

In this instance, it then becomes possible to replace
the terminal condition on the adjoint state vector with the

initial condition:

1(0) = P x(0) (3.3.1)
and then consider the solution to the Ricatti equation as
resulting from a combination of the solution of the original
coupled set of first-order linear differential equations 1in
the state and adjoint state varliables. Since the cost matrix

is constant, it becomes possible to dliagonalize this system
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using 1its eigenvectors, and thus yield a "spectral" solution
for the steady-state cost matrix. Detalls of this procedure
are given in [Kwakernaak and Sivan, p.243]. The main
requirement of this technique 1is the use of an accurate

elgen-system extraction algorithm.

3.3.2 The Time-Varying Case

Just like the time-invarlant case, no standard analytic
solution to the Riccatl equation exists for the case of a
system governed by time-varying dynamics. This is even true
for the extremely simple épeciﬁl case of a general scalar
time-varying system described by a first-order differential
equation. However, since we are interested in a small subset
of these time-varyling systems -- namely, those that are
linear but have plant parameters that vary periodically —-
one is not restricted to only using straightforward numerical

integration of the Riccati equation.

The behavior of the backward integration of the cost
matrix reveals, for sufficlently long integration intervals,
an asymptotic approach to a perlodic steady-state value for
linearly perlodic systems. Because of this, it becomes
possible to incorporate the results of Floquet theory and

impose constraints upon the form of the solution to equation
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(3.2.5). These conditions show, as was discussed in section
2.3 on linear periodic systems, that once the homogeneous
solution to this linear equation is obtained over one period,
it 1is known for all time. Based upon this result,
[(Nishimura, 1972] develops a hybrid scheme whereby one
integrates the coupled system of state and adjolnt state
variables over one perlod, and then uses the
eigenvalue/eigenvector content of this result to reconstruct
the steady cyclic behavior of the optimal feedback galn
matrix. This then allows one to generate the steady periodic
(albeit numerical) solution to the Rlccatli equation after
only at most two periods of integratlion passes of equation
(3.2.5). A descriptiont of the algorithm, along with the
extensions for handling implicit-model-following designs, is

given in a later section.

Of some interest concerning speclal cases of perliodic
control problems is [Wu, 1980], where the theorem that all
time-varying systems are reducible to a solvable form 1is
proved. It 1s shown that for certain restriced classes of
time-varying linear systems, a direct analytic solution s
possible, and that this "solvability" 1is not an inherent
property of a particular system, but is only related to how
that system 1s represented in equation form. The solution

technique consists of first transforming the system to a
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time-invariant representation, and then using standard
techniques for time-invariant systems of equations. Since a
linear system 1s invarliant under a non-singular (and possibly
time-varying) state variable transformation, the conclusion
is then reached that all one needs to do to solve a linear
periodic system 1s to discover the appropriate state
transformation so as to achleve the time-invariant
reformulation. This transformation 1s, however, Jjust the
"modal” transformation for periodic systems as described in
chapter 2, and 1s non-unique and therefore not directly

computable.

Thus, to compute the optimal closed-loop gains 1in a
linear-quadratic control design for a periodic system, one
must integrate the equations numerically, and Nishimura's
hybrid method appears to be the best technique avallable in
terms of speed and accuracy. In order to generate guidelines
for selecting cost function parameters in LQR design for
linearly-periodic systems, we will now consider trends
cstablished by performing numerical experiments upon some

simplified examples of linearly perlodic systems.
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3.4 Numerical Results

3.4.1 Scalar System Case

The same computer program that solved for the periodic
"optimal" gains for a given system was also capable of
computing the closed-loop system's eigenstructure. This
capablility made it possible to observe the effect of various
cost functions both on closed-loop pole locations and on the
periodic elgenvectors. Outputs of the program included
elgenvalues of the Floquet Transition Matrix (FTM) and their
assoclated complex logarithm. In order to properly interpret

the values of these "poles", some discussion is necessary.

As was pointed out in chapter 2, the FTM represents the
state transition matrix of a periodic system over one cycle.
If one represents the system in modal form, the new dynamics
matrix 1s just a diagonal matrix of the complex logarithms of
the eigenvalues of the FIM (see equation (2.3.25)). These
elements are roughly equivalent to what would be the
Laplace-domaln poles for a time-invariant system (the s-plane
poles). The difference here 1s that the modal variables are
perlodic functions of time. Similarly, if this system is now
discretized with a time-step of one fundamental period, the

