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Abstract B shock strength,
P T J

Shock-cell noise has been identified as a p density
potentially significant problem for advanced super- _ wavelength

• sonic aircraft at takeoff. Therefore NASA has
conducted fundamental studies of the phenomena e polar angle from inlet axis, deg

involved and model-scale experiments aimed at e a apparent angle of attack 25, deg

developing means of noise reduction. This paper e Mach angle, 180°-sin-l(I/Mj) degreviews the results of a series of studies con- M
ducted to determine means by which supersonic jet Subscripts:
shock noise can be reduced to acceptable levels for
advanced supersonic cruise aircraft. Theoretical a ambient
studies were conducted on the shock associated c convection

noise of supersonic jets from convergent-divergent d design point
(C-D) nozzles. Laboratory studies were conducted
on the influence of narrowband shock screech on D downstream
broadband noise and on means of screech reduction.

e equivalent
The usefulness of C-D nozzle passages was investi-
gated at model scale for single-stream and dual- ef effective

stream nozzles. The effect of off-design pressure Ex exit
ratio was determined under static and simulated
flight conditions for jet temperatures up to 960 K. h hydraulic

Annular and coannular flow passages with center ISA international standard atmosphere (288 K
plugs and multielement suppressor nozzles were
evaluated, and the effect of plug tip geometry was and 101.3 kN/m2)
established. In addition to the far-field acoustic
data, mean and turbulent velocity distributions i inner
were obtained with a laser velocimeter, and shadow- j fully-expanded jet
graph images of the flow field were obtained. n shock cell number (downstream of nozzle

Nomenclature exit)

(All symbols are in SI units unless noted.) o outer

A area P premerged

c speed of sound p plug

D nozzle diameter 0 aircraft

F functional relation I inner stream

f I/3-octave-band center frequency 2 outer stream

h annulus height

k ratio of convection velocity to jet Introduction

velocity Shock-cell noise has been identified as a

L shock cell spacing potentially significant problem for advanced super-
sonic aircraft at takeoff. Therefore, the NASA

M Mach number, V/c Lewis and Langley Research Centers have conducted

OASPL overall sound pressure level, dB re 20 _N/m2 fundamental studies of the phenomena involved and
more applied studies aimed at developing means of

P pressure noise reduction. Early studies indicated that it
R source-to-observer distance might be necessary to employ convergent-divergent

(C-D) nozzle passages in order to reduce or elimi-
S nondimensional frequency parameter nate shock noise. Some benefits have been demon-

SPL I/3-octave-band sound pressure level strated statically for single stream C-D circular
' nozzles at design jet Mach numbers of 1.5 and 2.0; I

dB re 20 _N/m2 however, lower jet Mach numbers will probably be

T total temperature required to achieve acceptable jet noise levels.
In addition, more complicated single- or dual-

V velocity stream nozzle geometries, possibly including multi-
X distance downstream of nozzle exit element suppressor exhaust passages will probably

be required, and the effect of flight should be
turbulent length scale ratio determined. Existing shock noise theories were

found to apply to a limited degree, but only to
*Member AIAA. convergent circular nozzles, thus indicating a need

for further theoretical advances. Experimental data



were required to determine the degree to which these B _ M_/_-12- 1. This same result has also been ob-
theoretical approaches could be applied to the com- rained-theoretically, based on different reasoning
plicated nozzle geometries and to evaluate the merit by Tam et al. °,4,1D The predicted trend is shown
of the noise reduction concepts. This paper sum- by the experimental results for modest values of
marizes the results of the NASA Lewis Research B, as shown in Fig. 3, where the peak SPL is plot-
Center supersonic jet shock noise reduction studies ted against I0 log B for a forward quadrant direc-
and relates these results to those of other inves- tivity angle (referred to the nozzle upstream axis,
tigators, particularly those involved in the NASA 0 = 50°). However, at higher values of B a Mach
Langley Research Center Program. disc forms in the flow, reducing the strength of the

downstream shocks and causing the noise levels to
A multifaceted approach was employed in the become relatively insensitive to further i_r_ses

