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ABSTRACT
 

Title of Dissertation: Spatial Fluctuations in the Diffuse Cosmic
 

X-Ray Background
 

Richard Arrick Shafer, Doctor of Philosophy, 1983
 

Dissertation directed by: 	Professor Frank B. McDonald
 

Adjunct Professor, Department of Physics
 

Studies of the bright, essentially isotropic, X-ray sky flux above
 

2 keV yield information on the universe at large distances. However, a
 

definitive understanding of the origin of the flux is lacking. Some
 

fraction of the total flux is contributed by active galactic nuclei and
 

clusters of galaxies, but less than one percent of the total is
 

contributed by the 3 keV band resolved sources, which is the band where
 

the sky flux is directly observed. The extension of N(S) (number of
 

sources versus flux) to lower fluxes than can be studied from the
 

resolved sources-is possible by investigating the distribution of the
 

fluctuations in the sky intensity. Data from the A-2 experiment on HEAO
 

1 present the best opportunity to date to study anisotropies in the
 

2.5-13 keV band. The quality of the data encourages a critical
 

assessment of the fluctuations analysis technique. An excellent fit to
 

the data is given by model fluctuations distributions (P(D) curves) for
 

a Euclidean N(S) with an additional, pure Gaussian, component (excess
 

variance). The Euclidean component indicates a continuation of the
 

resolved source counts at least a decade below the flux limit of the A-2
 

resolved source flux limit. The acceptable range for the excess
 

variance is inconsistent with the expected behavior of known sources at
 

low fluxes unless there is: (1) significant evolution of the known
 

sources; (2) a new population of sources; (3) large scale source
 

clumping; or (4) clumping of a truly diffuse source of X-rays.
 

Parametric models of AGN 	(quasar) luminosity function evolution
 



are examined. They are most constrained by the total sky flux. The
 

acceptability of particular models hinges on assumptions currently not
 

directly testable. The comparison with the Einstein Observatory 1-3 keV
 

low flux source counts is hampered by spectral uncertainties.
 

A tentative -measurement- of a large scale dipole anisotropy is
 

consistent with the velocity and direction derived from the dipole in
 

the microwave background. The impact of the X-ray anisotropy limits for
 

other scales on studies of large-scale structure in the universe is
 

sketched. Models of the origins of the X-ray sky flux are reviewed, and
 

future observational programs outlined.
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Prologue
 

In classical theater a prologue allowed the author to -set the
 

scene and alert the audience to important themes, outside the formal
 

strictures of the play. Practice, University regulations, and my
 

advisors tell me that a doctoral dissertation must be a serious, formal
 

work. Therefore, before I assume the impersonal voice of the
 

dissertational "we", I use this prologue as my informal introduction to
 

the reader and to give advice to aid in the reading the text.
 

The word "Prologue" is not used to imply that this is any work of
 

drama. The thesis does have some dramatic elements: a problem or
 

conflict, developement, and even a certain amount of tension ("Will he
 

ever finish?"). However, as at the conclusion I cannot offer even the
 

pretense of a resolution of the problem, this dissertation is at best a
 

peculiar mixture of minimalist/turgid theater. Retitling it "Waiting
 

for the X-ray Background" would be appropriate, given the length of its
 

gestation. The actual title, Spatial Fluctuations in the Diffuse Cosmic
 

X-ray Background, is more descriptive. A reader might note, though,
 

that I make no explicit reference in the text to a "diffuse background,"
 

instead using the less familiar phrase "X-ray sky flux." This choice of
 

words avoids prejudging the true nature of the bright essentially
 

isotropic emission from 3 to 100 keV that current observation is unable
 

to resolve into individual sources.
 

In addition to failing as drama, this work is obviously not a
 

"light read." It is, in fact, too long to expect any but the most
 

motivated and dedicated to actually read through from front to back.
 

Many potential readers may be put off by the bulk and after skimming the
 

abstract set it aside. This is unfortunate, as I believe almost any
 

astrophysicist would find something of interest in the topics discussed.
 

In addition to the X-ray background, I will touch on design features of
 

the HEAO 1 A-2 experiment, a general measure of the distinguishabiltiy
 

of two models, statistical issues, determinations of number counts of
 

sources versus flux and how they are effected by cosmology and detector
 

Prologue
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spectral bandpass, and "much, much morel" To make all this material
 

more accessable, I have provided a series of mini-abstracts that head
 

each section, which outline the material covered. These are collected
 

in a "Precis" before the standard Table of Contents. --,Therefore- tha
 

mildly interested astrophysicist's best strategy is to read Chapter I
 

for an introduction to the broad topic of the X-ray background, then to
 

skip to Chapter IX for the main conclusions, and follow with the Precis
 

to determine which individual sections merit a detailed reading.
 

Those who for whatever reason feel required to wade through the
 

material in its entirety will also benefit from the mini-abstracts.
 

They may also benefit from the two words in large, friendly letters that
 

I received when I bad despaired of ever actually finishing (see
 

Frontispiece following),.
 

Prologue
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I: Introduction and Overview
 

II: 	The HEAO I Cosmic X-ray Experiment (A-2) - In this chapter we 

briefly review the physical and organizational aspects of 
the A-2 experiment, particularly those relevant to studies 
of 	structure in the X-ray sky.
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1: 	The HEAO 1 A-2 Experiment - Characteristics for the study of
 

the X-ray sky 14
 

2: 	Spatial Response - The spatial response of the detectors is 

described, including the effects of scanning. When 
different "sides" have different response functions, 

their difference gives an internal-background-free 
measurement of X-ray intensity. An alternate 
combination allows a measurement of the internal
 
background. We find some simple characterizations of
 
the response for general and ideal detectors.
 

23
 

3: 	Spectral Response and Flux Measurements - The spectral 
response of the detector determines how various 
incident spectra affect the count rate. A brief 

description of this response and of an approach to
 
convert fluxes in counts to ergs (2-10 keV) is given.
 
The availablity of several spectral windows and their
 
effective spectral range is discussed.
 

40
 

4: Experiment History 	 49
 

5: The XRATES Database 	 51
 

III: 	The Origin and Description of the Fluctuations - A detailed 
study of how unresolved discrete sources will produce 
fluctuations in an otherwise isotropic background is 

presented. The effect depends on models of the source 
number versus intensity relationship. A family of 
reasonable models is developed and we discuss the ultimate 
sensitivity of the fluctuations to the source behavior. 
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These fluctuations are also shown to have an impact on
 
other measurements of the X-ray sky, as well as
 
measurements of low intensity sources.
 

55
 

t:-Di-ctet Source Luminosity Functions and N(S) - A general 
description of luminosity functions is made. It is 
shown that objects uniformly distributed in an 
infinite Euclidean space will produce a power law 
form for the differential source counts function 
N(S), of index -5/2, for any form of the luminosity 
function. Deviations from this simple form of N(S) 
are calculated for the elementary cases of a finite 
size Euclidean space and for a nonuniform 
distribution of sources such as an exponential scale 
height disk population. The effects of different 
luminosity functions are then apparent.
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2: 	Fluctuations in Diffuse Sky Measurements Due to Discrete
 
Sources - Surface brightness measurements cannot be
 
isotropic when unresolved discrete sources are in the
 
field of view The general Poisson nature of the
 
variation is derived for constant flux sources, and
 
then generalized for power law distributions of
 
source fluxes. The effect of these variations, the
 
fluctuations, can be characterized by their
 
distribution cumulants. The impact of the collimator
 
solid angle response- on these cumulants depends on
 
the response weights. However for power law N(S)
 
models, these cumulants are formally infinite unless
 
N(S) has both high- and low-flux limits.
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3: 	Derivation of the Fluctuations Distribution Function - The 

calculation of the fluctuations distribution is a 
two-step process. The first step involves folding 
N(S) through the collimator spatial response to give 
the number versus -intensityrelationship. The second 
is to take this n(I) law and, using properties of the
 
Fourier transform, derive the distribution of
 
intensities.
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4: 	The P(D) curves for Simple Models of N(S) : For better 
studies of the fluctuations we re-parameterize the 
power law models for N(S). This simplifies the 
problem of folding through the detector spatial 
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response 	 to get n(I). The distribution for a
 

Euclidean power law is studied, contrasting the full
 
distribution with analysis based only on the variance
 
of the distribution. We present plots of the
 
fluctuations for various values of y, the power law
 
index, comparing them with the Euclidean form. The
 
importance of sharp cutoffs in N(S), particularly for
 
certain values of y, is presented, along with an
 
outline of how to include them as a simple extension
 
of power law models. Finally we consider variants of
 
the single power law, including models whose behavior
 
is fixed at a certain flux, as well as general
 
modifications to low-flux behavior represented as a
 
Gaussian term.
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5: 	Comparisons between N(S) models - We derive a general tool, 
the likelihood difference, to tell how similar a test 
distribution is to the (presumed) "true" 
distribution. The relationship of this tool to the 
likelihood statistical tests allows us, when testing 
a parametric family of models, to estimate which 
range of parameters will, on average and for a given 
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confidence contours. We apply the tool to pure 
Gaussian distributions, and to the fluctuation 
models. The likelihood difference provides a 
quantifiable indicator of the sensitivity of the
 
fluctuations to details of models for N(S). The
 
ability to distinguish two models for the
 
fluctuations is degraded in the presence of non
fluctuations noise. We find that the behavior of the
 
lowest intensity sources can be well modeled as a
 
purely Gaussian contribution.
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6: 	The Evaluation of Ideal Experiments for the Measurement of 
the Fluctuations - We consider the competing effects 
of counting statistics, number of observations, and 
variations in the non X-ray count rate in the design 
and analysis of experiments to measure the 
fluctuations. When we wish to measure the W 
parameter 	of N(S), large sky coverage is preferred to
 
a few deep measurements. An optimal beam size for
 
such measurements exists, depending on the internal
 
background contribution to the noise. To measure the
 
behavior of the low flux sources through the
 
invariant excess, 02S, lower noise is more important
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than sky coverage and number of observations. 
Measuring the fluctuations with idealized imaging 
experiments is briefly discussed. The ultimate 
limitation of such experiments (for the fluctuations) 
comes from spatial variations-- in -the internal 
background. 
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IV: 	Preparation of a Database for Studies of the Fluctuations - In 
order to study the fluctuations we must prepare datasets of 
independent measurements with good signal to noise. A 
weighting correction is outlined that permits the use of 
data where there is some overlap between two measurements. 
Before these datasets are used for the study of the 
fluctuations we estimate and remove other sources of 
variation. Some of these 'other variations are 
astrophysically interesting in their own right. Finally we 
estimate from simulations the sensitivity of the 
experiment. We choose for subsequent analysis data from 
HED 1 L+SFOV, smeared over 60 in the scan direction. 
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2: 	Subsets of the SCANER database: Independent and Overlapping
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3: Removal of Non-Stochastic and Internal Background Variations
 
- In order to analyze and understand the variations 
in the X-ray sky flux due to unresolved sources, we 
must understand and remove any other variations in 
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our measurements. In this section we determine the
 

variation of the internal background as a possible
 
source of 	noise. The internal background mean count
 
rate is 	measured, and it is shown that for data
 
selected for low values of McIlwain "L", the internal
 
background is well represented by a constant rate
 
modified 	by a slow secular drift. Any residual
 
variation in the internal background is small. A
 
much larger effect on measurements of the
 
fluctuations is the contamination due to large scale
 
structure in the sky. A thick disk of emission
 
associated with the galaxy is the principal
 
component. A residual "24-hour" signal is seen with
 
only slight significance, -95%. This signal is
 
consistent in direction and magnitude with that from
 
motion of 	the solar system with respect to the cosmic
 
background as indicated by similar anisotropy
 
measurements in the microwave.
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4: 	Optimal Bin Sizes for Subsets of Independent Data - The 
tradeoff between improved counting statistics, number 
of observations, and size of the fluctuations signal 
is considered for a simple model for the division of 
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data. The likelihood difference technique is used to 
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their possible field of view combinations. It is 
shown that the sensitivity for measurements of W is a 
remarkably insensitive function of the bin size. For 
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of view is the L+SFOV. The two REDs are roughly 
equivalent with HED 3 marginally superior. The 
optimal bin size for the L+SFOV is a smear 
approximately equal to the FWHM of the unsmeared 
detector. 
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1: 	Photon Statistics and the Probability Distribution used in 
Fitting - The P1 distributions cannot be directly 
compared to the distribution of measurements as they
 
do not include the additional variation produced by
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counting 	statistics. The final distribution is a
 

-convolution of the PI distribution with a Gaussian
 

representing the additional noise. A particular
 
difficulty is encountered, though, when the size of
 

the added variation changes from one measurement to
 

-the-next. This means that each measurement is drawn
 

from a unique distribution. A further refinement is
 

necessary if in order to minimize the effect of
 

bright sources on model fitting, a high intensity
 

selection cutoff is imposed on the data. The final
 

result of this section is a derivation of the
 
probability distributions that properly describe the
 

data set.
 
164
 

2: 	Statistical Techniques Used - Model fitting for the 

fluctuations requires care in the selection of the 

proper statistical tools. The integral 

probabilities, F3(r-), may be used in a family of 

statistical tests that will tell the goodness of the 

fit of the model. For the determination of 

confidence contours the likelihood statistic is the 
preferred technique. We also outline a general 

rigorous approach to combine results from several 

non-independent determinations of a confidence 

contour based on Boole's Inequality. 
168
 

VI: Results of Fits to the Data 	 176
 

i: Recapitulation of Data Characteristics - We review the 

features of the data chosen for fitting models. The 

various subsets of independent, and non-independent 

data are described. The fitting process is sketched.
 

177
 

2: 	The Reconciliation of the Observed and Model Means - The 

fluctuations distribution, P1 ,(I-I-), is calculated 

from the model N(S) to give a distribution about the
 

mean count rate. If in performing the fits the model
 

mean is identified with the mean count rate of the
 

observations, a systematic bias is introduced. We
 

show in this section that the value for the size of
 

the fluctuations, Weff, can be strongly correlated
 

with the value chosen for Y. The bias and
 

correlations are due to the assumption that the model
 

has the correct contribution from resolved sources to
 

Precis
 



xvii
 

the mean count rate. A simple correction term
 
removes both bias and correlation, allowing the
 
separation of the uncertainty in T from
 
determinations of Weff of the uncertainty.
 

182
 

3: Fits of Euclidean Models - We test a power law model for 
N(S) with index y = 5/2, characteristic of a uniform 
distribution of sources in Euclidean space. The
 
quality of the fit is good. The various subsets are
 
used to 	 determine the confidence region for the
 
width, W. The answers from all the sets are in
 
agreement. By fitting models with sharp cutoffs at
 
low fluxes we are able to estimate the limitations of
 
our models in describing the low flux region of N(S).
 
The limit 	is set by a variance condition, rather than
 
by the number of sources per field of view. The
 
best-fit y=5/2 model is used to define a fiducial
 
N(S) to which subsequent models are compared.
 

186
 

4: 	Fits of Gamma and W - We consider non-Euclidean power law 
N(S) models, i.e. those with y not fixed at 5/2. We 
find that the WW (whole sky weighted) data-set 
provides much greater constraints on the allowed 
values for W and y than a dataset of independent 
measurements. Euclidean and near-Euclidean models 
provide a good description of the data. The 
acceptable models show that the N(S) is most tightly 

-4 - I constrained at fluxes of 3x10 counts s cm , an
 
order of magnitude below the limits of resolved
 
source counts. A low flux cutoff, imposed by the
 
requirement of not exceeding the total X-ray sky
 
flux, has a significant impact by allowing with the
 
confidence region high y models that otherwise would
 
have been excluded. The technique used for
 
calculating the mean count rate also has an impact.
 
Pegged models, where N(S) is constrained at a given
 
flux Sp, are examined.
 

5: 	Fits of the Excess Variance and W - We describe fits when 
N(S) is parameterized as a pure Euclidean power law 
with an additional component whose contribution to 
the fluctuations is a pure Gaussian. The variance of 
the Gaussian, a2I, and the -value of W for the power 
law are strongly correlated. We present the 90% 
confidence contours for these parameters. The data 
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are consistent with a zero excess variance, with a
 
90% upper bound to 02, of 0.064 (counts exp-1 )2, or
 
in collimator-size-inde endent units of flux, a2S,
 

-
0.0008 (counts s 1 cm- )2 . This limit is derived
 
from the overlapping data WW dataset. The
 
constraints imposed-by the sets of -independent
 
measurements are much less severe. The limits on the
 
excess variance is used to place limits on a broken
 
power law model for N(S). We show how the confidence
 
range would be modified if independent information
 
could provide an exact value for W.
 

6: 	Analysis of and Comparison with Other Experiments' 
Fluctuations Results - Analyses of the fluctuations 
of the X-ray sky have appeared in the literature 
using data from UHURU and Ariel V. One analysis of 
the UHURU data measured only the variance of the 
fluctuations. Given the limitations of such a 
technique it is in general agreement with the results 
derived in this chapter from the HEAO 1 A-2 data. An
 
estimate of the excess variance was made, but it is
 
subject to several biases weakening the published
 
constraint. P(D). analyses were performed on both
 
UHURU and Ariel V data. However, important effects,
 
included in the A-2 analysis, were ignored. The
 
Ariel V published power law model confidence region
 
is in agreement with the A-2 region, although the
 
Ariel V results may be seriously flawed due to an 
arithmetic error. 

208 

VII: Analysis of Fluctuations Fit Results - Our confidence ranges for
 
the abstract N(S) models tested in the previous chapter are
 
now compared to other data and more realistic models of the
 
universe.
 

1: 	Comparison of Resolved Sources N(S) and the Fluctuations -
The data of Piccinotti et al. [1982] for a complete 
sample of resolved sources are reviewed. The sources 
are binned by intensity and used to estimate K, the
 
normalization coefficient, for an assumed Euclidean
 
N(S). The treatment differs from that in Piccinotti
 
et al. in that it includes identified galactic
 
sources and excludes the highest flux sources as N(S)
 
is expected to deviate from a single power law model
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at the highest fluxes. Corrections for the Malmquist
 
bias are also estimated. The range of values for K
 
is consistent with the Euclidean component of the
 

fluctuations. We combine the resolved source fits
 
with the fluctuations analysis to produce a
 
significant reduction in the confidence regions for K
 

(or W) and the excess variance, especially for the
 
independent data subsets. The 90% confidence range
 
for c2 is 0.0 to 0.05 (counts exp-l)2, (or o S is 0
 

- 4 to 6xi (counts s 1 cm-2)2) using overlapping data.
 

220
 

2: The Expected Excess Variance from Non-Evolving Populations -

Analysis of the fluctuations has been reduced to
 

applying the determination of two parameters: the
 
strength of the fluctuations (measured by K) for a
 

Euclidean N(S) component and an excess variance
 
characterizing the deviation from a strictly
 
Euclidean form. In this section we examine in detail
 

the populations of high latitude resolved sources as
 
studied in the complete sample of Piccinotti et al.
 
[1982], and predict their contribution to both the K
 

values and the excess variance, assuming no
 
evolution. The total excess variance for all the
 

- 4 populations is -- 3.3x10 (counts s 1 cm-2 )2. This
 

negative value is dominated by the contribution from
 
clusters of galaxies, due to the rapid effect of the
 

cosmological redshift on their contribution in the
 
HED 1 Layer 1 band. The value is significantly less
 
than that 	allowed by the fluctuations, except for our
 

most conservative estimate using non-overlapping
 

data. The fluctuations therfore require an
 

additional source of variance, perhaps a new
 
population of X-ray sources or evolution in one of
 
the known populations.
 

3: 	Sources of Excess Variance: New and Evolving Populations -
New or evolving populations of sources may provide 
the amount of invariant excess required by the 

fluctuations analysis, compensating for the deficit 

calculated from the non-evolving luminosity functions 
of the known sources. The upper limit on the 
invariant excess places constraints on any new 
population that could provide the bulk of the sky 

flux. There must be at least 50 such new sources per
 
square degree, with an average flux of no more than
 

- 13 - I -2
 3x10 ergs s cm . Any evolution of the AGN
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luminosity function would also affect the AGN
 
contribution to the excess and the sky flux. The 
requirement that the observed sky flux not be 
exceeded places the strongest constraints on the 
amount of such evolution. For pure luminosity 
evolution, it is difficult to provide the missing 
invariant excess without overproducing the sky flux, 
unless moderate luminosity objects ( 0.1 L44 ) undergo 
more evolution than the lower luminosity sources. 
Models of luminosity-dependent density evolution 
(index evolution) are also considered, and are 
consistent with the required behavior. The possible 
presence and form of a high luminosity extension of 
the AGN luminosity function can affect the high flux 
N(S). While observations of the resolved sources 
cannot constrain a non-evolving extension of the 
luminosity function, they do rule out strong 
luminosity evolution by these high luminosity 
sources. 

254
 

4: Results from the Einstein Observatory: Source Counts - We 
review the results of the low flux source counts 
obtained from the Einstein Observatory. Though the 
differing energy bands of Einstein and the A-2 
experiment make comparisons strongly dependent on 
spectral assumptions, the "Medium Survey roughly 
equivalent to the range of greatest sensitivity of 
the fluctuations. The N(S) curves derived are in 
agreement, again depending on spectral assumptions. 
The identification of the sources which constitute 
the Medium Survey implies some evolution by AGN from 
the luminosity function observed in the XCS. If the 
evolution is pure luminosity evolution, where L(T) = 
L(O) exp(QLt), (T is the fractional lookback time), 
then the Medium Survey source counts and the XCS 
derived current epoch luminosity function predict 2 < 
QL S 4, qo =0.1. If a substantial number of the low 
luminosity AGN are not absorbed or are only partially 
covered with absorbing material, the allowed range 
must be significantly reduced. Similar results are 
obtained for the original "Deep Survey The analysis 
of' these sources is sensitive to the behavior of N(S) 
in a narrow flux range, and its interpretation 
depends on the assumed power law index of N(S). No 
conclusion about the presence or absence of evolution
 
for BL Lacertae objects can be drawn solely from
 
their relative frequency in the XCS and Medium
 

Precis
 



xxi
 

Survey. The promise, and difficulties, of an
 
analysis of the fluctuations using Einstein
 
Observatory data are outlined.
 

281
 

5: 	Comparisons of AGN models with Optical Data - Studies of X
ray sources in other spectral bands, besides having 
an intrinsic value for elucidating the physical 
mechanisms of the emission, can provide indirect 
information about the behavior of those sources in 
the X-ray band. For example, with data on the 
connection between optical and X-ray fluxes, optical 
source counts can be used to predict the contribution 
of AGN to the total X-ray sky flux. Such a program 
is complicated by nonlinear correlations between 
optical and X-ray luminosities. Many authors have 
found that increases in the optical luminosity 
produce a smaller increase in the X-ray luminosity 
than strict proportionality would predict. That is, 

x- (Lopt) , with 6<1. However, this is difficult 

to reconcile with the fact that the X-ray luminosity
 
function is flatter than the optical luminosity
 
function. The optically derived-parameters for
 
evolution must be corrected by the deviations from
 
simple proportionality, in order to apply them to the
 
X-ray band. The observed correlations between X-ray
 
and optical luminosity predict that QL-x must be much
 
less than QL;opt' the exact value depending on the
 
actual form of the correlation. The use of the
 
optical source counts to predict the X-ray sky flux
 
involves several important extrapolations.
 

309
 

6: 	Excess Variance from Non-Poisson Fluctuations - Non-Poisson 
distributions of X-ray sources can produce 
significant additional contribution to the
 
fluctuations. We present estimates of the
 
amplification of the fluctuations due to sources
 
clumped on supercluster scales. We also sketch the
 
utility of studies of the X-ray anisotropy for
 
probing the general distribution of matter. On the
 
very largest angular scales, the comparison of the
 
Compton-Getting (dipole) signal in the X-ray and
 
microwave bands supports the hypothesis that the
 
overdensity responsible for our observed velocity is
 
"local" compared to the scale of the sources that
 
produce the X-ray sky flux. The limits of the excess
 
variance constrain the magnitude of lumps of X-ray
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volume emissivity, the size of the limit depending on
 
the lump size. For data from our RED 1 smeared
 
detector, the strongest constraints are placed on
 
structures larger than -400 Mpc. These constraints
 
can be translated to limits on matter clumping of the
 
universe at scales otherwise not easily accessible.
 
Using a naive Euclidean approximation, the
 
fluctuations do not permit highly clumped structures
 
(6p/p>l) larger than -100 Mpc.
 

326
 

VIII: The 	X-ray Sky Flux: Spectrum, Models, and Future Prospects 350
 

1: 	The Observed X-ray Sky Spectrum and Physical Processes -

Recent measurements of the X-ray sky spectrum from 3 
keV to 400 key are reviewed. A thin thermal 
bremsstrahlung spectrum with kT - 40 keV is a good 
description of the total spectrum from 3 to 100 key. 
Other possible interpretations of the data are 
presented. The effective spectrum, after removal of 
an estimated component due to known sources, is 
described; We summarize briefly the physical 
mechanisms that can produce X-ray emission. 

350 

2: The X-ray Sky: the Problem, and Model Solutions - The
 
subtraction of estimated contributions from clusters
 
and AGN, without evolution, modifies the simple
 
thermal spectral fit. QSOs certainly may provide
 
sufficient flux, but leave important spectral issues
 
unanswered. Other models specifically address the
 
spectral constraints, but lack specific source
 
identifications. Inverse Compton models are shown to
 
be incompatible with the residual sky spectrum.
 
Thermal bremsstrahlung from a hot intergalactic
 
medium is considered in some detail, though a simple
 
uniform medium has significant difficulties. The
 
limits on the excess variance do not rule out
 
significant clumping, in the context of our simple
 
Euclidean 	analysis of the last chapter.
 

3: 	Future Analysis of the X-ray Sky with A-2 Data and Other 
Experiments - Several important questions about the 
origins and properties of the X-ray sky remain to be 
answered by future studies. These may utilize the 
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A-2 database as well as future generation 

experiments. 
380 

IX: Conclusions 	 391
 

Al: Cosmological Corrections to the Derivation of N(S) from a
 
Luminosity Function 406
 

A2: Distributions, Probabilities, and Transforms 	 413
 

1: 	Characteristic Function and Cumulants of a Distribution - We
 
outline several ways the distribution of a random
 
variable may be described. The characteristic
 
function of a distribution provides a simple way to
 
describe the addition of independent random variables
 
through the convolution theorem. The characteristic
 
function can also be used to define the cumulants of
 
a distribution. Expressions for the fifth and sixth
 
cumulants 	are presented.
 

413
 

2: 	Overlapping Data and Corrections to Data Weighting - The 
effective number of measurements for overlapping data 
is investigated using the example of non-independent 
measurements drawn from a Gaussian distribution. 

419
 

3: 	The Mellin Transform and Calculation of n(I) - An algorithm 
for folding a general N(S) function through the 
detector response is presented using Mellin 
transforms.
 

423
 

A3: Computational Issues in Calculating and Fitting Fluctuations 
Models - We outline the general techniques used in the 
actual construction of the PE,(E') curve and the subsequent 
fit to data. The finite discrete Fourier transforms used
 
have important properties that are allowed for. A proposal
 
is made to extend the application of these techniques to
 
cases where the detector spatial response includes
 
significant regions with negative response.
 

426
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A4: The SCANER database - The format of the SCANER database is given,
 
with a detailed description of the header blocks and the
 
SPINAXIS file used to access the data.
 

AS: New Source Identifications for the X-ray Complete Sample -

Sources from the X-ray Complete Sample of Piccinotti et al. 
[1982] are discussed. New identifications are presented, 
as well as the classification of the galactic sources. 

437
 

A6: The Malmquist Correction and the Fluctuations - We examine the 
effects of the fluctuations on the Malmquist correction 
technique. Though the intensity measurements may no longer 
have the 5o significance, if the variation is predominatly 

confusion noise from the fluctuations, there is a natural 
low flux cutoff to the probability distribution that 
removes the divergence. We estimate the correction to the 

resolved source N(S) fits due to an additional confusion 
noise term. 

441
 

A7: Flux Conversions 	 445
 

1: 	Conversions for Selected Discovery Scaler Windows of the A-2
 
Experiment - We present conversion tables for
 
selected windows of the RED 1, NED, and HED 3.
 

445
 

2: 	IPC Spectral Response and Flux Conversion - The approximate 
form of the Einstein Observatory IPC spectral 
response is presented. This is used to calculate the 
effective bandpasses for the Deep and Medium 
Sensitivity Surveys. Conversion coefficients to 
absolute units (ergs 2-10 keV) and HEAO 1 flux units 

(HILl) are estimated. The exact value of the 
conversion is strongly dependent on the assumed 
incident spectrum. 

448 

Precis
 



xxv 

Table of Contents
 

Prologue . .. . . . .. . . .. . . . ... . . . .. . . ..
 
Dedication ....... ............ . . .... v
 
Acknowledgments .... ................... vi
 

Precis . . .. .. . . .. . . .. .. . . . . . .. . xii
 

Table 	of Contents ........................ . .. ..... xxv
 

List 	of Figures .............................. .. xxxiii
 

List 	of Tables .......... ......... xxxviii
.......... ...
 

I: Introduction and Overview ....... ........... ....... 1
 

The sky as experiment .............. 	 ............. 1
 

The cosmic background spectrum ........... ......... 2
 

The X-ray sky .... ........... ................. 4
 

Models for the X-ray sky ......... . ............... 8
 

Fluctuations in the diffuse sky and discrete sources ..... 10
 

Dissertation outline, organization, and notation . ....... 12
 

II: The HEAO-1 Cosmic X-ray Experiment (A-2) ..... .......... .14
 

1: 	The HEAO 1A-2 Experiment ..... . ............... 14
 

General experiment makeup ......... ....... . . o15
 

The counters .... ....... ........ o ..... o.16
 

Internal-background-free sky flux measurements. . . . 18
 

2: 	Spatial Response .......... .................. 23
 

Measurements with combinations of FOVs .. ......... 26
 

Smeared response functions ....... ............ .30
 

Characterization of the detectors' angular size ...... .. 32
 

Response frequency and response weights .... ..... .... 35
 

3: 	Spectral Response kud Flux Measurements .... ...... .. .40
 

The total efficiency ......... ............... .40
 

Incident spectra weighted energy ranges .... ........ .. 42
 

Conversion from counts to ergs ...... .......... .45
 

Contents
 



xxvi
 

Available spectral windows ....... ............. .47
 

4: Experiment History ........ ................ ...49
 

5: The XRATES Database .......... .............. . ..51
 

III: The Origin and Description of the Fluctuations ........ 55
 

1: 	Discrete Source Luminosity Functions and N(S) ...... 55
 

Uniform Euclidean space .... .. ............. 57
 

Model luminosity function forms .............. 59
 

Effects of a finite sized universe .... ........ .60
 

Source counts for a disk population ............... 62
 

2: Fluctuations in Diffuse Sky Measurements Due to Discrete
 

Sources ....................................... .65
 

Sources with equal flux ........ ............. ..66
 

The cumulants for power law N(S) . . ......... 69
 

3: 	Derivation of the Fluctuations Distribution Function .... 73
 

Going from N(S) to n(I) ...... . .............. 73
 

From n(1) to P-,-(i)1
 ......... .............. .75
 

4: 	The P(D) curves for Simple Models of N(S) ........ .... 77
 

P(D) for single power law N(S) ....... ....... ..77
 

Observations of the fluctuations variance .... .... .82
 

Non-Euclidean power law models ........ ... ... 84
 

Power law N(S) models with low-flux cutoffs . .. . 89
 

Minimum cutoff from diffuse flux limit..... .. .. 90
 

"Pegged" models ............ ............... ..92
 

First order modifications to simple power laws..... . 93
 

5: 	Comparisons between N(S) models ................... .94
 

Likelihood and likelihood difference .. ....... . 95
 

Limits on the fluctuations ............ 100
 

Gaussian and non-Gaussian aspects ............ . . 105
 

6: The.Evaluation of Ideal Experiments for the Measurement of
 

the Fluctuations ......... .................... .. 109
 

Physical detector characteristics ... ............. 110
 

Measurement of point sources .... .............. ill
 

Contents
 



xxvii
 

Measurements of W .... .......... 112
 

Measurements of low-flux behavior .... ........... 114
 

Experiments with imaging detectors ... .......... 117
 

7: Fluctuations and Other Measurements: Confusion Noise and
 

Correlation Studies ..... ................. .... . 119
 

Single measurements of source intensities.......... 120
 

The fluctuations and baseline subtraction techniques 122
 

The fluctuations and fits to source intensity . . . .. . 124
 

The fluctuations and other studies of the X-ray sky . . 127
 

IV: Preparation of a Database for Studies of the Fluctuations . . . 129
 

1: 	The creation of the SCANER database .... .......... . 129
 

Initial pass through XRATES: JUTE ............... 129
 

Second pass through XRATES: BIGSCN ... ......... ... 132
 

Reformatting the data: SHFSCN and SUSCAN .. ....... 136
 

2: Subsets of the SCANER database: Independent and Overlapping
 

Data ............. ...................... ... 137
 

General region exclusion: NOTIND ... ....... .... 137
 

Independent data and studies of the fluctuations . 138
 

Generating independent subset of data: NSCIND . . ... 140
 

XTRACT: Final data preparation .... ........ .... 142
 

XTROVL: XTRACT with calculation of overlap weights 142
 

3: Removal of Non-Stochastic and Internal Background
 

Generating the data for studies of large-scale structure.152
 

Additional large-scale variations: The Compton-Getting
 

Variations ............ ...................... . 145
 

Measurements of the internal background ..... ...... 146
 

Residual variations in the internal background . . . . 148
 

Large scale structure in the X-ray sky: Galactic models 151
 

effect ............. ...................... 156
 

4: 	Optimal Bin Sizes for Subsets of Independent Data . . . 159
 

Optimal bin size ......... ................ 160
 

Contents
 



xxviii
 

V: How to Prepare for and Interpret Fits of Observations to N(S)
 

models ................ ........................ .. 164
 

1: Photon Statistics and the Probability Distribution used in
 

Fitting .............................. .. ........ 1"6-4
 

Convolution of counting statistics ..... ......... 165
 

Censored data ............ ................. 167
 

2: 	Statistical Techniques Used ...... ............. ... 168
 

Measuring goodness of fit ...... ............. ... 168
 

Parameter confidence regions ..... ........... . 171
 

Non-independent measurements and Boole's Inequality . . 173
 

VI: Results of Fits to the Data ...... . ............. 176
 

1: Recapitulation of Data Characteristics .. ......... . 177
 

2: The Reconciliation of the Observed and Model Means . ... 182
 

3: Fits of Euclidean Models ..... 	 ..
.............. 186
 

Fiducial model .......... ................... 189
 

The range of applicability ....................... 189
 

4: 	Fits of Gamma and W ........... ............... 191
 

Issues in performing non-Euclidean fits .. .......... 191
 

Pegged models .......... .......
........... 	 198
 

5: 	Fits of the Excess Variance and W .. .......... 202
 

Results of fits ......... ................. .. 203
 

6: Analysis of and Comparison with Other Experiments'
 

Fluctuations Results ......... ................. ... 208
 

UHURU as analyzed by Schwartz, Murray, and Cursky [1976].212
 

The excess variance from UHURU as analyzed by Schwartz
 

UHURU as analyzed by Fabian [1975] .... ........ ... 209
 

Analysis of the Ariel V data by Pye and Warwick [1979] 213
 

[1980]. 	 .. ...................... .. 217
 

VII: 	Analysis of Fluctuations Fit Results ... .......... 220
 

Contents
 



xxix
 

1: 	Comparison of Resolved Sources N(S) and the Fluctuations . 220
 

The sample .......... ...................... 220
 

Fitting N(S) ......... ................... 222
 

Combined likelihood estimation of excess variance . . . 228
 

'Excess variance range from Boole's Inequality .. ..... 230
 

2: 	The Expected Excess Variance from Non-Evolving Populations 233'
 

Clusters of Galaxies ......... ................ 236
 

Active Galactic Nuclei (AGN) .... ......... .... 240
 

Galactic Sources ........ ................. 246
 

Ordinary galaxies and other sources ... ......... ... 249
 

Comparison with fluctuations results ...... ..... 250
 

3: 	Sources of Excess Variance: New and Evolving Populations 253
 

General constraints on a new population ..... ...... 255
 

Evolution of AGN ........ .............. ... 256
 

Parametric models for evolution ... ......... .... 258
 

Pure luminosity evolution ..... ........... .... 265
 

Index evolution ........ ........... ......... 270
 

High luminosity extensions of AGN luminosity function . 274
 

Summary ........... ................. .... 280
 

4: 	Results from the Einstein Observatory: Source Counts . 280
 

...
The Medium Survey: Maccacaro -et al.- [1982] . . 282
 

Limits on AGN evolution from the Medium Survey . . 288
 

Evolution of BL Lac objects..... . .......... ... 294
 

The Deep Survey: Giacconi -et al.- [1979] ..... .... 296
 

Fluctuations Analysis with the IPC .. .......... 306
 

5: 	Comparisons of AGN models with Optical Data ..... .... 309
 

Comparisons: amounts of evolution in the X-ray and
 

Use of optical AGN counts to estimate the contribution to
 

Optical studies of AGN: advantages and problems . . 310
 

Relationship between optical and X-ray flux . .. ... 311
 

Comparisons: X-ray and optical luminosity functions . 317
 

optical ............ .................... .... 319
 

S-as............................ 322
 

Summary ........... .................... .. 325
 

Contents
 



xxx 

6: 	Excess Variance from Non-Poisson Fluctuations .... ... 326
 

AGN in superclusters: additional.2- S............. 329
 

Large scale structure: a single lump .. ......... 333
 

Large scale structure and the Compton-Getting effect 335
 

Multiple rumps and the excess variance . .......... 340
 

A note on appropriate detector size ... ........ .. 347
 

Fluctuations from continuous density ripples ... ....348
 

VIII: 	The X-ray Sky Flux: Spectrum, Models, and Future Prospects . 350
 

1: 	The Observed X-ray Sky Spectrum and Physical Processes . . 350
 

Spectral characteristics of X-ray emission processes . 351
 

Characterizations of the sky spectrum ... ....... ... 355
 

2: 	The X-ray Sky: the Problem, and Model Solutions . . . .. 358
 

The problem .......... ............ ....... 358
 

Models from known X-ray sources .......... . . . . 361
 

Inverse Compton models for the residual ...... ....367
 

Thin thermal bremsstrahlung models for the residual 369
 

Other models .......... ............ ..... 378
 

3: Future Analysis of the X-ray Sky with A-2 Data and Other
 

Experiments ............ ................. ........ 380
 

Study of sky flux from a future large area, low
 

Imaging the X-ray sky with future instruments ..... 388 -


Different angular binnings from the A-2 database . . . 380
 

The fluctuations in other spectral bands .. ........ 383
 

resolution X-ray experiment ...... ................. 385
 

A moderate area, moderate resolution imaging experiment 387
 

IX: Conclusions ...... ............. . ...... .. 391
 

Al: Cosmological Corrections to the Derivation of N(S) from a
 

Contents
 



xxxi
 

Luminosity Function ........ ..................... .. 406
 

Determining observed S ........ .................... 407
 

Cosmological corrections to Euclidean volume. ... ......... 409
 

Calculating the number counts ....... .............. .. 410
 

A2: Distributions, Probabilities, and Transforms ... ........ . 413
 

1: 	Characteristic Function and Cumulants of a Distribution . 413
 

Distributions, moments, and the characteristic function 413
 

Cumulants and reduced cumulants ..... ............. 416
 

2: Overlapping Data and Corrections to Data Weighting . ... 419
 

3: The Mellin Transform and Calculation of n(I) ........ ... 423
 

A3: Computational Issues in Calculating and Fitting Fluctuations
 

Models ............... ........................ .. 426
 

Calculating n(g) . .......... ............... 426
 

Calculation of the fluctuations array ..... ............. 428
 

Calculating the integral and differential probabilities . . 429
 

Negative response calculations ..... ............. 430
 

A4: The SCANER database ........... ..................... 431
 

The SCANER tape format ........... ............... 431
 

The SPINAXIS file format ....... ................ 434
 

Programming hints ........... ................ ..... 435
 

Contents
 



xxxii
 

AS: New Source Identifications for the X-ray Complete Sample . . . 437
 

New identifications ......... .................. . 437
 

Classification of high-latitude galactic sources ............ 439
 

A6: The Malmquist Correction and the Fluctuations ... ........ . 441
 

The problem .... . . ...... ................... 441
 

A7: Flux Conversions ......... ..................... . 445
 

1: Conversions for Selected Discovery Scaler Windows of the A-2
 

Experiment ............. ............. 445
....... ..
 

2: IPC Spectral Response and Flux Conversion .. ....... .. 448
 

References ........... . ..... ............... 454
 

Contents
 



xxxili
 

List of Figures
 

I.1: The isotropic sky flux, s(v) versus v ........ ............ 3
 

1.2: The X-ray sky as seen from HEAO 1 A-2: Galactic Plane . ...... 4
 

1.3: The X-ray sky as seen from HEAO 1 A-2: Galactic poles ... ..... 6
 

II.l: Configuration of the A-2 experiment on HEAO 1 . . ...... 15
 

11.2: Cross-sectional view of MED and RED 2 . .	 17
......... 


11.3: Cross-sectional view of HED 1 and 3 . ............. 18
 

11.4: Detector grid connections for RED I and 3 . .	 19
........ 


11.5: HED 1 LFOV r(6, =) versus e ............. ......... 24
 

11.6: HED 1 LFOV two-dimensional response, r(O, ) .... ....... 25
 

11.7: HED 1: FOV combinations response cross-section ........ 28
 

11.8: HED 1: FOV combinations, r(0, ) o....... ..... 	 . 29
 

11.9: BED 1 smeared response cross section (a) rL+S and (b) 	rLS
 
6 . . . . . ... . . . . . .. .. .. . .
. .. . . . . .
versus . .	 32
 

II.10: HED 1 smeared two dimensional response, r(OA) . .	 .
..... 33
 

II.11: RED 1 L+S r(8,f), outline of fractional contribution areas 34
 

11.12: Response freguency, v(r) versus r.................... 36
 

11.13: Response for the internal background FOV combination, rB(0,0) 38
 

11.14: Response frequency, V(r), for rB ...... .... 39
 

11.15: Total efficiency, Q(E), for RED 1 ...... ............ . 42
 

11.16: Total efficiency for MED, day 257 (1977) .... ........ 43
 

11.17: RED 1 and MED incident photon distribution, P(E) .. .... . 44
 

11.18: 	RED 1 layer 1 pulse height windows: (a) Q(E), (b) P(E) . . 48
 

Figures
 



xxxiv
 

11.19: Production system for XRATES tapes ........ ........ 52
 

III.1: K(S) for finite Euclidean space .-..... ... ...... 61
 

111.2: K(S,f) for exponential scale height distribution.. . . .. 63
 

- 111.3: Euclidean model fluctuations distribution ........ .... 81
 

111.4: a2	 ,( ") versus 'u,' y = 5/2 .. .............. ... 83
 

111.5: P,(V) versus ', non-Euclidean models ..... ........ 85
 

111.6: P,() versus ', extreme non-Euclidean models ....... 86
 

111.7: Effects of upper source cutoff on PE .......... ......88
 

111.8: Effects of low-flux cutoff on P,(E') .... ......... 91
 

111.9: The 	likelihood difference, AX(SW) versus 6W. ........ 98
 

III.10: P,(V') versus C" with noise ... ........ ........ 99"
 

III.11: Pg,(E') versus C, with a sharp cutoff in N(S) ....... 102
 

111.12: Likelihood difference versus sharp E cutoff, y 5/2 . . . 104
 

111.13: 	Sensitivity* to non-Gaussian aspects of PE,, measured by the
 
likelihood difference ........ ................ .107
 

111.14: 	Integral probability ranges for PI, for different values of
 

..................... ......... 121
 

111.15: Histogram of fit flux values ...... ................... 126
 

[V.1: Initial pass through XRATES: The JUTE program ........... .130
 

IV.2: Second pass through XRATES: The BIGSCN program .. ....... .. 133
 

IV.3: NSCIND: Generating independent subsets of SCANER data . .	 . . 140
 

IV.4: 	Excess variance of internal background for various amounts of
 
smear . . . . . . . ..... . . .. . . .. . . ... .. 149
 

IV.5: 	Temporal change in X-ray sensitivity of HED 1 .......... .152
 

Figures
 



xxxv
 

IV.6: Finite disk model for galaxy, RED 1 layer 1 L+SFOV ......... 155
 

IV.7: 70% 	and 90% confidence contours for a Cos 0 (dipole) signal . 158
 

IV.8: 	Fractional size of 90% confidence of region for W as a function
 
of bin size ......... .................. ....... 162
 

VI.1: Fit 	Confidence Regions, I and Wef f. ......... ......184
 

VI.2: 90% 	Confidence Range for W when y = 5/2 ..... .......... 188
 

VI.3: 	Effects of model assumptions on 90% confidence regions, Weff
 
and y plane ............................192
 

VI.4: 90% 	confidence regions for Weff and Y..... .......... .195
 

VI.5: 90% 	confidence regions in the W, y plane .... ......... .. 196
 

VI.6: 	N(S)/N(S)fid for power law N(S) models acceptable at the 90%
 
level........ ............... ......... 197
 

VI.7: Ranges of acceptable Weff and Y for pegged models ...... 200
 

VI.8: N(S)/N(S)fid for pegged models ... ............... 201
 

VI.9: Excess variance versus W ..... ........ ......... 204
 

VI.10: Acceptable N(S) for broken power law .............. 206
 

VI.11: Confidence regions for excess variance, given W ....... 207
 

VI.12: The 90% Y-W confidence region for Ariel V . . ........ 215
 

VII.1: K(S)/Kfid from resolved source counts ..... .......... .227
 

VII.2: 	Combinded likelihood confidence region, excess variance Versus
 
W (or K).............. .................. ... 229
 

VII.3: 	90% region for excess variance versus K (or W) for
 
intersection of resolved source and fluctuations 95%
 
contours (Boole's Inequality) ................ ...232
 

VII.4: K(S)/Kfid for broken power law ....... .......... ...233
 

Figures
 



xxxvi
 

VII.5: K(S)/Kfid for clusters .................. 	 238
 

VII.6: K(S)/Kfid for clusters with a sharp cutoff at moderate
 
redshift ............ ............... ...... .239
 

VII-.-7: K(-S)/-Kfid for AGN model luminosity functions, qo 0.5 . . . 243
 

VII.8: K(S)/Kfid for CV and RS CVN ....... ............... .248
 

VII.9: K(S)/Kfid for total galactic sources ...... .......... .249
 

VII.10: 	K(S)/Kfid total source populations compared with
 
fluctuations ........ .............. ....... 251
 

VII.11: Kh and 02S for total source populations ............ 252
 

VII.12: Schematic examples of luminosity function evolution . . . 259
 

VII.13: K(S) for density, luminosity and index evolution ...... 261
 

VII.14: Effect of qo on luminosity evolution .............. 262
 

VII.15: K(S) for luminosity evolution with various Zmax ...... 263
 

VII.16: K(S) for AGN with luminosity evolution ...... 	 266
....... 


VII.17: Contributions to Sas and a2 for AGN versus QL. ...... 267
 

VII.18: K(S) for evolving middle luminosity AGN . .......
. .	 269
 

VII.19: K(S) for luminosity function index evolution of AGN . . . . 271
 

VII.20: Contribution to Sas and 02S for AGN versus. . . . 272
.... 


VII.21: 	Effects on AGN K(S) for index evolution of a high luminosity
 
extension of the luminosity function ... ........ ... 275
 

VII.22: K(S) for only high luminosity AGN .... .............. 277
 

VII.23: Effects of absolute maximum in luminosity on K(S) ... .... 279
 

VII.24: K(S) for the Einstein Medium Survey ..... ......... .. 284
 

VII.25: K(S) for clusters in the Medium Survey ... ......... ... 288
 

VII.26: K(S) from AGN evolution compared to Medium Survey results . 289
 

VII.27: Effect of absorption in AGN on the K(S) in the Medium Survey 291
 

Figures
 



xxxvii
 

VII.28: K(S) for the Deep Survey ......... .............. .298
 

VII.29: K(S) from AGN evolution compared to Deep Survey results . . 301
 

VII.30: K(S) for Deep Survey converted to the HILl band ........304
 

VII.31: Large scale anisotropies from an accelerating lump .......337
 

VII.32: Limits on large scale structure imposed by X-ray fluctuations
 

bounds ............. ................. .... .346
 

VIII.l: The cosmic X-ray sky spectrum from HEAO 1 ........ 356
 

A7.1: P(E) and A(E) for IPC ......... .................. .450
 

A7.2: Conversion of IPC fluxes to absolute and HILl values ..... 452
 

Figures
 



xxxviii
 

List of Tables
 

II.1: Detector collimators and areas ....... .............. .. 27
 

11.2: History of discovery scaler definitions ..... ...... .. .50
 

VI.1: Summary of X-ray sky properties: fluxes and intensities . . . 178
 

VI.2: Excluded High Latitude Sources ....... ............... .179
 

VI.3: HED 1 datasets used in the study of the fluctuations ..... .181
 

VI.4: Confidence range for W when y = 5/2 .... ........... .187
 

VII.1: Resolved source distribution, binned ...... ......... .. 224
 

VII.2: 90% confidence range for invariant excess ... ......... .. 230
 

VII.3: Luminosity versus cluster temperature used ... ....... 236
...
 

VII.4: 	Contribution of clusters to sky flux, fluctuations, and source
 
counts ............ ....................... ..237
 

VII.5: 	Contribution of AGN to source counts, sky flux, and
 
fluctuations .......... ..................... .242
 

VII.6: Model luminosity functions for galactic sources ... ....... 247
 

A2.1: First six cumulants in terms of moments about zero ....... .417
 

A2.2: Moments about the origin of a random variable ...........418
 

A6.1: Estimated new Malmquist corrections ......... ..... .444
 

A7.1: Spectral response for HED 1 .......... ........... 446
 

Tables
 



xxxix
 

A7.2: Spectral response for MED ........ ................ .447
 

A7.3: Spectral response for lED 3 ........ .............. .448
 



CHAPTER I
 

INTRODUCTION AND OVERVIEW
 

The sky as experiment
 

The fundamental difference between astrophysical observations and
 

experimental measurements in other sciences has been noted often. In
 

astrophysics the processes being investigated are removed from the
 

direct control of the "experimenter." In other sciences, experimental
 

variation and controls can simplify the data analysis needed to make
 

direct tests of theoretical models. Astrophysicists are unable to
 

perform an experiment with different initial conditions and controls but
 

the range of astrophysical phenomena allows the observer to treat each
 

object of a class as an additional run of the experiment. The careful
 

comparison of data taken over the entire range of behavior in a class
 

can be a rich source of information about physical processes in the
 

universe. For example, much of our understanding of stellar interiors,
 

origins, and evolution is based on measurements taken from stars across
 

the H-R diagram, including extreme non-main-sequence objects.
 

Studies of populations of objects lend themselves not only to
 

"direct" measurements of processes in the objects, but also to indirect
 

measurements of their environment as well as determine the evolution of
 

the objects. For instance, the velocities of galaxies in clusters
 

indicate the presence of a significant amount of matter not contained in
 

normal light-emitting objects. The fraction of this matter in
 

intracluster gas may then be related to the morphological structure of
 

the cluster members. In another example, the population statistics of
 

members of a stellar cluster offer tests of stellar formation and
 

evolution. The largest scale example of this approach is an
 

observational program that counts the contents of the entire universe in
 

its measurement sample, such as the measurement of large scale
 

correlation of galaxy positions in the sky [see Peebles 1980].
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The extension and further abstraction of these universal
 

population studies is an examination of the sky as a whole. The
 

brightness of the sky, even without an explicit identification of its
 

origins, tells us something about the sources that contribute to it.
 

This-has been recognized since Edmund Halley first advanced the argument
 

now popularly known as Olbers' Paradox: the darkness of the night sky
 

places a limit on the age or the distribution of stars. The study of
 

the sky as a whole is clearly crucial to our understanding of the 2.7
 

Kelvin black-body radiation, which apparently does not originate in
 

discrete sources and has been identified with relic radiation from the
 

Big Bang. Even if this identification is not correct, the isotropy and
 

physical transparency of the universe at these wavelengths argue that
 

its origins are at large distances from our galaxy, and the sheer
 

magnitude of the radiation intensity makes it important to understand.
 

The cosmic background spectrum
 

Though the microwave background is dramatic in its intensity and
 

possible cosmological implications, the sky at other energies is equally
 

interesting. Figure I.1 shows the cosmic background intensity over a 

wide spectral band. Though the details may have changed, the essential 

picture has been known for a decade [Boldt 1971]. The dominant feature 

is the 2.7 Kelvin black-body component [reviewed by Weiss 1980] 

discussed above. The power-law component in the radio, from 106_108.5 

Hz, is not directly observed, but inferred after the removal of the 

synchrotron signal produced by cosmic rays in our galaxy [reviewed by 

Longair 1978]. The non-galactic component is well explained as a 

superposition of radio galaxies and other discrete radio sources. The 

intensity of the radio emission is consistent with the convergence of 

the number of radio sources at low flux limits [e.g. Jauncey 1977; 

Wall, Scheuer, Pauliny-Toth, and Witzel 1982]. The optical and 

ultraviolet points are upper bounds to a background probably composed of 

starlight and other emission from distant galaxies. At the ionization 

limit of hydrogen, 13.6 eV = 3.3x1015 Hz, interstellar gas becomes 

opaque. At higher energies helium and higher Z material contribute 

significantly to the absorption so that until photon energies exceed 
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Figure 1.1: The isotropic sky flux, s(V) versus v 

The dashed line extends the emission of the radio band 
discrete sources to higher energies, assuming that their 
spectra continue to follow the observed power-law form 
with energy index, a, -0.7 (fv W v-a). Boldt [1971] 
suggested from such a figure that the same sources may 
make a significant contribution to the X- and Y-ray 
backgrounds. The references: Radio and microwave curves
 
from Longair [1978]; optical 90%upper bound, Dube, Wickes 
and Wilkinson [1979]; ultraviolet bound, Paresce, McKee 
and Bowyer [19801; X-ray and low energy Y-ray, Marshall et 
al. [1980] and Rothschild et al. [1983]; and high energy 
Y-ray reviewed in Fichtel and Trombka [1981]. 
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about 0.2 keY (4.8x1016 Hz), almost no outside emission can penetrate 

the galaxy.
 

Figure 1.2: The X-ray sky as seen from HEAO 1 A-2: Galactic Plane
 

The detector used was the HED 1 layer 1 (2.5-13.3 key),
 
both fields of view. Collimator sizes were (60x30) +
 
(30x30). (See Chapter II for details.) A rectangular
 

projection of galactic coordinates is used. The grey
 
scale used is logarithmic in intensity as represented by
 
the scale at the bottom of the figure. The contour plot
 
levels are also established on a logrithmic scale. The
 
bright sources totally saturate both scales.
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The story at still higher energies changes again. (A review of 
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the physics important for studies of the X-ray sky can be found in Boldt
 

[1974]. Later reviews of recent data and their consequences are given
 

by Boldt [1981b] and Fabian [1981].) The best current all-sky survey in
 

the X-ray band was performed with the first High Energy Astrophysical
 

Observatory, HEAO 1. (A general description of HEAO 1, its four
 

experiments and a summary of their important results as of December,
 

1980 is given by Boldt [1981a].) A surface brightness map produced 

using one of the detectors of the A-2 experiment* onboard HEAO 1 is 

presented in Figures 1.2 and 1.3. Figure 1.2 covers the region between 

±450 in galactic latitude. Point sources are smudged because of the 

finite size of the collimators compared to the map resolution. The 

galactic plane is easily recognized by the line of sources, with the 

galactic center an unresolved (at this resolution) bright region. As
 

well as the bright galactic sources (Sco X-1, the Cygnus region sources,
 

and others throughout the plane) this map contains extragalactic
 

objects: the Magellanic Clouds, the brightest cluster of galaxies
 

(Perseus), the active galactic nucleus associated with the radio source
 

Centaurus A, and the brightest and nearest "normal" galaxy M31. The 

region 	about the north galactic pole (Figure 1.3) also contains
 

interesting, relatively bright, sources: the Coma cluster, the Virgo 

cluster (center of our local supercluster), the Seyfert I galaxy 

NCC 4151 and the QSO 3C273. In contrast the south galactic pole (also 

shown in Figure 1.3) is undistinguished, containing a few discernible 

low intensity sources associated with various clusters and active 

galactic nuclei. 

Though the south polar region seems uninteresting by virtue of its
 

few resolved sources, it and the other maps are dominated by a feature 

of great interest: a bright, isotropic, spectrally intriguing 

unresolved flux. The salient aspects of this unresolved X-ray sky are: 

(1) 	 It is bright. The extra-solar all-sky flux, Sas, measured by an 

omnidirectional detector with a bandpass of 2-10 keV is 
- 7 -1 - 2 .
-7.4x10 ergs a cm In comparison, the quiet sun, with a 

tThe HEAO 1 A-2 experinent was a collaborative effort led by E. Boldt of 

Goddard 	Space Flight Center (GSFC) and G. Garmire then at the California
 
Institute of Teenology (now at Pennsylvania State University), with
 
collaborators at Goddard, Cal Tech the Jet Propulsion Laboratory, and 
the University of California at lerkieley.
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Figure 1.3: The X-ray sky as seen from HEAO 1 A-2: Galactic poles
 

Same configuration as for 1.2, restricted to the north and 
south polar regions. The gray scale has been changed to 
promote the resolution of detail. The concentric circles 
are lines of 800 and 600 latitude. The bars to the right 
of the gray scale are a histogram of the intensity 
distribution in the two fields. This distribution, wider 
than can be expected from counting statistics alone, is 
the subject of this dissertation. 
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much softer spectrum, contributes only 5x10 7 , while the
 

brightest extra-solar object, Sco X-1, has a flux of 2xl0-7.
 

For studies at energies greater than -3 keV, the limit of
 

sensitivity of pre-HEAO I experiments was about 3x10-11 ergs 
s-1 cm-2. An all-sky survey performed with the HEAO 1 A-2 

experiment has detected 66 sources at high galactic latitudes 
-II -1
(Ibi > 200) above 2x10 ergs s cM7 2 , which were not 
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bremsstrahlung with a temperature of 40±5 keV. A thermal
 

spectrum, which is essentially exponential, -exp(-E/kT),
 

provides a good representation because of a relatively sharp
 

break in the data at about 40o key. No -population of single
 

index power-law spectra provides the right shape. While a
 

suitably evolving population of sources with a sharp change in
 

the power-law index has been fit in the 3-50 keV range
 

[De Zotti et al. 1982], strong constraints are placed on such
 

a population.
 

All three of these properties make the study of the X-ray sky of
 

astrophysical interest. The production of X-rays indicates that the
 

originating processes involve intrinsically high energies. The
 

brightness shows that such phenomena are not uncommon. The isotropy
 

indicates that these are probably distributed out to cosmological
 

distances, (z 0.5). The structure in the spectra may give clues about
 

the astrophysical nature of the processes, acting as a general
 

diagnostic about phenomena presently not directly observable in any
 

other way.
 

Models for the X-ray sky
 

Since resolved extragalactic sources are observed, viz. clusters
 

of galaxies and active galactic nuclei, their continued existence at
 

fluxes below the resolution limit is a natural source for at least part
 

of the sky's brightness. Is this extension continued to low enough
 

fluxes to make up the total sky brightness? Current estimates of the
 

density of both clusters [McKee et al. 1980; Piccinotti et al. 1982]
 

and Seyferts [Piccinotti et al. 1982] indicate that they could make up
 

roughly 25% of the total flux. This estimate assumes no evolution in
 

the number or luminosity of such objects. Seyferts and other active
 

galactic nuclei are thought to be the low luminosity counterparts of
 

QSOs. QSOs are a population that undergo significant evolution in
 

luminosity and/or number density [Green and Schmidt 1918; Cheney and
 

Rowan-Robinson 1981a; Schmidt and Green 1983] so it would not be
 

surprising if other active galaxies also evolve. In fact the lower
 

luminosity active galaxies can make up the 2-10 keV sky flux with less
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evolution than has been inferred from optical studies for QSOs [Avni
 

1978].
 

This simple picture must satisfy the stringent constraints placed
 

by the form of the sky and various source spectra. There is at present
 

no coherent accepted picture to explain the spectrum and intensity of
 

the X-ray sky from 3 to 100 keV. Clusters of galaxies and active
 

galactic nuclei dominate the resolved sources at the limits of the HEAO
 

1 survey, but neither class is typified by spectra that could provide
 

the diffuse flux spectrum. The emission of clusters of galaxies is
 

characterized by thermal spectra, but the temperatures are much too low,
 

10 keV [Mushotzky et al. 1978]. Seyfert and other active galactic
 

nucleus X-ray spectra are well modelled by a single power-law component
 

with an index steeper than the diffuse sky from 2-20 keV [Mushotzky et
 

al. 1980; Rothschild et al. 1983]. Although they may be expected to
 

make a significant contribution at energies 100 keV where the thermal
 

fit no longer provides a good description, they are not able to make up
 

the thermal component without significant spectral evolution.
 

The radio-loud QSO 3C273 is an exception. Using A-2 data Worrall
 

et al. [1979] were able to fit the 2 to 50 keV spectrum with a power
 

law of energy index, a, equal to 0.41. This makes it the only
 

extragalactic source whose spectrum appears compatible with the
 

requirements of the unresolved sky spectrum in the 2-20 keV range.
 

However, the single power law interpretation of the spectrum may be 

obscuring important structure. For example, at the higher energies 

accessible to the A-4 experiment (13-120 keV) Primini et al. [1979] are 

able to fit the spectrum with an a = 0.7 index. This is entirely 

consistent with the behavior of other active galactic nuclei and is 

significantly steeper than the required behavior for making up the sky 

flux. Primini et al. suggest that the spectrum may break - 20 keV, a 

behavior which is weakly evident in the anlysis of Worrall et al. (see 

their Figure 1). In addition the detection of 3C273 by the COS-B 

satellite in the y-ray range in conjunction with limits on the 

extragalactic background at that flux implies that objects with spectra 

like 3C273 cannot contribute more than -5% of the 2-10 keV flux without
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overproducing the y-ray background [Setti and Woltjer 1979]. QSOs are
 

observed to be significant emitters of X-rays in the Einstein 0.5-3.0
 

keV band. Most of these objects are radio-quiet quasars, as are most of
 

the optical quasars. The only radio-quiet QSO -with good bfoad band X

-ray spectral information, 0241+622, has a best fit spectrum that is 

steeper than the average Seyfert's, although it is consistent with the 

average spectrum at the 90% level [Worrall et al. 1980].
 

Current observations can provide no examples of sources whose
 

spectrum are consistent with the unresolved X-ray sky spectrum. Thus
 

from spectral information alone, if the X-ray sky flux is produced by
 

unresolved point sources, they are either a new population not currently
 

observed in the 2-50 keV regime, or a known population of sources that
 

has undergone significant spectral evolution. Such evolution could
 

indicate a fundamental shift in the physical processes which power these
 

sources. Models of the former type have been advanced by Bookbinder et
 

al. [1980] (phenomena associated with young protogalaxies) and Carr
 

[1980] (accretion onto primordial high mass black holes). A specific
 

example of the latter type [Leiter and Boldt 1982], presented a model
 

for the spectral evolution of active galactic nuclei, with a unified
 

explanation for spectral features in both the X-ray and gamma-ray sky
 

flux. If unresolved point sources do not generate the sky flux there is
 

a third possibility. The thermal component could be due to a
 

significant amount of hot intergalactic gas [Field and Perrenod 1977].
 

If the gas were uniformly distributed throughout the universe it would
 

require a large energy input to be heated to the required high
 

temperature. Clumping the gas would reduce this difficult energy
 

requirement (but raises problems of its own, as we shall see [Fabian
 
1981]).-


Fluctuations in the diffuse sky and discrete sources
 

As only 1% of the sky flux is accounted for in the high energy
 

observations of resolved sources, it is important to try to understand
 

their behavior at lower flux levels. Questions to be asked are: do they
 

show convergence in their numbers; do they instead show strong evolution
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at low fluxes; do their summed spectra show any change? Without actual
 

observations of individual sources these questions appear unanswerable.
 

However, following the lead of radio astronomers we can utilize the
 

expected properties of the sources, en masse, to place limits on their
 

behavior at flux levels that are inaccessible directly. The discrete
 

nature of the sources and their presumed random distribution across the
 

sky will introduce an inherent "noise" anisotropy to the sky brightness.
 

The statistics of this noise are grounded in the statistics of Poisson
 

noise.
 

Consider a series of ideal measurements of electric current,
 

performed by integrating the charge for a fixed length of time. For
 

suitably low currents, even-with ideal apparatus the total integrated
 

charge would not be equal for each measurement. The distribution of the
 

measurements would be roughly Gaussian. A natural interpretation is
 

that we are seeing the effect on the measurements of counting statistics
 

due to charge being carried in discrete units, i.e. electrons.
 

Assuming the number of charges counted in each measurement is governed
 

by Poisson statistics, how the variance of the distribution changes as
 

the experimenter modifies the integration time or current allows the
 

inference of the charge of the electron. Thus a property of the
 

particle can be determined without the examination of an individual
 

particle.
 

In similar fashion, measurements taken at different positions of
 

the sky will differ in intensity from variations in the number of
 

unresolved sources in the individual measurements. It is not expected
 

that the sources, unlike electrons, will have the same "charge" (flux). 

Even so, models can be made of the expected distribution of sky flux 

measurements based on particular forms for the distribution of source 

numbers versus their flux. In comparing these models to the observed 

distribution of sky flux we will see that at high fluxes (just a decade 

below the resolved source survey limits) the behavior of unresolved 

sources is - consistent with the expectations based on the study of 

resolved sources. At lower fluxes, though, the expected behavior of the 

source counts is insufficient to provide the observed fluctuations. 
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Evolution in the source luminosity function could provide the missing
 

fluctuations. Besides requiring an additional source of fluctuations,
 

the data also has an upper limit to the fluctuations. The upper limit
 

when applied to the fluctuations produced -by source evolution can
 

constrain the degree of the evolution. (Reviews of analyses of the
 

anisotropies in the X-ray sky and their impact on sources of the sky
 

flux have been given by Schwartz [1980], Rees [1981], and Fabian [1981].
 

These reviews do not include results from HEAO 1.)
 

Dissertation outline, organization, and notation
 

The next chapter, Chapter II, is a general description of the A-2
 

experiment on HEAO 1. It considers in detail the design properties of
 

the detector that were used to study and understand the unresolved sky
 

flux as well as to continuously monitor the internal, non-X-ray,
 

background. A broad review of the spectral sensitivity of the
 

experiment, its history of operation in orbit, and a general database
 

are also given. Chapter III presents a detailed derivation of how
 

unresolved sources produce a distribution of sky flux measurements.
 

Issues (normally ignored) are developed to understand the strengths and
 

limitations of the techniques. Chapter IV describes the creation and
 

organization of the database subsets used to study the fluctuations and
 

other anisotropies. It also presents the results of fitting the HEAO 1
 

data for variations not explicitly modelled from the unresolved sources,
 

including emission associated with our galaxy. A possible measurement
 

of the Compton-Getting effect is also discussed. The stability of the
 

internal background is measured. Chapter V is a quick overview of the
 

process of fitting models to the fluctuations. Statistical problems and
 

other issues are addressed. In Chapter VI we fit the models described
 

in Chapter III to our data. The results of these fits are compared to
 

expectations from resolved sources in Chapter VII. The upper bound for
 

other sources of variation is used to place a general restriction on any
 

"new" component to the sky flux. Chapter VII also places the results of
 

the fluctuations in the context of recent results in other bandpasses,
 

including results from the Einstein X-ray Observatory. The possibility
 

of significant limits on large scale structure in the universe based on
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the fluctuations measurements are sketched. Chapter VIII investigates
 

current models for the origin of the X-ray sky flux, and outlines how
 

future studies of the fluctuations could yield interesting results. The
 

results and conclusions are summarized in Chapter IX. A series of
 

appendices present issues and information of a technical nature.
 

Each chapter, appendix, and section is headed by a brief synopsis
 

of its contents, which is repeated in the Precis. Sections, equations,
 

figures and tables are numbered by chapter (roman numerals) or appendix
 

("A" followed by an arabic numeral). In the discussion of cosmological
 

issues, Hubble's donstant, Ho, is assumed to be 50 km s- 1 Mpc- I. Some
 

relationships will indicate their dependence on the value of H0 through
 

the dimensionless h50  Ho/50. In the figures and most ofthe following
 

discussion, all flux measurements will be in detector dependent units.
 
- I -
Unless specifically labeled otherwise, units of "counts s cm 2" are
 

measurements made with the first layer of the HED 1 counter from the A-2
 

experiment of HEAO 1. The label "HILl" also refers to measurements in
 

these units. Converting to absolute units depends on the incident
 
- I - -2
spectrum, but roughly 1 HILl 1.3x10 ergs s 1 cm integrated over
 

the range from 2 to 10 keV.
 

Power law energy spectra are defined so that a positive index, 

a>O, corresponds to a decreasing flux with energy, (s(V) - v -). Power 
-
law models for the source counts (N(S) - S ) and luminosity function 

( (L) - L-0) are similarly defined.
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CHAPTER II
 

THE IEAO 1 COSMIC X-RAY EXPERIMENT (A-2)
 

In this chapter we briefly review the physical and
 
organizational aspects of the A-2 experiment, particularly
 
those relevant to studies of structure in the X-ray sky.
 

The HEAO 1 satellite marked a watershed in X-ray astronomy over
 

the, energy range from below 0.1 keV to several hundred keV. With its
 

large total area, and complement of specialized detectors, it perfomed 

the culmination of the X-ray all-sky surveys of the seventies, work 

begun by the UHURU and Ariel V satellites. Except at the lower energy 

range ( 3 keV), HEAO 1 will remain the best source for all-sky X-ray 

studies for the foreseeable future. The A-2 experiment, one of four on 

HEAO 1, had several design features for studies of the X-ray sky. We 

first outline the physical organization of the experiment as well as a 

general technique for estimating the detectors' internal background and 

making background-free measurements of the unresolved sky flux. This 

technique is implemented using a system of different solid angle 

collimators. The spectral response is then considered with a particular 

eye to characterizing the broad energy band measurements subsequently 

used. We review the in-orbit history of the experiment. Finally the
 

preliminary data preparation techniques are described, including the
 

definition of data quality conditions used in the following analysis.
 

1: The HEAO 1 A-2 Experiment
 

Characteristics for the study of the X-ray sky
 

One of the primary goals in the design of the A-2 experiment was
 

to study and characterize the unresolved X-ray sky flux over a broad
 

energy band, from 0.1 keV to about 60 keV. In this section we give a
 

general description of the experiment and elaborate on those aspects
 

that made this experiment well suited for this project. A more detailed
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description is given in Rothschild et al. [1979].
 

General experiment makeup
 

The A-2 experiment- consisted- -of three -types of gas proportional
 

counters. There were six detectors in all: two propane-filled thin
 

window flow counters, designated LEDs for low energy detectors; a single
 

argon-filled sealed counter, called the MED (medium energy detector);
 

and three sealed xenon counters, the HED 1, 2, and 3 (high energy 

Figure II.1: Configuration of the A-2 experiment on HEAO 1
 

The six detectors are shown along with the three
 

spacecraft axes.
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detectors). The different active gases allow the three kinds of
 

detectors to be sensitive over different energy bands. The LEDs cover
 

the range from 0.15-3 keV. The analysis of their data was handled in
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large part by the West Coast arm of the A-2 consortium: groups at the
 

California Institute of Technology, the Jet Propulsion Laboratories, and
 

the University of California at Berkeley. In this low energy band, the
 

X-ray sky is dominated by an anisotropic component of a local, i.e.
 

galactic, nature. Because of this we will not consider these data here.
 

The MED covers the range from 1.2 to 20 keV, while the HEDs cover the
 

2.5-60 keV range.
 

The detectors were oriented generally along the spacecraft +Y
 

axis, (see Figure II.1). HEDI was offset by 6 degrees in the +X
 

direction. The solar cells were pointed along the +Z axis, and
 

spacecraft operations were c~strained so that this axis was oriented
 

towards the sun. The spacecraft operated in two modes, pointing and
 

scanning. When the spacecraft was scanning it rotated clockwise about
 

the sun-pointed +Z axis with a 33 minute nominal scan period, i.e. at a
 

rate of about 1 degree every 5.5 seconds. The experiment thus surveyed
 

a great circle scan that followed a line of constant ecliptic longitude,
 

passing through the north and south ecliptic poles with each scan. In
 

order to maintain the proper orientation to the sun the spin axis was
 

stepped by 0.5 degrees roughly every 12 hours. At the end of six months
 

of scanning operations the spin axis was antiparallel to its original
 

position. During that time the entire sky was surveyed, although the
 

parts of the sky at the ecliptic equator had less total exposure than
 

areas at high ecliptic latitudes.
 

The counters
 

Proportional counters detect incident X-rays through the
 

photoelectric effect. An incident X-ray photoionizes an atom of the
 

active gas. The ejected electron has an energy equal to that of the
 

incident X-ray less the ionization potential. A high voltage field
 

accelerates the electron so that it in turn ionizes further atoms,
 

producing additional electrons all of which are collected on an anode
 

wire and detected as a pulse. The number of ion-electron pairs created,
 

and thus the total charge in the pulse, is roughly proportional to the
 

energy of the ionizing photon. This determination of photon energy is
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not exact, at the very least because of Poisson statistical processes in
 

the creation of the secondary electron-ion pairs. An additional
 

complication is that occasionally the initial X-ray interaction event
 

will produce a secondary fluorescence X-ray as well as the primary
 

photo-electron. This secondary.X-ray may pass bu of the detector so
 

that the collected pulse for this event will have its corresponding
 

energy reduced by the energy lost through the fluorescent X-ray. The
 

complicated spectral responses of the detectors are displayed with the
 

discussion in Section 11:3.
 

The detectors are all multi-layered, having at least two layers of
 

active gas for counting purposes. These are surrounded on three sides
 

by additional active gas layers wired for use in anticoincidence logic.
 

A penetrating charged particle, unlike an X-ray, tends to deposit its
 

energy along its entire path , being detected by several wires and thus
 

11.2: Cross-sectional view of MED and ED2
5Figure 
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easily rejected. A major source of background not measured by this
 

arrangement is soft non-penetrating electrons entering the detector
 

through the window. These could deposit all their energy in a single
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Figure 11.3: Cross-sect-ional view of BED 1 and 3 
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layer and would thus not be caught by the standard anticoincidence
 

arrangement. A layer of propane gas was placed behind the collimator
 

and ahead of the xenon active gas in the RED 1 and 3 detectors (see
 

Figure 11.3). Propane is transparent to most of the X-rays that the
 

HED's xenon is sensitive to, but will either absorb the incident
 

electrons or remove via anticoincidence those that pass through it to
 

the first xenon layer below. Although neither HED 2 or the MED have
 

such a layer, the second layer of active gas benefits from a similar
 

anticoincidence screening effect by the first layer. As the second
 

layer of the NED had substantial response over most of the MED energy
 

range, this first layer-second layer scheme was used instead of a front
 

layer propane anticoincidence, avoiding for at least one detector any
 

possible complications of the additional propane gas system.
 

Internal-background-free sky flux measurements
 

The multiwire aspect of the detectors was exploited in a novel
 

fashion to allow a direct measurement of the diffuse sky flux with a
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Figure 11.4: Detector grid connections for HED 1 and 3
 

The LI, L2, and RI, R2 grid are the "right" and "left"
 

rates for the first and second-layer,--repehtivefy. Vl is
 
the general outer cell anti'coincidence veto rate, while
 
V2 is (for these detectors) the rate from the propane
 

layer used for electron rejection. The "alpha" wire is
 

used in calibration. A similar arangement is used in the
 

other detectors.
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simultaneous estimate of the internal background rate. As illustrated
 

in Figure 11.4, alternating cells of a layer are combined into two
 

different rates, e.g. R1 and Li for layer one, referred to as the
 

"right" and "left" layer one rates. As they share the same active gas,
 

have essentially identical geometrical relationship to the spacecraft,
 

and pass through a common amplifier (so they have identical gain), both
 

have a near identical internal background&contribution, B. The value of
 

this condition is utilized by a clever design so that the unresolved sky
 

count rate is not identical in the two "sides". Let us label properties
 

of the separate sides by "L" and "S". (The significance of such letters
 

for the A-2 experiment will become apparent.)
 

-1 - 2 I
For instance if the X-ray sky rate is denoted by X s cm sr ,
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we can let the two "sides" have differing efficiencies, aL and aS.
 

Assume that aL > a . Then the two rates would be given by:
s
 

L = aL X + B; L1i.laJ 

S = s X + B • [II.lb] 

This can be solved so that
 

X L -S [I.2]
aL aS
a 


Note that this mean rate has no contribution from the balanced internal
 

background rate. Therefore the background rate can vary enormously
 

during an integration, but as long as it is the same in both sides the
 

mean rate found in equation [11.2] will remain unaffected.
 

This advantage is not gained without some price, notably increased
 

imprecision due to counting statistics. If the two rates, L and S, are
 

statistically independent and have variances OL2 and as2, -respectively,
 

then the-variance of their difference is the sum of their variances, and
 

2L2 + aS2 
S = [11.3] 

(aL - aS)2 

Thus the determination of X in [11.2] is less contaminated by
 

uncertainties in B compared to what could be achieved with a single rate
 

but at the cost of reducing the signal to noise ratio. If the variance
 

in L and S is purely Poisson,
 

L - S - aS/L
 
(X/ax)L S 1- [11.4]
 

(L + S)I/2 (I + aS/a n + 2B/(XaL))1/2
 

For fixed values of X, B, and a1 the signal to noise is maximized by
 

setting a. to zero. By doing this, though, half of the detector-area
 

would be effectively dedicated to monitoring the internal background.
 

Simultaneous with the determination of X, we can solve [II.1] for
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B - ,with [II.5a]
 

aL -a s
 

a2 a 2 + 0 
aB2 = [II.5b] 

(a L - aS) 2 

This is useful for monitoring changes in the internal background during
 

the lifetime of the experiment under a variety of external conditions.
 

If with such studies it can be shown that the rate B is constant, or at
 

least predictable from other observables, then X may be estimated
 

directly from one of the two rates, L or S, or for even better signal to
 

noise, from their sum: L + S. That is,
 

L+S - 2B
 XL+ s = , [11.6] 

L +aS
 

where the subscript L+S indicates that XL+ S is an estimate of X based on
 

the summed rates. The signal to noise for the summed rate, ignoring any
 

imprecisions introduced by uncertainties in the rate B, is found by
 

replacing the minus sign in the numerator of [11.4] with a plus sigh.
 

The ratio of the signal to noise for the summed rate versus that for the
 

difference rate is
 

(X/x)L+S - aL + aS [11.7] 

"(X/ax)LS aL - as 

Several techniques may be used to create unequal values for aL and 

as . One pre-HEAO I approach was used on an argon detector, the "B" 

detector, that was part of the GSFC Cosmic X-ray Spectroscopy Experiment 

aboard OSO 8, the 8th Orbiting Solar Observatory. The B detector had a 

similar arrangement of alternating cells, with different window 

materials over the two groups of cells. These materials had different 

amounts of X-ray transmission at low energies, so equation [11.2] could 

be used to determine -unambiguously the X-ray flux in the 1.2-9.0 keV 

range. At higher energies the X-ray transmission of the two window 
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materials was essentially identical. The entire experiment is described
 

in more detail by Pravdo [1976].
 

On the HEAO 1 A-2 experiment the technique was extended to higher
 

energies by providing the two groups of cells not with different windows
 

but with exposure to different amounts of solid angle. The two groups
 

are refered to as the Large Field Of View, or LFOV, and Small Field Of
 

View, SFOV. If the diffuse flux were totally uniform, it is obvious
 

that the approach of [11.2] and following equations could be used. We
 

will see in the next section that even in the presence of spatial non

uniformity, equation [11.2] provides an unambiguous measurement of X-ray
 

flux without a contribution from internal background in a systematics

reduced way. Equation [11.5] is not correct on an instantaneous basis,
 

but will provide, on average, a good measurement of the internal
 

background.
 

The crux of either the OSO 8 or A-2 approach is the presumption
 

that B, the internal background, is the same for both sides. In
 

particular there can be only a negligible difference in the non-X-ray
 

count rate due to the differing structures, windows or collimators, over
 

each set of cells. Cavallo, Horstman, and Moretti-Horstman [1977] have
 

pointed out that, without this presumption or an a priori estimate of
 

the difference, it is formally impossible to separate measurements of
 

the diffuse sky from the internal background. Our confidence in the
 

applicability of this technique rests on our understanding that the
 

impact on the internal background due to the structure of the collimator
 

is small. This understanding is bolstered by the agreement for diffuse
 

measurements of separate detectors (BED I and 3). The warnings of
 

Cavallo, Horstman and Moretti-Horstman are more important for energy
 

regimes where the internal background dominates the total rate,
 

particularly the high X- and y- ray portions of the spectrum, where the
 

y-rays from cosmic ray conversions in the collimator may be a
 

significant source of the total non-X-ray counts.
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2: Spatial Response
 

The spatial response of the detectors is described,
 
including the effects of scanning. When different "sides"
 

have different response-functions, their difference gives an
 

internal-background-free measurement of X-ray intensity. An
 
alternate combination allows a measurement of the internal
 

background. We find some simple characterizations of the
 

response for general and ideal detectors.
 

Start with a point source of flux Sps. The number of counts per
 

exposure observed in a detector due to this source, Ips, depends on the
 

position of the source in the detector's field of view:
 

Ips(e,4) = r(e,p) Sp. [11.8]
 

where r(e, ) is the response function at a position 6 and 4" These are 

angles in a detector-defined coordinate system. The angular dependence 

of r is a measure of the increasing shadowing of the detector window by 

the collimator and an additional cosine term due to the inclination of 

the detector face. This last term is negligible in detectors with a 

small or moderate sized field of view. The A-2 detectors are collimated 

by a slat-type system consisting of hundreds of rectangular cross 

section tubes. In this case the response function will be proportional 

to
 

r(e,) ( 1 -tans) (1- tan ) [11.9]

tan eo tan o
 

which in the limit of small angles reduces to r(e,4 ) = (1-o/oo)(1-4/.o).
 

The critical angles eo and *orepresent the half width where the
 

response goes to zero, which is equivalent at small angles to the Full
 

Width Half Maximum, FWHM, normally -quoted to describe spatial response.
 

The small-angle response function has a triangular cross section. The
 

two dimensional form of the response is sometimes referred to as a
 

"pyramidal" response, although an examination of a contour plot of the
 

response shows that this is an evocative rather than a mathematically
 

precise description.
 

We will assume throughout that r(e, ) is independent of the energy
 

of the incident X-rays. This is a good approximation for most photons
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Figure 11.5: HED 1 LFOV r(OA=O) versus e 

The cross section of the LFOV collimator's instantaneous
 

response versus angle in the scan plane, where =O.
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in studies of the diffuse background. However for the highest energy
 

photons, the collimator tubes begin to become transparent. The
 

collimator is thus less efficient at restricting incident photons. This
 

causes bands of increased response over angles out to 2 eo, 3 eo etc.
 

Each outer band is dimmed by the absorption by additional collimator
 

tubes. At energies above 50 keV, although the attenuation is still
 

large, the solid angle covered by these additional bands is a
 

significant contributor to measurements of the sky surface brightness.
 

Fortunately the vast majority of photons analyzed in this dissertation
 

have energies less than 30 keV.
 

The absolute value of r in equation [11.9] depends on the units in
 

which S is measured. Flux is often measured in ergs s-1 cm-2, but
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Figure 11.6: HED 1 LFOV two-dimensional response, r(O,)
 

Instantaneous response. Contours show lines of constant

r,, contour intervals of 50cm2 . 
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which S is measured. Flux is often measured in ergs s 1 cm , but
 

predicting how many counts in an exposure this produces in the detector,
 

depends on the source spectrum as well as the detector's spectral
 

efficiency. To avoid 	this ambiguity we will measure S in terms of the
 

- I
number of counts s the source would produce on-axis in a detector of
 

identical construction of area one cm2 ; that is, the units of S are [S]
 

- - 2
 = counts s 1 cm . To relate such a unit to astrophysically interesting
 

-

quantities (such as flux measured in ergs s 1 cm - 2) still requires the 

spectrally dependent conversion, as we will discuss in a later section. 

With this choice of units for S, the units for r(O,) are [r] 

2 - 1 cm S exposure . The peak on-axis response for an exposure of length 

At with a detector of area A is just A At. The "instantaneous response" 

of a detector is given by lim~f 0 rAt, the-units of which are cm. 
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The detectors are oriented with respect to the spacecraft axes so 

that 6 and are respectively parallel and perpendicular to the scan 

direction. In all the detectors, * , the size bf the collimator 

perpendicular to the scan, is a nominal 3 degrees so that in a FWHM 

sense each scan samples a 3 degree wide strip centered on a great 

circle. The value of e,, varies from detector to detector, and from 

"side" to "side", ranging from a nominal 12 to 1.5 degrees. ao for the 

LFOV side'of a detector is roughly twice that of the detector's SFOV. 

Measurements with combinations of FOVs
 

As discussed in the previous section the data from the two FOVs
 

may be combined in a variety of ways. In an extension to equations
 

[II.1] at seq. the counts per exposure observed in the large field of
 

view are 

= B +f db rL(O, 4) Ee(8,) [I.10]I L 

where rL is the LFOV response, s(e, ) is the X-ray surface brightness in
 

counts s- 1 cm- 2 sr - I and B is the internal background contributed, in 

"I .
counts exposure A point source of flux S at a position 8p, p can be 

said to give a contribution to E of Sp a(0-6p) 6(-,p). A similar 

relationship holds for the SFOV replacing rL with rS. The difference,
 

ILS=IL-Is, is equivalent to an internal-background-free measurement
 

using a detector with a spatial response rLS:
 

In_ S = f db rL_S (98,@) Z(0 , ) , [II.ii] 

where rLS(e, )= rL(6, 4 4-rs(o,). 

We can define aL =f d2 rL(e, ), and a similar aS. The as are the
 

detectors' geometry factors times the exposure time. These are
 

equivalent to what is often called a detector's solid angle in the sense
 

that for a uniform diffuse surface brightness z, the contribution E
 

makes to the count rate, Isb, would be aE. For the instantaneous
 

.detector the as are identical to the geometry factors, and the units of
 

a are just cm2 sr.
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Following the practice outlined in Equation [11.5] for measuring
 

the internal background, B, the combination of IL and Is to use is
 

IBaLlS - aslL +f PrEI = B = B + rEs . [I11.2] 
at -as 

This is similar to equation [11.51, except in that case there was no
 

contribution to the estimate of B from the X-ray sky, while here IB
 

includes the effect from a detector with response
 

rB(e,l ) = aLrS - ,SrL [11.13] 
aL - as
 

By the definition of IB' aB = dM rB is zero so that for uniform 

surface brightness the last term of [11.12] vanishes. Even when the sky
 

is non-uniform the term will be on average zero, but the sky will
 

contribute an additional variance to any particular measurement of B.
 

Table II.l: Detector collimators and areas
 

We here give the FWHM of the collimator response
 
perpendicular to the scan direction, the FWHM in the scan
 
direction for the two fields of view, the on-axis open
 
areas, and the effective-area solid-angle product for the
 
instantaneous response (geometry factor). Numbers are based
 
on post-launch measurements of the Crab Nebula. The !ED 1
 
data came from scans past the Crab while for the other
 
detectors the data were from an early "point" operation at
 
the Crab.
 