discrete-time dynamics matrix is a diagonal matrix with the
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elements being these same eigenvalues of the FTM. Thus, the
controls engineer new to the fleld of periodic systems cannot
help but draw parallels between discrete-time systems and the
properties of the FTM poles. The same unit circle criterion
for stabllity applies for the "Floquet poles" on the complex
plane as for discrete system poles on the z-plane. Also,
poles near the origin on the Floquet plane indicate fast
(although periodic) modes are present in the system, just as
they would be for the discrete-time counterpart. Even the
ambliguity concerning the appropriate branch cut for a
particular periodic mode can be thought of as a form of
aliasing. Oscillatory modes with a natural frequency greater
than the fundamental frequency of the perliodicity (such as a
flapping mode for a rotor with elther an offset hinge or
semi-rigid hub) will produce poles in the Floquet plane that
exhibit "frequency folding” due to the sampling
(discretizing) rate being slower than twice their fundamental

oscillation.

The purpose of this section 1s to provide some
guldelines through example as to how various choices of cost
function in the problem statement influence the movement of
poles, and the nature of their assoclated elgenvectors, in
the closed-loop system. Such correlation 1is possible for

time-invariant systems [Kwakernaak and Sivan,1972],
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especlally single-input systems, but nothing is avallable for
periodic systems. The reasons for this lack of knowledge
become clear upon attempting to deduce such a relationship
analytically for even the simplest case -- a first-order
dynamic system. Whether one attempts to compute the feedback
gain through solution of a nonlinear, scalar, periodic
Riccatl equation or a linear, second-order set of adjoint
equations (as in Nishimura's approach), the result is the
same: no general analytic solution exists for the gain

function (and hence the closed-loop pole).

As an initial step, a first-order system of the form:

x (t) a(t) x(t) + b(t) u(t) (3.4.1)

-10 + lo'COB (t)

where: a(t
b(t

was considered, with the cost furction «consisting of
quadratic penalties on the state and control deviations, but
no cross-cost penalty on products of control and state. The
state transition matrix for a gcalar periodic system is an

analytic function:

t
$(t,t0) = expt{:of a(t) dt } (3.4.2)

and thus the FTM for a scalar system is directly computable
as the exponential of the product of the constant part of
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a(t) and the fundamental perliod. Thus the Floquet-plane pole
for this open-loop system will be at exp{ -2*pi } and the
Laplace-plane pole at -1. If we set the initial time t0 at

the origin, the transition "matrix" is:

$(t.0) = exp{ -t }*exp{ sin(t) } (3.4.3)
and the perlodic eigenvector can be seen to be exp{ sin(t) ).

To get a feel for the effects of periodicity on the pole
locations, the penalty weight was Iincreased on the state
deviations from zero (open-loop) both for the system of
(3.4.1) and for a similar scalar system with the periodicity
removed. The following behavior in the poles was obser 1
(with Wuu=1.0):

Time-invariant
Wxx F-plane pole L-plane pole L-plane pole

|
0. 1.868e-03 -1.0 | -1.0
.01 1.777e-03 -1.008 | -1.005
0.1 1.180e-03 -1.073 | -1.049
1.0 8.128e-05 -1.499 | -1.414
3.0 2.000e-06 -2.089 | -2.000

It can be seen that the closed-loop Laplace-plane poles of
the periodic system exhibit the same trend toward infinity as
their time-invariant counterpart, but the rate appears to be
faster for the same level of state penalty. Flgure 3.1 shows
the periodic galn function assoclated with the case of Wxx =
3.0 and its assoclated spectrum. In figure 3.2 the
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corresponding periodic eigenvector for this case and for the

open-loop case are plotted together.

Several items from this very simple case are of
interest. First, since the perlodicity appears only in the
dynamics "matrix" and not in the control term, it is possible
to cancel the perlodicity of this system completely using a
gain of the form:

k(t) = kO + cos(t) (3.4.4)
where kO is chosen to give the system any closed-loop
response time desired. Since this 1s not the optimum choice,
one may infer that the control penalty for such a design
would he too great. Second, by merely placing weights on the
actual state perturbations and control effort, the
periodicity of the closed-loop system was reduced, as
evidenced by the reduction of periodicity of the elgenvector.
This has intuitive appeal, since a perlodic system forced by
a single frequency would produce a response (although often
negligible) at an infinite number of frequencies related to
sums and differences of integer multiples of the fundamental
and the excitation frequenc:«<s. The time-invariant system,
however, would exhibit only a response at the excitation
frequency, and thus would concievably produce a lower "cost"“

for the same disturbance.
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Finally, the increase 1in the closed-loop modal time
constant over the constant-coefficlent case might be
explained by considering the equivalent modal form for
(3.4.1) as in (2.3.25). Substituting the mode x(t) =
exp{ -sin(t) }*v(t) into the equations ylelds:

v(t) = [ -1]1%(t) + exp{ -ain(t) Faul)

The cost functiea is transformed as well:
J= (1/2) [{ v [ exp{ -sin(t) }*Woctexp{ -sin(t) } v
° + u*Wuu*u } dt (2:4.6)

so that one has constant-coefficient dynamics, but a periodic
control term and state cost. If one now considers only the
constant values in the above two expressions, it 1is clear
that there is an increase in modal state penalty, as well as
an increase in the control term (called "control power").
Thus, one could argue that the effective cost of control has
been made "cheaper"” due to both of these effects, giving rise

to a faster :-ime constant.