Lewis program to determine means by which super- in B, as pointed out by Seiner and Norum._',_°
sonic jet shock noise can be reduced to acceptable
levels for advanced supersonic cruise aircraft. Influence of Screech
Extensive photographic data on the flo_ fields of
coaxial supersonic jets were obtained. L Theore- In addition to the broadband shock noise, dis-
tical studies were conducted on the shock associ- cussed in the preceding section, and jet mixing
ated noise of supersonic jets from C-D nozzles.3, 4 noise, narrowband "screech" tones are often ob-
The influence of narrowband shock screech on broad- served for imperfectly expanded jets. The feedback
band shock noise was investigated and means of mechanism involved has been the subject of several
screech reduction developed. _-', The usefulness investigations based primarily on the early work of
of C-D nozzle passages wa_i_yestigated for single- Powell. _ Since screech tones often produce higher
stream 8-9 and dual-stream _u-_z nozzles. The effect SPL levels, even on a I/3-octave-band basis, than
of off-design pressure ratio was determined under broadband shock noise, many investigators 20-24 have
static and simulated flight conditions for jet tem- used nozzle lip modifications to break the feedback
perature up to 960 K. Annular and coannular flow loop and suppress screech in order to investigate
passages with center plugs and multielement sup- broadband shock noise. However, the devices used
pressor nozzles were evaluated, and the effect of to suppress screech also influenced the flow field
plug tip geometry was established. In addition to development and consequently the broadband noise,
the far-field acoustic data, mean and turbulent as discussed by von Glahn." This problem motivated
velocity distributions were obtained with a laser the studies conducted by Nagel et al. to develop
velocimeter, and shadowqraph images of the flow means of screech suppressio_ _hich do not influ-
field were obtained. Other concepts which may ence flow field development. _-'
prove useful for shock noise reduction are porous
plug nozzles 12-13 and lined ejectors, 14 but these Nagel et al. 6 devised a new method for screech
approaches will not be discussed in this paper, tone elimination b_ed on the feedback mechanism

proposed by Powell _ and the assumption that the
Circular Nozzles acoustic waves propagating back to the nozzle exit

are nearly plane waves at the nozzle exit. Under
When a supersonic jet exhausts from a conver- these conditions it is possible to position a re-

gent circular nozzle the static pressure at the flective surface near the nozzle which establishes
nozzle exit is above ambient. Thus, as the jet a local standing wave pattern from the incident
expands outside the nozzle expansion waves are and reflected screech tone. As illustrated in
radiated from the nozzle lip and are subsequently Fig. 4 a minimum pressure occurs at a distance of
reflected by the jet boundary. These reflected 1/4 wavelength from the reflector (and also at 3/4,
compression waves converge to form a shock, again 5/4, etc. wavelengths). If the reflector is posi-
raising the jet static pressure above ambient, tioned at the proper distance upstream of the
leading to another set of expansion waves, and the exit, a node will occur at the nozzle exit plane
process is repeated, resulting in the familiar (Fig. 4). This node serves to cancel the screech
repetitive shock structure shown in Fig. I. The tone at th_ nozzle exit and interrupt the feedback
viscous mixing taking place in the jet shear layer mechanism. _
reduces the strength and spacing of these shock
cells in the downstream direction. The eddies Although in theory a hard reflector should be
formed by this mixing process are convected down- used, Nagel et al. 6 obtained more consistent re-
stream and interact with the shock cells to produce sults with a foam disk. A comparison of spectra
shock noise, obtained in a reverberant room is shown in Fig. 5

for Mj : 1.4 with screech, with screech removed
A very useful, although rather simplified by an _ntrusive tab, and with screech Cancelled by

approach to predicting shock noise for convergent a foam disk located approximately 1/4 screech tone
circulaF_jets was proposed by Harper-Bourne and wavelength upstream of the nozzle exit. Both meth-
Fisher. _ They characterized the far-field noise ods largely suppress screech. The intrusive tab
as resulting from the summation of the noise gener- however, significantly alters the broadband noise,
ated by each eddy interacting with each shock cell while the foam disk does not. When screech is re-
as indicated by the "group" spectrum in Fig. 2. moved with the tab the shock cell spacing is re-
The acoustic waves from the different shocks were duced by about 10 percent, and severe distortions
modeled to constructively or destructively inter- caused by the tab are evident in the flow and shear
fere depending on the lifetime and convection veloc- layer. 6 This is _nsistent with the results of
ity of the eddies, resulting in the "interference" Norum and Seiner. _° In contrast, when the screech
spectrum in Fig. 2. The superposition of these is removed by cancellation the flow appears un-
results produces the characteristic spectrum of altered from the clean nozzle case with screech. 6
broadband shock noise, as also shown in Fig. 2. Thus, it appears that where feasible, the cancella-
One of the major results of this model is that the tion approach is the preferred method for removing
broadband shock noise sound pressur_ level (SPL) screech tones so that broadband shock noise and its
should be proportional to 10 log B", where suppression can be investigated.