Detector o OoL 8oS AL AS aL aS a
'L+S L-S
 

degrees cm2 cm2 sr
 

HED 1 2.74 5.78 2.85 400 392 1.94 0.94 2.87 1.00
 
RED 2 Z.84 5.92 2.91 451 443 2.32 1.11 3.43 1.20
 
MED 2.90 2.94 1.40 440 402 1.14 0.50 1.64 0.65
 

RED 3 2.79 2.91 1.47 429 402 1.06 0.50 1.57 0.56
 

The combination of different fields of view produces detector
 

response functions of a shape unusual in X-ray astronomy experiments.
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Figure 11.7: HED 1: FOV combinations response cross-section
 
(a) rL+S(6,0) (b) rL-s(S,0)
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In particular for the L-S response, rather than a single "pyramidal"
 

shape, the response is two abutting "pyramids" with a peak response
 

roughly half of the peak response of a single side. For the study of a
 

point source, the L-SFOV would provide at best only a quarter as many
 

counts as would be possible with the L+SFOV with the same absolute value
 

of the uncertainty from counting statistics. A close examination of the
 

plot of rLS in Figure 11.7 shows that the on-axis response, r(0,0), is
 

not exactly zero. This is because the on-axis open areas of the two
 

sides are not identical, in part because the SFOV required more
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Figure 11.8: RED 1: FOV combinations, r(e,4') 

Instantaneous response. Contours at equal r, contour 

interval of 50 cm2 . (a) rLS(,). (b) rLS(,_) 
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collimation tubes to produce the smaller field of view, covering more of
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the detector face. Part of the motivation for measuring flux, S, in
 

terms of counts per unit area is that, by dividing out the area, we can
 

with greater ease compare flux measurements in the various FOV
 

combinations. Measurements made per unit area also smooth comparisons
 

between RED I and HED 3, which while essentially identical in spectral
 

response, have different areas.
 

The A-2 experiment's implementation of the equal-internal

background/unequal-sky-intensity technique uses the different solid
 

angles of the L and S rates. This has an advantage in that a source
 

positioned on-axis can be measured using the total detector area,
 

rL+S(0,0) . 2 rL(0,0). In contrast the implementation for the OS0 8 B 

detector, using the different X-ray absorption properties of the two 

windows, was achieved at the cost of a permanent decrease in the 

effective area by the absorbing window material. 

Smeared response functions
 

So far we have described the instantaneous detector response. But
 

the exposures were of finite length, during which the detector scanned
 

along the sky. This tended to "smear" the collimator response, since a 

given position in the sky sampled a range of the collimator response 

function as the collimator moved past it. The smeared response from an 

integration of length At is 

+At/2 
rAt(04) = f-At/2 dt ro(e- wt,), [11.14] 

where ro stands for the instantaneous response and w is the scan rate. 

This integration over At makes the units of rAt cm2 s, versus cm2 for 

the instantaneous response. In analyzing the fluctuations we used data 

taken with 1.28 second exposures during which the detector scanned -0.22 

degrees. This is small compared to the scale of the HED 1 detector but 

is more significant for the RED 3. The principal effect is to multiply 

the response by At, but in addition there is a wing added to the edges 

of the response and the peak is slightly rounded. In the L-SFOV 

combination the trough between the peaks is somewhat filled'in.
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Even with the large area of the A-2 detectors, their relatively
 

small solid angle means that a single 1.28 second exposure has a
 

relatively high uncertainty in a sky flux measurement due to counting
 

statistics, from 26%, one sigma, for the RED 1 first layer L+S rate to
 

110% for RED 3 layer I L-S. To make a reasonable measurement we combine
 

many such exposures. By superposing many scans, over periods up to 2
 

days, and taking the exposures that contribute to a section of the
 

superposed scan plane, Ae, we greatly reduce the effect of. counting
 

statistics. This combining of data for a single estimate of the X-ray
 

flux is equivalent to a single exposure with an "average" response
 

produced by additional smearing. The smearing in the scan direction is
 

simply:
 

+Ae /2 
1Ae = (A) - 1 f Ae/2 d0' rAt(840,) [11.15] 

-
where the (AO) l represents the fact that we are averaging over AQ-


This smearing can have a significant effect on the response function.
 

Although the intbgral of the response over all solid angles is not
 

affected, the peak response is greatly reduced. A point source at a
 

given position in the sky therefore contributes on average fewer counts
 

to I than it would if the detector were not smeared. If Ae is large
 

enough, >eFWHM, then the trough for rLtS can be completely filled in,
 

and the response function looks fairly flat in its a dependence (compare
 

Figure 11.9 with the unsmeared response in Figure 11.7).
 

Because the data are combined over a period of days, during which
 

the nominal spin axis moves, there is an additional smearing in the
 

direction. In principle the amount of smear varies depending on the
 

location of the measurement in ecliptic coordinates. Those measurements
 

near the pole suffer little additional smearing. Those at the equator
 

are affected the most. But because of wobble in the actual spin axis
 

position, the smear is at minimum A -0.5 degrees. The difference
 

between the two extremes is then generally not a large effect on the
 

average response. Unlike the At smearing, which is formally correct
 

unless a source varies while the detector scans over its position, the
 

angular smearing is an approximation that assumes that the individual
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Figure 11.9: RED 1 smeared response cross section (a) rL+s and (b) rL_
 

s versus 6
 

At = 1.28 s, scan period = 35 minutes, Ae = 6 degrees, A
 

= 1.5 degrees.
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exposures are uniformly distributed throughout the smear area AG x A4.
 

Characterization of the detectors' angular size
 

When the detector response is smeared as much as we use in some of
 

the fluctuations analysis, it is inappropriate to characterize the
 

response function in terms of FWHM. The correct, but unwieldly
 

representation of the rgsponsewould be to plot the two dimensional form
 

of r, as in Figure II.10. However it is difficult to integrate by eye
 

such a picture to see from what area most of the counts come. In this
 

sense the FWHMxFWHt4 of an unsmeared rectangularly collimated detector is
 

a box which contains 56% of the diffuse sky counts received by the
 

instantaneous detector.
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Figure II.10: HED 1 smeared two dimensional response, r(G, ) 

At=1.28 s, scan period = 35 minutes, A6 = 6 degrees,
 

A = 1.5 degrees. Contours at 50 cm s. (a) L+SF0Vj (b)
 

L-SFOV.
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By plotting the contours that show what percentage of the total
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Figure II.11: HED 1 L+S r(e,), outline of fractional contribution
 

areas
 

The solid contours are lines of constant r. From the
 
outside in they contain 100, 90, 70, 50, 30, and 10% of
 

the total count rate. The dashed rectangle includes 90%
 
of the counts, the FW90%DCR. (a) Instantaneous response.
 

(b) At = 1.28 s, scan period=35 minutes, e = 6 degrees, 
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I =1.5 degrees. 

count rate comes from what solid angle, we see in Figure II.11 that the
 

size of the smeared detector is not as large- as the--region -of-non'zero
 

response might suggest. Again, plotting a series of percentile contours
 

is awkward, so to characterize the size of the detector in terms of a
 

pair of numbers we calculate a single rectangle which contains 90% of
 

the total count rate due to a diffuse surface brightness. For an 

unsmeared rectangular collimator this would be at 1.55 0o x 1.55 o . 

We call this size the FW90%DCR, Full Width 90% Diffuse Count Rate. 

After smearing by AS = 60 and A = 1.50 the HED 1 FW90%DCR is 11.2 

degrees by 4.4 degrees. 

Response frequency and response weights
 

Quite often we will need to calculate many integrals of the form
 

f dk2 f( r(e,€) ). The two dimensional nature of this integral can be 

computationally taxing. In those cases where the integrand has no
 

explicit dependence on 0 and (and implicit dependence only through the
 

response function r), the integral can be converted to a one dimensional
 

response "frequency" integral,
 

f dr v(r) f(r) f da f( r(e,4) ), [11.16] 

where v(r) is the differential number of steradians with response 

between r and r+dr. 

Later another characterization of the detector response function
 

will be useful, the weighted response of the detector:
 

Ra = [ (4)-I f dr v(r) ra ]1 /a, [11.17]
 

where Ra is the "a"th weight response. Note that [Ra] = [r(e,O)] = cm2 

s. The factor of 4n removes the steradian units of v(r). If Sas which
 

is defined as 41 E, is the total flux of the X-ray sky, not per
 

steradian, then as= R1 Sas is the average number of counts per exposure
 

the detector will see from the sky flux. R1 is invariant under any
 

angular smearing and is proportional to At for temporal integrations.
 

, 
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Figure 11.12: Response freguency, v(r) versus r
 

BED 1 L+S At =1.28 s. (a) no angular smear. (b) Ae = 6
 
degrees, A = 1.5 degrees. The peaking of the response
 
frequency is another indication of how the smearing
 
flattens out the detector response.
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In terms of the descriptions of the instantaneous detector,
 

R1 = a At / (4 7r). [11.18] 

For some applications we will need to separate out the solid angle
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dependence of the weights: 

Ca = Ra / (A At). [11.19] 

Equations [11.17] and [11.19] are of course undefined for a = 0, -but we 

can define--a dimcniionless covering factor: 

Co = (47)- 1 f>0 dr vWr). [II.20] 

Co is just the fraction of the total sky contributing a non-zero 

response. 

For purposes of illustrating aspects of measurements of the
 

background we will have occasion to use an idealized detector. This
 

detector has a flat response over a solid angle An. The weighted
 

responses are
 

Ra = Cl/a A At. [11.21]
 

A is the ideal detector's area, and C = AQ/4n is identical to Co, the 

fraction of the sky covered by the detector. 

The measurement of the internal background is not .without
 

contamination from the X-ray sky, as noted in the discussion following
 

equation [11.12], above. The contamination is due to possible
 

anisotropies in the X-ray surface brightness. By smearing the response
 

rB (equation [11.13]) we can reduce this contamination, but even smears
 

of A6 on the order of the FWHM leave significant signal. However, if we
 

increase the smear greatly, we see in Figure 11.13 that this
 

contamination can be greatly reduced. R1 is zero in all cases. R2 is
 

reduced by the additional smearing. As we will show,, R2 is proportional
 

to the excess variance the X-ray sky contributes to a measurement of the
 

internal background, so the impact of this sky variance on studies of
 

the internal background may be greatly reduced -by analyzing data with
 

large amounts of smear.
 

For measurements involving both positive and negative response,
 

such as the internal background measurements and for phase-switching
 

interferometers often used in studies of the radio background, the non

integral weighted responses are undefined. However, these weights are
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Figure 11.13: Response-for the internal background FOV combination, 

rB(e ,0) 

At = 1.28 s, A$ = 1.5 degrees. solid: A@ = 6 degrees.
 
dashed: Ae = 30 degrees.
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particularly useful in making models of the contribution of unresolved
 

sources to the distribution of measured intensities. For detectors with
 

negative response the best approach is to divide the response into two
 

halves: r+(e,.) where r>O, and r_(e, ) where r<0. The response
 

frequency of the "-" detector can be represented as the positive 
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Figure 11.14: Response frequency, v(r), for rB
 

At = 1.28 s, A = 1.5 degrees. A6 = 6 degrees.
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quantity:
 

V_(r) = v(-r) ; r<O. [11.22]
 

The moments of the "-" detector will be always defined, but care must be
 

are treated in
exercised. The techniques to recombine the two halves 


more detail in Appendix A3.
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3: Spectral Response and Flux Measurements
 

The spectral response of the detector determines how various
 
incident spectra affect the count rate. A brief description
 
of this response and of an approach to convert fluxes in
 
counts to ergs (2-10 keV) is given. The availablity of
 
several spectral windows and their effective spectral range
 
is discussed.
 

The proportional counter technology used in the A-2 detectors
 

provides moderate spectral resolution. At 6 keV an incident photon's
 

energy may be inferred from pulse height logic with a statistical
 

imprecision of -16%, FWHM. To correctly deduce the incident spectrum
 

requires a good understanding of the atomic physics underpinning the
 

spectral response. The detection process involves two aspects: (1)
 

what is the probability that an incident photon of energy E will be
 

detected, and (2) what is the probability that such a detected photon
 

will be counted in a particular pulse height channel. These aspects may
 

be combined in teifms of a response matrix. A given incident photon
 

spectrum may be folded through this matrix to predict the expected count
 

rate in a given channel.
 

Fine pulse-height binning is important for characterizing the
 

spectra of the brighter resolved sources and that of the total diffuse
 

flux. However, in studying the fluctuations and other structure in the
 

X-ray sky there will be insufficient counting statistics to provide
 

accurate information at the finest bin sizes. Instead we consider broad
 

band measurements over a relatively large range in pulse-height space.
 

The very broadest are measurements from an entire layer of the detector
 

above a certain minimum pulse threshold. These measurements might be
 

characterized by a "typical" energy range; that is, the energy range
 

spanned by the photons that dominate the measurement. There are a
 

variety of ways to determine this range, and we will develop two in this
 

section.
 

The total efficiency
 

Let R(E,h) be the differential response function, the probability
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that incident photons of energy E produce counts with pulse height h.
 
-
That is, R(E,h) E I s(E) dE dh counts are produced in the pulse height 

interval from h, to h+dh by an incident energy spectrum of s(E) dE. The 

E-1  
factor of converts the energy spectrum to photons. -A-major
 

underpinnibg of the -spectral analysis programs at Goddard and elsewhere
 

has been the detailed determination of the structure of R(E,h) for the
 

various detectors using experimental measurements and theoretical
 

modelling of the detector physics. A description of this process as
 

applied to the earlier but similar OSO 8 detectors is found in Pravdo
 

[1976]. The response, and subsequent abstractions from it, are subject
 

to change over the detector lifetime. A particular case of this is
 

drift in the detector "gain", the number of electrons or total pulse
 

height, produced by a typical detection process. The gain is dependent
 

on such possibly variable quantities as active gas density (and
 

therefore the temperature), anode high voltage, and the presence of
 

various impurities. The A-2 detectors were remarkably stable over the
 

short run and evidenced only modest variability of the gain in the first
 

year of the mission. Nonetheless, it should be kept in mind that the
 

results of this section are formally applicable to a limited range of
 

time around a particular epoch. All graphs, figures and tables depend
 

on calibrations based on studies of the Crab Nebula spectrum on or about
 

day 257 (14 September 1977).
 

We consider a measurement taken from a window in pulse height
 

space, Ah. One way of looking at the energy information in such a
 

measurement is the total efficiency,
 

Q(E) = fAh dh R(E,h) , [11.23] 

which is just the total probability that a photon of energy E will be
 

detected as a count in the window Ah. The plot of Q(E) in Figure 11.15
 

shows that the first layer of an RED has greater than 10% efficiency
 

over the range from 2.5 to 46 keV. We will define AEq as the energy
 

range that contains all places where Q(E) is at least 10% of its peak
 

value.
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Figure 11.15: Total efficiency, Q(E), for HED 1
 

Solid: the first layer efficiency. Dashed: the second
 
layer. The reduction of the second layer efficiency is
 
due to the almost total interception of the lower energy
 
X-rays in the first layer. At high energies, where the
 
first layer becomes more transparent, the two efficiencies
 
are nearly identical. A similar plot for RED 3 has the
 
same shape. Based on gain and other fits for day 257
 
(1977).
 

1.00 _ ' ' ' ' I' ' ' 

0.50 

(1(E
 

0.10 -
I 

0.05 I II I 
It I 
II I 
II I 

Il 

0.011 
1 2 5 10 20 50
 

E (keV)
 

Incident spectra weighted energy ranges
 

Q(E) as a measurement of a window's spectral response is
 

independent of the incident spectrum, s(E) dE. For a flat incident
 

photon spectrum Q(E) will indicate "where the photons come from."
 

However most astrophysical spectra are at least moderately steep. Thus
 

there are fewer incident counts at energies of 30 keV or greater than
 

below 10 keV. The significant values of Q(E) at high energies might
 

incorrectly lead us to feel that a significant fraction of the observed
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Figure 11.16: Total efficiency for MED, day 257 (1977)
 

Solid: Layer 1. Dashed: Layer 2. The total efficiency of
the second layer -exceeds that of the first layer at high
 
energies. This is because the second layer of the MED is
 
effectively twice as thick.
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counts of a broad band measurement come from these energies. To
 

compensate we weight Q(E) by the incident photon flux. The total count
 

rate is
 

Scounts = fAh dh f dE R(E,h) F-1 s(E) . [11.24] 

If we reverse the order of integration the dh integral is equivalent to 

the definition of Q(E) in [11.23]. We define a function 

-
P(E) dE = dE Q(E) E 1 s(E) / Scounts * [11.25] 

The normalization by Scounts allows us to interpret P(E) as a 

probability density. P(E) dE is the probability that a particular 

observed count started off as a photon with energy between E and E+dE. 

We can use P(E) to define a pulse height window's energy range by the 
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Figure 11.17: lIED 


Solid: Layer 1. Dashed: Layer 2. (a) HED I. (b) MED.
 

a thermal bremsstrahlung with kT =
 Incident spectrum was 


The bars indicate the energy intervals where 50%
40 keV. 

Note that the scale of
and 90% of the counts originate. 
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this plot is linear, in contrast to the log-log plot of |
 
11.15. Based on day 257 detector response data.
 

shortest interval that gave rise to a given fraction of the counts, in
 

analogy to the definition of the-FW90%DCR as a characterization of the
 

detector's spatial size. Examining Figure II.1i7 we note -that for the
 

spectrum of the diffuse background, the P(E) for the two different
 

layers of an HED have a markedly different distribution of incident
 

photons. The 50% of total count rate intervals, AE5 0 , are disjoint:
 

3-6.7 keV for layer 1 and 8.4-15 keV for layer two. However the large
 

peak in the response of the second layer below the edge at 4.8 keV
 

contributes a substantial fraction of the total counts so that for AE90
 

there is substantial overlap: 2.5-13.3 keV for layer 1 and 3.7-25.4 keV
 

for layer 2. The extension of the layer 2 range to high energies shows
 

that it is more sensitive to high energy effects than to the low,
 

compared to the first ,ldyer. The strong overlap cautions against
 

treating the two as totally independent measurements.
 

Although AE properly weights the lower energies, insofar as it
 

does not imply extension of the window to high energies where there are
 

very few incident photons, it depends on the exact form of the incident
 

spectrum. No single spectral form over the energies covered by the A2
 

detector even roughly approximates the variety of astrophysical spectra
 

seen. Yet many extragalactic objects can be classified into two broad
 

spectral categories: clusters of galaxies having thermal spectra with
 

kT typically in the range of 4 to 8 keV, and active galactic nuclei,
 

principally Seyfert galaxies, having power law spectra with energy
 

indices of 0.55 to 0.80. A third, still different, spectrum is the
 

spectrum of the diffuse background itself. The actual energy range of a
 

window can have a large change with spectrum, particularly if the
 

incident spectrum is steep over the peak Q(E) region of the window.
 

Conversion from counts to ergs
 

- I
 
Though measuring S in detector based units, such as counts s
 

cm- 2 , may be the most honest policy when the incident spectrum is not
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specifiable, it does not lend itself to making comparisons with other
 

detectors or with astronomical and astrophysical data from other
 

spectral bhnds. A more typically quoted unit for flux in X-ray
 
- - 2
astronomy is ergs s 1 cm over a given spectral region, easily related
 

to the incident spectrum by
 

5
ergs = fAE U s(E) . [11.26]
 

Traditional ranges for AE are 2-10 keV for the higher energy
 

proportional counters, such as the MED and HEDs of the A2 experiment,
 

the Ariel V SSI, and UHURU; and 1-3 keV for the instruments limited by
 

the telescope response of the Einstein Observatory. To translate from
 

Scounts to Sergs we define the conversion coefficient
 

S= Sergs Scounts . [11.27] 

C is the number of ergs in the range AE produced by a source with an 
-2observed flux of 1 count s-I cm . This conversion depends explicitly
 

on the incident spectrum s(E). We also note that the numerator is an
 

integral over the defining interval AE, while in the. denominator the
 

integral is over all energies where the response or spectrum is non

negligible. Therefore the conversion factor, C, may be affected by the
 

behavior of s(E) over regions outside the interval AE. Particular
 

values for s for a variety of incident spectra and detector pulse height
 

windows are presented in Section A7.1.
 

The term "flux" also refers to the incident differential energy
 

flux, s(E), measured at a particular energy. This is often used in
 

optical and radio flux measurements; for radio work the typical unit is
 
- 23 - I the Jansky (= 10 ergs Hz s 1 cm-2 ). Such a characterization for X

ray measurements is of value in those cases analagous to measurements in
 

other spectral bands: high spectral precision, i.e. resolution
 

comparable to structure in the spectrum, and/or an a priori
 

understanding of the shape of s(E). Such cases rarely obtain for the
 

broad band measurements of the fluctuations and other structure of the
 

diffuse background.
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Available spectral windows
 

The pulse height windows available on the A-2 experiment cover a
 

wide range, from PEA channels, with size as small as 1/128th of the
 

total pulse height range, to the entire layer as limited by lower and
 

upper discriminators. The basic experiment electronics were capable of
 

producing a wealth of information, conceivably giving the PRA channel
 

and time of arrival information of each detected count. The severe
 

constraint of the total telemetry available to the experiment required a
 

compression of this information. There was a great deal of flexibility
 

in the experiment in selecting which information to send, a feature
 

often used when studying individual sources in point mode. During scan
 

operations, the telemetry was normally in one of a few standard
 

configurations. The PEA data were available on a 10.24 second basis,
 

corresponding to a smear of 1.75 degrees for a 35 minute scan period, or
 

7 degrees for 40.96 seconds.
 

The Discovery Scalers provided a set of rates available more
 

often, every 1.28 seconds (0.22 degrees). Each detector had 4 pairs of
 

Discovery Scalers, the members of each pair were spectrally identical
 

but associated with separate fields of view. The first pair were
 

denoted Discovery Scalers I and 2, the second pair 3 and 4, etc. With
 

this nomenclature the odd member of each pair by convention corresponded
 

to the nominal 30 by 30 field of view, i.e. the SFOV for HED I and 2,
 

LFOV for MED and RED 3. The first two pairs read out the counts from
 

the two detector layers above a low pulse height descriminator. The
 

remaining two pairs could be used to measure the rate in smaller pulse
 

height windows. The first layer was divided into four such pulse height
 

windows 1A, IB, IC, and ID, while the second layer had only two windows:
 

2A and 2B. The exact combination of windows selected for the last two
 

pairs was commandable from the ground, and was modified at intervals
 

throughout the mission. These window combinations allow finer spectral
 

resolution than the layers alone can give.. From Figure 11.18(b) we see
 

that the HED I rates defined by the sum of the IA and lB windows and the
 

sum of the IC and ID windows are significantly more disjoint, even at
 

the 90% level, than the first layer versus the second. In analyzing the
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Figure 11.18: BED I layer 1 pulse height windows: (a) Q(E), (b)P(E)
 

Solid: IA=IB window. Dashed: 1C+1D window.
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fluctuations we will confine ourselves to the information available from
 

the Discovery Scalers, with particular attention to the first layer of 
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the HEDs, as that provides the best signal to noise ratio.
 

4: Experiment History
 

The HEAO I spacecraft was launched 12 August 1977 and the A-2
 

detectors were operating fully within a week. The initial orbit was
 

circular, with 445 km apogee and an inclination of 22.75 degrees. The
 

orbital period was 93 minutes. The observatory spin period during scan
 

observations was initially set at 33 minutes, but was soon increased to
 

35 minutes for most of the mission.
 

Time for the data was given in day of year, 1977, and
 

milliseconds. We will here report time in decimal days, 1977. The
 

experiment went through a variety of configuration changes during the
 

first 6 days, but a period of stability was achieved for the HED
 

detectors at day 234.95. The NED did not reach a long term state until
 

day 248.15. Subsequently, the windows selected for the third and forth
 

pairs of Discovery Scalers were modified.
 

By using combinations of the Discovery Scalers, we have access to
 

window combinations not directly chosen. For instance, during the
 

interval from day 321 to 476, we can subtract the number of counts in
 

the third pair (window IB) and the fourth pair (windows IC+1D) from the
 

number of counts in the first pair (layer 1=IA+IB+IC+ID) to get the
 

number of counts that a Discovery Scaler for window IA would have
 

gotten. The emphasis on the word counts is to indicate that the
 

subtraction gives the true number of observed photons in that window.
 

The uncertainty in the rate due to counting statistics is just the
 

square root of this number of counts, and is not the square root of the
 

sum of the variances of the Discovery Scalers used to generate the
 

counts. This contrasts with estimates of the diffuse sky rate derived
 

from the large minus the small FOV and the associated counting
 

statistics as discussed in equations [11.2] and [11.3].
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Table 11.2: History of discovery scaler definitions
 

BED 1 HED 2 MED RED 3 

DOY Third Fourth Third Fourth Third Fourth Third Fourth 

(1977) pair pair pair pair pair pair pair pair 

234.94 1B 1D+2B lB 1D+2B 1A XX 1B 1D+2B 

238.89 it IT it lB XX " i 

242.20 " it " t 1D "i" 

248.15 " " " it 2B IT 

304.93 " 10 " C " " 1C 

321.79 " 1C+ID " 1C+1D it" 1C+1D 

476 .20 " t t T " " A I 

488.82 " It " if 1lB " 

615.27 it " " 1C+ID t i 

NOTE: During the interval from 235.63 to 245.69 the MED 

processed no events in the 2B window, so that the second layer
 

rate as measured in the second Discovery Scaler pair measured
 

only the'2A window.
 

The detectors' performance in orbit was monitored, and their 

response and internal background were stable, within limits to be 

discussed later. The effects of long term gain drift on the definition 

of the Discovery Scalers' energy ranges amounted to a few tenths of a 

keV over the duration of the experiment. On or about day 544 the 

experiment suffered an "event" of unknown origin, although it is 

suspicious that this was coincident with the loss of propane gas by the 

LED flow counters. At this event the mean count rate for the detectors 

increased by a few percent, ascribed to a change in gain. The HED 3 

seemed most affected, while HED 1 appeared to change least, less than 

one percent. After the event, detector gain stability, particularly for
 

RED 3, was degraded.
 

The observatory was almost entirely in scan mode during the first
 

6 months of the mission, completing an all sky survey. After this major
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mission goal was accomplished, the observatory was with greater
 

frequency placed in point mode for the study of individual objects and
 

small areas of the sky. This had the obvious effect of decreasing the
 

total coverage, in seconds, available for studies of the unresolved sky
 

flux. Near the end of the mission, the spacecraft was typically in
 

point mode over 50% of the time.
 

The quality of the aspect solution degraded during January 1979,
 

with the attitude gas running out shortly thereafter. HEAO I re-entered
 

the Earth's atmosphere on 14 March, 1979. Almost one and a half years
 

of data were accumulated, providing two and a half complete scans of the
 

sky.
 

5: The XRATES Database
 

The Discovery Scaler data we will use to analyze the fluctuations
 

and other large scale structure in the X-ray sky required a fair amount
 

of detailed and specialized processing. Details of the resulting data
 

base, called the SCANER tapes, will be covered in a later chapter. The
 

initial data used by the programs that eventually produced the SCANER
 

tapes were from the XRATES database. We here describe the production of
 

XRATES, emphasizing the data used in our subsequent processing to
 

produce SCANER.
 

The HEAO 1 A-2 experiment telemetry, in data tapes provided by the
 

Goddard Information Processing tDivision (IPD), was initially processed
 

by a series of programs written and maintained by the Computer Sciences
 

Corporation (CSC). The three programs used to produce information for
 

the fluctuations data sets were: FLAP, the First Look Analysis Program,
 

which provided microfilm plots of the principal detector rates; FRAPPE,
 

the Frame Re-blocking and Production Processing Executive, which
 

reformatted the tapes provided by IPD and calculated the principal data
 

quality condition flags, output on the MAX database; and finally SKYMAP,
 

which produced an extract of the MAX tapes (principally restricted to
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the Discovery Scaler data), and calculated a few further data quality 

flags, creating the XRATES tapes.
 

Figure 11.19: Production system for XRATES tapes
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In Figure 11.19 a schematic diagram is given showing how the
 

XRATES tapes are produced. A detailed description of the programs and
 

tape formats may be found in the two CSC documents: TM 79/6231 and
 

TM 81/6123, describing FRAPPE and SKYMAP respectively.
 

Many of the data quality flags used in the selection of data for 

the SCANER database are produced by FRAPPE and SKYMAP. They are 

produced on a major frame basis, that is, every 40.96 seconds. There 

are 32 1.28-second Discovery Scaler integrations every major frame. In 

scan mode, the detectors cover 7 degrees in one major frame. Two flags 

applying to the spacecraft as a whole are a point flag; indicating 

whether the experiment is pointing or scanning, and the SAA/NPA flag, 

showing when the spacecraft is within the geomagnetic anamoly regions 

over the South Atlantic and North Pacific. (These are regions that 

correlate with a high flux of trapped electrons which produce high 

internal backgrounds [Shulz and Lanzerotti 1974].) 

Other data flags are individually calculated for the various
 

detectors, e.g. HED 1, 2, and 3, and the MED. The CLEAN flag indicates
 

whether the detector satisfied several conditions: the detector field of
 

view excluded the Earth, with an additional 100 km allowance for effects
 

of the atmosphere; the detector high voltage was stable; there were no
 

data-transmission errors including fill data and bit errors; and, in the
 

case of the MED, the calibration source was not in the field of view.
 

An additional Earth occultation flag, HEOCCI, indicates if the detector
 

was occulted by the Earth plus a 200 km additional distance.
 

The electron contamination flag, HECONF, indicates if the
 

'electron rate" for each detector was within a certain range, one which
 

presents an acceptably low rate of contamination by charged particles of
 

the detector's X-ray count rate. The electron rate is formulated from
 

"housekeeping rate" information about coincident events and events in
 

the "veto" layers. Both the 'formulation and a reasonable electron rate
 

range were based on an analysis done by Dr. Alan Rose from data taken
 

the first few weeks in orbit. (A reasonable range for the electron
 

rates means a range which rejects most of the bursts of electron
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contamination while not having too high a rate of accidental rejection
 

of good data.) It was later decided that the initially chosen threshold
 

for the MED was too strict, rejecting too much good data, particularly
 

when one wished to use only data from the second layer of the detector.
 

The second layer benefits from the electron-trapping efficiency of the
 

first layer, which acts as an electron veto layer in much the same way
 

as the propane layer does on the HED 1 and 3 detectors. For this reason
 

the NED has two electron rate thresholds, allowing accumulation of two
 

sets of MED data: "electron clean" data using the relaxed criterion and 
"electron super-clean" data satisfying the original, more stringent,

electron rate criterion.
 

Other information available on a 40.96 second basis includes the
 

position of the Moon, in spacecraft coordinates, and the value of the
 

Mcllwain L parameter, which characterizes the magnetic shell in which
 

trapped electrons drift in terms of the equatorial radius of a field
 

line in a dipole field [Mcllwain 1961]. The L parameter strongly
 

correlates with residual variations in the level of the internal
 

background, as we shall see, because a major source of the internal
 

background is activation of the spacecraft by cosmic rays. L is a
 

measure of the cut-off rigidity and thus the amount of shielding from
 

these particles that was provided by the Earth's magnetic field.
 

The XRATES tapes provide Discovery Scaler information for each of
 

the detectors on a 1.28 second basis. Aspect information is also 

provided, giving the orientation of the spacecraft on a 1.28 second
 

basis with an accuracy generally well within 0.1 degrees.
 

The A-2 Experiment XRATES
 



55 

CHAPTER III
 

THE ORIGIN AND DESCRIPTION OF THE FLUCTUATIONS
 

A detailed study of how unresolved discrete sources will
 
produce fluctuations in an otherwise isotropic background is
 
presented. The effect depends on models of the source
 
number versus intensity relationship. A family of
 
reasonable models is developed and we discuss the ultimate
 
sensitivity of the fluctuations to the source behavior.
 
These fluctuations are also shown to have an impact on other
 
measurements of the X-ray sky, as well as measurements of
 
low intensity sources.
 

That deviations from isotropy contain useful information about the
 

origins of the X-ray background has long been recognized. Early
 

treatments of the problem, when only upper bounds to the strength of the
 

fluctuations were available, were at first somewhat unsophisticated. As
 

the quality of X-ray surface brightness measurements improved and with
 

the launching of the first all-sky survey instruments on board UHURU and
 

Ariel 5, the models and mathematical tools used to analyze the
 

fluctuations became more complex, following the example of analysis of
 

fluctuations in the radio background. Though there are several
 

derivations and explications of the techniques extant in the literature,
 

with advent of the HEAO 1 A-2 database, a careful accounting of the
 

origins and limitations of these tools should be made. Many issues that
 

previously could be ignored with little harm must now be directly faced.
 

In this chapter we review the techniques for modelling the
 

fluctuations and present an analysis of their possible pitfalls based on
 

rigorous assessment of the limitations of any finite experiment.
 

1: Discrete Source Luminosity Functions and N(S)
 

A general description of luminosity functions is made. It
 
is shown that objects uniformly distributed in an infinite
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Euclidean space will produce a power law form for the
 

differential source counts function N(S), of index -5/2, for
 
any form of the luminosity function. Deviations from this
 

simple form of N(S) are calculated for the elementary cases
 
of a finite size Euclidean space- and for a nonuniform
 

distribution of sources such as an exponential scale height
 
disk population. The effects of different luminosity
 
functions are then apparent.
 

Distribution functions are common tools used in the studies of 

ensemble properties of a class of objects. If x is an intrinsic 

property of the objects then we are often interested in the distribution 

$(x;z,...), the density of objects with a value of x between x and x+dx. 

Examples of intrinsic properties might be bolometric luminosity, 

temperature, or morphological type. The subsidiary variables of *, 
represented by the z,... above, show that the distribution might change 

as a function of extrinsic variables such as position and epoch. It is
 

often assumed that this density varies only slowly with the spatial
 

coordinates. To be more explicit, we consider volumes large enough that
 

effects of clumping or other correlations between the objects are small.
 

With current observational and theoretical work indicating structures as
 

large as 100 Mpc [e.g. Chincarini and Rood 1979; Gregory, Thompson, and
 

Tifft 1981; Kirshner, Oemler, Schechter and Shectman 1981; and Davis et
 

al. 1982] it is important to recognize this assumption and estimate the
 

impact of these clumpings and voids. But in this chapter we will start
 

by examining non-clumped distributions of objects. In Section VII:6 we
 

present a simple analysis of the impact of large-scale spatial
 

inhomogeneities.
 

The distribution * is often parameterized in terms of the object's 

luminosity, and in such a form is called a luminosity function. As we 

remarked in Section 11:3 the value of a source flux based on broad band 

spectral measurements is dependent on the assumed incident spectral 

form. If all members of the class are well described by a known form 

then the transformation from counts to ergs, and thus to luminosity is 

well defined. One can use the bolometric luminosity, or the 

differential luminosity at a particular energy, but it is more common in 

X-ray astronomy to use the integrated luminosity over a particular band.
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Such a parameterization is less sensitive to imprecision in the spectral
 

shape than is the differential luminosity, particularly if the spectral
 

band is well matched to the detector band pass and the source spectrum
 

does not vary too widely over this range.
 

In order to have a good understanding of the spectral properties
 

of a set of objects, we use a luminosity function of the form
 

( (E),E;z,...), where Z(E) is the differential luminosity. This makes
 

it possible to relate measurements made at widely different spectral
 

bands; e.g., the HEAO I A-2 medium- and high-energy data versus data
 

derived -from observations carried out with the Einstein Observatory
 

(HEAO 2). When observations, are made in a cosmological setting, the
 

effect of spectral form on interpreting the luminosity function, because
 

of the redshift, becomes important long before other cosmological
 

effects due to geometry, evolution, or high redshift cutoffs.
 

If one has a well defined and complete sample of objects, then 

techniques exist for deriving the luminosity function directly. (For 

examples of this in the X-ray regime see Piccinotti et al. [1982], McKee 

et al. [ 1980], Pye and Warwick [19,79], or Schwartz [1978].) Such a 

determination is often inadequate because it is based on observations 

dominated by nearby objects, making it difficult to measure any 

variation of with distance. Broad limitations on the behavior of the 

luminosity function can be placed by examining its impact on other 

observables: for example, the number versus flux relationship, 

represented by the differential relationship N(S) dS, and the total sky 

flux. 

Uniform Euclidean space
 

To make the connection between *(L;...) and N(S), the number of
 

objects in the entire sky with flux between S and S+dS (not per
 

steradian as is often given in other presentations of this topic), we
 

need a relationship giving the flux observed for an object of luminosity
 

L, as a function of position in the sky and distance (or redshift). In
 

cases where the source spectrum does not depend on luminosity, such a
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relationship is linear in the luminosity, i.e. S= L A(t). In a
 

Euclidean space with no position-dependent absorption and where both L
 

and S are measured in the same energy units (e.g. ergs, 2-10 key), the
 

form of A is given by the inverse square law:
 

S = Krr(fL Y /[_.- L/ 2 , 1] 

where r is the magnitude of r.
 

Consider objects with luminosity L and density *(L)dL, uniformly 

distributed through the Euclidean space, so that , is independent of r. 

The number of objects in an infinitesimal shell at a distance r is 

( (LdL) dV = ( (Ldn) 4f r2 dr . [111.2] 

Solving [Il1.1] for r and determining dr in terms of dS (holding L
 

fixed) we get
 

(4 (L) dL) dV = ((L)dL) 2 (L/41 )
3/2 S-5/2 dS . [111.3] 

Integrating over the entire luminosity function we get the standard 

Euclidean N(S) law 

N(S) dS = 41 K S-5/2 dS [111.4] 

where
 

L3 / 2  (L)K =fdL - [111.5] 

2 (4,j3/2 

So we see that for any shape of luminosity function the form of N(S) is
 

just a -5/2 power law; the only impact the luminosity function has is in
 

terms of the integral magnitude represented through K.
 

To find the contribution of a class of objects to the all-sky
 

flux, Sas' we calculate their luminosity density:
 

A0,...) = (1,...) fdL L *(L;l,...) [111.6]p(,...) = 

where A(t,...) is the luminosity per unit volume, and L and p are just
 

the mean luminosity and the total density, respectively, of the objects.
 

A is also referred to as the volume emissivity. The contribution to
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the all-sky flux of this population is simply 

Sas = f dV A(t,...) A(i,...) [111.7] 

where A(r,...) is the relationship between luminosity and flux in 

equation [III.1]. For a Euclidean space with uniform volume emissivity, 

Sas equals A R, where R is the radius of the volume. In order to avoid 

an infinite flux, R must be finite. (This is just a simple formulation 

of Olber's paradox.) 

One can calculate Sas just from the form of N(S) of course,
 

- 3 / 2Sas = f dS S N(S) = 4u K f ds S , [111.8] 

indicating that the 5/2 power law for N(S) can not be extended down to
 

arbitrarily low fluxes. If infinite values for Sas are to be avoided,
 

N(S) must break to a form flatter than S-2 so that the integrand for Sas
 
-
will be flatter than S 1.
 

Model luminosity function forms
 

The form of 4(L) derived from a complete sample of resolved and
 

identified objects is often well described by a power law over a range
 

of luminosities from Lmin to Lmax:
 

L - 8 *(L)= K ; Imax > L > "min [111.9] 

The limits on the luminosity range are required to avoid divergent 

values for K or A. The impact of Lmin or Lmax on these quantities 

depends on the value of the power law index, 0 in the following way: 

< 2 : A and Sas dominated by Lmax
 

> 2 : A and Sas dominated by Lmin
 

< 5/2 : K (and source counts) dominated by Lmax
 

0 > 5/2 : K dominated by Lming
 

For 2< 0 <2.5 the study of any flux-limited sample will be dominated by
 

high luminosity objects. This may produce a significant imprecision in
 

an estimate of Lmin, with a consequent imprecision in estimates of the
 

contribution of low luminosity sources to the all-sky flux.
 

Other functional forms for the luminosity function have been
 

Fluctuations Theory Luminosity Functions
 



111:1 60
 

considered for theoretical reasons [e.g. Bahcall 1979], while an
 

exponential luminosity function has the property that it is naturally
 

convergent independent of Imin and kaax. However, Piccinotti et al.
 

[1982] report that the power law form is always a good fit for the
 

HEAO 1 A-2 survey-derived luminosity- -funct-ions - -for-- extragalactic 

objects, and other forms are either no better or specifically excluded 

by the observations. 

Effects of a finite sized universe
 

To show how the edge of a finite Euclidean universe, of radius R,
 

produces the needed break in the source counts, we examine the case for
 

power-law-type luminosity functions. There is no deviation of N(S) from
 

a 5/2 power law above a flux level
 

[i11.10]
S= Lmax / 47rR2 , 

at which point the very highest luminosity objects have all been counted 

at the, fluxes S>S'. This causes an effective upper truncation of the 

luminosity function as S decreases further. For a given flux S there 

can be no sources with luminosities greater than L'(S) = 47 R2 S = 

Lmax S/S'. Above Smin = Lmin /(4r R2 ) all the sources have been counted. 

We can generalize the derivation of the N(S) law from a uniform
 

distribution of sources to one where 4 has some dependence on position
 

or distance. le replace the constant K in [111.4] with a K(S) function
 

given by
 

K(S) = fdL 3/2 4(L; r=(L/47TS)l/2 ) 

2 (47)3/2 

If 4 has no r dependence, then 4 is independent of S, and K(S) reduces 
to equation [111.5]. In the case of a sharp cutoff in , at a particular 

r the effect is to modify the limits of the L integration as a function 

of S. For power law forms of p(L) (equation [111.9]), the deviation 
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from Euclidean form becomes
 

K(S) K L5/2-a L'(S) [111.12] 

( 4,T )3/2 (5-20) 'Lmin 

For S>S', K(S) is a constant (Ko) found by evaluating the above equation
 

with L'(S) fixed by the luminosity function's intrinsic upper limit
 

Lmaxs
 

Figure III.1: K(S) for finite Euclidean space
 

Lmax=1 000 Lmin . Two values of 0; the power law luminosity
 
function index, illustrate the dependence of the behavior
 
of K(S) below S' on the form of the luminosity function.
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,
By plotting K(S) rather than N(S) = 4n K(S) S-5/2 we are able to
 

compress the information into a mote compact figure, but at the cost of
 

needing to retrain our. intuition. N(S) has not rolled over until K(S)
 

.
steepens faster than S+5/2 However for the Sas to be convergent, K(S)
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need only steepen faster than S1/2 at low S.
 

In cases where B < 2.5 and Lmax>>min, there is an immediate break
 

in K(S) at S' and a consequent break in N(S). Indeed for S<S',_
 

-6'
 N(S) - S . Thus the size of the break depends on the flatness of (L). 

For cases where a > 2.5 the break is quite broad and does not become 

significant until S - Smn For steep luminosity functions it is not. 

possible to draw an accurate conclusion about the shape of the 

luminosity function from the shape of the source number counts alone, 

until S - Smin .
 

Source counts for a disk population
 

A more complicated situation still involving the simplicity of
 

Euclidean geometry is encountered when 4(L;r) is a function of position.
 

One example is the estimation of the contribution from a population of
 

galactic sources to the high latitude source counts, considered in
 

detail by Rosner et al. [1981]. We assume that the sources are
 

distributed in an infinite disk with an exponential scale height, h:
 

z
(L;r)'= *(L) e-1 /h = *(L) exp( -(r/h) sin jbj) [111.131 

where 4(L) is the luminosity function in the plane of the galaxy and b
 

is the galactic latitude. Because of the dependence on angular position
 

we can be interested in more than just the flux distribution of sources
 

over the entire sky; that is, interested in the distribution in a
 

particular patch of solid angle, N(S,t)dS da. At latitudes and energies
 

where absorption may be neglected so that the relationship between S, L
 

and r is given by [III.1], a derivation similar to the case of the
 

uniform luminosity function gives
 

N(S',f) dS dQ = K(S,f) S-5/2 dS dQ [111.14]
 

where
 

K(S,t) = 0.5 fdL L3/2 exp[ L)1/2 sin Ibi ] [ 

S (L) ([111.154 4iS b 

The unit vector, ?, indicates the functional dependence on the direction
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in the sky. By considering a collection of objects with the same
 

luminosity L it is easy to see that for fluxes
 

L sin2 ]bI

S >> S'(L,t) =- , [111.16]
 

h2
 47 


the exponential term does not contribute and the source counts are well
 

fit by the uniform 4 Euclidean model. Essentially, for S>>S' we haven't
 

traveled far enough out of the plane of the galaxy for the variation in
 

to be significant. However, for S<<S' the value of K(S,f) quickly
 

Figure 111.2: K(S,f) for exponential scale height distribution
 

The solid line is the case of a collection of single
 
luminosity objects with luminosity Lmin The dashed lines
. 


are for power law luminosity functions, Lmax = 1000 Lmin,
 
with 0 the power law index. The scale height is assumed
 
to be independent of L.
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rolls off like exp(-S-1/2). Applying equation [111.15] to the power law
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form of $, we see in Figure 111.2 qualitativly similar behaviour to the 

finite uniform Euclidean space of Figure III.1. 

Integrating N(S,t) over all solid angles gives
 

-
N(S) dS = f d9 N(S,f) dS - S 2 dS; S<<L/4rh2 [111.17] 

Note however that the break to a -2 power law for S<<S'(L,?=galactic 

pole) is a property of the all-sky counts, N(S), and the maintenance of 

the new slope over a wide range is due to the continued contribution of 

the low-latitude sources. For a particular latitude range of high 

latitudes, the counts eventually flatten and roll over as K(S,f) enters 

the exponential-dominated phase. The. roll over occurs at lower and 

lower fluxes, as the latitude range approaches the galactic equator, at 

which point the source counts (in this simple model) never depart from 

the Euclidean form. These observations of the behavior of exponential

scale-height sources will be useful in estimating the effect of galactic 

source contamination to our analysis where source identifications cannot 

always be made. This is particularly important for the fluctuations. 

The all-sky flux from this infinite disk population also requires
 

an integration over all solid angles:
 

Sas = f dR (h/sin Ibl) A(z=0) [111.18]
 

where A(z=O) is the volume emissivity in the plane. The angular
 

dependence of the surface brightness, the integrand, has the familiar
 

cosecant Ib] dependence of any infinite plane distribution of sources.
 

Note also that the surface brightness is finite in any direction out of
 

the plane, while the integrated all-sky flux is divergent, in accordance
 

with the all-sky N(S) asymptotic behavior of S-2 .
 

Another interesting modification to the Euclidean assumption comes
 

from the effects on N(S) of cosmological corrections with and without
 

evolutionary changes in *. A simple closed form solution that includes
 

detector bandpass, complicated source spectra, and the cosmological
 

volume and luminosity distance corrections is not possible. The
 

integral equations are derived in Appendix Al and their application will
 

be outlined in subsequent chapters when we compare information about
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N(S) derived from the fluctuations with particular models for the
 

objects that dominate the X-ray sky. A principal complication is that
 

the non-Euclidean form of equation [III.1] is not easily inverted to
 

give z in terms of S and L as we were able to do for r in deriving
 

[111.31. Two general conclusions will be noted here: for large enough 

values of S, N(.S) approaches a 5/2 Euclidean power law; and any 

population of objects with a non-evolving luminosity function and a non

inverted (monotonically decreasing with energy) photon spectrum will 

never have a N(S) with a steeper rise than the Euclidean 5/2 (i.e. K(S) 

is always a decreasing function of S as S + 0) [Weinberg 1972, equation 

14.7.35]. 

Applying the analysis of this section to the optical number counts
 

versus flux literature is complicated by the fact that luminosities and
 

fluxes are usually represented in terms of magnitudes, which are
 

logarithmic quantities. Because of this, plots of the logl0 (N(S)) or
 

logl 0(N(>S))j the integral number-of sources with flux greater than S,
 

versus magnitude, will be linear wherever N(S) is well described by a
 

power law- The relationship between the power law index, y, and the
 

log(N)-versus-magnitude slope, a, is
 

a = (y-i) / 2.5 . [111.19]
 

The slope is the same for differential or integral counts (N(S) or
 

N(>S)), but the intercept changes. It is the intercept that contains
 

inforiation about the value of K, the N(S) coefficient.
 

2: Fluctuations in Diffuse Sky Measurements Due to Discrete Sources
 

Surface brightness measurements cannot be isotropic when
 
unresolved discrete sources are in the field of view. The
 
general Poisson nature of the variation is derived for
 
constant flux sources, and then generalized for power law
 
distributions of source fluxes. The effect of these
 
variations, the fluctuations, can be characterized by their
 
distribution cumulants. The impact of the collimator solid
 
angle response on these cumulants depends on the response
 
weights. However for power law N(S) models, these cumulants
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are formally infinite unless N(S) has both high- and low
flux limits.
 

identifications and distance of individual Yet
 

The- N(S) &ifve illows us to make some conclusions about the discrete 

source populations, even when we are unable to make accurate 
-measurements sources. 


the use of N(S) as an analytical tool is limited when we are unable to
 

make accurate estimates of the source intensities, or even decide if one
 

or more than one source is being measured. This confusion is intimately
 

related to the extension of the N(S) curve to low flux values. As we
 

will show here for ideal cases, analysis of the form of this confusion
 

can yield as much information about the source populations as could the 

resolved source counts, or more. Even in the non-ideal cases we 

consider when analyzing real data, interesting constraints can be set.
 

Sources with equal flux
 

We begin with a simple characterization of the effects that
 

discrete sources have on measurements of the sky intensity. Consider
 

dividing all sources into classes of equal flux. Let Ni be the number
 

of objects having flux Si . These objects are assumed to be distributed
 

completely at random on the celestial sphere. A single observation of
 

the sky intensity is made, using a detector with response

characteristics r(O, ). We divide the response into infinitesimal cells
 

of equal solid angle SQ. The response in the jth cell is rj. nij is
 

the number of objects from the ith class contributing to the intensity
 

measurement in the jth cell. nij is not a fixed number, but is a random
 

variable, nij is distributed as a binomial distribution of Ni objects
 

with a mean
 

ii-i = Ni 6 / 4 7. [111.20] 

If the solid angle is small enough and Ni large enough the binomial
 

distribution is well modeled by a Poisson distribution with the same
 

mean.
 

Fluctuations Theory Fluctuations and N(S)
 



111:2 67 

A probability distribution is often described in terms of its
 

cumulants (see Section A2:1). The first cumulant is the distribution's
 

mean, the second its variance. The third and fourth cumulants are
 

related to the skewness and kurtosis. For a Gaussian distribution all
 

cumulants higher than the second are zero. The units for the nth
 

cumulant of a distribution of a variable x are the units of x raised to
 

the nth power. A common construct is the reduced cumulant,
 

/yn Kn (K 2 )n/2 , [111.21] 

where Kn is the nth cumulant and K2 is the second cumulant, the
 

variance. The reduced cumulant is dimensionless. The size of the nth
 

reduced cumulant, Yn' when n is greater than two, measures the deviation
 

of a distribution from a Gaussian. A complete definition of a
 

distribution's cumulants and a discussion of how they can completely
 

describe-a distribution is given in Section A2:1.
 

The intensity of these nij objects is
 

lij = Si rj nij. [111.22]
 

tij is also a random variable. Its distribution can be given in terms
 

of its cumulants; with the-mth cumulant being:
 

Iij;m = (Si rj)m Knij;m = (Si r )m nj [111.23]
 

where Kn m is the mth cumulant of the distribution of nij. For the
 

nij, which follow a Poisson distribution, all the higher cumulants are
 

equal to the mean.
 

If we integrate over the response of the entire detector we can,
 

define I, to be the measured intensity for all sources from the ith
 

class. If the distribution of these sources were completely random,
 

i.e. there was no clumping or other correlation, and the total number
 

of the sources Ni is large enough that the binomial distribution was
 

well modelled by the Poisson, then the contributions from the different
 

Fluctuations Theory Fluctuations and N(S)
 



111:2 68
 

cells are statistically independent. The cumulants for Ii are
 

ii;m = (R Si)' Ni , [111.24]1 m 


-since the >cumulants for the sum of independent variables are just the
 

sum of the cumulants. Rm is the mth weighted response as defined in
 

equation [11.17]. The mean intensity, Y, is proportional to R1 , while
 

the variance is proportional to R2. We can characterize the fluctuation
 

in the intensity Ii to first order by its fractional RMS size:
 

Ni-1 /2
ai /Ti = (R2/RI) . [111.25]
 

Thus the larger the number of objects, the smaller the RMS noise, and
 

the more the graininess of the signal is reduced.
 

For an example we consider the case of the ideal detector
 

described for equation [11.21]. In the case of this ideal detector the
 

RMS fractional noise is
 

ai/Ti = (C N1 
1 / . [111.26] 

For detectors with smaller and smaller solid angles, represented by the 

sky coverage factor C, the fractional fluctuation is increased. However 

if we examine the absolute size of the fluctuations, we see that their 

magnitude increases as the detector solid angle increases. If the 

measurements of I are limited by an irreducible internal noise then a 

more accurate measurement of the fluctuations would require a larger 

value of C. In the case where the uncertainty in I is due to counting 

statistics, the ratio of the fluctuations variance to the photon 

variance is, for a single integration, 

a2 1 / a ht = Si R22 . [111.27] 

For an ideal detector this ratio is independent of solid angle and
 

proportional to (A At)2 , where A and At are the detector area and
 

integration time, respectively. So, although the fractional size of the
 

fluctuations may be increased for smaller solid angle detectors, this by
 

itself does not increase the statistical significance of a single
 

measurement of the fluctuations. It is also worth noting that the
 

signal-to-noise ratio of [111.27] is independent of the total number of
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sources, but does depend on the class flux strength, Si
 .
 

To find the total intensity we integrate over the various
 

intensity classes by replacing Ni with N(S) dS. Again, as long as there
 

is no correlation between objects of the different classes, the
 

cumulants of the total intensity, I, follow directly from the defining
 

integral:
 

K = Rmm f dS Sm N(S). [111.28] 

In principle, as the cumulants of a distribution contain all its
 

information, we can test models for N(S) by calculating their cumulants
 

using [111.28] and comparing them with the estimated cumulants from a
 

set of observations. Such an approach is somewhat restrictive as there
 

is no established prescription for estimating the goodness of fit of a
 

particular model N(S), or for setting any confidence ranges on any
 

parameter of such models. Worse, we see in what follows that for the
 

very models that we expect to best describe the true behavior, the
 

cumulants show awkward infinities.
 

The cumulants for power law N(S)
 

We have seen that an expected form for N(S) is a power law with an
 

index of -5/2. We generalize this to models that have the form
 

-
N(S) dS = 4 K S Y dS, [111.291 

with the -index, Y, taking any value. If such models are to hold over
 

the full range of S from zero to infinity, the cumulants we calculate
 

with equation [111.28] contain divergent integrals. The divergences can
 

be removed by modifying the models to include cutoffs at both the high

and low-flux levels. Let So be the lower sharp cutoff and Smax be the
 

high-flux limit. When the power law -behavipr covers many decades, the
 

value of each cumulant will depend essentially on only one flux limit:
 

-Y + m + 1 < 0 : KI;m K S0-Y-i++; [III.30a]
 

-Y + m + 1 > 0 : KI;m K Smax-Y+m+l. [III.30b]
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For all models with indices steeper than 2.0, the first cumulant 

diverges as So approaches zero - Olber's familiar paradox again. But 

what is not so familiar, for models with indices flatter than three 

(e.g. the Euclidean model), is that the variance and all higher
 

cumulants diverge witY ficreashg' Smax The nearby high-flux sources
. 


dominate any description of the distribution, based on its cumulants, of
 

the fluctuations from these models. Since these sources are relatively
 

few in number, we would expect the shape of the distribution to be non-


Gaussian; a Poisson distribution is poorly described by a Gaussian when
 

the mean number of objects is small. The non-Gaussian nature of all
 

these distributions is assured by the non-negligible values of the
 

skewness and other higher reduced cumulants.
 

Now we know that there must be an Smax supplied by nature so that
 

the true cumulants of the observed distribution do not diverge. That
 

limit is flux of the brightest observed object. A danger is that at
 

these very highest limits the models for N(S) might be ill-described by
 

the power law that may suit the bulk of the sources. Indeed, the
 

resolved high-latitude source counts as observed by Piccinotti et al.
 

[1982] are somewhat steeper than the expected Euclidean model, in all
 

probability due to local inhomogeneities in the source distribution or
 

the inevitable uncertainties due to measurements based on a low number
 

of objects. If we could exclude data that contain any high-flux sources
 

we might arbitrarily set Smax at a low enough value so that such
 

inhomogeneities and uncertainties are not a problem, but in that case we
 

must insure that no observations have any contribution from sources with
 

fluxes greater than Smax
.
 

Early characterizations of the fluctuations of the cosmic X-ray
 

background [e.g. Schwartz et al. 1971; Fabian and Sanford 1971; Holt et
 

al. 1974] followed the lead of the early characterizations of the
 

isotropy of the microwave background. (A detailed example of this
 

technique, applied to the microwave sky fluctuations, is found in
 

Boynton and Partridge [1974].) In the microwave case, where the small

scale anisotropies were not expected to be due to a power law N(S)
 

distribution of microwave sources, the upper limit to a Gaussian
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variance characterized the fluctuations. But in the X-ray case, a non-


Gaussian distribution of the fluctuations was expected as soon as
 

extragalactic sources were identified, when a possible model for the sky
 

flux was unresolved point source emission. The first attempts to
 

characterize the X-ray distribution consisted of estimating the excess
 

variance in addition to the intrinsic variance due to counting'
 

statistics and variations in the non-X-ray counts. Both the preliminary
 

upper bound published by Holt et al. [1974] and the actual detected
 

excess variance measured by Schwartz, Murray, and Gursky [1976] from
 

UHURU data showed that the fluctuations were smaller than expected for 

then-current estimates of the value of K in the N(S) law based on 

resolved sources in the UHURU catalogue. (However, see the discussion 

of these results in Section VI:6.) The resolved sources K values were 

subsequently revised downward in agreement with the fluctuations.
 

However to rely on the variance to characterize the fluctuations is 

fundamentally limited in that it depends mostly on the behavior of N(S) 

very near the limit of resolved sources. In addition, the statistical 

tools (X2 ) used by these authors for setting confidence limits on the 

variance (derived for studies of the microwave background) are only 

accurate to first order for non-Gaussian distributions. Using 

estimators of the higher cumulants is not much help. They are even more 

strongly determined by the behavior of the high-flux sources than is the 

variance.
 

If we are to extend our understanding much below Smax we need an 

alternative approach. Such an approach was pioneered by radio 

astronomers, who first used it to characterize the "confusion noise" 

that unresolved sources produced on measurements of the intensity of 

low-flux objects [Scheuer 1957, Condon 1974]. The confusion noise is 

described by a probability distribution called a P(D) curve, ("P of D")
 

for the deflection distribution. P(D) dD is the differential
 

probability that an observation of sky intensity has a deflection, D, 

from the mean intensity. Even though the cumulants are not well

behaved, we will show that the general &hape derived for the P(D) curve
 

is well behaved, with the added benefit that much of the shape is 

generated by the behavior of sources at lower intensities than those 
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that dominate the variance. The suggested application of this technique
 

for the analysis of the X-ray sky was a natural one [Fabian 1972;
 

Scheuer 1974; Rowan-Robinson and Fabian 1974] and its first application
 

to UHURU data by Fabian [1975] not only repeated the message that the
 

resolved-sburce -ounts were too high, but reported that the fluctuations
 

were roughly what was expected from a Euclidean power law. This
 

additional information is unattainable with studies restricted to the
 

determination of a single parameter such as the excess variance.
 

The remainder of this chapter is devoted to a derivation and
 

analysis of the P(D) technique. The ground work of this derivation was
 

laid by the previous authors, but because of the quality of the HEAO 1
 

data we will play close attention to aspects of the process of model
 

making that were ignored in earlier X-ray work.
 

A form of analysis midway in sophistication between the P(D)
 

analysis and the simple variance technique was used on data obtained
 

with the OSO 8 B detector. The crude results (reported in Shafer et al.
 

[1977]) for the magnitude of the fluctuations were slightly lower than
 

the earlier reported UHURU results, but still within the range of
 

consistency. However, the statistical aspects of the technique used
 

then wete very primative, possibly incorrect. By the time that greater
 

understanding of the statistics and other portions of the the
 

fluctuations problem was acheived, the HEAO 1 all-sky survey data was
 

available. The OS0 8 B detector data was very clean, the imaginative
 

use of different window material on the two halves of the detector
 

allowed us to subtract out both the internal background and the possible
 

electron contamination. (The identical electron transmission of the two
 

window material allowed the electron removal, there was no propane veto
 

layer as was used in the HEAO HEDs.) However, the total area of the
 

detector was small, effectively -10 cm2 (the exact value depends on the
 

incident spectrum). In addition, though the detector was able to obtain
 

some very long exposures, the total sky coverage was limited. Large
 

portions of the satellite's lifetime were spent so that instruments
 

alligned parallel to the B detector could study sources in the galactic
 

plane. From the standpoint of-area and sky coverage, the HEAO database
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provides a better opportunity for the study of the fluctuations.
 

3: Derivation of the Fluctuations Distribution Function
 

The calculation of the fluctuations distribution is a two
step process. The first step involves folding N(S) through
 
the collimator spatial response to give the number versus
 
intensity relationship. The second is to take this n(I) law
 
and, using properties of the Fourier transform, derive the
 
distribution of intensities.
 

As noted in the last section, the technique for deriving the
 

distribution function of the fluctuations was pioneered by Scheuet
 

[1957]. The use of Fourier transforms in the derivation was detailed by
 

Scheuer [1974] and Condon [1974]. Though the technique described here
 

is no different than what was used before, the notation has been changed
 

somewhat. Originally, this was to make clear the distinction between a
 

source flux S and its contribution to an intensity measurement I in the
 

context of the fluctuations. The change in notation will also cleanly
 

demonstrate the scaling relationships of the probability distributions
 

for simple power law models for N(S). In addition, rather than
 

presenting the "closed form" solutions of Scheuer and Condon we leave
 

them in terms of Fourier transforms, which is sufficient for our data
 

fitting program.
 

Cbing from N(S) to n(I)
 

Our ultimate goal is to obtain a probability distribution PI(I) d
 

produced by a collection of point sources randomly distributed in the
 

detector field of view. The first step is to calculate the mean number
 

of sources with intensity I observed in the solid angle of the
 

observation. In a derivation similar to equations [111.20] and [111.22]
 

we consider a small patch of solid angle df with response r. In this
 

patch a source with flux S has an intensity I = rS. Then the mean
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number of sources with intensity between I and I+dI is
 

nd 2(l) dl = df N(S) dS = d' N(I/r) d(I/r). 	 [111.31]
 

47 47
 

To get the mean number for the entire exposure we integrate over the
 

detector's solid angle:
 

-1 
n(I) dI f dr 	 (r) N(I/r) r dl [111.32] 
41T 

(see equation [11.16]). In general such an integral would have no
 

closed-form solution, and for every model N(S) would require a separate
 

integration. One way to accelerate such a process is to note the
 

similarity of equation [111.32] to a convolution, although instead of
 

involving sums and differences (see Section A2:1), the integral involves
 

multiplications and divisions of variables. Just as Fourier transforms
 

provide an equivalent and computationally faster representation of a
 

convolution, equation [111.32] may be recast in terms of Mellin
 

transforms (see Section A2:3). These can in turn be rewritten as
 

Fourier transforms in order to use the Cooley-Tukey algorithm and its
 

variants,for fast Fourier transforms (e.g. Bergland [1969].
 

It is important to note the change in going from N(S) to n(O).
 

There is no simple proportional way to completely identify objects of
 

intensity I with objects of a single flux S, save in the simple case of
 

the constant response ideal detector. The inverse problem, going from S
 

to I, is also not simple but it is more straightforward. For a given
 

source of flux S that is observed somewhere in the detector, the
 

probability that it will contribute an intensity I is
 

PI(S)(I;S) dl = v(I/S) dl [111.33]
 
47rC S
 

The coefficient Co is just the total fraction of the sky covered by the
 

detector as defined in equation [11.20]. The mean value of I(S) is
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clearly
 

<I(S)> = S R1 / Co , [111.34] 

i.e., S times the mean response of the detector, R1 /Co (see [11.17] and 

the discussion of the weighted detector responses). The variance around 

this mean intensity is 

I2i(S) = S2 (R2
2/C0 - R1

2 /Co). [111.35] 

For a source observed to have an intensity I, the probability that
 

it has a flux S is proportional to the probability in equation [111.33]
 

weighted by N(S). A priori knowledge that there are more low-flux
 

sources than high is thereby reflected in PS(1 )(S;I). It can be shown
 

that when N(S) is a power law with index Y, the expected mean value of
 

the flux of a source with intensity I is
 

<S(I)> = I ( 1 _i)Y- / (p)Y . [111.36] 

Only for an ideal flat-spatial-response detector is this <S(I)> = I/AAt 

= I C/R1 , the simple inverse of the relationship for the mean I(S). In 

other cases it is an error to assume that the flux S is given by I 

divided by the peak detector response (in our units, A At). This is 

true even for the unsmeared detector. The error is compounded if the
 

detector is substantially smeared (see the discussion in Section 11:2 on
 

the effects of smearing).
 

From n(I) to P(I)
 

From the distribution of source intensities we can find the
 

probability distribution of the intensity of one of them drawn at
 

random:
 

Pl(il) diI = -i n(1l) d I , [11.37] 

where j', the total number of sources in the distribution n(I), acts as a
 

normalization constant.
 

If we wanted the probability distribution for the intensity of two
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sources chosen at random and assuming no correlation:
 

P2(12 ) d12 = f.
+0 

d1l P1 (12-11 ) P1 (l1 ) , [111.38] 

This, convolution-may be-rewritten -thh&-Fourierh domain as 

](P 2 ) = PI) MP(I) = ]Kpl) 2 . [111.39] 

The Fourier transform of a probability distribution is often referred to
 

as the characteristic function of the distribution. Thus this technique
 

for deriving the fluctuations distribution is sometimes called the
 

method of characteristic functions.
 

By extending the process with multiple convolutions we can find
 

the Fourier transform of the intensity distribution of three, four, or
 
.
an arbitrary number of sources; i.e., 1 Pn) = pI)n Of course each of 

these distributions applies to a case with a known (and fixed) number of 

sources drawn from Pi. Though this number is not known a priori, we 

know by reasoning parallel to the derivation of [111.28] that the number 

of sources is a random variable drawn from a Poisson distribution with 

mean P . In this case the distribution of the intensity I from all 

sources is
 

Pini) = Y exp(-p) Un pn(I). [111.40]
nnI n!
 

By the linearity of the Fourier transform:
 

Bn (Pl)n 

PI(I) = exp(-i') 1 -l{ I nl } [111.41] 
n 

= rI{ exp[p F(PI) - p ]} [111.42] 

= I'l{ exp[1(n(I)) -i]}. [111.43] 

With the speed and convenience of Fast Fourier Transforms, equation
 

[111.43] provides a total description of the fluctuations induced by the
 

sources described by n(i). An alternative technique [Fabian 1972; Wall
 

et al. 1982] is to provide a stochastic estimate of PI by using a random
 

number generator first to determine the number of objects in an
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observation and second to determine the intensities of these n objects
 

from PI. The details of this and the issues of an implementation of the
 

Fourier transform technique are discussed in detail in Appendix A3.
 

4: The P(D) curves for Simple Models of N(S)
 

For better studies of the fluctuations we re-parameterize
 
the power law models for N(S). This simplifies the problem
 
of folding through the detector spatial response to get
 
n(I). The distribution for a Euclidean power law is
 
studied, contrasting the full distribution with analysis
 
based only on the variance of the distribution. We present
 
plots of- the fluctuations for various values of y, the power
 
law index, comparing them with the Euclidean form. The
 
importance of sharp cutoffs in N(S), particularly for
 
certain values of y, is presented, along with an outline of
 
how to include them as a simple extension of power law
 
models. Finally we consider variants of the single power
 
law, including models whose behavior is fixed at a certain
 
flux, as well as general modifications to low-flux behavior
 
represented as a Gaussian term.
 

P(D) for single power law N(S)
 

Armed with the general prescription for deriving a P(D) curve, we
 

will apply it to a specific class of simple models, the power law
 

models:
 

K S- y - y N(S) dS = 4w dS = (S/W) d(S/W). [111.44] 

The second half of the equation defines a reparameterization of N(S) in
 

terms of the parameter W. One of the virtues of W is that it has
 

simpler units than K, W and S having the same units, so that in
 

comparing two different experiments that use different units of flux, W
 

transforms the same as S. It will also turn out that the width of the
 

PI curve depends linearly on W. The virtue of K, besides its almost
 

universal use in other published studies of N(S), is that N(S) is
 

proportional to K, allowing for linear combinations of two populations
 

with the same value for Y. That is, given two populations with K values
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of K1 and K2, their net N(S) = (X1 + K2) S
-Y dS. The conversion between
 

K and W is
 

47r K = W [111.45]
 

Inspection of this relationship demonstrates that the re

parameterization in terms of W is inappropriate when y equals one.
 

Equation [111.32], which calculates n(I), has a particularly
 

simple form for pure power law N(S) models, i.e. ones with no cutoffs
 

at high or low-flux:
 

- I -n(I) dl = f dr (4 ) v(r) (I/Wr)-y (Wr) dl . [111.46] 

The I dependence can be moved outside the integral, indicating that n(I)
 

is a power law with the same index as N(S). Only the coefficient has
 

changed. We can simplify this equation by making the following
 

definitions:
 

Weff E Ry- 1 W , [111.47] 

where R,_1 is the 'Y-l'th weight of the detector response defined in 

[11.17]. As %.-1 has the same units as the detector response, the units 

for Weff are the same as the units used to measure intensity, i.e. 

counts per exposure. This allows us to define the dimensionless 

parameter C: 

SI / Wef f .[I.8 

We can recast the n(I) distribution into a nE(E) dE distribution.
 

Equation [111.46] simplifies to
 

n(I Weff) d(I/Weff) ( I / Weff )-Y d(I/Weff) , [111.49] 

or 

n( = - d . [111.50] 

n can be used in equation [111.43] to derive PE(9), the probability 

that an observation will be of intensity between E (= I/Weff) and +d. 

The shape of Pg is dependent only on the value of y, as there is no W,
 

or Weff, dependence. To convert Pg to the intensity-probability
 

distribution involves the simple scaling law:
 
P(I) dl = Pg(I/Weff) d(I/Weff) . [111.51] 

Thus we need perform the involved calculation of Fourier transforms only 
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once for each value of y.
 

The literature on the fluctuations uses a different, though
 

equivalent, notation:
 

n(I) dI = Qeff K I-Y d.[111.52] 

The factor neff serves to convert the coefficient K from S units to I 

units, as R-i was used to convert W to Weff . One can be expressed in 

terms of the other by 

eff = 47 (pi)Y-h * [111.53] 

This shows that neff has, through the factor of 4w, units of solid angle
 

and is often referred to as the detector's "effective solid angle" for
 

fluctuations from power law N(S) models. But the equation shows that
 
-1
aeff also has units of (cm2 s)Y from the response units of R-i" Thus
 

to refer to the conversion factor from N(S) to n(I) as just an effective
 

solid angle obscures the difference between S and I which, in turn,
 

encourages the erroneous practice of attributing fluctuation effects
 

caused by sources with observed intensity I to those caused by sources 

with flux S = I / rmax. That is, it assumes that all sources are 

contributing as if they were at the peak of the response, rather than 

scattered throughout the detector field of view. (Recall the discussion 

of equation [111.33].) 

With our model n, and the algorithm of the last section we now
 

seem prepared to calculate and plot the probability distributions.
 

Before we do this, however, we should note that we have not yet put any
 

lower or upper limits on the range of the power law. Without such
 

limits we are led to infinite values of the cumulants (see equation
 

[111.30]) and since the cumulants are directly related to the
 

probability distribution (see Section A2:1), we appear to be ignoring
 

considerable difficulties. The change of representation from S to is
 

no help;
 

K$; f dE E-"+m [111.54]
 

is equally dependent on the limits of integration for finite values.
 

Although the cumulants are formally infinite without these limits, the
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shape of the distribution will be fairly insensitive to the cutoff
 

values for y near 5/2 and not near two or three.
 

The infinity of the first cumulant, the mean, is handled simply by
 

removing the cumulant from consideration. If we are notinterested in
 

the absolute distribution of Pg(), we can instead investigate the
 

distribution of measurements about the mean by defining
 

" =_ E - r . [111.55] 

Even as T tends to infinity due to more and more low sources, the 

distribution of P9,( -W) is well behaved. In moving from to E' we 

have lost any chance of making an absolute correspondence between our 

expected distribution of intensities and the observations. For the 

intensities we have PI.(I-T), where by analogy I = I-I. I is now a 

free parameter, independent of the particulars of the model for nI . We 

have only a distribution for the fluctuations about some mean. This is 

actually an advantage over an absolute distribution as there may be 

sources and processes contributing to the count rate I but not included 

in the nI model, e.g. internal background or a truly diffuse component 

(not associated with the unresolved sources). It is tempting to 

identify T with the mean observed sky count rate, but this must be done 

carefully or unintentional bias will be introduced when comparing 

different models. 

The higher cumulants, for y < 3, diverge due to the high-flux 

sources. A plot, of PE,(E') is shown in Figure 111.3 for a Euclidean 

model, Y = 5/2. The non-Gaussian nature of the distribution is evident. 

The peak probability is offset substantially from the mean and there is 

a long tail trailing off to positive infinity. This tail asymptotically 

approaches the form (V'T. Measurements far out on the tail are 

dominated by the presence of a single, relatively intense source. The 

probability of such occurrences is roughly proportional to PI( ), which 

in turn is proportional to n(g). 

It is this long tail due to the most intense sources that leads to
 

infinite values for the variance and the higher cumulants. The bulk of
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Figure 111.3: Euclidean model fluctuations distribution
 

P , ') versus E' for y= 5/2. Because the model for N(S)
 
is a simple power law, the only detector dependence is in
 
the scaling parameter Weff 
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the observations are far removed from that region, and appear to be 

approximately described by a skewed Gaussian. We can describe the size 

of the fluctuations in terms of the smallest range in E' containing a 

given fraction of the observations. Fifty per cent of the observations 

are in the range -2.78 < g' < -0.01. Thus, as well as the occasional 

high fluctuation, there are a large number of observations lying below 

the mean. The 90% range is more symmetric about the mean since the long 

tail begins to have an effect: -4.46 < g' < +3.51. To make a comparison 

with better-behaved distributions, which do not suffer from a formally 

infinite variance, we note that for a Gaussian the equivalent 90% range 

is from -1.645 a to +1.645 a. We can characterize the y equals 5/2 
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PE,(') curve as having an "effective sigma" of -2.4. For the
 

intensity distribution, P,(I'), this is a size of -2.4 Weff counts per
 

exposure. Weff is therefore of the magnitude to characterize the size
 

of the fluctuations and it is appropriate to refer to Weff as the
 

"effective width!! of the PIp distribution:.
 

Observations of the fluctuations variance
 

To restore finiteness to the cumulants of Pp, the sample can be
 

restricted to observations below a certain limit, I'u. With this upper

intensity limit the variance becomes finite and has been used as the
 

measurement of the fluctuations [Condon 1974; Schwartz, Murray, and
 

Cursky 1976]. Obviously the exact value of the variance will depend on
 

the chosen I' It is frequently set at the point above which a high
u . 


positive fluctuation would be identified with high confidence as the
 

detection of a single source with intensity > "I'u . The standard
 

practice has been to connect measurement of this truncated variance,
 

C2T,(I'u) , with models for N(S) via equation [111.54] (using m=2 for the
 

variance):
 

-
a2i,(I'u) = (3-y) l Weff2 (I'u/Weff)-Y+3 . [111.56] 

This measurement is dominated by the behavior of n, in the region very
 

close to the cutoff V One might constrain n, at lower intensities
 

using the fluctuations by choosing a suitably low value for I
 

u . 


u .
 

However, equation [111.56] is only an approximation, which is
 

usually valid for I'u Weff . This approximation equates the cutoff in
 

the distribution of sky intensity observations at I'u to the truncation
 

of the integral in the source distribution integral in [111.54] at a
 

source intensity I =I . The approximation is valid when most of I is
u
 

due to a single bright source, i.e. far up the tail of the PI, curve.
 

At lower values of I' the measurement may be increasingly affected by
 

the behavior of sources other than the single brightest one. Clearly at
 

the very lowest values of I', where I << Weff, equation [111.56] breaks
 

down, predicting vanishing variance even though the distribution of
 

observations with I'<O still has a significant extent.
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Figure III.4: a25,((u) versus u y = 5/2 

The dashed line is the approximation of equation [111.56].
 

The solid lines are the actual values for cases with 

varying amounts of non-fluctuations noise: anoise/Weff = 

0, 1, 2, and 4. The y axis is the variance a2 which is 

a2I divided by Weff2 ., 
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The characterization of PI, simply by its variance is further
 

complicated because observations of I are not exact, but are instead
 

photon counting statistics or
measured in the presence of noise such as 


an inherent variance in the non-X-ray background. Let the observed
 

count rate be Iobs, with a probability distribution, Pobs(Iobs), found
 

by convolving PI" with the noise distribution. It is correct to first
 

order, and certainly convenient, to represent the noise distribution as
 

Gaussian with variance a2 noise' If a'obs(Ilu) is the measured
a 


>> Onoise' an
variance of observations with Iobs < I'u , then for I'u 


P(D) for Simple Models
Fluctuations Theory 




111:4 84
 

estimate of o21 is
 

o21Z a2obs - a2noise . [111.57] 

However, as seen in Figure 111.4, reducing V u to - a few unoise causes 

this approximation to break down.--When-the upper limit is placed this 

low, the variance of the noise distribution can no longer simply be 

added to the modeled variance of the fluctuations to get the variance of 

the truncated set of observations.
 

Of course with some suitably sophisticated programs one could
 

explicitly calculate a2obs as a function of Weffand y, thus eliminating
 

the need for both this approximation and the one in [111.56]. I u could
 

then be arbitrarily low but having gone to this much computational
 

trouble we could just as well fit the model parameters explicitly using
 

the entire shape of the Pobs(Iobs) curve, and not just from its
 

variance. Doing the former is based more evenly on the behavior of PI"
 

throughout the distribution, and not just at the high I tail where most
 

of the variance is generated.
 

Non-Euclidean power law models
 

Power law models where y is not equal to 5/2 can be easily
 

generated for 2 < -y< 3. As seen in Figure 111.5, as n(I) becomes
 

flatter and flatter, the distribution becomes more and more skewed, and
 

the fluctuations are increasingly dominated by the bright sources in the
 

tail. For steeper y, the distribution becomes more symmetrical and
 

Gaussian as the numerous low intensity sources dominate. Note the
 

percentage of total probability bars in Figure 111.5. Not only does
 

their skewness change with y, but their magnitude is subject to slight
 

changes. Thus we should remember that the identification of Weff as a
 

characteristic width 'is good but not exact, or at least the
 

identification depends on the value of y.
 

Because of the analytic properties of these power law models for
 

n(I), direct solutions of PI, can be found in terms of an integral
 

equation [Condon 1974] or a somewhat slowly convergent power series
 

expansion [Scheuer 1974]. However, both of these solutions fail when y
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Figure 111.5: P.(E') versus V, non-Euclidean models
 

(a) y = 2.1. (b) y = 2.9. The bars indicate the range for
 
50% and 90% of the observations. The dashed curve is the
 
Y = 5/2 Euclidean case for comparison.
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is outside of the range from 2 to 3., The reasons for this failure
 

provide insight into the general process of calculating the PI"
 

distribution.
 

In Figure III.6(a) the trend for Y + 2.0 is displayed. 

Essentially the peak of the distribution is being moved farther and 

farther from the mean. At Y = 2, the peak is infinitely far from the 

mean. This is the point where most of the mean for the distribution no 

longer comes from the bulk of the low intensity sources, but is
 

dominated by the high intensity sources. So although Y < 2 is a
 

solution to Olber's paradox, the mean is no longer infinite from the
 

low-flux sources, and the utility of the "renormalization" of equation
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Figure 111.6: P, (V) versus ', extreme non-Euclidean models
 

(a) Solid: Y = 2.02, dashed: _Y = 2.1..- (b)- -Soid-:- -v= 
2.98; dashed: Y = 2.9. 
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[111.55] is destroyed. The solution needs to include a cutoff in the 

high-flux sources. It turns out that the principal effect of such a 

high-flux cutoff is in the mean. For suitably high cutoffs any changes 

in the shape of the P9 curve are only significant at very high values 

of C. For the models we actually use, the behavior of Pg, in this 

region will not affect the fits of the models to the data.
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To briefly review the effect of the cutoff on the mean, we
 

introduce a dimensionless parametrization of N(S):
 

NC(C) dC = ()-Y dC, [111.58] 

where
 

C= S / W [111.591 

by analogy to the dimensionless form of n(I) using . The mean is
 

calculated as if Nc extends up to a sharp cutoff at Cu" For T > 2.0 the
 

actual distribution need not have any cutoff. However, we have the a
 

priori knowledge that there are no bright sources above a certain limit, 
say Smax . If we define Cax E Smax/W, the absence of sources above 

adjusts the mean by
 

+ 2 +AT = (2- y Rl W { max - - u- } [111.60] 

Using a finite value for Cmax has a sizeable impact on the position of
 

the mean.
 

In Figure 111.7 we consider a somewhat idealized case. The
 

detector used is the Ist layer of the HED 1, small field of view. As
 

the adjustment to the mean, AT, is proportional to R, the correction is
 

independent of any smearing of the detector. The dashed lines have the
 

-1 - 2
cutoff at 5 counts s cm (essentially infinite). The solid lines
 

- I - 2 .
 were made with a cutoff at the lower value of 0.025 counts s cm
 

This corresponds roughly to the maximum observed flux of a high-latitude
 

extragalactic source. For y near 2.0 the shift is substantial, and
 

although reduced for the Euclidean case, it is still noticeable. This
 

presages some difficulties with determination of the proper value of T
 

to be used in the fits, which are considered in more detail later.
 

Condon and Dressel [1978] show that the integral solution [Condon
 

1974] for P(D) can be extended to power law models with Y less than 2. 

In this case the technique yields the distribution in terms of absolute 

intensities, PT, rather than relative to the mean, PI'. 
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Figure 111.7: Effects of upper source cutoff on P
 

-I 2
 
(a)y = 2.02, Solid: cutoff at S = .0254 counts s cm ,
 

5/2, Solid and dashed
-Dashed-:-cutoff-at S = 5.0 . (b) y = 


as in (a).
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In Figure III.6(b) we plotted the trend as y approaches 3. The 

situation in this case has a similar flavor to that for y + 2. Now it 

is not the mean but the second cumulant, the variance, -that is 

troublesome. As the power law steepens, the low-flux sources contribute 

more to the variance overtaking the high-flux sources in importance at y 

3. Unlike the high-intensity sources, whose contribution to the
 

variance was through the high-intensity tail of the fluctuations'
 

distribution, low-flux sourtes contribute to the variance through an
 

ever widening Gaussian component. Renormalization might suggest itself,
 

(this was how the infinite mean from low-flux sources was handled), but
 

all the information of the model woul be lost. For Y > 3, any finite
 

value of Weff produces an infinitely wide Gaussian distribution unless a
 

low-flux cutoff is imposed. This cutoff could affect more than just the
 

variance, so we consider this addition to the model in more detail.
 

First let us consider an interesting trend. The problems at y
 

near 2 and 3 stem from a shift in the flux regions that dominate the
 

mean and the variance. One might expect that similar problems occur as
 

Y nears 4, where the third cumulant becomes dominated by the large
 

number of low-flux sources rather than the high-flux tail. Does this
 

presage a shift away from the highly Gaussian distributions when y is
 

near 3? Actually, using a low-flux cutoff to avoid problems with the
 

variance, we solve all future problems with higher cumulants. This is 

because the shape of the PI curve is determined by the reduced 

cumulants, i.e. normalized by the variance. It is possible to show 

that even for very steep forms of n(I) the reduced cumulants are
 

vanishingly small. Thus except for the remnants of the effect of the
 

high-flux tail, the FI , curve is well represented by a Gaussian for
 

large values of Y.
 

Power law N(S) models with low-flux cutoffs
 

The effect of a sharp cutoff in N(S) on n(I), the source counts
 

folded through the detector, was explicitly considered by Scheuer
 

[1974], although he analyzed only the case of an un-smeared truly
 

pyramidal detector response. We will consider the general solution for
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any detector response function. We modify the model with a Heaviside
 

function:
 

N(c) d4 = c-Y O( - o) d; [111.61] 

The low-flux cutoff is at So = W Co. We parameterize in terms of the 

dimensionless Co in order to maintain our procedure of using the Fourier 

technique to generate a P ,($') once for a range of values for W.
 

Folding through the detector using equation [111.32] gives
 

n,(9) dE = l(;Y,co) W-y d , [111.62] 

where 4 is the correction term due to the cutoff:
 

- 1= f dr v(r) ry 8( EN_llr - Co) [111.63]

47r (Ryi)Y-I 

Note that 0 is dimensionless. The Heaviside function in the integral 

can be rewritten as e(Ey 1 / o - r). From the definition of -i (see 

equation [11.17]) we can see that 0(>Ec) is identically 1, where the 

critical value of is 

= 
 -i [111.64] 

rmax is the maximum response of the detector. For an ideal flat

response detector, 0 drops to zero below Ec = o C-1/(Y_-). For more 

realistic detectors, * gradually rolls off to zero. 

Cc / 1o.rmax" 


The formalism of equations [111.61] - [111.63] may be generalized 

to any functional form for a cutoff. Instead of the Heaviside function 

in [111.61] we use the general form #(C;ya,8,...), where a, 8, ... are 

dimensionless model parameters like So/W in the above sharp-cutoff 

example. Then the definition of 4(E;y,...) in [111.63] will have 
/
#(D -~ir ;y,...) in place of the sharp cutoff.
 

Minimum cutoff from diffuse flux limit
 

In order to find the fluctuations distribution for steep power
 

laws, y > 3.0, there must be a non-zero Ec" Just as the high-flux
 

cutoff is automatically imposed by the observed lack of very bright
 

sources, so is a minimum value of So invoked to avoid saturation of the
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Figure 111.8: Effects of low-flux cutoff on PE,(')
 

(a) Y = 2.98. Dashed: no low intensity cutoff. Solid: low
 
intensity cutoff set by diffuse sky limit for HED 
1 
unsmeared small FOV. (b) Y = 5/2. Dashed and solid lines 
defined as for (a). 
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diffuse background. If the X-ray all-sky flux is Sas, then
 

so > W [ tC§'-Y2 + (y-2) Sas/W I1 1/(2-Y) [111.65] 

The inequality shows that this is a minimum required cutoff. If some 

fraction Of LSas were due to another population of sources or to a truly 
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diffuse component, then the cutoff should be higher. Whether this
 

minimum cutoff is sufficiently large to impact the form of the PI,(I')
 

curves depends on y and the particulars of the measurement, especially
 

the solid angle of the detector. Unfortunately the position of this
 

cutoff cannot be made an invariant.dimensionless quantity Because Sas
 

is fixed, o must be adjusted when W is varied for the models. So when
 

we use the minimum cutoff, we will have to recalculate the shape as well
 

as the size of Pi" for every value of W.
 

Fortunately, although the cutoff is required for steep values of
 

Y, it is at most a second order effect for near-Euclidean values. In
 

Figure 111.8 we apply the specific case of the HIED 1 Layer I unsmeared
 
-I -2 .
small field of view. Sas is approximately 60 counts s cm The
 

value for W used was -0.06 counts s-I cm- 2, which is in good agreement 

with the resolved sources N(S), as well as what we shall derive later 

from the fluctuations. When y is 2.98, the change is dramatic. The 

curve still looks very Gaussian, but its variance has been slimmed down 

noticeably. The critical value of C is Ec = 2.5xi0-4" This is actually 

a very low number, but for steep power laws, it is noticeable, mainly in 

terms of the missing variance. We will see that an indication of the
 

significance of a cutoff to the shape of PEI is the size of gc" If Ec
 

is less than -0.1, then the cutoff has-little effect other than the
 

missing variance; i.e. it is as if a purely Gaussian term were removed
 

from the distribution.
 