So, even for this almost trivial example, the
interaction between speed of response and level of
periodicity are by no means obvious. However, it appears 1in
the 1limit as control cost becomes negligible, the periodic
system exhlbits closed-loop behavior similar to its
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constant-coefficlent counterpart: namely, the Laplace-plane
pole approaches infinity and the perlodicity 1s reduced.
Similar effects for certain welghting functions will be shown
for higher-order systems considered in the next section.

3.4.2 Higher Order Systems

Since the eventual application of the design aspects of
this thesis was the IBC helicopter rotor, and since
relatively simple perlodic coefficlent structures do not
necessarily imply a simple controller function, it was felt
that economy of effort could Be served by using the IBC rotor
dynamics as an example of a higher order system. This choice
had other advantages as well. The influence of perlodicity
can be observed by merely altering the advance ratio within
the equations:; at hover, the flapping dynamics are described
by a second order constant-coefficlient equation. Forward
flight progressively increases the harmonic content in the
spring, damping and control terms. Thus, comparison with the
hover poles for a particular cost function 1is a convenient
technique for inferring the effect of periodicity. However,
it should be noted that for perlodic systems other than the
helicopter rotor, the detalled varlations due to periodic
coefficients are likely to be markedly different -- we are
only trying to illustrate global effects here.
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In order to Iinterpret the implication of varlous
closed-loop pole locations on blade dynamics, it may first be
helpful to review the nature of the unaugmented rotor
flapping behavior as advance ratio increases. As mentioned
previously, the equation describing the rigid out-of-plane
motion of the blade becomes time-invariant at hover. Due to
the strong centrifugal stiffening effects of rotation, the
undamped natural frequency of this second-order system is
close to that of the rotation frequency. For articulated
blade with a hinge offset, or for hingeless rotors, this
frequency is slightly greater than unity when
nondimensionalized by rotation frequency. Damping for this
motion, in the absence of any external mechanical devices, is
due to aerodynamic effects, namely local angle of attack
changes along the span due to flapping motion. The damping
coefficient value can be seen (equation (2.2.4)) to be
directly proportional to the Lock number. Most helicopters
in use today have blades with Lock numbers ranging anywhere
from around 5 to 10, depending upon the particular hub
geometry, and thus have less than critical damping. This
means that the hover poles are a pair of complex conjugates
in the Laplace-plane (or, for that matter, the Floquet-plane

as well).
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As forward flight speed Iincreases, however, the
perliodicity enters 1n such a fashion to initiate a shift in
these poles toward the real axlis for both Floquet and Laplace
complex planes. In most cases, however, they never make it,
and instead lock onto the line representing +j or - 1in the
Laplace-plane. As advance ratio Increases still further,
these poles cease to be complex conjugates (for the
Laplace-plane case), and one becomes more stable along this
line while the other becomes less stable. This odd behavior,
characteristic of perlodic systems, can be described as
having the system Iinstability 1lock onto a particular
frequency. Such pole movement seems perfectly acceptable
when viewed in the Floquet-plane, as the roots are seen to
coalesce on the real axls prior to splitting and moving away
from each other. A sketch of this migration can be seen 1in

figure 3.3 for a typical rotor.

Three different forms of direct state welghting were
used in the design studies to be described here. These
correspond to (1) penalties on flapping position deviations
only, (2) penalties on flapping rate deviations only, and (3)
equal penalties on both flapping position and flapping rate.

For the rotor equations of motion expressed as:

/5 + Al(%*/.‘; +A0($‘)75 = BO(H*© (3.4.7)



Page 52

where primed quantities represent derlvatives with respect to

azimuth angle, we have in state variable form:

d r/n ro 17 l'/5'|
. |17, |
a¥ LA 1 L-A -Ar] A ]

These three cases then correspond to welighting matrices

having the forms:

(1) Wwex = | x O : Wxu=|0 : Wuu = | 1 |
(s I ¢ 0

(2) Wwx=]0 O : Wxu=|0 s Wuu = | 1 |
0 x 0

(3) Wx = | x O s Wwau=]0 : Wuu =] 1|
0 x 0

where the variable x was varlied from 2zero to some large
value. These were used as inputs to the gain calculation
program for eight different advance ratio cases and five
levels of weights. In order to discern the trends present 1n
the results, we will first consider the effects of advance
ratio upon a fixed weighting structure, and then look at the
effects of an increase in the weighting value for fixed

advance ratilo.

