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LIST OF SYMBOLS

p - damage density

P - critical leQel of damage density
.VA - crack-layer active zone

VI - crack-layer inert zone

J. L, M - the crack-layer driving forces

2 - the half length of i-th cfack

i. i, k, n, m, s - summation indexes. n, k - parameters
' of elliptic integrals

K?ff - mode 1 effective stress in;ensity factor

K? - mpdé I stress intensity factor of the main crack

K?{f - mode'll effectiye stréss intensity factor

n : - ﬁnit normal vector

X - bosition Qector

- stress tensor

N - numbher of microcracks in the afrqy

) - angle distribution tensor in the asymtotic stress field
~ of the main crack ' '
r - position vector in the crack tip coordinate system

8. - po1$r ang]e,jn the ¢ra;k tip coordinate systgm

b - doub]e 1ayerlpotentia1 deﬁsity |

¢ - gécoﬁd Green'; tensoé for infinite elastic plane
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- F - modulus of .elasticity
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R - vector-coﬁnectidg two points in an elastic plane
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CHAPTER 1

Micromechanics of a Crack-Layer (CL)

1. Introduction

In recent years a significant amount of experimental data has
been accumulated on a process zone surrounding the tip of a propa-
gating crack (1,2,3,4,5,6]. Process zone is usually defined as the
area of severely damaged material adjacent to the crack tip. It has
been shown in works (7,8,9,10] that mophology of damage zone varies
from one material to the other. In these works ceramics, rocks,
polymers, and metals were investigated. It was found that damage
constituting the process zone can reveal itself as microcracking [3,
11, 12,6] in all of the above materials; martensitic transformation
in ceramics, metals, and polymers [13,14,15,7], slip lines (i.e.,
shear bands) in metals and polymers [16,17], crazing in polymers,
etc.

Despite the difference in morphology of process zones in various
materials, there are similar features in all of them. For example,
similar global geometry and similar kinetics of development have
been observed [18]. Theoretical models have been proposed for the
description of kinetics of a process zone [9,13,16,18,19]. It should
be noted that traditional fracture mechanics can be considered as
one of them. Both linear and nonlinear fracture mechanics take into
consideration the crack tip plastic zone and use the well developed
techniques of plasticity theory for estimates of its size, shape,

etc. Damage distribution, however, can be quite different from the
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‘one descr1bedlby models of b]ast1c behavior., The.results of work
(20] clearly demonstrate tﬁat some damagé patterns do not yield any
model of plasticity. The theoretical model of 2 crack layer (CL),
as opposed to the crack-cut of traditional fragture mechaﬁics. Qa;
proposed by A. Chudnovsky in 1976 [18). In thé CL theory a crack
Qith the surrounding damage is considered as a single macroscopic
.entity. » The process of crack propagation is described as a
.ﬁucléation} development, and subsequent coalescénce of microdefects
an a crack tip zdne. Recently‘the theory was examined in works
Gt20-22]-with the goal to observe damage distribution patterns in a
;FaCR tip zone ahd to investigate the kinetics of ‘damage develop-
;éa{. This has been done for various materials and different loading
hisiories. Figures [1,2,3] taken from [20,21] represent miérophoto;
gréphs which illustrate the discussion above. These experimental

results lead to the schematic representation of a CL on Figure 4, .

ACTIVE ZONE. V,

CRACK TIP —\

INERT ZONE V)

Figure 4



The CL is represented_és a crack-cut surrounded by damggeibf
density p. Damage density o exceeds the level po’(i.é.,p > Do) in
both macrocrack tip active and inert zones;'daMage density rate“p,

however, is positive in active zone VA’ but vanishes in the inert

z0ne V[. ’

Instead of a detailed description of damage density p and ‘its
evolytion, the CL theory operates with integral characteristics of
the damage zone. These integral characteristics are: théA1ength,
the width and the shape of the active zone. The main crack léﬁgth
and the curvature of the crack trajectory also enter aé geometfic
characteristics of a CL (we talk of crack trajectory rather than
cfabkASUrface whén coﬁsidering the crack within the framework of a
plane problem). On the basis of general principlés of irreversible
thermodynamics, the authors of works [18,23,24] have introduced CL
drivfng.forces which are.reciprocal to geometric paraméters of a CL.
The detailed description of a CL geometry and kinetics can be found
in [25]. This work introduces four CL driving forces which appear
to be reciprocals to 1.  CL length, 2. the curvature of CL trajec-
tory, 3. active zone area, and 4. active zone shape (active'zbne
length to width ratio). The first. three CL driving forces are
represented'as'linear combinations of the well known path-indepen-
dent integrals J, L and M of fracture méchanics and, the intggra\ N,

[25] which is not path-independent in general.



The integrals J. L, and M appeared in the formulation of conser;
vation laws of elastostatics, (i.e. J = 0, L =0, and M = 0 on any
closed contour without singularities inside of it, {26]). These
conservation laws have been derived by means of Noether's theorem
from the principle of minimum of strain energy. The conservation
laws J = 0, L =0, and M = 0 result from invariance of strain energy
functional with respect to the group of displacements, rotations,
and infinitesimal isotropic expansions, respectively. Naturally,
"the first one holds for homogeneous material only, the second holds
only for isotropic and the third one for linear medium. The conser-
vation law involving J-integral appéared for the first timg in work
(277 of 1951 by Eghelby. In terms of the J-integral Eshelby express-
ed the force acting on a singq]arity in an elastic body. Later, the
J-integral was -rederived by Sanders [281 in 1960, Cherepanov in 1967
(293, and Rice in 1968 [30] in connection with a problem of energy
felease'rate n a quasistatiq crack propagation process. Thé tan-
§entia1 to the crack component‘of vector J was found to be precisely
the energy release rate.' After the discovery of the nthef»two
conservation laws, L and M were interpreted as energy re\ease‘rates
with respect to cavity rotation and cavity expansion, respectively
(31]. 1In works [23.,24,25], by A. Chudnovsky et al, the path-inde-
‘pendent ~ integrals appeared as parts of thermodynamic crack driving
forces. | ‘ |

For evaluation of J, L, M, N integrals within the framework .of

CL theory the field around the CL must be known, In order to -evalu-



ate the stress field a mathematical model of the microstructure of
the CL must be introduced. Such a model has been proposed in [32].
This - mdde1 considers the micromechanics ‘of the CL, i.e. the
interaction of a macroﬁrack (6r main crack)'with an afray 6f
microdefects in a close vicinity of a macrocrack tip. The work also
outlined the method_for evaluatioé of a stress field afound tﬁe CL.
The present work develops the method.of [32].

The model of work [32] treats a CL as a crack-cut in linear
elastic medium surrounded by microcracks in the crack tfp zone. The |
.microcraCk array surrounding the macrdcrack'tib consistSIOf a field
of random]y'distributed small cracks (small in‘cbmpafiSon tofthe
macrocback) of raﬁdoﬁ lengths and orientations. The problem is to
find the elastic stress field resulting from interattioh 6f an array
With’ the main crack .subjected to external tractions. The main
crack, with the microcrack array surrounding it; has béen considéréd
withfn the framework of the plane. problem of e]asticity.”A]so, the
asSumptionS'of small ‘scale microcracking were supposed to hold t32];
This means that the microcrack array occupies a‘small area in com-
parison with the main crack tip. Under this assumption the”maCro-'
crack asymptotic stress field appéars to be dominatingfand'it;is
defined by the stress intensity factor K? only. L s

For the sake of simplicity, the mode I loading conditfons have
been assumed to hold. This explains the notation for intensity
factor K?, superscript “0" refers to the main crack.

The method of potentials has been chosen as a means of solution



of the problem. The reasons for that selection are: the possib{lity
of generalization of the method for 3D problems, and the convenience
of the method for statistical purposes,

The method of potentials gives the elastic stress field‘in a
form of integrals of the potential densfty multiplied by Green's
~function and, therefore. the solution explicitly depends on Vthe :
microcrack array configuration, This form of a stress field sdlﬁ-
tion permits a relatively easy statistical averaging procedure.

2. Mathematical Formulation of the Problem

The macrocrack (or main crack) interacting with an array‘of
microcracks under the assumptions of small scale microcracking
(definition follows) 1is being considered. The two-dimensional
linear elastic solid contains a macrocrack of 1ength'“22°".and an
adjacent array of N rectilinear microcracks of lengths ”ZRi" each,
with n. as a unit normal vector to the i-th microcrack, and x. as 2
position Vector on thé‘i-th microcrack. i = 1, 2.-..;. N;_’The
elastic.plane is under mode 1 tensile loading with respect’t6 the
main crack., |

The stress field g(g) can be represented as a superposition

N
9(x) = g, + G + I g () BECR)

1
where g= is the stress field due to remotely applied loads in the

absence of cracks, § and ¢

i(5) are the stress fields generated by

the main crack and by the i-th hicrocrack. respective]y. More



exactly, oy is the stress field in an infinite solid Cbntainjnﬁ;oﬁe
'crack;(references will be made to fﬁe microcrack 25 which is jusﬁ:i-
fh microcracki with faces loaded:by tractions n; [o; + -Q(x1) fi 1
ﬁgl . (X{)] where §(xi) and gK(gi)'aré actual stresses genérated
by#{he main crack and the k-th microcrack along the line of li.f
In the vicinity of the microcrack tip. stresses o, can be neg-

lected compared to the tip-dominated field

~ . eff ¢[6(x)]
= K at— e
2(x) _ 1 21t (x

Where K?T denotes the stress intensity factor for the macrocrack -

tip with the. effect of microcracks taken into account, r dqd 0
denote the position - vector. and pqlar angle .in the main crack tip
- corrdinate system,: The small scale model is defined by the condi-

tion o, << g(x)}. Thus, the asymtotic stress field in the vicinity

of the main' crack tip can be represented in the form,

ST e N
0(x) = ———— K *ooi 9% 1.2
e () 1 i1 ~ (1.2)

The technique of double layer potentials, with a potential
density as. a crack opening .displacement (i.e. displacement discon-
 tinuity) will be.used [33]. The displacement field may be represent-

ed by means of double layer potential density as follows:

2 = [ 2© 2@ 0 (1.3)

L

10



where b(g) is the crack opening displacement, and ¢ (§, 5) is the
seédnd Green's tensor of elasticity for plane stress conditions.
(Here and below through the whole work dg must be understood as the
increment along the crack.) The tensor ¢ (z,x) constructed in

Appendix I may be written as follows:

1 +wv
47w R?

e(&,x) = (1 - 29)(a,R - Ra - n RE) -2 Q—:EEBBI (1.4)
where R =¢ - x,y - is Poisson's ratio, E - is fhe second rank unit
tensor, and the factor 1 + v is to be substituted by the factor of
/(1 - v) for plane strain conditions,

‘Differentiating the displacement field (1.3) and taking the
symmetrical part of a tensor gradient, the strain tensor can be

obtained. Application of Hook's 1aw to the strain tensor results in

the stress tensor o(x):

o -3, | v s
% ‘ :

Hhere‘]* is the stress operator transforming the displacement

field u(x) into a stress field (subscript x indicates that differen-

tiation in Ix‘is performed with respect to x). Thus. the stress

field (1.2) can be represented in the form

o) = UOW) et F o fb.(gw(&. 4 (1.6)

==~ ml 151 ~x ~i2 ~t2 I ‘ :

2

11



where N unknown functions pi(gi are to bé déterhined from N vecfbri-
‘al intégra] equations expressing boundary conditions on the micro-
vcracks .21. "The equilibriuﬁ équations are automatically satiSfﬁed
for both tefms in the superposition formula (1.6). The f%rst term
yields equilibrium equatiods betause of the properties of: the
asymtotic crack solution, the second - because of the properties of

the second Green's tensor ¢(¢, x).