Effect of C-D Termination layer is thin. Norum and Seiner 23 found that the
dominant sources of shock noise lie much further

Yamamoto et a18, 9 investigated the effect of downstream, near the end of the potential core,
a C-D termination designed for shock-free flow at wherethe mixing layer is quite thick. Therefore,
Mj = 1.40 (pressure ratio, Pj/Pa : 3.12) on circu- the vortex sheet model cannot be very accurate.
l_r nozzle shock noise. Experiments were conducted Thus a better shock cell model solution which takes
over a range of pressure ratios from 2.6 to 3.9, into account the spatial evolution of the mean flow
covering both overexpanded and underexpanded condi- is needed and has been developed by Tam et al. 3,4
tions, under static and simulated flight condi- In terms of sound_lev_l sc_l_ng, the peak SPL varies
tions. Results for a typical jet temperature, as 10 log [(Aj/R_)(M_ - M_], as also obtained
Tj : 960 K, are shown in Fig. 6, where the overall by th_ _impler formulation, z° The more complete
sound pressure level, OASPL, is plotted against the model m,4 requires numerical computation of t_ peak
logarithm of the shock strength parameter, B, for a frequency, instead of the simplified result, Lu
forward-quadrant angle, e = 50° . Data for the C-D
termination are compared with data for the conver- f = Vc/L(I - Mc cos e)
gent termination. Large noise reductions can be

seen in the vicinity of the C-D design point. It As can be seen in Fig. 9, the numerically calcu-
is an important observation that noise reductions
are obtained over a wide range of pressure ratios, lated peak frequency agrees more closely than the
not just in the immediate vicinity of the design simplified relationship with the experimental data.

point. Directivity comparisons at the C-D design These theoretical findings can be incorporated
point (shown in Fig. 7) indicate that the noise
reductions are obtained throughout the forward into simple empirical prediction methods, such as
quadrant and extend somewhat into the rear quad- that of Stone and Montegani _J rather easily. The
rant. The peak noise, which should be dominated following expression is obtained for the overall
by jet mixing noise, is essentially unchanged by sound pressure level:

the C-D termination. I[_p_A)2 _c _41

The spectral comparisons at the C-D design OASPL= 162 + 10 log

point (shown in Fig. 8) provide further insight. \ClSA_]
The C-D nozzle at its design point shows a typical
jet mixing noise spectral shape with very little

evidence of shock noise. Thus, it can be seen that (M_ 2)2 1 (_)

jet mixing noise sets the "noise floor" when shock - Md . i0 log Aj
noise is suppressed. This explains the greater + I0 log 2 2
noise reduction,-11 dB, in simulated flight than 1 + (M_-Md)
in the static case, -7.5 dB, for the C-D termina-
tion, since the shock noise is amplified in flight r 1

L + F(e - eM)in the forward quadrant while the jet mixing noise - I0 log I - Mo cos (e + e a
is generally reduced slightly (although in this

particular case there is very little effect). (la)
Shadowgraph photographs and laser doppler veloci-

meter surveys show no evidence of shock structure where eM is the Mach angle given by
for the C-D termination. 180 -sin-l(I/Mj). The function F is given by

Modelin_ F : 0 for e _ eM

Reasonably accurate empirical correlations of (la)
broadband shock noise for converqent circular noz= ^_

zles have been obtained by several investigator_ _,zb F = - 0.75 for e > e
based on the HarDer-Bourne and Fisher approach, m
and theoretical 2_,27 and numerical 28 models have

The more complicated relation than
been formulated which predict the essential fea- (M_ - M_)21[I + (M_ - M_) 2] is introduced
tures of the noise generation process. However, (rather than B4) _o account for the Mach disk for-
the interest in CvD nozzles led to the need to
develop a theoretical model for the shock noise mation and _qn_quent leveling off of shock noise
generation for off-design C-D nozzles, at high B._, _

Tam and Tanna16 proposed that this noise be The appropriate nondimensional frequency pa-
modeled as weak but coherent interaction between ramete_ again based on the Harper-Bourne and
downstream propagating large turbulence structures Fisher _= model, but also consistent with Tam and
in the mixing layer of the jet and quasi-periodic Tanna, 16 is given by

shock cells. By using simple analytical models to _" _M2" _I _
represent the large turbulence structures and the S = {fD . - M - Mo cos (B + e a
shock cells they derived relations for shock noise _-_-j)_I'J

intensity scaling and peak f_quency. Comparisons

with their experimental data were favorable, pro- _[I _ B] 2 (Vj_ 2
viding support for the general validity of the pro- (kV _2k2 (2)posed mechanism. However, the vortex sheet model x + cos +
solution i° is adequate only as a first approxima- _-_-a_ \Ca/
tion. It provides a reasonably good description
of the weak shock cells in the region immediately Note that the convection velocity factor k : 0.7,
downstream of the nozzle exit where the mixing and the turbulence length scale factor _ : 0.2.



The shock noise peaks at S = 1.0 and varies with spectral comparisons at e = 50° (shown in Fig. 17)
log S (as shown in Fig. 10). support this observation.