Figure 3.4a plots the Laplace-plane poles for the
position-only welghting structure. The 1lines of pole
movement indicate the 1locus of constant values of this

weighting parameter with Iincreases 1in advance ratlio. The
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plotted poles represent an advance -atio increase form zero
(hover) to 1.4 1in steps of 0.2. Thus, the x=0.0 locus
represents the varlation of the Laplace poles for the
open-loop case (since no penalty on the state produces no
regulation action and thus zero feedback gain). This
particular locus shows typical behavior for an articulated
rotor. As the welghting value is increased, however, quite
different trends are present. The locus of Laplace-plane
poles appears to undergo a rntation with increasing position
penalty. This rotation is stabilizing, in that increases in
weighting values produce closed-loop poles with more negative
real parts for the same advance ratio. This fact is even
more evident in a later figure. Also of Iinterest from the
figure 1s the fact that, for high levels of position-only
welghts, the response time of the closed-locp system is
actually faster for Iincreasing levels of periodicity given
the same cost value. This second result corresponds to the
observation made on the scalar system: increased levels of
periodicity appear to produce "optimal" systems with faster

responses given the same levels of cost.

Figures 3.4b and 3.4c show these same constant-cost loci
plotted on the upper half of the Floquet-plane (the complex
poles in the Floquet-plane always have a complex conjugate

since the STM 1is a real matrix). The same two trends are
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equally evident here: the rotation of the 1loci toward the
origin and away from the unit circle is stabllizing, and the
poles corresponding to the higher advance ratios move closer
to the origin for moderate levels of position weighting,

indicating a shorter system response time.

The next weighting function considered was a rate-only
penalty on the flapping motion. Figure 3.5a shows the
constant-weight locl for Iincreasing advance ratlo. Once
again, 1increases in penalty values are stabilizing, since
each locus is further to the left on the real axis for
increasing rate cost. The character of each locus is quite
different, however. Instead of rotating away from the
imaginary axis, they keep their general shape and, for high
levels of weight and/or advance ratlo, exhibit the same
"lock-in" behavior seen previously for the unaugmented
flapping dynamics. Figures 3.5b and 3.5c show this effect in
the Floquet-plane. The stabilizing influence of higher cost
values is apparent, but almost all loci show the "lock-in"

phenomenon.

The third and final cost structure was an equal penalty
on both position and rate deviatlons. Since this 1is
analogous to a penalty on both potential and kinetic energy,

it can be used a a means of limiting closed-loop "bandwidth"
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(see [Widnall,1968], p.93). It also serves to bridge the gap
between the purely position welghting and purely rate
weighting schemes considered. The results for this structure
are seen in figure 3.6a, where the Laplace-plane poles are
plotted for constant cost values with Iincreasing advance
ratlo. The shape of the loci is similar to those of figure
3.5a, but their location is further away from the 1imaginary
axis, 1indicating an increase in stability over the pure rate
weighting scheme. The "lock-in" behavior is also delayed a
bit 1longer in this instance, occurring at a higher penalty
value for the same range of advance ratios. Figures 3.6b and

3.6c document this result for the Floquet-plane poles.

Perhaps more familiar to the controls engineer are the
next set of loci, where the flight condition is fixed (i.e.,
constant advance ratio) and the welghting parameter |is
increased from 2zero, the open-loop case. Fligure 3.7a show
the Laplace-plane root loci for the three forms of cost
function considered for the hover condition. All three of
these curves represent constant-coefficient system pole
locations, and thus provide a known point of comparison for
the effects of system perliodicity. Several aspects should be
pointed out. First, the position-only weighting generates
closed-loop poles for this second order system that approach

a Butterworth-type structure, namely, a damping ratio of 0.7
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with a frequency that increases with position penalty
[Kwakernaak and Sivan,1972]. Second, the rate-only weighting
can be seen to drive the system to a reduced frequency and
increased damping, such that in the limit the two poles of
the system would coalesce on the real axis, and then split.
One of these poles would approach the origin and the other
would head toward negative infinity. Finally, the
bandwidth-weighting structure forces the closed-loop pole to
an increased damping level at approximately the same
frequency. Floquet-plane equivalents of this behavlior are
given in figure 3.7b.