The faces of the microcracks must be traction free: -

2z

) ;x.J b (£)-0(E%;)dE + T J b, (£)+0(5,%,)dE} = 0
1 [} .

n {o(x,) +
K 3 -
K 1 B ) (107)’

-1

fqr all x ¢ &4, for each i. -

The last integral in the bracés-is to he unders;ood.in the
principal va1ue'seﬁse. 'It should be noted-thét the last integral in
(1.7) bécomes divergent if stress operator. is moved under the inte-
gral sign and applied directly to the Greeﬁ's tensor-y(g. x). It
can be shown, however, that the limiting value of the 1ntegfa1 is
given by the following regularization:

Rim T J B(E)+8(E, X)dE = J [b(E) - bETT, 8L, X6 (1.8)
X% R ‘

where the integral on the rigﬁt must be understood in the principle
value sense (347,
Expression (1.8) contains one more unknown - K?ff. An additiona]

~equation reflecting. the impact of the microcrack array on the main

12



crack may be written in a form

in the small scale microcracking model,

The last equation 55 an exact substitution for the boundary con-
dition on the main crack.

Thus, the system of 2N + 1} scaiar equations (1.7,1.9) represents
the formulation of the main crack-microcrack arrayllinteractibn
problem. In the following the system of equations (1,7,1.9) is
solved for two and three crack interaction problems.

l; Chapter II; three pafticb]ar problems are solved under the
assumption of macrocrack dohinatfng stress field to be piecewise
constant on each microcrack. This is-an approximate solution of the
basic system of equations which can be justified for ratios ni/io <<
1i=1,2, ... N).

In Chapter I11, the higher order approximations are considered
for two crack interaction problems. It is shown that the method can
be extended to higher approximatiqns and become exact in the limit-
ing case.

I% the final Chapter IV, the expression for stress field in a
general problem of interaction of “a macrocrack with the microcrack
array of arbitrary configuration is obtained. It is shown that the
resulting stress field can be fully characterized by asmytotic
stress field of the macrocrack 90(5). (in absence of the microcrack

~ oy

13



array) the values of its derivatives in the directions of micro-
cracks evaluated at the centers of microcracks. and tﬁe ‘second
Green's tensor'?(g, 5) constructed in the appendix 1.

The obtained elastic stress fiel& so\utioﬁ has'been used for

evaluation of the J-integral for the CL.

14



CHAPTFR 11

Piecewise Constant Approximation in Two

and Three Crack Interaction Prnh[gﬂg

1. Two firack Interaction Prohlem (twn cnlinear cracks)

In this section, tho.prnhlem of elastic interaction of a.macro-
crack with nne microcrack located on the same l1ine is considered.
The prohlem is snlved hased on the farmulation of the hrnvinns chap-
ter (i.e. plane stress, sma]]_scalo model. mode T loading condi-
tions) when the dominating stress fi"]d Q(x) on the microcr%ck L is

approximated by a constant,

v} '
: ng(X)
l
Q :e «-::f;:; X
| | I RE
Lo &
S et

Fioure &

15



Under mode 1 external loading, tho'domfnating stress field of the

main crack of length 220 is given by

5(x) = ko 215¢0)]
R 1 V2'nr2_>55 o . (2.1)

The stress field due to the microcrack £ is given hy (1.6):
c+
o2 =
o) =T B(E)+0(E, x)dE (1.6)
c-2 )
where b(g) is the microcrack opening displacement. (i.e., double
layer potential density ong ). TIn the case of a constant approxima-
tion, microcrack ¢ 1is found to be embedded into a wuniform stress
field., The €0ON b(g) in a uniform stress field is known to be el1tip-

tic [351 and may be written for mode I conditions:
49 o
b(E) = & n(e)eo(c)e(e) (7.2)

where F-is Young's modulus. n(c)-is unit normal vector to the crack
2- at its center, g(c)-is the resulting stress tensor at the micro-

2
crack center, and e(g) =. 1 - jél%L is the elliptic crack opening
%
(n{c).alc) is a traction vector at point .c).

The boundary conditions (1.7), in view of (2.2), gives

eff 1

L A
92200 = 00 =¥
218+ 6)

s X€(c-2, c+l)- (2.3)

16



where superscript “o" refers to the microcrack. The equation (?2.3)
takes scalar form hecause of the symmetry of the system of cratks.
The stress component oggx) anppears to be nrnportiona}yto K?f_on
the microcrack (note that oéz(x) = 02?(c) when x (c - %, ¢ + E)S.
Therefore, b(g). given by (2.2), alsn hecomes proportional to
K??. Thus, the last rquation (1.9) for determination of effective
stress intensity factor becomes linear algebraic equation with

respect to K?ff. Fquation (1.9) may be written as follows:

In the last equation, ogz(x) must he calculated from (1.6) with
(2.2) as a double layer potential density,
The displacement vector u(x) is given hy
L. . ' .
u(x) = T J e(E)n(&) <0(E)~9(E, x)df ' (7.5)

) _
where the product of tensors in the inteqrand may he written in
index notatiQn as n, (g).oas(g\.wey (€.x) witha, B.y = 1,2 (summa-
tion by the repeated subscripts is implied), In the coordinate
system of Figure 5 the inteqrand hecomes:e(g), (02] oy, t 025‘¢?a)\

L
For evaluation of the stress component U?? {x) only the derivatives

3U]

ou
- and 2 need to be calculated due to the Hook's law:
ax] Bx]

aul .Buz) . EEZ] .. (2.6)
aX

2

ul—L(

—
22 1 - 2v axl BXZ

17



o¢ 3%
1 _ 42 11 21
ﬁ; E J e(&) (021 X + 022 gx—-)dg
c-2 1 2
D c+h ' ‘
’22 -5 J e (0 4o 2y .
X, T F ' o .
‘ ~ where
X
2 2
o (EaX) = - 22D (@ - X, + 2 5 - X
117 4R RS -
. X2
1+v . 2 - x)]
o . (£, X) = (1 -2v) (§, - X)) -2 (£1 Xy
21 ~ lrnRz 1l 1 R2
X2
1+ v 2 - x)]
o (E,X) = - (A -2v) & -X) -2 (& 1 _
12 - 4 nR2 1 1 R2 1 (2.8)
X2
1+vV -T2
. ,(E,X) = = (1 - 2v) X, +2 =]
22 ~ lo'rrRZ 2 R2
in the chosen coordinate system, with R™ = (£ - x‘) + x?.(the

guhscripfs “1" and "2" refer tn the x and. y axis. respectively).

Suhstitution of (2.8) and {2.7) into (2.6), results in

. 0,,(c) ‘C‘j” VoEL § 2ef = (L - 12y

o X) =

22( - T

7 ag (2.9)
c-2 ‘ (€ - X)

where x and § afe coordinates on the horizontal axis.
Integration gives: (The inteqgral in (2.9) is evaluated in Appen-

dix 11)

18



1

%22 (%) = 05,(©) e Y
| = |
(2.10)
where x - ¢ > g.
Substituting (2.10) into (2.4) we obtain x?ff as follows:
. |
022(C) © 1 + X ;
KEff = Kcl) + —X /——'I_"l - l)dX (?.Aa)
1 al? 1 -(g '
(o]

The second term in (2.4a) represents an increment A¥ of stress

intensity factor due to the presenén of the microcrack.

R
A - 0,,(C) f o [ +X , ) e o
/‘FT_Q— : QO-X mz X . (7.]])
O . 2 : X-c . .
-0

The term decreases with the increase of ¢ (when| x - c| > 2) and
tends to infinity when ¢ >t 2. i.e.. when § » 0 (the distance

hetween the adjacent crack tip tends to zero),

1
The combination of (2.3) (o??(C) = K?ff —_——
: : o ' VZHZQ + 6;

rP§u1ts in_linear algebraic equation for K?ff

)'and‘(2;4é)..'

eff

e ¥©° eff ~

Kl - Kl + K q(5/2) L - o (?.]?)
where
1
' - 1 1+ X 1 ' R
8/8) = ————— ' -

-1 ~¢

and g' = /g - e N o TP nondimensionalized coordi-

nates with respect to the main crack length 20. From dimensional

19 R



considerations it follows that q = q(s /2) depends on ratin of ‘the
only two characteristic lengths of the nroblem (g and ¢).

The solution of (2.12) is nhvious

geff _ K ‘ (?.N)
1 l-74q :
: eff , 0 . . . . .
The graph of Ky /K] is given in Figures 6 & 7. The qraph in

Figure 7 18 presented in order to illustrate the hehavior of KTff/K$

for small 6 /2.

The ohtained result indidates‘that'offéétiQa stress intensity
factor K?T increés;s from K? to infinity when the distance bptweeh
two c}acks-tpnds to zpro; |

General superposition formula for stresses (1.2) can he written

now as follows: a(X) = 6(X) + ol(x) _

eff  6[8(X)] C’F‘L

et o , 1 4% »
Ky VZmr (X) + e 5)'» + (0T, J e (£)¢ (£,X)dg (?.15.')

Formula (2.15) with K?¥ given by (?2.14) represents the épproximate
solution of our problem (piecewise-constant approximation 'nf the
resulting stress field o(x) |

~ The first term in the solution (2.15) (Veff _LQL&ll) represents

2mr(x
the dominating stress field of the main crack. The second term

20
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DOMINATING
- "STRESS FIELD

"f Oy (X)
.// ’

Y

Figure R
represeﬁts the stress field of the microcrack with the @agnitudé'of
micrncrack opening disn\acpmént dptermihed' by the magnitﬁde
of dominating stress field at the center of the'microcrack,Fignre ]
gives qualitativé graph of the stress distribution following from
formula (2.15). .

One more comment shquld he_madé wifh réspect: to the solution of
the system 6f eqnht{nhs k2.3). (2.4)@ This system has heen boﬁuced
to singie'equation-(2.12) fnr_K?t {0f course, similar équatioﬁs
can be written for O?Z(C)). Iﬁythp prohlem under consideration.
i.e.. proh}nm hf»fnteraction of tﬁd crécks‘ the ohviousgsolution.of
(?.l?s is given by (?.14); Hoﬁever. in more complicated situations.
i.e. in many cracks interaﬁtion problems, it may be useful tn try an
apprnximdtp methods for solution of a system of equations corre-
sponding to (2.3), (2.4). It is easy tn see the meaning of certain

approximations in the case of simple nrohlem under consideration,

The {3271 work suqgested an iterative procedure as an alternative
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to an exact solution. In our problem, equation (2.12) can be solved

by means of an iterative process. If one takes K? as a zero approxi-

eff

mation for Ky in (2.12), then an iterative process gives geometric

series

eff_ [o] 2 3
Kl "KQ+q+q°+q" +...) _ (2.16)

and the sum of this series for |q|< 1 coincides with (2.14). On the
other hand, formula (2.14) is meaningful only for |q|< 1, therefore

(2.14) and (2.16) are equally valid.

The sequence of iterated terms has clear physical meaningf the
first teﬁn gives the intensity factor of a méin'crack'k? in the
abSencerf a‘microcrack, the' second term accounts for first order
interaction, i.e.. microcratk,’being imbedded in the field of main
crack K?, gives the correction to K? of a magnitude k?q1 Theﬂthfrd

term accounts for double interactions, etc.

Substituting (2.16) into (2.15) we obtain the fbfmu\a each term
oflwﬁich<can be interpreted by means of dfagram in figure 9. The
firsf term'of the suh'fepreéents the stress field of the main crack
under the Ioadihg.om'in the absence of the microcrack, the second
term represents the stress field of ‘the microcrack embedded into the
main crack field, the third term Eépresents the correction’ to the
main crack stress field resulting from presence of the microcrack
which is embedded into the stress field of the main crack, the
fourth term represents the correction to the microcrack stress field
resulting from the correction to the main crack field, etc. The

solution
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Figure 9

(2.15) with fg?T given by (2.16) gives an approximationvjn two
different senses: - the approximation of a stress field o(X)~by a
constant on the microc}ack, and an approximation due to a number of
physical interactions between the cracks taken into account.