Annular Plug Nozzles The reason for the ineffectiveness of the C-D
termination is that, as shown by laser velocimeter

The experimental configurations of Yamamoto (LV) measurements, near the C-D design point both
et al. 8,9 included an annular plug nozzle with the convergent and C-D nozzles produce shocks down-
both convergent and convergent-divergent termina- stream of the plug, and the shock noise generated
tions (as shown in Fig. 11). The annular radius in that region exceeds that generated in the plug
ratio at the throat was 0.85. Experiments were region. As the LV results also showed, even though
also conducted with screech tabs on the convergent shocks on the plug were eliminated by the C-D ter-
configuration, mination, the plume velocity at the plug tip was

still supersonic. Consequently the truncated plug
Influence of Screech tip produces a series of expansion and shock waves

downstream which interact with th_ turbulent mix-
A limited study was conducted on screech and ing layer to produce shock noise. ° From the spec-

the usefulness of tabs in reducing screech, along tral comparisons in Fig. 17, it can be seen that
with the resulting effects on broadband noise, the C-D termination does provide some noise reduc-
Narrowband data at e : 60 ° obtained with and tion at high frequency, which is attributable to
without tabs are compared in Fig. 12, for a pres- the suppression of shock noise in the plug region.
sure ratio, PJ/Pa = 3.4 and jet temperature, However, in the aft quadrant the directivity com-
Tj = 483 K. A strong discrete tone at 937.5 Hz is parisons of Fig. 16 indicate that the C-D termina-
apparent for the nozzle without tabs and is barely tion produces increased noise; this result is
discernible with tabs. In addition the broadband consistent with the reduction in nozzle exit radius
shock noise is somewhat reduced in level and ratio.
shifted to a higher frequency with tabs. The cor-
responding l(3-octave-band spectra are shown in Effect of Plug Tip Geometry
Fig. 13(a), and it can be seen that the tabs influ-
ence a fairly wide frequency range. The shift of The tests of Yamamoto et al.8, 9 did not in-
the broadband peak cannot be seen because the spec- clude the effects of plug1_i_Igeometry. However,
trum without tabs is so strongly influenced by Janardan, Yamamoto et al. _u,_1 investigated the
screech that the broadband peak cannot be deter- effect of plug tip geometry for a dual-stream co-
mined. The corresponding aft quadrant spectra at annular plug nozzle. The downstream-generated
e = 140" are shown in Fig. 13(b). The screech tabs shock noise was substantially reduced when a sharp
produce a noise reduction over the entire spectrum, tipped plug was used instead of a truncated plug.
even though jet mixing noise is the dominant source This effect should also be observed for the single-
at this angle. It is clear from these results that stream annular plug nozzle.
the tabs influence the mixing process as well as
break the feedback loop. At higher temperature, Modeling

_ = 960 K, the screech is weaker and the influencethe tabs is less than at the lower temperature For purposes of predictive modeling, annular
(as shown in Fig. 14). From these comparisons it plug nozzle shock noise is broken into two com-
appears that the high-temperature data without tabs ponents: noise generated in the premerged region
are the most valid broadband shock noise data, in the vicinity of the plug, and noise generated
since the influence of screech is fairly small, downstream of the plug, as shown by Yamamoto et al. 8
whereas the tabs have a noticeable effect on the This is illustrated in Fig. 18, where the spectra at
flow field. The foam disc cancellation approach e = 50° for both the convergent and C-D termination
was not considered practical for these tests be- are compared with each other and with predictions

cause of the inclusion of simulated flight testing, based on modified inputs to the Motsinger-Sieckman(M-S) _pdel (which is based on Harper-Bourne and
Effect of C-D Termination FisherZO). The aerodynamic conditions correspond

to the C-D design point. At low and middle fre-
Yamamoto et al.8, 9 investigated the effect of quencies the two annular nozzles show little dif-

a C-D termination designed for shock-free flow at ference and agree well in spectral shape with
Mj : 1.44 (pressure ratio, Pj/Pa : 3.30) on shock predictions taking the effective diameter to be
nolse for an annular plug nozzle with a throat the nozzle equivalent diameter, De = 4_i/_. (The
radius ratio of 0.85. The exit radius ratio of the level is arbitrary.) This noise is therefore
C-D nozzle was 0.79. Experiments were conducted ascribed to the downstream region.
over a range of pressure ratios from 2.94 to 3.54,
covering both over-expanded and under-expanded con- In the high frequency region the convergent
ditions, under static and simulated flight condi- nozzle levels exceed those of C-D configuration,
tions. Results for a typical jet temperature, which indicates that this noise is generated in the ,
Tj : 960 K, are shown in Fig. 15, where the OASPL plug region, where the C-D nozzle has no sho_s.
Is plotted against log B for a forward-quadrant The spectral shape agrees with the M-S model _ us-
angle, e = 50° . Data for the C-D termination are ing the hydraulic diameter, Dh = 4A/_Do, as the
compared with data for the convergent termination effective diameter.
and with data for the baseline convergent circular
nozzle. Perhaps the most significant observation Pluq reoion. A theoretical study of shock
is that the C-D termination does not provide any noise _eneration in this region was conducted by
significant reduction in noise compared with the Balsa, ° _sed on extension of the Howe and Ffowcs
convergent annular plug nozzle, although both Williams _° model. Bals_ found that the SPL should
annular plug nozzles provide suppression, -6 dB, increase with I0 log B_ as predicted by other
relative to the baseline convergent circular nozzle, models. He also found a directional dependence,
Directivity comparisons shown in Fig. 16 and SPL _ I0 log (i - Mc cos e) as also found by Howe