At an advance ratio of 0.6 these trends are still
present, as 1s seen in figures 3.8a and 3.8b, but the rate-
and bandwidth-weighting curves begin to suffer a stablility
degradation from the higher periodicity. It should be
emphasized, though, that this stablility degradation is in the
general shape of the locl, and not for the spéélflc value of
cost. And finally, figures 3.9a and 3.9 show, on a
different scale, the movement of poles for a high advance
ratio condition, namely mu=1.4. The open-loop roots that
have coalesced on the +j and -j lines on the Laplace-plane
are first driven away from this "lock-in" point, and then for
large bandwidth- and rate-penalties, return to the same

branch line, but at a more stable location.
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As a final check on the effects of periodicity, figures
3.10a and 3.10b show the real and imaginary part of one
element of the elgenvector matrix for the closed-loop system
at an advance ratio of 1.4. The dominant two-per-revolution
(2P) behavior present in the open—-loop response 1s suppressed
for all cost functions shown, but the response modes that
result are still very much periodic. Just as was true for
the scalar system, increases 1in penalty weights influence
both the eigenvectors and their response times in a rather

complex fashion.

In summary, then, these numerical exercises have
produced the following set of "rules of thumb" for periodic
system controller design:

(2) the movement of closed-loop poles with Iincreases 1in
penalty welghts 1is similar to that of constant-coefficlient
systems o displacement-only penalties produce
Butterworth-type responses, rate-only penalties generate loci
with the same qualitative damping increases, and the
combination of the two appears to limit the modal response
time:

(2) increases in levels of periodicity, such as increased
forward flight speed in the case of a helicopter rotor, tend
to produce faster modal response times for the same numeric

values 1in the cost function -- the level of increase appears
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to be a complex function of both the actual values of the
penalty weights and the level and type of periodicity. The
reasons for this effect are probably due to an Iincreased
level of modal "control power" in the examples considered,
making the cost of control "cheaper" for the same level of
modal acceleration.

(3) optimal control theory using penalties on squared
deviations in states and controls forces a perliodic system to
a closed-loop structure that has a smaller relative level of
perliodicity. This reduction 1in perlodic nature 1is not at
present predictable, and must be determined through numerical
means. The unsatisfactory nature of this last result brought
about a search for more attractive design techniques 1in the
selection of a performance index, as 1s outlined in the next

sectlion.
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3.5 Model-Following Systems

3.5.1 Introduction

As any helicopter engineer knows, a successful rotor
system must be designed and bullt with careful attention
given to its aercelastic properties. Control over the many
natural frequencies present in the rigid and elastic modes
must be maintained in order to limit vibration, reduce blade
stresses and prolong blade life. This includes the avoidance
of resonances at integer multiples of rotor rotation
frequency to prevent large modal excitations due to the
aerodynamic forcing of the harmonic rotor wake. As was
demonstrated in the previous section, standard LQR approaches
to penalize excursions in flapping response with diminishing
penalties on controller action will result in closed-loop
systems with a high bandwidth. This 1is not particularly
desirable, because: (1) there may be interaction effects with
other modes not accounted for in the math model that are
destabilizing at such high bandwidth (gain) values; (2) the
closed-loop natural frequencies may fall close to an Iinteger
multiple of rotation frequency and thus promote possible
aerodynamic forcing; and (3) high penalties on system
periodicity produce large gain values that may be difficult

to implement in the controller hardware.
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Problems exist even for the other cost functions
considered that included some penalty on state rate
deviations. While these provide a means of reducing
controller bandwidth, they do not offer much promise in
specifying the level of periodicity in the closed-loop
system. Thus, tight control over a mode would require an
excessive amount of 1iteration in order to generate the

desired eigenvector structure.

Because of these drawbacks, a straightforward LQR
approach to rotor blade modal control could run into serious
difficulty. However, many other cost functions are possible
for controller design using modern methods, the most useful
for this case probably being model-following.
Model-following entalls expressing in the cost function a
desire for the plant being controlled to possess dynamics
similar to some prototype system. This prototype can be
either be a physical (often electronic) system, such as for
explicit model-following [Tyler,1964], or an implied dynamic
structure, as realized through selection of the elements in
the welghting matrices [Kreindler and Rothschild,b1976:
Kriechbaum and Stineman,1972]. The appeal of this technique
for periodic system control is twofold. First, the desired
pole locations of the closed-loop system can be achieved by

incorporating them into the model, and then driving the
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system to emulate the model through liberal weighting of the
difference between the two 1in the cost functicn. Second,
control over the level of periodicity can be achleved through
the same technique -- proposing a model with as much (or as
little) periodicity desired and penalizing the deviations
from 1it. '