2. Two Crack Interaction Problem (two parallel cracks) -

In this section the praoblem of elastic interaction of two paral-

lel cracks is considered, (see Figure 10) 1i.e., macrocrack of a

Tength "220“ and a microcrack of length "2z2".



Figure 10

Constant approximation of the resulting stress field a(x) on the
microcrack has been used again. For simplicity purposes instead of
a double la&er‘poéentdals technique we use. the asymptotic stress
field sofution for the microcrack. .

The purpose of this section is to show that the method wofks for
the problem which has not been ;o1ved so far (to our knowledge).
The solution has been obtained under the simplest possible assump--
tions as an illustration of the method.

The system of cracks in Figure 10 is assumed to be under mode 1
tensile loading. The small scale microcrécking assumptibn also
holds. The dominating stress field is given by (2.1). The o%z stress
component o% the microcrack field in_rg(x), el(x) coordinate system

may be written as follows:
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o§Z(X) =K fzsz&fx)] + K Gpp 18, (X)
1] — r—
‘/ZTTTI,V(X) 2 V21T (X) (2']7)
. g2

where the first term represents the contribution of the mode 1
asymptotic stress field, and the second term accounts for the mode

II. (The resulting stress field o(x) in this problem contains both

modes of loading, of course.) The stress intensity factors K]iand

Kz are given by

Ky = 0,,(C,8,)/L , Ky = 0, (C,6,) ViR (2.18)
and

o 6, 8 30 '
¢,,(8,) = cos — in — sir ‘ S S
122778 2 (1 + sin > sin -Ef). ¢21(92) = COS E; sin —E sin ——Z

z 2

The resulting stress field g(x) acts as an external field ap-
plied to the microcrack and under the constant stressvappfoximation,
equations (2.18) hold.

The boundary conditions on the microcrack (1.7) take form 2z

o efr 95,00

/2nro
(2.19)

¢,.(6

071(C.8,) = K;ff 2149,)
V27r
(o]
6 = tan"! %2 and .2 _ 2 2.

where o ~ o" 5+ T, = (6, + 1)" + & are coordinates of

the center of the microcrack in the main crack tip coordinate
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system. The equation (1.9) for effective stress intensity factor

appears as follows:

% %
ff- _ o + 0 C.6.) 2 .
K] = Kp +0y,(C,65) V.I;.fz 2 YT N (2.20)

where
e PR |
(o]
f J B+ X ) ¢21[62(x)] )
1 Lo oy (2.21)
-2
(o}
L
© L + X ¢22(99(X)]
o « Ef e dx
f2 - J Eo - X »"ZT.rQ(X)
-8
Q
where relations g = e;'(x) and r = ro(x) are given by (see Figure
o)
10). r (X) = (2_+ 6 -X)2 + 82 d 8 = R
') (o] 1 2 » an l(X) sin W
The factors (C,8,) -2 and 0, (C,8,) = <2—2° " in (2.20)
22 2 V21rr‘2 21 /ang ,
characterize the o%(x) component of stress on the main crack.

22
Weight functions f] and f2 depend on the microcrack location and

orientation. The dependence of K?T upon the length of the micro-

crack is given-by the .factor of /E: . Equations (2.19), (2.20)
o]
constitute a system of three linear algebraic equations with three

unknowns - cC, 62), o 2](6. ,62) and‘Kﬁﬁ; Its solution yields

%95
formula (2.14), where
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- gy = 1 X2 : (2.22)
(8, /%, 8,/ [2: [£; #5585 + £, ¢,,(8,)

v?nro

and stress components are given by (2.19).

General superposition formula (1.2) with the help of (2.18) and
(2,19), gives the asymptotic stress field in the vicinity of the

microcrack in the form:

18(X)] . 616, (X)1 48,1
o(X) = Keff { Z—— + T (6 ) = L + ¢..(0) :__3;:___] }_(2 23)
o 1 /7nr2§5 2ro 22770 /2nrQ(§) 21770 v?ﬂrl(§) ’

L

The presence of mode IIl1oadﬁng in the resulting stress field
o(x) gives rise to K?{f in.this problem, The shear mode contribution
is represented by the last terms in formulas (2.22) and (2.23).

In order to make explicitlthe dependence of‘K?ff.on'the para-
meters of a crack system (Figure 10) the function q(51/2; 62/2) must
be evaluated. This function, in fact, depends on ratios of 6]/2,
62/2 only, as follows from dimensional analysis.

Let us consider the expression,

2 .
o x4 e,m)
5 Lt J 20 * - 22 ¢ dx (2.24)
,___mo r—~—2mo ;20' o ‘ ‘ ./z‘nrl‘(.'x) | ,

The integrand in (2.24) -has-a singularity at"x‘=-!Lo (at the right
main crack tip) of a square root type. The factor'ét~’&ﬂ—i—§f' is

02208 (0] . 13 VYo -
nr ()~ Zwrg

‘narrowed for ‘ezl <w (this is our case because the interaction of

o]
restricted by the inequality 0 < which may be

only left microcrack tip with the main crack has been taken into
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account).. Thus. by the mean value theorem (2.24) may be represent-

ed as follows:

; L6 _
£ +X £ .
L -2 ix = v (2.25)
venr 21r b, - X 2r .
-0 o
0
QO
2yt X
(note that J z % dx = Roﬂ), where 0 <a< 1.3. The same line of
-Qo [o] -

reasoning i3 applicable to the second term q(allz , 62/2) in formula

(2.22),
¢..16,(X)] B
'S . D T (2.26)
./ZTIrQ(X) 21'0
where -0.4 < & < 0.2, (interval for g can be narrowed also).

Using (2.25), (2.26), and (2.22) q = q(5]/g . 52/2) takes the form

28 &

9 /%, &,/0) =\l+ * lady,(8) + 80, (8 )] (2.27)

Introducing r = r(2, 8, 62) into the last expression and

dividing both numerator and denominator by éo results in
Ql

1
q(6,/%, 6,/%) = = [a¢,,(° ) + B, (6 )] \ 7 (2.27
1 2 2 %224 2170 o1 + YN 622 (2.27a)

where ' = 2/20, 8y = 5]/10, and 8y = ézlﬂbare.nond1mens1onal1zed

parameters.
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Direct calculations show that the*faétor of'%&x¢22 (90) +
B¢2](60)] is pqsitive for any location of the‘microcrack; which means
that effective stress intensitylfactor K?ff always increases because
of the presence of the microcrack,f |
In the case of both, 1, 62 > 0 formula (2.22) for q may be
shown to reduce to the corresponding formula of the previous sec-
tion. Thus, the effective stress intensity factof tends to infinity
when the distance between micro and macrocrack vanishes.
Qualitatively the behavior of effective stress intensity factor
in this problem is described by .(2.14) with q given by (2.27) or
(2.27a).

3. Three Crack Interaction Problem

A
]
]
f
!
i
r
O
=T
S\
X

Figure 11
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The purpose of thissection is to analyze the problem of inter-
action of a macrocrack with two symmetéically located microcracks,
Figure 11,  under the assump;ions of the previous two sections.
Generalization in both directions nonparallel systeﬁ of cracks and
nonsymmetrical location of microcracks is possible but calculations
become considerab]y more complicated. |

Twé distinct cases may occur, one when the microcrack array
amplifies the dominating field (and this has happened in two pre-
vious problems), the other when the microcrack aEray diminishes the
main crack field. The latter is called the "shielding" effect. The
simplest situation for “shfe1ding" to occur is when two parallel
. microcracks are placed at a distance ¢ = 2, (see Figure 11). The
goal of this section is to estimate the effect of K?T reduction
when microcracks have been placed at the indicated position, and to
show that "in case of ¢ > zo'andvh reasonably small two parallel
microcracks act in a way similar to one microcrack in section 1=

There is no shear mode in the resulting stress fie]d because of
the symmetry of the problem. That is why the system of equations

(1.7) (boundary conditions on microcracks) the form of two scalar

equations
o he L 6,,16(C, 3]
. c 2l 22 01 e D -
> 2
(2.28)
(C h h eff ééz[e(cl - g)]
022G =3 + F 1y 055(C 3 = -k ;

j7============:
1 2nr(C, = )

NI

31



The first term in the first equation (2.28) represents the
normal stress component at the center of microcrack R], the second
term represents the stress component 022 whi;h microcrack 22 exerts
on £,, with F,, as a scalar influence function, and finally, the
right hand term represents the dominating stress field at the center
of microcrack 2]. The equation is formulated at the center‘of micro-
crack R] because of biecewise constant approximation assumption.
The second equation has been formulated for the microcrack 12, and
bécause of symmetry it is identical with the first one ( ozz(c,g) =
‘%2 (c, - g Y. The influence function F12 = F2]'= F "(because of
symmetry) appears from (1.6) with (2.2) as a double layer potential
density (because the unknown field o(x) is assumed to be constant on

a microcrack). It is defined by the expression:

L .
F(L, X0 = 5 al) nOT, J e(£) n(E)+0(£) ~4(E, X)dL (2.29)
S o
Where-i] = WQZ = £, ‘and n(x) is a unit normal vector at point.x in
the direction of X axis.
The eibession above represents the influence function of a crack
at any point x. The function F(%,, x') in a coordinate system of

the center of the microcack takes the form

)
'y LA ' .
3,7 - (£ -x)" - w122
F(£, X") =& f e (&) 2 1) (€ Xl) Xy (2.30)
‘ (€ -x)%+ x. 273 at '
-9 : 17 “o .
where position vector x'.has. the components xi and xé. (The integra-
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tion procedure is described in Appendix I1).

In addition to the system of equations (2.28), there is an equa-

eff

tion for the effective stress intensity factor K]

(1.9). For this

problem it can be written in the form

ogz(x)dx (2.31)

where the factor of 2 in the second term appears due to the presence
of two symmetrically located microcracks, and OZZ(X) with help of

(1.6) and (2.2) may be represented as

h h
.0%2()() = % n(X) n(X) o(C, 'i) n(C, 5) T je(i)?(ﬂ, X)dg (2.32)
2
where o (c, g) = g(c; -2), and g(c, -g) = Q(c. -g), and because of

that (2;32) holds for bboth ‘microcracks. Thus, three eqdétions
(2.28), (2.31), in view of (2.32), represent a system of linear
algebraic equations for determination of three UnknownS‘OEZ(c.%%;
‘Ez(c, -g) and K?ﬁ (Because of symmetry, in fact, there are only:

‘two equations for two unknowns 022(c, g), and k?ff.

R AR £
Substituti f s z) = - from (2.28
ubstitution o czz(c 2) VTR0 /2nr(CIET- rom ( )

into (2.32) with the subsequent substitution of the latter into
(2.31), results in the equation for K?ﬁ with the solution in the

usual form (2.14) with, .
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h Qo

-- 2 22218 )] M F(%, X)dx
e [1+ F(LO,m] Yoy L =X T (2.33)
-9 ’
(o]

Influence function F(g, x) in (2.33) is defined by (2.29) and must
be evaluated in the coordinate system of the main crack (Figure'11).
fhis function may be obtained from (2.30) also by coordinate trans-
formation xi = xi -y X =”x2 - g and integrétiné from (c - 2) to
(c +2).

In order to analyze the behavior of the effective stress inten-
sity factor K?ﬁ the influence function F(2, x) must be evaluated.
The integral in formula (2.30) can be evaluated exéct]y but it-is

enough for our puposes to estimate it with help of the mean value

theorem: (Formula (2.34) is obtained from (2.30) in Appendix I1).