and Ffowcs Williams 26 but which is not found in where F(e - BM) is given by Eq. (la), and Md p
predictions based on the Harper-Bourne and Fisher is equal to the design Mach number if an extended
model. _ However, because of the difficulty in plug is used and is 1.0 if a truncated plug is
separating out the effect of high frequency jet used. The appropriate nondimensional frequency
mixing noise, it is uncertain whether this rather parameter, to be used in conjunction with Fig. I0,
weak directivity is actually present, is given by

The°bservati°ns°fYamam°t°etal'8canbe _fDe M21_d,Pincorporated into simple empirical prediction math- SD = M - - M° cos (e + ea
ods, such as the circular nozzle model proposed \O.---_-_-J
earlier in this paper, which is based on that of

Stone and Montegani_O (w_ch, in turn, is based on _/_ V(__a) ]2 (Vj_2
Harper-Bourne and FisherZ°). In order to get (6)
proper limiting behavior with a two-source model, x + 0.7 cos B + 0.0196 \Ca/
the constant in Eq. (I) must be reduced by 3 dB.
An additional level correction is also required; Coannular Nozzles
the form ASPL _ log [i - (Di/Do)Ex] gives the

proper limiting behavior, and the proportionality Most modern jet engines are of the dual-constant is about 10. The following expression is
then obtained for the overall sound pressure level: stream type and have coannular exhaust nozzles.

Therefore, information on the noise characteristics

" 2 _Ca_ _I of such nozzles is quite important. The dual-_a_ stream.shock noise studies of Janardan, YamamotoOASPLp= 159 + I0 log et al. I0,II included convergent and C-D coannular
\PlSA/ \ClSAJ ] plug nozzles with both truncated and extended plugs

(as shown in Fig. 19). Both the coannular nozzlesr
| D/I \ I A/_i\ had an inner-stream radius ratio of 0.93 and an

+ I0 log _ - _-_O)E_ + 10 log I-_-_) outer-stream radius ratio of 0.85.Influence of Screech

I 2 2 Since screech was shown by Yamamoto et al. 8 to

M_ - Md] be less for an annular nozzle than for a circular
+ I0 log /p 2\2 nozzle and to decrease with increasing temperature,

1-_M_-Md) it was not expected to be a critical problem in
these experiments, particularly at jet temperatures

_ of practical interest. The narrowband spectra+ I0 log - M° cos (e + eaj shown in Fig. 20 confirm this expectation. Moder-
ate levels of screech are seen at moderate tempera-

+ F(e - eM) (3) tures under both static (Fig. 20(a)) and simulated
flight (Fig. 20(b)) conditions. The higher temper-

where F(e - BM) is given by Eq. (la). The appro- ature spectra shows some evidence of screech (at
priate nondimensional frequency parameter, to be -1200 Hz) under static conditions (Fig. 20(c)) but
used in conjunction with Fig. i0 is given by none in simulated flight (Fig. 20(d)). Thus, it is

' concluded that screech is not a critical problem,
but care must be exercised in analyzing the data,

Sp : _ fDh _ _/I _M - M_I _ - M° cos (e +e a_ especially for temperature effects.Effect of Temperature

_/_ V(___a) ]2 _Vj_2 The effect of outer-stream temperature for
x . 0.7 cos e + 0.0196 (4) the convergent coannular nozzle is shown in

\Ca/ Fig. 21. OASPL directivities are shown for two
different outer-stream temperatures under both

Downstream region. Again the observations of static (Fig. 21(a)) and simulated flight
Yamamoto et al. 8 are incorporated into the model of (Fig. 21(b)) conditions. The increased aft quad-
Stone and Montegani 25, and limiting behavior is rant noise at high temperature is due to increased
taken into account. The following expression is jet mixing noise. In the forward quadrant the
then obtained for the OASPL: reverse effect is seen, but is of relatively small

magnitude. This increase at lower temperature is

- 2 _Ca_ i probably due largely to the increased screech,andinsensitive°a_ the broadband shock noise is relatively
OASPLD = 159 + I0 log \PlSA/ \ClSA/J to temperature.