- 7 -1 -2
 For a Euclidean model So is very low, -2.4x10 counts s cm ,
 

by virtue of the more gentle slope. In Figure 111.8(b) the dashed and
 

undashed curves are nearly identical. Cc is -4x10- 6 . Not even the
 

variance is much missed. For models with y near 5/2 the minimum value
 

of SO can be ignored.
 

"Pegged" models
 

The observed behavior of resolved sources is in agreement with the
 

Euclidean model. The variations of the full power law model, with
 

parameters W and Y, that we will consider are "pegged" power law models.
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That is, the basis for these models is the assumption that N(S) below
 

the limit of observation joins smoothly to the known N(S) for resolved
 

source counts. Although continuity is not strictly a requirement of
 

N(S), it is expected any time N(S) is derived from a smoothly varying
 

luminosity function. Let Sp be the "peg" point, i.e. the flux where the
 

resolved source and the model N(S) meet. Let the resolved N(S) be
 

represented by a power law with index and width Yp and Wp. If the model
 

is a power law below Sp, with some y and W, then for a particular value
 

of y we have fixed W to be
 

- - Y -
W = W [(yp i)/(y I)] S [(Y-Yp )/( I)] [111.66] 

We will assume that Sp is high enough so that the only contribution to
 

the fluctuations from sources with S>Sp is far up the high flux tail.
 
The assumption is these sources have a significant effect only on the
 

mean, and not on the shape of PEI.
 

First order modifications to simple power laws
 

Although a simple power law suffices to describe the resolved
 

sources and although we might expect it to continue for some range in
 

flux, an accurate model of N(S) will sooner or later involve details not
 

represented by that single power law. The eventual roll-over will not
 

be a sharp cutoff. There might be another population of sources.
 

Evolution may produce a large number of very dim objects. Of course one
 

can use any specific model to derive a PI, curve that can be compared
 

with observations of the fluctuations but this may be unnecessarily
 

complicated. The vast bulk of models are well represented by a two
 

component model: a single power law with or without a sharp low-flux
 

cutoff; plus an additional number or a deficit of dim sources. We
 

assume the additional component makes a significant contribution to N(S)
 

only in the range of fluxes where there are already numerous sources.
 

In this range the contribution of the new sources is essentially an
 

additional Gaussian. They contribute to first order; only to the
 

variance of the fluctuations.
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More precisely, we split the total N(S) into two parts:
 

"
 N(S) dS = dS { WIC (S/W) ' + A(S)} . [111.67] 

A(S) could be in principle a positive or negative quantity. We assume 

that the power law model given by W and y give a good description of the 

higher flux sources which dominate the positive tail of the 

fluctuations. The impact of the function A(S) is reduced to the single 

value: 

02S tf dS S2 A(S) . [111.68] 

2
s will be referred to as the invariant excess. If it is negative, the 

A(S) term is acting as a deficit, reducing the Gaussian part of PB, in a 

way similar to a sharp cutoff. Although 2 S is not in itself a 

variance, it can be used to form an excess (or deficit) variance:
 

G2 = (R2 / RY- )2 o2
s / W2 . [III.69] 

To obtain the net distribution, a Gaussian with this variance is
 

convolved with the power law derived from PO,('). One can also reverse
 

the process, fitting an excess variance in 9" space and then using
 

equation [111.69] to calculate the invariant excess. The invariant
 

excess is more useful than the excess variance in that it can be used to
 

test various forms of A(S) using [111.68] directly, without referring to
 

a particular collimator size.
 

The various power law models with the additional modelling
 

parameter of the invariant excess cover the range of model behavior
 

investigated in this dissertation.
 

5: Comparisons between N(S) models
 

We derive a general tool, the likelihood difference, to tell
 
how similar a test distribution is to the (presumed) "true"
 
distribution. The relationship of this tool to the
 
likelihood statistical tests allows us, when testing a
 
parametric family of models, to estimate which range of
 
parameters will, on average and for a given number of
 
observations, be outside acceptable confidence contours. We
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apply the tool to pure Gaussian distributions, and to the
 
fluctuation models. The likelihood difference provides a
 
quantifiable indicator of the sensitivity of the
 
fluctuations to details of models for N(S). The ability to
 
distinguish two models for the fluctuations is degraded in
 
the presence of non-fluctuations noise. We find that the
 
behavior of the lowest intensity sources can be well modeled
 
as a purely Gaussian contribution.
 

In considering an ensemble of models, described by several
 

parameters, it is important to ask just how "different" any two of these
 

models are. Would we expect, given data of a certain quality and
 

quantity, that we could distinguish between them? For models which are
 

simple Gaussians, there are several statistical tools available to
 

answer these questions. In our case, though, where the models have
 

distinctly non-Gaussian aspects, we are led to develop a general
 

indicator of "differentness", the likelihood difference. In particular,
 

we are interested in how significant the behavior of the low intensity
 

souces are for measurements of the fluctuations.
 

Likelihood and likelihood difference
 

Consider a set of observations, xi, drawn from a parent
 

probability distribution Po(x) dx. We have a model for these
 

observations which we wish to study, represented by the distribution
 

P(x) dx. We define the likelihood (or sometimes the log-likelihood)
 

that an observation xi was drawn from P(x) as
 

X(xi;P(x)) = -2 in P(xi) . [111.70] 

The smaller the value for X, the more likely the distribution

observation relationship is said to be. As we will later see, the
 

likelihood is used in fitting models and drawing confidence contours for
 

model parameters. For now we need only note that the closer the model
 

is to the true distribution, the lower the expected value of X. The
 

likelihood difference, AA(P(x)), is the mean value of the difference
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between the model likelihood and the true distribution likelihood:
 

AX(P(x)) E <X(x;P(x)) -X(x;Po(x)) > . [111.71] 

The angle brackets, < >, indicate the expectation value of the quantity
 

they tontain as defined by the base distribution Po(X):
 

AX(P(x)) =f dx PO(x) [(x;P(x)) -X(x;Po(x))] . [111.72] 

As an example, let us use data drawn from a simple Gaussian 

distribution with mean xo and variance ao2. The model distributions 
2considered are also Gaussians with mean x and variance a . The
 

likelihood of such models is simply
 

X(xi;xa) = (xi - )2 + ln(2r 02) . [111.731
02
 

Except for the second, logarithmi, term this looks like the
 

contribution of the ith measurement to a X2 sum, strengthening the
 

perception that X has relevance to goodness of fit. For the case where
 

the model has the correct variance, the likelihood difference is
 

AA(x) = (x - x )2 / 2 . [111.74] 

So the difference between two models is just the number of sigma, 

squared, separating their means, an answer in accord with our intuition. 

The likelihood difference is a minimum, and zero, only when x = xo . 

Slightly less familiar, but more relevant to our studies of the
 

fluctuations, is the case where the mean of the model is known to be
 

correct but the variance is a parameter to be determined. Now
 

AX(a 2 ) = 02 02 + ln (2/ao 2 ) . [111.75] 
a2
 

This is still zero and minimized when a2 = Go2 When 02 aOo2 the, 
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likelihood difference is
 

2
AX -6 2 ;6 a - a°2 [111.76] 
2
a 


0
 

The numerical value of AX has real significance. If the total
 

number of observations is N, then,, a model with m fitted parameters will
 

be rejected (on average) at the 90% level when
 

N AX X2m;.90 - m , [111.77] 

where X2M;.90 is the 90% confidence upper limit of a variable from a
 

chisquare, distribution with m degrees of freedom. The demonstration of
 

this statement is given in Section V:2. It is an approximate
 

relationship, most valid in the limit of large N. We can rearrange the
 

relationship in [111.77] to find roughly how many observations, N, are
 

needed to exclude a model.
 

Applying these concepts to the case of the fluctuations, we first
 

examine the case where Y is 5/2, and try to see how AX is distributed as
 

a function of Weff/(Weff)o, where (Weff)o is the true effective width.
 

We define the fractional difference of the two models' widths as
 

6 W = [Weff - (Weff)oJ / (Weff)o - [111.78] 

Note that the fractional difference for W is the same as for Weff since 

the two are proportional to each other as long as Y is fixed. In Figure 

111.9(a) we plot AX(Sw) versus 6W for a Y = 5/2 Euclidean model. With 

only about 60 observations with no extraneous noise we would expect a 

90% confidence range in 6W to be roughly the same size as the range bar 

shown in the figure. The exact values for the limits of the confidence 

range may be different (in fact, by definition there is a 10% chance of 

excluding the 6W = 0 correct model) but the expected size of the range 

in is about ±10%.
 

Thus it seems that even with a relatively small number of
 

observations the fluctuations are a powerful tool. In comparison, the
 

precision of measurements based on the A-2 sample of -60 resolved
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Figure 111.9: The likelihood difference, AX( 6W) versus SW
 

The outer y-axes are for AX, while the central axis is the
 
number of observations needed to place, on average, models
 
outside the 90% confidence range. (a) A log versus linear
 
representation. The solid line is for positive 6W, the
 
dashed for negative. A case for y = 5/2 and no noise is
 
plotted. The bar indicates the range of values that on
 
average would not be excluded from the 90% range when
 
there are 60 observations. (b) A log versus log
 
representation. The positive and negative halves have
 
been folded over onto this one plot. The 4 pairs of lines
 
are for different amounts of noise, * =Onoise/Weff 0
 
(top/left pair), 2, 3, and 4 (bottom/right pair).
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sources is about 17% [Piccinotti et al. 1982]. If we can increase the
 

number of fluctuations measurements from 60 to hundreds we should do
 

proportionately better.
 

The catch, of course, is that we do not have totally precise
 

measurements of the fluctuations' intensity. As mentioned in the
 
discussion of Figure 111.4 in the previous section, noise can, have a
 

significant impact on the interpretation. We will continue to assume
 

that this noise, which is due to counting statistics and uncertainties
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Figure II.10: P;.(V) versus E' with noise
 

The dashed line is for I = 0.0, no noise. The solid lines 
are for V = 1.0 (narrowest), 2.0, and 	4.0 (the widest).
 
The bars are the range containing 50% of the observations
 
for the various solid line models.
 

0.20 

0.16-	 2 

0.14 	 4 

0.12  50% OF OBSERVATIONS 

Pc0.10

0.08 

0.054 

0.02 	 /
 

0.00-20 -15 -t0 -5 0 5 10 15 20 

in the non-X-ray contributions to the signal, can be well represented by
 

a Gaussian distribution, which we will parameterize by
 

*= Onoise / Weff -	 [111.79]
 

When i) is much less than about 1, the basic no-noise PC, curve is a good 

approximation. When * is much greater than 1, the curve looks more and 
more Gaussian with a variance equal to about (f) 2 + .2 where *f is a 

constant -1 to represent the intrinsic uncertainty contribution from the 

fluctuations (Figure III.10). At very high fluxes the power law tail 

will dominate the Gaussian noise, but this could be as high as the known 

source intensities if V is large enough. 
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In Figure III.9(b) we plotted AX(SW) versus 6W for a variety of 

values of 1P. The plot has been made log-log, with the negative branch 

of Sw shown as a dashed line. Examination of the slopes of the lines 

will show that to first order 

AX(6W) - 2.9 6W2 / (1.1 + P2 ) * [111.80] 

In the presence of noise two models become more indistinguishable as
 

their likelihood difference drops. However, given enough observations
 

one can expect the confidence ranges to get arbitrarily small. It
 

should be noted that for a fixed number of observations, we can reduce
 

the expected size of the confidence range by reducing the noise.
 

However there is an irreducible size to the confidence range, even for
 

observations with no noise, generated by the fluctuations themselves.
 

Limits on the fluctuations
 

In principle, an exact description of the fluctuations'
 

distribution, PI(I), would totally determine the shape of N(S) dS for
 

all values of S, (given certain assumptions, e.g. that the sources are
 

not clumped). However to successfully make such a total determination
 

of N(S) would require not only ideal noise-free observations, but an
 

infinite number of them. In reality we are constrained by both finite

area imperfect detectors and the firm limit of 47 steradians in the sky
 

which limits the number of independent measurements for a finite solid
 

angle detector. The fluctuations are not equally generated by all
 

sources, and so our determination of models for N(S) will be dominated
 

by a particular range of source fluxes.
 

The literature on the analysis of fluctuations, in particular
 

Scheuer [1974], often suggests that the information concerning n(I)
 

derivable from the fluctuations about n(I) extends only down to the
 

intensity level where there is approximately one source per field of
 

view. Scheuer's argument begins with the observation that a "typical"
 

fluctuation is about 1.7 times the intensity of the brightest source in
 

a typical beam. His estimated value of 1.7 is the expected variance due
 

to all sources with intensity less than that of the brightest source.
 

He argues, "Evidently the numerical constant (1.7) is of the order of 1
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and not sensitive to the form of [n()J so long as [the variance]
 

converges" which always happens when y is less than 3. This argument is
 

correct but incomplete. The.expected value of l, the value of the
 

normalized intensity for the brightest source in the field of view, is
 

< = (Y-1 1/( l) [111.81] 

For Euclidean models this is an intensity -0.76 Weff, so that 1.7 times
 

this, or -1.3 Weff is certainly the right magnitude for a typical
 

fluctuation. Unfortunately, this begs the question of what intensity
 

sources produce this typical fluctuation, and it implies we can ignore
 

the variance of those sources with intensities less than El. Suppose
 

there is a sudden cutoff in ng at C" The total variance from sources
 

from Ce up to E1 is
 

U 1 (3-y)-i 3-r f1 [111.82]= I~c-


The absence of any sources below , will cause a deficit in the variance
 

compared to the case where n extends all the way to zero:
 

A(a)= (c )3-y , [111.83] 

whenever y < 3. For the Euclidean model, the missing fractional
 

variance goes like (Cc/l)1I/2. It is true that most of the variance
 

comes from sources near E1 but the square root dependence on Cc means
 

that a large fraction comes from the low intensity sources. This
 

missing variance could be detected given enough observations, no matter
 

how low the value of $c. A rough indication of the likelihood
 

difference between a model with a sharp cutoff at c and one without a
 

cutoff could be found by using the approximation of [111.76].
 

, 


Rather than use any approximation, we will actually use the
 

likelihood difference to tell us how sensitive we are to distinguishing
 

a model with a sharp cutoff from a reality with no cutoff, i.e. if the
 

data is drawn from a fluctuations distribution where N(S) continues
 

unbroken to zero (ignoring Olbers paradox) then the likelihood
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Figure III.11: P,,(E') versus C', with a sharp cutoff in N(S)
 

y = 5/2, see text for details of detector spatial 

response. (a) p -0.0 (no noise). Solid:. a -= 0.5, 
dashed: c = 0.0. (b) * = 2.0. Solid: Ec = 0.5, 2.0, 

dashed: c = 0.0. 
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difference will indicate which models with sharp cutoffs are expected to 

be outside the confidence range. In the previous section we saw that 

the form of n( ) for a sharp cutoff in N(S) at low S depended on the 

detector spatial response through v(r). Let us first consider the case 

of a highly smeared detector, where the amount of smear in both 

directions is much greater than the FWHM collimator sizes. This is a 

good approximation to our flat-topped ideal detector. In Figure 

III.11(a) we use this detector to plot P,.with a sharp cutoff at = 

0.5 versus PE, with no cutoff. We immediately see a striking difference 

between the curves, which should be trivial to detect with only a few 

observations. The single isolated sharp -peak on the left for the 9e = 

0.5 curve is actually a delta function, representing the significant
 

probability, -0.15, of no sources at all being in the field of view.
 

All observations for this case have the same intensity. The strong bump
 

and decay to the right of the delta function cover the curve when there
 

is only one source in the field, the next bump when two sources are
 

present, and a slight break exists when three sources are in the field
 

of view. The regular spacing between these features occurs because the
 

minimum source intensity is 0.5. (We expect these features, in a true
 

flat-tesponse collimator, to have very sharp rises, but here they are
 

smeared by the approximation to a flat collimator.) In Figure 111.11(b)
 

we see that most of this structure is washed out in the presence of even
 

moderate amounts of noise, IJ= 2.0. The presence of the cutoff in ng is
 

now indicated only by the missing variance.
 

In Figure 111.12 we plot the likelihood difference assuming that
 

the no-cutoff case is the true situation. The no-noise, V = 0, curve 

indicates that cutoffs as low as 0.1 can be ruled out at the 90% level 

with as few as 60 observations. This is about one seventh the level of 

one source per field of view. In fact this cutoff corresponds to about 

21 sources in the field of view. When noise Is significant, the 

likelihood difference is sharply reduced. When V = 2, we need a tenfold 

increase in the number of observations to be able to exclude a Ec = 0.1 
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Figure 111.12: Likelihood difference versus sharp 9 cutoff, Y = 5/2
 

Reality assumed to be 9c = 0 (no cutoff). P = 0, 2, 3, 4. 
Righthand axis gives the number of observations so that 
the model will on average be outside the 90% confidence 
contour. A flat spatial response detector is used. 
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Ec' the likelihood difference is 

Ax() ) 0.9 cc / ((1.5)2 + *2)2 . [111.84] 

The fluctuations still provide an irreducible source of noise, now
 

acting as if it has an effective "sigma" of -1.5 Weff Again, with
. 


sufficiently many observations a confidence region of arbitrary width is
 

obtainable, depending on the behavior of n(I) far below the level of the
 

average brightest source per field of view.
 

The application of these limits to realistic data requires a value 

of *. The size of the noise variance is mostly a function of detector 

area, solid angle, and total exposure time per measurement. The last 

criterion is rarely constant for all measurements in a dataset. The A-2 

data we will use for the fluctuations analysis has a typical value of *
 

- 1.2, although there is a fair amount of dispersion. Previous analyses
 

of the fluctuations used data with 'Pin the range from 1.5 to 4.5 (see
 

Section VI:6). The combination of low * and several hundred
 

observations make the A-2 data the current best all-sky dataset for the
 

study of the fluctuations.
 

Gaussian and non-Gaussian aspects
 

Notwithstanding the arguments above, it is unfortunately true that
 

the fluctuations are relatively insensitive to the exact form of nE( )
 

for low-a sources. Suppose there are n objects with reduced intensity
 

. ~They can be thought of as providing a modified Gaussian with 

variance n E2. We can conceptually divide into two parts the 

contribution of these sources to the form of the fluctuations: a pure 

Gaussian and a portion that represents the non-Gaussian aspects of the
 

Poisson distribution. As the number of objects, n, increases,
 

equivalent to lower E for power law distributions, the Poisson nature of
 

their contribution to the fluctuations is represented better and better
 

by a Gaussian.
 

What was the dominant aspect of the missing sources when we 

sharply cut off a power law distribution? In other words, for what 

range of values of E is it acceptable to model the source contribution 
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only in terms of a Gaussian with the proper variance? In the y=5/2 case
 

we saw that over a large range the likelihood difference was
 

proportional to the position of the cutoff,. E" For this value of Y,
 

the variance of these missing sources is = ( c)1/2 (see equation
 

[I1.831') 'Thus there is a strong similarity between equations [111.84]
 

and [111.76]. Most of the likelihood difference is due to the missing
 

variance.
 

This suggests a way to show roughly where the non-Gaussian aspects
 

of the fluctuations from low flux sources become important. We do this
 

using the likelihood difference of a model with a sharp cutoff versus a
 

parent distribution with no cutoff, but in addition we include in the 

model a purely Gaussian contiibution of the missing sources using 

equation [111.82] for the range from 9 = 0 to c" The effect of this 

Gaussian distribution is to smooth the sharp peaks and the delta 

function of the Cc = 0.5, no noise, curve in Figure III.11(a). The 
-
likelihood difference drops to -9x10 4 from a value greater than 1 when 

all the low flux sources contribution to the fluctuations are removed. 

Thus in order to be sensitive to the non-Gaussian aspects of the missing 

sources we need -2000 observations, even in the absence of noise (1P= 

0). As plotted in Figure 111.13, -400 observations are needed to be 

sensitive to the non-Gaussian nature of sources below a Ec of 1. As 

noted before, adding significant Gaussian noise makes the P9 curves look 

essentially Gaussian even with very high cutoffs. We see in Figure 

111.13 that even for sources at C as high as 5, their non-Gaussian 

contribution is unimportant for h = 2 unless there are over 300 

observations. 

This specific example can be extended~to more general commentary 

on arbitrary ng(g) distributions. A similar likelihood difference curve 

would result if instead of cutting off the distribution at Cc we doubled 

n( < c). In fact any additional component to n(E) that is significant 

only below C - 1, when added to the power law c-5/2 base, will have as 
its dominant effect an additional contribution to the Gaussian portion 

of the fluctuations, particularly in the presence of any non

fluctuations noise. 
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Figure 111.13: Sensitivity to non-Gaussian aspects of P,, measured by
 

the likelihood difference
 

Y = 5/2, flat detector, reality assumed to have Ec = 0.
 
Now the variance due to sources below the cutoff c is 
included but not their contribution to the higher 
cumulants. Note the different range of the C scale versus 
Figure 111.12. 
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We may now with greater understanding and precision restate 

Scheuer's limit: when analyzing moderate numbers of observations, the 

information about n(I) below the one-source-per-field-of-view limit, C 

1, derivable from the fluctuations, is restricted to the contribution 

made by such .sources -to the variance. What constitutes 'a "moderate" 

number of observations depends on the value of 'P, the noise-to-signal 

ratio of the fluctuations. For no noise, "moderate" is -600 independent 

observations. For ip = 2, moderate means up to 16x10 3 observations. 

Thus even this "limit" is not a hard one in that with a sufficient 

amount of data, the limit may be pushed to lower values of C. This 

understanding-of the limits of the fluctuations for evaluating models of 

N(S) is what allows us to reduce complicated models to a single power 

law with a Gaussian excess as we proposed in equations [111.68] and 

[111.69].
 

To round out the discussion of what the lowermost E sources 

contribute to the fluctuations, we should investigate the effect of the 

very highest intensity sources. We could go through a similar 

likelihood difference analysis but this time intuition suffices. 

Clearly when C is high enough that there is a negligible chance that 

such a source will appear in one out of N observations, bright sources 

can have only a marginal effect. We can ignore their impact on the 

shape of the fluctuations if we fit only observations with intensities 

below a certain upper cutoff. This cutoff must be high enough so that 

source intensities at or above it are still many times Weff, and so that 

the observations are dominated by a single bright source. Care must be
 

taken. Though the shape below the cutoff may not have much to do with
 

those brighter sources, the placement of the mean with respect to the
 

all-sky average intensity may still be impacted by their behavior
 

(recall Figure 111.7).
 

Fluctuations Theory Comparing models
 



111:6 109
 

6: The Evaluation of Ideal Experiments for the Measurement of the
 

Fluctuations
 

We consider the competing effects of counting statistics,
 
number of observations, and variations in the non X-ray
 

count rate in the design and analysis of experiments to
 
measure the fluctuations. When we wish to measure the W
 

parameter of N(S), large sky coverage is preferred to a few
 

deep measurements. An optimal beam size for such
 

measurements exists, depending on the internal background
 
contribution to the noise. To measure the behavior of the
 

low flux sources through the invariant excess, 2S, lower
 

noise is more important than sky coverage and number of
 
observations. Measuring the fluctuations with idealized
 

imaging experiments is briefly discussed. The ultimate
 

limitation of such experiments (for the fluctuations) comes
 

from spatial variations in the internal background.
 

In the last section we showed how the precision of any measurement
 

derived from the background depended on the number of observations and
 

on the ratio, 1P, of the other sources of noise to the effective size of
 

the fluctuations. For real measurements, neither parameter is
 

infinitely or even independently adjustable. For instance, an increase
 

in the number of observations is often gained at the cost of reduced
 

observation time per observation thereby increasing the size of the
 

photon statistics versus Weff* The size and shape of the collimator
 

intrudes in a complicated way in this trade-off so as to impact optimal
 

collimator size for a particular experiment. In this section we
 

consider the interaction of these various parameters in the design of
 

experiments. Though we will cast our results in terms of "real"
 

detector characteristics, such as area, internal background, et cetera,
 

we will defer applying these calculations to known detectors, e.g. the
 

A-2 experiment. This is because of special details of the method used
 

by HEAO 1 to perform the all-sky survey.
 

We will try to illustrate qualitatively some general points about
 

experiments that measure the fluctuations. In addition, should a future
 

opportunity arise for further studies of fluctuations these equations
 

will be useful.
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Physical detector characteristics
 

All information about a detector and its measurements of the
 

diffuse background are tied up in its Ras the response moments defined
, 


in equation -II.17-]. We remember that they may be divided into a part
 

that depends on the angular response and a part that is related to the
 

peak response to a point source:
 

Ra = Ca A t. [111.85]
 

A and t are the detector area and the exposure integration time. For
 

the ideal flat-response detector:
 

Ca = o/a . [111.86]
 

CO is the total fraction of the sky to which the detector has non-zero
 

response. When using the flat-response detector in an example we by
 

convention replace all the Cos with a simple C as an indication of that
 

specific case.
 

Measurements with this detector will be subject to uncertainties. 

We will model the uncertainty by a total variance in the measurement 

which consists of three parts: / 

U2 tot a2f + 02p + a2int, [111.87]
 

representing the contribution of the fluctuations, photon statistics,
 

and internal variations. Though the fluctuations as we stressed in the
 

last few sections, are not Gaussian, it will not be too inaccurate for
 

present purposes to represent their contribution to the imprecision as
 

o2f = (f Weff)2 [111.88]
 

The coefficient, Pf, of the effective width is a number of order 1. Its
 

actual value will depend on the kind of quantity being measured; e.g.
 

in the last section we saw for measurements of Weff the imprecision
 

contributed by the fluctuations was approximately of the form of
 

equation [111.88] with 1f
i.1.
 

The photon noise, modeled by a Poisson distribution, has a
 

variance equal to the total number of counts in the intensity
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measurement:
 

02p = I =ZC t Sas + B . [111.8911 A 


Sas is the all-sky flux from X-rays and B is the number of internal
 

background counts. The dependence of the internal background on the
 

detector construction can be parameterized:
 

B =A t [111.90]
 

where 5, the specific internal background, is the number of non-X-ray
 

-1 -2
counts s cm .
 

S2 int is a general term describing all other sources of variation.
 

The most obvious such source is intrinsic variation in, or imprecision
 

in, the estimate of the internal background. The variance it would
 

.
contribute would be roughly proportional to (A )2 The dependence on
 

the length of the integration time is more difficult to quantify without
 

actual in-orbit study of the problem. $ could be have roughly periodic
 

behavior with a characteristic period t. For integrations much longer
 

than tb, 2 nt will be independent of t, with magnitude roughly tb2
 

times the mean square amplitude of S. For short integrations, or the
 

sum of a series of short integrations separated by intervals much longer
 

than tb, the variance will be proportional to the integration (or sub

integration) time squared. For an auto-regressive process [see Jenkins
 

and Watts 1968; Tennant, Mushotzky, Boldt and Swank 1981], the variance
 

will depend on a.range of powers of t. For short integration times, it
 

is proportional to t2 and in the limit of long integrations it is
 

proportional to t. Similar asymptotic behavior is observed for random
 

processes described by shot noise [Sutherland, Weisskopf and Kahn 1978].
 

Purely for reasons of algebraic simplicity we will assume that
 

02int = b A2 02 t [111.91] 

where b is a constant of proportionality. The analysis would only be
 

affected in the event that the experiment has a severely high a2int and
 

we were in the wrong integration time regime.
 

Measurement of point sources
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Given a measurement of a point source with flux Sps,
 
Ips A t Sps [111.92]
 

we see there are many ways to maximize the signal-to-noise ratio,
 

1/0t t We can increase the integration time without limit, unless
 

02int increases with t faster than t
2 . We can decrease the solid angle
 

of the detector, decreasing both Weff and the contribution to the photon
 

noise due to Sas until the internal background dominates through the
, 


photon statistics. Finally we can increase the area until the
 

fluctuations dominate. We will study this irreducible complication of
 

the fluctuations on resolved sources and other studies of the sky in
 

more detail in the next section.
 

We can combine the photon and internal variances and identify them
 

with the u2noise of the last section so that the total variance is
 

V2 
t =2to= Weff 2 ( *f2 + ) , [111.93] 

where
 
2
a2 +o [II.s
 

= a 2 t2int - ClSas + (+A92)4]
2Weff2 A t ( _1)2 W

Y and W are the parameters that describe the fluctuations. We can
 

rewrite this, retaining only the dependence on the experimentally
 

adjustable values of t and the detector angular response:
 

-
= t I ( T2_i)-2 [C, *2sky + 2 int]. [111.95] 

The, values for Vsky and lint now contain all the information about the 

sky brightness, size of the fluctuations, detector area, specific 

internal background, etc. They are not dimensionless, as lf and ' are. 

Note that the X-ray surface brightness and the internal background have 

been apportioned between them. 

Measurements of W
 

For the moment let us fix y. From our analysis of the last
 

section (see equations [111.77], [111.80], and Figure III.10) we can
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relate the fractional size, squared, of the 90% confidence range in W to
 

N-1
S - (1.7/2.9) ('f 2 +ip2 ) , [111.96] 

for the case of y = 5/2. The coefficient 1.7 comes from X2 1;.9 minus 1 

for the single degree of freedom. The factor 2.9 is from an approximate 

numerical fit to the results displayed in Figure III.10. These same 

fits show that for determinations of W, 1.f1..
 

We first note that if N, the number of independent observations,
 

is fixed for some reason, then to minimize the confidence region we
 

adjust the solid angle and the integration times to their highest
 

possible values. This is because SW will be minimized when *2 is
 

minimized. For the flat-response detector, the solid angle response
 

dependence of *2 is
 

V2 = t-i [ C-1 / 3 2 sky + C-4/3 2 int ] [111.97] 

This shows that there will be basically two limiting regimes. For large
 

enough solid angles,
 

C1 > (0 + b A 82) / Sas , [111.98] 

and the size of the confidence range will be dominated by Sas through
 

*2sky' For the smallest solid angles, the internal background will
 

dominate either through photon statistics or the extra internal
 

variance.
 

The above case, where N was fixed, is of course artificial. In
 

the design of -real experimental protocols, the number of observations
 

will be a design parameter to be optimized. A more realistic constraint
 

is T, the total time available for observation related to the single
 

observation integration time by
 

t = T/N . [111.99]
 

Now we wish to minimize
 

82W M1 + Z[111.100] 
N T* 

Z, which equals 4f-2 t '2,contains the only C dependence. NoW the 

optimal strategy is to increase the solid angle as much as possible 

while also maximizing the number of observations. Clearly this will run 
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into another constraint. There are, after all, at most 41u steradians in
 

the sky available for observation, so that the product
 

Ctot = N Co [111.101]
 

must be less than one. -In fact after removal--of-contaminating resolved
 

sources and the region at low galactic latitudes the constraint will be
 

=
Ctot ' Cmax 1 - contaminated sky fraction . [111.102]
 

Now the optimal situation is where Ctot = Cmax and the detector 

solid angle response is set at some optimal size. For a flat-response 

detector in the sky-flux dominated region, this is 

C ( Cmax 2 sky / 312fT )3/4 . [111.103] 

As the sky brightness increases relative to the size of the
 

fluctuations, or as the total time for the experiment is decreased, the
 

optimal collimator size for the measurement of W is increased. This
 

allows for an increased amount of time per observation which damps the
 

size of the photon statistics versus the fluctuations. In the internal
 

background dominated regime the optimal flat response detector size is
 

C (4 Cmax p2int /3 l2f T)3/7 . [111.104] 

Measurements of low-flux behavior
 

Though an optimal measurement of W might argue for decreasing the
 

size of the collimator to a certain point, and no farther, there is an
 

independent reason for desiring as small a field of view as possible.
 

Most of the fluctuations will be from sources with reduced intensities,
 

C, ranging from a few tenths to a few tens. To determine the
 

corresponding range of source fluxes, we modify equation [111.36]:
 
<S(O)> = W E (C_I/Cy)Y . [111.105] 

<S( )> is the expected flux of a source with reduced intensity . For 

the flat-response detector this is just W C. The smaller the field of 

view, the lower the values of S that we probe with our measurements of 

the fluctuations.
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The sensitivity to the behavior of the very lowest flux sources is
 

determined by how well we can measure the excess or deficit variance.
 

In the last section we noted the similarity of equations [111.76] and
 

[111.84] which indicated that being able to distinguish sharp cutoffs
 

reduced to being able to distinguish the addition or deletion of the
 

variance of a pure Gaussian distribution. If we are interested in
 

setting an upper limit to any other source of fluctuations through their
 

variance, c2, the size of the 90% upper limit should go as
 

- 2
6() N 1/2 ( P2f + P ) [111.106]
 

For these measurements, 'pf is about 1.5. Note that increasing the 

number of observations is less important than decreasing the size of the 

noise term V. Because of this, it will turn out that even for a fixed 

detector angular size, there is an optimal number of observations for 

investigating any excess variance, in contrast to measurements of W 

where the more observations the better, subject to the limitations of 

the total amount of sky available. Of course if we are investigating 

the optimal-size field of view, we are interested in the upper limit 

that can be placed on the collimator-size-independent invariant excess, 

02S . The relationship between 02g and o2S was given in [111.69]. Since 

we are now investigating a quantity related to flux, rather than to the 

reduced intensity, 9, we no longer use * to characterize the noise. 

Instead,
 

2)-2
6(02S) N-1/ 2 (Cf
x{(PfC._iW)2 + t-l[lsky + int], [111.107] 

where
 

sky = Sas/A ; int = (0 + bA2)/A . [111.108] 

The first term of the sum in [111.107] is the irreducible contribution
 

that the fluctuations make to the upper bound, as indicated by its
 

dependence on W2 .
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For the y = 5/2, sky-dominated, flat-response detector
 

6(02S) a CI/6  [111.109]
 

This says that the smaller the collimator the better, but with an
 

exponent of 1/6, the gain in precision is very slow. The optimal number
 

of observations for a particular value of C is
 

2
N = C1/3 T (Qfw) / 4 sky * [111.110]
 

As the solid angle is decreased, the total observation time should be
 

distributed among fewer observations so that photon statistics do not
 

dominate the measurement of the invariant excess. When the non

fluctuations component of the noise is internal-background limited, the
 
- 1/3
confidence range is proportional to C . Smaller solid angles in this
 

regime do not improve the upper limit of the invariant excess.
 

Therefore the ultimate limit of a detector design for studies of the
 

behavior of low-flux sources is determined by the size of *int"
 

In the above case we also note that the optimal number of
 

observations depends on the size of the underlying distribution of
 

fluctuations from the power law N(S) component. Of course if we are
 

measuring deeply enough we expect to run out of sources eventually, with
 

the number-count gradually rolling over. A proper application of the
 

above formula in those regimes will require the use of the proper index
 

at S corresponding to E of a few. In some cases, no good measurement of
 

W, or Y, is possible at all. For those circumstances it is probably
 

best to quantify the effects of the fluctuations purely as a variance
 

term. In this case the first term in the sum of equation [111.107] must
 

be replaced with the contribution due to that pure variance. Now the
 

confidence range on the invariant "excess" (now with no power law base)
 

is
 

1 / 2  02S + t
- [Cl~sky+fint]6(02S) . N- 0 I (C2)-2 }. [III.1111 

Further, the optimal number of observations, in the sky dominated
 

regime, is
 

N = U2S T /%sky, [111.112]
 

independent of the size of the collimator. As a result, the confidence
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range on the fluctuations is independent of the collimator size as long 

as the collimator size is small enough that Ctot = N C is less than 

Cmax, the total available fraction of the sky, and large enough to be
 

outside the internal background regime.
 

Experiments with imaging detectors
 

Imaging detectors have certain properties that affect the design
 

of an optimal experiment. The two parameters which have the greatest
 

effect on measurement of the fluctuations are T, the total experiment
 

time, and *int' the internal background contribution. The calculated
 

impact of both is changed when the total exposure solid angle can be
 

divided into pixels. Any concentrating detector removes the dependence
 

of the internal background on the effective area of the experiment given
 

in equations [111.90] and [111.91]. In addition,, if the total imaging
 

area is divided into m pixels, each one will be able to take data
 

contemporaneously with the others. Thus everywhere that T appears in
 

the above equations we may without loss of generality replace it with
 

the product Tm. As it is always of benefit to increase T, we should
 

design an imaging experiment so that the total image area Cim = mCo is
 

as large as possible. C0 is now the sky coverage of the pixel.
 

Given a particular value of Cim , the calculation of the optimal
 

values for C are now changed. One of the major changes is in the
 

scaling of the effects of the internal background. As well as removing
 

the dependence on collecting area, the number of internal background
 

counts in each pixel will be proportional to the fraction of the total
 

image area it occupies:
 

B - t a CO / Cim * [111.113]
 

Now the specific internal background rate, 8, is the rate for the total
 

image area. Therefore, as Cim is divided into smaller and smaller
 

areas, the internal background of each observation shrinks
 

proportionately. Insofar as the measurements can be idealized as having
 

flat spatial (solid angle) response, which is the case whenever the
 

pixel size is greater than or the same order as the intrinsic spatial
 

response of the imaging system, the ratio of the sky counts. to the
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background counts is fixed. There are no limitations to pixel size from
 

a criterion based on the photon versus background counts.
 

The excess variance due to the internal background is another
 

matter. At first it might seem that a similar argument would hold, that
 

the decrease in the size of the pixel would quench a2 int just as it
 

quenched the magnitude of B. This is true for the excess due to the
 

temporal variations in the internal background where a2 nt Co2. 

However, as indicated by the "-" in equation [111.113], there may be an 

additional source of variance due to spatial inhomogeneities of the 

internal background rate. How these scale with C depends on whether 

there are natural scale sizes to these inhomogeneities. If C is larger 

C2
than these natural scales, 02int C, while if much smaller, a2 int ' .
 

In principle, several deep exposures of several different fields of the
 

sky should allow an estimat of these structures, assuming that they
 

have a temporally invariant magnitude. Ironically, a real complication
 

to such a program is the noise contributed by the sky fluctuations.
 

We write the two separate contributions to 2int as
 

82 C2
S2int b' + b" t2 82 C [111.114]
 

The first term is from temporal variations in the internal background,
 

while the second term is from small spatial variations. Now for the
 

total noise we have three, rather than two, regimes. The first, the
 

photon noise regime, is important when the solid angle is small enough
 

so that internal variance from temporal instabilities is quenched:
 

C < [(SasA) + (/Cim)] / b' 82 . [111.115]
 

The second regime applies when the solid angle is too large to satisfy
 

this condition. The third regime occurs when integration times are long
 

enough that spatial uncertainties in the internal background are larger
 

than photon statistics or temporal instabilities. This will happen for
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times
 

[111.116]

+ Cb' 2 
t > SasA + (O/Ci) 


b" 2
 

The optimal size pixel for a measurement of W for a fixed Cim is
 

small for the second and third regimes. If the integration times are
 

short enough and C small enough so that the photon statistics term
 

dominates, there will be an optimal size:
 

(4
C = Cmax Cim 2 pho / 3 2f T)3/7 	 [111.1171
 

where
 

2
2ph - Sas + (S/CimA) 	 [111.118] 

is similar to qP2 sky except it now includes the photon statistics
 

contribution of the internal background.
 

Measurements of the invariant excess are also changed for an
 

imaging detector. The procedure for finding the optimal pixel size is
 

much the same process as we outlined in the previous non-imaging case.
 

The size of the confidence range is still more sensitive to the noise
 

than to the number of observations. The optimal number of observations
 

is the same as given in equation [III.110] after replacing T with the
 

product Tm and including the counting statistics from both the sky and
 

internal background in sky*
 

7: 	Fluctuations and Other Measurements: Confusion Noise and Correlation
 

Studies
 

The fluctuations are an important consideration for other
 

measurement programs. Intensity measurements for low flux
 

sources will have a fluctuation contributed uncertainty in
 

addition to photon counting statistics. The correlation of
 
X-ray surface brightness measurements with other data are
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similarly affected by the additional noise, though not if
 
the fluctuations are the signal that is being analyzed. For
 
data sets with substantial spatial overlap between
 
measurements, the fluctuations will also reduce the
 
effective number of independent measurements.
 

The fluctuations are an irreducible source of noise in studies of
 

the X-ray sky flux. In the devolopment of the AX measure of sensitivity
 

of data to aspects of fluctuations models, we saw that even in the
 

absence of all other variation (4 = 0), the variation from the
 

fluctuations are a source of uncertainty in evaluating N(S) models.
 

Similarly, the fluctuations also impact other measurement programs. In
 

this section we estimate the magnitude of this impact for a variety of
 

situations.
 

Single measurements of source intensities
 

We have already noted that the fluctuations provide an additional 

uncertainty in measuring the intensity of a point source. Consider 

first an example where the source intensity is determined by a single 

measurement where the source position is known to be at the peak 

response of the exposure, rmax. Let Itot be the total measured 

intensity, and Is the sky flux. Therefore, Is = R1 Sas is the mean 

contribution from the sky flux. The true source flux, St is 

St = (Itot - Is) / rmax [111.119]
 

but because we can not know the true value of Is at that particular
 

position in the sky, even with no photon statistics uncertainty, there
 

is an intrinsic uncertainty in the estimated source flux
 

Se = (Itot - Ys) / rmax . [111.120] 

The approximate size of the uncertainty in I s is -2. 5Weff, so that the 

minimum uncertainty in the source flux is 

6s;fluct - 2.5 Weff / rmax . [111.121] 

The factor of 2.5, we recall, is an approximation based on the size of
 

the 90% confidence range of the Euclidean PI,(I') curve. In Figure
 

111.14 we plot the size of other ranges. The asymmetric nature of the
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Figur 111.14: Integral probability ranges for PI for different
 

values of *
 

The solid curves are the minimum range of C that -contain
 

the indicated percentage of the area. The dashed lines
 
are approximate fits to the behavior, assuming that the
 
fluctuations and the non-fluctuations noise, as
 
parameterized by 4, add in quadrature. The fits were
 
performed only for V restricted to the range 1 to 4.5.
 
The short dashed line is the distribution median.
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distribution is illustrated by the nonzero position of the median. In
 

addition the position of the range for areas greater than 90% show the
 

effects of the high flux power law tail of the distribution. The 99.9%
 

range runs from -7 Weff 	to over 50 Weff . Figure 111.14 also illustrates
 

the effect of additional noise, which is adds approximately in
 

quadrature to the fluctuations noise. This approximation does not work
 

that well for >95% limits. At the high end, the power law tail of the
 

distribution is essentially unperturbed by the presence of even very
 

large amounts of noise 	(1h5).
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The statistical distribution of the source intensity is a mirror
 

image of the fluctuations distribution, distributed about the mean Se$
 

. 
and scaled by Weff / rmax The reflected nature of the correction
 

means that the small chance of a large positive fluctuation in the field
 

of view corresponds to large negative correction to- the source
 

intensity. Reducing the measurement solid angle has the effect of
 

reducing the amplitude of the fluctuations. For example, for the ideal
 

flat response detector (see equation [11.21])
 

6S;fluct RY-1 / rmax . [111.122] 

C is the fraction of 47T steradians subtended by the detector. For a 

Euclidean power law N(S), 62 S;fluct C4/3 . The reduction of the solid 

angle will also reduce the contribution of the sky flux to the
 

measurement. Therefore, the photon statistics uncertainty of the source
 

flux is reduced. Again for the ideal detector this scales as
 

62S;pho = C , 
 [111.123]
 

assuming that the source intensity is small so that the sky intensity
 

dominates the measurement. For a given integration time, t, as C+O the
 

contribution from the fluctuations will eventually fall below that of
 

the counting statistics. On the other hand, if the measurement solid
 

angle is fixed, then the integration time can be increased so that the
 

fluctuations will be the predominant uncertainty, assuming there is no
 

contribution to the uncertainty of the measurement due to variation in
 

the internal background. The size of the photon variance is inversely
 

proportional to the t, while 6S;fluct Ry-i/rma is independent of t.
x 


Therefore, the fluctuations provide the ultimate limit to the precision
 

of flux measurement obtained with a perfect detector and infinitely long
 

integrations.
 

The fluctuations and baseline subtraction techniques
 

In this discussion we have assumed an a priori knowledge of the
 

mean sky intensity, T, in deriving the mean source flux in equation
 

[111.120]. The value was derived from the all sky flux assuming that
 

the sky flux was totally isotropic, apart from the fluctuations from
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unresolved sources. If there is significant large scale structure,
 

which we will see is true for the HEAO I A-2 HED and NED data only near
 

the galactic plane, then a more local estimate of the mean sky
 

contribution to the intensity is required. This is usually accomplished
 

by a series of "off-source" measurements which will be called the 

baseline, 'For illustration we consider a baseline consisting of N
 

nonoverlapping measurements with the same spatial response as the source
 

measurement. Instead of using [111.120] to estimate the source flux we
 

use
 

Se = (,tot - Tbase ) I rmax . [111.124] 

Ibase is the average baseline intensity
 

'base = (1/N) IIbase;i [111.125]
 

±
 

where Ibase;i is the ith baseline measurement. If the baseline is a 

good estimator for the sky flux contribution to the source intensity 

measurement then the expected value of (Is - base ) is zero. Since the 

expected value of Itot is rmaxSt + Is, equation [111.124] is an unbiased 

estimator of the true source flux, St . However, the use of the baseline 

intensity to cancel Is introduces additional statistical uncertainties. 

The counting statistics contribution is straightforward to calculate but 

the fluctuations contribution to the uncertainty is more complicated. 

Both the baseline and I. are affected by the fluctuations. The value 

-(Is - fbase ) can be treated as a single measurement. The spatial 

response function, r(G,@), is positive over the baseline and negative 

over the source measurement. The net value for R1 is zero, as required 

for the expected zero mean intensity. But with non-zero values for the 

other detector weighted responses, significant fluctuations are 

expected. The measurement is similar in these properties to the 

estimated internal background using the different detector fields of 

view (recall the discussion of Figures 11.13 and 11.14). Because of the 

negative r(O,$) non-integral response weights are undefined, so that 

Weff = R-i W can not be used to scale the size of the fluctuations. A 

sketch of the proper technique to calculate PI.(I') is outlined in 

Appendix A3. When both negative and positive values for r(O,@) 
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contribute to the measurement the resultant P,(I') distribution looks 

different from the distribution when all values-of r have the same sign. 

For example, if the baseline consists of a single measurement (N=I), the 

distribution of P(I;s-I;base) is symmetric. In addition to the high 

flux tail T , there is a. similar tail -covering- -the- negative 

intensities. Therefore there is equal chance for a very large positive 

fluctuation and for an identically large negative fluctuation in the 

total background for the point source flux measurement. 

The contribution of the baseline to the fluctuations can be
 

crudely estimated by considering the baseline portion of the response in
 

isolation. Because of the averaging factor (1/N) in [111.125], the
 

effective width of the baseline intensity fluctuations decreases with
 

the inclusion of more observations in the baseline:
 

- N( 2- y ) / (y - I ) 
Weff;base . [1-11.126]
 

I11 3
 For Euclidean N(S) this is W- . The decrease in the size of the
 

baseline fluctuations is slower than the decrease for strictly Gaussian
 

noise, such as photon statistics, where 0 gauss N 12w Therefore, the
 

baseline size required to achieve a particular maximum contribution to
 

the fluctuations is larger (for y=5/2) than what would be needed if the
 

fluctuations were Gaussian. Recall though that even for perfect
 

knowledge of the baseline mean, i.e. N + , the sky fluctuations of the
 

source measurement still contribute to the uncertainty of the source 

flux.
 

The fluctuations and fits to source intensity
 

Our discussion so far has been limited to the idealized case where 

a source intensity was determined by a single on-source measurement with 

one or more off-source baseline measurements. In actuality, more 

sophisticated techniques are used to estimate source intensities. The 

data consist of a series of intensity measurements, Yi' with varying 

amounts of exposure to the source position, ri . The source flux is 
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found by performing a weighted least squares solution to
 

y = r S +18 . [111.127]e 


The error on the flux is estimated by inverting the correlation. matrix
 

(see Bevington [1969] for this and other details). The validity of this
 

general technique requires that the source position be known, the
 

weighting be determined by i/a2i where a2 i is the Gaussian noise
 

variance, and the model of a single source plus isotropic sky flux is
 

the correct description of reality. All of these assumptions are
 

flawed.
 

Good source positions depend on identifications with optical or
 

radio counterparts or measurements with high spatial resolution X-ray
 

experiments. When such information is lacking, the same data used to
 

fit the source flux must also treat the source position as a free model 

parameter. The confidence range in the source flux is then best 

calculated using the likelihood statistic (equivalent to X2 for Gaussian 

data) treating the source position as nuisance parameters (see Section 

11:5). The condition that the points are weighted properly is violated 

when the fluctuations are significant in comparison to the counting 

statistics. At the very least, an additional noise term with a - 2.5 

Weff should be added in quadrature to the photon counting statistics. 

The non-Gaussian nature of the fluctuations distribution may mean that 

X2 
is not the proper statistic to measure the source flux's likelihood.
 

Also, in the presence of significant fluctuations, the hypothesis that
 

all but the single source is a uniform baseline flux is an
 

oversimplification, i.e. the baseline contains bumps and wiggles not
 

included in the model.
 

The numerical value of the additional noise contributed by the
 

fluctuations is difficult to calculate from first principles. The
 

overlap in the sky coverage for individual measurements means that they
 

are no longer statistically independent with respect to their variation
 

due to the fluctuations. We will show (Section A2:2) that this is
 

equivalent to a reduction in the number of measurements. As was derived
 

in Section 111:5, this reduction accentuates the uncertainty in the
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Figure 111.15: Histogram of fit flux values
 

The solid line histogram indicates the distribution of the
 

derived flux values (in R15 units, see text) for 437
 
points chosen at random from areas of the sky containing
 
no clearly detectable sources. The long dashed curve is a
 
Gaussian with the width of the average derived uncertainty
 
of the flux, a = 0.217 RI5. The short dashed curve is a
 
Gaussian with the actual width of the histogram, a = 0.304
 
RIS.
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source flux. To account for this, the fit to the data explicitly tests
 

a model in which the source flux produces an expected contribution to
 

the different measurements as determined by the detector spatial
 

response to a point source. Therefore, the fit is less sensitive to the
 

bumps and wiggles of the fluctuations as long as they do not look like a
 

point source.
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Perhaps the most informative approach is to analyze sets of actual
 

fits. As a crude measure of the impact of the fluctuations, we present
 

in Figure 111.15 the distribution of 437 fit point source intensities.
 

The point source locations were randomly chosen spots covering high
 

galactic latitude ranges, with no clearly detectable'source in the RED 3
 

Small FOV. The derived source intensity should be distributed about
 

zero, and the width of the distribution should give an indication of the
 

intrinsic uncertainty of source intensities derived from such fits. The
 

fluxes are measured in R15 units, which we will describe in more detail
 

in Section VII:1. For now, let it suffice that Ri5 units are
 

constructed out of several different Discovery Scaler windows of lED 3
 

and the MED, using the small field of view. The conversion for Ri5 flux
 

-1 -2 
units is -623 R15 = 1 count s cm in the Red 1 Layer 1 window. From 

the simple determination of the error using the inversion of the 

correlation matrix, the mean uncertainty in the flux was <0> = 0.217. 

As Figure 111.15 shows this is much narrower than the true distribution 

of fluxes which is well fit by a Gaussian with a = 0.304. Subtracting 

the two uncertainties in quadrature, we see that the the residual 

contribution to the source intensity variance is of - 0.21 Ri. For 

comparison, we estimate that for W = 0.07 HI1 (which is close to the 

best fit Euclidean models) and using a smeared detector of AB = 0,250 

and A = 20, we predict that Weff should be -0.1 R15 (based on estimates 

for the HILl window transformed to Ri units and using an unsmeared 

RED 3 SFOV detector response). These particular smear angles correspond 

to the size of the measurements used in deriving the distribution in 

Figure 111.15. Thus if we use the 2.5 Weff definition of the effective 

a for the fluctuations, the expected of should be -0.25 RI5. This crude 

estimate is consistent with, although a little higher than, the above 

measured value for of. However, as we do not expect the fluctuations to
 

mimic the response of a point source, it is likely that our estimate is
 

high. In any case, it is clear that the fluctuations can have a
 

significant impact on the uncertainties of low intensity source fluxes.
 

The fluctuations and other studies of the X-ray sky
 

Any analysis of the X-ray sky flux will be affected by the
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fluctuations. When investigating correlations between the sky flux and 

other signals e.j. galactic structure or extragalactic source 

distribution, the fluctuations will be expected to contribute at least 

an additional noise term. In our analysi of such correlations- fbt this 

digsertation we approximate this contribution as an additional Gaussian 

term. In addition, the use of overlapping data must be handled in a 

different fashion in order to account for the non-independence of the 

measurements. The exception to this general rule is for correlations 

that involve the sources that generate the fluctuations. An example is 

the analysis of Turner and Geller [1980], who examined the UHURU data of 

Schwartz [1980] (see the discussion of this data in Section VI:6) for 

correlations with the counts of bright galaxies or nearby clusters. 

Turner and Geller concluded from the lack of such correlation that 

sources associated with these objects could not produce the dominate 

fraction of the X-ray sky flux. If all of the fluctuations were 

generated by the sources physically associated with the optical counts 

used, then there would be no need to include an additional noise term 

from the fluctuations. It should be remembered that although the 

variance of the fluctuations is dominated by the bright and relatively 

nearby sources (which might be expected to occur in the optical data) a 

substantial noise term is generated by the weak sources, d(a2 ) a 

1-1/2 dl for a Euclidean N(S) (see equation [111.56]). Thus unless the 

optical data used is very deep in its coverage of the X-ray sources, 

some additional noise term from the fluctuations due to excluded sources
 

is necessary.
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CHAPTER IV 

PREPARATION OF A DATABASE FOR STUDIES OF THE FLUCTUATIONS
 

In order to study the fluctuations we must prepare datasets
 
of independent measurements with good signal to noise. A
 

weighting correction is outlined that permits the use of
 

data where there is some overlap between two measurements.
 
Before these datasets are used for the study of the
 
fluctuations we estimate and remove other sources of
 
variation. Some of these other variations are
 
astrophysically interesting in their own right. Finally we
 
estimate from simulations the sensitivity of the experiment.
 

We choose for subsequent analysis data from HED 1 L+SFOV,
 
smeared over 60 in the scan direction.
 

1: The creation of the SCANER database
 

The SCANER database tapes contain all the Discovery Scaler data
 

taken while the experiment was not in "point" mode. The data taken
 

during a particular interval are superposed onto a single great circle.
 

In this section we outline the processes and programs that produced the
 

SCANER tapes from the XRATES tapes. For analysis of Discovery Scaler
 

data where temporal superposition is allowed, the SCANER tapes provide a
 

compact and complete representation of the X-ray sky. The organization
 

of the data base is detailed in Appendix A4.
 

Initial pass through XRATES: JUTE
 

The production of the SCANER tapes requires two complete passes
 

through the XRATES data. The first pass is outlined in Figure IV.1. It
 

makes the initial definition of the mean spinaxis position for a given
 

range in time. The nominal spinaxis position was set by command,
 

changed by about one half degree every twelve hours to maintain the
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Figure IV.1: Initial pass through XRATES: The JUTE program
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optimal orientation of the solar panels. The exact time of each 

"spinaxis select", including the beginning and end of each non-scanning 

"point" maneuver, was reported by the HEAO operations control team. The 
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data taken during a spinaxis select time are binned in a plane defined
 

perpendicular to the mean spinaxis position.
 

The program JUTE calculates that mean spinaxis position. For a
 

given spinaxis select period, the program checks each major frame, i.e.
 

every 40.96 seconds, for the following conditions: satellite not in
 

point mode; satellite not in South Atlantic or North Pacific magnetic
 

anomalies; and at least one of the detectors "good", i.e. the CLEAN
 

flag set and the Earth+200 km occult and electron contamination flags
 

not set (see Section 11:5 for the description of the XRATES database).
 

From the qualifying major frames JUTE constructs the mean spinaxis
 

position:
 
A.+ + + + 

++
 
Z=Z iz Zz )Z 1 , [IV.1] 

where zi is the spinaxis position at the beginning of the ith allowed
 

major frame. In addition, the angular separation of the y-axis over the
 

time between the first and last exposure of the major frame, a period of
 

39.68 seconds, is used to calculate the mean angular spin rate. These
 

data were written as a record of a Spinaxis file, which was then used as
 

input in subsequent programs. A full description of the format of a
 

Spinaxis-type record is given in Appendix A4. Initially part of the
 

record is blank and is filled in by later dataset production programs.
 

When the Source-in-Field-of-View flags indicated that a particular
 

detector was looking at the (more or less) isotropic diffuse sky, a
 

second check on data quality was made. For each detector, the sum of
 

the first four Discovery Scalers was compared on a 5.12 second basis
 

with the expected rate from the nominal diffuse sky flux. Whenever the
 

rate was 3.6 sigma outside of this nominal rate, a message was printed
 

out flagging the time and position as a possible "trash time" event.
 

These were often accidental statistical triggerings, at an expected rate
 

of one accidental every 100 major frames, but whenever two detectors had
 

two tiggerings per major frame, or when a single detector had three
 

triggered intervals, the candidate trash time was marked for further
 

investigation. Many times these were due to low intensity, uncatalogued
 

sources or occasional high flux X-ray transients. Additional trash
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times indicated intervals when the Discovery Scaler definitions were not
 

in their nominal modes; this sometimes happened after a point maneuver
 

where the telemetry format had been customized for the study of a
 

particular source. However, by studying the plotted output of the-


Discovery Scalers and the raw rates, including the layers used in anti

coincidence, we were able to discover intervals where the data were
 

clearly contaminated by a charged particle event but, for some reason,
 

had not met the criteria for setting the electron contamination flag.
 

These occasional events, which usually took place just before the
 

beginning of a high intensity particle contamination period, were
 

flagged as real trash times, and a list of these time intervals along
 

with the affected detectors, was written in a disk file by the program
 

TRASHR. Not all detectors were affected by all these events. In
 

general HED 1 was the least affected, while HED 2 was the most sensitive
 

to these events. On average, one of these events occurred every few
 

days, although during certain periods the satellite orbital path was
 

such that the events occurred once or twice an orbit. When an event was
 

indicated, the total excluded time was enlarged far beyond the time of
 

the particular contaminated major frame which triggered the event.
 

Second pass through XRATES: BIGSCN
 

The mean spinaxis position defined by the first pass through the
 

XRATES tapes allows us to define a scan plane coordinate system for the
 

period of a particular spinaxis select time. The z-axis, 2, of such a
 

system is defined by the mean spinaxis. The x- and y-axes of the scan
 

plane are defined by the following cross products:
 

Sfi X 2 [IV.2.a] 
9 2x R [IV.2.bI 

where f is the position of the north ecliptic pole and the 

proportionality sign indicates that the vectors must be renormalized to 

unit length. Ideally the spinaxis is pointed in the ecliptic equator so 

that fiand S are identical, but because of pointing jitter, the mean 

spinaxis position may be as much as a few tenthg of a degree out of the 

ecliptic plane. 
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Figure IV.2: Second pass through XRATES: The BIOSCN program
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BIGSCN reads the XRATES tapes and makes the same data quality
 

checks as the JUTE pass. In addition, the detector is not considered
 

"good" if the major frame occurs during a trash time for that particular
 

detector. The scan plane is divided into equal-angle bins, the standard
 

bin size being one fifth of a degree, so that the total number of bins
 

is 1800. For each major frame, the position of the Moon is found in
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scan coordinates. If the Moon is within 3.5 degrees of the scan plane
 

it could be a source of contamination. For each detector, a range of
 

bins is excluded from the current major frame because an exposure
 

centered on one of those bins might have a lower sky brightness due to
 

shadowing.by the Moon.-


For each 1.28 second exposure, the position of a "good" detector's
 

center is projected into the scan plane to find the corresponding bin
 

number. The total telemetry allocated to the 1.28 second Discovery
 

Scaler rates limited the maximum number of counts per exposure to 255.
 

This could be exceeded for the very brightest sources, such as Sco X-1,
 

Cyg X-1, the Crab Nebula, and the Galactic center region. This
 

possibility was checked, and a final check for bit errors made, by
 

summing a group of four 1.28-second exposures to see whether they equal
 

the associated 5.12-second exposure counts. If an overflow is
 

indicated, then those four 1.28-second exposures are not used for
 

accumulations; however, each of their associated bins will have a flag
 

set to show that overflow data were taken when the detector was pointed
 

at this part of the sky. When no overflow is indicated, the number of
 

exposures for that bin is incremented and the total number of counts as
 

well as the sum of the counts squared are accumulated. The latter is
 

useful for studies of time variability. Occasionally, the rates are so
 

high that the sum of the squared count rates will overflow the available
 

storage, in which case a flag is set so that analysis using the squared
 

count rates will skip such bins.
 

In addition to the Discovery Scaler rates, the value of the
 

McIlwain L parameter is accumulated. Also accumulated are the angle
 

between the center of the detector and the scan plane and the square of
 

this angle, so that the mean position and the rms amount of wobble can
 

be calculated. These also serve to indicate the quality of the
 

superposition of data from adjacent scans.
 

Flags are also set for each bin using the XRATES Source-in-Field

of-View flags for the major frame. Initially these one byte flags are
 

incremented for every exposure where the Source-in-Field-of-View flag
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was set. Because of the Fortran implementation, any non-zero value is
 

equivalent to a logical TRUE value. However, because of possible
 

overflow, the number of source-contaminated exposures is lost for
 

subsequent processing, so that these flags contain only FALSE or TRUE
 

(the latter indicating that at least one exposure came from a major
 

frame where the Source-in-Field-of-View flag was set). Because these
 

flags are calculated from the XRATES flags, they depend on the catalog
 

used for the generation of that tape. In addition since these flags are
 

calculated on a major frame basis they cover an interval during which
 

the detector scans through eight degrees. Thus these flags are quite
 

conservative, marking down areas which might in fact have no source
 

contamination at all. For this reason, the use of these flags is good
 

for only a crude selection of source-free surface brightness data, as
 

they eliminate from consideration too large a fraction of the sky. For
 

studies which require source-free data we will use a more careful and
 

explicit calculation.
 

There are ten sets of accumulation arrays. These sets are divided
 

into two groups of five, one for data where the Mclwain L value is less
 

than 1.18, the other where it is greater. Each group of five gives the
 

data for HED 1, HED 2, and HED 3, and the MED "super-clean" and
 

"unclean" data. The "unclean" data meet only the less stringent of the
 

two MED electron contamination flag criteria. At the end of the
 

spinaxis select period that defines the current spinaxis and scan plane
 

coordinate systems, the two groups of five are output on separate tapes,
 

the low McIlwain L data on a tape with datasets named BIGSCN.LOWMAC and
 

the other on BIGSCN.HIMAC. Each group is preceeded by an identifying
 

header block containing general information, including the scan plane
 

coordinate system axes. The header and the accumulated rates are output
 

on a single file for each spinaxis select time period. At the same time
 

a modified Spinaxis record is written. This record contains, in
 

addition to the old information, the volume and file number of the
 

BIGSCN.LOWMAC file associated with that time period. It also indicates
 

the average deviation of the actual spinaxis position from the mean
 

spinaxis postion calculated by JUTE and used to calculate the scan plane
 

coordinate system.
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Occasionally this average deviation is significant, more than half
 

a degree. This can be due to periods inadvertantly including point mode
 

data. Or a significant fraction of the spinaxis select time might have
 

been during a trash time that JUTE counted in calculating the mean
 

spinaxis, but -that -IGSCN- di&-not ise In iccumulating the data. Those
 

scans where the average deviation was large enough were examined in
 

further detail: the accumulated deviations of the detector position
 

from the scan plane were used to determine a second mean spinaxis
 

position. If this was more than a half degree from the JUTE mean
 

spinaxis, then BIGSCN was re-run using a scan plane defined by the new
 

mean. Four such sets of scans were re-run, all from the latter part of
 

the mission.
 

Reformatting the data: SHFSCN and SUSCAN
 

The output from BIGSCN was not the final desired form of the data.
 

In particular, a dataset with all values of Mcllwain I was desired,
 

rather than just for L greater than 1.18. Similarly, a fifth dataset
 

was needed, containing all the MED data that satisfied the less
 

stringent electron flag, not just the data which satisfied only the less
 

stringent and not the more stringent condition. The program SHFSCN
 

performs this reformatting and outputs two sets of tapes in the final
 

SCANER data form: a set of the low L data, and a set with data for all
 

values of L. Each set has its own Spinaxis disk file, containing the
 

volume and file number information for each superposed scan. The
 

initial SCANER tapes output by SHFSCN have the finest spatial
 

resolution, a fifth of a degree in the scan plane, and the temporal
 

resolution of one superposed scan per spinaxis select (nominally twelve
 

hours corresponding to half a degree perpendicular to the scan plane).
 

Such resolution produces an enormous amount of data, difficult to
 

handle all at once. Even to use the information from one superposed
 

scan in a program imposes significant memory requirements. The program
 

SUSCAN compresses the data.further, by re-superposing data from several
 

spinaxis select periods on scan planes with coarser resolution. The
 

usual mode for SUSCAN produces data from a two day period, re-binned at
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one degree. The two day period corresponds to a smear perpendicular to
 

the scan plane of at most 1.5 degrees at the ecliptic equator. SUSCAN
 

can be used to produce a SCANER tape with any degree of re-binning
 

desired.
 

2: Subsets of the SCANER database: Independent and Overlapping Data
 

The SCANER data format is not sufficiently processed for easy 

understanding of particular questions about the diffuse sky, including 

the analysis of the fluctuations. . Certain regions of the sky, such as 

the galactic plane and bright sources, should be avoided. In addition, 

the re-binning performed by SUSCAN may not include enough active time in
 

each measurement to have good signal-to-noise. Further re-binning of
 

the data by scan angle may be necessary. Finally, actual rates and
 

other information must be. extracted from the accumulation arrays in the
 

SCANER data. A particular issue to be faced is the problem of
 

statistically independent measurements of the diffuse sky, what we call
 

the problem of overlapping data.
 

General region exclusion: NOTIND
 

Initially we will ignore the distinction of overlapping versus
 

non-overlapping data. To first order, many structures or features in
 

the X-ray sky may be studied with overlapping data. The program NOTIND
 

will, for each detector, output records that contain the accumulated
 

Discovery Scaler counts, McIlwa;n L value, deviation from the scan
 

plane, and time and mean position for a group of SCANER bins which lie
 

outside an excluded region. This excluded region is a rectangle' in
 

galactic longitude and latitude centered on the galactic center. Bins
 

are also, excluded when they include data from certain other regions of
 

the sky, e.g. positions of known sources.
 

The output format of the program is generically called the
 

INDIFILE format, which is produced by several other programs. One such
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program, closely related to NOTIND, is REBING. The records for NOTIND
 

are all measurements from the same superposed scan, adjacent to each
 

other in scan angle. REBINO, while providing the same checks for
 

contamination by sources and/or the galactic center or plane, re-bins
 

the data in cells that include all the acceptable data centered on a
 

particular region in the sky. The cells are defined with borders of
 

constant galactic latitude and longitude. Thus cells near the ecliptic
 

poles may contain the superposition of data from many different scans
 

taken at markedly different times.
 

Independent data and studies of the fluctuations
 

Trying to decide statistically whether a given set of measurements
 

were randomly drawn from a parent distribution is greatly complicated if
 

some of the measurements are statistically related. By such a
 

relationship we mean that the position in the parent distribution of one
 

measurement can be shown to be dependent on the position of another
 

measurement in the set. This is quite unlike measurements being related
 

to each other in a non-statistical sense.
 

In a general model for a set of measurements we can speak of three
 

sources of variation. The first, non-stochastic variations, are
 

predicted absolutely by the model; i.e. the model says non

probabilistically that the ith measurement has a particular non

stochastic component. The second, stochastic, source of variation is
 

one where the model speaks only in a probabilistic way about the 

distribution of the measurement, but with the proviso that if the 

experiment were repeated, the ith measurement would have exactly the 

same value for the stochastic component. The final source of variation,
 

pure statistical, is one that is inherently unpredictable from one
 

repetition of the ith measurement to the next.
 

As an example of measurements with only non-stochastic and purely
 

statistical variations, consider the common case in X-ray astronomy of
 

spectral fitting. A set of counts from different pulse height channels
 

is compared to a particular form predicted by a spectral model for the
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source. The non-stochastic variations are the lines and wiggles of the
 

model. The pure statistical variations are Poisson counting statistics.
 

There is often an obvious relationship in the model from one channel to
 

the next, as when a spectral line spans several channels, but in a
 

statistical sense, each measurement is independent. Given that we have
 

the correct model, the fact that one channel is above or below the
 

predicted value has no impact on the behavior of adjacent channelsi It
 

is this quality that allows us to treat the channels as independent
 

tests of the model in calculating various statistical tools such as the
 

X2 
statistic.
 

The diffuse sky might be idealized as an example of what we call
 

here a stochastic variation (ignoring for the moment counting statistics
 

and other structure in the sky). Consider a single measurement of the
 

X-ray surface brightness. If we repeat the measurement with the
 

collimator aligned exactly as before, we expect to get the same answer.
 

In the last chapter we saw how a large number of measurements is needed
 

to accurately determine the underlying source of the fluctuations in the
 

sky. However, repeating the same measurements will produce no gain in
 

information. Even if two measurements are not exactly co-aligned, they
 

are not expected to tell us as much about the distribution of the
 

fluctuations as two totally independent measurements (as long as those
 

cover substantially the same patch of the sky). The real problem of
 

such overlapping measurements is that there are few well-studied
 

techniques for explicitly handling them, particularly in astrophysics.
 

The vast majority of the statistical tools currently used explicitly
 

assume that the data points are statistically independent. In this
 

section we address the process of extracting subsets of the SCANER data
 

base, using the program NSCIND, which are totally internally
 

independent, i.e. no two members of a particular subset had any non

zero response to the same point in the sky. We will later discuss how
 

answers from multiple subsets, though not totally independent, might be
 

combined in a useful fashion. We will also develop an approximate
 

technique for performing analysis with data having various amounts of
 

overlap that is particularly appropriate for studying the non-stochastic
 

behavior of the sky. The same technique, even more approximately, is
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used in studying the fluctuations with overlapping data.
 

Generating independent subset of data: NSCIND
 

By definition each smeared observation- is- of -a -size-- -by 66' in 

the directions perpendicular and parallel to the scan plane,
 

respectively. These are not the smear angles, but the size of the sky 

Figure IV.3: NSCIND: Generating independent subsets of SCANER data
 

(a): The selection of particular scans and their range of
 
non-overlapping scan angles. The "XV indicates an
 
ecliptic pole, through which essentially all scans pass.
 
The width of each scan, for purposes 'of defining
 
independent data, is given by 6&. The scans are selected
 
and processed in the numerical order indicated, with care
 
taken that there is no overlap with previous selected
 
scans. (b): The division of the observations within a
 
single scan into internally independent subsets. The
 
solid, dashed, and dotted lines outline schematically the
 
smeared response-function (r(O,4=0)) of observations that
 
belong to the first (solid), second (dash-dotted), and
 
third (dashed) subsets of the scan, respectively.
 

(a) (b)
 

/ 3 1 2 3 1 
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that each observation effectively covers. The first step is to define
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for each superposed scan a range of scan angles which will not overlap
 

with similarly defined ranges for the other scans. This process is
 

outlined in Figure IV.3a. We start with a single scan, generally one
 

with the most exposure perpendicular to the galactic plane. This last
 

criterion maximizes the number of observations derived from this first
 

scan. All data outside the galactic plane, or uncontaminated by
 

exposure to selected sources, are used. The next scan is chosen
 

essentially perpendicular. In addition to the above selection criteria,
 

data near the poles are not used because of possible overlap with data
 

taken in the first scan. The third and fourth selected scans are
 

positioned roughly between the first and second scans, and checked for
 

overlap with both of them. Because of this ordering of the scans, each
 

subsequent scan need only be checked for overlap with at most two
 

adjacent previous scans. Note, however that this may not be the most
 

efficient method in terms of sky coverage. Large fractions of the data
 

base will be marked unusable because some scans will be totally
 

overlapped by adjacent selected scans. Also, near the ecliptic poles
 

the fraction of the total sky area coverage is reduced because even with
 

the closest abutting scans, large 'areas are not included by any scan.
 

To maximize the total Coverage there was some allowed leeway in the
 

selection of the follow-on scans, i.e. they did not have to be exactly
 

midway between two previously selected scans. The allowance of a few
 

degrees permitted the selection of the superposed scan with the most
 

active time that was nearby the otherwise optimal exact position. The
 

scant which made no contribution because of total overlap need not be
 

totally lost. A second, or even third, set of "independent scan ranges"
 

can be derived by running the scan selection process through the scan
 

range from the beginning multiple times. However, the statistics of 

these subsequently defined data subsets will be affected by the 

decreased coverage in the scans used. 

The selection of a set of independent scan ranges guarantees that 

the data will have no overlap from one scan to the next as set by Z . 

In Figure IV.3.b we illustrate the similar selection technique for 

handling overlap within the scan. Here the subsequent re-binned 

observations will fall naturally into a series of subsets, each 
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internally independent. The number of such subsets depends on the size
 

of the re-binning and the parallel smear angel A6, as compared to the
 

total non-zero response size, 60. For instance, if AO is one third of
 

60. as is the case in Figure IV.3.b, there are thrce sudh subsets. At
 

least two such subsets are always generated, although they need not have
 

equal smear angle; the program NSCIND will only output the subsets
 

together when they do. Each observation produces an INDIFILE record
 

containing an associated subset number.
 

XTRACT: Final data preparation
 

The INDIFILE records contain the accumulation data for all eight
 

Discovery Scalers. A final program is then needed to generate the
 

counts per exposure for a particular Discovery Scaler combination of
 

field of view and pulse height window. The simplest such program is
 

XTRACT, which produces an XTREC form -record. Besides the rate
 

information, the XTREC record contains the estimated photon statistics
 

variance, the time associated with the superposed scan from which the
 

observation was taken, the mean value of Mcllwain L, and a three-vector
 

containing the mean detector position in galactic coordinates. The 

record also contains the subsample number, with the output file 

generally sorted in ascending subsample number. 

XTROVL: XTRACT with calculation of overlap weights
 

There is a final slot in the XTREC record which originally held 

the detector's rms excursion perpendicular to the scan plane. This 

value was not used in any subsequently developed fitting programs as its 

variation was generally small compared to the observation size Sf. A 

second version of XTRACT, named XTROVL, used that slot to store the 

weight of the observation.. The weight is an estimated correction of 

including data which might overlap other observations. The derivation 

of the correction is outlined in Section A2:2; in this section we sketch 

the algorithm and its limitations. 

As we temarked above, two observations with the collimators
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exactly overlapping, and no uncertainty due to photon statistics, are
 

expected to have exactly the same intensity. If we wanted to include
 

both measurements in a X2 based estimator of the mean count rate or of
 

some parameter of the model for the sky's non-stochastic variation, we
 

could not treat the two measurements as two degrees of freedom. The
 

individual contributions to the X2 sum can be weighted by one half, so
 

that the total contribution of each is one degree of freedom.
 

Similarly, a set of observations consisting of n groups of m
 

measurements that totally overlap must weight each observation by 1/m to
 

give a total X2 which is distributed as if its number of degrees of
 

freedom were derived from n independent measurements.
 

The complications arise when the overlap is not total. We can
 

show that in certain simple cases the dependence can be measured by the
 

size of the cross-correlation of two measurements divided by the total
 

variance. Let U2 be the pure statistical variation of the ith
i 


measurement. We assume that all measurements have the same shape for
 

their spatial response function and that the fluctuations may be 

characterized as Gaussian with a variance 0D The contribution of the 

jth measurement to the ith measurement's weight is (to first order) 

wij = aij / (a2% +U2D), [IV.31
 

where aij is the cross-correlation, calculated by an integral involving
 

only the two spatial response functions. For two observations with no
 

spatial overlap, aij and hence wjj reduce to zero. For two observations
 

with total overlap, aij equals a2 so that when there are no counting
D 


statistics, wij equals one. The total weight of the ith observation is
 

Wi = I / (I + I wip). [IV.4] 
j* i 

For n observations with total overlap and no counting statistics the
 

total weight is 1/n. The weighted number of observations,
 

Nw = Wi, [IV.51 

is the total used in calculating the number of degrees of freedom for
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the weighted X2 sums.
 

The above prescription is exact for determinations of non-


X2
stochastic models using when the stochastic cgntribution. is--well

represented by a Gaussian with variance 0 and if all overlapping 

observations are in groups with equal weight. The more detailed 

derivation of this weighting is found in Section A2:2. We will assume 

the adequacy of' this weighting for the real non-Gaussian fluctuations, 

but 2D will be found from an explicit Gaussian fit to the fluctuations 

and not equated to poorly determined variances of the power-law N(S) 

model P, curves. Is the weighting appropriate for determinations of 

parameters of the stochastic variations, i.e. the parameters of the 

fluctuations' models? As we shall see, such parameters are determined 

using a likelihood statistic, rather than a X2 distribution, but the 

close connection between the two might argue that this gap can be 

crossed.
 

D 


The derivation in Section A2:2 is for the special case of the 

weighting of a least squares estimate of a distribution mean. The 

behavior of the likelihood difference measurement for W near its true 

value is similar to the behavior of the likelihood difference in 

- determinations of the mean count rate (see equations [111.801 and 

[111.74]). This suggests that for determinations of W with the 

fluctuations, the proper weighting is approximately the same as the 

weighting for the least squares mean determination. The excess 

variance, however, has a different behavior for AX. Recalling that for 

good determinations of the excess variance a small size for the total 

variance was more important than the number of observations, we expect 

that the weighting might be less sensitive to overlap. In fact 

preliminary Monte Carlo work indicates that the proper weighting for 

overlapping data might use wij2 in place of wij in the sum for W 1 

(equation [IV.4]). If this is the correct weighting, we could still use
 

the unadjusted weighting of [IV.4], in which case confidence contours
 

would be conservative estimators. For example, the "90%" confidence
 

contour would be at least that secure and might actually represent a
 

higher confidence limit.
 

Data Preparation Database Subsets
 



IV:2 145
 

Whether the above technique or any technique for handling 

overlapping data will give correct estimates of the confidence regions 

can be investigated by a Monte Carlo simulation of the fitting process 

using fake overlapping data -- a project not covered in this 

dissertation. The preliminaty Monte Carlo results indicate that the 

weights outlined above will give reasonable answers. If one is less 

than happy with the admittedly sketchy arguments here and in Section 

A2:2 one can restrict consideration to results derived from the
 

independent subsets output by NSCIND.
 

3: Removal of Non-Stochastic and Internal Background Variations
 

In order to analyze and understand the variations in the X
ray sky flux due to unresolved sources, we must understand 
and remove any other variations in our measurements. In 
this section -we determine the variation of the internal 
background -as a possible source of noise. The internal 
background mean count rate is measured, and it is shown that 
for data selected for low values of McIlwain "L", the 
internal background is well represented by a constant rate 
modified by a slow secular drift. Any residual variation in 
the internal background is small. A much larger effect on 
measurements of the fluctuations is the contamination due to 
large scale structure in the sky. A thick disk of emission 
associated with the galaxy is the principal component. A 
residual "24-hour" signal is seen with only slight 
significance, -95%. This signal is consistent in direction 
and magnitude with that from motion of the solar system with
 
respect to the cosmic background as indicated by similar 
anisotropy measurements in the microwave.
 

Two sources of contamination must be examined before we are ready 

to fit our measurements to models for PI.. An obvious source, the 

internal background, must be measured and an estimate of its variation 

made. This noise is usually assumed to be Gaussian and purely
 

statistical, although neither assumption is generally checked. The
 

second source of noise is large scale non-stochastic variation in the
 

sky surface brightness. Radio measurements of the fluctuations minimize
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this signal with sophisticated techniques that also remove drift in the
 

detector response [Condon and Dressel 1978; Wall, Scheuer, Pauliny-Toth,
 

and Witzel 1982]. In the X-ray regime, the original approaches to
 

analyzing the fluctuations in the X-ray regime restricted the area of
 

sky for analysis to high galactic latitudes, generally Ib] > 200. The
 

assumption was that anisotropies associated with the galaxy would be
 

small. This assumption has since been modified by detailed analysis of
 

the early all-sky satellite surveys [Warwick, Pye and Fabian 1980;
 

Protheroe, Wolfendale and Wdowczyk 1980]. The first results of fitting
 

the-X-ray sky brightness for a galactic component for data from the HEAO
 

1 A-2 experiment, have been presented recently by Iwan et al. [1982].
 

In this section we will fit the class of models considered by Iwan et
 

al. to a slightly different A-2 experiment data base. We also consider
 

a possible additional source of large scale anisotropy, a "24 hour"
 

signal associated with the motion of the sun with respect to the rest
 

frame defined by the sources of the X-ray sky flux.
 

Measurements of the internal background
 

Estimatds of the internal background of the detector were made
 

using equation [11.12]. The data were taken from the 2-day superposed
 

scans produced by SUSCAN and were restricted to source-free regions with
 

1b] > 200. By source-free, we mean a measurement contains no counts
 

from a given list of sources. The sources excluded from this high
 

latitude data were those catalogued by Piccinotti et al. [1982] plus an
 

11 
down to -0.0022 counts s 1 cm 2 in the RED layer 1 window (3xl1
 

additional complex of sources associated with the Magellanic Clouds. 

The resulting list provided a complete sample of sources with fluxes 
- - - ergs
 

s- c- 2 from 2-10 keV). Some additional bright sources with ibI 200
 

were also included. Several datasets of internal background
 

measurements were created with varying amounts of smear along the scan
 

path.
 

The internal background was modeled by a component which varied
 

linearly with the value of the McIlwain L parameter and a component
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which varied linearly with epoch:
 

B(t,L) = Bo + at + OL [IV.6] 

The model parameters are: Bo, the mean internal background; a, the
 

temporal variation coefficient; 0, the Mcllwain L coefficient; and a2B
 

the variance of the residual Gaussian noise. The residual Gaussian
 

statistical component was introduced to estimate the residual variations
 

produced by any unmodeled change in the background rate. In order to
 

describe the temporal behavior of the experiment we define the time t in
 

units of half-years fr6m day 330 of 1977:
 

t = (DOY1977 - 330) / 182.6 . [IV.7] 

With this definition a becomes the change per six month in the internal
 

background counts per exposure. Bo is the expected intensity at day
 

330. This definition of t is especially useful for HEAO 1 measurements
 

of the X-ray sky because 6 months is the interval between scans of the
 

same region. The linear dependence of the background on Mcflwain L is 

consistent with the model that L is a measurement of the cut-off 

rigidity in incident cosmic rays, due to shielding from the Earth's 

magnetic field (see the discussion at the end of Section 11:5).
 

The confidence limits of the parameters of such a model were 

generated using the likelihood statistic. This is discussed in more 

detail in Section 11:5 so we simply state here that the best fit 

parameters are determined by minimizing the sum
 

- 0L) 2 
- -atA (Bi Bo 2B) } ,+
i2. + ln( 2 i + 

This is just the sum of the measurements' likelihoods (see equation 

[111.73]). Bi and 02, are the ith measurement of the internal
 

background and its variance due to counting statistics. The
 

acceptability of an alternate model is determined by the difference 

between its value for A and the minimum value; Changes in the value of 

A are used to determine confidence contours for the model parameters in 

the same way that Lampton, Margon and Bowyer [1976] used the Ax2 

statistic for models where the variance is known.
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For both HED 1 and HED 3 the internal background decreased as the 

mission progressed. For HED 1 the best fit values were a = -0.085±0.007 

counts exposure- I per six months. A strong positive correlation of 

background versus L is found for -data -taken -with all values of L. The 

best fit -0 equals- 0.92±0.12. When the data are restricted to L < 1.18 

no significant correlation is observed for either detector. IThe best 

value for Bo is 2.03-0.02 counts per exposure. This is the internal 

background rate, per "side", i.e. the mean internal background for the 

large plus small field of view is twice Bo Similar values for a and 8. 


are found for HED 3. In addition, the HED 3 background exhibits a
 

slight negative quadratic dependence on t (significant at the 99.9%
 

level) not required in fits of RED 1 data. The magnitude of the
 

quadratic coefficient for HED 3 is such that the deviation from a simple
 

linear model was significent only late in the mission.
 

Residual variations in the internal background
 

After modeling the internal background with the two components
 

described above, there may be residual variations which will appear as
 

noise terms in any measurement of the X-ray sky that does not use the
 

large' minus small field of view scheme for removing the background (as
 

in [11.2]). In order to simplify the modeling of these residuals we
 

make several assumptions. The most crucial is that the internal
 

background is assumed constant for time scales up to 175 seconds, which
 

correspond to scans of up to 300. This means variations inferred from
 

bins with 300 smears in the scan direction are equal to the variations
 

expected for smaller bin sizes. This is important since the size of the
 

excess variation is estimated for bins with large smears in order to
 

avoid contamination from variations in the X-ray sky (recall the
 

discussion, associated with Figure 11.13). This stability assumption is
 

supported by the fact that the 175 second period corresponds to a change
 

in the orbital position of the satellite of less than 100, so that far
 

from the magnetic anomalies and in regions where McIlwain L is low, the
 

spacecraft geomagnetic environment is-only slowly changing. In addition
 

we will calculate the excess variance for a variety of bin sizes.
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Figure IV.4: Excess variance of internal background for various
 

amounts of smear
 

90% confidence ranges are presented for RED 1 (no
 
restriction on Mcllwain L), HED 1 (L<1.18), and HED 3
 

(L<1.18). The excess variance is calculated after
 
removing the best fit models for the internal background
 
variation. These models are: linear dependence on t and L
 
for HED 1, all L; linear dependence on t only for HED 1,
 

L<1.18; and linear and quadratic t dependence for HED 3.
 
All data were taken before day 505 to avoid the "event" in
 
the detector rates at day 544.
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A second assumption we make is that the residual background
 

variation may be modeled as a simple Gaussian with zero mean, meaning
 

there is an extra variation in the measurements beyond counting
 

statistics. This assumption allows us to use [IV.8]. The 90%
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confidence region is defined as the range of values for 02B such that
 

A(a 2 B) - Abest fit 4 2.7 . [IV.9] 

The results of these fits are presented graphically in Figure IV.4. The
 

HED 1 data for all values of L is consistent at the 90% level with
 

excess variance' until the bin size falls below about 60, where the
 

contribution from the sky fluctuations becomes significant. When the
 

data are restricted to the low range of L, the best fit values for a2B
 

are consistently lower. The actual excess variance may be smalleri but
 

the confidence region is enlarged because of the increased uncertainty
 

due to the counting statistics of the L-selected data. The excess
 

variance may also be smaller for the L-selected data but not
 

significantly so. However the low-L data are consistent with no
 

variance at the 90% level for bin sizes as small as 60. A reasonable
 

value of the excess variance for the all-L HED I data is 0.001 (counts
 

exp-l)2, while the corresponding number for the low-L selected data is
 

0.0007 (counts exp-l)2. The o's for these rates correspond to 1.5% and
 

1.3% of the total internal background, respectively. As a percentage of
 

the total count rate, they are of course even lower: 0.3% and 0.25%
 

- I .
respectively for the L+S mean rate of 21 counts exp Even if we
 

consider the 90% upper bound values for the larger smears, a2B 0.003
 

(counts exp-l)2 , the size of the variance of the internal background
 

amounts to about half a percent. In comparison, the typical values we
 
-
find for Weff are of order 0.1 counts exp I . Clearly Weff2 is a factor
 

of 10 larger than the best fit values for the internal background
 

variance, and it is at least a factor of 3 greater than the 90% upper
 

bounds.
 