. o (x' A-R),/x' : x' £ /x' .
f(g., g!) - - eo X_Q' { 3( J. - 2 2 '2 - ( l +. ) .22 '2) +

2 1+ X, - /X, 1+(x; + D7/X,

(2.34)
X - 0x,3 X+ 0%
+ ( 1 2 - L2 )}
' 2,.'2 ' '
1+ (X; - 0) /X, ]2 (1 + x; + l)z/xzz-]2

—
where e ='A'(anf'§) is the elliptic crack opening at some point

xbe(c - 2, ¢ +¢). The influence function F(2, x') given by (2.34)

can be considerably ‘simplified for both large and small Xé:

F(2,x) %6 L | S (2.39)

X

N
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for large X., i.e. (Xi -2)/Xé << 1 and (Xi +1)/x; << 1.,

F(E, X ) % = 2(— - =)
ST x1 - x1 + L (2.36)

for small xé, i.e. (X] -2)/Xé >> 1 and (x] + z)/xé >> 1, In formulas

(2.35) and (2.36) it was assumed that e, = 1. Substituting formulas
(2.35) and (2.36) into (2.33) the estimates of K?ff/K? for small and

large 2/h can be obtained. It follows from (2.35) that
. o
F(, 0, 0) = 6§ (2.37)

for the microcracks being wide apart from the macrocrack tip; i}e.
2<<h,
Substituting (2.37) into (2.33), and taking into account” that

the second of (2.37) holds only for 20 - h < X].i 20, we obtain

2
L3 6. 2
q F= 20— ( ) for small. 2/h (2.38)
T 1 4+ 6(/n) h/2 S

The last expession gives the uppe estimate of q=q(%/h) because of
the conditions e=1, and 20 —‘h < X] 5.10.
Analogously, for the microcracks being close to the macrocrack
tip, i.e. 2 >> h, the formula (2.36) gives
F(%, O, h) +2 for small h - (2.39).

(The last expession represents the limiting value of the influence

function (2.29) which is 2e0 for the approximation (2.34)).

35



Substituting (2.36) and (2.39) into.(2.33) and evaluating the

integral (see'Apbendix 11) we obtain

(2.40)

£
q = = % for large 2/h

The important feature of (2.38) and (2.40) is that both of them

give negative value for q which, in turn, gives the reduction of the

10 =g
"*-tuﬁ
as
LT \
Ky \
0t —4—H\j
I
02 -
NW"QN
00t o 10 - 0
2l
h72
Figure 12 = ,
effective stress intensity factor K?ff. The graph of K?ff/K? vs-. %%5

(i.e., the microcrack length over the vertical distance between the
macro and microcrack, see figure (11)) is represented in figure (12).

The upper and the lower portions of the curve were calculated
using (2.38) aﬁd (2.40), respectively. The effective stress inten;
sity factor K?T is always 1es§-than-K?. It varies from K? for
small 4 /h to zero for large'4 /h, |

The effect of reduction of the effective stress intensity factor

eff
1

model. The effect of vanishing of the stress intensity factor .on

K at small h is similar to the one obtained on Dagdale-Barenblatt
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Dagdale-Barenblatt model has been obtained by means of introducing
interaction forces between the crack faces in a crack tip zone. . In
our model the effect appears as a consequence of microcracking in a
crack tip zone.

In the case when the system of microcracks is being moved far
from thé main crack tip in a horizontal direction, i.e., ¢ >>‘20,

formula (2.30) gives negative value for F(z , {), and q in (2.33)

becomes positive. Thus, the effective stress intensity factor K?T
increases in this case, just as in the case of one microcrack on

the same line with the main crack. More similarity .can be noticed
by increasing the distance between the macro and microcrack;genteps
at the given h. In this case the influence function F(g , 5) in
(2;33) may. be reduced to the corresponding expression in the problem
of Section 1. .In_terms.of function F(2, x'), formula (2.30) reduces

to . . )
L

a3 ]
~~
>
-
>
N’
[}

< fe(r,)-——ﬁ—dg' ,
€ - Xl).
-1
which coincides with the corresponding expression of Section 1. Cal-
culations show that F(g, xi) changes its sign from plus. to -minus
(i.e., shielding vs, amplification of K?ff when ¢ < Rg t 2 for o/h =

1 (see Figure 11).

37



CHAPTER 11T

Higher Order Approximations for the Problem

of Two Colinear Cracks

1. Linear Approximation

In this chapter the probiem of Chapter II, Section I, will be
considered (Figure 5). All the assumptions of that section are
assumed to hold, but instead of constant approximation of the
resulting stress field g(gj on the microcrack, linear approiimation

will be taken. Thus, the elastic stress field on the microcrack is

assumed to be of a form

o(x') =g'(C') (X' =€) +a(ch), X'e( -2, c +y ()

N

where g'(c") is the derivative with respect to x' at the center of

the microcrack, x' = x/zo, ¢! = c/zo, etc. represent nondimensional
coordinates.

According to the theorem on polynomial conservation (Willis's
theorem) [35] a polynomial loading: produces elliptic crack opening
displacement multiplied by the poiynomia] of the same degree as the
loading. Using this.result the double layer potential density b(£)

can be written in the form

b(E) = [b, + b8 = € 4e®n(®) g ),



instead of (2.2) in the previous chapter. Unknown coefficients b0

and b] are of length units. By formula (1.3) the displacement

vector may be fepresented as follows:

C+2
u(X) = j (b + b, (E - O] 4 e(®) a(E)-2(E, X)L
C-L
where  n(g)=4(E, X) = n ()0 (5, X) = &yp(E, X)

Application of the stress operator Tx to the displacement vector
u(x) results in the stress field of the microcrack. The ozz(x) com-
ponéht of it may be written as follows:
C+i L :
05,(X") = & f 2L p 4 b - e
c-p (&' =X

(3.3)

Formula (3:3) is valid on X, axis (i.e. X, = 0). 1In tﬁislchapper we
will write x instead of X]. Both coordina;es x and ¢ are on the
horizontal axis. The integral in (3.3) divérges when x((c -2, c+
£) ~and must be understood in the sense described in Chapter I, Sec-
tion 2. Evaluation of this integral gives,

N

£ " - ! ' v ' K] _E‘ v o_ ' »
0,,(X") —\GZZ(C (X' = C') +0,,(C") = F[b_+ 2b (X . cH] (3.4)

and comparing coefficients of linear function we obtain the rela-

tions
vy = E
0,,(C") = 75,
(3.5)
' ey = 25
SPPY 701
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. . . 2 N .
Substitution of (3.5) into (3.3) expresses 022(x) as a linear

. : g ' ' ' : .
combination of 22(c } and o 22(c ) as follows:

A . _ ' 1 11 - 1 c' - X' ' c' __1____ - 1) +
93 (X') = 05 ()= - 1 - 5 ¢ )0, )[(/TTTX%'C')Z
(V1 - &% - DI - (3.6)

XE(C - £, C+ £)
Equation (3.6) has been obtained from (3.3) by means of integration.

(The integrals are evaluated in Appendix II.) L
Following the procedure in section 1, Chapter II boundary condi-

tion (1.7) on the microcrack takes form (2.3) and, consequently

eff 1- 1
1 V2T (H0) 2(L'+8")

OZZ(C)::-K . “(3'7)
“The equation for effective stress intensity factor (1.9) takes the
form of (2.4) with ogz(x‘) given by (3.6). The system of three equa-
tions (2.3), (2.4), -and (3.7) is a system of three linear algebraic
equations for determination of OZZ(C)’ 'dzz(c) and k?ﬁ Substitu-

tions of (2.3) and (3.7). into (3.6), and (3.6) into (2.4) result in

the linear equation for K" with the solution (2.14). In.this

problem 9=4q,* a5
where
f (2,9)
q = ——————o N and
° m2(8+8") , (3.8)
_ fl(ﬁ,d) 1

qQ,. = —— -
L /2048y 4(R'46Y)
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(both q and q, are nondimensional) with

= 1+X "oyt
£(2,68) = J =X IO(C ,X')dX (3.9)
-1
1 .
fl(Q,,(S) = f i‘ ti [Il(c|,xl)+Io(cv’xv)(ql_xv)]dx
-1
where
' Cc+2
IO(C'X') =9 __e_(% d§ = n(_.L——&——z- 1) (3.10)
cly (€X) V1 - =)
and E : ‘ .
C+L.
) IR e(t) = ' ' '__'T’Z -
Il(C s X ) = { J E—-_—T(dg, = 'n(vx -C ) (/1 (T—-E) 1) (3.‘”)
' Cc-f

The coefficients 9% and q, are responsible for increase of effec-
tive streés “intensity factor kff due.to the elliptic microcrack
opening and due to the linear deviation of elliptic shape, corre-
spondingly. |

General superposition formula (1.2) gi§e$ the resulting stress

field in the form

- ¢[6(X)]
9(X) = xiff{z-—*— +
- B /énr(g)
(3.12)
C+2
42

1 .
&-C
»’2“(1&+<5)?X f 1 - 7tmey] (B0 05, x)de)
. c-2

Formula (3.12) has the, same structure as (2.15). The difference
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appears because of the second term in brackets in the integrand.

This term represents the correction to constant approximation due to

the first term of the expansion of the reshlting stress field on the
Sl

microcrack (3.1). The graph of 0 for linear approximation is

given on Figure 13 together with the k2 for constant approximation.

1
“Linear approximation is represented by the upper curve.

7] UAY
ff
K,
K‘;' 20 il
~ H
00l ] i
0.01 01 10 10
S
FIGURE 13

'Thé deviation of the upper curve becomes significant for small 5/g,
i.e., when the distan;e between the macro and microcrack becomes
small.

It should be noted that the solution obtained above gives low
estimate for both k?ff'ahd thé stress field'g(g) in (3.12). This is
illustrated by Figure 14, where our solution corresponds to the

approximation of the resulting stress field component ozz(x) by the

tangent at the center of the microcrack.
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FIGURE 14

The results of caTculqtions by the exact formula from [38]
together with the upper (i.e., the approximation of the resulting
stress field by the cord drawn through the end points of thé micro-
crack) and the lower bounds are shown in Figure 15. The formula
from [38] employed for the evaluation of ;he ratios K?? K? in

the coordinate system of Figure 15 may be written as follows

ef f .
Koo L (n 46+ 30) (28 +8+ zz)‘l%’(l;l-
xi /E(5+28) ~
o\2 L(n,K) _
-(2£o+6+4£)> O ,(22+6)(£°+2)}
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where F(K) = J% dt
b A - KZsinct
. H B v
2 dt

and ﬂ(ﬂ,K) -
- (1 + nsin2t) /1 - K<sinlt

O

are the complete elliptic integrals of the first and third kind,
respectively, and |
3

. dt

(1 + nsinzt)2/1 - KZsinlt

I[(n,K) = J

with

20, C o 2000
= = o
n=gaar o and K (2T _*¥H) T+ 5)
20
. 18
Koff

2 %\
10

00 10 20 30 40 50
——lp

o/

FIGURE 15
~The lower curve in Figure 15 represents the tangent approximation,
the dashed curve corresponds to the exact solution, and the upper
curve représents the cord apprpximatjpn.
Thus, for the microcrack (5ma\\-in comparison to the macrocrack)

located within the range'of the macrocrack asymptotic stress field
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(2.1) the solution by means of linear approximation -obtained above
is in a good agreement with the exact solution.

2. Quadratic and Cubic Approximations

This section i a direct continuation of the previous one; the
quadratic and cubic approximations of the résulting stress field
o{x) will be considered. Our goal is to develop the method of con-
structing the higher order approximations and possibly to represent
the resulting stress field o(x) as an infinite series. The latter
will be done in the next section. It will be shown also that under
certain assumptions about the character of the stress field g(x)
this series represents the exact solution to the problem.