Effect of C-D Termination

A(I_I Janardan, Yamamoto et al. I0,II investigated the

+ 10 log \R_ + i0 log (M_ 2 p) 2 effect of C-D terminations designed for shock-free
flow at an inner-stream Mach number, M_ I = 1.38,

i + - Md' and an outer-stream Mach number, Mi p _'[.44. At

_ + F(e _aM ) the exit the inner-stream radius r_o was 0.91,- I0 log - Mo cos (e + oa and that of the outer-stream was 0.79. Experiments

(5) were conducted over a range of over-expanded and
under-expanded conditions for both streams, under



static and simulated flight conditions. Typical coannular nozzle with the extended plug. The ef-
results for the truncated plug are shown in Fig. 22, fect of the subsonic inner stream conditions is
where the OASPL is plotted against I0 log _ef for illustrated in Fig. 28, where the OASPL is plotted
a forward-quadrant angle, e = 60-. (The effective agains_ I0 log Bef for a forward quadrant angle,
shock strength, Bef, is calculated from an area- e = 60 , for the convergent coannular nozzle at
weighted pressure ratio, as defined subsequently in subsonic and supersonic inner stream conditions.
the "Modeling" discussion.) Data for the C-D con- The subsonic inner stream provides a significant
figuration are compared with data for the conver- noise reduction over a range of effective Mach
gent coannular nozzle; also shown for comparison number from 1.35 to 1.5 in simulated flight and
are baseline convergent circular nozzle data scaled over a wider range under static conditions. OASPL
to the fully-mixed conditions of the dual-stream directivity comparisons are shown in Fig. 29 for an
nozzles. It can be seen that at the C-D design effective jet Mach number of -1.4, where the bene-
point the C-D nozzle provides about 2 dB reduction ficial effect of the subsonic inner stream is most
under static conditions and about 5 dB reduction in pronounced. The subsonic inner stream provides a
simulated flight relative to the convergent co- noise reduction throughout the forward quadrant.
annular nozzle. The convergent coannular nozzle Near the jet axis where jet mixing noise is predom-
itself provides about 5 dB reduction under static inant, there is no significant change. The corre-
conditions and about 6 dB reduction in simulated sponding spectral comparisons at e = 60° are shown
flight relative to the fully-mixed convergent in Fig. 30. A significant reduction in broadband
circular nozzle, shock noise is quite evident. These results are

consistent with diagnostic LV measurements, which
OASPLcomparisons for these configurations at indicated a significant weakening of the shock

the C-D design point are shown in Fig. 23. The C-D structure with a subsonic inner stream.
termination is seen to reduce noise throughout the
forward quadrant. The noise increase in the aft Modelin 9
quadrant with the C-D termination is due to the
effect of the decreased radius ratios at the exit. For purposes of predictive modeling, coannu-

The correspondin_ forward quadrant spectral compar- lar plug nozzle shock noise is broken into two
isons at e = 60 are shown in Fig. 24. Broadband components, like the annular plug nozzle: noise
shock noise is clearly present even with the C-D generated in the vicinity of the plug, and noise
terminations, but its level is reduced, with little generated downstream of the plug, as shown by Ja
or no frequency shift. The significant residual nardan et al. I0 Janardan developed modifications
shock noise with the C-D configurationwill be to the Harper-Bourneand Fisher approach_L to ac-
shown to be due to plug tip geometry, count for his findings, which_are now appliedto

the Stone and Montegani modelzb using a similar
Effect of Plu9 Tip Geometry approach to that used for the annular plug model.

Becaus_ of the residual shock noise observed Plug region. Since the shocks on the plug are
for annular and coanng_arI0 nozzleswith truncated due mainly to the outer stream expansion, the pre-
plugs, Janardan et al.zu investigatedthe effect diction is based on outer stream conditions. The
of plug tip geometry. Typical results are shown following expression,derived from Eq. (3), is then
in Fig. 25, where the OASPL is plotted against obtained for the overall sound pressure level:
10 log Bef for a forward quadrant angle,e = 60°•

Data for the nozzle with C-D terminations and an F/oa ,
extended plug are compared with both the C-D coan- OASPLp=159 + 10 log
nular nozzle with truncated plug and the convergent L\PlSA/ \ClSAJcoannular nozzle with truncated plug. It can be

seen that the extended plug provides an additional [1 _Di'2__ /E A(_)

1.5 dB (static) to 3 dB (simulatedflight) suppres- + 10 log - + 10 log
sion relative to the C-D nozzle with truncated _Do,21
plug. Compared to the convergent nozzle with trun- )
cated plug, the C-D nozzle with extended plug pro-

vides 2.5 dB suppressionunder static conditions _42 M2 ]2and 7 dB under simulated flight conditions.
+ 10 log j,2 d,2