HED 3 was not so quiet. Even for the low-L data a non-zero value
 

f 2B is required at the 90% level, although the allowed range of 
.values is large. A reasonable value for 0B2 is 0.0025 (counts exp-l)2
 

This corresponds to almost 5% of the HED 3 internal background, or -0.8%
 

of the total L+SFOV flux. The 90% upper limit for 2B is roughly 0.004,
 

or about 1% of the total flux.
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Large scale structure in the X-ray sky: Galactic models
 

At energies below 1/4 keV the X-ray sky shows complicated
 

structure associated with thermal emission from interstellar matter
 

within -400 pc of the solar system [see e.g. Fried, Nousek, Sanders and
 

Kraushaar 1980]. At higher energies the picture is greatly simplified,
 

with the largest anisotropy consistent with a disk of emission
 

associated with our galaxy, beginning at energies as low as -1 keV
 

[Nousek, Fried, Sanders, and Kraushaar 1982]. The simplest model for
 

such galactic disk emission is an infinite disk, which has intensity
 

liD c Ibi
esc [IV.10]
 

As long as the plane of emission is infinite and the emissivity is
 

independent of the planar coordinates, all models will follow the above
 

cosecant law. Such models have no longitudinal variation in intensity.
 

Iwan et al. [1982] showed that longitudinal variations were in fact
 

observed in the HEAO I A-2 data, requiring a more complicated model.
 

They were able to produce the observed longitude and latitude dependence
 

with a finite-radius disk of emission having its center coincident with
 

the galactic center. The X-ray volume emissivity interior to the disk
 

has an exponential dependence on z, the distance out of the plane, while
 

outside the disk radius, Rd, the emission is zero. The dependence of
 

intensity on direction of observation, in galactic coordinates £ and b,
 

is
 

IFD - (h/Rge) csclbl {1 - exp[-x tanlb] Rge/h]} [IV.1l.a] 

where the longitudinal dependence is embodied in 

x R cos £ + [(Rd/Rge )2 - sin2i]1 /2 . [IV.1l.b] 

Rg- is the distance from the solar system to the center of the galaxy,
 

approximately 10 kpc, and h is the scale height thickness of the disk.
 

The infinite disk model of equation [IV.10] is a special case
 

corresponding to the limit of infinite Rd. The longitudinal dependence
 

of this model results from the variation of path length through the disk
 

with direction of observation. The longest path through the disk (and
 

therefore brightest surface brightness contribution from the disk)
 

occurs for b = 0o, the shortest for b =1800.
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Figure IV.5: Temporal change in X-ray sensitivity of HED 1
 

The ratios of flux measurements of particular parts of the 

source-free sky taken six months apart, showing a linear 

increase in sensitivity of -0.7%. 
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X-RAY BACKGROUND (3-60 keV') :LONG-TERM STABILITY
 

[HEAO A-2 SCAN DATA. HED-I "3x6l-(3°x3°)]
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[EPOCH-2-,'RESCAN OF EPOCH-I INTERVALS,6 MONTHS LATER]
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R 
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0.99 
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DATA ACCUMULATION INTERVALS: EPOCH-I [(DAY OF 1977)-250]. 

Temporal variability in the detector characteristics may induce
 

erroneous large-scale structure in the sky. We saw above that the
 

internal background data have a slow linear dependence on time. Studies
 

of the internal-background-free large-minus-small field of view
 

measurements show a linear increase in the sensitivity of the detectors
 

to X-rays (see Figure IV.5).
 

Generating the data for studies of large-scale structure
 

In order to best utilize the all-sky data, we wish to use as much
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of each superposed scan as possible. This means using data cells that
 

will sometimes overlap strongly with adjacent cells, particularly near
 

the ecliptic poles where all the scans overlap. We must then weight the
 

data properly see Section 11:5 and equation [IV.4].
 

We make the simplification that the cross-correlation between
 

measurements comes from Gaussian fluctuations with variance a2D The
 

first step is to estimate the magnitude of such fluctuations. We first
 

look at very high latitude data, Ibi > 450, where the longitude
 

dependence due to a finite disk model is small, and we fit a simple
 

cosecant term for the galaxy, following equation [IV.10]. In addition,
 

we allow for a secular change in the count rate proportional to t. We
 

minimize a likelihood estimator similar to equation [IV.8] to find a2D)
 

the Gaussian variance over and above counting statistics. Because of
 

the explicit assumption of a Gaussian form when the particular
 

likelihood definition of [IV.8], o2D is not identifiable with the
 

variance of the PI(I) fluctuations distribution. Because of the
 

assumption of Gaussian behavior, its size will depend more on the quasi-


Gaussian region of the fluctuations near the mean, and will be less
 

determined by the position of a high flux limit or high intensity survey
 

limit, as is the case for the variance of PI, which is dominated by the
 

high flux tail of the distribution. Because the data are overlapping we
 

cannot use equation [IV.9] to estimate a confidence range on o2D, but
 

the value of a2D that produces the minimum in A would be an unbiased
 

estimator, if the fluctuating component were properly modeled, i.e. if
 

it were Gaussian. The fact that the fluctuations are not Gaussian-will
 

probably bias this estimator, but the effect should be to overweight the
 

overlapping data points. This will make the derived confidence contours
 

conservative; i.e. if the data are overweighted the contour marked
 
"90%" will in fact be more significant.
 

Using the derived value for 02D the data are prepared using the 

program XTROVL. For the remainder of this section we will restrict our
 

consideration to BED 1 layer 1 L+SFOV data, for times t before day 505,
 
°
 IbI>10 , and no contamination from sources with fluxes 0.0022 counts
 

-I - 2
s cm . A complete list of sources for the lower galactic latitudes
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not covered by the Piccinotti et al. survey was derived [Marshall,
 

private communication]. The derived estimate for a2D is 0.145 (counts
 
.
exp-1)2 Besides being used in the weighting process of equation
 

[IV.4], o2D is added to the counting statistics variance of each point
 

to get the total variance, which is then used in a X2 procedure to
 

determine the best model and the confidence contours for the model
 

parameters. A total of 3835 measurements were made, but the weights
 

reduced the equivalent number of independent measurements to 588.7.
 

The first model we will fit is a simple csclbl infinite disk mid a
 

term with linear dependence on t. Let a and B be the proportionality
 

coefficients of the temporal and galactic components, respectively. The
 

minimum X2 for this model is 628.7, a significant drop from the value of
 

693.8 for a totally isotropic model. The best fit value of a is
 

-0.07±0.03 counts exp- I per six months. In principle this could be
 

derived from the temporal coefficients from the fits to the measurements
 

of the background rate and X-ray sensitivity separately using the B and
 

L-SFOV count rates, but it is more direct to measure a for the L+SFOV.
 

The predicted value for a would be --0.04. Subsequent results do not
 

seem to depend strongly on the exact value of a. The best fit value for
 

8 is 0.13 counts exp- I.
 

2
 
When we replace the infinite disk model with the finite disk, x


is again significantly improved, dropping by 30.7 to 597.96, for a
 

weighted equivalent of 583.7 degrees of freedom. The x% confidence
 

region for the two parameters, h and Rd, is found by increasing x2 from
 

the minimum by less than the x% value for X2 with 2 degrees of freedom
 

[see e.g. Lampton, Margon, and Bowyer 1976]. Rd and h are strongly
 

correlated parameters, so we instead present the contours in terms of
 

the more separable h/Rd ahd Rd. Rd is normalized by Rge . The results
 

are shown in Figure IV.6. The best fit value for Rd is 1.8 Rge, and the
 

best fit value for h is 0.42 Rge . The coefficient for the model is
 

0.77±0.08, corresponding to a flux at the galactic poles of 0.32 counts
 

exp-l, or about 1.7% of the isotropic flux. The contours overlap the
 

earlier result of Iwan et al. The fact that agreement is not stronger
 

may be due to the different selection of data (Iwan et al. included
 

Data Preparation Removal of Variations
 

http:0.77�0.08
http:0.07�0.03


55 IV: 3 ORIGINAL PAGE iMOF pOOR QUALITY, 

Figure IV.6: Finite disk model for galaxy, HED 1 layer 1 L+SFOV
 

Solid contours enclose the 70% and 90% confidence regions,
 

and x marks the best fit position. The star and dashed
 

contour indicate the best fit and 95% region from Iwan et
 

al.
 

040
 

0.30
 

h/Rd . 

0.20
 

0.10
 

0 I I tI 

1.0 2.0 2.5 3.0 3.5 4.0 
Rd /Rge 

some data closer to the galactic plane), or the fact that the previous
 

analysis did not consider impact of the overlap (although the variance
 

due to the fluctuations was estimated and included in the total
 

variance, as was done here). The smallest possible value for the scale
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height is -0.1 Rge (1 kpc) which, although smaller than the smallest
 

value of Iwan et al., is still significantly thicker than most galactic
 

disk phenomena. Possible interpretations and physical models for such a
 

large scale height disk are presented in more detail in Iwan et al.
 

Additional galactic components -or'more comilacttd models- that account
 

for the longitudinal variation may reduce the size of the scale height
 

somewhat. (For an example of such a model applied to UHURU data see
 

Protheroe, Wolfendale and Wdowczyk [1980].) The finite disk model was
 

explicitly considered by Warwick, Pye, and Fabian [1980] using data from
 

Ariel V. They concluded that there was an upper bound of -1 kpc for h.
 

However, their fits were restricted to a latitude range, jbl>200 , versus
 
°
 our fits which include data down to Ibjl10 . The longitudinal
 

dependence, which is the distinguishing property of the finite disk
 

model, becomes stronger as the measurements approach the galactic plane.
 

Additional large-scale variations: The Compton-Getting effect
 

The minimum X2 per degree of freedom for the finite disk model is
 

1.03, indicating that the fit is acceptable without another component.
 

However it has long been noted that if the bulk of the X-ray emission
 

comes from outside the galaxy, the motion of the sun with respect to the
 

rest frame defined by this emission should shift the spectrum of the X

ray sky depending on the direction of the measurement relative to the
 

direction of motion. Measurements in the direction of the sun's motion
 

are affected by a blueshift of the spectrum, while in the antipodal
 

direction the spectrum is redshifted. If the spectrum is well-fit by a
 

power law form with photon index r, such that n(V) dv - V-r dv, then for
 

r greater than -1 the blueshifting will enhance the measured number of
 

counts in the direction of motion. An additional effect is aberration
 

which will increase the number of counts in the direction of motion
 

irrespective of the spectrum. The total effect, the Compton-Getting
 

effect, was first described in the context of anisotropies in the cosmic
 

ray flux. The total angular dependence of the intensity is a simple
 

cosine law,
 

ICG = Isky (2+r) (v/c) cos 0 , [IV.12] 

where v is the velocity of motion and e is the angle between the look 
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axis and the direction of motion. Isky is the mean sky intensity (not 

including internal background). Such variation is sometimes referred to 

as a "24 hour" anisotropy because of its 3600 periodicity. This cosine 

dependence is seen in the anisotropy of the microwave background. If 

the rest frames for the microwave background and the X-ray sky are the 

same, we would expect to see a signal in the same direction with a 

magnitude on the order of half a per cent.
 

A cosine signal of the appropriate magnitude is detected, but at a 

statistically marginal level. To make a simple search for the cosine
 

signal we first fixed the temporal and finite galactic disk
 

contributions to the sky flux. The best fit position for the direction
 

of motion was then found to be (Z,b) = (2820,+300), with a best fit 

value for the magnitude of the signal of 0.09±0.03 (one-sigma) counts 

- Iexp . The X-ray background spectrum can be fit (over the range from 

which of the counts for the layer 1 HED window come) by a power-law with 

r - 1.4. Thus the coefficient corresponds to a velocity of 475±165 km 
-
s . This is roughly in agreement with the current microwave-deduced 

velocities of -340 km s-1 . The confidence contours for the position are 

presented in IV.7. The acceptable positions cover a large fraction of 

the sk, roughly (2/3)7 steradians. A result similar in terms of 

direction, magnitude, and size of confidence region, was determined from 

UHURU data by Protheroe, Wolfendale and- Wdowczyk [1980]. A "12 hour" 

anisotropy (i.e. one that is low at both poles and high around the 

equat6r) in the same direction was reported by Warwick, Pye and Fabian 

[1980] based in Ariei V data. This is not observed in our data. (For a 

discussion of the impact of the Compton-Getting signal on cosmological
 

issues see Fabian [1981] and Section VII:6 of this dissertation.)
 

How significant is our detection? The new minimum X2 is 589.7, a 

drop of only.8.2. Any time a new parameter is added to a model, the 

minimum X2 is expected to drop, so the question is how unlikely is a 

drop of this magnitude when three new parameters are added (one for the 

velocity and two more for the direction). One statistical tool used to 

assess the significance of the addition of a new term to a model is the
 

F-statistic (see e.j. Bevington[1969]. If AX2 is the change in X2 with
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Figure IV.7: 70% and 90% confidence contours for a Cos 8 (dipole)
 

signal
 

-Confidence region for- the- -dipole maximum is given in 
galactic longitude and latitude. Also marked are the 

galactic center and the position of the center of the 
Virgo Cluster, M87, -which is also the center of the local 
supercluster. The 3 crosses are the one-sigma error bars 
for three different determinations of the microwave 
radiation. References: BCW - Boughn, Cheng, and Wilkinson 
[1981]; FGMN - Fabbri, Guidi, Melchiorri, and Natale 

[1980]; GS - Gorenstein and Smoot [1981].
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V1 new parameters, and X2 is the new minimum with V2 degrees of freedom,
 

then if the model was correct before the addition of new parameters, the
 

quantity
 

F (AX2/v) / (X2 /V2) [IV.13] 

is distributed as an F-statistic with (Vi,v2 ) degrees of freedom. As an
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example, in going from the infinite to a finite disk we added two new 

parameters. The value of the F-statistic was 15. A value that large is 

expected very infrequently, less than one time in a million, so the 

addition of new parameters is considered significant (or rather, the old 

model was significantly worse). For the addition of the Compton-Getting 

term, the value of the statistic was 2.7, which for v, of 3 and V2 of 

580.7 is expected one time in twenty (95% confidence).
 

Apart from issues of statistical weighting there is the question
 

of whether other large scale features may be interfering with the 

measurement of the Compton-Getting effect. Its low magnitude (-0.5%) 

means that it might be easily affected by other low intensity 

structures, such as second order structure associated with the galaxy,
 

or perhaps large scale diffuse emission associated with the local
 

supercluster. Also, an asymmetric galactic contribution to the 2-10 keV
 

flux is expected at some level. On the other hand, it is suggestive
 

that the most significant direction and magnitude for the Compton-


Getting effect is roughly in agreement with the microwave result. We
 

present further analysis of the dipole result and its comparison with
 

the microwave derived velocity in Section VII:6.
 

Without dwelling on the reality of particular physical
 

interpretations, the results of this section can still be used in the
 

analysis of the fluctuations. That is, we can subtract the sky
 

variations that we know are not associated with unresolved extragalactic
 

point sources without identifying them with particular physical
 

phenomena such as the galactic disk or the Compton-Getting effect.
 

4: Optimal Bin Sizes for Subsets of Independent Data
 

The tradeoff between improved counting statistics, number of
 
observations, and size of the fluctuations signal is
 
considered for a simple model for the division of the
 
superposed data scans into subsets of independent data. The
 
likelihood difference technique is used to compar6 the
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sensitivity of different subsets, depending on the amount of
 
smear along the scan direction (bin size) as well as various
 
detectors and their possible field of view combinations. It
 
is shown that the sensitivity for measurements of W is a
 
remarkably insensitive function of the bin size. For any
 
given detector the -optimal combination --f fields of view is
 
the L+SFOV.W The two HEDs are roughly equivalent with HED 3
 
marginally superior. The optimal bin size for the L+SFOV is
 
a smear approximately equal to the FWHM of the unsmeared
 
detector.,
 

In discussing the ultimate limitations to using the fluctuations
 

for understanding the behavior of low flux sources we introduced the
 

likelihood difference. This measures the difference between two models
 

and in addition allows us to predict the sensitivity of a set of
 

observations with a given number of measurements and a particular signal
 

to noise ratio. This was used in an earlier section to analyze the
 

design of ideal experiments. These experiments consisted of
 

measurements by a flat response detector which made pointed, i.e.
 

unsmeared, observations. In addition the point positions were assumed
 

to be selectable so as to totally divide the available sky into non

overlapping independent measurements. Because of the scanning nature of
 

the A-2 experiment all-sky survey these assumptions do not apply. We
 

therefore customize the earlier analysis to apply to the special
 

circumstances. The derived sensitivity corresponds to the expected size
 

of the 90% confidence region for various parameters of N(S) models,: W,
 

Y, and a2S . This size is still an idealization, the actual confidence
 

regions may differ, but it allows us to optimize the choice of detector,
 

field of view combination and amount of data smear.
 

Optimal bin size
 

The non-overlapping portions of the scans were selected by the
 

NSCIND program with various amounts of re-binning. The increase in the
 
° 
number of 1 bins per measurement will increase the total amount of time 

the detector spent in making that measurement, and will therefore result 

in smaller counting statistics. This reduces the size of *, helping to 

increase the sensitivity of the subset. However at the same time, the 
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re-binning is equivalent to smearing out the detector which reduces the
 

size of R-i" This in turn reduces the size of the fluctuations signal,
 

as measured by Weff (see equation [111.47]), so that *, the ratio of the
 

non-fluctuations noise to the fluctuations sigiial may not decrease as
 

fast as we might otherwise think. Offsetting the trend of decreasing
 

is the fact that as the bins are enlarged, the number of possible
 

independent measurements that may be created in a particular subset is
 

decreased. This decreases the sensitivity0
 

The relevant parameters for determining the optimal bin size
 

include: the total amount of scan angle in the non-overlapping portions
 

of the scans selected by NSCIND (-1800 degrees); the total active time
 

per scan (on average it was about one day for data unconstrained for L
 

or -1/2 day for data with L<1.18); the mean number of counts per
 

exposure, used in calculating counting statistics (this depended on the
 

detector/FOV combination, but recall that the L-SFOV has the same
 

magnitude count rate for purposes of calculating the uncertainty for
 

counting statistics); and finally tand most difficult to quantify) the
 

basic detector collimator geometry, which is smeared by increasing
 

amounts as the bin size is increased, and which determines the size of
 

the 'fluctuations signal. The first parameter, in conjunction with the
 

non-zero response size of the smeared detector, 66, fixes the number of
 

independent observations. The bin size, total active time, and count
 

rate allow an estimate of the size of the counting statistics. We fix
 

the value of W to correspond to the prediction from the extension of the
 
-1 -2
resolved source counts, 0.06 counts s cm . The likelihood difference
 

will show how far, on average, a test value of Weff can diverge from the
 

true Weff and still be acceptable at the 90% level.
 

When we apply this simple model we find that there is a very broad
 

minimum in the expected size of the 90% confidence range for W as a
 

function of the re-binning size (see Figure IV.8). The very small
 

binnings are not preferred because of their very small 'number of
 

exposures per measurement, yielding large noise from counting
 

statistics. Eventually the very largest binnings are not preferred when
 

the number of observations per sub-sample of independent data becomes
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Figure IV.8: Fractional size of 90% confidence of region for W as a
 

function of bin size
 

-The parameters -usedare--described in the text. The L-SFOV'
 

uses the all-L data, while all other field of view
 
combinations use the restricted L data, which impacts the
 
total active time available per scan. The four field of
 

view combinations for HED 3 are plotted, as well as the
 

curve for the L+SFOV HED 1 rate.
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small. But as we wish to maintain our sensitivity to the behavior of
 

low flux sources we will prefer the smaller binning end of the broad
 

minimum. In comparing the different field of view combinations we see
 

that the increased number of exposures available to the L-SFOV data
 

(because of the acceptability of data with >1.18) does not compensate
 

for the decrease in the size of Weff . The smaller size of the SFOV
 

allows the available space to be divided into more observations, but at
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the cost of poorer counting statistics compared to the L+SFOV.
 

Therefore in general the L+SFOV is preferred. When we compare the
 

relative merits of HED 1 and RED 3 we see that HED 3 is slightly
 

preferred. Note, though, that the availability of the L+SFOV
 

combination as an accurate, relatively uncontaminated measure of
 

variations in the X-ray sky flux is due to our assessment of the
 

stability of the internal background rate of the detectors. As HED 1
 

appears slightly "cleaner" than HED 3, we will concentrate on the
 

analysis of the iED 1 L+SFOV data in the remainder of this dissertation.
 

The optimal bin-size for this detetector and FOV combination is about
 

the size of the unsmeared detector FWHM, -60. Such a choice allows us
 

to divide the scans into 3 separate subsets.
 

If we search for the optimal bin size and detector for the 

determination of other model parameters, such as y and a2 S, the story is 

little changed. RED 3 and RED 1 are roughly equivalent. L+SFOV is the 

preferred field of view combination, and the optimal bin size is -60. 

The simple analysis outlined in this chapter suggests that with this 

binning such a dataset should be able to detect excess variances, G2 , 

on the order of 4x10 -4 (counts s- 1 cm-2)2. This limit presumes that all
 

other aspects of the model are known, i.e. the high flux behavior of N
 

(W and y) is known precisely. We will see that for the independent
 

datasets described in this chapter, it is the imprecise knowledge of W
 

and Y that strongly limits the utility of non-overlapping datasets for
 

constraining the excess variance.
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CHAPTER V
 

HOW TO PREPARE FOR AND INTERPRET FITS OF OBSERVATIONS TO N(S) MODELS
 

1: Photon Statistics and the Probability Distribution used in Fitting
 

The PI, distributions cannot be directly compared to the
 
distribution of measurements as they do not include the
 
additional variation produced by counting statistics. The
 
final distribution is a convolution of the PI distribution
 
with a Gaussian representing the additional *noise. A
 
particular difficulty is encountered, though, when the size
 
of the added variation.changes from one measurement to the
 
next. This means that each measurement is drawn from a
 
unique distribution. A further refinement is necessary if
 
in order to minimize the effect of bright sources on model
 
fitting, a high intensity selection cutoff is imposed on the
 
data. The final result of this section is a derivation of
 
the probability distributions that properly describe the
 
data set.
 

In Section 111:3 we derived general tools to calculate the
 

expected distribution of ideal intensity measurements of the sky:

+ + 

PI(I;t). The a represents a general vector of two kinds of parameters:
 

those that scale and position the distribution, such as Weff and Y, and
 

those that define the shape of the distribution, such as Y, Ec, and 02 .
 

In order to constrain the range of parameters we must compare a model
 

distribution to the observed set of data points, {r.}. The difference
 

in notation, the rates rj versus the distribution of the intensity I, is
 

deliberate. Because of the finite area of the detector it is not
 

possible to perfectly and reproducibly measure the intensity. Counting
 

statistics will impose an additional variation on the measurements
 

beyond the model generated PI. Accounting for this statistical
 

component is relatively straightforward.
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Convolution of counting statistics
 

Let us consider the jth measurement, rj. It is a random variable 

drawn from the "noise" distribution Pnoi(r;I,..- , where I is the 

(unknown> true intensity. A common assumption is that this noise 

distribution is a Gaussian about I, with a known variance a2j. This 

variance includes photon counting statistics as well as intrinsic non

sky variations from the internal background. The distribution, then, is 

given by: 

-
Pnoi(r;I,02i) = (2ro2j) 1 1/2 exp [ (r-I)2 / 22j ] . [V.1] 

As the exact value of I is not known, but is described by its own
 

probability distribution PI(I), rj is a random variable drawn from the
 

convolution of the two distributions:
 

Pj(r) = dl Pl(I) Pnoi(r;Io 2J) . [V.2] 

This is the probability that rj is in the interval from r to r+dr.
 

The assumption that Pnoi is a Gaussian implies, ignoring the 

variation in the internal background, that the total number of photons 

counted in the rate rj is large enough that the Poisson distribution is 

well-modeled by a Gaussian. This is generally true for measurements
 

involving more than -25 photons. If the measurements involve fewer
 

counts, it is more appropriate to replace the continuous form of Pnoi
 

with a discrete probability distribution and the integral in [V.2] with
 

a sum.
 

Another assumption is that besides measuring the rate, rj, we also
 

measure (or are otherwise given) the variance, o02. If the rate of 

counts per exposure for the jth measurement is rj and the total number 

of exposures in making that measurement is nj then the counting 

statistics are described by (totally ignoring the internal background):
 

2
a rj / nj. [V.3]. 

This is an approximation since the true value of 2 is found by 

replacing rj with the true intensity I. To properly perform the 
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convolution in equation [V.2] to produce P, 2 is a function of the
 

integrating variable I. Instead, estimating I with rj to find a2 is
 

adequate if the range of values for I is small compared to its absolute
 

value; that is, when the fractional size of the fluctuations is small.
 

When the fluctuations cover a dynamic range comparable to the intensity
 

itself then the explicit dependence of o2% on I should be properly
 

included in the integral.
 

The indexing of the distribution P.(r) is intended to emphasize an
 

important point. If the different measurements are made with varying
 

numbers of exposures, the size of the a2 is not fixed. Each
 

measurement is drawn from a different parent distribution. In cases
 

where the distribution is a pure Gaussian, the traditional procedure has
 

been to divide each measurement by its differing a, thereby generating a
 

set of random variables all drawn from a unit normal distribution. When
 

the distribution is not Gaussian, as is the case for P.(r) even after
 

convolving with the Gaussian noise, the unique shapes of the different
 

distributions may not be easily transformed into a single equivalent
 

form.
 

Standard tests of the goodness of fit of a model will not work; in
 

particular the histogram technique of binning the data and comparing it
 

to the number of observations expected in each bin is not valid. Though
 

such a histogram is still useful in illustrating the range of
 

intensities for which the model provides a good description of the data,
 

all the observations must be drawn from the same parent distribution in
 

order for the histogram to be statistically interpreted properly.
 

Still any collection of measurements drawn from a variety of
 

probability distributions may be transformed into a unified description,
 

the integral probability, which describes how well the distributions
 

predict the observed measurements. Given a set of measurements and
 

associated distributions, {(rj,Pj(r))}, we can transform each pair into
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a single number via
 

Fj(P(r)) = fr3 dr P.(r) . [V.4] 

We -abbreviate- -(r;-P-.(r as- :(r). -Because &f the normalization of the 

differential probability distribution P, ]P.(r) is a number between zero 

and one. To say that rj is drawn from Pj is equivalent to saying that 

F.(r.) is uniformly distributed from zero to one. In subsequent 
sections we will examine how this transformation can be used to test the 

goodness of fit of a particular model.
 

Censored data
 

When we derived the PI distribution for the fluctuations from the
 

number versus flux models we explicitly included the effect of the
 

bright sources above the resolution limit of the experiment. They
 

contribute mostly to the high intensity tail of the PI distribution.
 

Thus the measurement set should include data that might be contaminated
 

by these same sources. But we are interested in learning as much new
 

information as we can about the N(S) distribution, so we want to reduce
 

the impact on our model fitting of the already studied resolved sources.
 

We therefore eliminate from consideration any measurement with a rate
 

greater than some threshold value. A high flux source will only
 

contribute to a counting rate (and not push it above the threshold) when
 

it is positioned at the corner of the field, where the response is low.
 

This rate threshold greatly reduces the sensitivity of the fitting
 

process to the shape of the high intensity PI distribution, and
 

equivalently, the shape of the high intensity portion of the N(I) curve.
 

If we restrict the data, we must change the model distribution to
 

reflect the process of selection. Here the selection is in terms of the
 

observed rates (instead of a bright-source-in-field-of-view criterion).
 

Let ru be the maximum allowed rate for an observation to be included.
 

If P is the old distribution, which may have included observations with
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r greater than ru, then the new distribution is
 

P3(r) = Pj(r) / Pj(ru) r~r[;

i i 
 [V.5] 

= 0 r>ru
 

The shape of P' is the same below ru, but it has been renormalized so 
thatP'(r ) is 1. The set of values of e'(r'(r')and wi-l be used 

to fit models for the fluctuations.
 

2: Statistical Techniques Used
 

Model fitting for the fluctuations requires care in the
 
selection of the proper statistical tools., The integral
 
probabilities, F(r.), may be used in a family of
 

J J

statistical tests that will tell the goodness of the fit, of
 
the model. For the determination of confidence contours the
 
likelihood statistic is the preferred technique. We also
 
oufline a general rigorous approach to combine results from
 
several non-independent determinations of a confidence
 
contour based on Boole's Inequality.
 

We have turned the raw observations into differential and integral
 

probabilities. Yet these numbers do not dimmdiately tell us what we
 

most want to know about model's representation of a set of data. Is the
 

fit good? Do these particular values for the model parameters have a
 

chance of being the -true values? (These two questions are not
 

identical, but are inter-dependent in subtle ways, as we will see.) In
 

this section we outline the particular tools that we use for evaluating
 

models in the remainder of the dissertation.
 

Measuring goodness of fit
 
+ 

Given a particular model, with its parameters a considered fixed,
 

we can for our set of data generate the differential and integral
 

probabilities of the observations, P (rj) and F.(r.). (From now on we
 

will refer to the distributions after renormalizing for the effects of
 

the upper intensity cutoff and dispense with distinguishing the primed
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from the unprimed distributions.) When we ask whether the model is a
 

good fit, we ask if the observed collection of measurements is one that
 

has a significant chance of occurring. The answer is obtained by
 

distilling the observations in the context of that model into one or two
 

numbers,- i.e. statistics. This statistical distillation has the
 

property that if the model is correct then we know the distribution
 

properties of the statistic. Let S({xi};cc) be such a statistic, written
 

in this fashion to show that it is a function of the observations
 

interpreted in terms of a particular model. From the distribution
 

properties of S, we define an acceptable range of values for S. Let
 

Ps(S) be the differential probability of S and C be given by
 

C= f Smax dS P [V.6]
Smi n SS V6 

Then if the value of S for a particular set of measurements falls within
 

the range from Smin to Smax the model is said to be acceptable at the
 

"C" level. For example, for a C of 0.90 we find an Smin and Smax that
 

satisfy [V.61. If a particular value of S lies outside this range we
 

say the model is unacceptable. The chance that this is incorrect, i.e.
 

that the model which correctly describes reality is mistakenly rejected,
 

is only 1-C or 10%. The actual choice of the interval Smin and Smax is
 

totally arbitrary, but generally it is chosen a priori to minimize the
 

size of the range of model parameters that gives an "acceptable" fit.
 

For observations drawn from normal distributions, the x2 statistic 

is often used for S, but for observations drawn from more complicated 

distributions, the approach is to transform the measurements. Using the 

latter method here, we estimate the goodness of fit not directly from 

the distribution of rates rj and their separate distributions Pj, but 

from the behavior of the integral probabilities, F.(rj). If the model 

is a correct description of reality the IP should be drawn from a 

uniform distribution from zero to one. There are several statistical 

tools to test such a hypothesis. One which is often used in the 

astronomical literature is the Kolmogorov-Smirnov test (for an 

application see Piccinotti et al. [1982]). The difficulty with that 

particulars,test is that it measures almost exclusively the goodness of 
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fit. That is to say, if the fit is not quite good enough the K-S
 

statistic contains little information about how or where the model might
 

be changed to improve the fit, whereas a statistic like the X2 statistic
 

at least indicates the data points whose individual contributions may be
 

the cause of an overall too high value.
 

We use an alternative set of statistics, the moment statistics.
 

Given a set of observations, {ui}, we define the nth moment statistic by
 

Un E (11N) J (ui _ <u>)
n .[V.7]
 

N is the total number of measurements and <u> is the expectation value
 

of u. Given the cumulants of the supposed distribution for " we can 

calculate the cumulants for V which in turn can be used in an asymptotic 

expansion to give PP (see equation 26.2.47 in Abramowitz and Stegun 

[1965]). If the ui's are drawn from a uniform distribution from zero to
 

one the expected value of pn is zero for n odd, and 1/(n+l) for n even.
 

In assesing the goodness of fit of a model of the fluctuations, we test
 

the moment statistics for the F , to see if they are consistent with the
 

expected, uniform distribution. Consistency is measured by the
 

comparison of the observed moment statistic with the expected
 

distribution, using the asymptotic expansion for the distribution.
 

The advantages of such statistics over the K-S test are ease in
 

calculation and the interpretation of their values when a not-good fit
 

is indicated. For example, if a set of measurements has 12
 

significantly less than 1/3 it means that the uis are too concentrated
 

towards the center, indicating that the model being examined might have
 

too large a variance. If 1 is much larger than zero then the mean of
 

the model should be adjusted. The behavior of the Vn does not directly
 

correspond to a statement about the nth moment of the model, although it
 

is an indicator. An additional caution: the pn are not independent
 

measurements of the goodness-of-fit and can be highly correlated
 

functions of model parameters. A disadvantage of the moment statistics,
 

relative to the K-S statistic, is that they are sensitive to restricted
 

aspects of the distribution. Clearly bad models might give acceptable
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values for some of the Vn" For example, if the model variance is set
 
too large all the ui will tend to 0.5, giving a perfect zero value for
 

all the even ln. (Of course the odd 11n also tend to zero, which for 

them indicates a bad fit.) 

Parameter confidence regions
 

+ 
We consider a class of models described by a parameter vector a
 

+ 
and we 	assume that the true model is given by the parameter . Then a
o
 

90% confidence region is a subset of the possible values of a that has a
 
+ 

90% chance of containing ao. Just 'as there was no unique measure of
 

goodness of fit (or even of the acceptable value range of a particular
 

statistic) there are many different ways to derive a confidence region.
 

In our analysis of the fluctuations we use the likelihood technique to
 

define our confidence regions. (For an introduction to the technique in
 

an astrophysical setting see Cash [1979].)
 

.
 

Consider a model differential distribution P(x;a), the a
 

indicating the dependence of the distribution on the model parameters.
 

If we have a particular set of N observations, the likelihood that. a
 

model describes the observations is the product of the differential
 

probabilities:
 

L(a) = 	R P(xi) . [V.8] 
i 

As L increases, we say the model is more likely. In very general
 

situations, by maximizing L we can calculate an efficient estimator of

+ 

the true model's parameters ao [see Wilks 1963].
 

For purposes of defining confidence regions we use the log

likelihood,
 

A(t) 	 -2 in L = -2 1 in P(xi;+a) [V.9] 

With this definition, better models are found by minimizing A. Let Ami
n
+ 
be the minimum value for the entire range of values that a can take. We
 

can define a region in parameter space by all those models that have a
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value less than or equal to Amin + AA. Wilks [1938] showed that when
 

the probability distribution, and the parameter space satisy some very
 

general constraints, the probability that the true parameter values, a,
 

is contained in that region is distributed roughly as X2 with m degrees
 

of freedom, where m is the dimension of a. The formula is exact when
 

the probability distribution is Gaussian and the variance is independent
 

of the parameters. The formula is asymptotically correct for large
 

number of observations. What constitutes a large number is not easily
 

determined but m 20 is generally considered sufficient for most
 

distributions. (However see Henry, Soltan, and Briel [1982] for an
 

example where the confidence region was well determined for as little as
 

five observations drawn from a very non-Gaussian distribution.)
 

Strictly speaking, Wilk's theorem applies to observations which are all
 

drawn from identical distributions, but relaxing this condition only
 

slows the convergence of the distribution of AA to the asymptotic X2
 

form. The use of the AA confidence region is similar to the use of the
 

AX2 confidence test as outlined by Lampton, Margon; and Bowyer [1976].
 

Not all of the elements of the parameter vector may be of
 

interest. We divide a into two parts, an m'zdimensional vector of
 

interesting quantities, a , and the remainder nuisance parameters in the
 

vector a". Amin is still defined as the minimum value of A over all m
 

parameters. The confidence region in the m'-dimension space is defined 

by all a' such that at least for some value +", A(a a")mini 

than AA. The probability that the true values for the interesting 

parameters, ', is contained in this region is determined by the value 

for AA which by Wilks' [1935] theorem is asymptotically distributed as 

X2 with m' degrees of freedom [Avni 1976; Cash 1976]. 

This derivation of a confidence region is the root of the behavior
 

of the likelihood difference (see equation [111.71]). We claimed in
 

equation [111.77] that a model with a likelihood difference AX tested
 

with a dataset containing N observations will in some average sense be
 

outside the 90% confidence region when M.X is greater than x2 m;0.90 

where m is the number of model parameters. The origins of this claim
 

are now clear. N AX is the expectation value for the difference between
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the likelihood of the test model and the true model. The mean value of 

AAo, the change in likelihood from the minimum value to the value 

associated with true model, is the mean of a X2 distribution with m 

degrees of freedom, which is m. The expected value for AX for the test 

model is roughly m + ML, which if it is larger than the 90% value for 

X2 
with m degrees of freedom would place the test model outside the 90%
 

region.
 

It is the strong similarity of the AA tool to the AX2 technique
 

for defining confidence regions that suggests that non-independent data
 

can be handled in a similar way, i.e. by weighting the contribution of
 

each point to the sum:
 

AA = I Wi AXi [V.10]
 

where the weights, Wi, are defined in [IV.4]. However one important
 

difference in the use of X2 and A is that for normally distributed data
 

X2 
can be used as an absolute measure of the goodness of fit. A is
 

defined to within an additive constant and its absolute magnitude is
 

without statistical meaning. Only the difference of two models' log

likelihoods contains information.
 

A caveat concerning the application of AA (and AX2 ) to the
 

derivation of confidence regions often appears with their use. The
 

validity of the confidence region is predicated on the true model being
 

one of the elements of the space spanned by the total range in a. This
 

condition can be weakened somewhat. If we just insist that one of the
 

models of the space is indistinguishable in the sense of the likelihood
 

difference from the "true" model for the given number of observations
 

then the confidence region may be said to include those models which
 

provide a good representation of the data, even if they do not
 

correspond exactly to the details of an underlying reality.
 

Non-independent measurements and Boole's Inequality
 

Even if the use of weighted non-independent data seems undesirable
 

because of the absence of a rigorous statistical justification we still
 

are not restricted to considering only the small fraction of the sky
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that lies in one subset of internally independent data. As we mentioned
 

in the previous chapter, we are able to extract from the database more
 

than one such subset. Each one is in some sense a new experiment, and
 

the results derived from each one contain in some measure new
 

information. The problem, which we tried to address with the weighting
 

-process outlined above, is that their results can not be considered
 

independent measurements. It is difficult to combine the separate
 

answers without a detailed analysis of the subsets' interdependence. In
 

some sense we can average the position of the best fits, and even the
 

confidence range limits (for at least single parameter models) to
 

describe a result typical of the several subsets. But such a result
 

could only be illustrative, and would not have a definable statistical
 

meaning. There is however a rigorous and correct method to construct a
 

combined confidence region from several different determinations without
 

analyzing their interdependence. Regions determined by this technique
 

are called Boole's Inequality confidence regions.
 

Boole's Inequality is a basic lemma of probability. Let A and B
 

be two events. They may be independant, completely correlated, totally
 

anti-correlated, or anything in between. Let PA and PB be the
 

respective probabilities with which A and B occur. Each event, A, has a
 

complementary event, A', the "event" that A does not occur. Its
 

probability is
 

[V.11]
PA"= 1 - PA " 

One can combine events in several ways: A U B, the event where either A
 

or B occur; and A n B, the event where both A and B occur. Boole's
 

Inequality states the following straight forward property of the union
 

event:
 

PAUB < PA + PB [V.12]
 

If the sum of PA +PB is greater than one, then Boole's Inequality is 

trivially true. If A and B are totally correlated, then PAUB = PA" The 

equality of equation [V.12] holds if they are anticorrelated to the 

extent that the conditional probability of one given the other is zero. 

If the two events are independent, i.e. PAnB = PA PB, then we can show 

that the exact form of PAUB is PA + PB - (PA PB)' which still satisfies 
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the inequality.
 

To see the utility of Boole's Inequality for determination of
 

confidence regions we consider the simple case of two confidence regions
 

labeled-1 and-2. -Their assaciatcd c6fidence levels are Cl and C2. Let
 
+ 

RI be the event that ao, the true model parameter vector, is contained
 

in region 1. Therefore PHR = C. We form the complementary regions, 1'
 
+ 

and 2'. The probability that ao is found in the 1' region is given by
 

PRI" = 1 - PRI" Using Boole's Inequality for the union of the 

complementary regions, 

= 2 - C1 - C2 . [V.13]PR1'UR2' < PRV"+ PR2" 


Knowing that the intersection of two regions is the complement of the
 

union of their complements we can rewrite this as
 

[V.14]
FRIlR2 = 1 - PRI'UR2' ) 1 - (1-C1) - (1-C2). 

Thus we have a lower limit on the confidence associated with the 

intersection of the two regions. As an example, if we have two 95%+ 

confidence regions, their intersection will contain ao at least 90% of
 

the time. This can be generalized to more than two regions, by
 

Pnn=" I.-- X (l-Cn) , [V. 15] 

where 1lRn represents the intersection of n regions of individual
 

confidences Cn-


We will not dwell on the nuances of the application of this
 

statistic but we will emphasize three points: the region generated has
 

a level of confidence at least as high as the one indicated; the utility
 

of this tool is best for determining high level confidences, where the
 

(1-Cn) are small; and for any given confidence level there comes a point
 

of vanishing returns where the addition of information from a new
 

confidence region will not reduce the size of the net confidence region.
 

However for all its weaknesses, the Boole's Inequality method for
 

combining dependent measurements is a tool whose statistical
 

interpretation is as certain as that of the regions derived from a
 

single subset of independent measurements.
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CHAPTER VI
 

RESULTS OF FITS TO THE DATA
 

We have examined the physical aspects of the A-2 experiment, shown
 

how to model the effects of low intensity sources on fluctuations of the
 

X-ray sky, condtructed a database for examining such fluctuations, and
 

developed tools for testing the models against the data. With our
 

previous work as prologue we now perform that testing. We begin with a
 

review of the data used and its characteristics. Our first fits are
 

simple Euclidean power laws, where we show that the calculation of the
 

mean count rate used with the fluctuations distribution is an important
 

problem. In particular, if *e use the naive value of the rms mean of
 

the sky intensity we will introduce a significant bias in our results.
 

After determining a way to isolate the mean from the other parameters,
 

we examine the simple Euclidean fits in detail for a variety of sets of
 

data. The sensitivity of our data to the behavior of low flux sources
 

is probed by examining the addition of a sharp cutoff at low fluxes.
 

The next, traditional, extension is to models with non-Euclidean power
 

law indices. If we assume that the true N(s) is well modeled by a
 

simple power law we see that the fluctuations strongly constrain the
 

N(S) behavior over a factor of ten in flux below the A-2 experiment
 

resolved source limit. A more general, and perhaps more realistic,
 

parameterization of N(S) is to use a single Euclidean power law for the
 

high flux behavior, while the only constraint on N(S) at low flux from
 

the fluctuations is placed by the limits on the excess variance from a
 

pure Gaussian component of the fluctuations. We pictorially consider
 

the constraints this approach places on two component power law models,
 

where the second power law represents an additional evolving component
 

or the effects on a non-evolving model of the expected -roll over from
 

the Euclidean form at low fluxes. We conclude the chapter with a
 

critique of previous measurements of the fluctuations, and a comparison
 

of their fit results with ours. Although our results do not appear to 

be a significant improvement over the older reported measurements, in 

many cases their confidence regions or values are affected by 
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assumptions we have not made or by errors in their analysis.
 

1: Recapitulation of Data Characteristics
 

We review the features of the data chosen for fitting
 
models. The various subsets of independent, and non
independent data are described. The fitting process is
 
sketched.
 

We have chosen to analyze superposed HED I L+SFOV data. The data
 

came from scans superposed for periods up to two days, implying a smear
 

perpendicular to the scan of -1.50. The data in each scan were
 

collected in bins 60 in extent along the scan direction. Such a smeared
 

bin covers an area of 122 square degrees with non-zero response, but 90%
 

of the counts originate in a rectangle 11.2°x4.40 , for an area of 49
 

square degrees. The peak response of the smeared detector is 530 cm2 s,
 
2
with an average response in the 90%-of-counts region of 220 cm s. The 

detector response weights of interest are: R0 = 3x10-3; R1 = 0.292 em2 

s; R3/ 2 = 2.80 cm2 s; and R2 = 9.04 cm2 s. R5 / 2 has a value of 18.96 

cm2 s so that following equation [111.36] the mean flux of a source
 

drawn from a Euclidean N(S) observed with intensity I is <S(I)>
 
- -2
3xl0-3xI counts s 1 cm .
 

The spectral window we have chosen is the entire Layer 1 window. 

Fluxes from this window are measured in HIl units, where 1 HILl equals
 
I - 2
1 count s cm . This window in pulse height space has a total
 

efficiency greater than 10% of its peak value within the range 2.55-46.5
 

keV. The conversion coefficients from counts to ergs (2-10 keV) and the
 

range where 90% of the counts come from depend on the incident spectrum.
 

-8
For the diffuse background spectrum, the coefficient is 1.28x10 ergs
 

per detected photon. The value for typical extragalactic spectra is
 
-
1.35x10 8 ergs, which we will generally use in this dissertation. 90%
 

of the counts of the X-ray sky spectrum originate in the range 2.5-13.3
 

keY.
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The total intensity of un-resolved source contaminated data is
 

21.5 counts per 1.28 second exposure. After fitting the internal
 

background using a special combination of the large and small fields of
 

view (see Section 11:2), we estimate the sky brightness to be 17.06
 
- I
 

counts exp- , corresponding to an all sky flux, Sas , of 58.4 counts s
 

-2 -7 cm (7.5x0 ergs s 1 cm- 2). When only data with <1.18 are used, the
 

typical photon noise for each bin is 0.23 counts exp-I . The expected
 

size of the fluctuations, as characterized by the effective width Weff,
 
- I
is -0.2 counts exp . The ratio of noise to fluctuations signal, *, is 

1.2.
 

Table VI.1: Summary of X-ray sky properties: fluxes and intensities
 

Sky flux properties
 

8
as 58.4 HIl
 

W (fluctuations scale) 0.7 (Y=5/2 model)
 
-
02S (excess variance) 10 3 HILl2
 

Detector dependent measurements, HILl L+SFOV
 
-1
'tot 21.5 counts exp
 

Isky 17.1 counts exp
 
-
B (internal background) 2.2 counts exp I (per side)
 

-
= 4.4 counts exp I total for L+SFOV 

2B (excess variance due to internal background) 

(0.003) (counts exp-l)2 (per side)
 

(0.012) (counts exp-)2 total
 

0.2 counts exp- I
 Weff 


a2 1 9 0.08 (counts exp-l)2
 

(All fluctuations quantities are crude approximations of results
 

presented in this and the succeeding chapter)
 

All data analyzed contain no contribution from sky with Ibi < 200,
 

minimizing the effect of the galactic disk. In addition we exclude
 

those parts of the sky contaminated by the brighter identified galactic
 

Fit results Recapitulation
 



VI:1 179
 

Table VI.2: Excluded High Latitude Sources
 

The source and its position in right ascension and
 
declination are presented.,_ Data-that included contributions
 
from these sources were omitted from in the fluctuations
 

analysis.
 

Galactic Sources 

Sco X-1. .... 83.20 -5.420 

Her X-1. . .... 254.01 35.42 

AM Her . o..... 273.75 49.85 

Ex Hyd.... . .. 192.5 -29.0 

Orion/Trapezium . 83.2 -5.42 

NGC 1851
 

globular cluster . 78.1 -40.1 

NGC 7078 

globular cluster.- . 321.89 11.95 

Extragalactic Sources
 

LMC X-I. ..... 85.0 -69.8 

LMC X-2. ..... 80.25 -72.0 

LMC x-3. ..... 84.75 -64.10 

LMC X-4. 83.25 -66.40 

LMC transient. . . 72.25 -55.0 

LMC transient. . . 84.0 -66.9 

LMC N132d 

Supernova remnant . 81.25 -69.7 

LMC N63A 

Supernova remnant . 84.0 -66.0 

SMC X-1. ..... 19.0 -73.7 

SMC X-2.. ... 13.25 -74.0 

SMC X-3. . 12.5 -72.7 

1431 . ...... 10.0 41.0 

X-ray sources. The regions around the Magellanic Clouds and the
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Andromeda Nebula are also excluded (see Table VI.2). Measurements with
 

intensities greater than 23.0 counts exp- I are also excluded. This is an
 

excess intensity of 1.5 counts exp-1 . A single source in the field of
 
3
 

view with this intensity has, on average, a corresponding flux s6xl0

- -2
 counts s 1 cm . The measured rates are adjusted by the best fit values
 

for large scale structure: the secular decrease, the galactic disk, and
 

the small 24-hour anisotropy.
 

The data were divided into subsets of independent measurements as 

well as two sets that included overlapping data. One such set, 

hereafter called the "all sky" dataset, contained all the data points 

and was used to estimate the proper weighting function for the analysis
 

of overlapping data. The weighting term, as given in equation [IV.4],
 

depends on the size of the intrinsic variation associated with the
 

fluctuations. From the all sky data we estimate this variance, azD,
 

using a likelihood estimator as was computed for the excess variance
 

associated with the internal background (see equation [IV.8]). We
 

estimate aD to be 0.38 counts exp- I . As we describe in the next
 

section, the all sky data were then. weighted and used to determine the
 

least squares mean count rate. For .least squares determinations we can
 

not select the data on the basis of intensity, there being no clean way
 

to evaluate the impact of such a selection.
 

The number of individual measurements in the all sky data was very
 

large, but the total weighted equivalent number of individual
 

observations was not. Because of the computational expense of fitting
 

the models it would be economic to reduce the number of points. For
 

this reason we formed the "whole sky weighted" dataset, indicated in
 

plots and tables by the initials WW. The WW dataset covered the entire
 

sky, but was generated by the independent data subset creation program
 

NSCIND so that the data points were only partially overlapping. Instead
 

of using the true detector dimensions to calculate what constituted an
 

independent measurement, we set the detector equivalent size of 6e and
 

6 to AO, the bin size (60), and 0.20 respectively. This size for 6$
 

restricted the number of measurements from the north ecliptic pole, but
 

was still small enough that some data were selectable from almost all
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scans. The weighted number of observations was only slightly less than
 

the weighted number of observations of the all sky dataset. The size of
 

6e insured that all measurements in the independent parts of the scans,
 

after selection by the 6 criterion, are part of the WW data set;
 

Sets of totally independent data were also created: two groups
 

were generated, each subsequently divided into three subsets. These are
 

denoted SS1 through SS6. We also combined the data into sets of non

independent data, weighting them appropriately, to form SSI-3(Wt.) and
 

Table VI.3: HED 1 datasets used in the study of the fluctuations
 

Subset Number Weighted
 
of number
 

measurements
 

WW 2211 698.0
 

SS1 101
 
SS2 99
 
SS3 102
 
SSI-3(wt.) 302 217.4
 

SS4 93 
SS5 88 
SS6 87 
SS4-6(Wt.) 268 193.2 

SS4-6(Wt.).
 

Each measurement consisted of a rate, a Gaussian noise variance
 

(from counting statistics and excess variance in the internal
 

background), and the value of the upper intensity cutoff. A model N(S)
 

was parameterized by its size (W or Weff), power law index (Y), a
 

possible sharp cutoff (So or ), and an excess or deficit variance to
 

S
model the deviations from a simple power law (a2 or O2E). The model 

number distribution was transformed into a predicted underlying 

distribution of intensities about some mean, I. For each measurement 

the underlying distribution is convolved with the Gaussian noise from 
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counting statistics and internal background and the differential and
 

integral probabilites of the measurement were calculated. The
 

differential probabilities were used in a likelihood test to determine
 

the best fit among the range of parameters and to estimate their
 

confidence region. The moments of the distribution of the integral
 

probabilities are examined to estimate the goodness of the fit. In
 

reporting the results of the fits we will, for brevity, often restrict
 

ourselves to the confidence regions for WW, SS1, and the combined result
 

from subsets 1-3 using Boole's Inequality, denoted by the initials BI.
 

This last region generally has the same size as, or is somewhat larger
 

than, a single subset's region, but provides a compact and correct
 
"average" contour for three. 90% BI contour
the The encloses the
 

intersection of the three subsamples' 96.66% confidence regions.
 

2: The Reconciliation of the Observed and Model Means
 

The fluctuations distribution, PI,(I-I), is calculated from
 
the model N(S) to give a distribution about the mean count
 
rate. If in performing the fits the model mean is
 
identified with the mean count rate of the observations, a
 

systematic bias is introduced. We show in this section that
 
the value for the size of the fluctuations, Weff can be
, 


strongly correlated with the value chosen for I. The bias
 
and correlations are due to the assumption that the model
 

has the correct contribution from resolved sources, to the
 

mean count rate. A simple correction term removes both bias
 
and correlation, allowing the separation of the uncertainty
 
in f from determinations of Weff of the uncertainty.
 

When we create the test distribution for the intensities, P 1,
 

(subsequently convolved with the noise distributions) we determine the
 

distribution about some mean intensity, f. Y is essentially a model 

parameter like Weff and y, but one that is of less interest. For one 

thing it includes non-X-ray sources of counts, such as the internal 

background. Fitting models to the data is time consuming, so it is 

preferable to know and fix I prior to the fluctuation fitting. 

Alternatively, if the results do not depend significantly on the value 
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of T we can dispense with considering it as a free parameter in our
 

fits.
 

The simplest approach is just to measure Y. To zeroth order, Y is
 

the total number of counts observed by the detector during the mission,
 

-2xl0 8, divided by the total active time. More exactly we can take the
 

same sky used in the study of the fluctuations, subtract our model for
 

large scale structure, and find the mean from a least squares estimate.
 

As the mean count rate does not depend on the stochastic behavior of the
 

unresolved sources, it is reasonable to assume that we may use
 

overlapping data. Though such use will yield an unbiased estimate of
 

the mean, as we show in Section A2:2, this estimate is not the most
 

efficient, nor is its statistical uncertainty knowable. To satisfy both
 

aspects, the data should be weighted. We use the all sky dataset
 

described in the previous section and perform a simple, weighted, X2 fit
 

to find that T--obs, the observed mean count rate, is 21.096±0.016 counts
 

-I
exp (1a). Using this value for T;we then fit the data from the WW
 

overlap set to a model of the fluctuations from a Euclidean N(S) model,
 

(y = 5/2). The only free parameter is the effective width, Weff, which
 

-
has a best fit value of 0.178(0.167-0.188) counts exp (90%).
 

If we let Y be a free parameter we learn that our simple 

identification of lobs with the model mean is misleading. The 90%
 

confidence region is contained in the upper contour of Figure VI.1.
 

This contour is for only one interesting parameter, so that it
 

constrains Weff or T, separately, not jointly. If we are interested
 

only in Y, its value is 21.169(21.128-21.222) counts exp-1 . This region
 

and the acceptable range for the least square determination are
 

significantly different. Although the change from lobs to Ibestfit is
 

only 0.34%, by allowing-I to vary we cause a shift in the best fit value
 

of Weff of more than 10%, to Weff = .0.197(0.182-0.213) counts exp-I .
 

It is not obvious why the two estimates for the mean count rate
 

should be so differant. After all, it is the same sky. A clue lies in
 

the strong correlation between T and Weff as illustrated in the tilted
 

aspect of the confidence contour. We saw in our theoretical description
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Figure VI.l: Fit Confidence Regions, I and Weff
 

Euclidean model fits for weighted partially overlapping
 
data. The dashed line denotes the one a range of T based
 
on the weighted least squares estimate. The dotted error
 
bar is the initial estimate of the 90% range in Weff
 
holding T fixed and making no corrections for the behavior
 
of resolved sources. The uppermost contour encloses the
 
90% confidence region when f is allowed to vary freely.
 
The other two contours are cases where the effect of the
 
bright sources on a determination of f is modeled and
 
removed (see text). The contours are at Amn+2.7 (90% for
 
only one interesting parameter.
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of the generation of P , distributions that the fluctuations may be 

shifted by changes in the model N(S) at high flux levels. Figure 

Fit results Observed and Model Means 



VI:2 185
 

ll1.7(b) shows an example of such a shift when a sharp cutoff is imposed
 

at about the level of the brightest observed sources. Although not as
 

large a shift as when y is less than 5/2 (see Figure 111.7(a)), the fits
 

show that the shift is easily detectable, given the number of
 

observatojs and the quality of data that we have. For the upper
 

contour in Figure VI.1, marked "no correction", the upper limit was 

equivalent to infinity. The next contour, marked "Ssurv = 0.0254", is 

when the correction to the model mean intensity is made following 

equation [111.60], with Smax replaced by the survey limit, Ssurv. 

In this case the fluctuations-fitted mean count rate and the least 

squares value are consistent. However the confidence region still is in 

the form of an elongated and tilted ellipse, indicating continued 

correlation between the confidence range in Weff given a particular 

value of f (and vice versa). What is the source of this continued, 

albeit reduced, correlation? The reasonableness of the first correction 

depended on recognizing that the model for N(S) continued unchanged to 

fluxes higher than the brightest sources, contrary to the actual data 

from which Yobs was measured. But a similar presumption is in effect at 

slightly lower fluxes. We know something about the number and flux
 

disribution of a complete sample of sources above some survey limit,
 

Ssurv , and a particular model will predict the contribution of sources
 

in that flux range to a measurement of Y. The total integrated flux
 

from sources above the survey limit is
 

SS>Ssurv = (4t/Asurv) XSi , [VI.1] 

where the Si are the individual resolved source fluxes and Asurv is the 

total solid angle covered by the survey. For the survey presented in
 

Piccinotti et al. [1982], SS> S is 0.446 counts s- cm- 2 for a
 
3
of 2.23x0 _limit suE 1 -2
 

-
survey counts s cm . The contribution of these
 

resolved sources to the mean intensity is just RiSsurv which for HlED 1
 

L+SFOV is 0.13 counts exp- I. If we limit the maximum flux of N(S) used
 

in defining the mean of the fluctuations model in equation [111.60] then
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the observed mean intensity may be split into two parts:
 

I = IS<Ssurv + R SS>Ssurv [VI.2]
1 


The behavior of the resolved sources is totally acounted for in the
 

second term and segregated from any other assumptions in the N(S) model,
 

represented by the first term.
 

The result of such"a separation is seen in the lowest contour in
 

Figure VI.1. After applying equation [VI.2], the fluctuations analysis
 

yields a best fit value for T that is consistent with the least squares
 

observation. Better, the shape of the contour indicates that with this
 

choice of Ssurv , Seff and T are no longer correlated. As long as it is
 

in the range of the best fit values of I, the exact value chosen for I
 

is unimportant in the determination of properties of N(S). It is
 

important to keep in mind that this separation is possible only after
 

explicitly removing changes in the mean from the model behavior at the
 

levels of the resolved sources. Without such a correction, or an 

independent fitting of T, the derived N(S) parameters may be 

systematically biased. 

3: Fits of Euclidean Models
 

We test a power law model for N(S) with index y = 5/2, 
characteristic of a uniform distribution of sources in 
Euclidean space. The quality of the fit is good. The 
various subsets are used to determine the confidence region 
for the width, W. The answers from all the sets are in 
agreement. By fitting models with sharp cutoffs at low 
fluxes we are able to estimate the limitations of our models
 
in describing the low flux region of N(S). The limit is set
 
by a variance condition, rather than by the number of
 
sources per field of view. The best-fit y=5/2 model is used
 
to define a fiducial N(S) to which subsequent models are
 
compared.
 

Before fitting particular models to the fluctuations data base we
 

already recognize that there is some deviation from perfect isotropy.
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Table VI.4: Confidence range for W when Y = 5/2
 

The results for the various subsets are presented. For the 
four entries associated with the WW set different correction

- terms were -removed in order to assess their impact. 

Subset 


WWI all 

corrections 

WW2 no a2B 

corrections 

WW4 no large 

scale variations 

corrections 

WW5 no corrections 

SS1 


SS2 


SS3 


SSI-3 (Wt) 


SS1-3 (EI) 


SS4 


SS5 


SS6 


SS4-6 (Wt) 


SS4-6 (BI) 


The, moment statistics indicate 


W(90%) 

counts s 
- 1 cm - 2 

0.0702(0.0650-0.0759) 

Amin 

826.51 

0.0706(0.0654-0.0761) 838.03 

0.0740(0.0685-0.0798) 867.31 

0.0742(0.0696-0.0788) 878.82 

0.0677(0.0558-0.0817) 

0.0704(0.0552-0.0857) 

0.0687(0.0573-0.0819) 

0.0687(0.0599-0.0785) 

(0.0538-0.0870) 

0.0623(0.0504-0.0775) 

0.0664(0.0554-0.0821) 

0.0782(0.0640-0.0956) 

0.0684(0.0593-0.0789) 

(0.0599-0.0829) 

that there must be some variation in 

addition to counting statistics. We estimated a variation of a-0.32
 

counts exp- I when calculating the weights for the overlapping data in
 

the WW set. If we account for the variation by fitting it with the
 

fluctuations distribution generated by a Euclidean power law, expected
 

from a simple extrapolation of the resolved source counts, the first
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Figure VI.2: 90% Confidence Range forW when T = 5/2 

(See Table VI.4 for explanation of abbreviations)
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four moment statistics all indicate an acceptable fit. We present in
 

Table VI.4 and Figure VI.2 the confidence region derived from the
 

variation of A as a function of the remaining model parameter, Weff . We
 

-

fixed T to 21.08 with a Ssurv of 0.00223 counts s 1 cm 2 and a SS>Ssurv
 

- - 2
of 0.446 counts s 1 cm as discussed in the previous section. The
 

various subsets are in agreement with each other, and we will see later
 

that the ranges here are also in agreement with the results from the
 

resolved sources. We should note that the results presented for the
 

Boole's Inequality combination of the subsets (indicated by the BI) does
 

not include a best-fit value. Boole's Inequality speaks only about
 

confidence regions and can not indicate the most likely model within
 

those regions.
 

The four results presented for the whole sky weighted dataset (W)
 

are not different sets of data, but the same data analyzed under
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different conditions. In particular, different corrections for other
 

sources of variation are included. The change of Amin indicates that
 

the inclusion of these corrections is highly significant in a
 

statistical sense, but the effect on the position of the confidence
 

region is only a shift of -5.4% when all the large scale structure
 

effects are included. The inclusion of the excess variance of the
 

internal background, 2B, has a much smaller effect, -0.4%. The exact
 

value used for the internal background variance is therefore unimportant
 

for determinations of W. Even the effect of including the galaxy is of
 

the same order as the scatter between the subsets of independent data.
 

Fiducial model
 

We will use the best-fit Euclidean model from the whole sky
 

weighted data as a basis for comparing other models, as well as
 

estimating the predicted N(S) behavior of populations of observed
 
-


sources at lower fluxes. The best-fit value for W, 0.0702 counts s 1
 

- 2 - 3 .
cm , corresponds to a value for K of 1.480x10 In comparing a
 

general N(S) to this fiducial model it is convenient to factor out the
 

Euclidean power-law component:
 

N(S) = 47 K(S) S-5/2 . [VI.3] 

The comparison of a particular N(S) to the -fiducial N(S) is equivalent 

to plotting the ratio of the associated K(S) to the fiducial K. We will 

refer to the fiducial (constant) K value as Kfid -


The range of applicability
 

Though the Euclidean power-law models for N(S) used here are
 

presumed to extend to infinitesimally small values of flux we have noted
 

in previous chapters that the data are not uniformly sensitive to the
 

models over the entire range of flux. For a first order understanding
 

of the limitations of the models we can use Scheuer's criterion, which
 

states that the limits of sensitivity are reached at the flux
 

corresponding to one source per field of view. Because of the smeared,
 

non-ideal, nature of the detector responses it is important to remember
 

the distinction between intensity and flux. For the fiducial model, the
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intensity where there is one source in the field of view is 0.76xWeff = 

0.15 counts exp- I . The average flux of a source of this intensity is
 
-1 2
4.5x0 -4 counts s cm , about one fifth of the resolved sources survey
 

lower flux limit. If we try to calculate the one source per field of
 

view condition completely in terms of source fluxes, it is not
 

appropriate to use S1eff as the size of field of view. If we use the
 

FW90%DF definition of the field of view, or 49 degree2 , one source per
 

field of view corresponds to 837 sources all sky. For the fiducial
 
-


model this number of sources is reached at a flux of 6x10 4 counts s 1
 

cm-2 , roughly a factor of 3.7 below the resolved source flux cutoff.
 

We will see in the next section a demonstration that the data are
 

most sensitive to the behavior of N(S) models at this flux level and a
 

little lower. However, as we argued in our original discusion of
 

Scheuer's limit, it does not provide a lower limit to the possible
 

sensitivity of the model, at least when we consider the contribution to
 

the fluctuations' variance of the very lowest flux region of N(S). To 

determine the sensitivity of our data to such low flux portions we 

consider models where we hold W fixed, and examine the range of 

acceptable models as we vary the position of a sharp cutoff in N(S).
 

The cutoff flux is given by SO . When W is the fiducial width, 0.072
 

counts s- 1 cn-2 , the best-fit cutoff is zero. The 90% upper bound on So
 
-
is 1.0xl0 -5 counts s 1 cm 2 for the WW data set and 9.9x10 5 for the SS1
 

subset of independent data. As we discussed earlier, the cutoff could
 

not be higher because the missing variance provided by sources below the
 

cutoff is significant. Since it is the variance, rather than a cutoff
 

per se, that we are sensitive to, we calculate our sensitivity limit in
 

terms of the corresponding intensity variance contributed to the sources
 
-3 -2


below the cutoff, azI . This limit is 9.5x10 (counts exp-)2 (3.0x10


(counts exp-1)2) for SS1). For the WW set, this corresponds to a sigma
 

of about half a percent of the diffuse sky intensity, roughly the
 

magnitude of the large scale cosine anisotropy.
 

The upper bound and best-fit values for the flux cutoff are
 

functions of W. Not surprisingly, including a sharp cutoff allows
 

larger of values of W. When Weff is fixed at 0.22 counts exp- I (when W
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equals 0.0784 counts s-I cm 2 ), the best-fit value of So is 2.2xi0- 5
 

- -2
 counts s 1 cm . The 90% confidence range for the WW data set is
 
- - I -2
0.1-6.ixlO 5 counts s cm . Sources between the best-fit value for So
 

and the .90% upper bound contribute 9.7x10-3 (counts exp-l)2 to the
 

intensity variance. The similarity between this variance and the
 

variance sensitivity limit for the fiducial model directly illustrates
 

that the sensitivity of models to a cutoff is indeed a matter-of the
 

cutoff sources' contribution to the variance of the fluctuations.
 

We can use the likelihood difference to predict our sensitivity to
 

changes in the variance, as we did with equation [111.106]. The
 

sensitivity is a function of the number of observations as well as the
 

ratio of noise variation to the fluctutations. With the results from
 

the WW data set, the predicted size of the variance is 5.3x10-3 (counts
 

exp-l)2, in order of magnitude agreement with the actual measurement of
 
3
9.6x10- .
 

4: Fits of Gamma and W
 

We consider non-Euclidean power law N(S) models, i.e. those
 
with y not fixed at 5/2. We find that the -W (whole sky
 
weighted) data-set provides much greater constraints on the
 
allowed values for W and y than a dataset of independent
 
measurements. Euclidean and near-Euclidean models provide a
 
good description of the data. The acceptable models show
 
that the N(S) is most tightly constrained at fluxes of
 

-2
3x10-4 counts s-I cm , an order of magnitude below the
 
limits of resolved source counts. A low flux cutoff,
 
imposed by the requirement of not exceeding the total X-ray
 
sky flux, has a significant impact by allowing with the 
confidence region high y models that otherwise would have 
been excluded. The technique used for calculating the mean
 
count rate also has an impact. Pegged models, where N(S) is
 
constrained at a given flux Sp, are examined.
 

-Issues in performing non-Euclidean fits
 

Figure VI.3 shows the 90% contours for fitting the WW set of data 

Fit results Fits of Gamma and W
 



- -- ---------- ---------

VI:4 	 ORIGINAL PAGE W 192 
OF POOR QUALITY 

Figure VI.3: Effects of model assumptions on 90% confidence regions,
 

Weff and y plane
 

The WW set is fit under three sets of conditions: A(Sdlid
 

curve) the model -inlucldes an automatic low flux cutoff
 

imposed to avoid exceeding the sky flux; B(Dashed curve)
 

no automatic flux cutoff; and C(Dotted curve) with an
 

automatlc cutoff, but with the mean count rate calculated 

assdming a sharp cutoff in N(S) above Ssurv = 0.0254 
- I -2 counts s cm . The best-fit positions are indicated by
 

the symbols A, B, and 	C respectively.
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with non-Euclidean power law models. The confidence regions are defined 

by AA less than 4.60, so that both y and Weff are considered 

"interesting" parameters. Three separate contours are shown in the 

figure, illustrating different aspects of the fitting process. The A 

(solid) contour is for a model with a sharp low flux cutoff at the point 

where the model provides the total sky flux, while for the B (dashed) 

contour the model was extended to zero flux. For the B contour, models 

with Y > 3.0 were automatically rejected because of the infinite 

variance contributed by the lowest flux sources. In comparing the 

dashed and solid contours, we see that in the former case the models 

with higher values of Y were incorrectly excluded. The low y models, 

where the two confidence regions strongly coincide, are less sensitive 

to the presence or absence of the low flux cutoff. Given that the 

presence or absence of the cutoff makes such an impact on the confidence 

region, it seems that the exact position of such a cutoff could be 

important. In particular higher cutoffs could, in principle, allow even 

steeper values of Y. Eventually, though, such models would be 

incompatable with the high flux behavior of N(S) and thus rejected. 

Rather than fitting regions where both Y and Co are free parameters, in 

the next section we fit models with an-excess variance term. Because
 

N(S) at low fluxes contributes an essentually pure Gaussian component to
 

the fluctuations, constraints on such models can also be applied to
 

determining the position of the cutoff.
 

For the C (dotted) contour in Figure VI.3, the low flux source
 

behavior is the same as the A contour, with an automatic imposition of a
 

sharp cutoff, but the treatment of igh flux sources is different. This
 

difference is not in the shape of the P1 ,(I') distribution, but in the
 

way the mean count rate was calculated, and is related to the mean of
 

the model distribution. The A curve followed the prescription of
 

equation [VI.2], where the model was insulated from the contribution of
 
- I
 

sources with fluxes greater than the survey limit of 0.00223 counts s
 

2
cm . The C curve is insulated from the behavior of sources greater
 
-
than 0.0254 count s 1 cm -2 (roughly the brightest resolved source flux).
 

The actual mean count rate used in both curves was fixed to that
 

determined by the best-fit Euclidean models for the two cases of 21.08
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-
and 21.11 counts exp I respectively. The fact that the area enclosed by
 

the C curve is smaller than that enclosed by the A curve is solely due
 

to the behavior of sources between the two survey limits. This region
 

is studied directly by the actual distribution of the resolved sources.
 

Thus, if an independent assessment of N(S) is to be made, which is
 

generally restricted to the flux region below that of the resolved
 

sources, then the region enclosed by the A (solid) curve of Figure VI.3
 

should be used. In this chapter we will follow the techniques used in
 

the generation of the A region, viz. automatic low flux cutoff and
 

isolation from the resolved sources' behavior.
 

When analyzing strictly independent data, the automatic imposition
 

of the low flux cutoff greatly increases the acceptable range in I (see 

Figure VI.4). In particular for the SSI set, the upper range extends to 

values from 3.0 to 3.2, which would have been incorrectly removed from 

consideration without the automatic low flux cutoff. The other
 

independent measurement datasets extend even farther, their average
 

behavior represented by the Boole's inequality contour.
 

The curves of Figures VI.3 and VI.4 are in the Weff, Y plane.
 

Weff parameterizes the number-intensity relationship n(I). To convert
 

to the detector independent models, N(S), we change Weff to W, as
 

illustrated in Figure VI.5. Note that the scale for W is logarithmic.
 

The thin, elongated nature of the confidence region shows that the
 

numerical values of W are strongly correlated with y. It is difficult
 

to use this region to see the restrictions the fluctuations place on the
 

behavior of N(S). This is better seen in Figure VI.6 where we plot N(S)
 

for each model acceptable at the 90% level, divided by the fiducial 

model N(S). Thus, the horizontal dashed line is the fiducial model of 

Euclidean index and W = 0.0702 counts s- 1 cm-2 . The "fish-tail" region 

on the right encloses the acceptable models. The right hand border of 

this region is roughly the survey limit of the resolved sources. 

Sources above this limit have some effect on the fit, for example when 

they contribute a small intensity to a measurement because they are just 

at the edge of a measurement bin where the spatial response is small. 

However, these sources can only have a relatively small constraint on 
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Figure VI.4: 90% confidence regions for Weff and Y
 

Contours for the SS1 data subset (dashed), the-Boole's

-inequality region"for SS1-3 (dotted), as well as for the
 

WW (solid) data are given. The + symbol indicates the
 

best-fit model for the 'SSI dataset.
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the fits. As the narrowing of the allowed models region indicates, the
 

fits are most sensitive to sources at a flux about an order of magnitude
 
- 4 - 2
below the limit of the resolved sources, at -3x10 counts s ' cut .
 

Here the N(S) models all fall within ±15% of the fiducial model-for the
 

WW dataset ("'±30% for the SSI dataset). The N(S) models are less
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Figure VI.5: 90% confidence regions in the W, y plane
 

The contours are as described for Figure VI.4, the small
 
circle representing the WW best-fit model.
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tightly constrained at higher and lower fluxes. In fact,, in Figure
 

VI.6(b) we see that the inclusion of models with relatively high values
 

of y (steep negative slopes in the fish-tail) for the SSI dataset is
 

allowed because the behavior of the higher flux sources is poorly
 

constrained.
 

Fit results 	 Fits of Gamma and W
 



VI:4 	 ORIGINAL PAGE IS 197 
OF POOR QUALITY 

Figure VI.6: N(S)/N(S)fid for power law N(S) models acceptable at the
 

90% level
 

(a) for the W dataset; (b) - for the SSI dataset. A 
detailed explanation of the figure is given in the text.
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The contour in Figure VI.6 clearly shows what flux region is most
 

constrained by the fluctuations. This disagrees with the folklore that
 

"the fluctuations are dominated by the brightest sources, and
 

insensitive to sources dimmer than the flux where one source is in the
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field of view." The most tightly constrained region is not that of the
 

brightest sources but rather roughly a factor of two below the limit of
 

one source per field of view. For the smeared response function of our
 

data the average flux of sources whose intensity is at the one source
 
- - -2
per field of view limit is 5xl0 4 counts s ' cm . Thus, if we assume
 

that N(S) follows a 'power law, we see that we can draw some conclusions
 

about its behavior even below this limit. However, these conclusions
 

are founded on the contribution to the distribution's variance by those
 

low flux sources. We are not able to measure directly the power law
 

index at these levels, as is possible in the study of the resolved
 

sources. The constraint on the index rests on the assumption that a
 

single index is a good fit over the entire range of flux.
 

The slender needle region on the left side of Figure VI.6, hatched
 

on one side, shows where a particular power law N(S) model fills the
 

total sky flux and must be terminated. The fact that the position where
 

the total flux equals the sky flux is defined by a region, and not an
 

exact function of N(S), is because it is an integral constraint. When
 

the constraint is reached depends on the exact path of the N(S) model.
 

The left hand edge of the fish-tail region is defined so that the
 

variance contributed by the sources below the edge is equal to the
 

variance that was detectable when we included a sharp cutoff in the
 

Euclidean models of the previous section. A sharp cutoff in the N(S)
 

model between the left hand edge of the region and the point where the
 

sky flux is exceeded is not distinguishable, with that set of data, from
 

a continuation of the model to the lowest possible fluxes. Note that if
 

the possibility of an early sharp cutoff were explicitly included in the
 

fits the range of acceptable models would be modified. In particular
 

models with even steeper values of y would be acceptable if an earlier
 

cutoff were allowed.
 

Pegged models
 

Pegged models have N(S) fixed to some form above a certain flux
 

and directly connected with a variable model below that flux. Given the
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peg flux and the model above it, the condition of continuity is such
 

that a power law model below the peg point is completely determined by a
 

single parameter. Following equation [111.66], given y we can determine
 

W. 

In Figure VI.7 we show the derived confidence regions for four 

values for Wp, with the peg flux set to the resolved source survey 

limit. The four values, we will see, are of the same order as would be 

derived from the resolved source counts at the survey limit. For each 

value of Wp we show the best-fit value and the 90% range. Now there is 

only one interesting independent parameter, so the confidence range is 

defined by AA C 2.71. We see that the derived ranges are within the 

confidence regions of the un-pegged power law models. The SSI data 

results are substantially improved in that the pegged models do not 

include high values of y. This shows again that such high values were 

due to the data's poorly constraining the behavior of the higher flux 

sources. This is clearly seen in- Figure VI.8.(b) where we plot 

N(S)/N(S)fid for the acceptable pegged models. The acceptable region is 

the union of models for all four values of Wp, as seen by the four
 

wedges on the right hand side of the solid region. The pegged models
 

significantly restrict the allowed models, depending mostly on the
 

precision to which N(S) for the resolved sources is known. The range of
 

values used here for W is representative of the uncertainty in this
 

value. The similarity of the size of the solid and dashed regions in
 

VI.8.(a) shows that for the whole sky weighted (WW) dataset the
 

fluctuations alone provide roughly as strong a constraint on N(S) near
 

the survey limit as the resolved sources do.
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Figure VI.7: Ranges of acceptable Weff and y for pegged models
 

The 90% ranges for the WW and SS1 sets are shown for four
 
different values of W , the W of the Euclidean model
 
assumed to hold for fluxes above the peg point, set at
 

-
0.00223 counts s 1 cm-2 . For each value of .W, the best
fit model for the WW and SS1 sets is indicateapby a filled
 
and open circle respectively. The inner and outer dashed
 
curves are the 90% contours, unpegged, for the SSl and WW
 
datasets respectively.
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Figure VI.8: N(S)/N(S)fid for pegged models
 

(a) WW; (b) SS1. -The dashed outlines on the right are the
 

unpegged-90%"regions-of Figure VI.6.
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5: Fits of the Excess Variance and W
 

We describe fits when N(S) is parameterized as a pure
 

Euclidean power law with an additional component whose
 
contribution to the fluctuations is a pure Gaussian. The
 

variance of the Gaussian, 021, and the value of W for the
 

power law are strongly correlated. We present the 90%
 
confidence contours for these parameters. The data -are
 
consistent with a zero excess variance, with a 90% upper
 

bound to 021 of 0.064 (counts exp-l)2, or in collimator
units of flux, 02S, 0.0008 (counts s-1size-independent 

cM-2) . This limit is derived from the overlapping data WW 
dataset. The constraints imposed by the sets of independent 
measurements are much less severe. The limits on the excess 

variance is used to place limits on a broken power law model, 
for N(S). We show how the confidence range would be 
modified if independent information could provide an exact 

value for W.
 

The validity of the N(S) region allowed by the fluctuations in
 

Figure VI.6 depends on the assumption that the actual N(S) is indeed one
 

of the models tested; i.e., it is a single power law extending from the
 

survey limit to the point where the total flux of the sources equals
 

that of the X-ray sky. This is a rigid and probably unrealistic
 

condition. We may slightly relax this condition in that a sharp cutoff
 

somewhere between equaling the sky-flux and the left-hand edge of the
 

allowed N(S) region is indistinquishable, at some level, from the model
 

N(S) that continues unbroken to the lowest flux values. Similarly, a
 

doubling in N(S) to the left of the allowed region would produce an
 

insignificant difference in A, making a model with such an excess
 

indistinguishable from one of the models actually tested. It is
 

difficult to assess whether a general N(S) is an acceptable model or not
 

if it -deviates from a single ,power law, particularly at fluxes higher
 

than the left-hand edge of the allowed power law N(S) region. As we
 

shall see, the expected behavior of N(S) for real source populations is
 

not a single power law, so the parameterization of N(S) in terms of Y
 

and W as done in the previous section is not optimal for testing
 

realistic N(S) models.
 

However, at high values of the flux, almost all source populations
 

Fits of Excess Variance
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asymptotically follow a Euclidean N(S). And we have discovered that a
 

low flux source's contribution to the fluctuations distribution can be
 

represented by a pure Gaussian term. Thus, a prefered parameterization
 

of the N(S) model is not in terms of y and W, but in terms of the W of
 

the asymptotic 51 Euclidean power law with an additional Gaussian
 

component of variance, 02x (which we call the excess variance). When
 

the fits are performed, the Gaussian is convolved with the Euclidean
 

power law generated PI,(I'). If N(S) should fall below the Euclidean
 

law o2 is negative, indicating the deficit contribution to the variance
 

of the missing sources. Negative values for the excess variance can not
 

be handled directly in the convolution process. Instead a sharp low
 

flux cutoff is imposed on the Euclidean N(S) that is equivalent to the
 

removal of the given variance. As we saw in the discussion of Figure.
 

111.13, such a sharp cutoff effects only the variance until the cutoff
 

value becomes quite high. The position of the cutoff is not, therefore,
 

important for interpreting the fits. In particular, the behavior of
 

N(S) above and below the Euclidean law that produces the excess variance
 

is not associated with any particular flux value, only that a divergence
 

from the Euclidean form is confined to the low fluxes where the sources
 

contribute principally to the variance.
 

Results of fits
 

The confidence regions for these fits are presented in Figure
 

VI.9. Not unexpectedly, the excess variance and the asymptotic value W
 

are strongly correlated., The parameterization of the Euclidean
 

component is given in terms of both W and K. The excess variance is
 

given in terms of the variance convolved with the intensity
 

distribution, a2i, and in terms of a2S . The two are related by
 

al = [VI.4]R2 as 


2
(see equation [111.69]). In turn, c S is a solid angle independent
 

constraint on the non-Euclidean behavior of N(S) at low fluxes through
 

equation [-III.68].
 

For each of the sets of data in Figure VIA there are two 

confif'ence regions. The outer one is defined by AA < 4.60 so that it 
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Figure VI.9: Excess variance versus W
 

The 90% confidence regions for W or K and the excess
 
variance, U2 S or U2I . The solid, dashed and dotted
 

regions are for WW, SS1, and SSI-3 (Boole's Inequality)
 
respectively. The inner of each pair of regions pertains
 
when only one of the 	 two parameters is consid&red
 
interesting. The open circle and cross signify the best
 
fit positions for the WW and SSI datasets.
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simultaneously contains the true value of both the variance and W 90% of
 

the time. For this circumstance, where there are two "interesting"
 
X2
 parameters, the delta likelihood range is defined with the 


distribution with two degrees of freedom. But if only one of the
 

parameters were interesting, the relevant parameter space is indicated
 

by the inner region, where AA < 2.71, the 90% limit for X2 with one 

degree of freedom. Thus we can conclude, using the WW dataset, either
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that W ranges from 0.048 to 0.077 counts s-I cm- 2 or that o21 is in the
 

range from -0.016 to 0.066 (counts exp-l)2. In terms of the fraction of
 

the total sky flux, oi/I ranges from -0.74% to +1.49%.
 

Now the acceptable range for W is within an uncertainty of ±20%
 
- I
(90% confidence) from the current best fit position of 0.064 counts s
 

cm-2 . This is roughly as accurate as the value derived from the
 

resolved sources, but it is a significant degradation over the
 
-
simplistic model which had a 90% range of 0.065 to 0.076 counts s 1
 

-2
 cm . Statistically there is no reason to prefer the model with the
 

excess variance to the simple Euclidean model with no additional
 

variance term. The models with zero variance provide acceptable fits.
 

However, because of what is expected for actual source behavior the
 

additional term is both justified and necessary.
 

To determine whether a particular model for N(S) is consistent
 

with the limits imposed on the- excess variance requires a check of the
 

integral behavior of the model, as in equation [111.68]. We can crudely
 

indicate the acceptable range of such behavior by modeling the N(S) as a
 

Euclidean power law that breaks to another index at some low flux. Such
 

a model must not exceed either the excess variance or the total sky
 

flux. In Figure VI.10 we show the range of N(S) covered by models that
 

either break to an index of 3.0, equivalent to strong source evolution,
 

or to 2.0, roughly representing the rolloff from geometry and
 

cosmological considerations. These actual values for the break are ad
 

hoc, but they give a general idea of what constitutes acceptable
 

behavior for N(S). Breaks that deviate further from a Euclidean index
 

would indicate a somewhat different region, where the break occurs at a
 

lower flux. To evaluate a particular model we should compare its
 

behavior directly to the integral.constraint of the excess variance.
 

These results.were derived from the fits of the WW dataset. The
 

sets of independent data provide much more loose constraints, in the
 

same fashion that they failed to strongly limit the allowed values for
 

Y. The independent sets include, or just barely exclude at the 90%
 

level, models with a purely Gaussian component.
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Figure VI.10: Acceptable N(S) for broken power law
 

Models that break from the Euclidean value to either 3.0
 
or 2.0 are considered. The acceptable range of models is
 
determined by the 90% limits on W and the excess variance
 
from the WW dataset (both variables considered important,
 
AA < 4.6). The-dashed region indicates the behavior of
 
the W-Y fits from the single power low models. The
 
hatched line to the right shows where the total X-ray sky
 
flux contributed by the model N(S) exceeds the observed
 
flux.
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If we were given the exact value of W to use for the 

asymptotically Euclidean part of N(S) we could determine a signifcantly
 

smaller region for the excess variance. This is illustrated in Figure
 

VI.11. The confidence ranges shown there are drawn as a function of the
 

external perfect determination of W. Note that (of course) all values
 

of W now have an acceptable range of a21. The range is determined by 

fixing W, determining the minimum A and finding the range of excess
 

variance where AA 4 2.71. The case where the information about W is not
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Figure VI.11: Confidence regions for excess variance, given W
 

The 90% confidence range is given provided that the exact
 
value of W is known. The zigzag line gives the best fit
 
excess variance as a function of the given W, for the 'WW 
dataset. All- other symbols are the same as Figure VI.9.
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exact will be treated in the next chapter. However, it is worth noting
 

that little improvement in the size of the acceptable range of the
 

variance is expected for the WW dataset unless the outside information
 

about- W is better than the 20% uncertainty available directly from the
 

fluctuations data.
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6: Analysis of and Comparison with Other Experiments' Fluctuations
 

Results
 

Analyses of the fluctuations of the X-ray sky have appeared
 
in the literature using data from UHURU and Ariel V. One
 
analysis of the UHURU data measured only the variance of the
 
fluctuations. Given the limitations of such a technique it
 
is in general -agreement with the results derived in this
 
chapter from the HEAO 1 A-2 data. An estimate of the excess
 
variance was made, but it is subject to several biases
 
weakening the published constraint. P(D) analyses- were
 
performed on both UHURU and Ariel V- data. However,
 
important effects, included in the A-2 analysis, were
 
ignored. The Ariel V published power law model confidence
 
region is in agreement with the A-2 region, although the
 
Ariel V results may be seriously flawed due to an arithmetic
 
error.
 

The fluctuations in the X-ray background have been a topic of
 

investigation since the. era of sounding rockets [Schwartz et al. 1971;
 

Fabian and Sanford 1971; Fabian 1972]. An early satellite analysis was
 

performed by Schwartz [1970] using data from OSO III. These results
 

were generally upper bounds, where the total area, amount of active
 

time, and/or sky coverage were insufficient to provide a significant
 

measurement of any anisotropy in the unresolved high latitude X-ray
 

surface brightness. All three of these constraints were removed with
 

the first generation of all-sky survey instruments, starting with UHURU,
 

including Ariel V, and culminating in HEAO 1. Successful measurements
 

of the fluctuations have been made using datasets from each of these
 

instruments.
 

It is natural to compare the various results, if for no other
 

reason than to confirm the techniques used and the conclusions reached.
 