The elastic stress field on the microcrack is assumed to be of

the form . 9(x') = g(c") + g'(CcH(X'-C") +
. < 2 ) 3
Y71 (X'-c") I S i ’
CEY T O TR aw

Xe(C-2, C+2).
where @ffc'},;g"'(c') and g"'(c') are the derivatives of the stress
fie%d‘gcx!) at point c¢'. By Willis's theorem [35] the crack opening
displacement may be represented as.a third degree polynqmial super-

imposed on elliptic crack opening, so that

2
' = '-C' -(-)-t—c—'—)_— . N
B = (b, + by (x1-c) + by L
3 (3.14)
+ b, €5 4 (xncen)

3!
The boundary conditions (1.7) have the form (2.3) (i.e. ozélc) =
K?ff --—l——-—').'which teads to the éonditiqns

VZﬂz‘R. + 65
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., =eff'2
ozz(c) R[S ( fé),

0}, (©) = RS Tsm(aes) s
op3(©) = KTEs™ (ure) o (3.15)
where
. 1
S(X) =
” V2T (X)
(all the derivatives s', s'', s''' are of the same units as S(x)).

The stress field (3.13)-.must be expressed in terms of crack opening

coefficients bk by means of (1.6). This gives for 022(X')

3 ya 1
o= (0) cry X'=C")
922X = (Fg g5 (€T T
C+£ 3 (g'-c‘)K ] ' '
‘Q(X')Q(X')IX J KZ:-O bK —;—‘— e(£")n(C).¢(&",X")dE
JE = . K! ,

» (3.16)
Xe(c-2, C+L)
The righthand part of (3.16). has to be a third: degree polynomial,
and by comparing the coefficients: on the right: and on the left of
(3.16) the vréiationship between oég)(c) and b may be estab-
lished. This is linear relationship and, consequently, can be

written as follows in variant form

-1
_ {o} = {B} {b} (3.17)
or in component form as
' ' 3
(n) - -1
0y, (€)= yZoBik by
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where {B}'-l is transformation matrix and {c} and {b} stand for
' " " ’

torecolimne (M) oy
vector-cotumns G,y (C): {051 0550 Tpys 022} R

byt {bys by by by} - (3a8)

or, evaluating the integrals in (3.16):

1 0 12 9
-1 7
By =30 2 o %2'2

0 0 3. 0 : ' (3A.]9»)

Notéithat the 6hiy.tw0 singhiar'{ntegra1s present in (3.18) have
‘been evaluated already in section 1, see formuYa (3.4). In the case
of quadratic approximatibn the matrix‘degeﬁegates~%nr6r3 x 3 matrix
which can be obtained from by crossing out the fourth column aﬁd'iﬁé
fourth row. It can be easily checked that for a linear approximation
the matrix degenerates into 2 x 2 which can be obtained .by crossing
out the third and the fourth columns ahd rows (see formula (3.5)).
In order to obtain the effective stress ihtensity factor k?ff
and the stress field o(x) we need to solve the system of equations

(3.37). The inverse matrix has the form

1 0-2'2/3.40

{8} = 0 1/2 0 -2'2/3.4

teit

(3.20)
0o 0 1/3 0

\0 0 0

o L
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The column {b} of crack opening coefficients may be represented now

as follows . .
{b} = {8} {0} | ' (3.21)

Substitution of (3.15) into (3.21) gives {b} as a 11near function of

keff

1 eff - :

where a vector column {S} is represented by the components S(2 + 6),'
S'(e+68), S (2 +8), S;"(z +6). Substitution of (3.14) with {b}
given by (3.22) into (1.6) and the latter into equation for effec-
tive stress intensity factor £1.9) rgsults in the linear equation

for k?ff

, with th solution (2.14). In order to carry out this proce-
dure we substitute (3.14) into (1.6) at first, and after rearrange-

ment of some terﬁs obtain
xX') = - = {,J e(t) [b + b (x -C"Y + = 1> (x'-c ) + -

. 31 t

, , ‘ i
+ 2 b3(X.'-C')§]d;' - Jg(—f) [by +b,(X'-C") +
!

FEEEE | (3.23)
+ % bj(x'—c')]dt + j e(t)[ b + b (X‘-C')]dt'

-1
i .

! J t',e(t)b3dt'}
-]

Wl

. -
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where t =¢ - x, e(t) = |1 -( ':'C) , and integrals are taken from

(c'-g'-x") to (c + ¢' - x') introducing the notation

1
I (2',X") = @i -_1]
© 1 - (%}?E;)z
gr (2
11(2',X') = g(X'-CH{ 1 - (;(—.::-.) - 1)
Cl+e' =X
' w2
IZ(Q',X') = - e(t)dt' = - -5
’ C"'Q."'X'
C'+¢'=-X?
: ' 9'2 -
1,(2',X') = - J t'e (t)dt' = 377- (x'-C")
C'-R'-X'

(note that I0 and I] are the same integrals as in section 1, formu-

Yas (3.10) and (3.11)) formula (3.23) may be rewritten as follows:

L __E ‘e = +
0 (%) = = =3 {1 b+ [(X'-C)HI_ + I,1b,

1 2
= [(X' -CYY" +2(x' - C")I, + 1,]b, +

2 ! 22 (3.23a)
+ é%l(X'A- C')310.+ IX' - c')211 + 3(X' - c')12 + 13]}

Substitution of (3.22) into (3.23a) results in the following expres-

sion '2 12
S 2 eff 1 L " 1l ., - 2 my o,
0y = = Ky FlI (5 - 37 8) + 3(5" - 553gs™)

L 1 " |-|2 O_'
e[(X' - c.)1o + 11] +_5T3 S ;(x = Cc") I+ 2(X o )11 + 12] + (3.23b)
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+ —

1
314

Sl" [ (x!

e’ 4 30K - c?)211 + 3% - €O, + 1,1} (3.23b)
o ) N . N ] . = :

Substituting (3.23b) into (1.9), results in

where k]

eff
Ky

eff

_ .0 eff
=kyt kg + g ¢ gy +ay)

eff eff eff

Q> k] q» k] dos and k] a3 represent the increments of

effective stress intensity factor kfﬁ resulting from constant,

linear,

quadratic and cubic approximations, respectively. The

solution of the last equation appears in the form (2.14) with

ZE: 0 O aa)

Each of q; - 1s def1ned by the structure of (1.9) and (3.23b) and
may be written in the form
£ 2 7 |
2 '
W L - . 1 .
1 % o1, g " 1+X' .
0w GS g st f V r'--T (1, (2'- X (X' - ¢ + 1,2, X)X
o= A ' :
1 ' : ‘ .
1 2'0 s" - 1 +X' | 2
W33 NT‘T (&' -CH 1. X) + 2" - €)1 (', X*) + L,]ax’
-1

A

1+ X'

o .
'?o '3_‘ Jt/‘—* [x' - cn)3 10+3(x'-c')21 +3(X' - €I, + 1,]dX!

1 .

The formulas above can be easily reduced to the ones in the linear

approximation by setting §''=5'""=0.
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Using general superposition forumla (1.2), formula for effective
stress intensity factor (2.14) with q.-th (i = 1,2,3,4) given by
expressions above, and formula (3.236) for the resulting stress
field o(x) for cubic approximation may be Qritten out.. We do not
do it herg, but in the next section the general formula for the
stress field 9(5) is presented in a form of infinite'series by the
derivatives of dominating field at the microcrack center, i.e. atr
=4+ 6.

In the considered case of cubic approximation of the elastic
stress field o(x) on the microcrack all the calculations have been
done exactly. .In case of higher order approximations-the complexity
increases "and only apbroximate calculations have been done. It
should be noted that integrals of the type of 1., Iy, 1,, etc.
‘always can be evaluated in terms of elementary functions [37] and
the brocedure can be carffed out in the case ‘of$ higher
approximations also.

The concluding remarks of Section 1, Chapter II are applicable
to the problem of this section also. It means that the equation for
‘the effective stress intensity factor may be solved by iterative
procedure which corresponds to the expansion of (2.14) into geo-
metric series. “-Physical meaning of the terms-in geometric- series
remains the same.

- Thus, the solution to the problem under consideration can be
refined in two directions: higher order interactions taken into

account, and higher degree of approximation of the stress field o(x)
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involved.

3. The Series Solution (Two co1inearlcfacks)

In this section the procedure oflobtqining higher order approxi-
mations developed in the previous section will be extended up to the
P-th approximation, where'P is an afbitrary number. It will be shown
that for an analyffc stress field o(x) the P-th approximation,
becomes the exact solution in the 1ihit P+ . In the logic of
development of this section we fé]]ow the pattern‘of the previous -
one. Thus, the resulting stress field g(x) on the microcrack®

will be represented by an expression

o (K) & - of
yy (©) HB-

K=0 K

[ng lika~]

9y (X) = » Xe(C-L, CH)  (3.25)
then by»aWillis's theorem [35] the COD on ‘the microcrack may be
represented as follows
P K
b(X) = 4n(C) I by X -0

xX) . ‘ (3.26)
K=0 K!

Boundary conditions (1.7) and the ones obtained from them by means
‘of differentiation (i.e., analogous to formula (3.15)) take the

form:

eff

0,,(0) = KSTE 5(2 + 6)

P _ yeff Cen

022(?) ‘.K; S (+6) (3.27)
(), _ eff _(P),,

022 C) = Kl S 2+ 9)
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The relationship of the vector c£§)(g) = {g} to the vector
bk ={b} is linear and given by (3.17), where the transformation
matrix {B}'] is defined by the expression

C+4L

8} b} = nnIn(C) T ,J T %
B

& - o

k R e(e) 2 (g, X)yde (3.28)

which is ana1dgous to (3.18) of the previous section. Formul a
(3.28) (just as (3.18)) do not give the explicit form of transforma-
tion matrix., In the previous section, all the integrals in (3.18)
.have been evaluated and the resulting structure of {B}°] appearéawés
(3.19). In the general case under consideration higher order inte-
grals in (3.28) were estimated with the help of the mean value
-theorem. The structure of transformation matrix {B}'] (and {B}) re-
mains similar to the one given by (3.19) ahd;(3;20), respectively).

In order to complete the scheme the equation for effective
stress intensity factor (1.9) must be used; it is linear equation in
view of (3.22), which preserves its form with {B} |  defined by
(3.28) and the vector {s} extended correspondingly. The solution of

(1.9) has the usual form (2.14) with

0 - C(3.29)

K
° (6 -0 . e
I-x '] T TRl (3.30)

X (C-2, C+%)
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With effective stress intensity factor 'k?f determined, the last
step left is to use general superposition formula (1.2) for determ-

ining the stress field o(x).
eff (90
1 V2rr (X)

C+5 - .
3 N ‘ : -o" (3.31)
s 1 p B ST J E-9 @) 8, ¥4

c(X) =K

nk K" X
n=0 K=0 )

.Form.las (2.14) (with q defined by (3.29) and (3.30)), and (3.31)
are the resulting ones for P-th approximation. The rest of this
section is dedicated to the analysis of the structure of matrix {B}
and the conditions under which formu]asi(2.14), (3.30)itah‘be ex-
tended to exact results.

It should be .noted that evaluation of the integrals in (3.28) is
of vital importénce'bécause only that gives the explicit structure
of transformation matrix. The integra}s may be»represented in the
form - |

: - cHl : : . ‘
I (L, X)=-2% J x-)"% e(£)dE, Xe(C-1, C+R)
‘noc o ' : U T .
- Cc-L

(3.32)

(The first four of them are 1., I,, I,, I. of the previous section.)