This latter feature 1is especlally attractlve for
helicopter rotor control. Since the lift, propulsion and
control of the helicopter are all accomplished through the
rotor system, increased control over the blade response to
pllot commands, flight condition and atmospheric disturbances
would ©provide a better handling vehicle. Pllot stick
deflections are essentially magnitude and direction commands
on the rotor thrust vector -- any deviation of this resultant
force from the desired constitutes degraded performance.
Such a deviation might come from a sub- and super-harmecnic
response of the periodic blade dynamics, translating into a
wobbling of the tip-path-plane of the rotor and possible
instability at high forward speed. For this reason, then,
the periodic nature of the flapping dynamics 1s conzlidered a

nuisance, something to be reduced through feedback con*rol.

The model used as the prototype for this design study
(and subsequent test) was that of the hover flapping
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dynamics, although this cholce is somewhat arbitrary. This
particular choice of model has the advantage that: (1) the
feedback gains go to zero at hover; (2) the model 1is a
constant-coefficlient system, helping to reduce the
periodicity of the closed-loop system in forward flight (and
augment its stability): (3) the bandwidth of the model is
well defined and thus should produce a controller without
modal interaction problems: and (4) a stability-augmentation
system for a full-scale hellicopter would be (greatly
simplified if the rotor dynamics, due to inner-loop control,

were relatively constant throughout the flight envelope.

3.5.2 Implicit-Model-Following with Input Feedforward

As mentioned above, model-following for linear—-quadratic
regulator design can take two forms, elther explicit or
implicit. In explicit-model-following, an external analog
system 1s used as a prefllter, or command generator, to
provide reference signals for the system belng controlled.
The cost function is a simple welghted quadratic in the
difference between the outputs of this analog system and the
actual plant. The resulting controller has not only feedback
gains on the state variables of the plant, but also
feedforward gains on the states of the analog model. This is

an unfortunate (but not very surprising) result, since 1t
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requires the construction of additional hardware for the
analog model, as well a means of implementing the feedforward

gains.

Implicit-model-following, however, 1is not so demanding
on closed-loop system complexity. By formulating the cost
function to penalize the difference between the time
derivative of the state vector and the desired model
accelerations, a set of weighting matrices is arrived at that
are functions only of the plant state and control vectors.
This results in a set of gains that are only as numerous as
the number of states. For a constant-coefficient plant, this

saving in hardware may not be significant; for a periodic

system it could be substantial due to the need to program

time-varying gains. Because of this reduced hardware
requirement, the approach taken in this thesis was to use the
implicit-model form.

The model-following approaches described in the previous
paragraphs are regulator-type designs, in that no mention was
made of including command inputs. These can be incorporated
through various means, such as augmenting the state with a
vector differential equation whose initlal conditions can be
altered to produce typlical command histories [Anderson and

Mocre,1971], or by including the command signal expllicitly in

— —a,
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the model dynamics [Kriechbaum and Stineman,1972]. Due to
our ever-present constraint on system order, we will develop

the gain equations for the latter approach.

Given the system:

x(t) = A(t) x(t) + B(t) u(t) (3.5.1)
and the model:

x (t) = F x(t) + G d(t) (3.5.2)

m
where d(t) represents input commands to the model, consider a
cost function penalizing deviations 1in accelerations

according to:

J = (1/2) f{ (;c-;(m)’Q (;t-;cm) +u'(l§.g.%)dt

Substitution of (3.5.1) and (3.5.2) into the above integral

gives, after some algebra:

J = (1/2)/ { xWox x + uWuu u + d'Wdd d

+ 2xXWuu -2xWxdd - 2dWduu ) dt
(3.5.4
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where: Wwex = (A-F )'Q (A-F)
Wuwu = (R+BQB)
Wdd = G QG
wu = (A-F)QB
wxd = (A-F)QG
Wdu = G QB

Next, the derivation follows the standard steps: append
the dynamical equations of the plant to the cost function as
a constraint, Iintegrate by parts, and take the first
varlation 1in cost with respect to the control, state, and
adjoint variable (see [Bryson and Ho,1975] or [Kwakernaak and
Sivan,1972]). Variations in the input variable d(t) are not
allowed because it is external to the system:- and can be
thought of as an unknown disturbance. This results in three
equations relating the input d(t) and the control u(t) to the
state x(t) and adjoint state 1(t):

1 = —Wxxx - Wauu + Wedd - Al

-1 ’ ‘. & ’
u = Wuu {-Wxux - B1l + Wdud}
; = AXx + Bu

(3.5.6)
and upon substituting for u(t):
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. -1, -1 ,
M%7 _ I [A-B Wu Wxg ] [ =B Wuu B ] . A x 7
i_lJl - {(—wm+quwuquu'] [-A'+quwuus']J“L1J|

_1 .