However there are three obstacles to any straightforward comparison:
 

(1) physical differences in the detector systems used, particularly
 

affecting the spectral response, which requires an unavoidably inexact
 

transformation of the measurements made with different units; (2)
 

differences in the fitting techniques used, ranging from minor
 

variations in assumptions and models tested to radical differences in
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the quantity actually measured (e.g., an estimate of the variance of the 

fluctuations versus a fit of the actual PI 7 distribution); and (3) the 

presence of errors in the analysis requiring corrections or 

modifications before comparing two sets of results. (This difficulty is 

compounded by the inaccessibility of all the information available for 

the original analysis.) Keeping in mind these difficulties, we will 

briefly discuss' four measurements of the X-ray sky fluctuations and 

compare their techniques and results with what we have presented in this 

dissertation. When assessing the different experiments, in terms of V, 

the ratio of the non-fluctuations noise to the fluctuations, the value 

for W we will use is the HEAO 1 best-fit Euclidean value of 0.0702 
- -2
 counts s 1 cm .
 

UHURU as analyzed by Fabian [1975]
 

The IHJURU satellite included two separate proportional counter
 

detectors collimated by rectangular slats. The detector used in this
 

and subsequent analysis of the fluctuations had a FWHM of 5.2°x5.20 .
 

The satellite made great circle scans of the sky, similar to HEAO 1,
 

although not so methodical in coverage. The collimator slats were
 

alligned parallel and perpendicular to the scan direction. (Many of the
 

parameters of the UHURU experiment presented in this and following
 

subsections are also based on information presented by Schwartz, Murray,
 

and Gursky [1976] and Schwartz [1980].)
 

The active gas used in the detectors was argon, making it closer
 

in energy response to the MED detector than to the xenon-filled HED 1
 

that we have used. The count rate used is often called a 2-6 keV
 

measurement of the X-ray flux. The UHURU flux unit, or UFU, is defined
 

by the flux of a source whose on-axis contribution to the intensity is
 

one count per second. For typical spectra one UFU corresponds to
 

2.4x10- 1 ergs in the 2-10 keV band. The naive conversion to HEAO HED
 

Layer 1 flux units (HILl) is 1 count s-1 cM72 is roughly equivalent to
 

560 UFU. Intensity and flux are measured in the same units. This
 

definition normalizes the peak response of the unsmeared detector to 1.
 

The response function, r(6, ), and all of its weights are dimensionless.
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The dataset used by Fabian in this analysis consisted of 105 measurments 

that had been smeared by 50 along the scan direction. This corresponds 

to a weight for transforming a Euclidean power law model W to Weff of 
3
R3/2 = 5.3xi0- , equivalent to an effective solid angle for a Euclidean 

power law of Reff = 4.82 msr (see equation [111.53]). This is slightly 

larger than the value calculated by Fabian, probably because he assumed 
° 
the collimator size to be 50x5 FWHM. The total count rate is 20.05
 

UFU, of which 17% is ascribed to internal background derived from
 

measurements when the satellite was occulted by the Earth. This
 

compares favorably to the level for the L+SFOV rates of the RED, in part
 

because the larger UHURU, solid angle increased the number of sky flux
 

counts. In addition, UTHURU's equatorial orbit helped minimize its
 

internal background. Typical values for the counting statistics were
 

0.3 UFU. The value of 'P is then 1.4, not including any contribution 

from-variation in the internal background. 

The data were binned in a frequency histogram of number of
 

observations versus intensity. A X2 test was used to fit power law N(S)
 

models to the data. The fluctuations' distribution was produced by
 

Scheuer's closed form power series [Scheuer 1974], which is inherently
 

restricted to power law indices between 2 and 3. The fluctuations
 

distribution was convolved with a noise distribution representing the
 

contribution to the fluctuations from counting statistics, and the
 

resultant distribution was compared to the data histogram.
 

In preparing the data for analysis, Fabian made no correction for
 

a galactic contribution or for possible noise from variation in the
 

internal background. In addition the data used were contaminated by
 

intervals where the detector was partially earth occulted [Schwartz,
 

Murray, and Gursky 1976]. Arguably then, the results derived are in the
 

nature of upper bounds on the behavior of the X-ray sky fluctuations.
 

However, this is sufficient for the main conclusion of this paper that
 

the fluctuations were too small when compared to the level expected from
 

the resolved source counts derived by Matilsky et al. [1973].
 

A confidence region in K and Y was presented. However, it cannot
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easily be compared with the HEAO 1 A-2 results because Fabian did not
 

take several steps that we have found to be important. Fabian found the
 

range in acceptable Ys to be roughly 2.28 to 2.80. We found with a
 

dataset of similar size and precision (the SSI set) that we were unable
 

to constrain Y better than the range 2.25 to 3.4. In his analysis,
 

Fabian did not explicitly allow for a required low flux cutoff, nor did
 

he include an dxplicit separation of the high flux sources when
 

calculating the distribution mean. In fact, he did not try to fit the
 

mean count rate with the fluctuations, but instead set the fluctuations'
 

mean to be equal to the least squares mean. We have seen that this can
 

introduce a significant bias. Even sb, the best fit value derived of K
 
,
= 25 (UFU)1 5 Y-2.5, corresponds to a value of W, in HEAO units, of
 
- 1 -2
 0.083 counts s cm . This is not far from the HEAO 1 confidence
 

region.
 

In his analysis Fabian used the one source per beam criterion to
 

estimate his lower limit of sensitivity at 0.17 UFU. That is, sources
 

with intensities less than 0.17 UFU do not significantly affect his
 

results. It should be remembered that this limit corresponds on average
 

to a source with flux 2.32 times that intensity. Thus the limit after
 

allowing for the smeared detector response is 0.39 UFU.
 

Fabian and Rees [1978], using the results of Fabian [1975],
 

estimated an upper limit to the excess variance from evolved sources.
 

Without giving any details, their stated upper bound was 1 per cent of 

the diffuse sky brightness. We have calculated that their smeared 

detector had a weighted response of R2 = 0.0156, so we derive their 
-
limit on a2s 112 (UFU)2 , or in HEAO 1 detector units 3.6x10 4 (counts
 

s-i cm-2)2. This is substantially smaller than the upper limit from the
 

HEAO fits. However, without access to the details of the calculation of
 

the Fabian and Rees limit, it is difficult to assess the accuracy. In
 

particular, no details are given as to the determination of the size of
 

N(S) from unevolved sources, an important aspect in fixing the magnitude
 

of the excess. The best fit value of the fluctuations size by Fabian
 

was actually larger than the best fit values derived from HEAO, so that
 

if anything we would expect the upper bound of the excess variance from
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the UHURU results to be larger.
 

UHURU as analyzed by Schwartz, Murray, and Gursky [1976]
 

This analysis did not fit the distribution of the intensities, but
 

instead estimated the size of the variance of the fluctuations
 

distribution. If Y is assumed to be 5/2 then equation [111.56] may be
 

used to estimate the effective width: 

Weff - [ 0.5 621 "u-0.5 ]2/3 [VI.5] 

I is the upper intensity limit; all measurements with intensitiesu 


greater than 1+I u are not included in the determination of the
 

variance. 621 is the total variance of the distribution, in previous
 

equations represented by O21,. The notation has been changed for this
 

section to avoid confusion with the excess variance, 02i.
 

The dataset consisted of 122 bins that were smeared by 100 in the
 

scan direction rather than by the 50 bin smear that Fabian used. In
 

general such an increase in the smear should decrease the uncertainty
 

due to counting statistics, as the number of exposures per bin is 

increased. In this case, though, the rms deviation due to counting 

statistics increased to 0.42 UFU. Perhaps Schwartz, Murray, and Gursky 

used a more stringent data selection criterion than Fabian, or fewer 

scans were superposed. An estimate of the variation of the internal 

background was made by examining data taken when the detector was 

totally occulted by the earth, 0bkg = 0.22±0.14 UFU (one sigma). No 

model for galactic or any other large scale contamination was used. We 

have calculated the response moments for the UHURU detector smeared by 

100 in the scan direction and by 10 in the perpendicular direction to 

account for uncertainty in the spinaxis pointing: R5/2 = 0.0247; R2 = 

0.0131; and R3/2 = 9.0047 (corresponding to an aeff for a Euclidean N(S) 

of 4.05 msr). The value of P is -2.6. 

All 122 observations were used to show that the data were
 

inconsistent with total isotropy. A subset of 28 bins with no overlap
 

in sky exposure was used to determine a best fit sky variation, 61, of
 

0.49 UFU. A X2 test was used to determine confidence bounds, although
 

Fit results Comparisons with Other Experiments
 

http:0.22�0.14


VI:6 213
 

this is strictly applicable only for purely Gaussian distributions. The
 

96% range in values was 0.18-0.84 UFU. Schwartz, Murray, and Gursky
 

state that they exclude measurements with intensities of 3 UFU or
 

greater; therefore, using equation [VI.5] -we-derive the 96Z range for
 

Weff of 0.044-0.3462 UFU. The corresponding value for K is 2.3-50
 

UFU1"5 . The W range is 9.44-73.7 UFU, or in HED I units 0.017-0.13
 
- I -2
counts s cm . This large confidence range is easily consistent with
 

our results.
 

The value derived for W is a function of the upper level intensity
 

cutoff, as well as the size of the fluctuations variance. Properly this
 

limit is a criterion applied to the smeared bin intensities. However in
 

the text of their paper, Schwartz, Murray, and Gursky state that the 3.0
 

UFU limit was applied on a level of individual exposures. If no single
 

exposure could be more intense than 3.0 UFU, it is impossible that a bin
 

consisting of the average of many exposures could ever be that bright.
 

The equivalent intensity limit for the bins must be smaller than 3 UFU.
 

A source of intensity 3.0 UFU in a single exposure has on average a flux
 

of 5.9 UFU (see equation [111.36]). In the smeared bin a source with
 

intensity 1.75 UFU will on average have the same flux. If we use 1.75
 

UFU as an estimate of the proper value for V we must rescale the above
u 

-0 5 

results for K by (1.75/3) . and W by (1.75/3) 1/3 giving 3-65 UFU 1 5
 

-
and 0.02-0.16 counts s cm-2 respectively. Note that with this revised
 

value the upper bound on K is now consistent with the value of 60 UFU
1 5
 

derived from the UHURU resolved source counts by Holt et al. [19741
 

based on the Matilisky et al. [1973] data.
 

Analysis of the Ariel V data by Pye and Warwick [1979]
 

The Sky Survey Instrument (SSI), one of several experiments on the
 
2
Ariel V satellite, had a 290 cm proportional counter covering the
 

energy range from 2-18 kev. As in the case of UHURU, both flux and
 

intensity are measured in the same units, in this case SSI counts s-1 ,
 

which we will abbreviate as SSI. 1 SSI is roughly equivalent to
 
- -1 -2 
5.1x10"l ergs s cm (2-10 keV), depending on the spectrum. This
 

-I
corresponds to -265 SSI for 1 count s cm-2 in the xenon counter layer
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one units of HEAO 1. The mean sky intensity was 3.42 SSI. The count
 

rate from particles (internal background) in a particular measurement
 

took a wide range of values, with 4.4-10 SSI being the range for one
 

scan of superposed data.
 

The detector had a rectangular collimation system 	with a FWHM of
 

0.750xi0.60 . However, the detector was not placed on the satellite so
 

that its collimator was alligned with the scan direction. That is, the
 

long axis was inclined 650 from the scan plane. For smearing purposes,
 

the -detector was treated as equivalent to one of 9.60x0.970 aligned with
 

the long axis perpendicular to the scan. (This and other points not
 

covered in Pye and Warwick's published paper were provided by a private
 

communication.) The data were superposed in 4.20 bins. If we allow for
 

1.50 	of smear perpendicular to the scan plane the response moments are
 

=
R1 = 0.000227, R3 /2 = 0.00187 (equivalent to nIeff 1.02 msr), and R5/2 

0.0108. The perpendicular smear is a small perturbation. 

A typical value of the variance due to counting statistics is 

-0.i4 SSI. An estimate of the variance due to uncertainties in the 

particle,contribution was 0.034 SSI. The value for V is 4.8. A simple 

model for the galaxy was subtracted, where Igal = 0.05 cos(2b) (SSI). 

The Pye and Warwick analysis was the first truly all-sky analysis of the 

X-ray fluctuations. There were 1110 data bins, but they were not 

independent. The bin weightings were estimated in a way philosophically 

similar to equation [IV.4]. Instead of estimating the degree of 

interdependence on a bin by bin basis, Pye and Warwick gridded the high 

latitude sky into -270 equal solid angle cells, each -about 98 square 

degrees in size. If the center of the field of view was inside a cell, 

a bin was counted as being in that cell. Each bin was then weighted 

inversely by the total number of bins that were in the same cell. 

Therefore the weighted number of observations was about 270, the number 

of cells. Because the total sky area covered by a bin was actually 

larger than the cell sky there was some correlation between the cells, 

but this was counterbalanced by the probable overweighting of the 

measurements within a cell, i.e. effectively treating all the bins as 

if they exactly overlapped. The fact that the best fit model had a X2 
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of 2.55 for 5 degrees of freedom indicates that the data were
 

overweighted. The derived confidence region in this case would be

conservative.
 

Figure VI.12: The 90% y-W confidence region for Ariel V
 

We compare the 
results from Ariel V with our derived
 
results from HEAO 1. 
 The best fit value for the analysis
 
by Fabian of the UHURU data is also shown by the + symbol.
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Other than including overlapping data and making an estimate of
 

the internal background variance, the fitting technique used was similar
 
to Fabian's [1975]. Again the fit was based on a X2 
test of a histogram
 
of measurements versus a derived histogram for the fluctuations, using
 
the Scheuer [1974] series expansion. Therefore the models were
 
restricted a priori to power laws with index 2 and 3. No
between 


attempt was made to fit the mean count 
rate or to correct for the
 
modification in the calculation of the mean for high flux sources. 
 As
 
remarked above this could produce a significant bias in the results.
 
Even so, the Ariel V confidence region is essentially coincident with
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the HEAO 1 region (see Figure VI.12).
 

For the smeared detector response of the Ariel V bins, the average
 

flux of a source is 6.6 times its contribution to the intensity. The
 

intensity with one source in the field of view is roughly 0.035 SSI,
 
- - I
corresponding to a flux of 0.23 SSI (8.7x10 4 counts s cm-2 ). This is
 

only a factor of 2 below the limit of resolved source counts, 0.5 SSI,
 

from the Ariel V all-sky survey as analyzed by Warwick and Bye [1978].
 

However, as is the case for the HEAO I analysis, the Ariel V results
 

probably apply to fluxes below the one source per field of view limit.
 

This flux of the one source per field of view limit calculated here
 

differs from the value presented in Bye and Warwick, as they did not
 

make the distinction we have demonstrated between flux and intensity.
 

Eye and Warwick did not fit data with intensities more than 0.38 SSI
 

above the mean sky intensity. The actual upper flux limit, on average,
 

is at 2.5 SSI. Bye and Warwick did not determine any limit on the
 

excess variance with the Ariel V data.
 

The value we have calculated for eff, 1.02 mar, is not the same
 

as the value quoted in Bye and Warwick of 2.12 msr (assuming that Y = 

5/2). This discrepancy is serious. The Bye and Warwick value is almost 

certainly in error. It corresponds to an effective solid angle of 7.0 

square degrees, which is larger than the effective solid angle of the 

unsmeared detector, (16/25)6o0 = 6.0 square degrees. Any smearing can 

only reduce the magnitude of Reff* If Pye and Warwick actually used 

their published value in their analysis, and if the true value is as we 

have calculated it, then their results must be adjusted. The Euclidean 

values for W plotted in Figure VI.12 must be multiplied by a factor of 

1.6, destroying the agreement between the Ariel V and HEAO 1 regions. K 

must be rescaled by a factor of 2.1, eliminating the smooth continuation 

of the Ariel V resolved source counts of Warwick and Bye [1978] to their 

fluctuations result. Similar rescalings are probably necessary for non-

Euclidean values of T, although exact numbers are impossible to give as 

Warwick and Bye gave only their Euclidean value for 2eff" We are faced 

with explaining this large deviation from what was expected. The 

determination of the background variance is probably one of the weakest 
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steps in their analysis. If the true variance of the internal
 

background were much larger than they have estimated, then the
 

fluctuations would have measured values in excess of what could be
 

caused by the unresolved sources. It is possible that the published
 

number for neff was a typographical error, and- that they use: the proper
 

value in their analysis. In this case the published analysis and
 

results are correct.
 

The excess variance from UHURU as analyzed by Schwartz [1980]
 

A value for the excess variance that has been used in the
 

literature [e.g. Cavaliere, Danese, DeZotti, and Franceschini 19801> is
 

given by Schwartz [1980] based on his analysis of an UHURU all-sky
 

database. He derived an upper bound to the excess variance of 1.3% of
 

the sky flux in the UHURU 5.2°x5.20 detector. We will later see that
 

the excess variance can be used to set a lower limit on the number of
 

sources in the sky. Schwartz calculated that his bound corresponded to
 
- 4 


7.5 million sources (all-sky). This means o2S = 4.4xi0 (counts s-1
 

cm-2), a value signicantly better than the current HEAO 1 bound of
 

8x10-4 . However the UHURU derivation is flawed at several key points.
 

The initial preparation of the data was identical to the
 

techniques used in Schwartz, Murray, and Gursky [1976]. The data were
 

superposed on scan great circles, each bin being 100 in scan angle.
 

Single exposures with intensities greater than 3.0 UFU were excluded
 

(corresponding to an intensity limit for each bin of 1.75 UFU). In
 

order to use all the data, the measurements were rebinned into cells
 

aligned in galactic coordinates of roughly 10°xl0 in extent. Unlike
 

the Ariel V case where the rebinning was only for purposes of
 

determining the weight of a measurement, here the scan bins were sumed
 

to make a single measurement of the X-ray sky brightness. Although
 

there was still some correlation between the galactic cells, Schwartz
 

assumed that each measurement had equal weight. A more important
 

omission was that he continued to use the smeared response function
 

calculated for the original scan bins. By superposing the data into
 

galactic cells additional smearing occurs. Calculating the correct
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value is difficult, as the exposure within a sky cell is not uniform,
 

but for our purposes we will assume that the superposition into the
 

galactic cells is equivalent to a second additional smearing of 100 in
 

the scan direction and a total smear of 50 in the perpendicular
 

direction. The weights for such a twice smeared detector are: R5/2 = 

0.0195, R2 = 0.0107, and R3/2 = 0.00408 (equivalent to 0 eff for 

Euclidean N(S) of 3.28 msr). With this additional smearing the upper 

intensity limit, In is reduced further to -1.2 UFU. The accumulation of 

more exposures per measurement decreases the size of the noise due to 

both counting statistics and internal background variation, but the 

greater smearing also reduces the size of the fluctuations signal: 4 = 

1.8.
 

The measurements were combined into sets with the same absolute
 

value in galactic latitude, and the variance due to the fluctuations
 

was estimated in each set. This reduced the contribution of the
 

galactic anisotropy without explicitly modeling its latitude dependence,
 

although any longitude variation would not be excluded. The combined
 

estimate for the size of the fluctuations variance, 6I (not to be
 

confused with the excess variance a,), is 0.30-0.45 UFU (90% confidence
 

range). Schwartz reported a range for K of 9-22 UFU 1"5 , which is
 

"5
actually close to the range 13-28 UFU1 that is obtained with the
 

correct values for the intensity limit and smeared response weights.
 

This is fortuitous because he mixed the differential and integral forms
 

of his N(S) relationship, which multiplied fluctuations result by a
 

factor of 3/2, close to the factor of -2 required to-compensate for the
 

wrong detector weights.
 

Our current bounds on the excess variance from HEAO I were found
 

by directly fitting a Euclidean power law with an additional component.
 

Schwartz only measures one aspect of the fluctuations, the variance of
 

the distribution, and if he is to find a bound for the excess variance
 

he must include some outside information. He uses the revised UHURU
 

source counts which he states have a range of Ksc of 12-22 UFU1"5 (90%).
 

Ksc is the K value for the Euclidean N(S) law associated with the
 

resolved source counts. Using equation [111.56] we find the predicted
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range in the fluctuations variance is &2I;sc = 0.123±0.023 UFU2 (I 

sigma). If the 1 sigma range in the measured variance is given by 
62i;meas = 0.146±0.034 then the 90% upper bound on the excess variance 

2is a 1 0.075 UFU2 . We crudely test the magnitude of the effect due to
 

the partial -overlap between the -presumed Independent galaxy cells by
 

assuming that the putative 90% range on r2I;MEAS is only an 80%
 

confidence region. In this case the 90% upper bound on the excess
 
2
variance is a , 0.086 UFU2 , a small effect.
 

For U21 of 0.075, an excess variance of 1.7%, we calculate the
 

detector solid angle independent measure, c2 S, to be 661 UFU2 , or in our
 
-
detector units 2.11x10-3 (counts s 1 cm-2 )2. If we estimate the number
 

of sources, all-sky, using the same technique (but with the right
 

coefficients) as Schwartz did we find that his data are compatable with
 

a lower bound of 1.6 million sources, or 38 per square degree. In the
 

next chapter, we derive the HEAO I lower limit of 50 sources per square
 

degree.
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CHAPTER VII
 

ANALYSIS OF FLUCTUATIONS FIT RESULTS
 

Our confidence ranges for the abstract N(S) models tested in
 

the previous chapter are now compared to other data and more
 
realistic models of the universe.
 

1: Comparison of Resolved Sources N(S) and the Fluctuations
 

The data of Piccinotti et al. [1982] for a complete sample
 
of resolved sources are reviewed. The sources are binned by
 
intensity and used to estimate K, the normalization
 
coefficient, for an assumed Euclidean N(S). The treatment
 
differs from that in Piccinotti et al. in that it includes
 
identified galactic sources and excludes the highest flux
 
sources as N(S) is expected to deviate from a single power
 
law model at the highest fluxes. Corrections for the
 
Malmquist bias are also estimated. The range of values for
 
K is consistent with the Euclidean component of the
 
fluctuations. We combine the resolved source fits with the
 
fluctuations analysis to produce a significant reduction in
 
the confidence regions for K (or W) and the excess variance,
 
especially for the independent data subsets. The 90%
 
confidence range for 021 is 0.0 to 0.05 (counts exp-1)2, (or
 

4 a2S is 0 to 6x10- (counts s 1 cm-2)2) using overlapping
 
data.
 

The sample
 

During the period from days 248-437 (1977), when the entire sky
 

was scanned, a complete sample of sources was compiled. This period,
 

referred to as the "first scan", was essentially contemporaneous with 

the measurements used in the fluctuations analysis. The survey did not
 

cover regions within 200 of the galactic plane or within 60 of the Large
 

Nagellanic Cloud (LMC), leaving a total solid angle coverage of 8.23 sr
 

('65.5% of the sky).
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Source fluxes were measured using a combination of detector layers
 

and fields of view: both layers of HED 3 with the small field of view
 

plus the small field of view, Layer 2, of the MED. This combination
 

gives fluxes in R15 units (see Marshall et al. [1979] for a complete
 

description). Using the spectral response information in Tables &tbd2.
 

and &tbd3., as well as the areas from II.1 we can construct the
 

conversion coefficients from RI5 to ergs s-1 cm-2 . For thermal
 

bremsstrahlung spectra, the conversion factors are 2.06xi0- I and
 
I -2
2.47xi0- ergs s71 cm (R15)- I for kT = 40 and 6 keV respectively. 

For a single power law of photon index r = 1.65 (c=0.65), the conversion
 
- I - 1
is 2.14x101 ergs s 1 cm-2 R15- . The conversion to ergs varies by
 

more than 10% for the spectra typical of extragalactic sources. This
 

might cause difficulties in comparing results from the source survey,
 

measured in RI5, with the fluctuations fits. Fortunately we can use the
 

same tables to estimate directly the conversion from RI5 to HED 1 Layer
 

1 units, without going through ergs. Because in this chapter we will be
 

comparing different measures of flux, the simple designation of "counts"
 

is ambiguous without explicit reference to the detectors used.
 

-1 -2
Therefore we will identify 1 count s cm in HED 1 Layer 1 as I HILl.
 

We estimate that 1 HILl is equivalent to 620, 623, and 622 RI5
 

respectively for the three spectra used above. This conversion has very
 

small dispersion. For our purposes we will use the general conversion
 

623 RI5 1 HILl. This conversion coefficient indicates that the Ri5
 

combination has an effective area equivalent to about 623 cm2 of the
 

first layer of a xenon (HED) detector. Thus the inclusion of the
 

additional layers provided -50% more counts than available from just the
 

first layer, small FOV, of RED3.
 

For the first scan the survey was complete down to a level of 1.25
 

R15 (2x10-3 HILl). (The completeness level was set so that all the
 

sources were detected with a flux at least 50, as defined by photon
 

statistics, away from zero.) 76 sources were detected by this
 

criterion, not including the local sources from M31 and the Magellanic
 

Clouds, the high latitude globular clusters and the two brightest
 

galactic binary X-ray sources, Sco X-i and Her X-1 (see Table VI.2*).
 
Two moderate flux galactic sources, EX Hyd and AM Her, were excluded
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Only 2 of the 76 are currently without firm or suggested
 

identifications, an identification rate in excess of 97%. Of the
 

identified sources, 64 are extragalactic objects: viz. 30 clusters of
 

galaxies, 33 active galactic nuclei (AGN), and 1 peculiar galaxy (M82).
 

Of the AGN, 4 are BL Lac objects, 1 is a QSO (3C 273), and the remainder
 

are generally type 1 or type 2 Seyfert galaxies although other forms of
 

activity are also included (e.g. NGC 7172). (These classifications use
 

additional information obtained since the publication of Piccinotti et
 

al. Details are given in Appendix A5.)
 

Fitting N(S)
 

Piccinotti et a. , fit a power law index for N(S) of the 

extragalactic sources using the "absolute maximum likelihood" method of
 

Lightman, Hertz, and Grindlay [1980], a modification of the technique of
 

Crawford, Jauncey, and Murdoch [1970]; (also Murdoch, Crawford, and
 

Jauncey [1973]). This technique allows the use of unbinned data with 

errors; however it does not directly allow the calculation of the power 

law coefficient. They were able to show that the Euclidean power law 

index, y = 5/2 provided an acceptable model for the extragalactic 

sources and unidentified objects. They did not fit an N(S) model for 

their identified galactic sources. In the analysis of the fluctuations
 

we are, of dourse, unable to distinguish variations produced by galactic
 

sources from any fluctuations due to extragalactic objects. Therefore
 

to compare properly the fluctuations results to the N(S) of resolved
 

sources we should not exclude the galactic sources.
 

Though we can construct likelihood techniques that analyze
 

unbinned measurements for the simultaneous estimation of the norm and
 

index of N(S), we will use an easier-to-implement technique utilizing
 

binned data. We divide the sources into M bins where the observed
 

number of sources in the ith bin is n,. This value is expected to be 

drawn from a Poisson distribution where the mean, ni, is determined by 

the model N(S) being tested, so that n i is drawn from a probability 

from the fluctuations database, but are included in this sample as they
 
are examples of cataclysmic variables (CV), other examples of which will
 
contribute to the fluctuations.
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distribution
 

Pi(n;ni) = (ni)n exp(-ni) / n1 [VII.1] 

We can define confidence regions on the model parameters through the
 

log-likelihood difference (see equation [V.9] and associated
 

discussion). Ignoring constant terms the relevant statistic is
 

A({Ci} ) = 2 1 (Y i - ni in _ni [VII.2] 
i 

Other examples of the analysis of Poisson-distributed data using similar 

equations have been extensively examined by Cash [1979]. For large 

values of ni the value for A approaches the form of X2 = L (ni 

i)2/ ni . However, when the expected number of sources per bin is 

small, 5, the non-Gaussian nature of the Poisson distribution would 

significantly bias the best fit value. Worse, the confidence range 

estimated using AX2 will be seriously in error even for a mean of 15 

observations. Recall also that even the likelihood derived contours are 

only asymptotically correct, but will generally be accurate when there
 

are as many as 10-15 sources in all the bins.
 

For a given N(S), the mean number of sources observed in an 

interval defined by the flux range ASi is 

ni =f dS N(S) . [VII.3] 

If we assume that the N(S) law is a power law with index Y over the
 

interval SX < S < Su, then the expected number of sources becomes
 

n = 9 K (SzI -Y - Su-Y ) / (y-1) . [Vll.4] 

This can be inverted so that the observed number of sources can be used
 

to estimate K.
 

So far we have assumed that we can determine perfectly the source
 

flux so that we know exactly the flux range bin in which a particular
 

source belongs. It has long been noted that if there are statistical or 

other uncertainties associated with a flux determination, corrections 

must be made. If N(S) is a power law - S_, Y>O, then the expected 

number of observations in a bin is larger than the naive prediction, a 
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Table VII.1: Resolved source distribution, binned
 

bin Sk Su ni ni ni Ti fi 

R15 R15 extra- galactic total R15 

galactid 

1 5.0 4 4 0 4 0.28 1.007 

2 3.15 5.0 7 2 9 0.24 1.018 

3 2.404 3.15 13 1 14 0.22 1.030 

4 1.984 2.404 9 2 11 0.22 1.048 

5 1.710 1.984 9 0 9 0.24 1.084 

6 1.514 1.710 7 1 8 0.23 1.104 

7 1.366 1.514 6 1 7 0.23 1.136 

8 1.25 1.366 11 2 14 0.21 1.137 

From bins 2-7, best fit and 90% range n = 9.53 (7.80,11.49).
 

bias known as the Malmquist effect. Simply stated, there are more
 

sources with true fluxes below the bin which can be "scattered" by
 

statistical imprecision to observed fluxes covered by the bin than there
 

are sources in the bin to be scattered out of it. To quantitatively
 

estimate the enhancement we assume that the statistical process is
 

Gaussian with variance 02. The probability that a source with true flux
 

S will have an observed flux S' is then
 

P(S';S,a) dS' = dS' exp[-(S'-S)2 / 2a 2 ] / (2n 02)0 "5 . [VII.5] 

In the presence of the Gaussian error we calculate that N'(S'), the 

number of sources with observed flux S' is
 

N'(S') dS' = dS' f dS N(S) P(S';Sa) [VII.6]
 

Therefore to find the mean number of objects in a flux bin we replace 

N(S) in equation [VII.3] with N'(S') to get the corrected n', which in 

turn replace the ni in [VII.2] when calculating the model confidence 

region. The corrected mean, t4, is a potentially complicated integral 

of the model N(S). However when we assume we know the form of N(S) and 
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wish only to fit its normalization, we can calculate the correction 

factor
 

=fi n-i / i [VII.7] 

-Finding the confidence range for- the model normalization now involves 

replacing ni in equation [VII.2] with fini. For power law N(S) models
 

with y > 1 the correction becomes infinite as S goes to zero. This is
 

avoided by imposing a low flux cutoff in N(S). It was to prevent the
 

position of the cutoff from having a significant impact on calculating
 

the correction that a requirement of 50 detections was imposed on the
 

sample, following Murdoch, Crawford, and Jauncey [1973]. After all, the
 

cutoff is a property of N(S) far from the fluxes where the actual
 

sources are measured. (However, see Appendix A6 for further discussion
 

of this point.)
 

We divide the range above 1.25 Ri into 8 bins, with identical
 

expected number of sources in each bin using equation [VII.4]. Listed
 

in Table VII.1 are the flux range, the number of sources, the average
 

flux uncertainty, 0i, and the Malmquist bias correction assuming a
 

Euclidean power law form for the model N(S). The correction term is
 

largest for the low flux bins where the number of sigma from zero to the
 

lower flux edge of the bin is smallest.
 

We note that the first, high flux, bin has only 4 sources. Though
 

this is not more than 1.50 below an expected 9.5 sources (not counting
 

any Malmquist correction) there is a reason to expect that the source
 

counts may not be strictly Euclidean in the higher flux bins so that the
 

first bin should be excluded. As will be discussed in the next section,
 

active galaxies have a luminosity function in the range 1043 to 1045
 

-
ergs s 1 that is well described by a power law of index 2.75. The
 

contribution to source counts by a population with this luminosity
 

function, as noted in the discussion following equation [111.9], is
 

dominated by the low luminosity objects. 8 of the 28 AGNs have
 
I
luminosities <10 4 3 erg s , with a mean of -4.5xl042 . For a speatrum
 

typical of a low luminosity active galaxy (see next section) a source of
 
-
intensity 5 R15 and luminosity 4.5x104 2 erg s 1 will be at a redshift of
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-0.0029. For comparison, the redshift of the Virgo Cluster is 0.0037.
 

If the universe is inhomogeneous od this scale, in particular if active 

galaxies are under-represented in a sphere with radius z - 0.003 and 

centered on our galaxy, then source counts at 5 Ri and brighter will be 

below the Euclidean power law of lower fluxes. Because such 

inhomogeneity is plausible, and to some degree observed in local galaxy
 

surveys (see e.j. Tully- [1582]), we will only fit sources in bins 2-7,
 

with intensities from 1.25 to 5 Ri. Number counts of clusters, which
 

have a flatter luminosity function, are dominated by high luminosity
 

objects, and are not expected to show a significant deficit in the high
 

flux bin. As it turns out, three of the four objects with S > 5 RI5 are
 

indeed clusters.
 

We will fit a Euclidean power law model, so that each bin has
 

identical n. The best fit value and 90% range is 9.53 (7.80,11.49). If
 

the Malmquist effect had been ignored the values would be roughly 8%
 

higher, while if all 8 bins had been fit the answer would be -7% lower.
 

We can calculate an equivalent value of K by
 

5 -4 5
K = 2.04 n R151. = 1.31x10 n (HIL1)1. [VII.8]
 

so that the values for K derived from the fit are 1.24(1.02,1.51)x10
- 3
 

(HILl)1 "5 . This is in agreement with, and smaller than, the 90% range
 

in K from the fluctuations fits, which is, regarding the excess variance
 
-3 -3
as a nuisance parameter, 0.8x10 to 1.7x10 (HlLl) 1 5 (see Figure
 

Vfl.1).
 

We can estimate K on a bin by bin basis using [VII.4]. To
 

properly place this estimate on Figure VII.1 we convert the K to the
 

K(S) form:
 

K S2 "5 -K(S) i = y = S2 .5-y (y-l) (ni/fi) 

S(S _YS-u_ [vfl.9] 

K(S)i is the estimate based on the observation of n. pources in the ith
 

bin. When the assumed power-law within the bin is Euclidean, K(S) = K.
 

Analysis of Results Resolved Sources
 

http:7.80,11.49


227 
ORIGINAL PAGE ig 

VII:l 	 OF POOR QUALITY, 

Figure VII.1: K(S)/Kfid from resolved source counts
 

The hatched regions indicate the 90% range for K for a 
-Euclidean--model as- -derived from - source counts or the 
fluctuations. The heavy horizontal lines are the inferred 
value for K(S) in each bin based on source counts-. The 
central dashed line is the best fit K for the resolved 
sources, with the upper and lower dashed lines indicating 
the expected one sigma variation on K(S) as measured from 
the seven low flux bins. The K(S) uncertainty for the 
high flux bin is indicated separately. The horizontal 
arrow on the upper flux bin illustrates that it contains 
all sources brighter than 5 RI. The dotted continuation 
of the lowest flux bin to below 2x10-3 indicates the 
significant contribution to that bin's measurement from 
sources with actual fluxes outside the bin's formal range
 
(Malmquist effect).
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The alert reader will have noticed that the typical values for the
 

source flux uncertainties from Piccinotti et al. as reported in Table
 

VII.1 are small, - 0.23. From our discussion in Section 111:7 we know 

that these numbers can not have included any correction for confusion to 

al, as the minimum total uncertainty including counting statistics is 

-0.3 RI. We can make an approximate correction to a,, however this 

will reduce the statistical confidence level of the intensity below 5 -. 

Traditional calculations of the Malmquist correction will break down. 

In Appendix A6 we develop an extension to the technique for calculating 

fi that automatically imposes a reasonable low flux cutoff. The impact 

of including the approximate confusion noise to a21 and using our 

proposed calculation of the Malmquist bias is to reduce n to 8.85 

(7.26-10.7). This is a 7% reduction below the range obtained from the
 

values in Table VII.l.
 

In later sections we use the uncorrected range to represent the
 

resolved source counts. If we did use our estimated correction, the
 

general result would be a slight -7% decrease in the range for K when
 

information from the resolved sources is included. Because K and the
 

excess variance are so strongly coupled, the confidence range for 02S
 

would also change. We can estimate that the effect will be to shift the
 
-4 -1
allowed range for 02S upward by 1xl0 (counts s cm-2)2 . This
 

correction is not miniscule, but it is less than the magnitude of most
 

of the phenomena we will discuss in applying our limits on the excess
 

variance.
 

Combined likelihood estimation of excess variance
 

We noted when fitting the fluctuations to a Euclidean component
 

and an excess variance that if we were able to obtain outside
 

information about the size of the Euclidean component we would be able
 

to reduce the confidence range for the excess variance. The resolved
 

sources are such a source of information. If we treat the two
 

measurements, the fluctuations and the resolved source counts, as
 

statistically independent determinations of N(S), we can test models by
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Figure VII.2: Combinded likelihood confidence region, excess variance
 

versus W (or K)
 

Based on the- combined likelihood-of the fluctuations and
 
the resolved sources. (Symbols same as in Figure VI.9)
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the combined likelihood test:
 

A = Af(K,02S) + ARS(K) . [VII.10] 

Confidence regions from the combined likelihood difference are plotted
 

in Figure V11.2. When only one parameter is considered important, the
 

range in K is essentially that found from the resolved sources alone:
 
- 3 3 "5
1.05xl0 to 1.47xi0- (HIL) 1 (using the WW set for the
 

fluctuations). A noticeable improvement in the determination of the
 

excess variance has been made (see Table VII.2). As a percentage of the
 

mean sky intensity, the WW set determination ranges from 1.3% to 0.0%,
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Table VII.2: 90% confidence range for invariant excess
 

C2	S;max a S;min
 
10-3 (HILl)2
 

Using combined likelihQod of resolved sources and fluctuations
 

(Only a2S considered interesting)
 

SS1 0.80 -0.25
 

WW 0.60 0.0
 

From intersection of 95% confidence regions from sources and
 

fluctuations
 

(Boole's Inequality)
 

SS1 1.4 -0.63
 

WW 0.88 -0.20
 

now treating K as a nuisance parameter. At the 90% level, then, some
 

excess variance is required. The improvement for the SS1 dataset is
 

even more dramatic. Before including the information from the source
 

counts the excess variance was relatively unconstrained. The acceptable
 

range now is not far from the range previously attained by the WW set:
 

1.49% to -0.83%. The derived two parameter confidence region for the
 

combined likelihood using the WW set we will refer to in following
 

sections as our "best" region.
 

Excess variance range from Boole's Inequality
 

The validity of the combined likelihood for forming the improved
 

K-V2 s region rests on the statistical independence of the two
 

determinations. To some degree this 	is not the case. Though the
 

at fluxes at a few times 10-4
 fluctuations are dominated by sources 


HILl, some of the observations are contaminated by sources which are
 

much brighter, including possibly some of the resolved sources if they
 

are near the edge of the smeared detector response. The resolved
 

sources, formally limited to fluxes >2x10-3 , may through the Malmquist
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effect include sources whose true intensity may be much lower (one of
 
-3
 

the sources in the lowest flux bin is expected to have a flux <1.5x10
 

HILl). This was schematically indicated by the dotted continuation of
 

the lowest flux bin's K(S) bar in Figure VII.1 Given that the 

fluctuatifon ate dominated by sources so much below this, we see that 

the sources that dominate the two different measurements are still 

essentially seperated, so that a prudent observer may still conclude
 

that to a large degree the two measurements are independent.
 

If we want to be certain, we can combine the information from the
 

two fits by using Boole's Inequality, BI (see Figure VII.3). The 90%
 

region is constructed from the intersection of the 95% range in K from
 

the resolved sources (AAC3.84, giving 7.46n<11.90) and the 95% region
 

from the fluctuations (considering both parameters as significant). As
 

might be expected the region is not as restrictive as the one produced
 

by the combined likelihood. In fact the allowed range for the excess
 

variance from the WW set is larger than was obtained from the
 

fluctuations alone. This is because the BI contour is necessarily one
 

that allows a simultaneous determination of both parameters, and no
 

additional precision is gained by labeling K as a nuisance parameter.
 

Yet the BI technique still allows a delineation of the SS1 confidence
 

region significantly better than what the fluctuations alone could
 

indicate. From a standpoint of "provable" statistics, the preferred
 

region for the excess variance is the SSI result combined with the
 

resolved sources via Boole's Inequality. This we will refer to as our
 

'conservative" region or result.
 

To indicate the difference these ranges make for testing models of 

N(S) we show in Figure VII.4 the allowed range of models that break from 

a Euclidean index to Y' = 3 or 2. As was discussed for Figure VI.10, 

this representation is only illustrative of a particular class of
 

models. The proper test of a particular model requires the explicit
 

calculation of its excess variance. This is discussed in the next
 

section.
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Figure VII.3: 90% region for excess variance versus K (or W) for
 

intersection of resolved source and fluctuations 95% contours (Boole's
 

Inequality)
 

The bold regions indicate the intersection of the 95%
 
confidence regions from the fluctuations and the resolved
 
sources (RS) to yield at least a 90% region using Boole's
 
Inequalty.
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Figure VII.4: K(S)/Kfid for broken power law 

233 

Outline of allowed models that break to aither 3.0 or 2.0 
are constrained by the 90% limits -on-K and the excess 
variance from the combination of the fluctuations and the 
resolved sources. The Y' = 3 models have positive excess 
variance, a2s > 0. The Y' = 2 models have a2S < 0. The 
solid lines use the WW set and the combined likelihood 
method to include the resolved sources. The dashed 
outline is for the SS1 set, combined with the resolved 
sources' confidence region using Boole's Inequality. (See 
also Figure VI.1O.) 
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2: The Expected Excess Variance from Non-Evolving Populations 

Analysis of the fluctuations has been reduced to applying 
the determination of two parameters: the strength of the 
fluctuations (measured by K) for a Euclidean N(S) component 
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and an excess variance characterizing the deviation from a
 
strictly Euclidean form. In this section we examine in
 
detail the populations of high latitude resolved sources as
 
studied in the complete sample of Piccinotti et al. [1982],
 
and predict their contribution to both the K values and the
 
excess variance, assuming no evolution. The total excess
 
variance for all the populations is --3.3xi0- 4 (counts s- I
 

cm-2)2. This negative value is dominated by the
 
contribution from cllsters of galaxies, due to the rapid
 
effect of the cosmological redshift on their contribution in
 
the HED 1 Layer 1 band. The value is significantly less
 
than that allowed by the fluctuations, except for our most
 
conservative estimate using non-overlapping data. The
 
fluctuations therfore require an additional source of
 
variance, -perhaps a new population of X-ray sources or
 
evolution in one of the known populations.
 

We have fit the fluctuations in order to constrain the behavior of
 

N(S) at low flux values, and now we want to estimate the expected
 

behavior at these same fluxes of the observed source populations. Our
 

principal source of information for these predictions is the complete
 

sample of objects compiled in Piccinotti et al. [1982], hereafter
 

referred to as the XCS (X-ray Complete Sample). These are the same 

sources that we used to determine the high flux N(S) in the last
 

section. Now we use their identifications, redshifts, and spectra to
 
-3 -1 -2 .
predict their behavior at fluxes below 2x10 counts s cm The
 

sample consists of 76 objects: 30 clusters of galaxies; 28 active
 

galactic nuclei (AGN); 10 moderate luminosity galactic sources; 4 BL Lac
 

objects; the peculiar active galaxy M82 (confused with the active
 

nucleus in M81); one QSO (3C 273); and 2 objects still without
 

identifications. The first three populations dominate the resolved
 

source counts and would be expected to similarly dominate the
 

fluctuations, in the absence of evolutionary effects.
 

Given a luminosity function for a population of sources, we have
 

shown (Section III:i and Appendix Al) how to calculate the predicted
 

N(S). Ideally, to test whether this is consistent with the
 

fluctuations, one must combine this N(S) with those from all the other
 

populations and then, from the total N(S), derive the fluctuations
 

distribution (Section 111:3). However, the sensitivity of our data to
 

Analysis of Results Expected Excess Variance
 



VII:2 235
 

the details of N(S) at low fluxes is restricted to measurements of a
 

high flux power law component with a possible additional variance term.
 

We therefore reduce the N(S) of a population to two numbers: equivalent
 

value of K(S) at a high flux, say qh' where the -behavior is-newa
 

-Euclid~ah, and the invariant excess, a2S (see equation [111.68]). When
 

combining two or more N(S) curves, the net K(Sh) and a2S is the sum of
 

the values for the constituent populations. An additional integral
 

value used to constrain the acceptable behavior of an N(S) curve is the
 

total flux contributed, Sas (see equation [111.8]). Armed with the
 

values for these three quantities we can test whether a given collection
 

of N(S) curves for different populations is consistent with the resolved
 

source counts (K(Sh)), the fluctuations (a2 S) and the total sky
 

brightness (Sas). When including cosmological effects, the value of qo
 

is most important for determinations of Sas. The magnitude of all the
 

integral values are independent of Ho, as long as the same quantity is
 

used in calculating the N(S) curve and determining the luminosity
 

function.
 

If the N(S) curves over the flux range of the XCS were identically
 

Euclidean, the exact value of Sh used to define K(Sh) would be
 

unimportant. However to allow for possible non-Euclidean behavior we
 

chose our value with care. As most of the information about K(Sh) 'omes
 

from the fits to the resolved source counts, the value for Sh that we
 

will use is the expected mean flux of objects in the XCS, roughly 3x10 
3
 

- I - 2
counts s cm , after including a slight Malmquist correction. We will 

use Kh for K(Sh). 

In this section, we consider only non-evolving populations. The
 

invariant excess for such populations will be negative because they roll
 

over at low fluxes from cosmological effects (see Appendix Al). The
 

most extreme negative contribution possible from a population is when it
 

has a sharp cutoff at a flux just below the sensitivity limit of the
 

XCS. For a given value of Kh,
 

a2S ) - 4 T Kh Sh1/2 = -0.69 Kh . [V-I.11] 
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Clusters of Galaxies
 

The 30 clusters of galaxies in the XCS have luminosities between
 

- I
28x1044 ergs s (Abell 2142) and 0.24x1044 (Virgo cluster). (All 

luminosities in this and subsequent sections are defined for the 

interval from- 2 to 10 keY). The luminosity function is adequately 

described by a power law. The best fit value for the power law index, 

R, is 2.03, with the range of acceptable values being roughly 1.85 to 

2.21. (The "error" terms presented in Piccinotti et al. are n6t
 

strictly equivalent to one-sigma errors, or to a particular confidence
 

level, but are still indicative of the range of models that provided a
 

good fit to the data.) The flatness of the luminosity function, 0<2.5,
 

indicates that the source counts and the Euclidean component of the
 

Table VII.3: Luminosity versus cluster temperature used
 

T
Lmn max 


L44 L44 keV
 

0.1 2.6 3.3
 

2.6 8.4 5.9
 

8.4 17.5 7.9
 

17.5 30.0 9.8
 

fluctuations are dominated by the high luminosity objects. The
 

luminosity function could not extend much above the most luminous
 

observed clusters in the XCS without a break to an equivalent index
 

greater than 2.5. Otherwise we would have expected to see even higher
 

luminosity clusters in the XCS. We set the maximum luminosity to 30 L44
 

(luminosity measured in units of 1044 ergs s-'). The minimum luminosity
 

is set at 0.1 L44, the point where the total density of X-ray clusters
 

is equal to the estimated density of Abell clusters of galaxies. When
 

Piccinotti et al. calculated the norm of the cluster luminosity
 

function, K, they made no cosmological corrections. For sources with
 

spectra as steep as clusters are in the HILl band, these can be
 

significant (see Equation [A1.18]). Because of this, when their
 

luminosity function is used in a correct cosmological fashion it
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predicts significantly fewer clusters than were actually seen in the 

XCS. For this reason we determined K by requiring that the predicted 
- - 2 3
number of sources in the range from 2x10-3 counts s 1 cm to 8x10

-
counts s 1 cm-2 be equal to the 27 actually observed.
 

Table VII.4: Contribution of clusters to sky flux, fluctuations, and
 
source counts
 

K 8 qo Zmax . Sas Kh 2S
 
-3 - 1 - -


Mpc L44 HILl 10 4 H1L13/2 10 4 HILl2
 

- 7
 
x10
 

3.36 2.03 0.5 3.0 1.89 5.04 -2.13
 

4.38 2.21 " " 2.29 5.03 -1.97 

2.42 1.85 " " 1.60 5.05 -2.26 

3.36 2.03 0.1 2.10 5.02 -2.05
 

4.38 2.21 " 2.52 5.02 -1.89
 

2.42 1..85 " 1.80 5.04 -2.18
 

3.36 2.03 0.5 2.25 1.88 .5.01 -2.08
 

1.5 1.84 4.97 -2.04 

" 0.75 1.64 5.00 -2.09 

In calculating the form of the number counts from the luminosity
 

function a primary cosmological effect Is the redshifting of the source
 

spectrum. We fold the redshifted spectrum through the detector response
 
- I -2
to get the observed flux in detector units, i.e. counts s cm in
 

Layer I of HED 1. (In the following tables and discussion we abbreviate
 
-I -2
 these units as counts s cm , or HILl.) A proper understanding of the
 

source spectra is important.
 

The-spectra of clusters of galaxies are well described by thin

thermal- bremsstrahlung with temperatures in the range 3 to 10 keV [see
 

e;.. Mushotzky et al. 1978]. Furthermore, there is a strong correlation
 

between temperature, T, and 2-10 keV luminosity [Mushotzky 1983]. The
 
0
best fit relationship has the linear form T = 2.63 L44 .

3 4 keV. For 
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simplicity we use the roughly equivalent equation T = 3.42 L441/3 key. 

We divide the range of the luminosity function into 4 bins, and assign
 

to each bin a single T, the mean temperature weighted by the cluster 

contribution to the Euclidean regime source counts (see Table VII.3).
 

Figure VII.5: K(S)/Kfid for clusters
 

The solid, long dashed, and short dhshed curves are for
 
different values of the luminosity function index, 0. The
 
two solid curves are for different values of qo; the upper
 
one is for qo=0.1, and all other curves in the figure
 
assume qo=0.5.
 

1.0 

P=2.03 
2.21 

0.3
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By examining Table VII.4 and Figure VII.5 we see that the cluster
 

source counts become significantly flatter than Euclidean at moderately
 

- 4 - - 2
high flux levels, a few 10 counts s 1 cm . This is almost entirely
 

due to the redshifting of the thermal spectra out of the HED I bandpass.
 

Because of this the invariant excess is in the range -2.1 to -1.9 x10- 4 .
 

This is roughly equivalent to a sharp cutoff in the cluster N(S) at a 
3 - - 2flux of 10- counts s 1 cm , not much below the resolved source flux 

limit or Sh. Varying our assumptions about the luminosity function or
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Figure VII.6: K(S)/Kfid for clusters with a sharp cutoff at moderate
 

redshift
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qo makes only a small difference. Even if we replace the variable 

temperature dependence outlined in Table VII.3 with a single 6 key 

thermal spectrum there is no signficant difference in the excess 

variance.
 

The density of clusters is not expected to be uniform as a 

function of z. General models have been proposed where the temperature 

and luminosity of clusters is generally lower at earlier epochs [see 

e.g. Perrenod 19801. However, Henry, Soltan, and Briel [1982] have 

examined a survey of high-redshift clusters observed with the Einstein 

Observatory and saw no indication for any- evolution of- the luminosity 

function index out to a redshift of, about 0.5. Most of the negative 

excess for clusters is generated by behavior at relatively low
 

redshifts. This is seen in Figure VII.6, where the imposition of a sharp
 

cutoff in the density of clusters at a redshift, zmax, of 0.75 produces 
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no increase in the deficit in a2 S -that is detectable within the
 

precision of our calculations.
 

All the integral values derived from the luminosity function, i.t. 

Sas Kh, and o2S, are proportional to the luminosity function 

coefficient, K. Therefore the fractional uncertainty in K, roughly 
-
N 1 2 where N is the riumber of sources observed in the XCS, is the same
 

as the fractional uncertainty in the integral values. Thus the
 

confidence range for u2S, including the -uncertainty in K, is -1.6 -to
 
--2.5 i0 4 HILl 2 . 

Active Galactic Nuclei (AGN)
 

The XCS includes 29 sources identified with various active 

galactic nuclei (excluding 3C 273 and the 4 BL Lac sources which we 

cover later in this section). 21 of these are classified as type 1 

Seyferts, while the others are type 2 Seyferts, narrow emission line 

galaxies, N or other active galaxies. The range of luminosities is 

0.0175 L44 (NGC 3227) to 13 L44 (III Zw 2). The luminosity function is 

well fit by a power law with index, 8, -2.75±0.15. Cosmological 

corrections. to- the AGN N(S) over the XCS flux range are small.
 

Therefore the coefficient reported by Piceinotti et al. is consistent
 

with the number of observed objects in the XCS, after rescaling for the
 

additional identifications made since the original analysis. Lmax is
 

set at 15L 44 . The steepness of the index, 0>2.5, signifies that -the
 

source counts, and Kh, will be dominated by the portion of the
 

luminosity function near Lmin . Because of this, Piccinotti et al. were
 

able to estimate how low in L the luminosity function can extend as a
 

8>5/2 power law and still not exceed'the number of sources observed in
 

the XCS. If the change in the luminosity function were a sharp cutoff
 

at Lmin the estimated position would be between 0.0045 and 0.025 L44,
 

depending on 8 and the degree of disagreement with the XCS. However, as
 

we have remarked, below about 0.01 L44 all sources in the XCS would have
 

redshifts 0.003 where local inhomogeneities would be important, so that
 

it would be difficult to correctly draw conclusions about the AGN
 

luminosity function at lower luminosities from the XCS sample. In the
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tables and figures below we assume that there is a sharp zmin of 0.002.
 

No source in the XCS other than M82 has a redshift less than this.
 

Using the Einstein Observatory, Elvis and Van Speybrock [_19823-,
 

detected verf low iuminosity X-ray activity in the nucleus of the nearby
 

galaxy M81. Other than its magnitude, L-0.0001 L44 the source has the
, 


general characteristics of a type 1 Seyfert nucleus. As Elvis and Van
 

Speybrock noted, this single -detection indicates that modeling the low
 

luminosity behavior of the luminosity function as a sharp cutoff from
 

the 0-2.75 regime is a simplification. Recent preliminary
 

investigations by Elvis, Soltan, and Keel [1983] show that the AGN X-ray
 

luminosity function can be better represented with a break at Lb
 
-
3x104 2 erg s 1 to O' 2, and a much sharper break to 0''a0 at about 1040
 

-
erg s 1. These results, based on indirect arguments from optical
 

observations correlated with X-ray information from the Einstein
 

Obervatory, are difficult to- connect accurately with the Piccinotti et
 

al. results. However, we will assume that the AGN luminosity function
 

is well represented by a two-index broken power law form, with 0 = 2.75
 

above the break luminosity Lb and either 1.75 or 2.0 below the break.
 

The spectra of the XCS AGN show remarkable uniformity. Rothschild 

et al. [1983] showed that AGN are well represented by a single power law 

with energy spectral index, a - 0.68 with only a small dispersion (see 

also Mushotzky [1982]). Low luminosity AGN show detectable absorption
 

due to cold material [Mushotzky 1982; Lawrence and Elvis 1982], while
 

high luminosity objects show comparatively little [see e.g. Holt et al.
 

1983]. To crudely model this effect we will assume that objects with
 

luminosities greater than 0.2 L44 have no intrinsic absorption *hile
 

those with an unabsorbed luminosity less than 0.2 L44 are absorbed by
 

the equivalent of a column of interstellar material containing 3.6x10
22
 

atoms cm-2 of hydrogen in the line of sight. Most of the absorption is
 

due to higher Z- material, particularly oxygen, and was calculated
 

assuming the interstellar abundances of Brown and Gould [1970], with
 

iron adjusted following Fireman [1974]. The luminosity function is
 

parameterized in terms of the unabsorbed 2-10 keV luminosity, 'rather
 

than the actual observed luminosity after absorption. Note that there
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is very little spectral information about the very lowest luminosity
 

AGN, i.e. the objects of Elvis, Soltan, and Keel, which are not
 

included in the A-2 XCS. We will assume that they are also
 

characterized by a 0.68 power law with the same absorption as the A-2
 

sources with L < 0.2 L44. However, Elvis and Van Speybroek derive a
 

spectrum for M81 that is substantially steeper, 1.0 < a < 1.6 (90% 

confidence). 

Table VII.5: Contribution of AGN to source counts, sky flux, and
 
fluctuations
 

The form of the AGN luminosity function is a power law with
 
7 -3 1 7 5 .index 2.75 and coefficient K = 3.267xi0- Mpc (L40 

from Lb to Lmax=15 L44 , with a break to / between Lmin and 
Lb . (The first two models have no 8', instead having a 
sharp cutoff at Lmin.) The redshift range is from 0.002 to 
3.5. The quantity Nas(XCS) is the number of sources, all
 

-
sky, in the range 2x1O 3 4 S < 8x10- 3 HILl. For comparison,
 
the number actually seen was 41.2, after correcting for sky
 

coverage, with a 2a range of about 25 to 61. The models
 
marked by the asterisk (*) are identical except for the
 
value of qo. These values for Lmin, Lb, and 8' consititute
 
the canonical -AGN model used for most subsequent discussion.
 

Lmin Lb 8' Nas(XCS) Sas Kh - a2S 
L44 HILl 1 4 HILl3/2 10 4 H1i 2 

qo = 0.5
 

0.035 .. ... 40.1 10.1 4.9 -0.86
 

0.015 .- .. 51.2 18.4 6.3 -0.93
 

0.001 0.25 2.0 33.5 10.5 4.1 -0.59
 

0.0003 0.10 " 42.0 17.7 5.2 -0.48 

* 0.001 0.10 1.75 39.4 13.3 4.8 -0.65 

0.0003 0.03 " 51.8 26.8 6.4 

qo = 0.1 

* 0.001 0.10 1.75 39.4 14.7 4.8 -0.65 

In Table VII.5 we calculate the integral quantities for-a variety
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e VII.7: K(S)/Kfid for AGN model luminosity functions, qo = 0.5
 

(See Table VII.5)
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of models, all of which are consistent with the Piccinotti et al.
 

derived luminosity function. The first two models have a sharp cutoff
 

at Lmin while the latter four models have breaks to a new power law
 

index roughly consistent with preliminary data for the low end of the
 

luminosity function [Elvis, private communication]. The table indicates
 

that the integral quantities take on a wide range of values. Even
 

without evolution the AGN contribute a significant fraction of the total
 

all-sky flux, ranging from 18% to 46% depending on the luminosity
 

function model. This is much more than the -3% contribution from
 

clusters of galaxies, even though the two populations contribute an
 

equal number of sources to the XCS. This is because the AGN
 

contribution is dominated by the low luminosity objects and is also less
 

affected by the redshifting. Therefore the source counts persist at
 

near Euclidean levels to much lower fluxes (see Figure VII.7). In turn
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the negative invariant excess is much less for AGN than for clusters.
 

Most of the imprecision comes from; the difficulty in accurately
 

describing the behavior of the luminosity function near the break to the
 

flatter index, at L - 0.1 L44. A preliminary, non-parametric (i.e. not
 

depending explicitly on any model form) estimate of the contribution of
 

the AGN to the all sky flux, made by Elvis, Soltan and Keel
 

[communicated in advance of publication' by Elvis], is -28% with large
 

uncertainties. Reducing q. from 0.5 to 0.1 will increase Sas by about
 

10% but will otherwise have no significant effect on the resolved source
 

counts or the invariant excess. We use the starred model from Table
 

VII.5 (hereafter the canonical AGN luminosity function) for more
 

detailed analysis of AGN, particularly in assessing the effects of
 

evolution of the luminosity function. The break to 0'=1.75 below 0.1
 

L44, besides being in agreement with the preliminary curve of Elvis,
 

Soltan, and Keel, is also roughly in agreement with the low end of the
 

optical AGN luminosity function of Huchra [1977; see also Huchra and
 

Sargent 1973]. This canonical model for the AGN luminosity function has
 

-
a total volume density of 1.88x10 3 objects per cubic megaparsec. For
 

comparison, we estimate that the total number of galaxies with MB<-ll.5
 

-3 - 3
is 7xlO Mpc [Felten 1977; Kirshner, Oemler, and Schechter 1979]. 

(The choice of the magnitude limit is based on the observation by Balick 

and Heckman [1982] that no Seyfert type activity has been seen in a 

galaxy less luminous than MB - -18. (See Bothun et al. [1982] for an 

example of AGN behavior in a low luminosity host galaxy.) Thus with 

this model a significant fraction of those objects that could contain 

nuclear activity is included in the X-ray AGN luminosity function.
 

The distinction between quasars and other AGN appears to be one of
 

degree (i.e. luminosity) rather than of kind, at least in terms of
 

optical spectral characteristics. Woltjer and Setti [1982] make the
 

observation that quasars and Seyfert I galaxies differ in no important
 

way except in absolute magnitude. The selection is due principally to
 

the difficulty of detecting a galaxy surrounding a luminous nucleus.
 

They arbitrarily use Fairall 9 as the demarcation between "fuzzy"
 

quasars and Seyferts. Using this criterion, the AGN in the XCS divide
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into 21 low luminosity objects and 5 quasars (including Fairall 9 and
 

3C 273). Four of the latest identifications could not be classified
 

since we have not yet found their redshifts. In analyzing the impact of
 

the AGN on the source counts, fluctuations, and all sky flux, we set
 

Lmax to 15 L44. Only 3C 273 is above this limit. If there were no
 

evolution of the luminosity function, the high value of the index would
 

indicate that any very luminous objects above Lmax could make only a
 

small contribution to the integral quantities compared to the
 

contribution of the lower luminosity objects near the break, Lb .
 

However, in some evolutionary scenarios this region of the luminosity
 

function could become dominant. The details and ramifications of this
 

are discussed in the next section.
 

EL Lacertae objects are another class of extraglactic X-ray
 

sources probably associated with AGN. BL Lacs are strong X-ray emitters
 

that have been the target of several detailed studies [Margon et al.
 

1976; Mushotzky et al. 1978b; Ku 1980; Maccagni and Tarenghi 1981;
 

Schwartz and Ku 1983]. However several difficulties preclude a
 

determination of a predicted N(S) curye for them to the same accuracy as
 

for clusters and other AGN. The fact that only four objects were
 

observed in the XCS makes the determination of the norm of their
 

luminosity function difficult, let alone its slope. (Cf. Schwartz and
 

Ku [1983] for an-attempt in the bandpass of the Einstein Observatory.)
 

In a4dition, the spectra are exceptional in their deviation from the
 

-0.68 index power law spectrum typical of most other AGN [Mushotzky et
 

al. 1978b; Riegler, 'Agrawal, and Mushotzky 1979; Worrall et al. 1981;
 

Urry and Mushotzky 1982; Urry et al. 1982]. From the fact that four BL
 
-4 5
Lacs are in the XCS we can estimate Kh to be O.7x10 HILl1' . Using
 

equation [VII.11], we can set a minimum to the invariant excess of
 

a2S -o.48xio 4 HILl2 . However, the BL Lac counts are expected to extend
 

significantly below the flux limit of the XCS, and have been detected at
 

much lower fluxes in the Einstein studies [see e.g. Schwartz and Ku
 

1983]. If the form of the N(S) curve for BL Lacs approximates that of
 

other AGN, then a% -. o9x1o 4 .rnLl2, while if, because the BL Lac
 

source counts are dominated by the more luminous objects or because
 

steep spectra are affected by redshifts, the N(S) shape is more like
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that of clusters, o2a S _0.3x10-4 HILl2 . Their possible contribution to
 

the total Sas has a similarly wide range but in the absence of strong
 

evolution it is not more than about a percent or two. BL Lac source
 

counts in the optical [Woltjer and Setti 1982] and the X-ray [Maccacaro
 

and Gioia 1983] are consistent with little or no evolution.
 

Galactic Sources
 

Of the 14 sources in the XCS identified with galactic sources, 

four are of high luminosity, L > 1034 ergs s- 1 , two X-ray binaries and 

two sources in globular clusters. We are reasonably sure that we have 

counted all such objects above the galactic latitude b = 200, and thus 

we do not further consider their impact on the fluctuations. The 

remaining ten consist of moderate luminosity objects, L - 1-100 L3 0. 

1030 (L30 = ergs s-'.) These have been identified with 3 RS Canus
 

Venaticorum (RS CVn) stars and 6 cataclysmic variable (CV) stars
 

4[Worrall and Marshall 1983] (see Appendix AS). The tenth object, 

H2215-08, has no clear classification* RS CVn stars have been 

identified as neutron stars or white dwarfs associated with G giants 

[see e.g. Swank, White, Holt and Becker 1981]. The typical scale height 

for such objects is h - 110 pc. CVs, on the other hand, have a scale 

height of -300 pc, indicative of their association with dwarf K stars. 

X-ray characteristics of CVs have been reviewed by Cordova and Mason 

[1982]. 

As we saw in Figure 111.2, the N(S) curve for a population of
 

galactic sources follows a Euclidean form at high fluxes but then rolls
 

over for fluxes corresponding to distances substantially out of the
 

plane. The critical flux is a function of L, h, and the direction of
 

observation measured by- the sine of the galactic latitude (see
 

[111.16]). For a CV with a luminosity of 10 L30, this point occurs at
 

-
1.36x10 4 HiLl if one looks perpendicular to the galactic plane, or at
 
- 4 °
 0.25x10 HILl for the lower latitude of 25 . RS CVns have a lower
 

Subsequent optical work [Patterson and Steiner 1983] has identified
 
this object with an uncatalogued cataclysmic variable. This
 
identification increases our derived N(S) curves for CVs in this section
 
by 8%, not important for our conclusions.
 

Analysis of Results Expected Excess Variance
 



VII:2 247
 

scale height, increasing the critical flux point, but this is partially
 

compensated by their slightly lower luminosities. To calculate the
 

integral values Kh and a2S, we average N(S) over the look directions for
 

the fluctuations data, i.e. 230 < Jbi < 900.
 

Table VII.6: Model luminosity functions for galactic sources
 

h K Lmin Lmax Kh a2 S 
i0-4 i0-410-5 


3 
pc L30 
-1 PC- L30" H1L13/2 HILl2
 

RS CVn
 

110 2 1.6 2 100 0.7 -0.39
 

" 3 18.5 " 0.7 -0.30 

CV 

300 2 1.2 2 300 1.2 -0.52
 

" 3 25.1 " " 1.2 -0.31
 

Worrall and Marshall combined luminosity function
 

250 2 1.75 2 440 1.8 -0.94
 

125 2.43 " " 1.8 -1.16
 

The accurate determination of a luminosity function for these
 

sources in the HEAO 1 A-2 bandpass is limited by the relatively small
 

numbers of sources. However, we can estimate the general properties of
 

the N(S) curve and the invariant excess for galactic sources by
 

examining several models consistent with what we now know. Some such
 

models'are tabulated in VII.6. We will assume the luminosity function
 

is well represented by a power law of index 2 or 3. The luminosity
 

limits are roughly indicated by the range observed, with CVs extending
 

to higher luminosities than are observed for RS CVns. The luminosity
 

function is normalized to give the number of observed objects in the
 

XCS, assuming that' one of the two remaining unidentified objects is a
 

galactic source. In Figure VII.8 we see that the CVs dominate the
 

source counts, and by virtue of their higher scale height will continue
 

their near-Euclidean behavior to lower fluxes. If B is 3, as we noted
 

Analysis of Results Expected-Excess Variance
 



248 VII:2 ORIGINAL PAGE IS
OF POOR QUALITY. 

Figure VII.8: K(S)/Kfid for CV and RS CVN 

See Table VII.6
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in discussing Figure 111.2, the number of low flux sources is enhanced,
 

reducing the magnitude of the negative invariant excess.
 

Worrall and Marshall [1983] estimated the combined volume
 

emissivity of RS CVns and CVs, in order to estimate their contribution
 

to a small scale height disk of emission associated with the galactic
 

plane [see e.g. Worrall, Marshall, Boldt, and Swank 1982].. Their
 

estimate was consistent with the h=250 pc model labeled WM in Figure
 

VII.8 and VII.6. They assumed that $ was 2 and that a single luminosity
 

function described both classes of objects. The coefficient they
 

derived predicts the correct number of sources in the XCS for the 250 pc
 

scale height model, but must be significantly corrected for the 125 pc
 

scale height. For all the models for the galactic sources the magnitude
 

of G2 S is on the same order or larger than the magnitude derived from
 
the AGN models, although the galactic contribution to the XCS counts is
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Figure Vll.9: K(S)/Kfid for total galactic sources
 

WM indicates the models of Worrall and Marshall. See Table
 
VII.6 for details.
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much less.
 

Ordinary galaxies and other sources
 

At some level ordinary galaxies will contribute to the X-ray sky
 

flux. That such objects are not well represented in the XCS is
 

10 3 9 understood from their low X-ray luminosity, L ergs s 1 (2-10 

keV). Actually M31 would have been included in the XCS save that it was

explicitly excluded by Piccinotti et al. along with the Magellanic
 

Clouds for being too local. Worrall, Marshall, and Boldt [1979] made a
 

survey of nearby galaxies with the A-2 experiment and estimated that the
 

total brightness of such objects was 1% of the total sky flux. Setti
 

and Woltjer [1982] argued, based on data from Long and Van Speybroeck
 

[1983; see also Long et al. 1982], that the average galaxy luminosity
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was substantially larger than what Worrall, Marshall, and Boldt
 

estimated, so that as much as 9% of the sky flux could be due to normal
 

galaxies. However, some of these more luminous "normal" galaxies may be
 

already included in our analysis, through the luminosity function of 

Elvis, Soltan, and Keel [1983], as very low luminosity AGN. Without
 

more detailed observations in the same spectral bandpass as the A-2
 

experiment it is difficult to estimate from the Einstein observations
 

the galaxy contribution to the invariant excess but it is expected to be
 

small, smaller than that of the AGN, as always assuming no evolution.
 

The correlation study of Turner and Geller [1980] places a
 

significant upper bound on the possible contirbution of normal galaxies,
 

or current epoch objects that cluster with galaxies, to the total sky
 

flux. By comparing the UHURU surface brightness fluctuations with
 

variations in the number of galaxies in different complete collections
 

of galaxies, Turner and Geller were able to state that such objects
 

could be responsible for 25% of the X-ray sky flux. (However, see our
 

discussion at the conclusion of Section 111:7 about the impact of- the
 

fluctuations on their analysis.) A similar study using the HEAO 1 A-2
 

database- may prove useful, not only to place an upper bound on the 

contribution of normal galaxies, but also to place a limit on the 

current epoch volume emissivity of the low luminosity AGN. 

Comparison with fluctuations results
 

In the last section we found that the 90% confidence region for
 

the a2S was always greater than zero, considering the excess as the
 

single interesting parameter and using the fluctuations data from the
 

overlapping WW set combined in an independent fashion with the source
 

counts. Given that any non-evolving population of sources is expected
 

to have a negative invariant excess, then this alone argues for the
 

existence of an additional source of variation, either evolution of the
 

source populations, or non-Poisson distribution of the sources.
 

This conclusion is strengthened by the results of this section,
 

showing that for the luminosity functions derived from the XCS the
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Figure V'II.10: K(S)/Kfid total source populations compared with 

fluctuations 

See text for details, qo =0.5 for clusters and AGN. 
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expected value for a2 S is in the range -3.7x0 to 

depending on the exact forms chosen for the luminosity functions. In 

Figure VII.10 we plot the total N(S) curves for the galactic sources, 

assuming 0=3.0, clusters with 0=2.03, and the canonical AGN model 

(indicated by the asterisk in Table VII.5). To indicate the effect of 

using the more extreme acceptable models for N(S) the long dash curves 
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Figure VII.11: Xh and 02S for total source populations 

The lower box is the region of expected values for the
 

non-evolving populations based on the XCS derived
 
luminosity-functions. The points U and L correspond to
 

the upper and lowei total N(S) curves in Figure VII.10 The
 
solid and dashed contours are the best and conservative
 

90% regions based on the fluctuations and the source
 
counts.; The confidence regions assume that both
 

parameters are interesting.
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indicate the effect of modifying the cluster model by using the B = 2.21 

form and the AGN model by moving Lb to 0.03 L44 . This combination leads
 

to the smaller absolute value for the invariant excess presented above,
 

-4
-2.9x10 .
 

We can compare these model N(S) curves with the behavior allowed
 

by the fluctuations using the broken power law representations for N(S)
 

presented in Figure VII.4 and illustrated by the short dashed outlines
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in Figure VII.10. The inner outline is from our best confidence region,
 

while the outer is that derived from our conservative result using only
 

independent data for the fluctuations combined with the source counts
 

information using Boole's Inequality. Though the models seem acceptable
 

to the conservative region, they are below the allowed range for the
 

best results, illustrating the too negative a2s of the models. In
 

figure VII.10 we did not include any possible contribution from BL Lac
 

objects or other populations.
 

Of course the N(S) plots do not properly show whether a particular
 

model is consistent with the fluctuations and source counts. For that
 

we plot the total model values of Kh and a2S and compare them directly
 

to the confidence regions for those parameters. This is what is shown
 

in Figure VII.11, now including BL Lacs, but only in the determination
 

of Kh. Allowing for the coupling between K and a2S in the confidence
 

region strengthens the disagreement between the models and the fit
 

results.
 

In estimating the significance of this disagreement we reconsider
 

our estimates of the internal background variance. Replacing our best
 

fit estimate of a2B of 0.001 (counts exp- )2 with the 90% upper limit of
 
-4
0.003 (see Figure IV.4) corresponds to subtracting 0.5xl0 HIll 2 from
 

the invariant excess derived from the fluctuations. Based on our best
 

confidence region, a significant source of excess variance must be
 

provided, either by evolution of the known sources, the introduction of
 

a new population, or non-Poisson structure of the X-ray sky.
 

3: Sources of Excess Variance: New and Evolving Populations
 

New or evolving populations of sources may provide the
 
amount of invariant excess required by the fluctuations
 
analysis, compensating for the deficit calculated from the
 
non-evolving luminosity functions of the known sources. The
 
upper limit on the invariant excess places constraints on
 
any new population that could provide the bulk of the sky
 
flux. There must he at least 50 such new sources per square
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-
degree, with an average flux of no more than n3x10 13 ergs
 
- I -2
s cm . Any evolution of the AGN luminosity function
 
would also affect the AGN contribution to the excess and 'the
 
sky flux. The requirement that the observed sky flux not be
 
exceeded places the strbngest constraints on the amount of
 
such evolution. For pure luminosity evolution, it is
 
difficult to provide the missing invariant excess without
 
overproducing the sky flux, unless moderate luminosity
 
objects ( 0.1 L44) undergo more-evolution than the lower
 
luminosity sources. Models of luminosity-dependent density
 
evolution (index evolution) are also considered, and are
 
consistent with the required behavior. The possible
 
presence and form of a high luminosity extension of the AGN
 
luminosity function can affect the high flux N(S). While
 
observations of the resolved sources cannot constrain a non
evolving extension of the luminosity function, they do rule
 
out strong luminosity evolution by these high luminosity
 
sources.
 

In the last section,, we were able to give a reasonably complete
 

description of the objects that make up thd X-ray Complete Sample of the
 

A-2 sky survey. We showed how the derived luminsity functions were 

consistent with the source counts and the high-flux Euclidean N(S) 

component fit' from the fluctuations. However, these same luminosity 

functions show that without evolution the sources that make up the XCS 

could account for only -25% of the total all-sky flux, Sas;tot = 58 

counts s- I cm-2  (HILl). Admittedly, this is a fairly imprecise 

estimate, particularly in the contribution of the very low luminosity
 

AGN, but it leaves the dominant fraction of the total sky flux to be
 

explained by a new population of sources, the evolution of a known
 

population, or some truly diffuse process not associated' with point
 

sources. The first two possibilities; in addition to providing the bulk
 

of total sky flux, would make an additional contribution to the
 

invariant excess, perhaps sufficient to counter the negative
 

contribution from the known sources and thereby restore agreement with
 

the positive excess derived from the fluctuations.
 

Such new sources of X-ray emission are doubly constrained: not to
 

exceed the total Sas and not to exceed the upper bound on the invariant
 
-4
excess. The latter limit, for the new sources, is a2S 9x10 (HILl)2
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- 4
after correcting the total upper bound of 6x10 (HILl)2 by the
 
- 4


estimated negative contribution of the unevolved populations of '-3x10


(HILl)2 . Here, and throughout this section, we use the best 90%
 

confidence region derived from the WW dataset to define constraints on
 

the invariant excess. Use of one of the more conservative regions
 

reduces the statistical significance of the conclusions we draw.
 

General constraints on a new population
 

The upper limit on the excess variance can place a general
 

constraint on the properties of any new population that makes a
 

significant contribution to the total sky flux. Let N'(S) be the number
 

versus flux for such a new population. An evolving source population
 

may also be constrained by letting N'(S) be the difference between the
 

evolved and unevolved number versus flux distributions. If N* is the
 

total number of sources seen in the sky, then their contribution to the
 

all-sky flux is
 

N* W = Sas* = f Sas;tot [VII.12]
 

where 

T (N*)-1 f dS N'(S) [VII.13] 

is the mean flux of the population and f is the fractional contribution
 

to the total all-sky flux. The invariant excess of such a population is
 

calculated to be
 

a2 S* = f dS S' N'(S) > N* s . [VII.14] 

The equality holds when all the sources are of equal flux, i.e. N'(S) 

is a delta function at W. We can now solve for a lower limit to the 

number of sources 

N* > (f Sas;tot )2 / a2S . 2.1x10
6 (f/0.75) . [VII.15] 

This is a minimum density of 51 sources per square degree, given that
 

the sources provide the remaining 75% of the sky flux. In comparison,
 

the extrapolated number of QSOs per square degree determined by Koo and
 

Kron [1982] brighter than J magnitude of 22 is -150, based on color

color identification techniques on 0.3 square degree field. There are
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further counts at dimmer magnitudes, -350 per square degree for J<23,
 

with large uncertainties. These values suggest a convergence in the
 
-
quasar contribution to the optical sky flux, N(S) S 2, in this
 

magnitude range. The minimum number of sources required by the excess
 

variance limit is well within the QSO counts. We can also place an
 

upper limit an the mean flux of the sources:
 

-5
T-< a2S / (f Sas;tot) 2x10 (0.75/f) HILl . [VII.16] 

If the sources have a spectrum typical of the diffuse background this
 
13 corresponds to 3xlO- ergs s 1 cM72 (2-10 keV). Thus if all the
 

sources have the same flux, they could be as bright as one hundredth of
 

the lower flux limit of the XCS.
 

These general bounds on N* and W can be tightened if we know more
 
of N'(S). The proper technique, if the sources are not all of the same
 

flux, is to explicitly perform the integral in equations [VII.13] and
 

[VII.14] for a particular model N'(S). N* is then scaled by <s2 > / W2,
 

where
 

N*- 1 <s2>= f dS S2 N'(S) [VII.17] 

is the population's mean value of the flux squared, which is always 

greater than ls. As an example, assume that the new population has a 

range of fluxes, covering one decade in S, and that they are distributed 
.
roughly -S-5/2 so that <s2> / W2 = -1.5. This increases the number of
 

sources in equation [VII.15] by a factor of -1.5, and correspondingly
 

decreases the mean flux by -2/3.
 

Evolution of AGN
 

As has been noted in discussions of the X-ray sky flux, there is
 

no.need to postulate the existence of a "new" population of sources.
 

Measurements of the distribution of quasars, both in redshift and in
 

N(S), have long indicated that their distribution is non-uniform [e.g.
 

Schmidt 1968; Braccesi, Zitelli, Bonoli, and Formiggini 1980], and that
 

these same, or similar, objects are copious producers of X-rays [e.g.
 

Tananbaum et al. £979; Zamorani et al. 1981]. If such behavior were
 

typical of AGN of all luminosities, then it would be easy to produce the
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total sky flux [Avni 1978]. However, to calculate the total 

contribution to the sky flux as well as to the invariant excess, the 

details of the evolution are important.
 

When considering evolution models in this section, we will assume
 

that the unevolved luminosity function is given by the canonical form of
 
-7 44
 last section, i.e. K = 3.26x10 , Lmin=3x0 40 , Lmax lx0 , and a=2.75
 

with a break to -1.75 for luminosities less than 0.1x10 44 . We will refer
 

to sources whose unevolved luminosities are between the break luminosity
 

and 15 L44 as in the "medium" range, while sources below the break are
 
"low" luminosity sources. We will investigate possible extensions of
 

the luminosity function to higher luminosities, particularly the range
 

from 15 to 100 L44 . These we will refer to as "high" range sources. 

The XCS has no direct information on such sources so our discussion will 

be of the nature of illustrating the effects of possible extensions. 

The two cases considered in any detail are simple extensions of the 

luminosity function, in one case with the same index, Oh = 2.75, and in 

the other with a break in the index to 8h = 3.75 at the transition 

luminosity, 15 L44. 

Remember that all luminosities are the inferred 2-10 keV
 

integrated emission, corrected for absorption. AGN with L>0.2 L44 are
 

essentially unabsorbed. Those with L<0.2 L44 have absorption from a
 
- 2
column of matter associated with 3.6x10 22 atoms of hydrogen cm (see
 

the discussion in the last section). One of the evolution models we
 

consider below, luminosity evolution, is equivalent to the gradual
 

increase of the source luminosities. In these models we assume that the
 

presence or absence of absorption is directly tied to the physical value
 

of the luminosity, so that sources with emitter-frame luminosities
 

greater than the critical luminosity, 0.2 L44, are unabsorbed.
 

A reminder about AGN spectra: as before, we continue to assume
 

that AGN are well described by a single power law spectrum with energy
 

index a-0.68. Some of the evolutionary models developed below match, or
 

even exceed, the total all-sky flux. As we and others have emphasized,
 

this necessitates spectral evolution of the sources as well as simple
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evolution of -theirnumber and/or 2-10 keV luminosity. We do not make an
 

explicit provision for such spectral evolution; for general conclusions
 

about possible forms of evolution our current, admittedly
 

unsophisticated, analysis should be sufficient.
 

Parametric models for evolution
 

The evolution of AGN is expressed as a change in the luminosity 

function with epoch or redshift. Such change is normally discussed in
 

terms of a few simple parameterizations, usually ad hoc modifications in
 

the luminosity function, not directly related to specific causal
 

physical processes (cf. Stocke and Perrenod [1981] or Meier et al.
 

[1979]). In Figure VII.12 we have a schematic presentation of three
 

such parameterized models'. The earliest models were simple density
 

evolution, where the normalization of the luminosity function is
 

changed:
 

*(L;z) = fP(z) .o(L) [VII.18]
 

o is the current epoch luminosity function. An alternative is pure
 

luminosity evolution, where the number of objects is conserved, but the
 

function is shifted along the luminosity axis. This could be due to
 

either a change in the luminosity of each object or an ensemble change
 

of the mean luminosity:
 

L(z) = fL(z) L(z=O) [VII.19.a]
 

so that
 

*(L;z) = (l/fL(z)) *o(L / fL(z) ) . [VII.19.b] 

The additional factor of 1/fL corrects the differential dL. In figure
 

VII.12 we plotted luminosity evolution for the number of objects per
 

decade in luminosity, Lt(L), which compensates for this additional
 

factor. Both pure luminosity and pure density evolution will have an
 

identical effect on the evolution of the volume emissivity, and
 

therefore equal contribution to the sky flux (see equation [111.6] et
 

seq.). However, as we shall see, the N(S) curve will be quite different
 

for the two models, with a more peaked N(S) at middle fluxes and a
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Figure VII.12: Schematic examples of luminosity function evolution
 

The solid curve represents the current epoch, i.e. an
 
,unevolved, luminosity funct-ion. The short dashed, long
 
dashed, and dashed-dot lines are examples of pure density,
 
pure luminosity, and index evolution respectively. Lo is
 
the pivot point for index evolution. The ordinate is the
 
logarithm of I"c(L), which is the number of objects per
 
decade of luminosity. This simplifies the presentation of
 
pure luminosity evolution. See text for details.
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sharper roll off at the lower flux levels for pure luminosity evolution.
 

This appears to be in better agreement with observed optical source
 

counts. For this reason authors currently prefer pure luminosity
 

evolution to pure density evolution [e.a. Cheney and Rowan-Robinson
 

1981a; Chanan 1982; Marshall, Avni, Tananbaum, and Zamorani 1983b],
 

although Cheney and Rowan-Robinson [1981a] argue that a combination of
 

pure luminosity and pure density evolution is also in agreement with the
 

opifEal data. We will not further consider pure density evolution.
 

(Note, though, Meier et al. [1979] show that the evolution of radio
 

galaxies at moderate reshifts -is not consistent with -either pure
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luminosity or pure density evolution.)
 

The general property of pure luminosity evolution that provides
 

the desired behavior for the optical source counts is that high
 

luminosity objects undergo more rapid evolution than low luminosity
 

objects, at least for steep index luminosity functions. Schmidt and
 

Green [1982; 1983] prefer another form of evolution with similar
 

behavior, which they call luminosity-dependent density evolution:
 

*(L;z) = (L/Lo)f8(z) 0o(L) [VII.20]
 

Ir is a fixed luminosity, given by the model, where there is no 

evolution. If the luminosity function is a power law form, with current 

epoch index 0o, then an effect of the evolution is to modify the index 

B(z) = 80 - f (z) . [VII.21]
 

We refer to evolution of this form as index evolution. In VII.12 we see
 

that index evolution is equivalent td a "rotation" of the luminosity
 

function (in log-log coordinates) about the *o(Lo) point. There is a
 

decrease in th number of objects with L<Lo so that for some amounts of
 

evolution the volume emissivity can be less than for no evolution. The
 

value chosen for Lo has a major impact on the contribution to the sky
 

flux and invariant excess.
 

An early form commonly used for the"'pure" evolution functions, fP
 

and fL' was (1+z)k where k was the model parameter. However, because of
 

divergences at high redshifts which produced a stroig dependence on the
 

redshift cutoff, Zmax, the current preferred form is an exponential in
 

the look-back time:
 

fL = exp[Ql(z)] , [VII.22] 

where QL is the constant model parameter and T, a function of redshift, 

gives the time from the emission to the current epoch as a fraction of 

the current age of the universe. For a qo=0 cosmological model, T = 

z/(1+z). An analogous parameter, %, may be defined for density 

evolution. For the models tested by Schmidt and Green [1983] the index 
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Figure VII.13: K(S) for density, luminosity and index evolution
 

The unevolved population is the high luminosity end of an
 
extension of. the-canonical AGN luminosity function, 8h
 

=
2.75. qo = 0.1. zmax 3.5.
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evolution function is proportional to 'r:
 

o = % T .[vII.23] 

In Figure VII.13 we plot examples of such evolutionary models. We use 

the 0h = 2.75 high range because the relatively narrow range in 

luminosities, 15<L<100 L44 , better illustrates the differences of the 

various models. As mentioned above, the pure luminosity model has a 

more peaked N(S) curve than the pure density evolution curve. Thus, 

though both have identical contribution to Sas' roughly a 14-fold 
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increase from the contribution of the unevolved form of the luminosity
 

function, the luminosity model has a much larger contributidn to o2S
 
than the pure density model. The particular index evolution model shown
 

has more contribution to the, sky flux, but is midway between the other
 

two in its contribution to the invariant excess. The curves in Figure
 

VII.13 et seq. were constructed following the prescription in Appendix
 

Al for calculating N(S) with the inclusion of cosmological effects.
 

Figure VII.14: Effect of qo on luminosity evolution
 

The unevolved population is the canonical AGN luminosity
 
function. Only the middle luminosity sources are included
 
(O.I<L<5 L44).
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When the evolution models are directly parameterized in terms of 

the fractional look-back time, t, the behavior of the models has a 

strong dependence on the value chosen for qo. This is most apparent for 

measurements dominated by the behavior at small or moderate redshifts. 
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For example, to get similar behavior at low z the value of Q for qo=0 

should be 3/2 that of a qo=0.5 model. This is the-ratio of the total 

look-back times of the two models. For Sas, those models with 

sufficient evolution that most of the contribution --to S,, is at- high 

redshifts where the behavior of T as a function of z is similar, there
 

is less dependence on qo; The contribution to 02S, on the other hand,
 

does show a significant dependence on qo.
 