0 "1’ "2 "3
I] are singular integrals and they have been evg]uated
2

~ Only IO’

already. A1l the integrals I are of the type R(x, X" + ax + 8)
where R is-rational function and, therefore [37], can be integrated
in terms of. elementary functjons. It is enough for our purposes,
however, to estimate them by the mean value theorem |

Le(c) ) | n-1
_ o) n-1 -
In(z’ X) i {[x - (C+ )] - [X - (C- 9] }‘
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where e(xo) <1, for XOG(C - 2, C+g). The last formula can be
rewritten as follows

gL (X) m-l 0 o m-lom m
O e S U Sl )

where C:_] are the binominal coefficients.

Using the expression (3.33) with the exact results for the

integrals I0 - I3 (section 2) the stress field on the microcrack can

be expressed as follows:

E N bn o n N 1 bn n
022()() = - {2 (-m = C (X-C) + % meo = (X-C)" + ...
n=0 n=1
(3.34)
N e(X ) K-1
K+1 K bn o m m m n-m-1
M A s S R

By comparison of the coefficients at the same powers of (x - ¢) in
the righthand part of (3.34) and its lefthand part in the- form
(3.25), we obtain the transformation matrix {8)}™', from which matrix

{B} can be obtained.

The structure of both matrixes {B}™' and {B} appear to be the
same as in (3.19), (3.20), i.e.,

, “ 6
1 0 o°2l2 0 9.t 0 ooot
'2 ‘
0 2 0 a4t 0 oni 0
-1
B}, =Sl o o 5 0 as?o aut o
g 21 2 2 (3.3%)
0o o 0
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and

®
10 sy, 0 Bput © O 806!
1 "2 4 '
0 3 0 B3t 0 Bt o
{B} = % o 0 % 0 32:."2 0 Baet ¢
' (3.36)
0 o o

where coefficients %20 %40 %06’ *13* %15° etc. and 502, 804, ‘%6’
B3> Byg» €tc. can be calculated from (3.34). It should be noted
that coefficients ij decrease by both indexes i and j.

The structure of transformation matrixes {B}'] and (B}Hescribed
above 1s.n0t a result of approximate calcultions of integrals In.
This can be shown by considering the integrals In: Notice that fhé
product of binomial expansion of the term (x - g)"'z multiplied by
elliptic COD e(¢) represents the sequence of odd and even terms.
| Integration within symmetric limits leaves only even terms.

Formulas (3.35) and (3.36) comp]etegthé;consideration_of the
matrixes {B}-] and {B}., If the'ozz(x) component of a stress field
g(x) is analytic in the interval (c - 2, ¢ +2), then (3.25) may be
considered as 5ts Taylor's expansion when P -« . - Correspondingly

(3.26) is Taylor's expansion for b(x) and formu]as'(2;14)-(with;gk

given by (3.30)) and (3.31) represent the exact solution of the
problem if the series in (3.30) and (3.31) converge.
The convergence in both formulas is defined by the behavior of

the following series'
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c+L

¢-0)" ~
nfk kfo Bk Sk J - n! (g, x)dE (3.37)
- - c-2
, e(g) . .
where f(g, X) = TE—ITZ is a scalar function for formula (3.29) and

f(e, x) = e(g) n(C).e(£, x), where xe(c - ¢, ¢ + ¢) is a vector

function for formula (3.31). Taking into account that

NG DN k-1
Sk =( ) = ' (3.38)
/Znt r=0+6 /2n(i+6) (i+8)K2K )
for K>0
and that
c+L c+L
€ - . 8" ’
S f(g, 0)dE | < = £(£, x)d¢ (3.39)
c=-2 . ' c-L
(3.37) can be bounded as follows:
c+
& - )"
% kX0 Bak Sk 1J o e s
. c-% ‘ .
42 (3.40)
1 (2k - 1) 1 {
_ I B8 — . f(, x)dc‘
\ VTS nok>0 P kg a + s/ L
c—

The series on the right of (3.40) is absolutely convergent and the
rate of convergence depends on §/2 : the bigger the ratio ¢ /g, thg
better the ‘convergence is. This result is understandable from a
physical point of view; the small ratio indicates that either the
microcrack is close to the main crack tip (i.e., § > 0), or the
‘microcrack length & s large; in both cases many terms in the

stress field expansion are needed. For a large ratio either the.
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microcrack is far from the main crack tip (i.e., & is 1af§é),;or,the
microcrack is small (i.e., ¢>0); in both cases the correction to the
main crack dominating field is small and our series (3.37) canerges
rapidly.

As conclusion to this section we will formulate the above as the
following stafemént: if a sy;tem‘of two cracks in linear elastic
medium under. ‘the éSSumptions of plane problem and mode I loading
located as on Figure 5, and the microcracks are imbedded in the
dominant field of the main crack, then the analytic stress field
o(x) can be represented as an infinite series (3.31) where: 1. the
effective stress intensity factor k?f is given by (2.14), (3.29)
and (3.30), 2. -the first term represents thé dominating asymptotic
stress field of the main crack, 3. the second term repbesents the

series by the derivatives of the dominant field S, taken at the

k
center of the microcrack -with toefficients which depend on s$mall
crack length and location, 4. the series is absolutely convergent
and the rate of convergence depends on the ratio of the distance
between two adjacent crack tips & to the smaller crack length g.

The obtained result is an exact series solution to the problem
of- this chapter. It should be noted, that the exact solution to
this prob]em"haﬁ'been obtained in [38] by means of complex variable
techniques. It will .be shown in the next chapter that the method
suggested in this section may be generalized and the exact solution

to the problem of a macrocrack surrounded by an array of arbitrarily

located microcracks of -arbitrary lengths and orientations can .be

obtained. .
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CHAPTER IV

The Multiple Crack Interaction Problem

1. Stress Field in a Neighborhood of a Macrocrack Tip Surrounded by

an Array of Microcracks

In this section we consider a plane elastostatic problem of the
interaction of a macrocrack under mode I tensile loading with an
array of rectilinear microcracks at the macrocrack tip.

Let us introduce the following notation,
o ¢{6(X)]
1. g (X) = K| ——— (4.1)
o V27 (X)
is the asymptotic stress field of a macrocrack of length Zzo.with K?

- as stress intensity factor ¢o[8(x)] - as asymptotic angie distibu-
tion tensor, and r(x) - as a distance from macrocrack tip to the

point x.

). £ = n0E)o ™ (1)

(4.2)
is m-th derivative of traction vector t in the direction of s-th
microcrack evaluated at the center of the microcrack. The direction-

al derivative of higher order must be undestood in the following

P s _ S _ .Sy s . (q s
sense: if X2 - X20 a(X] x]O),'S the equation of the rectilinear

Segmént of s-th microcrack (see Figure 16), then the stress g(x;

) S
x; on that segment can be repfesented as- glxi. x;o + G(X; - de)l

- .i.e. a function of x?.éoordinate onTy.- Then the:directional
derivative takes the form

s s s (4.3)
+ a(X1 - xlO)]

Ao(m)
~ 20

(55) = -EE g[xi, X
dX
1
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Microcrack Array
—  |.s , |
- X ot - S™ microcrack
~ - ' e : e
— Pl
X ]
macrocrack - ' o~ _
i >
XO\ - - N x‘
' ~
{ — ~ ~ ~ ~
—_— . ~ ~N
~ ~
FIGURE 16

(n) _
3. b, ' = {b}
stands for the set of vector coefficients of a polynomial which is

superimposed on the elliptic crack opening of k-th microcrack e(¢ k)

(see formula (4.14)). _ |
_ s JK : .
4 {B} =B (X, X)) (4.4)
is a linear operator which depends on the positions of centers of

Z, xz, and characterizes the influence m-th deriva-

two miérocracks X
tive of s-th microcrack stress field on n-th derivative of k-th
microcrack opening displacement coefficient {b}. The linear
operator {B}is a second rank tensor (subscripts in (4.2) and in all
the operators below are not tensorial). | The definition of the

linear operator {B} is given Ue]ow.
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Kk k"
(& -Eo) K (4.5)

X
xK e(cXy 0(5, X)dE

5. AX)} =A (X)) =T f
-~ ~ ~n ~ X 2}( n!

is a matrix which characterizes the stress associated with n-th
derivative of the microcrack opening coefficient {b} of k-th micro-
crack at arbitrary point x. Matrix {A(x)}is the matrix of the micro-
crack array, In forhuIa (4.5) Tx - is stress operator transforming
the displacement field u(x) into»stress field 9(5)’ e(¢) - is a unit
elliptic crack opening displacement, 9(5, 5) - is the second Green's
tensor defined in Appendix I, gk is a coordinate on k-th microcrack

of length 2¢ ; matrix{A(x)} is a third rank tensor,

K’ _ N
6. (4%} = a2(x) (4.6)

ih-

is a linear operator which characterizes the increase of stress
‘tensity factor K? due to stresses associated with microcrack opening
coefficients {b} of the array. The linear operator {50} is a vector.
The-definitfon-of'{go} is given below. |

Using the notation above, the following statement can be pfoved:
If,

1. The microcrack array has been located in a close vicinity of
‘a macrocrack tip and the characteristic linear dimension of the
array is small in comparison to the macrocrrack length (i.e., small
scale microcracking model), and

2. The resulting stress field o(x) induced by the macrocrack
and the rest of microcracks on the line of each microcrack can be
approximated by the polynomial function.

Then the resulting stress field 9(5).can be fully characterized
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by the asymptotic stress field of the macrocrack Oo(x), thé-Va]ues

(m)(

of its derivatives o

xo) in the directions of microcracks
evaluated at the centers of microcracks, and the second Gréen's

tensor o(g, x) as follows:
o(X) = ({1} + (B} {£} {a°Do_(x) + (B} {t} (A}  (4.7)
or in index notation

i L s K s..0, K
o) = L+ | B X0t xHa°( )10 () +
o (4o7a)

r - s K s K
m,n,s,K gmn(§o’ go)sm(§o) én(g )

- Proof
The elastic ‘stress.field of the system of cracks under consi-

deration can be represented by means of general superposition

formula
o(X) = o(¥) + ;I; 0,(X) (4.8)
where
$[8(X)]
eff < ~
X) =K —— .
g 1 /iﬁ;zgs : (4-9)
‘and -
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(2.10)

wifh bi(g) as a double layer potential density which cén be'iﬁtér-
preted as a crack opening disp]acémént. Formula (4.9) rebfe§ents
dominant stress field of the main crack with K?ﬁ - as effective
stress intensity factor which reflects the impact of the microcréck
array on the macrocrack. It appears as an bnknown quantity in (4.9)
along with unknown components of vectors Qi(g), where i = 1;_2,
«ee N.

Equi1ibrium equations are automatically satisfied for the:re-
sulting stress field 9(55 in the form (4.8). The stress fie1d of .
microcracks ,21 gi(X), which is defined by (4.10), satisfie?ithe
équi]ibrium equations because of the properties of the second
Green's tensor ?(g, g). The dominant stress field @(5)3 given by
(4.9) satisfies the equilibrium equations bgcause of the ﬁrbpéhties;
of the ésymptotic crack tip sqution. | | |

~The equations to be satisfied are the boundary conditions‘oh the
macrocrack and each of the Microcracks. ‘For the small scale modé],
the boundary condition on a macrocrack can be substituted by the
equation - fof effective"stress .intensity factor 'K?T which fully
determines ‘the asymptotic stress field of thé macrocrack.

a0, 5o, e (4.11)

Boundary conditions on microcgacks‘appear to form a system of 2N
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singular 1ntegra1 equations for 2N unknown components of N vectors

of double layer potential densities b(x) (k =1, 2, ... N).
N .