OASPL directivitycomparisons at the C-D I - {112 _ M2 --__2
design point are shown in Fig. 26. The extended _ j,2 d,
plug is seen to provide additionalnoise reduction

- 10 log "1- Mo cos (e + ea)"
throughoutthe forward quadrant and has no signifi-
cant effect in the rear quadrant,where jet mixing
noise is dominant. The correspondingforward quad-

rant spectral comparisonsat e = 60° are shown in + F(B - _ (7)
Fig. 27. It appears that there may be some shock eM,2"
noise still presentwith the extended plug, but if
so its contribution is relativelysmall. The appropriatenondimensionalfrequency parameter,

to be used in conjunction with Fig. I0, is given by
Effect of Subsonic Inner Stream

IfDh'2 _I ; - M2 I [I - Mo cos (e + ea_Some candidate engine cycles for advanced Sp =_0.-_.) M ,2 d,2supersonic transports feature coannular exhausts \jz
with a supersonic outer stream and subsonic inner

stream (e'g" Refs" 2' 22' and _ _9 33)" There- _[1 l _/ e] 2 (Vj/2

fore, danardan, Yamamoto et al. _u,sx conducted ex- Vj,

periments at such conditions for the convergent x + 0.7 \Ta/ cos + 0.0196 (8)\Ca/



Downstream region. JanardanI0 showed that the to determine the differencesbetween these two
downstream shock noise depends on the conditionsof approaches.
both streams in a rathercomplicatedmanner. The
effective pressure ratio is given by the appropri- MultielementSuppressors
ate relation, as follows:

Multielement suppressornozzles may very well

be required to provide sufficientlylow j_t mixing
Pj,ef Pj,1 for P. > (9a) noise for advanced supersonictransports._4,33-37
Pa = P---Z j,1 - Pj,2 When a multielementnozzle is used to suppress jet

mixing noise, the shock noise can become a more

important source relative to jet mixing noise.

( )J Therefore, shock noise reduction for suppressorsis

Pj,ef Pj,I Aj,1 Aj,2Pj,2
+ of interest. Both single-_ream8 and outer-stream

_=_ Aj,I + Aj,2 Pj,1Aj,1 + Aj,2 (in a dual-streamexhaust) suppressorswere in-

(9b) vestigated. Because of the complicated nozzle exit
geometries,no strong feedback loop is established,

for Pj,1 < Pj,2 and screech is not an importantfactor. Because ofthe rapid mixing with these nozzles, no significant
effect of plug tip geometry is expected.

Using the fully-mixedjet total temperature,the
effective Mach number,Mj ef, is calculated along Effect of C-D Termination
with the effective jet velocity, Vj el. The values
are then substituted,along with to_a_ area, The effect of C-D terminationof the nozzle

A_ 1 + Ai 2, into Eqs. (5) and (6). The resulting elements was in_Rstigatedfor both single-stream8
e_ressi_ for OASPL is then given by and dual-stream_u nozzles.

_pa_ 2 _c _4] Single-stream. Yamamoto et al.8,9 investiga-ted the effect of C-D suppressorelements, designed

OASPLD = 159 + 10 log \PISAJ _ISAJ] for shock-free flow at Mi = 1.42, on a 20-chute
annularplug suppressorn6zzle (Fig. 31), having a

[(Aj,IR_ _] suppressor area ratio of 1.75 and radius ratio of
+ I0 log Aj, 0.76 at the throat. Results for a typical jet tem-

perature, TA = 950 K (shown in Fig. 32) where the
OASPL is pl_tted against i0 log B for a forward
quadrant angle, e : 50° . Data for the C-D termi-

[_2 2 ]2 nations are compared with data for the convergent- p] terminationsand with data for the baseline conver-+ 10 log j,ef Md, gent circular nozzle. The C-D elements clearly

1 + (_2 2 ) 2 provide additional shock noise suppression beyondj,ef - Md,p that provided by the convergent suppressor in the
simulated flight case. Corresponding spectral com-

parisons at the C-D design conditions (shown in- 10 log "I- Mo cos (e + ea Fig. 33) show the C-D elements effectivelysuppress
the shock noise, which peaks at 1250 Hz. However,

+ F(B - eM,ef) (10) at middle frequenciesthe C-D elements producesome increase in noise. OASPL directivitycompari-
son at these conditions (shown in Fig. 34_ and aft-

where Md _ is calculatedby substitutingthe quadrant spectral comparisonsat e : 140- (shown
design co_itions into Eq. (9) and taking the re- in Fig. 35) clarify the situation. In the aft

sulting Mach number as the effective Md,D for the quadrant jet mixing noise is dominant, and the C-D
extended plug case, or by setting MH n =_1 for a suppressor is significantlynoisier than the con-
truncated plug. The appropriatenon_{_ensional vergent suppressor. Laser velocimetermeasurements
frequency parameter, to be used in conjunctionwith confirm the expectationthat the weakened shocks
Fig. 10 is given by produce less rapid mixing and, consequently,more

jet noise. This is not surprising since one method

IO fDe _ of enhancing jet mixing and noise reduction is toSD = .7 Vj,efJ promote a strong normal shock near the nozzle.2,34
Dual-stream. Janardan, Yamamoto et al.lO,11