Figure VII.15: K(S) for luminosity evolution with various zma x 

The unevolved population is the high luminosity extension
 
with 003.75.
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As we mentioned above, one reason for the particular choice of the
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exponential form for the evolution function is the non-divergent
 

behavior at high redshifts, unlike the (l+z)k laws. The exponential
 

pure luminosity laws have only a small dependence on the actual choice
 

of a value for zmax, the maximum redshift for the existence of AGN. For
 

the pure luminosity evolution model shown in Figure VII.15, with QL=4,
 

the contribution to both Sas and a2S varied by less than 1%, although
 

stronger evolution naturally produces a more significant difference.
 

The index evolution model shows a much stronger dependence, a variation
 
of 5Z in 2S and 65Z in Sas in going from Zmx of 3.5 to 5.5. This is a
 

consequence of using the high luminosity AGN range in the example of
 

Figure VII.15. The effect for the low and medium luminosity range
 

objects is significantly smaller. Also, models with larger values of qo
 

show less dependence on zmax because they reach the asymptotic limit for
 

the look-back time, T+I, at lower redshifts.
 

For the rest of our discussion we will assume that zmax is 3.5,
 

following the indication by Osmer [1982-] of a decrease in the density of
 

quasars at about that redshift. Osmer's conclusion is independent of
 

any evolutionary laws, and would be strengthened in the event of
 

significant luminosity (or index) evolution in the redshift ranges 2.5
 

to 3.5 and 3.7 to 4.7. However, this result does depend on the value
 

for the low redshift quasar density derived by Hoag and Smith [1977].
 

For a critique of Osmer's use of this value, and his general conclusion
 

of the need for a cutoff, see Mathez andNottale [1982]. We also note
 

that the redshift cutoff in the quasar luminosity function can not be
 

total, as there are examples observed out to redshifts of z = 3.78, the
 

record currently held by PKS 2000-330 [Peterson, Savage, Jauncey, and
 

Wright 1982].
 

In the discussion that follows it is important to keep in mind the
 

ad hoc nature of the models presented. We have already mentioned the
 

assumption of no spectral evolution. No less a difficulty is the
 

imprecision in the current epoch luminosity function, particularly the
 

position and size of the break in the index between the low and middle
 

luminosity sources. Rather than treat the evolution models and
 

luminosity function as true representations of reality, let their
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for AGN. The upper bound to a2S is -8.5x10
acceptable range for o2S 


limitations and successes serve to suggest the assuredly more 

complicated behavior of the AGN luminosity function. The two 

constraints that we will use are the total all-sky flux and the 
-4 

-
-H11,12. The lower bound of 2.5x0 4 is softer because there may be some
 

other sources of excess variance (see particularly the discussion in
 

Section VII:6). This differs from the allowed range for the excess
 

variance of a totally new component, used above, since for that case the
 

- 4
contribution of AGN was fixed to be -0.5x0 HILl2 . This range of
 

values is derived assuming that a2S is the only interesting parameter of
 

the fit.
 

Pure luminosity evolution
 

First consider the case where both the low and middle luminosities
 

evolve following the same rule. When calculating K(S) we find that for
 

even the high flux range of the XCS, evolution has a noticable impact,
 

particularly for the larger values of QL" The effect is generally not a
 

strong departure from Euclidean behavior, but rather a general increase
 

in the norm, as represented by Kh. (Recall Kh = K(Sh=3x0-3 HILl).) It
 

is basically a low redshift effect, with the excess contribution from
 

the evolution of the moderate and higher luminosity objects more than
 

compensating for cosmological volume and K-correction redshifting of the 

object's spectrum effects. For qo=O.1 and QL=3 the enhancement of Kb is 

about 17%, increasing to 29% for QL=4.5. Thus for evolution at such 

levels the current epoch luminosity function should be modified. We 

will confine our correction to the normalization, adjusting K so that 

the evolved Kh is the same as the unevolved Kh. A proper correction 

would also include a modification in the luminosity function index, 0, 

although the exact form of the correction is difficult to determine. 

The effect originates primarily in the higher luminosity AGN, so that we 

might expect a steepening in the index for the highest luminosity 

objects and a slight flattening at moderate luminosities. The exact 

magnitude of the correction is difficult to estimate as it depends on 

the actual index in a non-linear fashion, i.e. as the true index 

steepens, the magnitude of the correction to both K and 0 is reduced. 
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The XCS alone probably would not be able to constrain any but the most
 

extreme evolutionary models.
 

Figure VII.16: K(S) for AGN with luminosity evolution
 

Both low and middle luminosity objects are evdlved, using
 
the indicated amoVnt of pure luminosity evolution.
 
qo=0.1. The long dashed lines give the total K(S),
 
including non-evolving clusters and the estimated galactic
 
source contribution. The short dashed lines are range of
 
behavior for broken power law models derived from the best
 
confidence region on K and 02 S. 
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In Figure VII.16. we present K(S) curves for pure luminosity
 

evolution, where both low and middle luminosity objects are evolved. We
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Figure VII.17: Contributions to Sas and a2s for AGN versus QL
 

Curves for both qo=O.l and 0.5 are plotted. Curves marked 
"Evolving Mid + Evolving Low" have evolution for both 
-middle- and- low lumilnosity objects. Curves marked 
"Evolving Mid + Nonevolving Low" include both middle and 
low luminosity sources but the evolution law applies only 
to the middle luminosity objects. The curve marked "High" 

indicates only the contribution of the high luminosity 

extension (Oh = 3.75) to the invariant excess. The 

contribution of such sources to Sas is negligible. 
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see that the excess "hump" of the luminosity evolution curve in Figure 

VII.13 has been broadened to a shelf by the extension of the range
 

covered by the luminosity function. The form of the "Total" curve shows
 

us that with evolution of the AGN with QL 3.5, the total N(S) has a near
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Euclidean behavior continuing for almost 3 1/2 decades below the
 

resolved sources. Though Figure VII.16. allows us to compare the K(S)
 

curve with broken power law constraints set by the fluctuations and the
 

fits to the resolved sources, we know that the better test of a model is
 

a direct comparison with the limits set on the fit parameters of K and
 

02 S . Because of the renormalization of the curves, the value of K is
 

fixed, by definition, at an acceptable level. Figure VII.17 illustrates
 

the contributiqn to the invariant excess as well as the contribution to
 

the all-sky flux. We see here that the contribution to Sas is not
 

strongly affected by the value of q., and that we generally constrain
 

QL 3.25 to avoid exceeding the observed total sky flux. The
 

contribution to the invariant excess, however, has a stronger dependence
 

on qo. As an absolute limit on the evolution, a2S is less of a
 
5
constraint than the total sky flux: QL 4 . for qo=0.5; QL5.2 for
 

q=O.1. More interesting perhaps, is the lower limit placed on QL if we
 

require that the AGN supply the "missing" excess variance. For qo=0.5
 

this would imply that QL 3 .25, so that only a very narrow range of
 

values 03.25 can provide the required a2s without exceeding the limit on
 

Sas. For qo=0.1 the difficulty is severe. At the point where Sa is
 

exceeded a2s=l.5x10-4 HIM 2 , significantly less than the required
 

2.5x10- 4 . The difficulty is not resolved by having some fraction of the
 

evolution as pure density evolution, such as was suggested by Cheney and
 

Rowan-Robinson [1981a]. As mentioned in the discussion of Figure
 

VII.13, for an equal contribution to the all-sky flux, pure density
 

evolution, will contribute less to the excess variance than pure
 

luminosity evolution. Keep in mind that the minimum 2S requirement
 

teed not be met solely by evolution. As we shall demonstrate in Section
 

VII:6 there are equally plausible processes that generate significant
 

additional variance, such as clumping of sources or other large scale
 

structure in the X-ray sky.
 

The difficulty is to produce a significant contribution to the
 

invariant excess without exceeding the total Sa* We recall that the
 

bulk of the contribution to the all-sky flux, for both the evolved and
 

unevolved models, comes from sources in the neighborhood of the division
 

between the low and middle luminosity sources, where the luminosity
 

Analysis of Results Evolving Populations
 



------------------------------------------------------------ 

269 
ORIGINAL PAGE I2
 

VII:3 OF POOR QUALITY 

-

Figure VII.18: K(S) for evolving middle luminosity AGN
 

The curves compare K(S) for AGN where both low and middle
 
luminosity objects evolve (dashed) to that where only the
 
middle luminosity objects evolve (solid). qo=0.1.
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.
function index breaks from 2.75 to 1.75, at 1043 ergs s-1 The most 

significant contribution to a2,, on the 6ther hand, is made by sources
 

that produce the high flux edge to the enhanced plateau of K(S), which
 

are the higher luminosity sources. To show this, Figure VII.18 compares
 

models where only the middle luminosity objects are evolved to models
 

where all AGN are similarly evolved. By only evolving the middle
 

luminosity sources the enhanced plateau has been significantly
 

shortened. Examination of the "mid only" curves in Figure VII.17 shows
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that this does have the desired effect. The sky flux is not exceeded 

until Qln5 for qo=O.1 (-5.25 for qe=0.5). The contribution to aS is 

only slightly affected, both the high and low limits on QL are increased 

by -0.l. Therefore for q,=0.5 the strong upper limit of -4.6 on QL 

comes from the upper limit on the invariant excess. If the AGN 

evolution provides the missing invariant excess then 3.4 QL 4 .6. For
 

qo=0.1, larger values of QL are preferred: 3.9 QL5.0, the upper limit
 

imposed this time by the Sas condition.
 

Though now we have a model that can provide the required amount of
 

O2S without exceeding the diffuse sky flux, we recognize the arbitrary
 

nature of the change from the all source- evolution model. There is no
 
-
particular reason that sources below 1043 erg s I did not evolve while
 

those sources currently above that level have evolved. Also, such a
 

model would have at large redshifts an empty gap in luminosity between
 

the top of the unevolved sources and the bottom of the evolved sources.
 

For QL74 the gap could span a decade and a half. However, the results
 

for this admittedly simple model indicate that if AGN evolution is to
 

provide the missing invariant excess then the preferred form for the
 

evolution is one where the large luminosity objects undergo stronger
 

evolution than the lower luminosity objects.
 

Index evolution
 

The luminosity-dependent density evolution proposed by Schmidt and
 

Green [1983] is one attempt to parameterize a model with explicitly
 

stronger evolution for the higher luminosity AGN. In fact, for strong
 

evolution the index evolution models will completely invert the
 
2
luminosity function so that not only a s but the contribution to the sky 

flux and even the total number of objects will be completely dominated 

by the very high end of the luminosity function. For qo=0.1, the 

fractional look-back time at z=3.5 is -0.8. If the current epoch 

luminosity index is 2.75, by the time we reach zmax the effective index 

is 2.75 - 0.8 % , so that for Q 0.9 the contribution to the volume 

emissivity at zmax is dominated by the high luminosity objects. 

Initially, however, the enhancement is a slow function of T, so that for 
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moderate values of Q0 the high flux region does not show the sharp rise
 

in K(S) seen in the luminosity evolution models. The enhancement to Kh
 

is less for a given contribution to Sas compared to pure luminsity
 

evolution. For qo=0.1, Lo=0.5 L44 , and %=3.5, the enhancement is
 

--13%.
 

Figure VII.19: K(S) for luminosity function index evolution of AGN
 

Both low and middle luminosity AGN are subject to
 
evolution: qo=0.1, Lo=0.5 L44 . The long dashed lines
 
give the total K(S), the short dashed lines are derived
 
from the confidence region on K and a2S (see Figure
 
VII.16.).
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The slow deviation from the unevolved N(S) is illustrated in the
 

Analysis of Results Evolving yopulations
 



272 
ORIGINAL PAGE VW 

VII:3 OF POOR QUALITY 

Figure VII.20: Contribution to Sas and o2S for AGN versus QS
 

See description of Figure VII.17. Note that the
 
contribution of the high luminosity sources (1h = 3.75) to
 
Sas is now significant, and plotted. L0=O.5 L44.
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K(S) plots of Figure VII.19. For moderate amounts of evolution, Q0 2,
 
the principal effect is the deficit of low flux sources. This deficit
 

is maintained for the stronger amounts of evolution, and -s due to the
 
reduction of sources with luminosities less than L,=0.5 L44. In Figure
 
VII.20 we see that the contribution to the all-sky flux is exceeded for
 
%m3.25. There is little dependence on q.. For intermediate amounts of
 

evolution, i.e. QB-1.5, the contribution to Sas is actually decreased
 

by the suppression of low luminosity sources. If the evolution is
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confined only to the medium luminosity sources this suppression is
 

reduced. However for larger amounts of evolution the contribution to Sas
 

is totally dominated by the high end of the medium luminosity objects.
 

The contribution to a2 S is similarly dominated by the middle luminosity
 

sources so- that the "middle only"i curve is indistinguishable from the
 

case where evolution applies to both middle and low luminosity objects.
 

Though the evolution is dominated by the changes at the high end
 

of the luminosity function, the strong deviation from a Euclidean N(S)
 

does not occur until relatively small values of the flux. Therefore,
 

index evolution models with Lo=0.5 L44 do not make much contribution to
 

the invariant excess even for values of Q8 large enough to exceed Sas.
 
=
Considering only the invariant excess we find that if qo 0.5 then 2.9
 

Q0 3.6. The bottom limit Is the soft requirement that the evolving
 

population produces the required positive excess variance, while the
 

upper limit is from the hard maximum allowed excess. The range of
 

allowed models is quite small. For qo=0.1 the limits placed by the
 

invariant excess are 3.4 Q8 
4 .1 so that formally no model can produce
 

the needed positive excess *ithout exceeding the total sky flux.
 

These ranges were calculated for a single value of Lo, 0.5 L449
 

The contribution to both Sas and a2 S depends strongly on the value
 

chosen for Lo, so the ranges should only be considered indicative of the
 

general behavior of index evolution models. For example, if we fix %=3
 

and allow Lo to vary from 0.25 to 1.0 L44, the contribution to Sas runs
 

from -130 to less than 15 HILl while 02S covers the range from 4.5 to
 

-0.2 104 HILl2 . When Schmidt and Green performed their fits to the
 

optical data their best fit values for LO ranged over a factor of 3,
 

depending on the value chosen for qo and the number of AGN in other low

flux surveys. Though modifying the value for Lo will change the range
 

of acceptable values for Q,, this has only a slight impact on the
 

difficulty of providing the minimum positive excess variance, -2.5x10 4,
 

without exceeding the diffuse background. This is especially true for
 

the qo=O.1 case.
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H luminosity extensions of AGN luminosity function
 

Given the strong dependence on Lo, we might think that to make a
 

statement about index evolution models we should replace Figure VII.20,
 

which was created holding Lo 
fixed at 0.5 L44, by a contour plot of Sas
 
and o2S in the L0 Q plane. However, we will now show that there is a
 

more significant source of imprecision in the contribution to the
 

integral quantities, particularly for the larger values of Q . Most of
 
the contribution to Sas and -o2S comes from the sources near the high
 

luminosity limit of 15 L44. This limit is arbitrary, and its position
 

was more a statement of the limitations of the XCS for the study of high
 

luminosity AGN. In fact, the A-2 experiment has observed two AGN with
 

luminosities significantly greater than this: 3C 273 at 82 L44 and NRAO
 

140 at 400 L4 4 [Marscher et al. 1979; see also Holt et al. 1983;
 

Halpern 1982]. The former was included in the XCS, while the latter was
 

excluded because its intensity of 1.02 R15 (1.6x10 - 3 HILl) was below
 

the XCS lower flux limit, as well as being at a galactic latitude
 

outside the solid angle covered by the XCS. The existence of these
 

objects, and extrapolations based on detections performed on other high
 

luminosity QSOs with the Einstein observatory, indicate that the current
 

epoch luminosity function must be extended above 15 L44. (It is
 

interesting to note that both 3C273 [Pearson et al. 1981] and NRAO 140
 

[Marscher and Broderick 1982] show superluminal expansion in the radio.)
 

Though we have no information from the XCS about the form such an
 

extension should take, we will here consider the two examples we
 

mentioned above: (1) a luminosity function with index 8 h continuing at
 

2.75 between 15 and 100 L44, and (2) one where Oh steepens to 3.75 in
 

that same luminosity range. In Figure VII.20 we also showed the
 

contribution of the high luminosity sources to Sas and o2h as a function
 
75
 of Q. , with 8h=3 . . The curves shown give the contribution from the
 

high luminosity sources only. The high sources always dominate the
 

invariant excess, and in fact contribute more to Sas than all other AGN
 

for Q0 2.2 (qo=0.1, Lo=0.5 L44 ). With a value of % as small as 2.2 the
 
,
high luminosity objects can provide the needed minimum 02 S even for
 

qo=0.1, with as little as n50% of the total sky flux accounted for by
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Figure VII.21: Effects on AGN K(S) for index evolution of a high
 

luminosity extension of the lumiiTosity function
 

The three solid curves give K(S)of all-AGN for, from the
 
75
 bottom: no 	high luminosity objects, 8h=3 . , and Oh=2.75. 

QO=2.5, qo 00.1 and Lo=0.5 L44. 
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all AGN. 	 With the flatter extension of the 'luminosity function,
 

Oh=2.75, it -is even easier for small amounts of index evolution to 

provide the needed invariant excess -whi-le making a relatively small 

contribution to Sas. However, the flatter extension will quickly exceed 

the maximum allowed excess and sky flux. 

In figure VII.21 we show the contribution to the total K(S) made
 

by the two extensions, with Q8=2.5. The 0h curve has a larger, peaked,
 

contribution at fluxes just above the steep break. This is because such
 

a -model has more high luminosity objects at the current epoch.
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Therefore, for an understanding of paiticular index evolution models and
 
-
their contribution to N(S), particularly at fluxes near -10 6 HILl, a
 

knowledge of the highest end of the current epoch luminosity function is
 

essential. Note however that all index evolution models have the
 

general property that below the enhancement there is a sharp
 

characteristic- drop in K(S). The size of the drop depends on the
 

behavior of the luminosity function at the low luminosity end. By this

we mean that if the low luminosity sources LO are not subject to index
 

evolution, then K(S) will drop a few decades to meet the less steeply
 

rolling over contribution to K(S) from the unevolved low luminosity
 

objects. A similar sharp -rop is seen for the pure luminosity evolution
 

models but, again, only when the low luminosity sources do not evolve
 

(see Figure VII.18).
 

In Figure VII.22(a) we see that no matter how strong the evolution
 

or what the details of the luminosity function at the high end, the
 

major effect of index eyolution is on fluxes far below the range of the
 

XCS. This is because index evolution enhances the number of sources,
 

not their luminosity. To first order, increasing Q just increases the
 

pile-up at the low flux range.
 

Pure luminosity evolution has a very different interaction with
 

the current epoch highest luminosity sources. To begin with, for
 

suitably large values of QL there is- no requirement to have any
 

extension of the luminosity function above -15 L44 . That is, 3C273 and
 

NRAO 140 are both observed at high' enough redshifts that already
 

significant evolution has occurred. For example, at a z-1 and QL-3 the
 

15 L44 upper luminosity limit has been shifted to -70 L44. For QL of 6
 

it is at -300 L44.
 

The existence of a high luminosity extension to the luminosity
 

function has only a small impact on the total AGN contribution to Sas.
 

For example, for QL=6 the high luminosity sources would contribute 2.4
 

Hill or 1.3 HILl for Oh of 2.75 or 3.75 respectively. As illustrated by
 

the curve marked "High luminosity only" in Figure VIl.17(b), if the high
 

luminosity sources evolve at the same rate as both the low and middle
 

Analysis of Results Evolving Populations
 



277 VII:3 ORIGINAL PAGE fSOF POOR QUALITY 

Figure VII.22: K(S) for only high luminosity AGN
 

Solid and long dashed curves are for the indicated values
 
of Oh. The short -dashed curve Its the canonfcal total K(S)
 
for unevolved populations. No renormalization to the XCS
 
and fluctuations-derived value for Kh was made for the
 
high luminosity extensions. The flux range of the XCS,
 

-
2x10-3 to 8x10 3 HILl, is centered on the high flux end of
 
the short dashed curve. qo=0.1. (a) Index evolution,
 
L0=0.5 L44. (b) Pure luminosity evolution.
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luminosity objects, (QL 3 .2 ) then the additional contribution to the
 

invariant excess from the high range is small. If the low luminosity
 

sources do not evolve, on the other hand, the contribution to a2 S from
 

the high luminosity extension can be a significant fraction of the total
 

when the high and middle sources have the same QL" The relative
 

contribution can be further enhanced if the high range undergoes
 

Analysis of Results Evolving Populations
 



VII:3 278
 

stronger evolution than the middle range. For example, if QL;mid is 3
 
2 4
and QL;high=4.5 then the total a is 2.5x0 - HILl2 and Sa=25 HILl
8 


(qo=0.1, 8h=3 .75). Such a model would therefore provide the missing
 

excess variance and only contribute 45% of the total sky flux. There
 

are limitations, however, on QL;high" An examination of VII.22(b) shows
 

that for QL6 (qo=0.1, h-3.75) the high luminosity objects will make a
 

significant contribution to the source counts in the flux range of the
 

XCS. Given that 3C273 is the only high luminosity object in the XCS,
 

either such extreme evolution is rejected or the power law index of the
 

extension is even steeper (equivalently the extension does not continue
 

out to 100 L44 as we have assumed here). For the flat high luminosity
 
7 5
 extension, Oh=2 . , the maximum allowed evolution is QL75.
 

One might argue on purely physical grounds against the largest
 

amounts of pure luminosity evolution. Rather than allowing the
 

luminosity of an object to become arbitrarily large there could be
 

intrinsic limits on the maximum possible luminosity. The Eddington
 

limit, for example, imposes a maximum total luminosity for steady state
 

emission associated with accretion onto an object. Luminosities above
 
-
1.3x1038 ergs s 1 for a one solar mass object will disrupt the object or
 

inhibit the accretion. The details of this limit depend on geometric
 

considerations, the above limit being for the case of a -spherically
 

symmetric system. In Figure VII.23 we examine the effects on luminosity
 

evolution assuming that no object can exceed a luminosity of 1.3x1047
 

-
ergs s 1, corresponding to a 109 solar mass central engine for AGN. All
 

sources that would otherwise exceed this limit are piled up at the
 

maximum luminosity. In the figure we see that for QL of 5 (qO=0.1) the
 

effects on the K(S) curve for the high flux sources is small, though not
 

negligible. Larger amounts of evolution would have a correspondingly
 

greater impact; however in general such a limit will not interfere with
 

the conclusion that really strong amounts of evolution are incompatible
 

with the lack of high luminosity objects observed in the XCS.
 

For pure luminosity evolution, as well as index evolution, the
 

extension of the luminosity function can have important ramifications,
 

particularly for the contribution to the excess variance. There is,
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Figure VII.23: Effects of absolute maximum in luminosity on K(S)
 

The curves are for the high luminosity extension of the
 
AGN luminosity function undergoing 9=5 pure luminosity
 
dVdiution with and without an absolute maximum luminosity
 

-
of 1.3x104 7 ergs s 1. This corresponds to an Eddington
 

limited luminosity for accretion on a 10 solar mass
 
object. qo=0.1.
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however, a problem in determining the form of such an extension, as the
 

high luminosity objects will not be observed, on average, except at
 

relatively large distances. By "relatively large" we mean compared to
 

the distances for the bulk of the sources in the XCS, so that the high
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luminosity sources may already have been subject to significant amounts
 

of evolution. Therefore a determination of the "current epoch"
 

luminosity function will depend on the assumed model for the evolution.
 

Summary 

The evolution of AGN can provide a significant contribution to the
 

excess variance and to the total sky flux. The total sky flux provides
 

a strong constraint on most forms of evolution. Only a limited range of
 

models can provide the desired amount of excess variance without
 

exceeding the sky flux condition. However, large uncertainties exist in
 

the contribution from both the very lowest and the very highest
 

luminosity sources. A summary of the numerical- results from this
 

section is presented as part of Chapter IX.
 

4: Results from the Einstein Observatory: Source Counts
 

We review the results of the low flux source counts obtained
 
from the Einstein Observatory. Though the differing energy
 
bands of Einstein and the'A-2 experiment make comparisons
 
strongly dependent on spectral assumptions, the "Medium
 
Survey" of serendipitous sources covers a range in flux
 
roughly equivalent to the range of. greatest sensitivity of 
the fluctuations. The N(S) curves derived are in agreement, 
again depending on spectral assumptions. The identification 
of the sources which constitute the Medium Survey implies 
some evolution by AGN from the luminosity function observed 
in the XCS. If the evolution is pure luminosity evolution, 
where L(T) = L(C) exp(QL ), (t is the fractional lookback 
time), then the Medium Survey source counts and the XCS 
derived currdnt epoch luminosity function predict 2 < QL 
4, qo =0.1. If a substantial number of the low luminosity 
AGN are not absorbed or are only partially covered with 
absorbing material, the allowed range must be significantly 
reduced. Similar results are obtained for the original
 
"Deep Survey" of Giacconi et al. [1979]. The analysis of
 
these sources is sensitive to the behavior of N(S) in a
 
narrow flux range, and its interpretation depends on the
 
assumed power law index of N(S). No conclusion about the
 
presende or absence of evolution for BL Lacertae objects can
 

Analysis of Results Source counts from Einstein
 



VII:4 281
 

be drawn solely from their relative frequency in the XCS and
 
Medium Survey. The promise, and difficulties, of an
 
analysis of the fluctuations using Einstein Observatory data
 
are outlined.
 

Though the- fluctuations do make a case for the existence of 

evolution, we have seen that the range of allowed models is not well 

determined. In addition, the required exces's variance need not be 

supplied solely, or at all, by such evolution. As we will discuss, 

clumping of the sources or other intermediate scale structures in the
 

sky flux may also be responsible. Explicit study of AGN over a range of
 

fluxes and redshifts would better allow us to decide on the amount and
 

form of the evolution.
 

Such a study is being conducted by several authors using data
 

obtained by from the HEAO 2 satellite Einstein Observatory. The imaging
 

capabilities of the Einstein X-ray telescope allowed observations of
 

sources with much lower fluxes than could be studied with HEAO 1 A-2.
 

Unfortunately, the grazing incidence nature of the X-ray focusing
 

optics, when coupled with the relatively short focal length of the
 

telescope, meant that the energy band was substantially below the
 

bandpass covered by the HILl measured fluxes. A comparison of results
 

obtained in the two different bandpasses therefore depends on the
 

spectral properties of the sources studied. In addition, the lower
 

energy band of Einstein is more sensitive to self-absorption of sources,
 

common in low luminosity AGN. In principal, spectral data from the
 

Einstein observations could be used to estimate the self-absorption,
 

however many of the sources studied are of such low flux that the
 

Interpretation of the spectral data is ambiguous. In this section we
 

will review the N(S) relation derived from Einstein studies. Though the
 

Einstein results are justifiably celebrated for the information they
 

provide about the low flux sources, we will here examine the unavoidable
 

ambiguity of spectral effects, particularly when analyzing the origin of
 

the total X-ray sky flux observed at higher energies.
 

Most source count studies from Einstein used the Imaging,
 

Proportional Counter (IPC). A first order analysis relating broad band
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flux measurements obtained with the IPC to those from HEAO 1 is outlined
 

in Section A7:2. Although we cannot provide total accuracy in the 

conversion, the general trends illustrated in this section are 

sufficient for our purposes. 

The Medium Survey: Maccacaro et al. [1982]
 

With the Einstein Observatory both galactic and extragalactic X

ray sources have been extensively studied. Most of these objects were
 

targeted on the basis of their properties at other wavelengths,
 

particularly in the optical and/or radio. Selection biases make it
 

difficult to use such studies to directly assess the contributions of
 

various classes of objects to source counts and the all sky flux.
 

Ideally we should use an X-ray selected collection of objects. 'One such
 

sample is the Medium Sensitivity Survey of Maccacaro et al. [1982],
 

hereafter referred to as the Medium Survey or MS. The Medium Survey
 

resulted from the analysis of over 110 high latitude IPC fields for
 

serendipitous sources. By serendipitous we mean the source was
 

discovered by virtue of its fortuitous presence in the same region of
 

sky as the (ususally much brighter) targeted source.
 

-

Source fluxes were reported in Maccacaro et al. in ergs s 1 cm72 

from 0.3 to 3.5 keV. These fluxes were calculated assuming each source 

had a spectrum with energy index a = 0.4 and absorption only due to 

matter in our galaxy. The column density of hydrogen used was typical 

of high latitude observations out of the galaxy: NH = 3x1020 cM-2 . 

However, we wish to make comparisons of the observed counts with 

predictions from populations with greatly differing spectra, i.e. 

clusters of galaxies, unabsorbed AGN, and absorbed AGN. To do this 

properly we should fold the various source spectra through the detector 

response and make the comparison in terms of observed counts. Therefore 

we convert the ergs back to IPC counts over the equivalent 0.3 to 3.5 

keV energy band. Such units are indicated by IPCMS. To make the back 

conversion, our analysis of the IPC spectral response (see Section A7:2)
 
- I
produces a conversion factor of 1 IPCMS = 3x10-11 ergs s cm-2 (0.3-3.5
 

keV)*. For an incident power law spectrum with energy index a=0.4, 90%
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of the photons in an IPCMS measurement originate from the range AE90 = 

0.5 to 2.6 keV (see the discussion following equation [11.25]). This 

particular power law index is a good approximation in the lPCMS energy 

range to an extrapolation of the 40 keV thermal bremsstrahlung spectrum 

characteristic of- the X-ray sky flux observed at the higher energies of 

HEAO 1. Recall that the AE90 of the HILl window is 2.5-13.3 keV for 

such a spectrum.
 

The different exposures that made up the Medium Survey constituted
 

"50 square degrees in individual observations distributed over the sky
 

with varying levels of sensitivity, depending on the total active time
 

and internal background rate of the particular observation. The lowest
 

flux detectable at the 5o level was 0.0023 IPCMS, while the median
 

sensitivity was 0.016 IPCMS. In order to concentrate on the behavior of
 

N(S) at the lower fluxes, sources brighter than 0.17 IPCMS were
 

explicitly excluded from the sample. 63 sources were detected, 51 of
 

which had positive identifications based on optical spectroscopic work.
 

Forty of these were identified with extragalactic objects: 31 AGN, 7
 

clusters, 1 BL Lac, and 1 normal galaxy. Of the unidentified objects, 8
 

are tentatively identified as extragalactic, as their ratio of X-ray
 

flux to optical flux is significantly larger than is typical of galactic
 

sources.
 

As was done by Piccinotti et al. [1982] for the XCS, the Medium
 

Survey source fluxes were used to fit a power law index for N(S),
 

following the prescription of Murdoch, Crawford, and Jauncey [1973].
 

The best fit -value and 1 a range for the power law index y is 2.53
 

(2.37-2.69). Application of the K-S test to the distribution of fluxes
 

showed that single power law models were consistent with the data. The
 

normalization of the N(S) law is not directly obtainable by the
 

technique used. A least squares fit of the sources to the given best
 
53
 fit power law yielded a value for K of 5.2 (IPCMS) 1 * . Though a
 

*The conversion from ergs to counts used by Mactacaro is 1 IPCMS
 

- II - - 2
2.5x10 ergs s 1 cm [private communication]. The discrepency
 
between these two numbers indicates the precision attained for much of
 
the following discussion of spectral dependencies.
 

Analysis of Results Source counts from Einstein
 

http:2.37-2.69


100 

VII:4 ORIGINAL PAGE 1$ 284OF POOR QUALITY 

kT =6 keV.. 
• -"a-0.7".
H1aL1 • .. 

Hi~l %..*.* 

........................
 

kT=40i '. . 

C ', 10
C', 

MEDIUM ".
 
:
o-0 SURVEY ........
 

vCLUSTERS 

AG 

TOTAL
 

0.1 
10-5  10-4  -3
10 10-2 10- 1 1 10 

S(IPCMS) 

Figure VIT.24: K(S) for the Einstein Medium Survey
 

The solid and dashed regions are the 50% and estimated 90%
 
confidence regions for the Einstein Observatory, Medium
 
Survey. The three dotted regions marked "HILl" are the
 
regions from the analysis of the HEAO 1 A-2 fluctuations
 
(assuming a single power law model N(S)),. transposed to
 
the IPCMS flux units assuming that all the sources of the
 
fluctuations had the indicated spectra. The overlap of
 
the kT = 40 keV HiLl contour and the Medium Survey contour
 
is not evidence that the source spectra are 40 keV thermal
 
spectra. See the text for further important
 
considerations in comparing these contours and the MS
 
contours. The K(S) curves are from the luminosity
 
functions derived from the XCS of Ficcinotti et al.
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[19822, with no evolution.
 

confidence range in K cannot be derived from this estimate, the 

normalization can be determined no better than the total number of 

sources in the sample, which is uncertain due to Poisson statistics at 

the very least. Thus, since the Medium Survey consists of 48 confirmed 

or suspected extragalactic objects, the 1 a range in K is at least ±14% 

= 48-1/2. Given the normalizations for the extreme allowed values for 

Y, Maccacaro et al. report that the associated N(S) curves cross at Sx
 
3
= 7.5x0 - IPCMS. In Figure VII.24 the solid contour labeled "Medium 

Survey" outlines the K(S) for these models, assuming that the 

normalization and the power law slope are decoupled at the crossover 

flux. Since the ranges in Y and K(Sx) were from their separate 1 a 

confidence regions (i.e. 68%), the solid contour has a 46% chance of 

containing the correct N(S) model, assuming that it is indeed a single 

power law over the given range. The dashed outline is an estimate of 

the 90% region, formed by scaling the given 1 a ranges for Y and K to
 

the equivalent 95% ranges (1.96 a) of 2.22-2.84 and ±28%. The upper and
 

lower flux limits in the contours are based on the total range of
 

sensitivity of the Medium Survey. The actual behavior at either extreme
 

is poorly constrained due to comparatively little data at these points.
 

The three dotted regions in Figure VII.24 marked "HILl", derived 

from the single power law fits to the A-2 fluctuations data, illustrate 

the difficulty of making direct comparisons of results derived from A-2 

and the IPC. The fluctuations result used is the single power law fit 

to the WW dataset. There has been no inclusion of information from the 

resolved source counts from the XCS, which would favor the steeper 

(negative slope) models. The three regions follow from assuming that 

all the sources which produce the fluctuations have a different, single, 

spectral form: a power law of index a = 0.7, thermal bremsstrahlung with 

kT = 6 keV, or one with kT = 40 key. There is no simple model

independent way to give similar contours when the sources have different 

spectral characteristics, but crudely we can imagine that the behavior 

is some average of the given contours. The flux range that the 

fluctuations analysis is most sensitive substantially overlaps the range 
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covered by the Medium Survey. When comparing the values for K(S) from
 

the two experiments we might argue that, except for the kT=40 keV
 

spectrum, there is an indication of a slight rollover. Keep in mind,
 

however, that the fluctuations include as large as a -13% contribution
 

from cataclysmic variables and other galactic sources while the Medium
 

Survey region explicitly excludes galactic sources. Also, the
 

contribution of the absorbed low luminsity AGN is much larger in the
 

HILl band than in the IPCMS measurements, as we will see in more detail.
 

Therefore, a comparison of the HILl contours and the Medium Survey
 

contours can not be used to conclude either the existence of a rollover, 

or that the sources have a kT - 40 keV spectrum, as such conclusions 

likely are artifacts of the inexact spectral correspondence between the 

two surveys. 

The uncertainty due to spectral band effects can be reduced, or at
 

least explicitly addressed, by calculating N(S) for source populations
 

with specific spectra. The curves In Figure VII.24 plot the associated
 

K(S) for the luminosity functions derived from the XCS, assuming no
 

evolution. The spectra for clusters of galaxies are the luminosity
 

dependent forms outlined in Table VII.3. The AGN curve is for the 

canonical luminosity function (see Table VII.5) with the standard
 
-2
spectral model: c=0.68, NH=3 .6xi022 cm for L44<0.2. All observations 

-2 inare assumed to have an additional absorption of N1=3xl0
20 atoms cm

the observer frame, i.e. not subject to the effects of cosmological 

redshifting. This amount of absorption is typical of the column density 

due to gas in our galaxy for high galactic latitude observations, and is 

important for the lower energy bandpass of the IPC but is undetectable 

in the HILl band. The "total" curve in Figure VII.24 generally falls 

far below the acceptable range for the Medium Survey, which argues 

directly for some amount of evolution. The composition of the Medium 

Survey also suggests evolution is necessary. One aspect of the change 

from the higher energy bandpass of HILl to the Medium Survey is seen in 

the K(S) calculated for clusters. At the XCS fluxes in the high energy 

bandpass the numbers of clusters and AGN were roughly equivalent. At 

the analagous flux levels in the the low energy bandpass the predicted 

ratio of clusters to unevolved AGN was near 3. In the high energy 
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bandpass the cluster contribution to N(S) quickly flattens from the 

Euclidean 5/2 index power law. In the low energy bandpass this occurs 

at a lower flux, as higher redshifts are required to produce the same 

reduction in the observed flux. In fact the N(S) curve for clusters 

d~es ndt fall below the N(S) for unevolvied AGN until S cI- IFCMS. 

From the relative strength of the two curves for AGN and clusters in 

Figure VII.24 we can crudely estimate that the ratio of clusters to AGN 

in the Medium Survey should be 2 to 1. Instead, clusters are 

significantly outnumbered by the AGN in the Medium Survey, constituting 

17% of the sample, and not 67%. This indicates that some evolutionary 

change from the XCS-derived luminosity functions has taken place, 

producing the ratio observed in the Medium Survey. 

This argument for AGN evolution depends to a large degree on our
 

model for the AGN spectra, particularly that most of the low-luminosity
 

AGN have significant intrinsic absorption, which reduces their
 

contribution to N(S) at a given flux. If the effects of the absorption
 

are reduced, then the AGN N(S) curve is increased with respect to the
 

cluster AGN, and the required amount of evolution is decreased. On the
 

other hand, the case for evolution is strengthened if there are
 

substantial numbers of low temperature clusters, kT 3 keY, which would
 

not contribute significantly to the luminosity function determined by
 

high and medium energy detectors of HEAO 1 A-2. The expected number of
 

clusters is similarly enhanced by the existence of a low temperature
 

component in some clusters, which has a contribution to the flux in the
 

low energy bandpass comparable to the contribution from the high
 

temperature component in the high energy bandpass [e.j. Mushotzky et
 

al. 1978; Pravdo et al. 1979; Mitchell and Mushotzky 1980; Reichert et
 

al. 1981]. Maccacaro et al. had also concluded that the low fraction
 

of clusters indicated evolution, but only by direct comparison to the
 

fraction in the XCS resolved source counts, with no corrections for
 

redshift or the differing bandpasses.
 

To produce the observed ratio of AGN to clusters in the MS we
 

could either increase the number of AGN and/or decrease the number of
 

clusters with redshift or look-back time. In fact, as illustrated in
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Figure VII.25: K(S) for clusters in the Medium Survey
 

The curves compare K(S) for the canonical XCS cluster
 
=
luminosity function with cutoffs at Zmax 3.0 and 0.75; as
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Figure VII.25, the study of clusters over the flux range of the Medium
 

Survey may yield useful information about the evolution of the cluster
 

luminosity function. However, 7 clusters are too few to lead to any
 

strong conclusions; an extension of the serendipitous objects survey to
 

include more observations is needed to increase the number of clusters.
 

Limits on AGN evolution from the Medium Survey
 

In Figure VI.26 we estimate the form for K(S) when the AGN are
 

allowed to evolve following the models discussed in the previous
 

section, with qo=0.1 and evolution restricted to the medium luminosity
 

AGN only. For this choice of assumptions we see that the source counts
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Figure VII.26: K(S) from AGN evolution compared to Medium Survey
 

results
 

The Medium Survey derived 47% and 90% confidence ranges
 
for single power laws are indicated by the solid and
 
dashed regions. Only medium luminosity AGN, 0.1<L<15 L44,
 
are subject to evolution and qo=0.1. (a) Pure luminosity
 
evolution. (b) Index evolution, LO=0.5 L44.
 

a m l ~ l I l~ IlllI . .. H1 . HMU ~I, i11m l ~ l l mlql i I 
i ..... WI H

i 


(a) (b 
AGN ONLY
 

30 -- - TOTAL
 

S. -,_MEDIUM Ql= 

3 - "3 ,
 

03 NO EVOLUTION 
03 NO EOLUTION 

-5 -4 -3 -5 -4 10-3 I0- o 10 10-2 1I10 I0 10-2 1 10 10 0
S (IPCMS) S (IPCMS) 

of the Medium Survey provide a significant restriction on the amount of
 

evolution allowed. From VII.26(a) the preferred range in QL (pure
 

luminosity evolution) is from 2 to 4, while by VII.26(b) the range in
 

the index evolution parameter is 2.0 QO 3.1.
 

Later work by Maccacaro et al. [1983a] used the redshift and
 

luminosity data of the MS. instead of the source counts, to explicitly
 

test for pure luminosity evolution. Their best fit value for the
 

evolution of QL was 5.7 with a 90% confidence range of roughly 4 to 6.
 

Although they assumed qo=O, which indicates that their values should be
 

slightly decreased to compare with our evolution models where qo=0.1,
 

these results are generally larger than what appears to be allowed by
 

the source counts as displayed in Figure VII.26(a). However, there is a
 

substantial difference in the underlying model for the luminosity
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function that makes direct comparison difficult. Maccacaro et al. 

[1983a] assumed that both low and high luminosity objects evolved. The 

limits derived when QL has its best fit value are Lmin . 0.01 L44 and 

Lmax - 2 L44. (All luminosities discussed here are derived from the 

values for the differential luminosity at 2 keV reported by Maccacaro et 

al. [1983a] assuming an a=0.65 power law spectrum and integrating from 2 

to 10 keV.) The extension of the evolution to lower luminosities makes 

a relatively small difference to the source counts in the Medium Survey 

range, in part because of their high absorption, but also because the of 

evolution of the low flux sources does not have a large effect except at
 

the lowest fluxes (see Figure VII.18). However, in the Hill band,
 

evolution at these levels by the low flux sources has a great impact on
 

the contribution to the sky flux, severely overproducing the total sky
 

flux. The value of Lmax is more important in determining the behavior
 

of N(S) over the range of the Medium Survey. To provide agreement with
 

the low redshift, high luminosity, AGN observed in the XCS, Lmax should
 

be extended to at least -15 L44- When Lmax is increased to -100 L44
 

Maccacaro et al. [1983a] report that the best fit QL drops to 4.2,
 

although this model then fails the goodness of fit criterion, based on a
 

K-S test of the model. The poor fit could be caused by their assumption
 

that the luminosity function of AGN is a single power law from Lmin to
 

Lmax The observations of the XCS with the preliminary results of
 
. 


Elvis, Soltan, and Keel [1983] indicate that this is not the case at the
 

lower luminosities. We recall from the last section how the luminosity
 

function might be extended from 15 to 100 L44, but only if the evolution
 

were slight enough (QLh4) to avoid predicting significant numbers of
 

high luminosity sources in the XCS.
 

We have made different spectral assumptions than Maccacaro et al.
 

[1983a], which create additional difficulties when comparing their fits
 

to the limits we derive from Figure VII.26(a). They assume that all
 

sources are described by the same spectral form: a single power law
 

with index a=0.5 and absorption only from our galaxy. Strong absorption
 

below 0.2 L44, as we have assumed, will produce a strong break in the
 

luminosity function when measured in the IPCMS bandpass without
 

correcting for that absorption. Although only the four lowest redshift
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objects of the Medium Survey have L < 0.2 L44 this effect can have
, 


significant impact on the best fit values for QL' as well as on the
 

Figure VII.27: Effect, of absorption in AGN on the K(S) in the Medium.-


Survey
 

AGN are separated into low and middle luminosity ranges.
 
For purposes of illustration, the low range sources have
 
either a value for NH typical of the low luminosity XCS
 
sources, or (arbitrarily) half that absorption. Most of
 
the sources in the middle range have comparatively little
 
absorption. qo=0.1, no evolution.
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goodness of fit., Assumptions about absorption have just as strong an
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impact on our estimates of the source counts. We 'haveassumed that the
 

low luminosity objects did not evolve, but modifications in the amount
 

and form of the absorption can have a significant impact on the
 

predicted source counts. As seen in Figure VII.27, those sources-which
 

are absorbed make almost no contribution to the source counts, at least
 

over the flux range of the Medium Survey. Even halving the amount of
 

absorption makes little difference. Therefore, moving the critical
 

luminosity that divides absorbed from less absorbed sources can produce
 

a large change in the predicted numbers of AGN. The leverage of this
 

effect is generated by the steepness of the AGN luminosity function.
 

Thus if a significant fraction of the AGN above 0.2 L44 are absorbed,
 

then larger amounts of evolution would be consistent with the numbers of
 

the Medium Survey and the XCS. Though Lawrence and Elvis [1982] infer
 

significant absorption for- a few moderate luminosity AGN, their
 

conclusions are based on comparisons of non-contemporaneous measurements
 

of known variable sources. Variablity could easily mimic the effects of
 

high column density, though not systematically.
 

Probably absorption is not a simple on/off aspect of AGN
 

luminosity. Holt et al. [1980] have proposed a model for the
 

absorption in NGC 4151 which assumes a partial covering factor, that is,
 

a fraction of the flux comes through essentially unabsorbed while the
 

remainder is absorbed. The fraction depends on a detailed interaction
 

between the X-ray continuum luminosity ahd the geometric and density
 

characteristics of the clouds that produce the broad emission lines
 

typical of many AGN (see Ferland and Mushotzky [1982]). Measurements
 

made in the bandpass of the A-2 MED and HED detectors can not easily
 

distinguish a gradual change in the covering fraction from a sudden
 

onset of absorption. For example, in A-2 spectra, a source with 80%
 

covering fraction is indistinguishable from one totally covered with
 

slightly lower column density, while a source with 20% covering fraction
 

may be consistent with no absorption. In the HILl window, 20% coverage
 
-
by NH = 3.6xi022 cm 2 material reduces the flux slightly to 97% of the 

unabsorbed flux; with 80% coverage it is reduced to 89%; and with full 

coverage to 86%. Thus even total coverage for an individual source is 

difficult to measure with the HED detectors, although this ability can 
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be enhanced when the higher precision PHA spectra are analyzed. In the
 

IPC bandpass, however, there are strong differences between changes in
 

the partial covering fraction and a sudden onset of total coverage.
 

Even 20% coverage by material with NH = 3.6x1022 cm-2 material produces 

a significant 'absorption, reducing the flux to 82% of its unabsorbed
 

value. Full coverage reduces the flux to 11%, yet even partial covering
 

fractions of 80% will have fluxes almost three times that, i.e. 29% of
 

the unabsorbed flux. The partial covering fraction model makes it
 

important to have high quality broad band spectra of the very low
 

luminosity objects, such as M81, in order to properly compare their
 

luminosity function derived from IPC fluxes by Elvis, Soltan, and Keel
 

[1983] to the higher bandpass luminosity function for the moderate
 

luminosity AGN derived from the XCS. On balance, the expected impact of
 

a partial covering fraction model for the absorption is to allow more
 

contribution to the source counts from sources below 0.2 L44. This
 

reduces the allowed values of QL for pure luminosity evolution below
 

those indicated by Figure VII26.
 

Not all AGN have simple a - 0.7 power law spectra. Some have 

additional, steep (C 2) spectral components which dominate at low 

energies [e.g. Pravdo et al. 1981]. The existence of these AGN tends to 

reduce the amount of evolution of the XCS luminosity function that is 

compatible with N(S) derived from the Medium Survey. Though these 

phenomena may not be common, the possible existence of such soft 

components and potentially complicated effect of the absorption on low 

energy spectra indicate the inherent difficulties of extrapolating low 

energy results to higher energy regimes; Detailed spectral studies in 

the low energy band may help [see e.g. Holt et al. 1983] but one would 

ideally be a study of sources of the Medium Survey flux range in the 

higher energy A-2 band. As AGN appear well fit there by the single 

power law spectrum, a - 0.7, this band provides a cleaner environment 

for statistical studies. Still, though the detailed aspects of the 

typical spectra of AGN, their luminosity function, and its evolutionary 

form are poorly known, the very presence of a number of AGN 

substantially in excess of that predicted from the XCS determined 

luminosity function is a persuasive argument for significant evolution 
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of AGN over cosmological timescales.
 

Evolution of BL Lac objects
 

BL Lacertae objects are currently thought to be another form of
 

active galactic nucleus, but are usually considered separately from the
 

more traditional AGN such aS Seyfert galaxies and quasars. Comparisons
 

among these objects may help determine what physical processes are
 

responsible for the observed differences between them. It has been
 

argued on the basis of source counts versus flux in the optical [e.g.
 

Woltjer and Setti 1982; see also Veron 1979] that BL Lacs undergo
 

little, if any, evolution in contrast to the behavior of quasars and
 

other AGN. The optical source counts may be significantly incomplete,
 

however. Maccacaro et al. [1982] argue that comparison of the relative
 

numbers of BL Lacs and AGN in the Medium Survey and the XCS is evidence
 

based on complete X-ray slected samples for a similar conclusion that BL
 

Lac objects do not evolve in comparison to other AGN. We examine this
 

claim and find that in the light of subsequent identifications in the
 

XCS there is no statistically significant difference between the two
 

samples..
 

We now combine the previously separate catagories of AGN and BL
 

Lac into an All Active Galactic Nuclei (AAGN) designation. Let P be the
 

probability that an AAGN will be classified as a BL Lac. In the XCS, 4
 

of 34 AAGN are BL Lacs. Thus the measured value for P in the XCS is PX
 

= 0.118. In the Medium Survey only 1 of 32 AAGN was a BL Lac, so that
 

PM = 0.031, substantially less than PX. Maccacaro et al. [1982] argued
 

that this is expected if BL Lac sources undergo less evolution than the
 

AGN. If BL Lac sources evolve as much as AGN, then PX and P. should be
 

the same. The key issue in this argument is whether PM and PX are
 

significantly different. Maccacaro et al. calculated that with no
 

evolution, and extrapolating from the results of the XCS, only 1 BL
 

Lac would be expected in their survey. Thus, their data are consistent
 

with the no evolution hypothesis. The question remains whether their
 

data explicitly rule out BL Lac evolution similar to that of the AGN.
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We will calculate a statistical measure of the null hypothesis
 

that in going from the XCS to the Medium Survey there has been no change
 

in the parent distribution P, of which PX and PM are individual
 

estimators. If we construct the ratio
 

rl = PM / P , [VII.24] 

for no evolution the expected value of r1 is 1. Statistical variations
 

in the observed quantities PM and PX allow rI to have other values, thus
 

the test of the null hypothesis reduces to estimating for a given value
 

of P the probability that r1 would be less than or equal to the observed
 

value of 0.266. The most likely value for P is derived from the
 

combined set of objects in the XCS and Medium Survey, P = 5/66 = 0.076.
 

Based on the statistics of the binomial distribution applied separately
 

to the AAGN of the two surveys, rI is <0.266 13% of the time. r1 is
 

actually a "one-sided" statistic, in that we assumed that the only
 

interesting change in P was a reduction in going from the XCS to the
 

lower flux (and more evolution sensitive) Medium Survey. If we also
 

consider excursions in the estimators of P where PM might be larger than
 

Px we should use a two-sided test based on
 

r2 = min{PM,PX} / max{PM,PXI . - [VII.25] 

For our numbers, r2 has the same value as r1 . However, under the null
 

hypothesis with P=0.076, we would expect to see values of r2 this low or
 

lower 25% of the time.
 

Of course, as we have repeatedly pointed out, there are 

substantial differences in measurements made in the respective 

bandpasses of the two surveys. A major difference is that low 

luminosity AGN are under-represented in the Medium Survey, most likely 

by virtue of substantial absorption. However, even if we restrict the 

sample to AGN with L>O.2 L44 , which are expected to have negligible 

absorption, we still do not find a statistically significant change in 

the fraction of BL Lac between the two samples. For this restricted 

population the fraction of the Medium Survey becomes I BL Lac out of 28 

moderate or high luminosity AAGN, P'm = 0.036. At the present time we 

do not have luminosities for all the newly identified AGN in the XCS so 

we cannot clearly divide the entire sample into luminosity classes 1>0.2 
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L44 and L<0.2 L44. For the objects with known luminosities, 14 are in 

the first class and 10 are in the second, so if the unknown luminosities 

have a similar distribution, the revised P'x 4/24 = 0.17, yielding a 

value of = 0.214. The most likely value for the null hypothesisrI 

constant fraction of high luminosity AAGN that are BL Lacs is P' = 

0.097. Given this value, the one and two- sided probabilities for the
 

measured r value are 9% and 18%. If we were to restrict our
 

consideration to even higher luminosity AGN, as is done in the
 

discussion of Maccacaro and Gioia [1983b], statistically convincing
 

numbers might be found for rejecting the null hypothesis. It is
 

difficult, however, because of the evolution of the AGN luminosity
 

function, to match-a sub-population of AGN in the Medium Survey with the
 

corresponding sources in the XCS. The high luminosity objects in the
 

Medium Survey are all at appreciable redshifts.
 

An additional effect, pointed out by Maccacaro et al. in their
 

comparison of the two surveys, is that the steep spectra typical of BL
 

Lacs should make them significantly easier to detect in the low energy
 

bandpass of the IPC than in the XCS. We have not considered this aspect
 

in our analysis. However, the simple examination of the number of BL
 

Lacs in the Medium Survey compared to the XCS is not sufficient to rule
 

out similar amounts of evolution for both BL Lacs and AGN. Neither is
 

there evidence that BL Lac objects do evolve. Models where BL Lac
 

sources undergo no evolution are also consistent with the Medium Survey
 

and XCS source counts.
 

The Deep Survey: Giacconi et al. [1979]
 

The imaging experiments of the Einstein Observatory were also used
 

to make long exposures of selected fields, in contrast to the
 

serendipitous sources of the Medium Survey which were achieved by
 

generally shorter exposures. The hope was that the deep exposures could
 

resolve the sources that produce the bulk of the X-ray all sky flux.
 

Analysis of these deep exposures for the low flux form of N(S) is given
 

in Giacconi et al. [1979], hereafter called the Deep Survey. IPC flux
 

measurements were made over a different band than was used for the
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Medium Survey. The nominal range was 1 to 3 keV; however, errors in the 

original calibration meant that the channels used probably included 

significant response to higher energy photons. The AE90 for an a=0.4 

power law with low absorption is 1.1-3.1 keV (see Section A7:2X. Fluxes

from the Deep Survey will be quoted in IPCDS units, 1 IPCDS equals I 

count per second in the energy range of the sample. The conversion 

between IPCDS and IPCMS measurements is spectrally dependent. For a = 

0.4 and galactic absorption, 1 IPCDS = 1.4 IFCMS. As a ranges from 0 to
 

1 the conversion factor varies from 1.3 to 1.7. For strongly absorbed
 

-
sources, NH 3.6x1022 cm2 with complete covering, the conversion is
 

essentially 1 for all spectra with a 2. Comparing HILl measurements to
 

the Deep Survey is difficult for the same reasons that were described
 

above for the Medium Survey comparison, but to a lesser degree because
 

of the higher energy bandpass of the Deep Survey.
 

The Deep Survey sample was derived from observations of two
 

separate fields, one in the constellation Eridanus, the other in Draco.
 
-
The total solid angle covered was 0.17 msr or 1.38x10 5 of the total sky
 

solid angle. The 5 a sensitivity level was different for the two
 

- 3 - 3
fields: 1.0x10 IPCDS for Draco and 1.5xl0 for Eridanus. Fourteen
 

sources satisfying the 5 a significance criterion were found in these
 

fields. Four of these were identified as stars on the basis of their
 

optical spectra, and were eliminated from further consideration.. Each
 

of the ten remaining objects has several suggested identifications with
 

a variety of objects, but are expected to include few galactic sources.
 

Seven of the ten were brighter than 1.5xl0- 3 IPCDS. Because of the
 

reduced solid angle coverage for the remaining three sources (only one
 

field was sensitive to these low fluxes), their contribution to the
 

number of sources expected in the total solid angle is doubled, yielding
 

an estimate of 13 objects with flux greater than 10-3 IPCDS in a solid
 

angle of 0.17 msr. Giacconi et al. further estimate that source
 

confusion and the Malmquist effect should produce a bias of -20%, giving
 
- I . 
a best value of 6.3(±2.6)xl04 sources sr The indicated range is an
 

estimate of the 1 a (68%) confidence region of the number of sources.
 

Given this corrected number of sources per unit solid angle we can
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Figure VII.28: K(S) for the Deep Survey
 

The solid open box is the one sigma range from the Deep
 
Survey counts, assuming a Euclidean form. The dashed
 
region is the estimated 48% confidence region if y is not
 
restricted to 5/2. The two dotted regions are the
 
estimated 90% confidence regions from the Medium Survey,
 
assuming the indicated spectral index and low absorption.
 
The indicated K(S) curves are from the non-evolving
 
canonical luminosity functions derived from the XCS.
 
qo=0.1.
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use equation [Vf1.9] to estimate the behavior of K(S) over the flux
 

range of the Deep Survey. This range is roughly from the lowest
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sensitivity limit of 10-3 IPCDS to the flux of the brightest source in
 

the sample of 4.2x0 -3 IPCDS. Equation [VII.9] requires an assumption
 

about the effective power law index of N(S) over the bin's flux range.
 

In our analysis of the XCS source counts we assumed that y had the
 

Euclidean '5/2 Value 1asei on the argument that most of the sources were
 

near enough that the universe was still essentially Euclidean in
 

geometry. Giacconi et al. estimated directly from the number of
 

sources that they were consistent with a single Euclidean power law
 

continuation of N(S) from the high flux studies of Uhuru and Ariel V.
 

They then fixed the value of Y at 5/2 for the remainder of their
 

analysis, equivalent to the solid contour shown in Figure VII.28. Even
 

ignoring the issue of the spectral complications in comparing source
 

counts in different energy bandpasses, such an assumption is restrictive
 

and unwise. In many of the model N(S) curves we have calculated, the
 

effective power law index may undergo large changes over relatively
 

short ranges in log S. This is particularly true of cases with
 

significant index or pure luminosity evolution, where the roll-over
 

effects of reaching the edge of the observable universe are concentrated
 

in a rather narrow flux range.
 

Direct study of the fluxes of the ten probably extra-galactic
 

sources could be used to constrain the N(S) index over the Deep Survey
 

flux range, in a manner similar to the analysis of the Medium Survey and
 

the XCS. Without an analysis of that sophistication, however, we can
 

place a crude limit on the allowed range of values for Y, using, the
 

sources binned into a high and low flux range. If Nh and Nz are the
 

number in each range, corrected for solid angle exposure, then the most
 

likely value for Y is
 

ln(l + 	NZ/Nh)y = i1+ [VTI.26] 
ln(Sh/SO ' 

where 	Sh and Sy are the lower flux limits of each range, 1.5x10-3 and
 
-
1.Oxl0 3 IPCDS respectively. For Nh and Nz of 7 and 6 respectively the
 

corresponding value of Y is 2.53, providing apparent confirmation of the
 

suitability of the Euclidean form for the Deep Survey analysis. This
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includes no Malmquist or confusion correction to the numbers in each
 

bin. As confusion is expected to be a larger problem for the lower flux
 

bin, such a correction would lead to smaller values of y.
 

The confidence range for y, however, is quite large. We can 

crudely estimate the acceptable range for Y by examining the log

likelihood for a binomial distribution of the ten sources into the two 

flux bins. The approximate 1 a range for y derived via this technique 

is 1.85 to 3.5. The dashed extension in Figure VII.28 is the estimated 

confidence region combining the possibility of variations in both y and 

the expected number of sources. As was the case for the similarly 

formed contours of the Medium Survey, this jointly defined region is
 

approximately a 48% confidence region. This analysis does not fully
 

exploit the information available from the Deep Survey in the way that
 

using the unbinned data would. For example, Henry, Soltan, Briel, and
 

Gunn [1982] were able in an analagous problem to determine a luminosity
 

function index to within ±18% with only 5 unbinned objects, versus the
 

±30% uncertainty in the N(S) index we achieved above with 10 objects
 

binned. To forestall a simplistic scaling of our derived region, we
 

note that their 5 objects had an advantage in dynamic range, being
 

distributed over a decade in luminosity while the Deep Survey sources
 

were restricted to a factor of -4, or 0.6 decades, in flux. Thus the
 

dashed region of Figure VII.28 is in some sense at least a 48%
 

confidence region. Even without ascribing a specific confidence level
 

to the region, however, it is clear that less than total knowledge about
 

the power law index enlarges the range of allowed behavior for N(S).
 

The dotted regions in Figure VII.28 indicate the allowed regions
 

derived from the Medium Survey. Even in moving from the closely
 

overlapping bandpasses of the two IPC surveys, the assumed spectra of
 

the sources has at least a small affect. We see that there is
 

substantial overlap between the upper flux range of the Deep Survey and
 

the lower end of the Medium Survey flux range. The precision of the
 

Medium Survey appears even better than the Deep Survey, even with the
 

y=5/2 assumption, but only if N(S) is described by a single power law
 

over the entire Medium Survey flux range. The model K(S) curves for
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Figure VII.29: K(S) from AGN evolution compared to Deep Survey results
 

The curves show the AGN and total K(S) for the indicated
 
amounts of pure luminosity evolution for the middle
 
luminosity AGN. qo=0.1.
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Figures VII.28 and VII.29 show that the limits on evolution from the 

Deep Survey are similar to the conclusions reached above from the Medium
 

Survey. Few if any of the Deep Survey sources are expected to be
 

clusters of galaxies, and significant evolution is required on the part
 

of the AGN in order to make up the total observed source counts.
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Many authors have used the Deep Survey results to estimate the
 

minimum fraction of the total sky flux that is due to point sources, in
 

contrast to models involving emission from a diffuse intergalactic
 

medium. However, the value of this contribution is substantially model
 

dependent. The usual calculation is made by integrating the derived
 

Euclidean form N(S) laws from the limiting flux of the Deep Survey to
 

infinity. This yields a total flux contributed over the Deep Survey
 

Survey yields unexpectedly lower value of 23xi0 3 IPCDS.
 

solid angle of SAf;model = 33±14x10- 3 IPCDS. However, a model 

independent assessment, i.e. - directly summing the fluxes of the Deep 

-sources, an 


This is equivalent to saying that the average source flux is less than
 

what a Euclidean distribution of fluxes would predict. In fact the
 

measured mean flux corresponds to the expected value for a T - 3 power 

law N(S) model. 

The IPC was unable to measure the total sky flux directly, and
 

previous estimates of the fraction of the diffuse sky flux contributed
 

by sources as studied in the Einstein spectral band have relied on
 

extrapolations of the measured flux sky flux made in higher energy
 

bands, using a particular assumed spectral form. From our sky flux of
 

58 HILl in the high energy band and assuming a kT=40 keV spectrum, the
 

extrapolated value in the Deep Survey bandDass is 9700 IPCDS. The
 

Euclidean model and summed fluxes correspond to all sky fluxes of
 

2.4x103 and 1.7x10 3 IPCDS. The Deep Survey sources' summed contribution
 

is 25%±10% (17% by direct summation) of the extrapolated flux. The
 

danger of such extrapolations is that some significant modification in
 

the makeup of the total sky flux may occur in moving to the lower energy
 

bandpass. In fact, there are preliminary measurements from the LED
 

detectors of HEAO 1 A-2 that indicate there is an excess in the
 

extragalactic sky flux above the value obtained by simple extrapolation
 

[Garmire, private communication]. This excess could be due to the
 

contribution of resolved sources measured by the Deep Survey, in
 

addition to some other component that produces the 40 keV thermal
 

spectrum dominating the higher energy bandpasses.
 

We can invert the extrapolation problem. Rather than estimating
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the total sky flux in the IPCDS band from higher energy measurements we
 

convert the Deep Survey sky flux contributions to the higher energy
 

bandpass units. Since the objects in the Deep Survey are dominated by
 

significantly evolved AGN, we assume that 'a1 such sources are
 

.characterized by a single spectral form. The exact nature of that form 

is, of course, critical. If the sources have a kT=40 keV thermal 

spectrum, their conversion to the Hil band is the inverse of the 

calculation of the extrapolated IPCDS sky flux. The fraction of the sky
 

flux is then the same, 25%, corresponding to 14 HiLl out of the total 58
 

HILl. (Henceforth we will use the best fit Euclidean model derived 

values for the Deep Survey sky flux contribution.) If the Deep Survey 

sources still have the 0.7 power law spectrum characteristic of
 

unevolved AGN then their sky flux contribution drops to 9 HIl or 16%, 

asssuming high latitude galactic levels of absorption. If there are 

significant numbers of sources in the Deep Survey with soft excesses, 

such as are typical of BL Lacs, so that the effective spectral energy 

index rises to 1.0, then the sky flux contribution falls further to 6.3 

HILl, or 11%. Use of the summed fluxes contribution to the sky flux 

will produce even lower percentages. The Deep Survey may have directly 

imaged an important component of the total sky flux, but the largest 

fraction still remains to be explored.
 

Again, assuming that the Deep Survey sources are representative of
 

a homogenous population with similar spectra, it makes more sense to 

convert the Deep Survey source counts to the HIl band for comparison 

with the fluctuations models. In Figure VII.30 we plot the Deep Survey 

derived counts for several assumed power law spectral indices. It 

clearly shows the wide range of possibilites for future low flux studies 

in the HIl band. 

It cannot be disputed that the Deep Survey samples the behavior of
 

N(S) at unprecedently low fluxes. Converting the lower flux limit of 

the Deep Survey into HiLl units we see that the sample probes down to 6,
 
-
4, or 3x10 6 HIl depending on whether the source spectrum is kT=40 key, 

a=0.7, or a=1.0 respectively. These values are significantly below 
-
.20x10
6 HIll, the upper limit to the average flux of the population that
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Figure VII.30: K(S) for Deep Survey converted to the HILl band
 

The Deep Survey -47% confidence :egions are shown assuming
 
.all sources in the sample have the identical indicated
 
spectral index. The four different plots were divided
 
between the (a) and (b) panels'for improved legibility.
 
The figure also shows the best fluctuations contour for
 
the single power law N(S) model (dotted line) and the
 
broken rower law limits from the combined fluctuations and
 
XCS resolved source confidence region for the excess
 
variance (long dashed line). The K(S) curves are the
 
cluster plus AGN contribution, qo = 0.1, assuming no
 
evolution and pure luminosity evolution (QL=4) for the
 
middle luminosity AGN. Remember that the fluctuations
 
results include a contribution from galactic sources.
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dominates the total sky flux, as derived from the upper limits to -the 

fluctuations' invariant excess. The Deep Survey results are potentially
 

stronger constraints on the sources that could contribute the remainder
 

of the total sky flux. We can place a lower limit on the all sky number
 

of sources
 

N* > f Sas I SDS , [VII.27] 

where f is the remaining fraction of the sky flux produced by the 

sources, and SDS is the Deep Survey lower flux limit. All these
 

quantities are evaluated for the HIL band, where we can directly
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measure Sas' The actual values of f and SDS depend on spectral 

assumptions about the Deep Survey sources. The three spectral forms 

used above translate into lower limits of 180, 300, and 460 sources per 

square degree, respectively, making up the remainder of the total sky 

flux. These values are larger thar the estimates of Koo and Kron [198Q] 

for counts of quasars with J<22, 136±22 per square degree, but are 

comparable to their lowest flux estimates of 358-35 for J<23. (Remember 

that J magnitudes are close to the B band measurements..) These values 

assume that all the sources have fluxes just below the Deep Survey 

limit. If they are instead spread over a range of fluxes, their 

required number must be increased by SDS / W, a factor of 4.7 for a 

decade of Euclidean behavior, which is 850, 1400, and 2200 sources to 

make up the HILl total sky flux. The optical source counts must then 

continue at least one to two magnitudes beyond current observational 

limits. Note that, as expected, all of these limits are significantly 

larger than the lower limit of '50 sources per square degree derived 

from the upper limit on the fluctuations' invariant excess. 

The behavior of the source counts in the decade just below the
 

Deep Survey sensitivity limit would have important information on the
 

evolution of such sources as well as their possible contribution to the
 

total sky flux. The results of a survey in the constellation Pavo
 

[Griffiths, Maccacaro, Murray, and Giacconi 1981] may provide some
 

information in this regard as it promises to probe the flux range down 

to -0.5xlO- 3 IPCDS, half the flux limit of the Giacconi et al. Deep 

Survey. The preliminary results of Griffiths et al. [1981] suggest 

that there are as many as 19 extragalactic sources in a field of 0.135 

msr, though at the time only a few of the identifications could be 

definitely classified as extragalactic. If the flux limit of the Pavo
 

survey is equivalent to 0.5xl0 -3 IPCDS then a simple Euclidean extension
 

of the Deep Survey counts predicts that 24 objects should be seen, not 

including the enhancement due to Malmquist bias and confusion effects. 

However, the Pavo survey fluxes are measured by the High Resolution 

Imager, HRI, instrument of the Einstein Observatory instead of the IPC. 

The HRI has a lower energy reponse than the IPC, and HRI fluxes contain
 

substantial contribution from below 1 keV. Therefore any comparisons 
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with measurements in the higher energy bandpasses will have even
 

stronger dependence on the assumed spectral form. Even the change from
 

HRI fluxes to IPCDS fluxes could modify the predicted number of sources
 

in the Pavo survey by -30%, depending on the source spectra. If sources
 

are steeper than the assumed spectral form used to convert the Pavo HRI
 
-
flux limit into 0.SxlO 3 IPCDS, then a correct conversion would increase
 

the predicted number of sources expected in the Pavo survey if N(S) had
 

a Euclidean continuation below the Deep Survey limit. If the source
 

spectra are steep enough that the Pavo survey corresponds to a
 

prediction of 31 sources for a straight Euclidean continuation, then the
 

the observed upper bound of 19 sources would indicate that N(S) must
 

break from the Euclidean form.
 

Fluctuations Analysis with the IPC
 

Fluxes below the limit of the Deep Survey can also be probed by
 

studies of the fluctuations, in principle. In discussing the
 

possibilities of such analysis we will use the parameters of a study by
 

Stewart and Fabian, as outlined by Fabian [1981]. Their preliminary
 

result is that the fluctuations measured by the IPC are consistent with
 

the variation due to counting statistics alone. Single power law
 

continuations of N(S), pegged to the Deep Survey results, and making up
 

the remainder of the sky flux, are not consistent with the fluctuations
 

distribution, according to Stewart and Fabian. Such a result signifies
 

a sharp turnover in N(S) somewhat below the Deep Survey flux limit. In
 

this section we will mention some of the pitfalls of such an analysis,
 

though without further details from Stewart and Fabian we cannot say to
 

what degree their result is affected. It is expected that a simple
 

continuation of the Deep Survey source counts to a level where those
 

sources provide the total sky flux would produce fluctuations detectable
 

in the data used by Stewart and Fabian. That such fluctuations were not
 

seen can have important ramifications in estimates of the fraction of
 

the total sky flux that can be contributed by the sources dominating the
 

Deep Survey source counts.
 

The data were taken from a 104 second IPC exposure. The central
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portion of the image plane was divided into 100 observations of 2' on a
 

-
side, a solid angle of 1.1 ix0 3 deg 2 . The 1-3 keV bandpass of the IPC
 

was used, giving counts roughly equivalent to IPCDS units. The
 

extrapolated all sky flux was 9.7x10 3 IPCDS, equivalent -to a mean count
 

rate oft2.6 counts in the i04 second exposure. The internal background
 

was substantially larger, 15 counts per exposure, giving a total 0noise
 
-
of 4.2 counts exp 1. For the best fit Euclidean model of the Deep
 

Survey, W = 11 IPCDS. Treating the observation bins as ideal flat 

response detectors with 2'x2' solid angle, the weighted response is R3/2
 
-
= 9x10 2 (seconds exp-), when S is measured in IPCDS and the intensity, 

I, is measured in counts per 104 second exposure. Therefore Weff - 1 

count exp- I. 

A definitive analysis of the fluctuations can usefully constrain 

the behavior of sources with I - Weff" Such sources have fluxes -10-4
 

IPCDS, or an order of magnitude below the Deep Survey flux limit. The 

Deep Survey best fit power law will actually saturate the total sky flux 

at intensities of only 0.6 counts exp- I, which is just less than the one 

source per observation intensity level. However, the ease with which we 

can actually extract useful information at such low flux levels depends 

on the quality and quantity of the data. The high internal background 

rate and relatively short exposure time mean that * = 0noise / Weff = 

4.6. This is much larger than the values for the fluctuations analysis 

of UHURU, and our A-2 data, where V is 1.4 and 1.2, although it is 

comparable to the Ariel V * = 4.8. The problem of too high V (too small 

signal to noise) is exacerbated by the small number of observations, 

only 100 compared to effectively 270 for Ariel V. We can estimate the 

size of the 90% confidence region for any determination of Weff using
 

the likelihood difference technique (see Section 111:5, particularly 

equations [111.77] and [111.80] and Figures 111.9 et seq.). With these
 

estimates of * and the number of observations, the approximate derived 

size of the 90% confidence region is 6W 0 0.4. From this we can infer 

that a model with no fluctuations is statistically distinquishable from 

a reality where the fluctuations are generated at the level expected. 

More simply, the non-detection of the fluctuations by Stewart and Fabian 

is significant. 
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.There are complications. The above estimates, and the analysis of 

Stewart and Fabian, use the assumed best fit values from the Deep Survey 

for the peg point of the N(S) low flux extension. As we saw in Figure 

VII.28, there is a wide latitude in the allowed position of the peg 

point, particularly if N(S) is significantly non-Euclidean over the Deep 

Survey flux range. For example, if we take the bottom I a limit for the 

Euclidean models, the predicted level for Weff for a Euclidean extension 

drops to 0.7 counts exp- I and * increases to -6. The fractional size of 

the 90% Weff confidence contour is now 0.5 so that we would still expect 

to see some fluctuations if the low flux extension is Euclidean. Non-

Euclidean models with Y-2 would -be more consistent with the non

detection of the fluctuations, though we will not explicitly estimate 

here the expected likelihood difference. We have also assumed that the 

point source spreading of the Einstein Observatory telescope was much 

less than the bin size of 2'. This is not quite true, since -10% of the 

counts from a point source can be found outside a circle of 3' radius. 

This could produce a slight reduction in the weighted response, R3/2, 

and therefore in the expected level of the fluctuations through Weff .
 

Lastly, the likelihood difference estimates assumed that the analysis is
 

performed on unbinned data using the AX likelihood statistic, while
 

SteWart and Fabian examined data in intensity bins, using the x2
 

statistic on the histogram. This would have a measurable reduction in
 

the sensitivity of the data to the existence of fluctuations. On the
 

other hand, the Stewart and Fabian results are strengthened by the fact
 

that they took no account of any other source of variation, e.g.
 

variations across the IPC field of view due to changes in the gain.
 

Likewise, the fluctuations should contain a component due to galactic
 

sources, not included in the extension from the Deep Survey
 

extragalactic objects. The expected contribution of these variations
 

coupled with Stewart and Fabian's inability to detect of any
 

fluctuations in excess of counting statistics strengthens their
 

conclusion that N(S) must have a significant break near the Deep Survey
 

flux limit. These preliminary results certainly merit a more detailed
 

analysis. They would be improved by the use of additional IPC exposures
 

to enlarge the number of observations, as well as an unbinned data
 

analysis, similar to that used in this dissertation. The results of
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such a project would also have an impact on the understanding of the
 

source counts and identifications from the Pavo survey.
 

5: Comparisons of AGN models with Optical Data
 

Studies of X-ray sources in other spectral bands, besides
 
having an intrinsic value for elucidating the physical
 
mechanisms of the emission, can provide indirect information
 
about the behavior of those sources in the X-ray band. For
 
example, with data on the connection between optical and X
ray fluxes, optical source counts can be used to predict the
 
contribution of AGN to the total X-ray sky flux. Such a
 
program is complicated by nonlinear correlations between
 
optical and X-ray luminosities. Many authors have found
 
that increases in the optical luminosity produce a smaller
 
increase in the X-ray luminosity than strict proportionality
 
would predict. That is, L (Lo d , with 6 <i. However, 
this is difficult to reconcile wit the fact that the X-ray
 
luminosity function is flatter than the optical luminosity
 
function. The optically derived-parameters for evolution
 
must be corrected by the deviations from simple
 
proportionality, in order to apply them to the X-ray band.
 
The observed correlations between X-ray and optical
 
luminosity predict that QL-x must be much less than QL;opt'
 
the exact value depending on the actual form of the
 
correlation. The use of the optical source counts to
 
predict the X-ray sky flux involves several important
 
extrapolations.
 

The message of the previous sections is that although the
 

fluctuations, and more directly the IPC studies, tell us much about the
 

behavior at lower fluxes of the sources that make up the XCS, there is
 

still a great deal of ambiguity and confusion. AGNs evolve, though the
 

form and amount is difficult to specify. From the Deep Survey counts we
 

know they contribute substantially to the total sky flux, but the. exact
 

magnitude is poorly determined, even without extrapolatian below the
 

Deep Survey limit. It would appear that our current information is more
 

tantalizing than definitive, and that there are slim prospects for
 

improvement in the quantity and quality of this information in the
 

immediate future. However, this prognosis holds only for the direct X-
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ray data. X-ray sources are known to be emitters at other frequencies
 

and by studying their behavior at those frequencies we may be able to
 

draw more accurate conclusions about their X-ray behavior than can
 

currently be done directly.
 

Optical studies of AGN: advantages and problems
 

These non-X-ray studies should be particularly useful in the case
 

of AGN, which are strong emitters in the ultraviolet, optical, infrared,
 

and sometimes radio, as well as the X-ray. The original definition of
 

an AGN was based on behavior in the other bands: broad emission lines,
 

a blue stellar nucleus, etc. An examination of the optical data on AGN
 

offers distinct opportunities. Current optical data probes to deeper
 

equivalent fluxes than X-ray data, with indications that current
 

observations are at or near the point of convergence, where the
 

effective N(S) index drops just below 2 [Koo and Kron 1982]. There are
 

also a larger number of sources discovered and studied in greater detail
 

in the optical band. This allows better coverage of the total
 

luminostty-redshift plain, which is necessary in order to have a non

extrapolative picture of the evolution of the luminosity function.
 

With all the promise of the optical studies, there are still
 

significant difficulties. A general problem is identification. The
 

uniform characteristics of AGN in the X-ray band above 4 kev, so far as
 

we currently know, make it fairly certain that we can completely and
 

correctly identify the vast majority of AGN in a flux limited survey
 

(e.g. the XCS). In contrast-the completeness of any optically selected
 

sample is more difficult to ascertain (though this may change with
 

future technical progress). Recent studies have found X-ray selected
 

AGN that would have failed traditional optical criteria such as blue
 

excess or emission line width [e.g. Stocke at al. 1982; Huchra, Wyatt,
 

and Davis 1982]. It is estimated that from 10-20% of all AGN would have
 

been missed by such criteria. Griffiths et al. [1980] made a
 

preliminary estimate that as an upper bound no more than 20% of the Pavo
 

survey objects detected in the X-ray would have been missed in an
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optical program. The problem of identification is exacerbated for very
 

low luminosity AGN, such as M81 [Elvis and Van Speybroeck 1982], which
 

are prone to selection difficulties in the soft X-ray band where
 

absorption may have a significant impact. On the other hand, it is
 

p6ssible that some fraction of the very low flux objects identified on
 

the basis of color may not be AGN at all [e.g. Bonoli et al. 1980; cf.
 

Veron and Veron 1982]. A related problem in making comparisons between
 

optical and X-ray samples is the probably misleading distinction between
 

quasars and Seyferts. (Indeed, the determination of which AGN are
 

Seyferts, and their type, is also an ambiguous process.) A Seyfert
 

galaxy at a sufficiently high redshift so that the non-nuclear component
 

is not easily visible is often classified as a QSO, while it would not
 

be if the galaxy were detected. Such a selection effect can produce a
 

spurious enhancement in the optical estimates of QSC evolution [Hawkins
 

and Stewart 1981].
 

AGN have very rich spectra in the optical band, exhibiting varied
 

and complex behavior. While the presence of broad and narrow emission
 

lines, absorption complexes, recombination blends, and possible thermal
 

components [e.g. Malkan and Sargent 1982; Grandi 1982] makes possible
 

studies of a wide range of physical processes in and near the AGN, they
 

complicate measurements of the nonthermal optical continuum thought to
 

be directly associated with the power law component observed in the X

ray band. The difficulty is compounded because the optical fluxes. are
 

generally not narrow band continuum measurements, but relatively broad
 

band measurements that may encompass spectral features from many of the
 

above phenomena. As discussed by Schmidt- and Green [1983], this is a
 

particular problem for samples of objects spread over a wide range of
 

redshifts. The redshift corrections needed to produce a predicted flux
 

at a particular emitter frame frequency far from the observed broad band
 

measurement become very uncertain.
 

Relationship between optical and X-ray flux
 

The connection between X-ray observations and measurements taken
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in other bands is often parameterized by
 

aog( £x / Ly) [Vli.28] 

YX -log( Vx /v ) 

The "y" in a is a free symbol for the band of comparison, i.e. Rxe 


t
for the Radio to X-ray, aox for optical, etc. x and Zy are the 

differential luminosities at the indicated frequencies vx and vy. aox 

can be thought of as the effective energy spectral index of an idealized 

power law connection between the two bands. Because of the large 

difference in the frequencies (vopt and Vx are separated by over 2.6 

decades), even a small difference in aox is lever-armed into a very
 

large difference in the ratio of luminosities: for a fixed £opt,
 

kaox=O.1 multiplies L. by 1.8, and by 3.3 for Aaox=0.2.
 

The observations of and conclusions about aox for collections of
 

AGN have become quite common, with results presented from a wide range 

of perspectives. The large variation in methodology complicates a 

synthesis of the results of different authors. The AGN samples can be 

defined in various ways: by previous lists of optical objects [Tananbaum 

et al. 1979; Zamorani et al. 1981]; by complete samples selected in 

the optical [Marshall et al. 1983a] or the radio [Tananbaum, Wardle, -

Zamorani, and Avni 1983]l or even by an X-ray selected sample from 

identified serendipitous objects [Chanan, Margon, and Downes 1981; 

Reichert, Mason, Thorstensen, and Bowyer 1982; Kriss and Canizares 

1982]. (The references presented in this section are in no way a 

complete list of the literature.) Note, however, that an X-ray selected 

sample of serendipitous objects without a complete set of 

identifications may still have optical selection effects present [see 

Reichert et al. 1982]. For example, objects whose optical counterparts 

are dimmer than a certain threshold magnitude may be excluded. When 

comparing the results from these variously defined samples it is 

important to remember that the derived distributions for aox can depend 

on the selection criteria. This is particularly true for non-parametric 

analysis, i.e. where no attempt at an a priori assumption of the form 

of the aox distribution is made (see Condon, O'Dell, Puschell, and Stein 
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[1981], especially their Appendix 2).
 

The variation in what is meant by "optical" creates further
 

problems. A reference wavelength often chosen is 2500 A. It has the
 

advantage that it is directiy observable for many high redshift objects, 

though not at low redshifts without direct ultraviolet data. The flux 

in this region of the spectrum is dominated by -the 3000 A blue bump, the 

emission of which is dominated by line processes and a possible black

body component [e.g. Malkan and Sargent 19821. Other groups use 4400 A 

or 5500 A, the center of B or V magnitude measurements [Allen 1973]. 

These measurements are often from broad band photometry, which is prone 

to inaccurate redshift corrections. Even when examining low redshift 

objects the broad band measurements will have strong components from 

emission lines: for typical AGN spectra, Hy affects the B magnitudes, 

and Ho and [0111] influence the V magnitudes. Direct measurements of 

the nonthermal continuum can be made, but some effort is required [e.g. 

Blumenthal, Keel, and Miller 1982]. The X-ray band flux measurements 

have similar problems. Ideally, the measurements should be taken at the 

medium energies of the A-2 experiment, where complications from 

absorption and possible soft components are minimized. Instead, all the 

studies referenced above are based on Einstein Observatory IPC or HRI 

flux measurements. These broad band measurements are converted to the 

differential 2 keV luminosity. In interpreting the broad band flux and 

in correcting for redshift, the X-ray spectrum is assumed to have a 

particular form, generally a power law with a = 0.5 and galactic 

absorption. Deviations in either the spectral index, for high redshift 

sources, or N1, for low redshift sources, can have pronounced effects.
 

From the measurement uncertainties alone, it is not surprising
 

that there is a large scatter in the values of aox" In fact there
 

appears to be intrinsic scatter in the distribution, with rms range in
 

a2500;x of 0.2 [Avni and Tananbaum 1982]. The typical value for a2500;x 

in the same analysis was -1.5. * In all studies, strong correlations 

As a crude point of comparison, Koo and Kron estimated that the total
 
- -2 surface brightness from QSOs at 4500 A is -1.8x102 2 erg s 1 cm sr
 

Hz -I . Using the extrapolated X-ray sky flux at 2 keV we can estimate 

that a4 50 0 ;x '1.3, though this makes no allowance for possible 
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between the X-ray and optical luminosities are observed, encouraging the
 

supposition that phenomena in the two bands are physically related. The
 

earlier studies assumed that the two values were in fact strictly
 

proportional, i.e. Lx= Lop t . Further work has lead many authors to a
 

modification of this relationship:
 

Lx a (Lopt) . [V1L29] 

The derived values for 6 were significantly less than 1, so that a given 

increase in the optical luminosity produced on average a lesser increase 

in the X-ray band. Typical best fit values are 0.66±0.06 [Zamorani 

1982a] and 0.47±0.15 [Tananbaum et al. 1983]. One model for the non

proportionality has been tentatively ascribed to the division of the
 

optical flux into the nonthermal continuum, which is strictly
 

proportional to the X-ray flux, and the lines and other components,
 

which are not [Malkan and Sargent 1982]. Note, however, that the low
 

redshift (z 0.4) continuum measurements of Blumenthal, Keel, and Miller
 

[1982] are consistent with Lx (Lopt;cont)0 .5, when an index of one is
 

expected, though there is large scatter. The result that 6<1 has been
 

used by many authors [e.g. Zamorani 1982a; Reichert et al. 1982] to
 

explain the observed difference of the redshift distribution of an X-ray
 

selected -sample from an optically selected one [e.g. Margon, Chanan,
 

and Downes 1982].
 

Because the luminosity of an AGN drawn from a flux limited sample
 

is strongly correlated with its redshift, it is possible that the data
 

indicate not a variation in aox with optical luminosity, but rather a 

dependence on redshift. We can generalize [VII.29] to 

Lx = A fz(z) (Lopt) 6 1 [VII.30] 

where A is a constant of proportionality. Reichert et al. [1982] have
 

fit their sample of X-ray selected and other AGN to three different
 

forms of fz(z). Though the details differ from model to model, they
 

find that for all forms the best fit parameters imply significant
 

differences in the redshift correction in the two bands. If the
 
observed uncorrected values for a for QSOs are substantially greater
 

(steeper) than this, then QSOs could not make up the bulk of the 2 keV
 
background.
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correlation with both luminosity and redshift, though the correlation 

,ith luminostiy is the more significant of the two. They point out that 

being able to distinguish between redshift and luminosity dependences is 

important for an interpretation of the effect. Redshift dependence, 

instead of -being dirbctly conncted to - the emission processes as 

outlined above, may indicate explicit differential evolution in the two 

bands or may be due to incorrect spectral assumptions. (e.g. Cavaliere 

et al. [1980]). An example of the latter would be if the true spectral 

index, a, of the sources was, on average, different from the assumed 

value used for redshift corrections, am . The relationship between the 

true luminosity, Lt and the "measured" luminosity, tm, used in 

performing fits of equations [VII.29] and [VII.30] is 

L = Lt (l+z)A , [VII.31.a] 

Aa am - a . [VII.31.b]
 

In the presence of such errors in the redshift correction, there will be
 

a z-dependent correlation between the measured X-ray and optical
 

luminosities of the form
 

fz(z;'J) = 2)
(1+z). [VII.32]
 

The parameter u is determined by the errors in the spectral assumptions
 

in both bands:
 

u =Aa x -& Aaopt [VII.33]
 

Reichert et al. derived best fit values for 6 of -0.6, with the
 

99% confidence range from -0.35 to -0.75, depending on the form of fz
 

being tested. Equation [VII.32] represents one model they tested, with
 

u = 1.4 being the best fit. The confidence region indicated strong 

correlation between the values of 6 and U. u = 0 is barely acceptable 

at the 99% level. In contrast, Tananbaum et al. [1983] found no 

correlation of redshift and Lx/Lopt for radio-selected quasars. For 

optically selected objects, Avni and Tananbaum fit the model 

fz(Z;T) exp( n TI(z) ) [VII.34] 

where T is the fractional look back time (see Appendix Al). They
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derived a best fit value of rT=O, i.e. no z dependence, and 6 = 0.7. 