086+ Ty J' b (B0, X )40 + -
Ix f By (&) T (Es X;)dE) = | -

o
where x. - is a coordinate on i-th microcrack. Equations (4.11) ,

(4.12) constitute a system for determ1nat1on of 2N +-1 unknowns K]
and the components of N vectors.b (¢). '

In order to solve the system of equations (4.11), (4.12) let us

represent the polynomial stress field o(x) on k-th microcrack by:

. S v n
' P <F - %5
K

o) = I o o("? (xg) —

(4?13)

Formula (4.13) and Willis's theorem [35] permit to represent the

.C0D b(xk) as a following polynomial

' (X - X)) ’ ' S
= ey —— 2 e (aaa)

o =

E(§ ) = n=0 <K

In view of (4.13) and (4.14) the boundary conditions (4. 12) may be

written as fol]ows

: Y
g(g.);xj zo ™ () e 1g L xpae -

QK | . Sl S n |
P N : & -£) s K..o - (4.15)
-z I n(x )+ T, J L) (6)) ———= e(69) 9 (£7, Xt -
n=0.s=1 2

¢[6(x)]

where <§(§K) = n(X )
v2nr(§) 64
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Expression on the left of (4.15) represents traction on K-th micro-
crack which, by assumption, may be represented as a “polynomial,
(The lefthand part of (4.15) contains singular integral, when'ﬁéo;
which converges in Cauchy's sense). Consequént1y, the righthand
part of‘(4.15)v(i.e., the traction on K-th microcrack induced by: the
rest of the microcracks and the dominant field) is a po\yndmia\
also; then (4.15) can be rewritten in the form of a system of
equations for the coefficients of the polynomials of the lefthand

and righthand parts of (4.15). The procedure described above can be

k

carried out by differentiation of (4.15) at point‘x0 in the

direction .of k-th microcrack P times. The differentiatiqﬁ:hésuits

in the following equation: N

P N
s Kyn_ _ T H XS; XK
néo Kél Ian(o’ go)QK n=0 K=1 ~mn( o’ "o

n _ Keff g (xs)'
~m ~o

My - Ky |
(4.16)

BN

where Sm(xé is m-th derivative on s-th microcrack, m = 0, 1, 2,

. _ - n_ . (n) ..k . ‘
eee P, S =1, 2, ... N. Pk = P (xo). The linear operator ymn u

Xxsxk) i$ given by the following expressionsf

Jo-0
o T when s = k
s Ky _ (&% - 5" e
Bn®or ¥o) 71, f —— % ™%, et 87)
L
S
when s # k

taken at point x =‘xg

- k I ‘
where ¢(m) (gs. }o) is m-th directional derivative of Green's tensor
at point k taken in direction of k-th microcrack defined by (4.4).

.Similarly, the linear operator Ihn(x; §g) is giVen by the expres-
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sion: O v o v e o e e e e e e e . . when s # k

Ln@X, X7) =
~mn o’ Je (& ‘ '
| e o@D e ™t Dt ©9)
L

n when s = k
The set of elements b, in (4.16) constitutes a P x N matrix. In
symbolic notation equation (4.16) may be written as follows:

. (s)

{-I.} . {13} = - {tl]'.{}.)} - Kl - . . (4.]6&)

together with equation (4.11) for stress intensity factor k?ff boun-

dary conditions on microcracks (4.12) form a system of (P x N + 1)
linear algebraic equations with P x N unknown components of matrix
{b} and unknown quantity K?ﬁ Substitution of formula (4.10) with
pi(§) given by (4.14) into (4.11) results in L

eff o] o
Kl = Kl + {A } hd {b} (4.]9)

where linear operator {Ao} is given by the expression

')
L o [r+x P N
{{\(_)} = — J -\/20 —x (%) I Iy ({(S, X)dx (4.20)
’ (o}

n=1 §=0 ~on

with Hon(xgx) defined by (4.17). Formula (4.20) defines linear .
operator {Ao} of (4.5). Operator {Ao} characterizes the impact of a
microcrack array on the main crack.

Substitution of (4.19) into (4.16a) gives a system of linear
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algebraic equations for the determination of {b}

{1} {b} = - ({H} + (s} {&°}) {b} - (¢t} (a.21)

The last system of equations yields the obvious solution _
{b} = {8} {t} o (4.22)

where
(B)=- ({1} + (R} +{s) (a°D7} (4.23)

Formula (4.23) defines the linear operator {B} of-(4.4).
In index notation (4.20) takes the form
N P

n_ 3z I s K s ' ' (4.22a
PK_ s=1 m=o0 ]}mn(z(o’ )~(o) Em()}o) ( . )

Formula (4.22) represents {b}A'as-a linear function of directional

o

derivatives of the asymptotic stress field ¢ (x) (n. g (x) =K

o 0
s(x). Substitution of (4.22) into (4.14), (4.14) into (4.10), and
(4.19) into (4.9), with subsequent substitution of (4.9) and (4.10)
into (4.8) furnishes (4.7). This completes the'prodf;

Thus, taking into account the analytic character of the solution
of a plane problem of elastostatics [33], the resulting stress field

o(x) can be approximated by a polynomial as closely as desired. Con-

sequently the solution (4.7) obtained above can be made as close as
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desired to the exact one.

It shod1d be noted that each term in formula (4.7), for the
resultiﬁg stress field 9(5) can be given a c{eér bhyéical 1nterbr§—
tation; the first term represents dominating stress field of the
main crack G(x) and the second term represents the sfress field of
the microcrack array embedded into the stress field pf the macro-

crack g (x). Dominating stress field &(x), in turn, consists of two
g\

~ -

terms, first of them being the asymptotic stress field of the‘main
crack 90(5), and the second term results fram the impact oft the
microcrack array (embedded into asymptotic» stress field) on the
macrocrack., -

The other remark concerns the method of Qoﬂution of ‘a system of
equations (4.21). Actual' construction of operator. {B} may present
considerable difficulties for an extensive microcrack array. -This
is one of the reasons for suggesting an itefative?procedure:as'an
alternative to exact solution. Another reason is that'an iterafive
procedure has clear physical meaning and, thus, gives an fﬁsight
into. the nature of solution (4.7), as will be shown below.

_Iterative process for equation (4.21) can be arranged by multi-
plying it bj'{1T1 operator. 'Tﬁis gives |
| . ;(4.235

Sy ™D oLy 4 sia®n 1™ -t g

where superscripts (n + 1) and (n) refer to the corresponding steps
1

of iteration. Choosing { }o) = - {1}

~

{t} (i.e. microcrack opening

coefficient {bf which results from the main crack field only) as

68



zero approximation, we obtain

™ = 1) - @+ 0 - 0P + s (DT PR (e} (4.26)
where {1} is a unit operator, and

(D} = {;}'1 ({1} + {sHA"} (4;25)

The multiplication of linear operators must be understood in the

following sense: e.g.,

s JK,| . s .4y - .
(x> XD H (X x» ~ (4.26)

(ytmy -z o1
o ~ p -0

m,S ~-ms

Consequently, double iterated operator{D? i's represented by formula

2 gK x93 = = x5, X 0 x5, xb :
D %o X)) = nrs P oo X Pop o0 %o (4.27)

Substitution of (4.26) (with {p}0 = - {}}'] {t} into (4.7) after

rearrangements can be written in the form

0®) = 0 0 -6} am) + (pHEI 1A - ) oAy +

(4.28)

ce = 01 1A 0 0 + 011301 o 0 - 037 5D We )+ ...

Each consequent term in the last formula can be interpreted as

follows: 2ero order term - 90(5)’ i.e., asymptotic stress field of
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a macrocrack; first order term.- {Q}(o) {A(g)}% i.e. stress field of
the microcrack array (characterized by matrix {A(x)}) embedded into
asymptotic field ¢ (x) (note that {b} ‘o)- represents the set of
microcrack opening coefficients fdr the array embedded into asymp-
totic field 90(5)); second order terms.are characterized by triple
products: { p}{p}(°) {A(x)} and {p}(o) {Ao }90(3); the first term
with the once~ iterated operator {D}gives the stress field generated
by the microcrack array with microcracks subjected to stresses
induced cy otﬁer microcracks and the main crack, the microcrack and
the main crack being embedded into asymptotic fie1d;vthe second term
with operator {50} gives the stress field of the main crack subject-
ed to the stresses induced by the microcrack array, the latter
embedded into asymptotic stress field of che main crack.

Thus, double products in (4.28) account for I-st order interac-
tions, triple product - for 2nd order interaction, etc.'The-coordT- '

nates above can be illustrated by the following diagram.

FIGURE 17
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Thus, the stress field solution go(x), given by (4.7), perﬁits
two differgnt types of approximations: |
1. Approximation by number of derivatives of the asymptotic-StEess
field taken into account and 2. Approximation by number of physica]
interactions between microcracks taken into account.

2. Evalution of the J-Integral

In this section we evaluate the energy release rate J pef unit
crack layer extension. for the CL it can be expresed in the form of
path-independent integral around the CL active zone Va (25].

-JK = J (fGKj - oijui,K)njdr (4.29)
T _
The active and inert zones-VA and’VI, the line of their separation

r(t) (i.e. the crack layer trailing edge [25]), and the contour r

are presented in Figure 18.

FIGURE 18
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It is shown in [25] that J- 1ntegra1 given by’ (4 29) does not depend
on the contour of 1ntegrat1on r if the latter connects the end

points of the tra1\1ng edge r(t)

1eav1ng the act1ve zone VA 1ns1de
The path-1ndependent property of energy release rate J follows from
the principle of minimum of strain energy-w1th‘the add1tjona1;cond1-
tion of invariance of the strain energy with respect to translation
of a CL. Consequently, the J-integral ts path jndependent for hono-
geneous medium only. For a mode] of the Ct oescribed above (1.e;, a

macrocrack surrounded by an array of microcracks) Figure 18 must be

substituted by Figure 19.

MICROCRACK
ARRAY

FIGURE 19

The energy release rate J preserves its path independent
property for the pode] 1t'evq1uated‘on the contour surrounding the
active zone.

Let us consider the problem of interaction of two cracks located

on one line (i.e., Figure 5) in order to indicate in a simple
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problem the particular path which leads to the solution of a génera]
problem. The convenient path consists of the union of the three

contours, T r], and ]b and the rectilinear segments connetting

o’
them, depicted in Figure 20. For the loops ro’ r], rz in Figure 20

FIGURE 20

1

the integrals on rectilinear segments cancel and only the integrals
on ro’ Ty, r2’ must be evaluated. J-integral evaluated on the 109p
around the crack tip is shown to be [30]: B

7= (4.30)
where K] is stress intensity factor. thus, each of the integrals on
L r]; Iy, can be calculated by means of (4;30).

This line of reasoning can be applied ;o the general problem of
interaction of a macrocrack with a microcrack array (Figure 19).
The energy release rate J for the general problem can be represented
as follows:

3=+ | L (4.31)

where
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G ,

~is the energy release rate associated with the main créck and evalu-
ated on the loop around the tip of the main crack Ty (it shou1d_be

noted that the microcrack array alsocontributes to J throdgh'the

eff

use of K_] ) and

AJ,

M= | (4.33)

(L o -1

i
is the energy release rate associated with the microcrack'array.
The parts of each Adi agsociatgd yith tﬁo ends of’thé microcrack
(i.e. on the céuntods simi]arufo f] and 1‘2) enter with opposite
signes- (e.g., on the countour F] with (-) sign, -and on the countour
T, with (+) sign) because of :thedirections of the normals nj_to the
contours. Fromt his remark follows that for piecewise constant
appoximation of the resulting stress field o(x), each AJi vanj;hes
because the stress intensity factors on both ends of each microcrack
are equal.