B Wuu Wd
+r : ! l-11:| s -{[dj (3.5.7)
L [ Wxd — Wxu Wuu Wdu ] |

Comparison with equation (3.2.5) will show that the only
difference here 1s in the extra term due to the model input.
As was done for the homogeneous equation of (3.2.5), we will
assume the solution for the adjont variable to be a linear
function of the state variable, but we'll also include an

inhomogeneocus part due to the model input:

1(t) = P(t) x(t) - S(t) d(r) (3.5.8)

which upon taking the derivative becomes:
1(t) = P(t) x(t) +P(t) x(t) - S(t) d(t)
(3.5.9)

Since the model 1input 1is a measurable but unpredictable
quantity, the best estimate of 1its derivative 1is zero:
therefore it does not appear in equation (3.5.9) [Kriechbaum
and Stineman,1972]. Substituting into (3.5.7) gives:
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. -1 ’ -1 )
Px + P[ A - B Wuu Wxu ]x + P[ -B Wuu B ]Px —1PSd
=1 = ,
+ P[ B Wuu Wdu ]d & Sd [ -Wxx +1NXu Wuu Wxu ]x
o |
- [A - B Wuu wxu~ ] ‘Px + [ A - B Wuu Wxu ] “sd

+ [de-quWuquu]d

(3.5.10)

If the cost were truly at a minimum, then the

above

equation must be true regardless of the varlation in x or the

value of d. Thus, we can separate out all the dependence

upon these two quantitlies, giving two separate equations:

. -1 -1
-P = P[A-B Wuu qu ] + [ A-B Wuu HXu ] P
-1
- [ -Wxx + Wxu Nnu qu ] + P[ -B Wuu B 1P
(3.5.11)
. 1 -1
-8 = [ A- B Wuu qu ] S + P[ -B Wuu B ]S
-1
- P[ B Wuu Wdu ] + [ Wxd - Wxu Nuu Wdu ]
(3.5.12)
and the control 1s then:
—1 ’ ’ —1 ’ ’
u=-Wuu [Wxu + BP ]Jx + Wuu [ Wdu + B S ]d
(3.5.13)

Sevcral observations concerning the form of

these

equations can be made. First, the Riccatl equation for the

state cost matrix, (3.5.11), 1is unchanged from the form of

(3.2.4). The only differences are the actual values for the

cost matrices. From (3.5.4), one may note that these cost
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matrices are independent of G, the input matrix in the model
dynamics. Second, equation (3.5.12) for the variation of S,
the state and model input cross-cost, 1s linear and depends
explicitly on both the G matrix and the solution to the
Riccati equation (3.5.11). And finally, the expression for
the optimal control shows a feedback galn for the states that
depends on P and a feedforward gain for the model input that
depends on S. Only the feedforward galn is influenced by the
choice of the model input matrix G.

Since the homogeneous equations were shown to have an
efficient "spectral" solution that could be calculated after
at most two integration passes of equation (3.2.5) over the
fundamental period [Nishimura,1972], it would be very
desirable to develop a similar technique for handling the
calculation of the feedforward gains. Fortunately, one was
found by incorporating a combination of the method of
[Nishimura,1972] with the algorithm for initial conditions of
[Dugundji and Wendell,b1983].

Following the 1lead of [Nishimura,b 1972], if one
represents equation (3.5.7) in the form:

——
- X
| — |
[

[ 7 Mx7
| A(R) 1| | * |05 I
L JL1J L N(t) J (3.5.14)
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one can numerically compute this system's (2nx2n) augmented
state transition matrix, where n is the dimension of both
x(t) and 1(t) [Friedmann, Hammond and Woo,1977]. Call this
matrix B(t,t0). If one solves for the elgenvalues and
eigenvectors of the resulting Floquet transition matrix for
this 2n system, and then separates them into stable and
unstable modes, the steady-state periodic solution to the
Riccati equation of (3.5.11) can be shown to be:

P(T) = T21(T) T11(;§
P(t+T) = [ B21(t,0)*T11(T) + B22(t,0)*T21(T) ]

* [ B11(t,0)*T11(T) + B12(t,0)*T21(T) ]
(3.5.15)

where the matrices Tll and T21 represent the (2nxn)

and:

elgenvectors assoclated with the stable modes of the FTM.