The allowed range for the parameters again showed strong 

interdependence. In fact a model with no explicit luminosity 

dependence, 6 = 1, was acceptable at the 95% confidence level but only 

with substantial redshift dependence, n = 3.6*. 

In contrast to all the above results, where the ratio of X-ray to
 

optical luminosity decreases as the optical luminosity increases (6<1),
 

Kembhavi and Fabian [1982] have come to the directly opposite
 

conclusion. From their distribution of aox for optically bright radio

quiet quasars, mv < 18, they predict that 6 out of the 55 low optical
 

flux objects, mv > 18, should have been detected in the X-ray. Only one
 

source was detected. Because the average redshifts of the low and high
 

optical flux groups are similar, the principal difference between the
 

two samples must be that the low flux objects have on average
 

correspondingly lower optical luminosities. Therefore Kembhavi and
 

Fabian conclude that the low rate of X-ray detections for the low 

luminosity objects indicates a lower value of Lx/Lopt, equivalent, to 

models of the form of [VII.29] with 6 > 1. The contradiction with the 

conclusions of Zamorani et al. [19811, who provided much of the data 

used by Kembhavi and Fabian, has been examined by Reichert [1982]. She 

points out that if the Kembhavi and Fabian objects are grouped by 

constant optical magnitude, the higher X-ray flux objects in each group 

are at significantly lower redshifts than the lower X-ray flux sources. 

If we ignore possible explicit redshift correlations, this is consistent 

with Lx/Lopt increasing for the lower values of Lop t,. This suggests
 

that the distribution of aox that Kembhavi and Fabian derived from the
 

high optical flux sources, of which roughly half were not detected in X

rays, is in error, and that the true distribution would predict fewer X

ray detections of the low flux sources.
 

*AvnI and Tananbaum used a different, though equivalent
 

parameterization, Ao and Az. These can be related to our parameters by 
6 = 1 - 2.605 Ao, and 71= -6.0 Az .
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Comparisons: X-ray and optical luminosity functions
 

If X-ray and optical luminosities and fluxes are not strictly
 

proportional, there will be differences between the statistical
 

properties of AGN as determined separately in the two bands. For
 

example, the shape of the luminosity function of AGN will differ from
 

one band to the other. Restricting ourselves to low redshift samples,
 

where any effect from any redshift dependence is expected to be minimal,
 

a luminosity-dependent relationship of the form given in [VII.29] will
 

modify the power law index of the luminosity function in the following
 

way:
 

Oopt - I (Ox - 1) [VII.35]
 

As pointed out by Maccacaro et al. [1983a], the derived values of 6 < 1
 

predict that the optical AGN luminosity function is flatter than the X

ray luminosity function, i.e. 8opt < ax This is not consistent with
. 


current estimates of the luminosity function in the two bands. From the 

XCS, Piccinotti et al. [1982] find that Ox = 2.75±0.15. Even with the 

largest allowed value, 8x = 2.9, the predicted value of Oopt 2.3 for 6 

= 0.7, and if 6 = 0.5 as suggested by some samples [e.g. Tananbaum et 

al. 1983] then 8opt 0 2. In contrast, the optical luminosity function 

appears to be steeper than the X-ray. Vron [1979] estimated that for 

low redshift Seyfert 1 Nuclei, the observed 8opt 0 3. A 8opt of 3 

corresponds to a 6 of 1.05. Although Huchra and Sargent [1973] (see 

also Huchra [1977]) see a flattening of the optical Seyfert galaxy 

luminosity function, this occurs at a point corresponding to an X-ray 
-
luminosity below the sensitivity limit of the XCS, 1043 ergs s '. A
 

corresponding break in the X-ray luminosity function has been suggested
 

by the observations of Elvis, Soltan, and Keel [1983].
 

The above disagreement between the slopes of the luminosity
 

functions and the derived values for & might be due to the different X

ray bands used in the measurements. The luminosity function of the XCS
 

is based on measurements in the 2 to 15 keV energy range, while the aox
 

distribution studies use the 1 to 3 keV information from the Einstein
 

observation programs. However, the analysis of Maccacaro et al.
 

[1983a], using IPC fluxes for the Medium Survey objects, derived a 90%
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confidence range for f, of 2.9 to 2.3, with a best fit value of 2.6.
 

Any reduction of x below 2.9 greatly increases the difficulty of
 

reconciling the determinations of o. The Medium Survey based
 

determination of 8x, however, will be strongly affected by the presence
 

of absorption in low luminosity objects, as well as by an expected
 

significant contribution by sources at or below the break in the
 

luminosity function. In addition, the Medium Survey contains sources at
 

significant redshift so that corrections for evolution are a possible
 

problem. We can compare the Medium Survey luminosity index with the
 

optical value from sources covering a similar range in luminosity and
 

redshift using the results of Marshall et al. [1983b]. Their 90%
 

confidence range for Oopt is still steeper, 3.1 to 4.5 after correction
 

for evolution, so the disagreement is maintained or even worsened.
 

If we find the luminosity function argument that 6 1 convincing,
 

then the survey of aox results can only- be consistent with a large 

explicit redshift dependence of Lx/Lopt, assuming no systematic error in 

the fitting process. As we remarked earlier, the thin tilted ellipse 

for the confidence region for C and the z dependence parameter, n or u, 

shows the strong coupling of these two parameters. The semi-major axis 

of this ellipse can approximately relate the best fit value of one 

parameter given the other, and vice-versa. ror the (i+z)U model, the
 

Reichert et al. analysis indicates that the best fit values are related
 

by
 

6 = -0.12 U + 0.78 • [VII.36] 

Models with 6 = 1 are outside their 99% confidence region, although 

their best model with this value has U = -1.8. The Avni and Tananbaum 

study yields 

6 = -0.09 Tn + 0.7 . [VII.37] 

If 6 = 1 then the most likely value for the redshift dependence isTI 

-3.5, which is marginally acceptable at their 95% level. The 

statistical uncertainty in TI, for a given value of 6, is ''0.6 (1 a), 

estimated from.the maximum width in n of the AA = 1 confidence contour. 

Therefore, if we have other information that 6 must be > 1, then if the 

Avni and Tananbaum parameterization is correct, their fits require a 
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strong redshift dependence, n C -2.9 (84% confidence upper bound).
 

Comparisons: amounts of evolution in the X-ray and optical
 

--Pure density- -evolution-woul- be id~ntTal in aiy band, as it
 

corresponds to a change in the total number of objects no matter what
 

their luminosity. For other forms of evolution, where the changes
 

depend on luminosity, possible variation in Lx/Lopt will modify the
 

impact of the evolution in moving from one band to the other. When the
 

redshift dependence of Lx/Lop t is given by the exponential look-back

time model of Avni and Tananbaum (equation [VII.34]), then for pure
 

luminosityevolution equation [VII.30] leads to
 

[VII.38]
QL;x = & QL;opt + " , 

where QL;x and QL;opt are the evolution parameters in the two bands. If 

we assume no explicit redshift dependence, TI = 0, then for 6<, the 

amount of evolution seen in the X-ray band will be less than what would 

be inferred based on optical data. Derived values for QL;opt are 8 

[Braccesi et al. 1980;'Koo and Kron 1982], 6 [Cheney and Rowan-Robinson 

1981a; Schmidt and Green 1983] and the range 6-8 (90%) [Marshall et al. 

1983a]. Maccacaro et al. [1983] determine that QL;x is in the range 4 

to 6, although recall that in the last section we showed that QL;x could 

not be too much greater than 4 without exceeding the observed Medium 

Survey source counts. (For most of the results reviewed here, qo was 
= 
assumed to be 0 or near 0.1) If we fix QL;x 4.5 and QL;opt = 7 then 6 

-0.6, consistent with many of the 6 fits [Maccacaro et al. 1983].
 

Observational evidence that QL;x is less than QL;opt is not 

necessarily confirmation that & < 1, if the possibility that T1< 0 is 

allowed. By including the regression relationship of [VII.37] in 

equation [VII.38], we find 

QL;x - 7-9 I (QL;opt - 11.3) [VII.39] 

Now if QL;x = 4.5 and QL;opt = 7, the most likely values in the light of 

the Avni and Tananbaum analysis are 6 - 0.8 and 1 - -1. When nonzero 

values of 1 are allowed, reducing QL;x for fixed QL;opt is compensated 
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by the decrease in Ti to produce an increase in the most 'likely value of 

6, exactly opposite to the case where i is -fixed equal to 0. For 

example, reducing QL;x to 3.5 increases the most likely 6 to 1, though 

the allowed range for 6 will, still include values less than 1. A crude 

estimate of the 1 a range is .84A 1.16, treating T1 as uninteresting. 

Similar general trends will also arise -for the other posible forms for 

fz, though the numerical parameterization will be less straightforward.
 

We therefore have three sets of observations in the optical and X

ray bands: the current epoch luminosity function index (0), the
 

estimated pure luminosity evolution coefficients (QL), and the
 

correlation of aox with Lopt and z (6). Considered pairwise, the 0 and
 

consistent, as are the QL and 6'derived conditions.
QL relations are 

However, it is difficult to combine all three together, assuming that
 

the various determinations are systematics free. If we assume that the
 

6 1 conclusion drawn from Ropt Ox is correct, then we require that
 

that there is a strong explicit redshift dependence of Uox and that if
 

the evolution is pure luminosity form, QL;opt is significantly larger
 

than QL;x' That is, the optical luminosity evolves to a significantly
 

greater extent than does the X-ray luminosity.
 

The relationship between the optical and X-ray bands for the index
 

evolution models of Schmidt and Green [1983] can be more complicated,
 

since these models are described by two parameters, and Lo, rather
0 


than the single parameter of pure luminosity evolution. The evolution
 

of the luminosity function index (see equation [VII.21] and the
 

discussion following) is actually very simple, as at any given epoch the
 

relationship. between the X-ray and optical indices is determined by
 

equation [VII.35]. This means that independent of any explicit redshift
 

correlations
 

[vI1.40]
;x = 6-1 ;opt 

If T1 = 0, then for S < 1 the amount,of X-ray evolution is stronger than 

in the optical band, in contrast to pure luminosity evolution (equation 

[V1i.38]). The best fit values for %;opt derived by Schmidt and Green 

depend on the interpretation of the low flux number counts and on qo. 
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=
For q0 = 0.1 they find %;opt 3.4 to 4.5. For qo = 0.5 the bestfit 
values range from,2.4 to 3.4. The corrected value for 8opt(T=0) depends 

strongly on the actual model used, particularly for the higher 

luminosities. At the low end of the luminosity function, determined 

mostly by low redshift sources, the evolutionary corrections are small. 

For -23 .5>MB>-24 .5 the effective optical index is -3.3, with significant 

steepening at higher luminosities. Given the typical value of 

a4400l; 2 keV = 1.4 [Schmidt private communication] this magnitude range 

corresponds to 1.4 to 3.6 L44. Over this range the XCS-determined 

maximum in 8x is 2.9. From this value and equation [VII.35] we derive 

6= 1.2 and %;, equals 2.8, 3.7, 2.0, and 2.8 respectively for the four 

models presented by Schmidt and Green. Their best fit for Mo;opt' the 

absolute B magnitude corresponding to Lo;opt, took on values ranging 

from -20.1 to -23.3. 

Given the strong dependence on L for the allowed range of 3;x
 

from the fluctuations analysis, it is difficult to make a useful
 

comparison of the fits in the two bands. In fact, it is very difficult
 

to provide a simple transformation of the model from one band to the
 

other, particularly the conversion of the pivot luminosity, Lo, from
 

optical to X-ray units, if. there is any explicit redshift dependence of
 

is a single well defined quantity in one band,
versus Lopt. If Lo 

its value will vary with epoch in the other. For instance, if we assume
 

that the optical Lo;opt is fixed, then
 

x 


Lo;x( ) = Lbase;x exp[ - , [VII.41.a]%;x 
where
 

Lbase;x A(Lo;opt) [VII.41.h]
 

is the simple transfomation of Lo;op t for z=0 using equation [VII.30].
 

If there is no explicit redshift dependence (T = 0), then Lo;x
 

isconstant and equal to Lbase;x. The above values for Mo correspond to
 

values of Lbase;x ranging from 0.06 to 1.2 L44. Note that Lo;x (T ) is
 

not the simple transformation of Lo;opt(T). Also, the variation of Lo;X
 
with epoch does not explicitly depend on 6, as both the numerator and
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denominator of the exponential transform identically in moving from the
 

X-ray to the optical bands (equations [VII.35] and [VII.40]), though the 

transformation from Lo;opt to Lbase;x does have a 6 dependence. In 

addition, estimates of 1 are dependent on the assumed value of 6. 

The movement of the index evolution pivot point, Lo, has strong
 

repercussions. For an example we use our earlier estimate of 6 1.2 

and one of the Schmidt and Green best fit models (their model HHi).wbich 

have corresponding X-ray models of %;x = 2.8'and Lbase;x = 0.3 L44 (qo 

= 0.1). Though Avni and Tananbaumnfind that models with 6 this high are 

specifically excluded (95% confidence), we use their correlation between 

acceptable values of 6 and n to estimate a best fit value T - -5.5. 

This very strong epoch dependence means that for low redshifts the 

effective X-ray pivot point, '13 L44 , is above most of the range of the 

luminosity function. Thus the evolution would tend to decrease the 

contribution to the sky flux and invariant excess. However, at higher 

redshifts Lo;x will decrease until T-O.7, (0x(T) m 1), where it is equal 

to Lbase;x" Finally at z = 3.5 it is equal to -0.15 L44, enhancing the 

effects of evolution. Because the original luminosity function is so 

steep, even a small change in L. will have an impact. The result of the 

general decrease in Lo with increasing redshift is to depress the effect 

of evolution at high and moderate fluxes And enhance it at the very
 

lowest fluxes, making simple extrapolations from the moderate fluxes
 

hazardous.
 

These difficulties decrease the utility of simply mapping optical
 

fits of index evolution models into the X-ray band. If index evolution
 

is found to be a better description than pure luminosity evolution, it
 

is probably better to directly apply the models to even the currently
 

limited X-ray data than to transform the best fitting optical
 

parameters. At least that would remove the uncertainty due to possible
 

explicit redshift dependence of the optical to X-ray ratio.
 

Use of optical AGN counts to estimate the contribution to Sa
s
 

Do quasars, or rather AGN, contribute the dominant fraction of the
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X-ray sky flux? Even the best analysis efforts using Einstein
 

Observatory data can make no clear statement based solely on X-ray
 

measurements, but the optical source counts can help. These extend to
 

much deeper levels than are currently available-in-the- X-ray, -and -y go 

deep enough that the contribution to the sky flux converges. Adding up
 

all the optical contribution to the sky flux from these sources, and
 

multiplying by a "typical" conversion factor to get an X-ray flux, we
 

can compare the predicted X-ray contribution of AGN to the total sky
 

flux. Of.course, as we have already discussed in some detail, there are
 

complications at each step. One indication of the difficulties is the
 

wide range of estimates extant in the literature, from 30% to over 100%
 

of the total sky flux, as variations on the basic technique are applied
 

by different authors [e.g. Cavaliere et al. 1981; Zamorani et al.
 

1981; Cheney and Rowan-Robinson 1981; Kembhavi and Fabian 1981; Zamorani
 

1982b]. We will not perform such an analysis here, but will touch
 

instead on the more obvious weak points and assumptions. A good
 

application of the technique, and its results in the context of other
 

information on the diffuse background, has been presented by Zamorani
 

[1982b].
 

A key difficulty is that there is no single correct value of a
 
ox
 

to tranform an optical flux, or luminosity, into an X-ray one. Even a
 

distribution of values is inaccurate because the data show strong
 

correlations with optical luminosity and/or redshift. The 
 aOx
 
distribution is usually simplified to a single number, or function of
 

Lopt(an effective aox), but this requires significant assumptions about
 
the underlying parent distribution. Current work [Avni and Tananbaum
 

1982] indicates that such assumptions are consistent with and justified
 

by the data; however, remember there are unavoidable, albeit
 

correctable, biases introduced when using any flux-limited sample
 

[Condon et al. 1981].
 

The common practice is not to work directly with the optidal
 

counts, but to fit an evolutionary model for the optical luminosity
 

function to the counts, to transform this fitted model to the X-ray, and
 

thereby determine the total sky flux. The optical fits depend
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critically on the behavior at the lowest fluxes, and are purely based on 

comparing the model N(S) to the observed counts. The redshift 

distribution at these low fluxes would materially help assess the 

validity of these fits. However, only recently has it become possible 

to obtain this distribution, and it is not yet available. The 

difficulty of mapping the evolutionary model from the optical to the X

ray has been examined in some detail above. However, we reemphasize the 

sensitivity of the process to a possible redshift dependence, rather 

than a sole dependence of aox on Lopt, as is usually presumed. Note in 

particular that the optical source counts do not, and cannot in the 

absence of redshift information, make any correction for spectral 

redshifting. This can be approximated from a particular model, but it 

is another source of error, particularly given the rich structure of AGN
 

optical spectra.
 

The greatest contribution to the sky flux will come from the
 

sources corresponding to the deepest optical source counts (J 22). In
 

fact, a "reasonable" continuation of the X-ray counts below the Deep
 

Survey limit (see the last section, particularly the discussion
 

following equation [VII.27]), implies that a significant contribution
 

(Q25%)to the sky flux will be made by sources dimmer then even the best
 

current optical survey limits. Therefore all estimates of the optical
 

sky flux require that the fit made to the optical counts is an accurate
 

model of the luminosity function and its evolution. The redshifts of
 

the lowest intensity sources are important to validate particular
 

models, but currently we do not have this information. Direct estimates
 

of aox for such sources would also be helpful, but we do not have that
 

information either. Without this information, we base our conclusions
 

primarily on objects covering a much different region of the redshift

luminosity plane. Calculations restricted solely to that part of the
 

redshift-luminosity plane that is covered are more believable, but less
 

useful for ascertaining the total contribuiton of AGN to the sky flux.
 

For example, Marshall et al. [1983a] estimate from their X-ray
 

observations of an optically complete sample of ten QSOs that between 8%
 

and 24% of the 2 keV sky flux comes from quasars with B<19.2 and z<2.2.
 

To be fair, the current consensus is that an extrapolation from the
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known sources to the unknown properties of the low flux sources is
 

consistent with all available information so that we do not require a
 

major change in the correlations and other properties.
 

Additional important information is available from radio
 

observations of the AGN. When dividing the sources into radio-loud and
 

radio-quiet objects many authors [e.g. Zamorani et al. 1981; Reichert
 

et al. 1982] have noted that the radio-loud objects will have roughly
 

three times the X-ray luminosity compared to a radio-quiet source with
 

the same optical luminosity. The effective aox of the two groups of
 

objects are calculated separately, and applied to the evolving
 

luminosity function model, weighted by their presumed fraction. Usually
 

10% of all AGN are considered radio-loud. Though this is a substantial
 

improvement over an identical treatment of all objects, it requires
 

another host of assumptions. Particularly, we must assume that the
 

fraction of radio-loud objects, as well as their relative X-ray flux
 

enhancement, are substantially unaffected by evolution. In addition, a
 

radio-loud/radio-soft bifurcation may be a critical oversimplification.
 

Condon et al. [1981] indicate a continuous distribution in the ratio of
 

radio to optical luminosities. The creation of a truly trivariate
 

radio-optical-X-ray distribution may be important for an accurate
 

comparison of deep source counts in the three different bands.
 

Summary
 

All of this discussion should be considered illustrative of the
 

difficulties of applying optical evolution models to the X-ray band.
 

Naive transformations can produce unlikely or even unphysical behavior
 

based on admittedly sparse, and possibly incomplete, optical data. This
 

is not to say that comparisons among phenomena in the X-ray, optical,
 

and radio bands are useless. Particular studies of correlations in
 

observed sources obviously can and do lead to important conclusions
 

about the physical processes at the heart of AGN. Comparisons of the
 

source counts in the different bands can and do yield information about
 

the sources' evolutionary behavior that would be unavailable from
 

studies of a single band. Though the extension of these studies to the
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very highest redshift, low flux, sources may be no more unwarranted than
 

our extrapolations from the XCS-derived luminosity functions, we should
 

continue to be aware that they are extrapolations, each with its
 

concomitant (perhaps reasonable) assumptions. One particular
 

assumption, always relevant when discussing Einstein results, concerns
 

the X-ray spectrum of the high redshift AGN. As we have shown, the
 

conversion between IPC and HED fluxes can be uncertain by a factor of
 

two.
 

6: Excess Variance from Non-Poisson Fluctuations
 

Non-Poisson distributions of X-ray sources can produce
 
significant additional contribution to the fluctuations. We
 
present estimates of the amplification of the fluctuations
 
due to sources clumped on supercluster scales. We also
 
sketch the utility of studies of the X-ray anisotropy for
 
probing the general distribution of matter. On the very
 
largest angular scales, the comparison of the Compton-

Getting (dipole) signal in the X-ray and microwave bands
 
supports the hypothesis that the overdensity responsible for
 
our observed velocity is "local" compared to the scale of
 
the sources that produce the X-ray sky flux. The limits of
 
the excess variance constrain the magnitude of lumps of X
ray volume emissivity, the size of the limit depending on
 
the lump size. For data from our HED 1 smeared -detector,
 
the strongest constraints are placed on structures larger
 
than -400 Mpc. These constraints can be translated to
 
limits on matter clumping of the universe at scales
 
otherwise not easily accessible. Using a naive Euclidean
 
approximation, the fluctuations do not permit highly clumped
 
structures (p/p>1) larger than -100 Mpc.
 

An important assumption in our analysis of' the fluctuations is
 

that they are due to point sources whose spatial distribution is
 

generated by a Poisson process; that is, there is no explicit
 

correlation in the position of two objects. An accurate treatment of
 

any other cases requires new tools of scope and complexity similar to
 

what has already been presented. In place of such a complete treatment,
 

we will present estimates of the effect of non-Poisson and other clumped
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behavior on fluctuations measurements.
 

It is often stated that the Poisson assumption leads to minimum
 

estimates of the fluctuations, that any other source distribution will
 

increase the variance of the fluctuations distribution. The Poisson
 

distribution of sources means that each source is placed randomly in
 

space, without consideration of the actual position of sources placed
 

earlier. Any structure is produced by structure in the parent density
 

distribution. If the placement of the source is more likely near the
 

physical position of other sources (not just due to enhancement of the
 

parent density), then the resultant, non-Poisson, distribution will
 

indeed have its variance enhanced. However, in contrast to these
 
"clumped" distributions, we can imagine "anti-clumped" behavior, where
 

sources are preferentially placed away from the location of other
 

sources. Such a distribution of sources would have a fluctuations
 

distribution narrower than the Poisson model. An extreme example of
 

anti-clumping is where the sources have a coherent structure with even
 

spacing. For statistical purposes, all the sources within one coherence
 

length are effectively equivalent to a single source with the summed
 

intensity of its components. If the coherence length is large en6ugh,
 

so that the anti-clumping occurs at all scales, then the sky will appear
 

very isotropic. Admittedly, such structures seem unlikely according to
 

our current intuition of the origin and evolution of large scale
 

structure of the universe. Most currant models for clumping produce
 

enhancements to Poisson fluctuations.
 

In this section we consider the effects of structure in the
 

universe in two different scale regimes. The distinction of the scales
 

is defined by the angular size of our measurements. Small scale
 

variations, in our context, are those with small angular extent compared
 

to the measurement, while large scale variations are comparable to or
 

much larger than the measurement. Determining the "size" of the
 

measurement, with proper allowances for the spread in the spatial
 

response function, is one of the difficulties in performing a proper
 

analysis. The measurements, as we have remarked, have non-zero response
 

to an area in excess of 100 square degrees, but 90% of the total RI
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.
weighted response comes from a rectangle of ii.2°x4.4° The area of the
 

sky that dominates the measurements of the excess variance is even more
 

compact, with 90% of the contribution to (R2)
2 coming from an area of
 

-26 square degrees. Let us consider the linear dimensions that
 

correspond to an angular scale of 50. We will later show how, crudely,
 

a source with radius 3.70 can be treated as a point source. The
 

linear size that this angular scale corresponds to is, of course, a
 

function of distance and cosmological assumptions:
 

x 0 dA = S d£ / (1+z)2 , [VII.42] 

where dA is the effective angle distance (see e.g. Weinberg [1972]) and
 

dt is the luminosity distance, described in Equation [A1.6] et seq..
 

The absolute value of this is set by the Hubble length, XH = c / Ho . We
 

-
continue to assume that Ho = 50 km s 1 Mpe- I, corresponding to XH = 6 

Gpe. For different values of H, all distances in this section should be 
-I - scaled by 50 / Ho = h50 , e.g. by one half for Ho = 100 km s I Mpc 1. 

Most current models for the origin of the X-ray background have the bulk 

of the emission originating at large redshifts, z 1. For qo = 0.1, 5' 

is subtended at z = 1 by 180 Mpc. At z = 2 the luminosity distance has 

increased by a factor of 2.5, but geometric corrections to the angular 

scale substantially reduce the increase in dA, so that this separation 

is 200 Mpc. As is well known, the behavior of the angular scale over 

this moderate redshift range is a sensitive function of qo. If qo = 

0.5, z = 1 corresponds to 150 Mpc, but at z = 2 the spatial scale for 50 

has decreased to 74 Mpc. All these scales refer to the physical size at 

the epoch of emission. If the structure undergoes collapse its size in 

the current epoch may be significantly smaller. Gravitationally bound 

stable objects will maintain their size through the intervening epochs, 

while the lowest over-density structures are generaly unbound and will 

participate in the general cosmological expansion. The size of such 

sources increases from the epoch of emission to the current epoch by a 

factor 1+z. 

Studies of the distribution of galaxies indicate significant
 

correlations out to at least 10 Mpc [e.g. Peebles 1980], while studies
 

of individual superclusters show evidence for individual structures in
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the 10-60 Mpc range [Chincarini and Rood 1979; Gregory, Thompson, and
 

Tifft 1981; Tully 1982] with extended filaments perhaps as long as 120
 

Mpc [Davis, Huchra, Latham, and Tonry 1982]. The separations between
 

the superclusters are perhaps even more spectacular, showing voids and
 

rifts of 120 to >300 Mpc in size [Kirshner, 0emler, Schechter, and
 

Shectman 1981; Bahcall and Soneira 1982]. An early estimate of the mean
 

-1
free path between superclusters is -400 h50 Mpc [Gregory, Thompson,
 

and Tifft 1981].
 

We will begin by analyzing the additional contribution to a2 S that
 

clustered point sources will make, assuming that the clustering scale
 

corresponds to angular dimensions small compared to the detector size.
 

We next consider the effects of a single lump of emission, where it
 

totally covers the measurement FOV. The distinction between the actual
 

angular dimensions of a measurement and the quantity 9 eff' often used in
 

other authors' discussion of the fluctuations, is outlined. The dipole
 

signal of the Compton-Getting effect constitutes a very large angular
 

scale phenomenon. We illustrate how comparisons between measurements of
 

the dipole fits made in the X-ray and the microwave bands can provide
 

information about the origin of the indicated peculiar, velocity, but
 

exact values are difficult to obtain.. From individual lumps we move to
 

a collection of single scale lumps with a Poisson spatial distribution.
 

More complicated structure is handled by Fourier decomposition
 

tech4ques, which require the calculation of the expected fluctuations
 

from a arbitrary phase plane wave. Our observed upper limit to any 

other source of fluctuations, a2 in intensity units, can place 

interesting limits on structure at very large scales otherwise not 

easily accessible. 

AGN in superclusters: additional a2
 

Oort, Arp, and de Ruiter [1981] analyzed 12 close pairs of QS0s
 

with similar redshifts and showed that their existence was consistent
 

with the location of the objects in superclusters spanning 10 to 60 Mpc.
 

Similar results were obtained by de Ruiter and Zuiderwijk [1982] who
 

applied particular models for the- correlation, to an extended set of
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data. If the X-ray sky is dominated by objects that are similarly
 

distributed, their contribution too the excess variance will be
 

significantly enhanced.
 

The stochastic effects of clumping are reduced for the nearby
 

objects, where the supercluster scale is much larger than the
 

measurement scale. We concentrate on the evolved population (that in
 

excess of the expected model N(S) from nonevolving AGN and cluster
 

luminosity functions), whose average number versus flux relationship is
 

N'(S) (see equations [VII.13] et seq.). We assume that for the
 

redshifts at which these sources dominate the contribution to the sky
 

flux and variance, the supercluster scale is less than the measurement
 

scale. In this case we can let N'(S) represent the distribution of the
 

fluxes for the superclusters as a whole, with the individual AGN only
 

determining where a particular supercluster is on a superclustbr
 

luminosity function. A naive ipplication of the limits on the number of
 

sources (equation [VII.14]) determine that there must be at least 50
 

superclusters per square degree, but this assumes that they produce 75%
 

of the sky flux and makes no correction for the finite angular extent of
 

the closer examples (see the estimates of this latter in this section).
 

Difficult as it is to estimate the total surface density of AGN, the
 

equivalent project for superclusters would have significant additional
 

problems. Determining the number of superclusters in a deep X-ray
 

exposure suffers from identification problems, while current optical
 

exposures could not extend supercluster surveys to the low fluxes
 

accessable with the AGN counts. In this subsection we will estimate how
 

clumping modifies the required number of AGN, or to invert the problem,
 

show how the number of AGN and the excess variance can constrain the
 

amount of clumping.
 

The small angular scale condition also allows us to use the 

weighted response R2 to transform from the measured variance a2 to a 

solid angle independent a2S to be compared with model predictions. We 

also assume that all the evolved sources are actually contained in 

superclusters. The superclusters are, assumed to be distributed 

throughout the universe following a Poisson distribution. The number of 

Analysis of Results Non-Poisson Fluctuations
 



VII:6 331
 

sources in each supercluster is also determined by a Poisson
 

distribution, where uli is the mean number of sources in the ith
 

supercluster. Pi need not be identical for all superclusters,
 

reflecting intrinsic dependence on supercluster properties such as size.
 

-4s-the--mean over all uperclusters.
 

Let n be the average number of sources in a measurement. The 

variance will be enhanced by a factor, c, 

var(n) = (1+ c) n . [VII.43] 

The factor n on the right hand side of the equation is from to the 

variance of a purely Poisson distribution, var(n)poisson = n. De Ruiter 

and Zuiderwijk showed that the multiple Poisson process insures that 

c > V ,[VII.44] 

where the equality holds only for the case where all superclusters have 

the same expected mean number of sources, i.e. Pi = P. The variation 

in the measured intensity is difficult to calculate directly because of 

cross correlations between n(I) at two different intensities. In 

general, 

C
2 1 <12> var(n) , [VII.45] 

where <i2> is the mean square source intensity. The relationship is an
 

equality if all the sources in a particular supercluster have the same
 

intensity, i.e. identical luminosity. Converting to detector
 

independent quantities we can rearrange equation [VII.15] to give the
 

minimum number of sources,
 

-
N* 2.1x1O6 (I+c) (f/0.75)2 (<s2>/11) (9x10 4 /02S) [VII.46] 

The factor f is the fraction of the sky flux due to sources clumped in 

superclusters. The clumping factor (1+c) increases the number of 

sources from the non-clumped minimum of 51 sources per square degree. 

For the Ii P1case, the de Ruiter and Zuiderwijk analysis of close 

pairs of quasars led to the estimate - c = 1 - 0.4. For a model 

distribution of pi, their data were consistent with 1 0.12, but the 

effect of clumping was enhanced so that c = 0.6. One difficulty in 

using these estimates in equation [VII.46] is that they are based on a 

population that may be only a small fraction of the total evolved 
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population. In other words, to properly use tVII.46] with the derived
 

values for cQS0 we must replace f with the fraction of the all sky flux
 

due to AGN that satisfy de Rulter and Zuiderwijk's selection criteria,
 

fQSO which is probably much less than fAGN' In any case the numbers
 

are still far below the minimum number of AGN inferred from the Einstein
 

Deep Survey limits of at least 180 sources per square degree (equation

-2
[VII.27]) and the actual optical counts of AGN, 360 deg .
 

Rather than use the possibly incompatible estimates of c to
 

provide the required number of objects, we can instead invert the
 

problem to estimate from the observed number of AGN their excess
 

contribution to the variance.
 

2 - I 
S /I + c fevAGN- (<s2>fl) NevAGN (a2 Sas 2 ) . [VII.47] 

The "evAGN" subscripts indicate that we are estimating the properties of
 

the evolved AGN, whose N(S) and contribution to S., and c2 S are in
 

excess of the estimates assuming no evolution. If we assume that are
 

500 such sources per square degree, 2.1x107 all sky, that they are
 
-


distributed roughly in a Euclidean manner over a decade of flux (<s2>/-s


1.5), and that they provide the missing 75% of the total sky flux,
 

then
 

I + c 6.54 (0.75/fevAGN)
2 

x (1.5 T- / <s2>) (NevAGN/2.1x107) • [vII.48] 

2 - 4 .We have assumed that is equal to our upper bound of 9xi0 (HILl)2
 s 


For this choice of parameters, then, a strong upper bound on V is 5.54,
 

assuming that all superclusters have the same number of AGN. If a more
 

realistic distribution is similar to the models discussed by de Ruiter
 

and Zuiderwijk then T is 1.4.
 

How does this compare with expected numbers of AGN in a
 

supercluster? From the AGN luminosity function we estimate that
 
-
4.5x10 3 of all galaxies with MB < -18 will be an AGN with L > 0.1 L44,
 

and therefore a candidate for significant evolution. The local
 

supercluster contains -1500 galaxies, extrapolating from the sample of
 

Tully 11982], so that roughly seven moderate luminosity AGN are
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expected. This estimate of 'V 7 contradicts our upper bound based on
1 


the fluctuations. The local supercluster is considered a small example
 

of the supercluster phenomenon so that P might be substantially larger.
 

If the number of AGN is reduced, or if they are spread over a still
 

larger flux range, the disagreement with the prediction of equation
 

[VII.48] is strengthened. If we allow fevAGN to vary and hold to our
 

original estimates for the other parameters, and if the true value for c
 

is -4 x W 4x7 then
 

fevAGN 0.4 . [VII.49]
 

In this crude picture at most -1/2 of the sources that produce the X-ray
 

sky flux can be in superclusters. Admittedly, there are large
 

uncertainties in this calculation, not the least of which are the
 

assumption that supercluster size is 50 and the inability to handle
 

the clustering at larger angular scales. In addition, the very concept
 

of the number of AGN "per supercluster" implies that superclusters exist
 

as definable individual entities. Even on the smaller scale of clusters
 

of galaxies there are examples of complicated structures that have been
 

variously identified as several objects or as a single object with
 

internal structure. However, this discussion shows how studies of
 

optical counts, and optical superclustering, when joined to the upper
 

limits on the X-ray excess variance using more sophisticated models,
 

would place limits on the contribution of evolved sources in
 

superclusters to the sky flux. Inverting the problem, when future
 

expetiments give unambigous estimates of the contribution such sources
 

make to the HILl band sky flux the HEAO 1 excess variance limits
 

constrain their participation in non-Poisson clumping.
 

Large scale structure: a single lump
 

We now investigate measurements from structures that have a large
 

angular size, covering areas large with respect to the detector solid
 

angle. The remainder of this section is heavily grounded on previous
 

analysis by others [e.g. Rowan-Robinson and Fabian .1974; Rees 1980;
 

Fabian, Warwick, and Pye 1980; McKee 1980; Warwick, Pye, and Fabian
 

1980; Fabian 1981]. However, the discussion will be complementary to
 

our earlier derivation of the point-source, fluctuations in order to
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illustrate how and where the measurement solid angle response enters.
 

We will generally concentrate on simple examples in a finite Euclidean
 

space; more accurate models are presented in the above references.
 

Consider a lump of excess volume emissivity, 6A. Let X be the
 

radial distance coordinate from the observer to the source. The lump
 

will produce an ejeess of surface brightness
 

6Z = flump dX'SA . [VII.50] 

Let L be the total integrated luminosity of the lump and Xs be its 

radius. We can approximate SE by the average surface brightness over a 

circle with angular radius 0s = Xs / X, 

SE = L 4 7 X 2 [VII.51] 

Euclidean geometry assures that the surface brightness is constant. The 

contribution to the intensity, SI, depends on the detector spatial 

response function (see equation [II.10]). We model a circular detector 

with flat response, R, and a solid angle of 7 d2. We can define two 

natural regimes for SI, depending on the distance to the lump. When the 

lump is so close that its angular size is much larger than the detector 

solid angle, Chen if the angular position of the lump is close enough to 

the detector center to be detected at all by a measurement (0 < 6d + es) 
it usually completely fills the detector and contributes a constant 

intensity. If the lump subtends a small angle, it will be essentially 

point like and its intensity will follow the inverse-square law. 

S1 R d2d;E , X « [VS<.52.a] 

rX 261= R L /4 X ; [VII.52.b] 

where
 

Xd )Is 8 d [VII.53] 

is the distance where the lump would exactly fill the detector response.
 

2
For our surface brightness measurements, we approximate R as 220 cm s,
 

and 6 as 4.20. Lumps in the X<Xd range will be called resolved sources,
 

while lumps in the further regime are point-like. Note the difference
 

between resolved and "detected". A lump may cover several measurements,
 

but still be of such low surface brightness that it could not- be
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detected as an individual feature. We will see, though, that undetected
 

lumps, like undetected point sources, have measurable effects on the
 

fluctuations measurements.
 

It is. plausible to -assume that the -lump' large scale-excess in 

the volume emissivity is indicative of a similar mass density 

concentration, i.e. that on these large scales the mass to X-ray light 

ratio is constant. If the lump is in the detector covering regime, 

A<Xd, then the overdensity is 
6p - 6A - 6I / X 1T62 [VII.54] 

The same sources of the X-ray emission clumped in the lump also
 

contribute to the total X-ray intensity, T. If they are otherwise
 

uniformly distributed out to the Hubble length then the average mass
 

density is
 

Y / T 2T - 7 - fc iH r [VII.55] 

Therefore the fractional size of the X-ray intensity fluctuation from 

the lump is [Fabian 1981] 

61 / Y - fec ( SP I ) (?I H) "Vii.56] 

The value to be used for fc, the fraction of Y due to sources similar to 

those in the lump, depend on models for the X-ray sky flux and the 

position of the lump. For instance, if we assume that 75% of the sky 

flux is due to highly evolved sources at large redshifts, and the lump 

is at a similar distance then fc 0.75. (If the redshift region that 

dominates this emission is sufficiently narrow, AH may need to be 

rescaled in [VII.56].) On the other hand, if the lump is nearby then fc 

- 0.25, indicative of the contribution from the non-evolving population 

or other sources of emissivity typical of space in general. 

Large scale structure and the Compton-Getting effect
 

A large scale overdensity of matter would have other effects
 

besides an enhancement of the X-ray surface brightness. It would
 

perturb nearby objects and impart a peculiar velocity.with respect to
 

the cosmological rest frame. Just such a lump may be responsible for
 

our own peculiar velocity inferred from the microwave background dipole'
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anisotropy [e.R. White 1979]. For a given distribution of mass
 

fluctuations, one particular scale is expected to dominate the process,
 

with our velocity principally generated by the nearest such lump. (For
 

a more detailed picture of the origins of the microwave dipole see
 

Wilson and Silk [1981], and Silk and Wilson [1981].) The presence, or
 

lack, of a similar large scale structure in the X-ray sky can provide
 

insight into the location and magnitude of such a lump [e.g. Fabian,
 

Warwick, and Pte 1980; Warwick, Pye, and Fabian 1980], and in a general
 

sense the magnitude or upper bound on the signal can lead to general
 

conclusions about the structure and density of the universe (see the
 

previous references; also Wolfe [1970], Rees [1979], Fabian [1980], and
 

Kaiser [1982]).
 

In Figure VIT.31.(a) we illustrate schematically the effects of a
 

very large lump located predominantly outside the X-ray sources.
 

Because of its large scale, the lump will accelerate all of the X-ray
 

sources, however not all sources will have the same acceleration or
 

current velocity [Warwick, Pye, and Fabian 1980]. In this crude
 

picture, the relative velocity observed by the current epoch observer
 

would have a general "12-hour" characteristic: at the poles, oriented 

towards and away from the lump, a perceived outward flow would cause an 

intensity decrement; and around the equator there would be a general 

inward flow, producing an excess intensity (see equation [IV.12]). If 

the distance scale to the lump were even larger all X-ray sources would 

be similarly accelerated, reducing the strength of the large scale 

feature. In both cases the generated peculiar velocity would still 

induce the observed dipole signal in the microwave background. However, 

the strength of a 12-hour signal from a large lump could be 

significantly altered when accurate cosmological adjustments are applied 

to these qualitative arguments. The largest relative velocity sources 

are at the edges of the X-ray emission region, i.e. at the highest 

redshifts. At the epoch of emission these sources would be relatively 

closer to the lump, thereby increasing the amount of acceleration, but 

all sources would similarly benefit. On the other hand the high 

redshift objects are observed when the amount of elapsed time for 

acceleration is less. Possible evolution of the lump mass further 
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OF POOR QUALITY 

Figure VII.31: Large scale anisotropies from an accelerating lump
 

Schematic picture of a possible origin for the observed
 
peculiar microwave velocity (after Warwick, Pye, and
 
Fabian [1980)). The arrows represent the induced peculiar
 
velocity at that point. The central filled dot, labelled
 
"observer", represents the current epoch observer. 
 TWo 
cases are illustrated: (a) a very large lump, existing at
 
the edge of where most of the X-ray emission is produced,
 
resulting in a "12-hour" tidal distortion in the X-ray
 
surface brightness; and (b) a smaller more local lump
 
which does not produce a significant acceleration of most
 
of the X-ray sources.
 

(a) 	 (b) 

OSRVER 	 ? ::, 

'ACCELERATING 

,z-MICRbV E SURFACE OFSURFAC0	 ",.:':i.'..." 

LAST SCATTERING 

complicates the picture. The 12-hour intensity amplitude would also be
 

reduced to the extent that the X-ray emission is produced over a
 

significant range of redshifts. In Figure VII.31.(b) the picture is
 

less complicated. The differential velocity is due to accelerations
 

induced by a comparatively nearby lump, which does not itself strongly
 

perturb the velocity field of the bulk of the X-ray emitters. In this
 

case both the X-ray and microwave sky should exhibit similar dipole
 

anisotropy.
 

If there is a surface brightness enhancement associated with the
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lump, the X-ray signal will have a larger amplitude than would otherwise
 

be expected. Consider a circularly symmetric surface brightness
 

enhanceient, 6Ilump which is much larger than the detector angular
, 


extent. If we unknowingly try to fit 'this enhancement with a dipole
 

signal, the least squares solution will be one with amplitude 61lump
 

centered on the enhancement. To first order the total dipole signal 

indicated by the fit in the'X-ray band will be 

6Idipole dSICG + 6 lump . [VII.57] 

6ICG is the exact dipole signal from the peculiar velocity (equation 

[IV.12]). Wilkinson [1983], in a recent synthesis of several groups' 

microwave observations, estimated that the velocity* is v = 372±25 km 
- .
s This corresponds to a predicted X-ray magnitude of 6IcG - 0.072 

counts exp- I . This is less than the best fit X-ray dipole amplitude of
 

-
0.09±0.03 counts exp , but not significantly so. The microwave dipole 

direction, in galactic coordinates (9,b), is (2650,+500), which is well 

within the 90% contour for the X-ray direction (Figure IV.7). 

From the 1 a range in 6Sdipole we estimate an upper- limit of
 

6Ilump 0.05 counts exp-1 .  As the lump is assumed to fill the
 
- I
 

detector, its average surface brightness is Elump 1.4x10 2 HILl sr
 

- 0 - -1
 1.8xl0 ergs s 1 cm 2 sr . Then from equation [VII.56],
 
-
(OP/P)lump 3xi0-3 feCI (XH/?Ls) " [VII.58]
 

A cosmologically correct derivation could modify this limit by a factor
 

of a few; however the greatest uncertainty is in fc"
 

We can estimate the magnitude of the peculiar velocity, Vp, if we
 

assume that we are near the edge of a uniform spherical lump that has
 

*The use of the microwave dipole signal to derive the velocity assumes
 

there is no similar surface brightness enhancement from the lump,

gerhaps due to microwave or infrared sources associated with galaxies.
 
or own galaxy does emit enough radiation to require significant


corrections to some microwave anisotropy measurements. The possibility

of such contamination in the dipole magnitude can be limited by searches
 
for fluctuations in the microwave band on moderate angular scales and by

checking that the variation in Jhe dipole amplitu e versus spectral

frequency is consistent with a -3 black body spectrum. Current limits
 
on both tests support this assumption.
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been acting on us for about the Hubble time:
 

Vp - G 6P Xs AH * [VII.59]
 

As pointed out by Fabian [1981] we can combine this estimate with our 

-limit on dP/p and the -observed -microwave-dipole vedl6city to place a 

lower limit on the average mass density of the universe.
 

Before using the observed velocity for Vp, We must correct for the
 
-
rotational motion of the galaxy, 220 km s 1 in the direction (900,00),
 

so that the adjusted direction of V is (2670,+320), and the magnitude
 

is 540 km s-. This new direction is even closer to the best fit X-ray
 

dipole position of (2820,+300). As the direction for 6Ilump is not
 

affected by galactic rotation, it is more likely that the X-ray dipole
 

signal might contain some contribution from the lump surface brightness,
 

but strong statements are precluded by the large confidence region for
 

the X-ray dipole position. p is often parametrized in terms of the
 

critical density for closure in the Friedmann cosmological models:
 

2
Q (8/3) w G p / H0 , [VII.60] 

-3
 so that p = 4.7xi0 -30 2 h502 g cm . Our crude lower limit is
 

06 fe .>" [VII.61] 

Other estimates of 2 cover a wide range, 0.1 < 2 < -1, so our limit 

could be interesting. However, cosmological corrections to equations 

[VII.59] and [VII.56] can be as much as an order of magnitude.
 

Moreover, the utility of [VII.61] hinges on a good lower bound for
 

fe" If the lump is nearby, so that the lumped emission comes from at 

least some sources typical of the XCS, i.e. the unevolved populations 

of clusters and AGN, then we might expect that fc 0.2, the lower
 

estimate of the unevolved populations' fractional contribution to the X

ray sky flux. However, several authors have suggested that the peculiar
 

velocity is due to our infall into the local supercluster [e.3. White
 

1980; Davis, Tonry, Huchra, and Latham 1980;-Davis and Tonry 1981]. The
 

direction of V is generally towards the supercluster, although there is
 

a significant velocity component orthogonal to the direction of the
 

Virgo Cluster and M87 in the supercluster center. (This is addressed in
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the above references; see also White and Silk [1979]). Although
 

previous searches for emission associated with the local supereluster
 

hive failed, the derived upper limits for the surface brightness are
 

above our value inferred for Ilump [e.a. Schwartz 1980]. If the local
 

supercluster is indeed the velocity-inducing lump, this would have a
 

major impact on the proper value for fc to use in the limits [VII.58]
 

and [VII.61]. This is because many of the unevolved sources in the
 

local superclugter were actually detected in the XCS and therefore
 

explicitly removed from the data used to fit the dipole signal. Sources
 

in the low luminosity extension of the AGN luminosity function will
 

still contribute to 6Ilump as few were detected in the XCS. In general,
 

though, fc could not be much more than 0.1. However, the nearness of
 

the local supercluster as well as detailed studies of its optical
 

morphology [Tully 1982] hold out the prospect for a more accurate 

determination of IIlUmp, justifying the effort required for a 

cosmologically proper derivation of [VII.56]. 

Multiple lumps and the excess variance
 

The preceeding subsections outlined the properties of a single
 

lump, and showed what information could be gained from the detection of
 

(or upper bound to) the surface brightness enhancement from that lump.
 

In the same way that the fluctuations placed bounds on the unresolved
 

point sources, the excess variance from the fluctuations can yield
 

information about the general properties of individually undetectable 

lumps. As anexample of this ability we consider a Euclidean universe, 

of radius XH, consisting entirely of lumps of matter with radius Xs. 

The lumps are not considered hard spheres, but are allowed to overlap so 

that some regions will have the mass density of several tines the 

density from a single lump. Let n be the mean number density of lumps 

in the universe. The filling factor, 

& n (4/3) Xs3 [VII.62]
 

is the mean number of lumps that enclose a point chosen at random. If
 

the contribution to the mass density of a single lump is SP, then the
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mean mass density is 

P = 0 ap1 . [VII.63] 

Therefore the fractional size of the lump density is 6p1/p = 0-1. In 

contrast, the -rms.variation-in -the-density through th universe is 

SPrms / p = (0 6P12)1/2 / p _ 0-1/2, [VII.64] 

assuming a Poisson spatial distribution for the lumps. 

For distances where the lump extent completely covers the
 

detector, X < Ad, a lump will be detected if its center is within As +
 

8d A As of the center of the observation. The mean number of sources
 

expected over a range dA is then
 
dN irX 2 dA . [VII.65] 

5 

From the constant contribution such sources make to the measured 

intensity (see equation [VII.521), their expected contribution to the
 

excess variance is
 

do21 = (61)2 dN
 

-
A XH-1 L2 T s 2 dZ . [VII,66] 

The coefficient 

A = R2 (6d)4 / 16 7r [VII.67] 

contains the detector parameters. We have also renormalized our linear 

variables by the Hubble length, k. = A / A £ = Sources at 

distances A > Xd can be approximated as point sources so that 

2 2 A2do1 R2 (L/4ws 2 )2 n 47 dA [VII.68] 

(see equation [111.28]). R2 is the second weighted detector response 

(equation [11.17] et seq.), which for a flat response circular 

collimator is 

R2;est = R 6d / 2 [VII.69] 

For our approximation of the smeared detector with R = 220 cm2 s and 8d 
= 4.20, we have R2;est = 7.7 ci2 s. Calculations using the actual 

2response produce a value of 9.04 cm s, an indicator that the peaked,
 

properties of the detector enhance the variance over a flat response.
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If we define a scaling factor
 

T = R2;true / R2;est = 1.2 	 [VII.70] 

we can rewrite [VII.68] for the point-like contribution of lumps to the
 

excess variance as
 

L2
dG21 I A HI n (T/Nd)2 k-2diVI.1
do , *2di 	 [VII.71] 

We see that the two estimates for do2 1 are equal at the transition point
 

Strans-=(T/Gd) Xs = T Xd [VII.72] 

which is equivalent to the distance where the lump of size X. can 

exactly fill a detector with angular radius Gd/T. Therefore, our 

smeared detector is effectively one with a 3.70 radius in terms of the 

transition from point sources to resolved lumps. 

As we consider nearby extended sources, t<Atrans, we see by,
 

[VII.65] 	that the number seen at a particular distance is enhanced over
 

0d2 2
that expected for the same density of point sources, dN - n G dX.
 

Yet as the contribution of extended sources saturates, the contribution
 

to the variance of the fluctuations is convergent even for the very
 

closest sources. Thus there is no need to have an intensity cutoff, I.,
 

as was necessary in the variance analysis of the point source
 

fluctuations (see equation [111.54] et sdq.). No longer is it
 

appropriate to say that the variance is dominated by the nearest source,
 

but rather it is affected equally by all the sources that cover the
 

detector. In addition the fact that there are several sources with the
 

brightest contribution to the intensity also reduces the non-Gaussian
 

aspect of the fluctuations distribution. Therefore the excess variance
 

is sufficient to fit the fluctuations from a lump population that
 

contains a number of resolved extended sources. Another effect of large
 

scale structure is to produce additional correlations between
 

overlapping and adjacent measurements. These correlations will, as we
 

have discussed, introduce a reduction in the effective number of
 

independent measurements. This will lower the confidence of the
 

particular AA contours, unless we re-weight the measurements (Section
 

A2:2). Note that this correlation does not bias the measured
 

enhancement. The correction to the weighting should be small compared
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to that already calculated from the point sources which dominate the
 

magnitude of the fluctuations.
 

The total variance is calculated by integrating da2 out to the
1 


Hubble -istance, £Plv
 

L2a2 = A -1 A F(1s) n, [VII.73] 

where F(2s) contains all the dependence on the physical size of the 

lumps. The total intensity is 

Y = AH R T d2 L n . [VII.74] 

In equation [VII.15] we were able to use the upper limit to the 

invariant excess as a fraction of the total sky flux in order to place a 

lower limit on the total number of point sources. In similar fashion 

equations [VII.73] and [VII.74] can be combined to derive a lower limit 

on n, the density of clumps with a given radius As . We can then use 

[VII.62] to derive an upper bound on
 

0-l = 12 q2 p2 
 [VII.75]
 
£s3 F(£s)
 

p2 a2
1 / f [VII.76] 

The value of 0-1 directly limits the single lump density as well as the 

general rms density variation (equation [VII.64]). 

When we calculate F(%) we note there are two regimes, depending
 

on the transition distance, £trans, which is a function of the lump
 

size. If 'trans > AH, the limit of the integration, then all the lumps
 

will be resolvable and
 

2
F(Ys) = Xs- z > 1 =6 1 T [VII.77] 

£crit marks the critical lump radius where the lump would just fill the
 

,effective detector at the Hubble distance. Once a detector has a large
 

enough angular size that 1s is greater than £crit' further increases in
 

opening angle will not modify F, and therefore the expected fractional
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size of the fluctuations. For these very large scale lumps,
 

6prms / p - 11-p (iH/Ls)i/2. [VII.78]
 

Similar behavior for large lumps was found by Fabian [1981], though his
 

limit on 6P/p, omitting the factor of 11, is an order of magnitude more
 

stringent for a given value of p. As the size of the lumps decreases,
 

more and more of the distant sources will behave as point sources and
 

their contribution to the fluctuations variance reduced:
 

F(Zs) = (2./ ks crit - ( / £crit2 ) * [VII.79] 

This weakens the restriction on the filling factor, allowing larger
 

density. For the smallest lumps the maximum allowed &prms/p -X -1. The
 

change in the index from -1 to -1/2 occurs for lumps -Xcrit in size.
 

For comparison, note that the limit in equation [VII.58] derived from
 

the upper limits to the lump surface brightness associated with the
 
1
Compton-Getting effect, (SP/P)lump A - , is a limit on the lump excess 

density, and not on the rms universal variation. If we were to estimate 

the rms density from the Compton-Getting single lump limit, given that 

Sprms/P = (6p1/p)1/2 (see equation [VII.64]), we would see that it would 

be - -1/2. This behavior is the same as. for the always resolved 

sources, consistent with the assumption behind the derivation of 

[VII.58] that the Compton-Cetting lump was resolved.
 

Our model is admittedly crude, particularly in neglecting
 

cosmological effects, which are undoubtedly significant. For example,
 

surface brightness is not a constant. For an object of fixed size and
 
- 4
luminosity, Z - (1+z) . On the other hand, if the lumps do not have a 

fixed'absolute size, but rather maintain their co-moving volume, Z 
- 2(1+z) . Similar modifications would be necessary if the lump
 

luminosity were redshift dependent. As. an example, if the lump emits
 

via thermal bremsstrahlung, then the luminosity at a fixed frequency is
 

(l+z)2 (ignoring spectral redshift corrections). For such objects the
 

surface brightness is redshift independent. Of course there are other
 

geometric corrections as well.
 

A modification to our simple Euclidean model can simulate the
 

effect of cosmological source evolution. We assume that X-rays are
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emitted only by lumps confined to the outermost part of the universe

sphere in a shell of thickness A XH. The total intensity will simply 

scale with A, so that a factor of A2 appears in the numerator of 

equation [VII.75]. The effect on the variance is more complicated, 

necessitating the replacement of F(gs) with F(ksA). For the always 

resolved large scale lumps, Es > Lcrit' and F = A / £s, so that the 

density limit 
SPrms/P A -1/2 [I.
i1/2 p 9 s 
 [VII.S0]
 

is strengthened by increasing amounts of evolution (A + 0). For sources 

with A8 < (1 - A ) Xcrit , all these smaller lumps are distant enough that 

none are resolved. Therefore F = (T/Sd)2 A / (1 - A) is, as expected, 

independent of the lump size. The intensity variance is similarly 

unaffected, but 

S p ,p c-3/2 [VII.811 

For intermediate scales Xcrit evolutionary models will have more
 

stringent limits on density fluctuations for a given observed limit on
 

the intensity fluctuations. However the steeper index insures that at
 

some small scale, the evolutionary model constraint will be less severe
 

than a similar scale no-evolution model. More complicated intermediate
 

behavior is seen for lumps with (I-A) Acrit < Xs < Xcrit, where there
 

are both point-like and resolved lumps.
 

,To get a feel for the limits we might obtain later with more 

rigorous models, we present in Figure VII.32 the limits on Prms/P for 

the simple Euclidean model we have examined here. For our effective 

detector size, the critical scale size delimiting all-resolved and some 

point-like lumps is Xcr t - 390 h50 
-I Mpc. A detector response that 

covered less solid angle would lead to more stringent limits on 6Prms at 

scales below 390 Mpc. The limit for a2 that we have used, ' 0.07 

(counts exp-1)2, has not been corrected for AGN evolution, or for the 

possible clumping of point sources. In this subsection we have not made 

any adjustment for the possibility that some fraction of the X-ray 

emissivity from a given lump is due to point sources. As we saw earlier 

in this section, the application of Poisson statistics to such sources 

would enhance the fluctuations and decrease the allowed amount of 
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Figure VII.32: Limits on large scale structure imposed by Xrray
 

fluctuations bounds
 

We plot the upper bounds on the rms density variations due
 

to a Single scale of lumps versus the lump radius. No 

cosmological corrections are made. 0I C 1.6% of T. For 
the evolutionary model, A = 0.2. See text for further 
details. 
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6Prms/p. Figure VIT.32 presents a limit for no evolution and for the
 

simple evolution model with A = 0.2. The other dashed lines were taken'
 

from a similar 	figure by Fabian J1981], where the optical correlation
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line indicates actual clumping deduced from the observed angular
 

distribution of galaxies [Peebles 1974]. The limit at the very largest
 

linear scales is based on limits to the small scale fluctuations of the
 

microwave background [Partridge 1980]. Even with our crude techniques
 

and elatively conservative limit on the excess variance we see that the
 

X-ray sky fluctuations provide an interesting probe of structure of the
 

universe over a large range in scales. The region from -100 Mpc to 6000
 

Mpc is particularly difficult for techniques other than the X-ray sky
 

variations, although Osmer [1981] hopes to cover some fraction of this
 

range through searches for large angular scale clumping of QSOs.
 

A note on appropriate detector size
 

Previous authors' techniques for calculating the excess variance
 

due to clumping have involved more accurate estimates of the 

cosmological effects (see particularly McKee [1980]) than we have used 

here. However, a certain imprecision of language has led to the use of 

the wrong values for the detector size in applying their formulae. 

Typically the detector size was based on the so-called effective solid 

angle, neff (equation [111.53]). According to our derivation, 9 eff 

includes a dependence on the units of the detector spatial response 

function, r(O, ) in addition to units of solid angle. This is normally 

overlooked in most analyses of the fluctuations, where the same units 

are used for intensity and flux so that the response is dimensionless. 

To see that neff is indeed not the appropriate variabie to use, we 

consider the effects of smearing the detector response. As the solid 

angle covered by the detector is increased, the average response must 

decrease, The ratio of surface brightness to measured intensity is thus 

constant, but the effective solid angle actually decreases. For 

example, we have commented on two sets of UHURU analysis: Fabian [1975] 

smeared by 50 the 5.2°x5.20 detector, yielding neff , 5 msr; while 

Schwartz et al. [1975] smeared the detector by 100, to get a smaller 

Reff 4 msr. If neff is interpreted as the effective size of the 

collimator, then by spreading the detector around we are presumably 

becoming sensitive to structure on smaller scales. An additional 

erroneous aspect to using Reff in calculating the fluctuations variance 
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is that it applies to the case of sources distributed in intensity 

W1-5/2, and that only sources below a certain intensity limit 

contribute (see [111.56] et seq.). For a population of lumps, none of 

which have been individually detected, one or both of these assumptions 

will not apply. 

We can make a better estimate of an effective detector size using
 

the weighted detector responses we have developed. As noted before, R2
 
is appropriate for measurements of the fluctuations from any
 

distribution of point sources, when not selected by a critical upper
 

intensity value. For resolved sources, the appropriate weight to use is
 

R, which converts uniform surface brightness to intensity. In our
 

simplified model for the contribution to lumps, the effective siz6 of
 

the detector should correspond to the angular size of a source at the
 

demarcation point between resolved and point-like behavior in its
 

contribution to the excess variance. In our analysis, the transition
 

point is reached when a source radius subtends an angle
 

Oeff = 2 R1 / R2 [VII.821
 

For the smeared detector we used this is the 3.70 size derived above.
 

For comparison, the smeared UHURU detector of the Fabian analysis has 
9eff = 4.80, while the rebinned data Schwartz [1980] used in his 

estimate of the excess variance has 8eff = 70. These values, crude as 

they are, give a feeling for the range of structure most constrained by
 

a limit on the excess variance, i.e. those with
 

Xs > Xcrit = 8 eff XH [VII.83] 

Fluctuations from continuous density ripples
 

In placing limits on the density enhancements of lumps of matter
 

we have so far assumed that all such lumps are the Same size. If the
 

lumps were to have a range of sizes, the limit from the excess intensity
 

on the amount of structure allowed at a particular scale would be
 

stronger. Such a range in structure size is assumed by many studies of
 

large scale phenomena in both the early and current epochs [e.g.
 

Peebles 1980]. Rather than being a set of spherical lumps, the universe
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is decomposed into a set of plane waves, of wavelength A and amplitude 

dp(A), that often have a power-law form for their power density 

spectrum. 

A detailed analysis of such phenomena, even for the finite
 

Euclidean universe we used above, is beyond the scope of this
 

exposition. We note, without proof, a few general properties that have
 

been worked out in preparation for future analysis. The total excess
 

variance from all scales is the integral of the contribution to the
 

excess at each scale weighted by (Sp(A)) 2 . For fixed amplitude the
 

excess variance is proportional to X2, equivalent for a Poisson
 

distribution of lumps in the strongly constrained always-resolved
 

regime. However, the contribution to the fluctuations from a given 6p
 

is generally less than from the same Sprms of the Poisson lumps. This
 

is because the structure is strongly regular and correlated, so that the
 

fluctuations are reduced, as we discussed in the beginning of this
 

section. The contribution is equivalent to only one or a few Poisson
 

lumps in the field of view. Small solid angle detectors will have
 

larger fractional variance, at all scales, although the calculation is
 

complicated. The effects of evolution are much reduced unless the scale
 

lengths of the evolutionary behavior are comparable to or smaller than
 
2.
 

The examination of realistic models of multiple scale variations,
 

in light of the X-ray excess variance limit, probes the universe near
 

the critical epoch of galaxy formation.
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CHAPTER VIII
 

THE X-RAY SKY FLUX: SPECTRUM, MODELS, AND FUTURE PROSPECTS
 

Previous chapters have discussed the anisotropy of the X-ray sky,
 

but there is a separate approach that gives important information. A
 

successful model of the sky flux, besides describing its spatial
 

distribution, must also explain the observed spectrum. In this chapter
 

we will summarize the spectral properties of the X-ray sky, as well as
 

the various physical processes that might produce such a spectrum.
 

Several models for the origin of the X-ray sky are examined in the
 

context of the spectrum. One model, with substantial flux generated by
 

a hot intergalactic medium (IGM), is considered in more detail as the
 

observed limits on the excess variance have an explicit role in
 

constraining variaftons of the model. This chapter also includes a
 

discussion of the results that future, more detailed, examinations of
 

the HEAO 1 A-2 database should produce. Future studies of the sky flux
 

are outlined and contrasted.
 

1: The Observed X-ray Sky Spectrum and Physical Processes
 

Recent measurements of the X-ray sky spectrum from 3 keV to
 
400 keV are reviewed. A thin thermal bremsstrahlung
 
spectrum with kT - 40 keV is a good description of the total
 
spectrum from 3 to 100 keV. Other possible interpretations
 
of the data are presented. The effective spectrum, after
 
removal of an estimated component due to known sources, is
 
described. We summarize briefly the physical mechanisms
 
that can produce X-ray emission.
 

Our understanding of the X-ray "diffuse background" and the
 

astrophysical implications of its flux has evolved over the past decade
 

(compare reviews by Silk [1973] and Rees [1980]). Two basic criteria
 

are still used to evaluate and compare the proposed origins for the
 

flux: limits on the small scale fluctuations and the spectrum. We have
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already seen how our knowledge of the fluctuations can constrain models
 

for the number versus flux of unresolved point sources. In addition the
 

residual fluctuations are a potential probe of structure in the universe
 

at the largest scales. Unfortunately, the restriction of these
 

measurements to a single nafrow portion -o the X-ray spectral band makes
 

it difficult to determine the physical processes that produce the X

rays. On the other hand,, a detailed moderate resolution measurement of
 

the sky spectrum over the' entire X-ray band can give clues of the origin
 

of the emission. The photon distribution predicted for a particular
 

process or actually observed for.a class of sources can be compared to
 

the observed X-ray sky spectrum to place. limits on the possible
 

contribution by such a process or class. No model for the X-ray sky
 

flux can be considered successful unless its expected contribution over
 

a broad energy range is compatible with the spectral observations.
 

Spectral characteristics of X-ray emission processes
 

The interaction of energetic electrons with their environment is
 

at the heart of the models which dominate continuum emission in the X

ray band. Specific models differ in several ways. The electrons can be
 

in thermal equilibrium or in a nonthermal power law distribution. An X

ray photon can be created by accelerating an electron or a low energy
 

photon can be upscattered to X-ray energies by y-e interactions. Those
 

processes associated with atomic interactions (atomic -absorption, line
 

emission from atomic transitions, ionization, and recombination), though
 

of intense astrophysical interest and exhibited by a wide range of X-ray
 

sources, are not thought to be important for the X-ray sky spectrum.
 

We will outline the observational characteristics of the basic
 

processes invoked in models of the X-ray sky flux. A more detailed
 

treatment of the physics may be found in Tucker [1975J and Rybicki and
 

Lightman [1979] as well as specific references that follow. A review of
 

emission processes in the context of current observations of X-ray
 

sources is found in Holt and McCray [1982].
 

Two typical processes for X-ray emission from a relativistic
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electron, y = Ee / meC2 >> 1, are synchroton emission and inverse 

Compton scattering. In the former, acceleration of the electron by a 

cosmic magnetic field will produce a quasi-continuous, photon emission 

which peaks at an energy E = 5.2x0 - 12 Y2 B keV, with B measured in 

Gauss. Therefore the production of a 20 keV photon by the synchrotron
 

process requires very large fields or ultrarelativistic electrons.
 

Inverse Compton scattering, where an initially low-energy photon with
 

energy Ek gains energy from the electron via Compton scattering, is able'
 

to produce X-rays with less energetic electrons: E 9 Therefore
Y2 EZ. 


electrons with Y - 3x10 3 will produce 20 keV photons by scattering off 

the microwave background. If the soft photons are in the optical band, 

£.j. starlight, then T - 30. Both processes, synchrotron and inverse 

Compton, are combined in some compact sources, and the overall process 

is called synchrotron self- Compton (SSC) [Jones, O'Dell, and Stein 

1974]. The electrons interact with the magnetic field to produce radio 

through optical synchrotron photons. Some of these photons are then 

scattered up to X-ray and higher 'energies by the same electron 

population. This mechanism has had some success in providing a unified 

spectral picture of emission from Seyferts [Mushotzky 1977] and, with 

modifications, from BL Lac objects [Urry and Mushotzky 1982]. The 

identical Y2 dependence of both the inverse Compton and synchrotron
 

processes shows that for a given population of electron energies, these
 

processes will produce photon spectra with essentially the same shape.
 

A power law distribution of electrons,
 

produces a power law photon spectrum with energy index 

a = (n - i) / 2 [VIII.2] 

(recall that the index is defined so that the flux is proportional to 

VM)
 

If radiative losses dominate, the electron energy loss rate is
 

proportional to Y2, so that large Y electrons are affected most. The
 

The X-ray Sky Flux The Spectrum
 



VIII:I 353
 

time scale for energy loss is 

tc - 3x10 7 / U y seconds, [VIII.3] 

where U is the energy density, in ergs cm- 3, of the photon field for 

inverse Compton emiison or of the magnetic field for synchrotron 

emission. This leads to a fairly sharp break in the electron energy 

spectrum at 7b' above which the electrons are strongly affected by 

radiative losses. The break energy will move to lower and lower 

energies as the electron population ages. If t is the age of the 

source, %b(t) - 3xlO 7 / (U t). This will in turn affect the emitted 

spectrum at energies greater than the corresponding photon energy, 

Eb(t). For inverse Compton emission this is 

Eb(t) - 2.4 Et (yb(t))2 • [VIII.4] 

If the electrons are continuously replenished by new electrons also
 

having index n, then above the break energy the population reaches
 

equilibrium with index n+l. Therefore the emitted spectrum energy index
 

breaks to
 

a' = a + 1/2 . [VIII.5] 

If the population is not replenished the observed break is sharper. For
 

synchrotron emission the index breaks to [Tucker]
 

a, ) (4/3)a + 1 . [VIII.6] 

The equality holds only when the initial distribution of pitch angles, 

the angle the electron velocity makes with the B field, is isotropic and 

there is no mixing of the populations with differing angles as the 

electrons age. The higher pitch angles are preferentially depopulated 

as those electrons have larger energy loss rates. Synchrotron emitters
 

that continuously re-isotropize the pitch angle distribution or inverse
 

Compton emitters in an isotropid soft photon bath may have essentially
 

no flux above the photon break energy, Eb(t).
 

In the above example of X-ray production by inverse Compton, the
 

photon was energized by a single scattering with the* relativistic
 

electron. If the medium is optically thick to Compton scattering (but
 

thin to absorptiony multiple inverse Compton interactions can increase
 

the energy of soft incident photons.to the typical electron energy. X-
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rays may be produced in such cases from soft photons by a distribution 

of non- or near-relativistic electrons. For example, in u"saturated 

Comptonization soft photons are scattered through a thermal electron 

distribution which is only a few Compton optical depths in extent 

[Shapiro, Lightman, and Eardley 1976]. If the electron temperature is 

T, then the low energy emitted photons, E kT, have a power law form, 

the index determined by details of the Compton optical depth. At higher 

energies, E - T, the spectrum includes an exponential cutoff, 

exp(-E/kT), reflecting the thermal electron distribution. 

A thermal distribution of electrons can produce X-rays directly 

through bremsstrahlung interactions with other constituents of the 

plasma. Though e-e interactions may make a significant contribution, 

particularly at higher temperatures, kT 100 keV [Maxon 1972], the 

electron-ion interactions dominate at lower temperatures. For a thin 

(to Comptonization) thermal plasma the emissivity is [Tucker 1975]
 

38 
j(E) - 6.8x0 - (ji Zi2 Ni) Ne g(E,T)
 
-3 -1 1
x T- 1/2 exp(-E/kT) ergs cm s Hz- , [VIII.7]
 

Ne is the number density of electrons3 and Ni and Zi are the number
 

density and charge of the ith ion species. For a completely iohized gas 

with NEe = 0.1 NH (He 28% of total mass) and no higher Z constituents 

the sum reduces to 1.2 Ne. For material containing typical cosmic 

abundances of high Z species, the sum is -1.4 Ne* The effective Gaunt 

function, g(E,T), can be treated as a general correction term. An 

approximate form, derived by bfitzler, Bai, Crannel, and Frost [1978] is 

-g(E,T) - (E/kT)-(ag) , [VIII.8.a]
 
"1 5 
as= 0.37 (30 keV/kT) 0 . [VIll.8.b] 

However, this is valid only for moderate temperature plasmas, 15 < kT <
 

50 keV. Second order radiation processes, relativistic corrections to
 

the Maxwellian thermal distribution of the particles, and contributions
 

from electron-electron scatterings, already important at these
 

temperatures, require increasingly accurate calculhtions at higher
 

temperatures. The problem has been addressed by Gould and others (Gould
 

[1982] and references therein). In general, as temperatures increase,
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g(E,T) becomes a flatter function of energy. Like unsaturated
 

Comptonization, the spectrum produced by thin thermal bremsstrahlung is
 

approximately a power law at low photon energies with an exponential
 

cutoff at E - kT.
 

Characterizations of the sky spectrum
 

Prior to HEAO 1, the spectrum over the 3 to 100 keV range was
 

measured in separate portions by several groups. Early results from any
 

one band were generally consistent with a smooth, featureless power law.
 

Trying to combine these different measurements proved difficult as the
 

experiments had fundamental differences in sensitivity and internal
 

background. Even two early measurements that covered roughly the same
 

energy band with similar detectors seemed to differ; the reported value
 

for the spectral energy index, a, ranging from 0.4 [Boldt, Desai, Holt,
 

and Serlemitsos 1969] to 0.7 [Gorenstein, Kellogg, and Gursky 1969]. It
 

was eventually recognized that the power law index steepened
 

significantly at -20 keV, though it was not until the results of
 

Schwartz and Peterson [1974] that this rollover was detected by a single
 

experiment.
 

Two experiments on HEAO 1 were together able to cover the entire 

range of the "hard" X-ray sky spectrum. The high energy ranges, 12-100 

keV [Rothschild et al. 1983] and 60-400 keV [Matteson et al. 1979], 

were covered by the scintillation counters of the A-4 experiment. The 

MED and HED proportional counters from the A-2 experiment covered the 

range 3 to -50 keV [Marshall et al. 1980]. Using the internal 

background subtraction (L-SFOV) and the electron rejection (propane veto 

layer) techniques (see Sections I1:1 and 11:2), the A-2 experiment was 

able to obtain a relative accuracy of a few per cent. The absolute 

precision of the normalization is estimated to be ±10%. This produced a 

spectrum with an accuracy rivaled by few other source spectra in X-ray
 

astronomy. Since the final calibration of both experiments involved in

orbit examinations of the Crab Nebula it is not surprising that they
 

give fairly good agreement over the regions of overlap (Figure VIII.1).
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Figure VIII.l: The cosmic X-ray sky spectrum from HEAO I
 

The error bars on the solid curve from Marshall et al.
 
are generally smaller than the line thickness. The A-4
 
results are from preliminary fits. The very highest
 
energy results (0.3-10 MeV) were obtained from
 
scintillation experiments flown on several Apollo missions
 
[Trombka et al.UNL 1977]. (Based on a figure in
 
Rothachildet al. [1983]. the dashed AGN contribution
 
lines are from two models of the AGN luminosity function
 
considered by Rothschild et al., with no evolution.)
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Marshall et al. were able to reject decisively a single power law
 

model for the total A-2 band. Models with an exponential form provided
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a significantly better fit. Because of previous theoretical
 

suggestions, a thin thermal bremsstrahlung model was examined. First
 

order corrections to the simple dipole model were included. Such a
 

model, with kT = 40±5 keV, gave an excellent fit. Rothschild et al. 

fit the 1-2-100- keV range with kT 45,- but their model omitted some of
 

the correction terms used by Marshall et al. Rothschild et al.
 

estimate that the inclusion of these terms will shift their best fit
 

value to kT - 40 keV, in excellent agreement with the A-2 result. 

Rothschild et al. show that the 12-100 keV thermal component smoothly
 

joins the results for the 60-400 keV range, from earlier analysis of A-4
 

data by Matteson et al., where a simple power law with a = 1.67 is a 

good fit. However this fit could be, especially at lower energies,
 

substantially contaminated by the continuation of the 40 keV
 

exponential. If the exponential component were removed, the index of
 

the remaining 60-400 keV flux would be substantially flatter.
 

The measured spectrum need not be produced by a thermal or
 

exponential component. Superpostions of evolving non-thermal sources
 

can mimic the single temperature specturm. Following the example of
 

earlier work [Cavaliere et al. 1979],'de Zotti et al. [1982] fit the A-2
 

3-50 keV data with various nonthermal source spectra models. The forms
 

chosen were ad hoc in that they are not grounded in the observation of
 

any sources with these spectra, but they are not unreasonable. De Zotti
 

et al. assumed qo= 0.5 and allowed for evolution of the co-moving
 
m
volume emissivity, A (1+z) . In one model the source spectrum is a
 

broken power law, with 0.4 < al < 0.5 below a break at 50-55 keV and 1.2
 

< a2 
< 
1.4 above it. Models with significant evolution, m 3, were
 

preferred. Single power law sources with a sharp high-energy cutoff
 

were also fit, although the position of the cutoff must either undergo
 

strong evolution or be drawn from a broad distribution. However, the
 

higher energy A-4 data (not included in the de Zotti et al. fits) may
 

strongly influence the acceptability of these models.
 

Apart from the general exponential roll off, there is little
 

obvious structure in the spectrum. The residuals to the A-2 thermal fit
 

are 1% over the 3 to 20 keV range. Marshall et al. specifically
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examined the A-2 data for indications of a possible edge due to iron
 

emission. Their upper bounds are consistent with the expected
 

contribution from a hot interalactic medium (IGM, see next section), or
 

from clusters.
 

If the thermal interpretation of the spectrum is correct, and if 

the origins of the X-ray sky flux are at high redshift, then the current 

observed X-ray temperature indicates quite high electron temperatures at 

the time of emission, kTem - 40 (1+zem). For compact thermal plasmas 

with kT 160 keV (z 3), significant numbers of electron positron 

pairs would be produced, principally by 2-photon processes. 

Annihilation radiation from these pairs would produce a significant 

feature. The details of the calculations are complicated, but the 

failure to detect a significant perturbation to the thermal fits at 

K 100 keV constrains the physical characteristics of the emitting 

sources (see Kazanas and Shafer [1983]).
 

2: The X-ray Sky: the Problem, and Model Solutions
 

The subtraction of estimated contributions from clusters and
 
AGN, without evolution, modifies the simple thermal spectral
 
fit. QSOs certainly may provide sufficient flux, but leave
 
important spectral issues unanswered. Other models
 
specifically address the spectral constraints, but lack
 
specific source identifications. Inverse Compton models are
 
shown to be incompatible with the residual sky spectrum.
 
Thermal bremsstrahlung from a hot intergalactic medium is
 
considered in some detail, though a simple uniform medium
 
has significant difficulties. The limits on the excess
 
variance do not rule out significant clumping, in the
 
context, of our simple Euclidean analysis of the last
 
chapter.
 

The problem
 

Observations indicate the existence of substantial emission in the
 

range from 3-100 keV, most of which (certainly at higher energies)
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cannot be ascribed to observed sources without some extrapolative
 
-6
assumptions. The total all sky flux from 2 to 100 keV is 2.3xi0 ergs
 

-2
s-i cm . This corresponds to an energy density, Uo;x = Sas / c = 
17 -3 .
7.8x0 - ergs cm In comparison, the microwave background energy
 

- 13 -3
deft1-ty is 4x10 ergs cm . If we ignore sinks and sources of either
 

kind of radiation, the ratio of the two is independent of redshift, and
 
-3
Ux = 2x10-4 UP. The X-ray photon density is 4.7x10-9 photons cm . The 

spectral forin of the emission is smooth, with a distinct exponential 

rollover at 40 keV. At higher energies (Q100 keV) there is a power law 

component, a3 - 1.7, extending to low Y-ray energies. However, in this 

section we do not treat both components, and instead concentrate on the 

exponential component that dominates the sky flux in the A-2 bandpass. 

This component may be of entirely different origin. A comprehensive and 

coherent model for the origins of the X-ray sky flux must exhibit the 

following characteristics: (1) it must provide the energy source(s) 

sufficient for the observed flux; (2) the total emitted spectrum 

predicted by the model, after adjusting for cosmological effects, must 

roll over at E - 40 keY; (3) the contribution of known populations of X

ray emitters must be allowed for, not only in the total flux but also in
 

the spectral shape; and (4) finally the sources cannot cause additional
 

variance in the HILl band which would exceed our upper bound for a2s.
 

The energetics for producing the X-ray sky are not intrinsically
 

overwhelming. The current energy density Uo;x correponds to 17 2-1
 
h50-2 eV per baryon, where b is the baryon density of the universe in
 

units of the critical density (equation [VII.60]). In comparison, 

nuclear fusion can liberate as much as 5 MeV per nucleon, while 

gravitational collapse can produce significantly more. -If 2 = 0.1, 

then we need "burn" only 0.003% of the hydrogen of the universe into 

iron. One problem, of course, is that normal thermonuclear processes 

are not at all efficient in producing X-rays, most of the radiation 

escapes at wavelengths in or near the optical band. In terms of
 

discrete objects, the total emission required is 3x10 59 ergs for every
 

galaxy brighter than MB -17.5. Bookbinder et al. [1980] estimate-that
 

an average galaxy has produced 5xl0 6 1 ergs in supernovae, based on
 

estimates of the metal content of the old stellar population of
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elliptical and spiral galaxies (see also Schwarz, Ostriker, and Yahil
 

[1975]). If AGN are the source of the X-ray sky flux then we see from
 

our canonical luminosity function of AGN (see Table VII.5) that -1060
 

h50-3 ergs per AGN are required. (This estimate is independent of any
 

evolution if the evolution conserves the total number of AGN, such as
 

pure luminosity evolution.) As we know, AGN are efficient producers of
 
-
X-rays. If we assume an average luminosity of only 1043'ergs s 1 (2-100
 

keV), then we could generate Uo;x in -3xlO 9 years. This is,crude
 

confirmation that with some evolution, AGN could produce most of the
 

observed sky flux.
 

Cosmological considerations modify these simple numbers. If the
 

observed energy density were created at an earlier epoch corresponding
 

to a redshift Zc, then-the X-ray energy density at that epoch was UJxzc)
 

= (l+zd4 Uo;x* Since the epoch of creation, the radiation has been
 

redshifted, causing an adiabatic cooling. Of course, the density of the
 

sources of the radiation was also greater at earlier epochs, since for
 

matter P = (1+z)3 . A more helpful measure of these quantities is the
 

co-moving density:
 

-
U* n (1+z) 3 U(z) . [VIII.9] 

If there is no creation or destruction of sources, their co-moving
 

number density is constant. For photons the evolution of the co-moving
 

energy density, U* - (1+z) reflects the higher energy each photon had at
 

the earlier epoch. As an example, if the co-moving rate of emission in
 

the appropriate band is constant, then the total' required co-moving
 

energy density required to produce what is seen today is (qo = 0.5)
 

U*T = (7/3) U*o;x . [VIII.10]
 

Either the.numbers or luminosity of the sources would have to adjusted.
 

This does not include effects due to spectral redshifting of the energy
 

source, so that flat spectrum sources (a<1) such as AGN would require
 

less of a correction to their emission as measured at a fixed frequency
 

in the emitter frame.
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Models from known X-ray sources
 

Since they were first detected, clusters of galaxies have been
 

proposed as significant contributors to the X-ray sky flux. Further
 

spectral investigation has shown that clusters have thin thermal
 

spectra, but distinctly cooler than the 40 keV sky. Our current
 

estimate, based on adjustments to the Piccinotti et al. [1982]
 

luminosity function, -is that clusters can make up as much as 4.5% of the
 

HILl flux (roughly 2.5 to 13.3 keV). Previous percentages, based on
 

incomplete estimates of spectra, luminosity function, and the impact of
 

cosmological corrections, were substantially larger. Without a
 

substantial change in cluster properties at large redshifts or low
 

luminosities there is small chance of increasing their contribution from
 

current estimates by more than a factor of -2.
 

The contribution of AGN to the sky flux has grown in importance
 

since their original discovery as sources of X-rays. (We continue to
 

include QSOs under the category of AGN.) But early and simple arguments
 

based on data in other- bands also argued that this would be the case
 

[e.g. Setti and Woltjer 1973]. We have seen from the last chapter that
 

without evolution AGN may provide -25%, or more, of the sky flux, and
 

with evolution consistent with extrapolations from optical data, ACN can
 

entirely make up the total.
 

There have been arguments, based in part on X-ray fluctuations
 

measurements, that place upper limits of "50% on the contribution of AGN
 

to the background [Cavaliere et al. 1980; 1981]. However, our own
 

analysis leads to no such conclusion. As we saw in Figures VII.17 and
 

VII.19, there exist evolutionary models for AGN that can produce all of
 

the background without exceeding the excess variance limits. Our
 

disagreement with the earlier work is due in part to their use of an
 

inaccurate estimate of the excess variance based on UHURU data. In
 

addition they took no account of the substantial negative excess
 

variance that is expected to be contributed by the rollover in N(S) of
 

clusters.
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Given the present analysis of HEAO 1 A-2 data, especially with the
 

confirmation of significant AGN X-ray evolution from Einstein
 

observations, many observers feel that it is all but clinched that AGN
 

provide the dominant fraction of the sky flux. However, some caution is
 

necessary. Much of the argument depends on extrapolation. The lower
 

energy spectral band covered by Einstein, compared to the higher energy
 

of the bulk of the sky flux, is a particular source of bedevilment. For
 

example, the calculation of the contribution of the observed Einstein
 

Deep Survey sources to the sky flux at higher energies makes the
 

possibly circular assumption that the sources have the same spectrum as
 

the 2-10 keV sky. Even the contribution of an unevolved population of
 

AGN is dominated by the lowest luminosity sources which are not directly
 

observed by the A-2 experiment. Our estimates have relied heavily on
 

the form of the continuation to lower luminosities, which in turn was
 

based on IPC measurements.
 

If the evolution of AGN allows them to be responsible for most of
 

the total sky flux, there are important ramifications for our
 

understanding of the X-ray producing physical processes in AGN. In
 

general these processes are similar to those we have discussed in 

connection with the sky spectrum in the last section (see also Rees 

[1980]). 

Our strong conclusion: if AGN do provide the bulk of the sky flux
 

then they must undergo spectral evolution, to a form distinctly
 

different from what the moderate luminosity, low redshift AGN are
 

observed to have by the A-2 and A-4 experiments. (Recall the
 

observation in Chapter I that no source studied in medium- or high

energy X-rays has the appropriate spectral shape to mimic the total sky
 

flux.) In particular, the effective spectral index over 10-40 keV must
 

flatten, changing from -0.7 at low redshifts to 0.4 at higher redshifts
 

(or luminosities). De Zotti et al. [1982] specifically tested for the
 

amount of allowed variation in the sources' power law indices, if power
 

law source spectra were to constitute the sky spectrum. When this
 

variation was modelled as a Gaussian distribution of the index, with all
 

sources having identical differential luminosities at 5 keV, they were
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able to show that the allowed aa C 0.25 (90%). They estimated that 

based on this limit there could be at most a 30% contribution to the sky 

flux, presumably as measured at 5 key, from AGN or other objects with a 

0.7. In this model, little or no AGN evolution is allowed. De Zotti
 

et al. a-so considered a variant of their single power law model with
 

an evolving sharp cutoff at high energy, now alldwing evolution of the
 

power law index. For an exponential evolution of the volume emissivity, 

QL = 4, the low energy data is fit by sources with a = 0.7 exp[-1.35T]. 