_/I _ I _ _ investigated the effect of C-D suppressor elements- M2 - Mo cos (e + e a and C-D inner-stream nozzle on a 20-chute outer-
x M ,ef d,p stream suppressor coannular plug nozzle shown in

Fig. 36. The suppressor area ratio was 1.75, and

_I _vj'ef_ 12 V_Vj,ef_2the suppressorradius ratio was 0.76 at the throat;

the inner-streamnozzle had a radius ratio at the
x + 0.7 cos + 0.0196

\ ca / \ ca / throat of 0.94 and an area constituting0.2 of the" total exit area. Results for typical conditions

(11) are shown in Fig. 37, where OASPL is plotted
agains_ 10 log Bef for a forward quadrant angle,
e = 60 . Data for the C-D terminationsare com-

where De is based on the total nozzle area. In- pared with data for the convergent terminationsand
stead of using formulationsof this type for the with data for the baseline convergent circular
C-D terminationeffect, Janardan calculatedthe nozzle at fully-mixeddual-streamconditions. The
noise for MA = i and developed a set of empirical effect of the C-D terminationsis that the C-D
corrections.?0 No comparisonhas yet been made

7



elements provide no additional shock noise OASPL Conclusions
suppression beyond that of a convergent suppressor,
although perceived noise levels (not shown} are The most important result of these studies is
slightly reduced. The effect of C-D terminations that supersonic jet shock noise can be reduced by
on the SPL spectra (shown in Fig. 38) and the OASPL proper C-D design of nozzle flow passages and cen-
directivity (shown in Fig. 39) illustrate the same ter plugs, even for the complicated nozzle geome-
general effects as for the single-stream suppres- tries investigated experimentally. Furthermore,
sor: while there is some reduction in shock noise, the noise reduction is obtained over a fairly wide
especially downstream, the jet mixing noise is in- range of pressure ratios above and below the C-D
creased. Thus it appears that while C-D suppressor shock-free design point. This finding was predic-
elements may reduce shock noise, they may not be ted theoretically for the single-stream circular
practical for aircraft applications because of the C-D nozzle and also found experimentally to be true
increased jet mixing noise, for the more complicated geometries. However, it

was found that the shock noise reductions were
Modelinq generally accompanied by some increase in jet mix-

ing noise (except for the circular nozzle); this
For purposes of predictive modeling, the shock effect was especially pronounced for the suppressor

noise generation for the suppressor nozzle is nozzles. Thus, it is clear that tradeoffs will be
broken into two components: premerged noise gener- required in applying the C-D nozzle approach to
ated near the nozzle exit where the individual ele- noise reduction in most practical situations, where
ments of the flow are discernible, and the noise jet mixing noise must also be considered.
generated in the downstream mixing region.
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(a)Innerandouternozzleterminationsconvergent,withtruncatedplug.

(b) Inner andouter nozzleterminations convergent,with extendedplug.

(c)Innerandouternozzleterminationsconvergent-divergent,with
truncatedplug.

(d)Innerandouternozzleterminationscovergent_ivergent,with
extendedplug.

Figure19. - Coannularplugnozzleconfigurations(ref.10).
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Figure 20. - On-line narrowband data obtained with convergent
coannularnozzleat twoouter streamtemperatures,with con-

stant inner stream conditions, Pj, iI Pa _ 3. 13, rj, 1 _ 480K.
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(a)Convergentflowelementterminations.

SECTIONA-A SECTIONB-B

B B

(b)C-Dflowelementterminations.

Figure31. - 20chute annular plug suppressorconfigurations(ref. 8).
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Figure32. - Comparisonof C-Dmulti-elementsup-
pressornozzleOASPLwith thoseof convergent
multi-elementsuppressorandbaselineconvergent
circular nozzlein forwardquadrant, e =50°, jet.
temperature,Ti = 950K. Datascaledto 0.903-mz
nozzleareaandextrapolatedto 730-msideline
(ref. 9).
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Figure36.- 20-chuteouterstreamsuppressorconfigurations(ref. 10).
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Figure37. - Effectivenessof C-Dnozzleterminations
on OASPLin forwardquadrant, 19: 60°, for dual-
streamnozzlewith multi-elementouter-stream
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Datascaledto O.903-m2total nozzleareaandextra-
polatedto 730-msideline(ref. 11).
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