In the general case of the resulting stress field a(x) givehaby
(4.7) the energy release rate associated with i-th microcrack of the
array can be represented as follows:

=1 2 2 2
AJ. E‘[(KlO - Kll) + (K20 - K21)] o (4.34)

where'K]O'and K20 - are the mode I and mode II stress intensity
‘factors at the microcrack tip which is closer to the main -crack,
respectively, K]1 and K21 - are the mode I and mode II stress inten-

sity factors at the microcrack tip which is5farther from the main
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crack tip. The second term in (4.34) appears_ because of the
presence of the mode I1 loading on the microcracks [36].

In order to give the nontrivial example formula (4.34) has been
used for evaluation of.J-integra1 in the case of linear approxiﬁa-
tion of the resulting stress field o(x) on each microcrack.

The stress intensity factor K] for a crack of length g loaded

by the normal stress ozz(x) is defined by the following expression:

1
2 1 +X
Kl = = f —= 022(X)dx. (4.35)
-1

Analogous expression is valid for the loading by tangential stress

02](x).~ |
Under the assumption of linear approximation of the. resulting

stress field g(x) both of the above mentioned components are linear

functions, and (4.35) can be rewritten as follows:~

1 _
% (1
K, = if I f;( (aX + B)dX (4.36)

1

where o and g are the constants of stress units, and x is the non-
dimensional coordinate.
Integration yields -

_ o .
K =M Ga+sy - (4.37)

The same formula is valid for K, but a and g would represent the

2

75



coefficients of 11near funct1on 02](x)
U51ng the notat1on of (4 34), formu]a (4 37) gives K]], wh1\e

K]0 is 'given by

=~
L}
Sl

10 1 +.

>

1 . . _
J L= X (ax + B)dX = /§E (- %a +8)  (4.38)
1 . - "

Thus, AJd can be represented as follows:

AT = %g[( 2MaBL

_E

Nt =

o+ 8’ - (=30 + 8] = (4.39)
Using the results of the previous section, the»‘coefficfénts
a and B can be determined in terms of directional derivatives of the
resulting stress field o (x). formula (4.21), where {b} given by
(4.22) substituted into the righthand part, determines the traction
and its derivatives at the centers of each microcrack of the array,

i.e.,

{ne0) = [(H} + {$}{a%}) {B}t} - (£} (4.40)

where n is unit normal vector at the center of each microcrack.. In
(4.40) the matrix {n-g}  is determined by the values of dominating
field traction and "its directional derivatives at the center of
microcracks {t}.

The coefficients @ = 22(x ky and By = 022(x ) can be obtained

from (4.40) (index k refers to the k-th microcrack). The same is
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true for the shear mode. Substituting o«  and B into (4.39) we

k
obtain AJ in a form:

N _

83 = T 4h [0y, 0y () + oK) 95 XN1? (4.41)
where the derivatfves of the stress components are taken with re-
spect to dimensional coordinate, and as a resu]t-in (4.41) appears
the multiplier 22. Substitution of (4.41) into (4.31) gives the
finél formula for the energy release rate in the general problem.
In the particular problem of macro and microcrack located on one

line (Figure 5) using (4.41) the expression for energy release rate

can be written as follows:

ff£,2
Co

. |
=5 - sgvam! (4.42)

[
I

The expression above is approximated for §/¢>0.25. For .smaller .§/g
higher order approximations have to be taken into account because;bf

the strongly gradient field in the vicinity of the macrocrack tip.
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" CONCLUSION

1. The elastic stress field solution to the problem of intefactidn
of a macrocrack with an array of arbitbari]y located and oriented
microcracks (within the 1limits of a smallscale model) has been
obtéined; | | | ‘

2. The elastic stress field solution for two and three craék.infer-
action prob]éhs of interest to fracture mechanics has been obtained.
3. It has been shown that an aﬁray'of microcracks in a main crack
tip viéinity can either ahpiify' the effective stress inten$ity
‘factor or reducenit depending on the array;s configuration.v |

4. The method leading to the -solution of the generéT problém de-
scribed- above (i.e., the macrocrack-microcrack array -interaction
prbb]eﬁ) refines the one suggested in the work [32]. |
-5, Using the obtained elastic soldtion the energy re]éése'.rate
;séocidted with the crack-layer translational motion has Seén'éQéld-

ated.
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APPENDIX 1

Derivation of the Second Green's Tensor for
Plane Problem of Elastostatics

In this derivation of 2D Green's tensor we follow the routine}of
work [33] for obtaining of the second Green's tensor in 3D problem

of elasticity. -
The second Green's tensor can be defined by the following ex-

pression:

D* "0 =% 80 ({) '
where Q - is a unit force vector applied ét poinf g of an infipite
elastic plane, ¢ - stress tensor in the p1ane, and gx“-~is aunit
normal vector at point x of the plane. Thus, influence tensor® ¥ x,t)
has been defined as a linear operator which transforms the‘Unit
force Q applied at some point into a tracijn vector at the 6thér
point.- Surrounding the point with an ihagina;y closed contour we

can write the equilibrium equation for the interior region:

L R L—
=
.
Q
(=]
—
4+
0O
L}
(=]

J @ 9 | (2)
The value of integral in (2) does not depend on the contour-of

integration I' , which may be chosen to be a circle. ' Then equation

(2) taks the form,
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Jrg'gdl"+g=() (3)
r*

where T is a circle of unit radius where R=1x-¢&, |[R| =R. It
follows from (3) that the magnitude of resultant force on any
contour with a point inside of it does not depend on R and always
equals - Q._ This is possible only if components of stress tensor
decrease as R'l. Consequently, the components of the displacement
vector u must have logarithmic singularity at point £. Therefore,
in the Papkovich-Neuber representation for displacement vector u,

u=4(l -v) B - grad(R*B), (4)
vector B has to be chosen as

B =u fn R Q (5)
where a is an unknown scalar constant, which can be determined from
(2) after construction of a stress tensor g on the basis of (4).
The introduction of the harmonic scalar into the Papkovich-Neuber
representation is unnecessary in this problem. After substitution
of (5) into (4) the displacement vector u takes the form,

. Q- R
u = al(3 - 4v) QQnR-”z"R (6)
~ - R

-

The strain tensor ¢ = 1/2 sym vu, (where "sym" symbol refers to the
operator of symmetrization, and v operator is referred to 2D space)
may be represented as foilows:

‘QR + RQ Q 5 Q R

e= a[@ - 2v) = -z E+2—"R]  (7)
) R R? R ‘
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where E is the unit second rank tensor in 2D space. Using the
strain tensor (7) and Hook's law for plane problem one can obtain

stress tensor in a form:

Q - R
o= 22 (1 - 2v) (QR+RQ - Q-RE) + 22——RR]  (8)
-~ ~ o~ ~~ ~ ~~ R ~~

Then, equation (2) can be rewritten as follows:

EEE J [ - 2v)(§ *QR + n -gg - 39 -g) + ZQ 13n-RR]dI‘* + 9 =0

R2

~ -~

r= (9)

. _
Taking into account that R n = R on the circle T the following re-

lations hold

n.QR-nQ . R=0, and

¢
1

In view of (10), (9) takes form,

2
-%; j (@ - 2v)RQ + 2Q * Rn]dr* + Q=0 (9a)
R
T*
Both integrals in (9a) yield
A . )
JRQdI‘*=J Q-+ Rn dI'= 27R°Q (10)
I T*
Formula (9a) with integrals given by (10) results in
8um(l - v) (1)
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Substituting (11) into (6) we obtain
1 R
u=—=—— [(3-4)R-Q - = R-Q]

8ur(l - v) R

From the last equation, it follows that the first Green's tensor

14

(i.e., Kelvin-Somigliana tensor) defined by the relation u = Q.Q-can

be represented as follows:

1 (12)

RR
U= —————— [(3 - 4V)InR*E - ;i]
T 8mu(l - V) . R

Substitution of (11) into (8) gives traction vector at point x in a

form, '
1 QX ¢ B -
00 = ma o2 [ - 2v)(agR+Q - nyeRQ - R, -Q) - 2-55—-88- Ql

(13)

From the 14st formula the second Green's tensor can be obtained as

follows:
1 | R - Rn ny * R
$E X = mRra oy (7 2R - Ray - oy RE) - 2 ———RR

R .
(14)

It should be noted that ¢(x,g) defined by (14) can be used in the
representation of displacement vector u in terms of ‘double” layer

potential as follows:

u(x) = J b(E) « 0(£, X)dE

where ¢, and x change places and 9(5) is double layer potential

density [33].
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APPENDIX IT

Evaluation of The Integrals |

]. c‘j-l /-€2+2C€-(C2—£2)
I =

3 di, X€(c - £, ¢ + 1)

(£ =-X)

c-t

Substituting t = ¢ - x, the integral takes the form

X-(c+2) P A ¥ X-(c+2) x—(C+2)»‘
¢ = (X-t-c . dt
1 = - ( 5 (2 dt = - {%? + j %; + (X-¢) J _ E7?}
(o] J . _ T teg
X-(c-1) t X-(c-2) 4 x,(c )
where T = £ - (x-c-t)?
The integral I, in the last expression may be found.in [37]; the
result of integration is '
, . ‘o
° Y x-orT2
2. Analogously |
c+4 5 2 - x-(c+4L) 5 ) , é
7. (X-t-
1, - J V=£% 4 2cE - (c - 19) dE = - VRo- (X-t-c)? o fx-0)[ 1 ’(i%g) 1

x-(c-2)
. X (c-%, c+f)

3. The integral represented by formula (2.30) Chapter II, can be

‘estimated using the mean value theorem as follows . -
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2 v _ _ oyt 4 _ _ w132 )
S 33X, (& Xl) 6(¢ xl) X 5
e(g') TR dg =
'4 ' ' '
f’ X, -(6 - X% - 6(¢ - x )2x. 2
e(e)) | —= 12
o ' 2,3 - ’
-2 [(g - Xl) + X, ]
where ‘56 € (-2, 1)
Each of three integrals
2 R N
. . 2 .;Vz~3 L] . - ] [ 2 |2- 3 ’
) [ - Xl) + X, ] -1 [(E - xl) + X, )
pooe-x)? a
N 2.3
[ (& - xl) f X, 1

-2

are tabulated in [37] and the integration results in formula (2.34)

Chapﬁer 11.

4. Substitution of formula (2.36) into (2.33), Chapter II, leads to

. 2 4‘ - .
J £o + X : 1 i 1 Jax
g - X L -X-2 £ =X+2
-{ (o] [o] (o]

the integral
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which can be transformed into the integal

n
' 1 + COS2t 140082t 44
2 [(1—1') - CO0S2t J(3+27) - coszt
o} : .
where ' = 1/20, by means of nondimensionalization and subsequent

substitute 1 - X =2 sinzt. The last two integrals are tabulated in

(371].
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APPENDIX III

Evaluation of The Influence Function F(%, x)

The influence function F(2, x) is given by formula (2.29):

F(g, )_() = éETR

3
The operator n(x) n(x).J applied to the displacement field produces

%2 component of the stress field. In order to evaluate the ¢

22
component of the stress field by means of (2.6), formulas (2.7) and

(2.8) must be used. Taking into account that
n(£)-0()-¢(g, X) = nj(E)cij(i) O.x(Es X) = 0y, 0o

(because n](g) = 0, nz(g) =1, and o,, = 0 for this problem) and

12
substituting the last expression into (2.7), with Qik given by

(2.8), the F(2, x) with the help of (2.6) takes the form

2 . v(3 +2v) 2
F(z,x>=zje<s>{-%[v(x1-a>+—{—:—,;Vl)x21+
2 R 8x’
v 8 2,2 02, 1=2v 41 4 v) L2 2
+ = LIXS + (X, -8)7) - - X, + —1}adg
1-2v ;3 2°72 1 R2 Ra 2 R6
where

» 2 N2, 2
R™ = (X1 - &)+ X2

The last equation reduces to (2.3) by factoring out the 1/R6.
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