This 1s only the solution to the homogeneous part of
(3.5.14) . One then solves for the (2nxm) particular periodic
solution of (3.5.14) using [Dugundjl and Wendell,1983]: call
the transpose of this (2nxm) time-varying matrix
[ Xp' | Lp' ], where m is the dimension of the model input.
Then (with considerable hindsight) one has the solution to

the cross—-cost matrix S as:

S(t) = -Lp(t) + P(t) Xp(t) (3.5.16)
Verification of this result can be done by taking the

B s S
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derivative of (3.5.16), substituting the two equations of
(3.5.14) and the Ricattl equatlion of (3.5.11), and comparing
the result with (3.5.12).

This process can be Iimproved upon by combining the
solution for the particular form of (3.5.14) with the
procedure for determining the (2nx2n) state transition matrix

by integrating the augmented matrix:

(t) = r B(t) H-J-(-(E)-:} (3.5.17)
(znx(2n+m)) L | L(t) o
with the initial conditions:
= 5 = =0
B4 I(2nx2n) BO) = L6 (nxm)
over a modified form of (3.5.14):
. | M(t) 7
Z(t) = A(t) *2(r) + | O jri——— l

L (2nx2n) | N(t) 1 (3.5.18)
Where I represents the identity matrix. After one cycle of

integration, one has:

r | X(T) B
Z(T) = | ETM | (nxm) | (3.5.19)
L (2nx2n) | L(T) -
(n>am)

Then from [Dugundji and Wendell,b1983] one obtains the initial
conditions for the particular solution as:

M@ _ I cem ] FX(T):I{

| |
LLp(0) | L. (2nx2n) (2nx2n) | LLg)
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Upon finding the elgenvalues and elgenvectors of the FTM, one
need only preform a second integration pass over equation
(3.5.18) to solve for the matrices P(t) and S(t). In this
way, the number of integration passes can be reduced by one,
a considerable saving for high-order periodic systems.

3.5.3 Numerical Results for Implicit-Model-Following

In order to see the effects o7 a model-following design
on a perlodic system using a constant-coefflicient model, the
same scalar example of section 3.4 was used. As the
weighting matrix Q was varied, the following behavior in the
poles was observed (with R=1.0):

Q F-plane pole L-plane pole
0. 1.868e-03 -1.0
.01 1.822e-03 -1.004
0.1 1.552e-03 -1.029
1.0 1.231e-03 -1.066
3.0 1.392e-03 -1.047
10. 1.642e-03 -1.020
100. 1.839e-03 -1.010
(R=0.) 1.867e-03 -1.000

This behavior is typical of model-following designs for
periodic plants that posess enough controllability to allow
an exact model matching. This can be seen in figure 3.11,
where the gain function for the case of no control penalty

(R=0.) 1is plotted. The curve is a perfect cosine function,
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which exactly cancels the system's periodicity, as can be
seen in figure 3,12, where the open- and closed-loop

eigenvector are shown.

For the helicopter rotor operating at a high-advance
ratio, however, exact model matching is not always possible.
A good example of thlis can be seen in figure 3.13, where one
of the rotor feedback gain functions for an advance ratio of
1.4 is plotted for increasing values of state penalty, Q.
Even though the flapping dynamics represent a higher-order
system, the fact that the equations are written in a
control-canonical form (meaning the states are just the
various time derivatives of the displacement) reduces the
model-matching cost term in (3.5.3) to a scalar. The most
striking feature of this plot is the manner in which the gain
values approach singularities on the retreating side of the
rotor azimuth. This can be explained by referring to the
control power term in the equations of motion in figure 2.4c.
At this high advance ratio, the control term can be seen to
cross through 2zero twice on the retreating side. Thus, in

order to force the closed-loop system:

x = [A(t) - B(t) K(t) 1 x + [ B(t) SHOSK
(3.5.20)

to act like a constant-coefficlient system, the gain would
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have to become infinite to cancel the perliodicity of A(t) at

that particular azimuth angle.

This result raises the question of controullability for
linear periodic systems. [D'Angelo, 1970, ch.4] defines
several types of controllability, all of which are rather
difficult to assess without substantial computational
resources. The strongest level is "uniform controllability”,
vhere the state can be driven through impulsive inputs in an
infinitesimal time to another desired state at any I1nstant
over some specified time interval. Clearly the above example
falls short of this ideal, since it is uncontrollable at two
specific azimuth 1locations on the retreating side. All is
not lost, however, as these two points are isolated instants
and not continuous stretches of time, and thus limit thils
example to a case of "total «controllability". Quite
reasonable results can be achieved even for this case, as can
be seen by the plot of the real part one of the elgenvectors
of the closed-loop system 1in flgure 3.14. Significant
reductions are realized in the system's periodicity for
moderate levels of model-matching cost and feedback gains.

The closed-loop pole locations for fixed cost and
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