However, as de Zotti et al. note, such models provide a poor fit to the 

40 keV exponential rollover at the high energy end. This kind of 

evolution of the power law index would result in significant changes at 

relatively low redshifts. At z = 0.5 the index has flattened to 0.45, 

and by z=l.5 to 0.31. As is the case for most cosmological evolution 

models, this proposed form for the variation in a, though ad hoc, gives 

a rough feeling for the sort of behavior required by the constraints of 

the X-ray sky spectrum. 

Though some such spectral evolution is allowed by the sky flux
 

data, and is required if AGN do indeed provide the sky flux, the
 

physical basis for such change is an outstanding question. It would
 

help to find some change in AGN properties at high redshift coincident
 

with the change in X-ray effective index. One obvious change is in the
 

average source luminosity. An additional indicator is the possible
 

shift in aox with either luminosity or redshift. Indeed, the supposed
 

decrease in the ratio L2 key / Lopt could be caused in part by a
 

systematic change with redshift of the X-ray spectral index in the lower
 

flux Einstein sources. On the other hand, we would be equally justified
 

in positing an opposite evolutionary -trend in a, i.e. where the high 

redshift objects have preferentially steeper spectra than are observed 

in the A-2 and A-4 low redshift AGN spectra. The variation in aox, as 

measured at - 2 keV, can be accommodated by either a systematic 

steepening or flattening of a, depending on whether the X-ray energy 

where aox is not a function of redshift is below or above the Einstein 

bandpass. We have discussed how the extrapolation of the Einstein
 

source counts to the counts in a higher energy band is greatly affected
 

by the source spectral index.
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The contribution of AGN to the higher energy sky flux, 100 keV,
 

is also an important issue. It has been suggested by Boldt [1981b] and
 

others that the sky flux at 500 key can be produced by AGN with little
 

or no evolution. This conclusion is predicated on the continuation of 

the AGN spectra, with a - 0.7, out to these high energies. Also the 

limitations on the evolution depend critically on the AGN luminosity 

function at the low luminosity end. Both issues have been considered in 

more detail by Rothschild et al. [1983]. Their data do not require any 

break in a at high energies, but because they have few counts above 100 

keV, one is certainly allowed. Eventually, the sources must break to 

follow the general downturn of the Y-ray sky flux. In addition, the 

existence of such a break in the spectrum of- 3C273 between 100 keV and 

50 MeV can be inferred from observations taken by COS-B [Hermsen et al. 

1981] and simultaneous lower energy data from HEAO 1. At the other end 

of the luminosity function, the radio galaxy CEN A has been studied at 

high energies by Baity et al. [1981]. When the data taken from the A-2 

and A-4 experiments is compared with non-contemporaneous measurements at 

higher energies there is again evidence for a steepening in the spectral 

index as the energy increases. Rothschild et al. investigate models 

with spectral breaks and sharp low luminosity cutoffs in the AGN 

luminosity function, assuming no evolution. Other discussions of the 

observational constraints can Tbe found in Setti and Woltjer [1979; 

1982]. SSC models for X-ray and Y-ray production in AGN (see the
 

previous section) provide a theoretical basis for a gradual steepening
 

in the spectral index with increasing energy [Mushotzky 1976] (see also
 

the discussion in Batty et al. [1981]). Another theoretical model for
 

such -structure is found in Protheroe and Kazanas [1983], and the
 

ramifications for the high energy sky spectrum are outlined in Kazanas
 

and Protheroe [1983].
 

It is obvious that further spectroscopy is mandatory before the 

solution of the X-ray sky problem is in hand. If spectral evolution is 

to allow AGN to provide the bulk of the sky flux, then from the models 

of de Zotti et al. moderately accurate 1-10 keV continuum spectra of 

AGN at z a 0.5 should be distinguishable from the current epoch spectra. 

Such spectra would also make possible a more accurate extrapolation of 
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the Deep and Medium Sensitivity Surveys to the HILl band. These
 

observations will be made by the next generation of X-ray detectors,
 

such as the Broad Band X-Ray Telescope [Serlemitsos 1981] and others
 

presented in Holt [1981]. If, even after spectral and luminosity
 

evolution-, AGN-still do not provide the total X-ray sky flux, then we
 

must look for explanations of the residual emission. An accurate
 

calculation of the residual will, of course, require a good model for
 

the AGN contribution. Not only will we need the 3-50 keV spectral
 

results obtained at moderate redshifts, but also the evolution models
 

and the Einstein survey counts must be included. In addition, to
 

measure accurately the position and shape of the rollover at 40 keV we
 

must have some understanding of the location and extent of any high
 

energy spectral break for the AGN.
 

Preliminary estimates of the residual sky spectrum have been made
 

by several authors, each with their own assumptions. Leiter and Boldt
 

[1982] (see especially their Appendix D) fit the residuals of the A-2
 

3-50 keV sky spectrum to a generalized exponential and power law:
 

s(E) - E' exp(-E/Eo) . [VIII.11] 

The e-folding energy E. is equivalent to the plasma temperature for thin 

thermal bremsstahlung and unsaturated Comptonization models. The 

components subtracted to obtain the residual include 4% (at 3 keV) from 

clusters (kT = 6.9 keV), 20% due to "Seyfert" galaxies (equally divided 

between a = 0.6 and 0.7), and a component due to "quasars". This last 

fraction is assumed to be steeper than Seyferts, a = 0.9 or 1.4, and it 

contributes between 14% and 17% of the 3 keV sky flux. Though, this 

model can be said to use our best current understanding of AGN, there
 

are large uncertainties in our knowledge, particularly its contribution
 

from quasars. Even so, the model indicates the trends in the residual
 

spectrum. The values for a in equation [VIII.11] are fairly flat,
 

showing that the low energy range of the residual is considerably
 

flattened by the removal of the known sources. The exact value is
 

strongly correlated with the value of Eo:
 

a 0.8 [1 - (23 keV/Eo)] , [VIII.12] 

with good fits to the residual spectrum if a < 0.2. In particular, a
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pure exponential, a = 0, is a good fit with E0 23 keV. This 

illustrates that the residual spectrum has an essentially lower observed 

temperature, from 23 to 31 key. A superposition of several 

exponentials, for example E0 = 13 and 33 keV with a = 0, can also 

describe the residual spectrum. If we were to fit the residual spectrum 

to the broken power law models of de Zotti et al. similar trends would 

be observed. The index below the break would flatten, the break point 

would move to a lower energy, and the index above the break would 

steepen. Fabian [1981] and Fabian and Kembhavi [1982] (hereafter FK) 

fit the residuals for the entire 3-300 keV range. They obtain their 

residual spectrum by subtracting only an AGN component with a = 0.7 that 

contributes 20% of the 3 keY sky flux. They fit the remainder with thin 

thermal bremsstahlung models and report that no single temperature model 

provides a good fit. They are able to fit a range of temperatures 

following a model for a cooling IGM which we discuss in more detail 

below.
 

Boldt has pointed out [private communication] that if the origin
 

of the residual flux is indeed thermal bremsstrahlung, the flat power
 

law-like component at the lower energies can contain very useful
 

cosmological information about the origins of this flux. As we remarked
 

in the last section (see the discussion of equation [VIII.8]), the
 

effective Gaunt factor index is a function of the emitting-plasmas'
 

temperatures, with the generally flatter Mg corresponding to hotter
 

temperatures. Therefore, by fitting for the effective Gaunt factor, we
 

can in principle measure the emitter frame temperature. With the.
 

observation of the current epoch Eo, we can then determine the redshift
 

of the origin of the bulk of the sky flux:
 

1+z ' kTem / Bo . [VII!.f3]
 

The very fiat residual spectrum obtained by Leiter and Boldt indicates
 

that thin thermal bremsstrahlung models must originate at appreciable
 

redshifts, z 3. The quality of this limit, however, depends on the
 

assumptions used in obtaining the residual. In a similar manner, the
 

determination of a can reflect the physics of unsaturated Comptonization
 

models. However, as the effective index is mostly a measure of the
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optical depth of the emitting plasma, rather than its temperature, we
 

cannot use it to determine the redshift of the emitter.
 

Inverse Compton models for the residual
 

The production of the X-ray sky flux by inverse Compton scattering
 

of the microwave background photons off relativistic electrons has been
 

among the earliest models proposed. The model was originally proposed
 

by Felten and Morrison [1966] and elaborated by Brecher and Morrison
 

[1968]. Electrons were either produced in ordinary galaxies and then
 

leaked into- intergalactic space, or injected by the processes that
 

produced the large scale structures associated with radio galaxies.
 

For some versions of this model the cosmological corrections are 

straightforward. Because the seed photons come from the microwave 

background, and are affected by the cosmological expansion in the same 

way as the X-ray sky flux, the electron energy needed to produce what is 

observed today as a 20 keV X-ray is unaffected by the epoch of 

production, i.e. Yx - 3xl03 at all z. Because the rate of scattering 

is proportional to the energy density of the soft photons, which is 

proportional to (i+z)4 , inverse Compton processes offer increased 

efficiencies at earlier epochs: 

- 12 - I
dN*x = 7.3xi0 s (1+z) 3 N*e(y~z) dt .[VIII.14]
 

N*x is the co-moving density of X-ray photons and N*e(y'z) is the co

moving density of electrons at redshift z and energy y. The coefficient
 

is proportional to the co-moving number density of the soft photons.
 
cm
The numerical value used here assumes that these are the -280 -3
 

photons of the 2.7 Kelvin microwave background.
 

This model was originally suggested at a time when the details of
 

the X-ray sky spectrum were very poorly known, particularly the need for
 

a break around 20 to 40 keV. As discussed in the last section, a power
 

law distribution of relativistic electrons can easily produce a power
 

law distribution of X-ray counts. However, as the sophistication and
 

accuracy of the spectral measurements increased, theoretical models
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needed to reflect the observed break, Cowsik and Kobetich [1972] argued
 

that inverse Compton from a blackbody spectrum was unable to match the
 

observed sharpness ofthe break, examining a particular model for the
 

sources' electron distributions. Brecher [1973], in rejoinder, pointed
 

out that- much of the width of their break resulted from Cowsik and
 

Kobetich's assumption of a distribution in the break point for the
 

equilibrium electron spectrum. Brecher maintained that if all electron
 

spectra have a universal break energy, then their superposition would
 

give a good description of the X-ray observations. To 4llustrate this
 

possibility he presented several radio source spectra which matched -the
 

curvature in then. current measurements of the X-ray sky spectrum.
 

Because these source spectra were presumably generated by synchrotron
 

processes, which are inherently broader than inverse Compton from a
 

black-body, there must exist some electron spectrum which could
 

reproduce the X-ray curvature.
 

In order to compare observations of individual sources to the sky
 

spectrum we must make specific assumptions, in- particular that the
 

snapshot spectrum of a source at one instance is equal to the total
 

spectrum produced over the lifetime of the source. Unfortunately, for
 

the inverse Compton process, the energy loss times of the electrons
 

responsible for the X-ray emission are short on a cosmological
 

timescale. From equation [VIII.3] we see that electrons with energy yx
 

have lifetimes
 

-
te Ho ~ 0.04 (1+z) 4 h50 [VIII.15]
 

Electrons produced even at the relatively nearby redshift of 0.5 have 

the comparatively short lifetime of -150 million years. All electrons 

with y>yx at injection, after time - to(yx), will have decayed to 

energies less than yc and therefore no longer contribute -photons to the 

X-ray band. Hogan and Layzer [1977] derived an approximate relationship 

between the electron injection spectrum and the sum of the emitted X-ray 

photons, assuming that inverse Compton dominates the electron loss 

rates. In their example, the electrons were produced during a single 

cosmologically short interval. We can generalize their result to allow 

for electron production throughout the history -of the universe. Let 
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N*e;tot(y) dY be the total co-moving injection spectrum. If Oo;x(E) is
 

the current epoch X-ray energy density between E and E+dE, then
 

N*e;tot(y) dY - -2 Ez d[y Uo;x(EBY 2 )] . [VIII.16] 

The accuracy of this formula-rests on the fact that the decay times are
 

short in comparison to the expansion time of the universe. Also, we
 

have assumed that the distribution of inverse Compton photons from an
 

electron of a given energy is a delta function, 6(E - Y2 E£). Originally
 

inverse Compton models were used to explain the sky flux from 1 keY to
 

well over an MeV. We can show, however, that these models do not
 

explain the residual component of the X-ray sky flux after subtraction
 

of the expected AGN contribution. If the spectral form of the residual
 

is well described by equation [VIII.11], then the total electron
 

injection spectrum is
 

N*e;tot(y) Y-2a exp(-y 2Ez/Eo) 

x [ 2 y2 (EZ/Eo) _ (1-2a) ] [VIIi.17] 

If a >> 0.5 then N*e;tot is well defined, following the general form as
 

the X-ray spectrum: a power law with an exponential (in y2) cutoff.
 

However as a + 0.5, the electron spectrum begins to require a roll over
 

at low y. Finally for a < 0.5, the X-ray spectrum requires negative
 

numbers of low Y electrons, i.e. no realistic distribution of electrons
 

can provide such an X-ray spectrum. The fits to the X-ray sky spectrum
 

had a 0.4, even before removal of any AGN contribution, so it is easy
 

to see that these models are not viable. Inverse Compton models could
 

still be possible if radiative losses were not the dominant mode of
 

electron energy loss. One possible approach might be adiabatic
 

expansion losses, but this needs further investigation. Even if it is
 

possible to reproduce the observed structure, a specific break energy is
 

required in the electron injection spectrum. The model is incomplete
 

without some physical understanding of why all the sources of electrons
 

should have such a feature at nearly identical energies.
 

Thin thermal bremsstrahlung models for the residual
 

At the same time that Cowsik and Kobetich objected to inverse
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Compton 'models they proposed that the curvature in the sky flux spectrum
 

could be fit by the exponential characteristic of thin thermal 

bremsstrahlung. This replaces the problem of determining a unique 

feature in the injection electron spectrum with that of postulating a 

universal temperature, or a moderately narrow range of temperatures. 

Cowsik and Kobetich answer this problem with the suggestion that the gas 

is a uniform hot IGM. The amount of material required was significant 

on a cosmological scale, 0 IGM 1, so that it was important in the 

missing mass controversy. This idea was examined in more detail by 

Field and Perrenod [1977] who proposed a specific thermal history of the
 

universe. As mentioned earlier, we will discuss the ramifications of
 

the Fabian and Kembhavi [1982] (FK) numerical fit to the residual
 

spectrum. In the FK model, the IGM is abruptly heated at a redshift zm
 .
 

Thereafter the gas cools, principally due to,adiabatic cooling from the
 

cosmological expansion, so that the thermal history of the IGM is
 

T = (I+z) 2 ToIGM . [VIII.18]
 

TolGM is the current epoch gas temperature. The thermal bremsstrahlung
 

emissivity of the gas is [Tucker 1975]
 

- -3
 dUx - 2.4xi0 27 Ne2 Ti/2 dt ergs cm . [VIll.19]
 

Ne is the number density of electrons. The numerical coefficient is
 

calculated only for the simple case of dipole electron-ion emission,
 

which at the higher temperatures may significantly underestimate the
 

total emissivity. From the effects of expansion on Ne and Ux we can
 

find the current X-ray energy density: 

Uo;x = f dt (1+z)3 2.4x10-27 NO; e2 ToIGM1/2 [VIlI.20] 

We see that just like the inverse Compton model, thermal bremsstrahlung
 

is a more efficient contributor to the sky flux at the larger redshifts.
 

The equation also indicates that the emissivity is proportional to the
 

square of the electron density.
 

The hot IGM may not be homogenous, but clumped. When considering
 

averages over all space we can replace <Ne2> with C <Ne>2 , where C is
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the clumping factor:
 

C PGM2>= (6Pr5 )2 +1 - VIII.21]
P 
 IGM 

If we assume that the IGM is clumped into spherical, possibly 

overlapping, regions ("lumps") with constant surface brightness, then we 

can use the crude results of Section VII:6 to estimate an upper bound 

for the clumping factor. Our upper limit on a provides an upper bound 

on the filling factor, 'D (see equation [VII.62]), given the lump size 

As/A H. In turn, this is related to the clumping factor by (see equation 

[VII.64])
 

C = - + I . [VIII.22] 

The use of the Section VII:6 limits assumes that the hot IGM is the
 

dominant source of the total sky flux and the excess variance.
 

The FK fits assumed qo = 0.5. Their derived contribution of the 

X-ray emitting IGM to the mass density, in units of the critical density 

-Pcrit, 4.7x10-30 h502 ergs cm 3 , is
 

-
IGM 0.6 (1+zm)-3/2 C 1/2 h50-3/2 [VIII.23]
 

A significant clumping factor and/or heating of the gas at a higher
 

reshift increases the emissivity of the gas, thereby reducing the
 

required amount. FK do not report a range of acceptable values of Z.,
 

but the value 5 provides a good fit to their residual spectrum so that
 
-1 /2
2IGM '0.04 C . The Field and Perrenod estimate, with a zm = 3, is 

substantially larger, QIGM - 0.3 [Rees 1980]. The decrease in the 

required amount of hot gas is partially due to the heating at an earlier 

epoch, but is also due to the. FK inclusion of highdr order 

bremsstrahlung processes, as well as their removal of the AGN 

contribution to the sky flux. The flatter a of the residual spectrum
 

may be responsible for the higher zm used by Fabian and Kembhavi.
 

The mean electron density in the universe is
 

<Ve = aiGM Pcrit (0"851mH) (l+z)3 . [VIII.24
 

The numerical factor is derived from the fraction of He in the universe
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and m. is the mass of a hydrogen atom. Using the FK values this
 

corresponds to
 

<Ne>= 1.4xi0-6 C-1/ 2 h501/2 (I+zm)-3/2 (1+z)3 . [VIII.25] 

The average density decreases as the medium becomes more clumpy,
 

although the mean density within each clump increases,
 

<Ne>cl = <Ne> ( 0-1 + 1) - C <Ne> , (VIII.26] 

so that <Ne>cl 1 c+1/ 2 .- The temperature of the medium is 

TIGM - To (1+z)
2 / (1+zm) . [VIII.27]
 

To is the current epoch temperature of the X-rays emitted just at Zm, 

kTO = 50 keV, or 6x108 Kelvin. ToGM = To / (1+zm) is the current epoch 

temperature of the gas. 

Perhaps the most frequently heard objection to a hot IGM model for 

the production of the X-ray sky flux is its extravagant energy 

requirements. Not only must we find a.source for the energy of the X

ray photons, but also energy to heat the medium to the initial 

temperature, Ti = To (l+zm). This requirement is more severe: 

U*heat 3 N*e kTi
 

- 6000 Uo;X (1+zm)-1/2 C-1 /2 h50 1/2 [VIII.28] 

The energy input required per baryon is now 0.1 2-i (1+zm)-i/ 2 C-1/2 

-
h50 3/2 MeV, or 0.4 Mev for a smooth universe heated at z = 5 and % =
 m 


0.1. That is, 8% of the universe has been converted to iron, if the
 

energy comes from thermonuclear reactions. This is a strong argument
 

that if a hot IGM is the origin of the X-ray sky flux, then some other
 

efficient, powerful source of energy is needed. Even AGN may have
 

difficulties providing this much. The average energy requirement of
 

2.5x1063 ergs per AGN corresponds to an average luminosity of 60 L44
 
=
over the entire life of the universe (qo 0.5). As this calculation
 

includes the low luminosity extension of the AGN luminosity function we
 

see that strong evolution is required. For instance, the average AGN
 

luminosity with a QL 4 evolution of the entire canonical AGN
 
- 1.
luminosity function is -1043 ergs s Of course, this figure considers
 

solely the energy output as X-rays. The non-electromagnetic fraction of
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the AGN total luminosity, such as kinetic energy in jets or beams, may
 

be much higher (and of course if there is any residual spectrum to be
 

explained by a hot IGM, the bulk of the gas-heating energy is probably
 

not in the X-ray hand).
 

The relative inefficiency of thermal bremsstrahlung means that
 

little of the original energy required to heat the material will be
 

emitted as X-rays. The characteristic loss time, tb, from thermal
 

bremsstrahlung can be found from equations [VIII.19] and [VIII.28]:
 
tb 1.8x1011 T/2 / Ne seconds . [Vii.29]
 

At the heating epoch the loss time is hundreds of times the present age
 

of the universe,
 

1/2
tb(Zm) Ho 4900 C71 /2 h50 (1+Zm)-I [VIII.30]
0 


(The product t Ho is dimensionless, and measures the time scale in units
 
-1
of the Rubble time, which equals 2x101 0 h50 years.) The dominant
 

energy loss rate of the hot IGM is adiabatic loss from the expansion of
 

the universe:
 

(dU*/dt)ad 3 N*e k dT/dt, [VIII.31]
 

which for a qo = 0.5 cosmology is 

(dU*/dt)ad 6 N*e kToIGM H0 (1+z)7/2 . [VII.32] 

From this the characteristic loss time due to adiabatic expansion is
 

-
tad Ho = 0.5 (1+z) 3/2 , [VIII.33] 

which at a redshift of 5 equals 0.03 Rubble times. At very high
 

redshifts Compton cooling from the microwave background can be
 

important:
 

(dU*/dt)cc = (4at/mec) N*e (+z)4 Uo;P kTIGM * [VIII.34] 

ct = 6.65x10- 25 cm2 is the Thomson cross section. However, Compton 

cooling is small compared to adiabatic expansion losses for z 280, qo 

= 0.5. Even if the effect on the energy budget of the IGM is small, 

Compton cooling can have a detectable impact on the spectrum of the 

microwave background. This has been discussed in more detail by Field 

and Perrenod, and Wright [1979]. Other ramifications of a hot IGM are 
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reviewed by FK and by Field [1978]. Possible scenarios for the heating
 

of the IGM and their observational consequences have been considered in
 

detail in a series of papers by Sherman [e.j. 1979, 1980] including
 

examples where the IGM is explicitly assumed not to contribute
 

substantially to the residual X-ray sky flux [Sherman 1982].
 

As pointed out by Fabian and Kembhavi, there is an additional
 

difficulty with the hot IGM model: their calculations assume that the
 

medium is in thermal equilibrium but "the electron-ion coupling time
 

generally exceeds the age of the hot gas [so that] the assumption of an
 

underlying Maxwellian distribution may fail." We will consider this
 

aspect in a little more detail. We investigate the constituents of the
 

ionized medium separately, ignoring nuclei heavier than hydrogen. A
 

good measure of the timescales required for the electrons or protons to
 

come to a thermal, Maxwellian distribution is their self-collision time
 

[Spitzer, 1962, his equatioh (5-26)]. For electrons this is
 

tee = 0.266 'T3 12 / (N in A) seconds . [VIII.35]e 

in A is the electron Coulomb screening factor [Spitzer, equation (5-14) 

et seq.], which at the epoch of heating, zm, is a slow function of our 

model parameters, i.e. A - C-1 /4 (1+zm)I/2. For zm = 5, the FK fits 

give In A = 40. Other than this slow dependence through In A, tee at zm 

is independent of the value of zm: 

1/2 C-1 /2 tee Ho . 0.08 h50 . [VIII.36]
 

This is longer than the adiabatic cooling time, but is sufficiently
 

short so that the electrons should be able to come to a Maxwellian
 

distribution within a reasonable length of time to provide the observed
 

thermal characteristics of the X-ray sky spectrum. In the equations of
 

thin thermal bremsstrahlung it is the electron distribution and
 

temperature that determines the emission characteristics.
 

It is much less clear that the protons can be treated as having
 

reached thermal equilibrium. If we assume that the proton and electron
 

temperatures are the same, then the self-collision times scale inversely
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as the particle velocities, or
 

-
(lpme)1/2 tee 43 tee 3 H [VIII.37]
 

The estimates of the energy requirements for heating the IGM assumed
 

equipartition of. the energy between- -the -electrons and protons. The
 

initial mechanism need not be so impartial; for example the energy may
 

be preferentially deposited in the protons, as in mechanical shock
 

heating (see the discussion in Hamilton, Sarazin, and Chevalier [1983],
 

also Protheroe and Kazanas [1983]). (However McKee [1974] argues that
 

plasma instabilities at the time of heating may provide equipartition.)
 

Spitzer (his equation 5-30 et seq.) estimates that the characteristic
 

time for achieving equipartition is
 

teq = 946 [1 + (Tp/1836Te)13/2 tee . [VIII.38] 

Crudely, if initially the electron temperature is near zero, Te <<
 
-
5x10 4 Tp, then even for the low densities and high temperatures of the
 

-
IGM there is good p-e coupling, teq 10 3 H -1. As the electrons heat
 
eq 0

up, the equipartition time increases greatly. If Te is set to the
 

temperature for the IGM at zm = 5-inferred by FK, then as long as Tp <
 

-200 Tel teq - 75 Ho-1 . Even without a detailed analysis we see that it
 

is possible for the proton temperature to be orders of magnitude larger
 

than Te. The amount of energy required to heat the IGM would be
 

multiDlied by a similar factor. If it seemed difficult to obtain 0.4
 

I1 -
Mev baryon- before, the prospect of 4 to 40 MeV baryonI1 is even more
 

daunting. If on the other hand, the mechanism that energized the IGM
 

preferentially accelerated electrons, then equation [VII-I.38] indicates
 

that in terms of equipartiti n, the protons essentially are totally
 

decoupled and will not acquire any large fraction of the electron energy
 

for -time scales much longer then the period of emission. This would
 

halye the energy required to heat the IGM.
 

The appearance of the clumping factor C in equations [VIII.28] and
 

[VIII.36] shows that both- the energy requirement and the coupling
 
- 1/2
timescales are proportional to C . For clumping to have a
 

significant impact, C>> and therefore the filling factor must be small,
 

S<< 1. Our simple examination of the excess variance limits implies
 

-
that to acheive this the clump size must be small, Xs << -100 h50 
1 Npc,
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the exact limit depending on the amount of evolution in the volume 

emissivity (see Figure VII.32). For As 10 h50 
-I Mpc the maximum 

allowed value for the clumping factor is - 100. Field and Perrenod, and 

McKee [1980], have examined the limits on clumping, assuming that the 

clumps were isothermal spheres. However, Field and Perrenod do not 

properly calculate the expected variance from the spheres and -McKee, as 

we have commented, uses an erroneous expression for the detector size. 

The analysis presented here is incomplete as it fails to include 

important cosmological corrections; however we will outline the general 

argument and derive limits appropriate to our simple cosmological 

picture. Following the previous authors, we examine the condition that 

our spherical lumps be gravitationally bound: 

GMs/A > 2kTIcM / . [VIII.39] 

Ms is the mass of the clump and v is the mean molecular weight, -500 

MeV. Using equations [VII.60] and [VII.63] we can rewrite this limit as 

2 

s 

4-i (Xs/H)2 2lGM > 4kT10GM / tic . [VIII.40] 

We can think of this condition as requiring a minimum size for the 

sphere to be bound. As an example we consider lumps at the current 

epoch, using the FK model for the hot IGM with zm = 5: 

f [- 1 / ( -1 +1) 1 /2] (Xs/AH) 2 1.2x10-3 . [Vl.41] 

If I-I = 1, the lower limit on a bound sphere is Xs Z 7 h507 1 Mpc. 

Larger values of -1, corresponding to larger clumping factors, allow 

even smaller spheres. An examination of Figure VII.32 shows that a 7 

Mpc sphere and I-i = 1 are compatible with the limits from the X-ray 

data. In fact at that radius, the excess variance limits allow t-1 to 

be as large as -100, although the limit derived from the dipole signal 

analysis limits D-i 10. If the larger values are appropriate, 2 IGM 

and the e-e self-collision times could be reduced by a factor of 10. 

Thus these large scale stable structures, which are allowed by this 

simple analysis, can have a significant impact on the requirements of a 

hot IGM model for the production of the X-ray sky flux. This is in 

contradiction to the earlier results which prohibited the existence of 

significant clumping at scales large enough to be bound (see especially 

McKee), so that a more rigorous. examination of the situation will be 
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performed in a future project. The evolution of the volume emissivity
 

and clump size for a hot IGM model can have important effects, allowing
 

larger clumping for small X. and requiring less clumping for larger Xs 

(see the "evolution" curve on Figure VII.32). Note that, even with
 

clumping factors on the -order of 100-, the e-p equipartition time is
 

still quite long, -7 Hubble times. A possible weak point of this
 

analysis is the assumption that TIGM on the right hand side of our
 

limits for bound spheres is the same as the electron temperature derived
 

from the FK fits to the X-ray sky spectrum. If Tp, the temperature
 

appropriate for the stability of the spheres, is much greater than Te,
 

then a larger sphere radius is required, X. a TIGM1/2.
 

Future analysis may place tighter constraints on the existence of
 

gravitationally bound lumps, however even given such limitations
 

smaller, highly clumped, regions can still exist. Such structures could
 

be unbound, or pressure confined, instead of gravitationally bound. The
 

unbound structures would have a short lifetime for substantial X-ray
 

emission, as their expansion and dissipation would quench their
 

contribution. The reduced lifetime can have a strong impact. The ratio
 

of the thermal energy required to the X-ray energy produced can be
 

higher than would otherwise be the case for the same amount of clumping.
 

The higher required densities, however, would also be responsible for
 

shorter coupling times.
 

In this context the model of Bookbinder et al. [1980] can be seen
 

as an extreme variation of the hot IGM model. In their approach the X

ray sky spectrum is produced by intragalactic gas heated by a burst of
 

supernovae during the earliest stages of the history of the galaxies.
 

Such sources would appear point-like, and if the emission period is long
 

enough there will certainly be more than '50 per square degree, so that
 

the excess variance constraint is satisfied. The densities are more
 

typical of the interstellar medium, that is, -104 times that of the
 

uniform IGM models. This is equivalent to a clumping factor of C - 108.
 

The coupling times are also reduced by at least a factor of 104. As the
 

material is originally heated by the interaction of several supernova

produced shockfronts, the densities at thermalization are even higher,
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essentially meeting any objections from the long coupling times.
 

Small isolated clumps have a possible disadvantage in making up
 

the observed X-ray sky flux. The hot uniform IGM model has only a
 

single 'temperature for a given epoch. In addition the decrease in the
 

emissivity with increasing epoch selects a relatively narrow range of
 

redshifts to dominate the total spectrum. This explains our observation
 

today of a signal that from 3-50 keV is well fit by a single temperature
 

exponential form. With isolated clumps, some mechanism that selects a
 

particular temperature or relatively narrow range of temperatures is
 

needed. Bookbinder et al. fix the temperature in their model by the
 

supernova shock velocity. If zi is the redshift corresponding to the
 

epoch of galaxy formation and the initial generation of supernovae, then
 

the current epoch X-ray temperature is (see their equation (24b))
 

kTx = 95 keV VS92 / (l+zi) keV , [VIII.42] 

-where VS9 is the shock velocity in units of 109 cm s . They regard
 

0.5 + 1 to be a plausible range for the value of VS9. If this range 

actually reflects the conditions in newly formed galaxies, then there is
 

a spread in kT over a factor of 4, not including possible additional
x 


smearing due to emission from a range of redshifts. A spread in the
 

observed kTx must encompass any intrinsic deviations from a single
 

temperature thermal bremsstrahlung within each galaxy. Should future
 

experiments actually observe such emission from young galaxies) it would
 

be important to fit the A-2/A-4 residual spectrum to learn what 

restrictions can be placed on the allowed behavior of these early 

supernovae. The observed residual spectrum temperature, 23 & kTx 30 

keV, and the suggested range on VS9, indicate that the epoch of X-ray 

emission and galaxy formation is relatively recent, zi 3. However,
 

the flatness of the effective Gaunt factor of the residual spectrum may
 

not be consistent with thermal bremsstrahlung emission at such low
 

emitter-frame temperatures, kT -90 keV. Analysis of this possible
 

difficulty requires further work.
 

Other models
 

Carr [1979; 1980] has developed a thermal history of the universe
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whereby accretion onto primordial black holes ionizes the early IGM.
 

The IG, temperature never gets high enough to produce significant X-ray
 

emission directly. Instead, the accretion at the largest end of the
 

mass range he considered,' N 109 solar masses, contributes to the X-ray
 

-sky--flux through tharma-besstrahlung in the accretion disk. The
 

details of accretion disk formation and the black hole mass dictate the
 

emission temperature, although during the evolution of the accretion
 

environment a range of temperatures will be produced. The epoch of peak
 

contribution to the X-ray energy density corresponds to large redshift,
 

z - 12. The emitter frame temperatures of the accretion disk are in the
 

transrelativistic regime, kT ' 400 keV. Carr did not explicitly try to 

fit the spectrum from such a model to the observed sky spectrum, and in
 

particular did not calculate the effect of pair creation. At these
 

temperatures a compact emission region, such as an accretion disk, can
 

suffer significant distortion of the emitted spectrum [Kazanas and
 

Shafer, 1983].
 

Carr hypothesized that the primordial black holes would go on to
 

form the central engines in AGN. Building on this suggestion, Boldt and
 

Leiter [1981] (see also Leiter and Boldt [1982]) have developed a
 

unified model for the explanation of both the thermal residual component
 

and the nonthermal sky flux in the 100 keV regime. In essence it is a
 

return to the first model considered in this section: AGN are
 

responsible for the total background. However, their life cycle is
 

divided into two phases, an early pre-active galaxy (PAG) era when
 

thermal emission dominates, and a later era when emission is in the form
 

of the power law spectra observed in current epoch AGN. An accretion
 

disk around a large black hole is again the origin of the PAG thermal
 

emission, but this time instead of thin thermal bremsstrahlung, the
 

process is unsaturated Comptonization of soft photons produced in the
 

outer regions of the disk. The unique temperature of the sky flux is
 

determined by a thermostatic process of pair production within the disk
 

[Lightman 1982] and additional cooling from unsaturated Comptonization,
 

holding the temperature in the range 90-180 keV. An additional feature
 

of the Leiter and Boldt model is that the black holes are assumed to
 

have little or no angular momentum initially. However, as accretion
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progresses and the hole is spun-up to-a canonical Kerr black hole, the
 

model predicts a distinct change in the nature of the emission processes
 

from thermal photons to the production of relativistic electrons. These
 

in turn are responsible for the AGN synchrotron and SSC emission
 

observed in the current epoch. The thermal PAG era is relatively short,
 

-108 years. The expected surface density of sources is large, 200-100n
 

deg -2 , well within current requirements for those sources responsible
 

for the bulk of the X-ray sky flux.
 

3: Future Analysis of the X-ray Sky with A-2 Data and Other Experiments
 

Several important questions about the origins and properties
 
of the X-ray sky remain to be answered by future studies.
 
These may utilize the A-2 database as well as future
 
generation experiments.
 

Different angular binnings from the A-2 database
 

The results of this dissertation are only a fraction of the
 

information available from the A-2 database. Limiting ourselves to
 

information available from the fluctuations, we can apply the techniques
 

we have developed to different detectors (e.g. RED 3), rebinned data,
 

new FOV combinations, and different Discovery Scaler spectral choices.
 

Fitting P(D) models to RED 3 data by itself should simply confirm
 

our analysis of the HED 1 dataset. Any combined answer from the two
 

-detectors as separate datasets would require the use of Boole's
 

Inequality, as they are not independent estimates of the statistical
 

properties of the fluctuations. Data from both detectors can be
 

combined and treated as coming from a single detector with effective
 

response equal to the sum of the spatial responses of the separate
 

detectors. This is the same process as combining the two fields of view
 

of a single detector to make the L+SFOV measurements. One advantage of
 

such a direct combination is a higher count rate per combined exposure.
 

However, because of the small solid angle of HED 3, adding HED 3 data to
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HED 1 data will only reduce the 0photon by -18%. A second advantage is
 

that the RED 3 contribution will concentrate the net response to the
 

center of the measurement, decreasing the overlap between adjacent data
 

points, and thereby increasing the effective number -of measurements in
 

the overlapping datasets. A. difficulty in the combination process is
 

that the two detectors may have different levels of internal background,
 

B, or additional variance, a2 due to temporal changes in the internal
 

background rate. Also, the ratio of the numbers of exposures from each
 

detector will vary from one position in the sky to the next,
 

complicating the calculation of either the effective detector spatial
 

response or the combined measurement photon counting statistics.
 

A very real difficulty in interpreting the excess variance is that
 

there are multiple explanations of the phenomenon: source evolution,
 

non-Poisson clumping of point sources, or a general large scale
 

structure in a.truly diffuse component. We could begin to distinguish
 

among these possibilities if we had accurate measurements of the excess
 

variance from datasets with different angular scales. For example, the
 

evolution of point sources will cause a21 to vary proportionally with
 

the change in the weighted response R2
2 . The variation due to large
 

clumps will have a different signature, the details depending on the
 

actual model for the cosmology and the clumping. In practice, the large
 

uncertainty in the value of the excess variance would mask the source of
 

a2 1.  Still, the upper limit on any excess for smaller binnings of the
 

data may allow for more stringent limits on large scale clumping as in
 

the simple Euclidean universe model of Section VII:6 (see especially
 

Figure VII.32). As an example, compare the effects of the different sky
 

fields of view for HED 1 and BED 3. The transition size between large
 

angular scale sources and sources that are essentially point like,
 

Acrit , (see equations [VII.75], [VII.82] et seq.), is a function of the
 

angular scale of the measurement. For the RED 1 L+SFOV with 6o smear
 
-
data that we have used, Acrit 0 390 h50 1 Mpc. For data using just the
 

SFOV of HED 3 and smeared by 3', the critical scale drops to 240 Mpc.
 

If the two sets of data had similar upper bounds for a2i, then the RED 3
 

limit places a more severe restriction on the allowed amount of smaller
 

scale clumping. Unfortunately we do not expect a priori that the limits
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would be the same magnitude. Although the smaller angular size of the
 

HED 3 detector would allow for a larger number of independent
 

measurements, the signal-to-noise is quenched substantially.
 

An analysis of the fluctuations using small angular scale 

measurements can also be approached using the "-Y" pointing data. This 

is data taken during a series of pointing operations in which target 

positions were selected to benefit the A-I experiment detectors oriented 

opposite to the A-2 detectors, so that the A-2 data reflect "random" 

positions on the sky and can therefore be used as an unbiased estimate 

of the sky flux. Although the number of independent data points is 

small, -50 at high galactic latitudes, the total exposure time for each 

point is high, -104 seconds. Even -for the RED 3 SFOV rate alone, the 

photon statistic noise is significantly smaller than the fluctuations, V 

- 0.4. In addition, the smearing due to jitter during the point 

operation is small. The critical lump size drops further to "180 Mpc. 

For this reason, and the fact that precision in a measurement of a2I 

depends more on * than on the number of independent observations, 

stringent constraints on large scale structure may be obtained from the 

analysis of the -Y point data fluctuations. 

The possible existence of large scale structure may be 

investigated directly in the A-2 all sky database by looking for 

significant power in the spatial autocorrelation function. By 

significant we mean over and above the expected power from a Poisson
 

distribution of point sources folded through the finite angular size of
 

the detector. One approach involves fitting the higher order spherical
 

harmonics in addition to the simple dipole of the Compton-Getting
 

effect, as Fabian, Warwick, and Pye [1980] did with Ariel V data.
 

Perhaps the cleanest approach to high angular resolution would be to
 

examine the one-dimensional autocorrelation functions of individual
 

superposed scans (for an early example of this see Schwartz et al.
 

[1971]). Such scans allow the detector response to be cleanly removed
 

using deconvolution techniques. Spurious structure due to variations in
 

the detector internal background can be addressed by examining the cross
 

correlation between scans of the same physical region of sky taken six
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months apart. Care must be used in interpreting the statistical
 

significance of any result obtained from several scans that may overlap.
 

If an actual signal appears, rather than an upper bound, it could be
 

worthwhile to analyze the entire- dataset using -two-dimensi6nal
 

autocorrelation techniques. A similar program using optical data has
 

been presented by Schectman [1974].
 

The fluctuations in other spectral bands
 

Another aspect of the A-2 data that has not been investigated is
 

the spectral information available from the various Discovery Scaler
 

windows. Analysis of the fluctuations for windows effectively lower in
 

energy than the HILl rates, such as the MED 2A window, may have a
 

significant additional variance due to the enhanced galactic
 

contribution in that band. A higher energy band, e.g. the HED 1 Layer I
 

C+D windows (hereafter the lOICD rate), will have a decreased galactic
 

contribution to the fluctuations. This band covers 5.6 to 17 keV for a
 

kT = 40 keV thermal bremsstrahlung spectrum (see Section 11:3 and tables
 

in Section A7:1).
 

If we know the spectrum of the sources which cause the
 

fluctuations in the HILl band, we can predict the level of the
 

fluctuations in any other spectral band. As an example, we calculate
 

the expected results for the HICD band. Using our results of Table
 

VII.5 we divide the sources that contribute to the high flux N(S) into 

AGN, clusters of galaxies, and local galactic sources. From the values 

of Kh in Tables VII.4, VII.5, and VII.6 we can calculate (using equation 

[111.45]) Wh;AGN, Wh;cl and Wh;gal in units of HILl. We assume that 

the spectral form for AGN is a power law with a = 0.65. From the 

conversion coefficients of the various window combinations in Section 

, , 


A7:1,
 

Wh;AGN = 0.033 HILl = 0.014 HICD • [VIII.43]
 

This is a slight underestimate as it does not take into account the
 

effect of absorption for the low luminosity AGN in the HILl band. The
 

presence or absence of absorption has a negligible effect for the higher
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energy HICD band. We also assume that clusters and galactic sources are
 

described by a low temperature thermal spectrum, kT = 6 keV:
 

Wh;cl = 0.034 HILl = 0.009 HCD ; [VIII.44] 

Wh;gal 0.017 HiLI = 0.005 HID - [VIII.45] 

To find the total W we convert the individual components to their K
 

-4
values to find Kh;tot = 2.3x10 (HICD)3/2. The contribution from AGN 

is 60% of this total, up from only 41% of the HILl total. The value for 

Wh;tot is therefore 0.02 HICD. In the wider energy band of HILl, Wh;tot 
was 0.06 HILl. The transformation of the all sky flux, Sas' is from 58 

HILl to 26 HiCD. Because the fractional reduction in W is greater than 

for Sass the size of the fluctuations as a percentage of the surface 

brightness is smaller in theHICD band than the HILl band. This is the 

expected consequence of the sky flux spectrum being flatter than known 

source spectra. This trend would be reversed in bands that cover 

energies higher than the 40 keV exponential rollover of the sky 

spectrum. Because it is flatter than the sky flux, the internal 

background is a larger fraction -of the total count rate in IC+D 

intensities, B = 1.6 counts exp- I . A large fraction of this is due to 

background counts in the highest PHA channels where few real X-ray 

counts are accumulated for a 40 keV thermal spectrum. The internal 

background could have been reduced substantially if there had been a 

high energy Discovery Scaler window that excluded counts above 20 keV. 

Such a rate can be constructed from the IC window, but this was usually 

not available under the Discovery Scaler telemetry definitions. For the 
-
10 window B = 0.95 counts exp
 

There are several possible advantages to the analysis of the
 

higher energy band. Because this band is dominated more by AGN the
 

analysis would be more sensitive to their possible evolution. This is
 

particularly true if the spectral form of AGN has already begun evolving
 

in conformance with the requirements of the total sky flux spectrum.
 

Similarly, if there is a true excess variance due to the clumping of a
 

hot IGM, this signal will be enhanced with respect to the fluctuations
 

from the nearby AGN and clusters. However, the total reduction in the
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number of counts in this band produces an increase in the size of the
 

counting statistics compared to any fluctuations signal. Thus, the
 

analysis of data from this band may be improved by combining RED 1 and
 

RED 3 data, or by using the -Y point data. Measurements of the excess

variance suffer from the additional difficulty that the smallest
 

confidence regions require data from the resolved source counts. This
 

would necessitate an extrapolation from the XCS RI5 count rates, making
 

assumptions about the source spectra. An alternative would be to redo
 

the analysis of Piccinotti at al. [1982] restricted to the HICD band.
 

Because of the poorer counting statistics, we would expect that the
 

number of sources in such a flux limited sample would be sharply
 

reduced. Therefore the expected upper bound in the excess variance
 

would be larger. A measurement of the Compton-Getting dipole signal may
 

be improved by using the HICD band. Not only is the galactic signal
 

slightly suppressed, but the size of the fluctuations, a significant
 

noise'term for the dipole measurement, is reduced.
 

Study of sky flux from a future large area, low resolution X-ray
 

experiment
 

Moving beyond the all sky survey of HEAO 1, we consider several
 

model experiments. The first two concentrate on surface brightness
 

studies, similar in form to our analysis of the A-2 data. These studies
 

are presented in outline only, and are not even optimized for the study
 

of the fluctuations as we discussed in an earlier section on ideal
 

experiments. The requirements of these experiments are not far from
 

current technology. We will not refer to any specific proposal for a
 

future experiment although similar experiments have been proposed.
 

The IC+D window of the A-2 experiment HEDs suffers from a low 

count rate because it is a high energy band. Our first hypothetical 

experiment attempts to overcome this restriction by using very large 

area proportional counters. We assume the detectors used are xenon 

proportional counters similar to the RED design. Let A = 8000 cm2 , with 

rectangular collimators with FWHM = 10. The smaller solid angle in 

comparison to the A-2 collimators reduces the number of sky counts, and 
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diminishes the signal to noise ratio; howsever it also allow the easy
 

investigation of possible clumping or other large scale structure at
 

smaller angular scales, )crit 100 Mpc. In place of the kind of all
 

sky survey performed by HEAO 1, we consider what a limited observation
 

period of a limited region of sky can tell us. Let the total
 

observation time be 5xl05 seconds (-5.8 days), divided into 500
 

exposures. If the exposures are only 10 apart we can perform a raster
 

scan on a 500 square degree area, which can be divided into 4 subsets of
 

125 non-overlapping measurements. In the spectral range equivalent to
 

the 1C+D window the expected value for Weff is 100 counts in the 103
 

-1
second exposure. T is expected to be 5000 counts exp , so that in the 

absence of any internal background the total noise variance is 71 counts 
- Iexp . Therefore * - 0.7, indicating that the properties of the 

fluctuations can be measured easily. Sources with intensities on the
 
- 5 -4
 

order of Weff have corresponding fluxes of about 3x10 RiCD 10


HILl. This flux range is expected to be dominated by moderate redshift
 

AGN.
 

The small angular scale of the collimators also improves the
 
sensitivity of the measurements to source evolution. For a2S 10- 4
 

(RICD)2 , corresponding to an evolved population with 130 sources per
 

square degree, the expected excess variance is -260 counts exp-4 .  As
 

this is larger than Weff we might expect a significant improvement in
 

the invariant excess limits over the A-2 data, equivalent to -2x10 3
 

(HICD)2 . However, the promise of such an observational program is
 

spoiled, at least in part, by the internal background. Because of the
 

small collimator field of view the internal background is larger than
 

the sky contribution to the total intensity. Even for the IC window the
 
-3 - I -2
specific background is -2xl0 counts s cm (extrapolating from the
 

A-2 detectors), which will produce 15600 counts exp- I . Combining -this
 

rate with the sky flux contribution to the intensity, the revised photon
 

statistics noise is 144 counts exp- I, now larger than the fluctuations
 

Weff . Furthermore, temporal instability of the internal background rate
 

can introduce even more additional variation. If the best fit estimate
 

for 0B derived from HED 1, 1.3% of the background rate or 203 counts
 
-
exp 1, is any guide, this term overwhelms the counting statistics as
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well as the fluctuations distribution. The total noise variation,
 

-
'noise - 250 counts exp , produces a 1P - 2.5. Examination of Figure 

111.9 shows that even with this poor a signal to noise, with -125
 

independent measurements we are able to determine W to within -201 C90%
 

confidence). However, this presumes that we know y and the exact value
 

of the background variance. Imprecision in B 'of -30%'will make it
 

essentially impossible to accurately estimate the power law component of
 

the fluciuations. Therefore, for any studies of the sky flux on scales
 

of a degree or so using standard proportional counter technology, an
 

accurate understanding of the internal background and its variations is
 

required.
 

A moderate area, moderate resolution imaging experiment
 

The answer to this problem is to break the proportionality between
 

sky counts and internal background counts by using the concentrating
 

aspect of an imaging detector. We consider a system with an area
 

equivalent to 500 cm2 of the first layer of a xenon detector. For
 

illustration we will assume that the spectral response is similar so
 

that all fluxes are measured in HILl units. We assume that the total
 

image plane is 0.25 square degrees, divided into 25 elements of 6"x6" in
 

extent. Again the total observation time is 5x10 5 seconds, but now we
 

survey only 125 square degrees. Because of the multiplexing effect of
 

the imaging system, the total active time for each element is 103
 

2
seconds, providing 1250 elements with exposures of 5xlO 5 cm s. We 

model the response for each element with a flat profile, so that the 

various weighted response moments are: R1 = 0.12 cm
2 a, R312 = 19.4 cm

2 

s, and R2 = 246 cm2 s. The mean X-ray sky intensity per element is 7 
- I - I.
 counts exp , while the expecte value for Weff is 1.2 counts exp
 

Though Weff is smaller than the expected photon counting statistics, the
 

large number of observations promises that the fluctuations will provide
 

significant information down to and below the one-source-per-field-of

view limit, -2x10 - 6 HIl, which is comparable to the fluxes of the 

sources in the Einstein Deep Survey. The small angular scale of the 

measurement means that excess variance results will help constrain the 

behavior of clumping down to "small" scale sizes, Xcrit - 10 Mpe.
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Again, the internal background can have a major impact. However,
 

estimating the background is less certain than in the first example.
 

This is in part due to the relatively recent development of imaging
 

detector technology in comparison to traditional proportional counters.
 

Also variables of the telescope plate scale, spectral band width,
 

satellite orbit, etc., play an important role. If we use as an estimate 

the IPC background as determined by Stewart and Fabian [Fabian 1981], 

suitably scaled for solid angle, integration time, and bandpass, B m 40 
-counts exp . Thus, from this estimate the intensity measurements are 

internal background limited. However, Zuture refinements of the
 

technology should produce a striking reduction, perhaps by as much as an
 

order of magnitude. In this case the background will be 'less than the
 

X-ray contribution to the intensity. Note that even for the high
 

background rate, a 1.3% variation corresponds to a non-X-ray fluctuation
 

- I
of 0.5 counts exp , less than the expected magnitude for Weff Of
. 

course, as we have pointed out, an additional consideration for imaging
 

systems is,the additional variation from spatial as well as temporal
 

inhomogeneities in the internal background.
 

If the internal background is reduced to a level less than the

surface brightness of the X-ray sky, then the imaged survey of the 125
 

square degrees can provide an additional dividend: an X-ray selected
 

sample of -85 sources down to fluxes 40 times deeper than the XCS. The
 

broad band study of such sources can make the important connection
 

between the high energy band with the results of the Einstein Medium
 

Survey.
 

Imaging the X-ray sky with future instruments
 

Current observations are not sufficient to determine decisively if
 

most of the X-ray sky flux originates in point sources (e.g. QSOs or
 

young galaxies) or if a significant fraction is produced by a truly
 

diffuse component such as a hot IGM. The Einstein Deep Survey
 

observation directly images -25% of the extrapolated sky flux, but this
 

is open to argument because of ignorance of the Deep Survey sources'
 

spectra. A definitive answer will probably be reached only when a high
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spatial resolution imaging instrument is able to continue the 2-10 keV
 

band source counts down to a flux level where the dominant fraction of
 

the total flux is accounted for. We consider the requirements for such
 

a system under three ad hoc but plausible models for the source counts
 

in the HThI band. As our first model, let N(S) follow the Euclidean
 
-
S 5/2 form until the total sky flux is saturated. We assume that W is
 

the same as our fiducial value derived from the fluctuations, 0.0702
 

HILl. This is slightly higher than the value we derive from the fits of
 

a Euclidean model with ,an excess variance, including the information
 

from the resolved source counts from the XCS, but may be closer to the
 

correct value of N(S) over the flux range below the XCS. The sky flux
 
- - 15 - I - 2
is saturated at So = 4.1x10 7 HIl = 5.6x10 ergs s cm . In the 

absence of any background, we would require exposures on the order of
 
2
5.6x106 cm s for a detector with response similar to the HEDs. This 

will produce at least one photon from 90% of the lowest flux sources. 

The total number of sources, all sky, required to make up the sky flux 

is 4.7x10 7, or one per pixel of (1.8")2. To reduce problems from 

confusion we note that if we have pixel sizes of (47")2 so that the 

expected number of sources per pixel is 0.2, then over 90% of the pixels 

with sources will contain only one source. Therefore, the X-ray sky 

flux can be resolved with relatively moderate angular resolution. 

However, in the presence of significant specific internal background, 

clean detections may require much higher resolution, particularly if 

extraordinarily long exposures are to be avoided. Smaller sized pixels 

will have fewer background counts for a fixed level of specific 

background. A similar improvement in the signal to noise could be 

achieved by increasing the collecting area of the X-ray telescope. For 

example, a pixel of (30")2 with internal background similar to the IPC 

will have -0.3 counts in 103 seconds. Therefore a 1000 cm2 collecting 

area telescope will have -1.6 background counts compared to an average 

of 2.4 counts from sources with flux So during an integration time of 

5600 seconds.
 

As our second model, we assume that N(S) breaks from the Euclidean
 
- 5


form at the point where 20% of Sas is accounted for. This is at ixl0


- 13 - I - 2
HIl = 1.3x10 ergs s cm , roughly the level of the Deep Survey. 
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The remaining 80% of Sas can be accounted for if N(S) breaks to a power 

law form with index Y' = 1.88. Now at the flux level, So, where 

formally the total sky flux is accounted for, the accumulated sources 

provide only 47% of the total. Our studies at this flux level must 

include the possible effects of confusion with the sources below So . If 

the background permitted, we could extend our knowledge about N(S) below 

SO using the fluctuations techniques derived in this dissertation. 

However, the flatness of N(S) greatly increases the sensitivity of the 

fluctuations to only the highest flux unresolved sources, -So The
. 


expected a for the (47")2 pixel size is about 14% of the intensity of a 
2source with flux So . With exposures of 5.6x106 cm s the ratio of the 

counting statistics a to the fluctuations a is N4.5. A study of the 

fluctuations will require very long exposures or huge collecting areas. 

If point sources provide only -30% of Sas then N(S) down to So
 

should exhibit a very shark break. Such behavior could be interpreted
 

as evidence for the hot !GM model. This evidence is only
 

circumstantial, however, since a new population of low flux point
 

sources may provide the bulk of Sas below So . If this is the case, they
 

must have a very high surface density, 2400 sources per square degree.
 

Recall that the Leiter and Boldt PAG model estimated that the surface
 

density is 1000 per square degree, which would have an average flux
 
- 14 - -2
10- 6H1Ll = 1.2x10 ergs s ' cm , only an order of magnitude below the 

Deep Survey limit. Models associated with young galaxies are expected 

to give similar surface densities, although these calculations are very 

sensitive to the lifetime of the thermal X-ray emission epoch. If the 

additional density of sources is -1000 per square degree, pixel sizes of 

-(40")2 are sufficient to resolve the sky flux., in the absence of 

appreciable internal background. 
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CHAPTER IX
 

CONCLUSIONS
 

The general question addressed by this dissertation, the nature of
 

the unresolved X-ray sky flux, especially as examined through its
 

spatial fluctuations, is easily stated. It is less easy, however, to
 

give a succinct definitive answer. Many of our results are of a
 

procedural, rather than observational or theoretical, nature. By the
 

close examination of the tools used for the study of the sky
 

fluctuations we have a much better understanding of the limitations of
 

previous work, the implications of our present results, and the
 

possibilities for future understanding. Our observational results,
 

though significant in their own right, are just one step in the eventual.
 

solution of the X-ray sky.
 

Our results, in summary:
 

Chapter II:
 

The multiple field of view construction of the A-2 experiment
 

provides a direct estimate of the internal background, which is
 

important for distinguishing variations in the sky flux from spurious
 

signals. The distinction between the flux of a source and its
 

contribution to an intensity measurement as determined by its position
 
in the detector field of view, indicates the importance of the proper
 

treatment of the detector spatial response function.
 

In particular, the weighted detector responses express the effect
 

of the collimator size on fluctuations measurements in a less confusing
 

way than the "effective solid angle."
 

Chapter III:
 

A modpl for the number of sources versus flux produces a predicted
 

distribution of sky intensity measurements. For power law models of
 

N(S), the width of the resulting distribution scales with the effective
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width, Weff . This quantity provides a better characterization of the
 

size of the fluctuations than the variance or other moments, which are
 

formally infinite due to the high intensity tail of the fluctuations
 

distribution.
 

As developed in this dissertation, the likelihood difference
 

measures the extent to which two model distributions are
 

distinguishable. This allows us to investigate quantitatively the
 

sensitivity of a fluctuations analysis to the behavior of N(S) at
 

different flux levels. In principle, we can determine N(S) for all
 

fluxes, though for the lower fluxes this ability is degraded given a
 

finite number' of observations or the presence of significant non

fluctuations noise. For our data, the behavior of sources below the
 

one-source-per-field-of-view level is evidenced' primarily by their
 

contribution to the variance of the fluctuations distribution. For this
 

reason, a general model consisting of a Euclidean index power law
 

component with an additional pure Gaussian component is an adequate
 

description of all realistic N(S) models used to fit the HEAO 1 A-2
 

data.
 

The likelihood difference also allows us to evaluate the competing
 

factors in the design of ideal experiments for the measurement of the
 

fluctuations.
 

The existence of the-fluctuations- can have substantial effects on
 

the measurement of other quantities, particularly low flux sources and
 

surface brightness correlation studies. For a given angular collimation
 

size, the fluctuations provide an irreducible source of noise to many
 

measurements, including measurements of the properties, of the
 

fluctuations distribution.
 

Chapter IV:
 

The analysis of the fluctuations requires that the individual
 

measurements either be strictly independent (no overlap) or that they be
 

weighted. We have estimated what the weighting correction for
 

overlapping data should be. This estimate is exact in the limit that
 

the fluctuations are Gaussian.
 

The internal background variations for the A-2 detectors are very
 

low. For HED 1 the variation is.consistent with zero.
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A thick Q 1 kpc) finite radius disk provides a good description 

of the component of the X-ray sky flux associated with the galactic 

plane. 

An additional large scale cosine feature is detected with 

significance -95%. The best fit direction is (9,b) = (2820,300), with 

an amplitude of 0.53±0.18% of the total X-ray sky brightness. This is 

consistent with the interpretation that the signal is from the Compton-

Getting effect with a velocity of 475±165 km s- 1, in agreement with the 

direction and velocity derived from the microwave background dipole 

signal. 

Chapter V:
 

When fitting a model distribution of the fluctuations to the A-2
 

database, the traditional histogram statistics measuring the goodness of
 

fit are inappropriate because different measurements have different
 

amounts of noise from photon statistics. We have developed a set of
 

statistics that provide a general indication of the goodness of fit of a
 

model under a wide variety of situations. Confidence contours are found
 

from the likelihood statistic. The information from different
 

determinations of a confidence region may be combined using Boole's 

Inequality, even if the determinations are not statistically 

independent. 

Chapter VI:
 

The data used to fit the fluctuations models were from the Large
 

plus Small Field Of View combination of RED 1, binned by 60. The
 

resultant region of the sky covered by each measurement is effectively
 

11.2°x4.4o. The chosen rate, the entire layer 1, is dominated by counts
 

from 2.5 to 13.3 keV for an incident spectrum like the X-ray sky flux.
 

The mean count rate is an important parameter. A significant bias
 

can be introduced if we blindly assume that the root-mean squared count
 

rate is equivalent to the mean of the fluctuations model distribution.
 

This can be seen when the value of the model mean is treated as a free
 

parameter. There is a strong interdependence between the model mean and
 

Weff unless we specifically truncate the contribution of sources
 

- I - -2
brighter than 3xl ergs s 1 cm (2-10 key) to the mean.
 

Conclusions
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The fluctuations distribution derived from a single Euclidean
 

power law model for N(S) provides an acceptable fit to the data
 

according to our goodness of fit criteria. The quality of the fits for
 

models with sharp cutoffs at low flux levels explicitly demonstrates
 

that the data is sensitive to the behavior of such low flux sources only
 

in terms of their contribution to the variance of the fluctuations
 

distribution. The confidence regions for W derived from individual sets
 

of non-overlapping data are consistent with each other and with the
 

range from the overlapping dataset. The 90% range for W from the
 

is 9x1O 0I  - I0 - I .
overlapping data to 10x10 ergs(2-10 keV) s cm-2 W 

determines the normalization of the N(S), N(S) dS = (S/W)-5 /2 d(S/W). 
-5/2 ,
The parameterization can also be in terms of K, N(S) = 4xK S so 

that W ="(4wK)2 /3 . 

When non-Euclidean power law forms of N(S) are fit to the 

fluctuations, the Euclidean value of Y = 5/2 for the index is always 

within the allowed confidence region, For the independent datasets, a 

wide range of Y may be allowed, from 2.2 to over 3.4. The overlapping 

data is more narrowly constrained to the range from 2.4 to 2.8. When we
 

plot the N(S) curves for the allowed models we see that the N(S) is most
 
- 12 constrained for sources with fluxes 4x10 ergs s 1 cm-2 . This is
 

roughly an order of magnitude below the limits of the resolved source
 

count surveys attained with the HEAO I A-2 data. It is also a factor of
 

two below the level where one source is in the measurement field of
 

view, illustrating that this traditional lower limit of sensitivity for
 

the fluctuations is only approximate.
 

Providing an automatic low flux cutoff in N(S) when the total sky
 

flux is saturated is important when testing power law models with high
 

values of Y.
 

The decomposition of N(S) into a Euclidean high flux component and
 

an additional term specified only by its contribution to the variance of
 

the fluctuations is a general and flexible form for comparing the
 

results from the fluctuations to realistic N(S) models. From the
 

overlapping data the upper bound on the excess variance is 1.5% of the
 

total sky flux. In detector-solid-angle-invariant terms this limit is
 
20 -
U2S 15x10- (ergs s ' cm-2 )2. Negative excess variances are also
 

allowed, corresponding to models with a deficit of low flux sources
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compared to the simple Euclidean power law with no low flux cutoff. The
 

actual size of the excess variance is strongly coupled to the strength
 

of the Euclidean power law component of the fluctuations, W. The
 

confidence region derived from a set of independent non-overlapping data
 

is essentially unable to constrain the excess variance without some
 

additional information about the proper value for W.
 

The limits on the excess variance from the overlapping data can be
 

derived solely from the analysis of the fluctuations. Ptevious bounds
 

on the excess variance have required information from resolved source
 

counts.
 

The results obtained for the W-y confidence region are in
 

essential agreement with previous results obtained by other
 

experimenters using data from the UHURU and Ariel V satellites. The
 

published size of the early confidence regions are similar to or smaller
 

than our own, but this is due to assumptions made in the early analyses,
 

particularly in not automatically imposing a low flux cutoff in N(S)
 

when the total sky flux is exceeded. Early upper bounds on the excess
 

variance almost certainly should be revised upward substantially.
 

Section VII:1:
 

We have determined the coefficient of the high flux Euclidean
 

component of N(S) using the X-ray selected sample of resolved sources of
 

Piccinotti et al. [1982], which is complete down to fluxes -3x1O
- "
 

ergs s- 1 cm-2 . We used binned data, corrected for the Malmquist bias,
 

and the likelihood of the Poisson distribution to determine the best fit
 

values and confidence ranges for the normalization coefficient. This
 

was in excellent agreement with the confidence regions for the two
 

component fluctuations model of a Euclidean N(S) plus an excess
 

variance.
 

By combining information from both the fluctuations and the
 

resolved sources, the size of the excess variance confidence range was
 

improved. Interesting constraints then resulted, even from the fits
 

derived from non-overlapping data. When overlapping data was used, the
 

90% range on the excess variance was between 0.0% and 1.3% of the mean
 
- 16 -1
sky intensity, or 0.0 < a2S < 1.1xl0 (ergs s cra2)2. 
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Section VII:2:
 

We used the resolved sources to derive the local luminosity
 

functions. This, in turn, allowed us to predict the form for N(S) below
 

the resolved source flux limit. Cosmological effects produce a rollover
 

from the Eulidean 5/2 power law. When the expected contributions to
 

N(S) from clusters of galaxies, AGN, and moderate-luminositj galactic
 

sources (CV and RS CVn stars) are summed, assuming no luminosity
 

function evolution, the sources are unable to provide the observed total
 

sky flux, Sas. Therefore, evolution of known sources or a new source of
 

X-ray emission is required. The rollover in the total N(S) is sharp
 

enough that a significant negative excess variance is expected,
 
20 '-6xf0- (ergs s 1 cm-2)2 . This is not consistent with the overlapping
 

data lower bound on 02S . This disagreement can be resolved by providing
 

additional sources of fluctuAtions, such as non-Poisson behavior in the
 

distribution of the non-resolved sources. An alternative source of
 

excess variance might be evolution of an existing population of sources
 

or the existence of a new, evolving, population of souces. One of these
 

possibilities is required if point sources produce the total sky flux,
 

in any case.
 

Because of their soft spectra and flat luminosity function,
 

clusters of galaxies roll over, that is depart from Euclidean behavior,
 

at a particularly high flux. They contribute only -3.5% of Sas and are
, 


responsible for the bulk of the expected deficit for the excess
 

variance. These conclusions are relatively insensitive to details of
 

the cluster luminosity function normalization, or its low luminosity
 

cutoff. Non-Euclidean corrections are important for clusters even for
 

the resolved sources, requiring a recalculation of the cluster
 

luminosity function normalization.
 

AGN are expected to dominate the source counts at low fluxes.
 

However the details 6f their behavior and their total contribution to
 

Sas are subject to significant uncertainties as the form of the low end
 

of the AGN luminosity function is poorly known. X-ray sources with
 
-
luminosities as low as 1640 ergs s ' have been observed by the Einstein
 
-
Observatory, but 1.75x,042 ergs s ' is the lowest luminosity object in
 

the A-2* bandpass complete survey. Preliminary studies of these low
 

luminosity AGN by Elvis, Soltan, and Keel [1983] indicate that the
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luminosity function flattens at lower luminosities, beginning somewhere
 

104 2 in the range from to 1043 ergs s 1. The exact location and 

magnitude of the flattening have a large impact on the expected 

contribution of a non-evolving AGN population to Sas. Crude estimates 

range from 18% to 46% 'f the total sky flux. Our canonical model
 

luminosity function produced -25%. Similar imprecision exists with
 

respect to the contribution of AGN to the negative excess variance, but
 

this is overshadowed by the much larger contribution from clusters. One
 

difficulty in determining the location of the flattening is the lack of
 

quality broad band spectra of the low luminosity sources to accurately
 

connect the luminosity functions determined in the different bandpasses
 

of the A-2 experiment and the Einstein Observatory.
 

CV and RS CVN stars make a significant contribution, -15%, to the
 
- I -2
source counts at the higher fluxes, S 10-12 ergs s cm . As the
 

fluctuations analysis cannot discriminate between galactic and
 

extragalactic sources, the expected contribution of galactic sources
 

must be estimated. They are expected to contribute more to the negative
 

excess variance than AGN, though less than clusters. The exact value 

depends on their typical scale height and the steepness of their 

luminosity function. 

Section VII:3:
 

Any new population of sources is constrained to not make a
 

significant contribution to the resolved source counts and to make a
 

contribution to the excess variance from 5x10-20 to 16x10 20 (ergs s '
 

cm72 )2. The lower limit on the excess variance is soft, as there may be
 

other ways of producing the observed excess variance, e.g. evolution by
 

the known sources, or source clumping. For the same reason the upper
 

limit on the excess variance from a new population of sources may be
 

reduced when further observations constrain the other possible sources
 

of fluctuations. With the current limits, if we assume that the new
 

population is responsible for the 75% of the total sky flux otherwise
 

unaccounted for, then its surface density is 50 sources per square
 
- 13 - -2
degree with an average flux of 3x10 ergs s 1 cm . Stronger
 

conclusions can be reached using results from the Einstein Observatory
 

Deep Survey counts (see VII:4 below) but these are subject to
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uncertainties dependent on the Deep Survey source spectra.
 

Evolution by AGN can provide both the required sky flux and the
 

excess variance. However details of the form of the evolution and
 

cosmological parameters can have a strong impact. We have presented a 

discussion of different models for evolution, pure density, pure 

luminosity, and index evolution, and illustrated their general forms 

under a variety of assumptions. Conclusions drawn from the study of a
 

particular class of models depend on the current epoch luminosity
 

function used-, as well as the value chosen for q..
 

We have particularly examined pure luminosity evolution models
 

where the AGN luminosity effectively evolves as L(r) = L(0) exp(QLT),
 

where T is the fractional look-back time. For these models, the amount
 

of evolution is usually constrained most by the total sky flux: QL 3.2,
 

essentially independent of qo. This assumes that both low and medium
 

luminosity sources evolve with the same value for QL" This upper limit
 

is much less than -values for the evolution derived for optical studies
 

of quasars or even from the original analysis of AGN evolution from the
 

Einstein source counts. With such small values of QL 3.2, AGN have
 

little significant contribution to the excess variance. For small
 

values of qo, the contribution is much less than the soft lower limit to
 

2S required by the fluctuations. More evolution is allowed (QL!5.2) if
 
4 3
only medium luminosity AGN evolve (L > 10 erg s-1 ). Now a significant
 

contribution to the excess variance can be made. For qo=0.1, the excess
 

variance upper limit becomes a stronger constraint (QL 4.5) than the
 

total sky flux limit. Pure luminosity evolution models where only the
 

medium luminosity objects evolve can have steep rollovers in N(S) at
 
- I - 2
~i0-14 ergs s cm , only a factor of two lower than the Einstein Deep
 

Survey lower flux limit.
 

For the pure luminosity evolution models, the current epoch high
 

luminosity sources make no significant contribution to the sky flux.
 

Because of the steepness of the current epoch luminosity function, such
 

an extension cannot be directly studied using the A-2 resolved sources.
 

However, if the high luminosity sources underwent strong evolution they
 

would dominate the source counts at high fluxes. Given that only a
 

single high luminosity object (3C273) is observed in the A-2 X-ray
 

Complete Sample we can conclude that a high luminosity extension of the
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1046 - I
AGN luminosity function out to ergs s can evolve only with QL
 

5-. If the luminosity function steepens around 1.5xlO 45 ergs sr l , then
 

QL 6. 

Luminosity-dependent density evolution (index evolution) can also 

provideL the total sky flux and- make -a significant contribitfih' to the 

excess variance. However these models have an additional parameter, to, 

which strongly influences the allowed range in parameters. 'Also, to 

account- for -the observed high luminosity AGN at high redshifts, the 

luminosity function must have a high luminosity extension, L > 1.5x10
45 

-
ergs s 1. For many values of the evolution parameter, %, the high 

luminosity sources will dominate the contribution to both the sky flux 

and the excess variance. 

Section VII:4:
 

A direct comparison of the inferred behavior of the source counts
 

from the fluctuations analysis and the Einstein Observatory Medium
 

Sensitivity Survey and Deep Survey source counts is complicated by the 

different spectral bandpasses. In particular, a large component of the 

A-2 source counts are sources with significant absorption that make a 

much reduced contribution to the Einstein surveys' counts. One way of 

comparing results between two bands is to make specific assumptions 

about the spectra of the sources, and fold the model spectra through the 

separate detector spectral responses to derive the observed count rate. 

The Medium Survey covers roughly the range of fluxes to which the
 

A-2 measurements of the fluctuations are most sensitive. 'With no
 

evolution, the XCS luminosity functions predict that clusters should
 

substantially outnumber AGN in the MS sample, contrary to observation.
 

This is persuasive evidence that the AGN X-ray luminosity function
 

evolves over cosmological timescales. When specific models of pure
 

luminosity evolution (for medium luminosity AGN) are examined the MS
 

source- counts prefer 2 QL 4. These values are much smaller than
 

indicated by- the values derived from a specific examination of the
 

source redshift distribution, although that analysis made different
 

assumptions about AGN spectra and the luminosity range of the current
 

epoch luminosity function. Partial covering fraction models for the
 

absorption in low luminosity AGN can re4uire a further reduction in
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acceptable values for QL"
 
The change in the fraction of BL Lac sources in going from the XCS
 

to the Medium Survey is not, by itself, significant enough to conclude
 

that EL Lacs do not evolve to the same degree as other AGN. The
 

observed difference would occur at least 18% of the time by chance.
 

This calculation does not use the additional information of the known
 

spectral differences between the two populations, which may increase the
 

significance of the no-BL-Lac-evolution hypothesis.
 

There is substantial overlap between the flux range covered by the
 

Deep Survey -and the lower flux range of the Medium Survey. Allowing
 

non-Euclidean behavior for N(S) greatly increases the range of models
 

consistent with the Deep Survey source counts, although crude measures
 

of the fit indicate that the best models are Euclidean. The results of
 

comparisons with the N(S) models from the XCS are similar to those
 

derived from the Medium Survey.
 

The fraction of the total all sky flux directly contributed by
 

sources in the Deep Survey depends on their spectra, as well as details
 

of calculation. If the spectrum is similar to the sky flux spectrum,
 

then the total is -257+10%. Steeper spectra, typical of low redshift
 

AGN, can reduce this to -16%±6%. Given the large statistical and
 

systematic uncertainties, as well as the behavior of some AGN evolution
 

models with sharp low'flux rollovers in N(S), current X-ray data alone
 

cannot determine whether the Einstein low flux sources are responsible
 

for the bulk of the X-ray sky flux, particularly in the 3 keV band.
 

The Deep Survey counts can set lower limits on the number of
 

sources responsible for the remainder of the sky flux, the exact value
 

again depending on spectral assumptions. For all reasonable
 

assumptions, these limits are substantially more stringent than those
 

derived from the excess variance upper limit. If the sources are spread
 

over at least a decade below the Deep Survey lower flux limit, at least
 

850 sources per square degree are required, larger than the estimates
 

from current deep optical quasar counts.
 

The analysis of the fluctuations in a deep exposure IPC field by
 

Stewart and Fabian may have indicated that the actual source counts
 

break near the Deep Survey flux limit. This conclusion merits further
 

investigation, particularly including the results of additional fields
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to improve the statistical sensitivity of the analysis.
 

Section VII:5:
 

Low flux optical counts of AGN can be used to predict the behavior
 

of the X-ray N(S) below. the Deep -Survey. The problem is complicated
 

because the optical and X-ray luminosities may not be strictly
 

proportional. Work by many authors indicates that the ratio of Lx/Lopt
 

could be a decreasing function of Lop t (for the particular parametric
 

model considered, Lx (Lopt)6) < 1) or an increasing function of z. 

Incorrect spectral assumptions used in making redshift corrections to
 

the observed fluxes could be one explanation for a redshift dependence.
 

The evolution of the AGN spectral index, required if AGN produce the
 

bulk of the X-ray sky flux over the 3-100 keV range, can also generate a
 

redshift dependence of Lx/Lopt.
 

A comparison of the power-law indices of the AGN luminosity
 

function in the X-ray and optical bands is, however, incompatible with
 
6.<i models. The strong correlations observed by many authors might then 

be interpreted as requiring a strong explicit redshift dependence for 

Lx/Lopt . The net result on pure luminosity evolution models is that 

QL;x is expected to be much less than QL;opt' consistent with the 
observed ranges in both bands. Although the indicated values for 6 and 

the strength of the redshift dependence are outside the confidence 

regions obtained by other authors (who do not address the problem posed 

by the differing luminosity function indices), the wrong parametric form
 

for the Lopt and z dependence may have been chosen.
 

The stronger the explicit redshift dependence, the smaller QL;x is
 

expected to be for a given value of QL;opt" This has important
 

ramifications for estimates of the total AGN contribution to the sky
 

flux derived from the low flux optical counts.
 

The presence of a strong redshift dependence of Lx/Lopt
 

complicates comparing luminosity function index evolution models derived
 

in the optical band with the X-ray models. An additional problem is
 

that a significant fraction of the AGN contribution to the sky flux must
 

come from sources fainter than the faintest current optical source
 

counts (see Section VII:4).
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Section Vll:6:
 

Non-Poisson distribution of sources or general large scale 

structure may make a significant contribution to the excess variance. 

This weakens our requirement of evolution based on the fluctuations

derived lower limit for 02S . Our upper bound on a2 S however, can be 

used to place limits on the large scale structure. A proper assessment
 

of the value of these limits must be done more rigorously.
 

A crude analysis of point sources clumped into superclusters of
 
"small" angular size («3.70) leads to the estimate that either the mean
 

number of sources per supercluster is small (<<5.5), or alternatively
 

such clumpy sources can only provide a fraction of the total background.
 

General large scale structure of the X-ray volume emissivity, in
 

the form of spherical lumps in a finite Euclidean universe, are
 

examined. The data places its strongest constraints on the density
 
-1
 

amplitude of such lumps when the lump size is greater than -400 hb0
 

Mpc. The constraint is tighter if there is strong evolution of the X

ray emissivity.
 

The effective solid angle is an inappropriate measure of the
 

angular extent of a measurement when distinguishing between point-like
 

and extended sources. The effective measurement size for the data
 
.
examined in this dissertation has a radius of 3.70
 

The analysis of the very largest scale anisotropies.in the X-ray
 

sky (dipole and quadrupole) and their comparison to the microwave dipole
 

signal is a crude indicator of the matter overdensity responsible for
 

the observed peculiar velocity. The-current picture is consistent with
 

a nearby location of the density enhancement, including Virgo infall
 

models.
 

Chapter VIII:
 

Evolutionary models for AGN that provide most of the high energy
 

X-ray sky flux (3-100 keV) are consistent with our current
 

understanding, but the evidence is not conclusive. Even if future
 

observations provide proof of this hypothesis, in a sense only the
 

astronomical question of origin will have been answered. The more
 

interesting issue of physical mechanism must then be considered. Given
 

the fundamental differences between current epoch, moderate luminosity
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AGN spectra and the X-ray sky flux spectrum, an important change in the
 

AGN emission mechanism is indicated.
 

The exact form of the sky flux spectrum to be explained depends on
 

the subtraction of a contribution from the known sources, in particular
 

those AGN whose spectra haze not evolved. In general, the residual
 

spectrum is consistent with a very flat power law-with an exponential
 

high energy cutoff. Emission processes involving non-thick hot thermal
 

plasmas produce spectra that have these characteristics.
 

Non-thermal inverse Compton models are unable to produce the
 

observed spectrum if the dominant energy loss mechanism for the emitting
 

relativistic electrons is radiation. This conclusion applies to both
 

diffuse emission and compact sources, though the latter may still be
 

allowed if other loss mechanisms are important.
 

Thin thermal bremsstrahlung from a hot IGM has the proper form for 

the residual spectrum. The flatness of the residual spectrum at low 

energies suggests that the bulk of the emission from thin thermal models 

must be at high redshifts, although -the exact limits depend on how the 

residual spectrum is obtained. However if the hot gas is uniformly 

spread through the universe, the total energy required to heat the gas 

is many times that required to produce the X-rays directly. The 

densities required, 2IGM - 0.04, though significant on a cosmological 

scale, are so low that the electron-ion coupling times for attaining a
 

Maxwellian thermal distribution is many times the age of the universe,
 

- though the electrons may form an essentially decoupled thermal 

distribution in the relatively-short timescale of 0.08 Ho-l. The long 

equipartition time between the proton and electron populations will 

exacerbate the high energy requirements if the gas heating mechanism is 

initially most efficient for protons. 

Clumping of the gas can reduce both the energy requirements and
 

the coupling timescales. The simple analysis of the limits on clumping
 

placed by the upper bound on the excess variance indicates that the
 

clumps must be << 100 Mpc, if the effect is to be significant.
 

Isothermal bound lumps as small as 7 Mpc are consistent with current
 

anlysis. Such lumps provide a factor of 10 reduction on the magnitude
 

of both~the energy requirement and coupling timescale problems. Non

gravitati6nally bound objects can be even.smaller. Very small sources
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become equivalent to point-sources for models 6f the sky flux.
 

The physics of any point-source model should specifically provide
 

for the observed exponential rollover in the sky flux spectrum. The
 

relative sharpness of the observed feature argues persuasively that the
 

location of the rollover should be essentially invariant over the entire
 

range of plausible model behavior.
 

An important future observation for distinguishing among the
 

competing models and for resolving some of the current ambiguities is
 

the determination of the 2-10 keV spectral index, and possible
 

absorption. for the Einstein Observatory detected AGN, including both
 

the distant high luminosity sources and the sources at the low end of
 

the luminosity function.
 

If an evolving population of point sources does make up the total
 

sky flux, then an experiment, with relatively modest angular resolution
 

(30") and large, collecting area/low specific internal background may be
 

expected to directly resolve the entire sky flux.
 

Excellant data quality and care in. the analysis allow us to
 

conclude from a study of the fluctuations that the N(S) source counts
 

continue as a Euclidean form power law for about a decade below what can
 

be studied directly from the resolved souce counts in the 2.5-13 keV
 

band. Studies of the locally derived luminosity function and the excess
 

variance show that in the absence of source evolution there is an
 

additional component of the fluctuations to be explained. However, this
 

study, and all other currently available information on sources of the
 

X-ray background, still have not completed the explanation of the
 

origins and properties of the X-ray sky flux. Enormous strides have
 

been made in the last two decades, particularly with the launches of
 

HEAO 1 and HEAO 2, but a complete, definitive picture has not yet
 

emerged. The next decade promises continued progress, and possibly an
 

answer to the origin question. Even then, the problem of generating the
 

observed, amount of flux with the proper spectrum promises that further
 

studies of the X-ray sky will be an important part of high energy
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astrophysics. Studies of the fluctuations and other larger-scale
 

anisotropies will offer an important measure of large scale structure of
 

the universe.
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APPENDIX Al
 

COSMOLOGICAL CORRECTIONS TO THE DERIVATION OF N(S) FROM A LUMINOSITY
 

FUNCTION
 

We address three technical difficulties in this appendix: the effects
 

of non-ideal detector spectral response and the redshifting of source
 

spectra; the non-Euclidean aspects of the Friedmann cosmologies; and
 

possible difficulties of evolving luminosity functions, particularly
 

when luminosity dependent variation in the sources' spectra might be
 

involved. Applications and examples of this analysis are presented in
 

the main body of the text (see Section VII:2).
 

The material presented here is based in large part on Weinberg's
 

[1972] Chapter 14 on Cosmography. The principle deviation here is in 

the treatment of non-zero bandwidth detectors and source spectra not 

restricted to simple single power laws. The metric of the universe is 

presumed to be ds2 = 2 + a2 (t)(d 3 .the Robertson-Walker metric: -dt 0) 2
 

The spatial coefficient, a(t), is the cosmic scale parameter. a(to) is
 

its current value. The Hubble "constant" is given by Ho=A(to)/a(to).
 

The dot in A signifies differentiation by t. d30 represents the spatial
 

part of the metric, given by
 

2 2 2 e d2(d3U) = d2r + (r 2 d2 6 + r sin ) . [A1.1]
1 - k? 

r is a dimensionless coordinate whose scale is set by fixing the value
 

of k to +1, 0, or -1. Solving the Einstein equations, (with no 

extraneous terms like a cosmological constant) for a homogenous perfect 

fluid with negligible pressure yields the Friedmann solutions. This 

solution for a(t) allows us to relate the position of an object in terms 

of r, to observables such as the redshift z = [a(to)/a(t)] -1. If the 
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observer is at r=O, then the emitter's position is
 

zqo + (qo-l)(-l + (2qoz+l)l/2) [Al.2]
 
ho oaqo (1+z)
 

independent of the value of k. qo is the dimehsionless deceleration
 

parameter related to the solution for a(t) by
 

qo = - H(to) a(t0 ) 
/ a2 (to). [AI.3]
 

We have examined the cosmological impact on observations for both low
 

and high values of qo, 0.1 and r. Observations of qo are quite
 

imprecise and both values are consistent with our current understanding.
 

Determining observed S
 

We consider a class of objects at a redshift z with a rest frame
 

luminosity spectrum £(E;x)dE. The variable x represents some -general
 

intrinsic parameter of the emitter used to parameterize the class
 
4- + 

distribution function *(x;r) dx, the density of objects at position r
 

with values of x from x to x+dx. A common example for x is the
 

luminosity, so that *(L(E)) is the luminosity function. If the spectra
 

of all the objects have the same shape, then luminosity defined over a
 

particular rest-frame energy range AE, L(x)'= fAE £(E;x)dE, is
 

equivalent to the differential luminosity, £. This is a moderately good
 

assumption in the case of HILl band emission from clusters and to a
 

lesser degree from active galactic nuclei. We can replace £(E;x) with
 

L n(E), where rI(E) has been normalized so that
 

[AI.4]fAE 4(E) dE = 1. 

We are interested in what the observed flux will be after
 

redshifting and geometrical focusing:
 

s(E) dE - £((1+z)E) (1+z) dE . [Al.5]
 
4r2 

The factors of (l+z) that precede E and dE are due to the spectral 
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redshift while r., the luminosity distance
 

rZ aO (l+z) rI , [AI.6]
 

incorporates the geometrical modifications. This definition and the
 

solution for r1 in [Al.21 eliminate any dependence on the unobservable
 

ao:
 

rz = 5.99 h50-I F(z;qo) Gpc, [A1.7] 

where F(z;qo) is set by the solution of r1 to be
 

F(z;qo) = z {l + (l-q)} • [Al.8]
 
(l+2qoz)11 2 + 1 + qoz
 

-
The appearance of h50 1 in [A1.7] shows that the given value of an
 

object's luminosity, or £(E), as inferred from its observed s(E), scales
 

as H02.
 

For low redshifts, F(z;qo) is well approximated by z so that
 

[A1.5] simplifies to the Euclidean form (see equation [III.1]) with s(E)

inversely proportional to z2 . Even at high redshifts, F(z;l) = z when
 

qo 1 so that the inverse square relationship is maintained for
 

geometric focusing. The additional effect of spectral redshifting must
 

still be included. For values of qo > 1, F and therefore rz reaches a
 

maximum at some redshift. This means that a given luminosity object
 

would have a minimum observed flux, again neglecting the effects of
 

spectral redshifting.
 

So far we have not folded in the physical detector response to
 

move from the incident energy flux to the observed count rate in the
 

detector. To find the count rate in a given pulse height window we use
 

The factor of E 1 converts the energy flux of s(E) into photons as Q(E)
 

the quantum efficiency, Q(E), defined in [11.23] (see Section 11:3) for 

that window. 

S = f Q(E) E-1 s(E) dE. [A1.9] 

-

is defined by the probability that a photon at energy E is detected in
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the particular pulse height range. With our expression for s(E) dE
 

(equation [Al.5]) we can now relate observed count rate with
 

cosmological and distributional quantities: S(x,z;qo), or if L is used
 
S(L,z;q0 ).
 

Cosmological corrections to Euclidean volume
 

We again start with an emitter at redshift z, which has the r

coordinate position rI. The differential volume of all such emitters in
 

a shell surrounding the observer is
 

- 3
dV - 4w ao3 (l+z) [l-kr 123-1/
2 r12 drI. [AI.10]
 

Using the Friedmann solution eliminates any explicit k and a0
 

dependence,
 

-
dV = 47 HO-3 (1+z) 6 (I + 2qoz)-1/2 F2 (z;qo) dz. [AI.11]
 

Again at low z the volume element reduces to a Euclidean z2 dz. But the
 

smaller physical size of the universe at the early epochs begins to
 
-
constrain the available volume as seen in the (1+z) 6 term.
 

Because of the expansion of the universe, the density of objects
 

should increase when the size of the universe is smaller, i.e. the
 

density is proportional to (+z) 3 even if a class of objects underwent
 

no other changes. To better measure real changes in the number of
 

sources we define the comoving density function c:
 

c(x;z) = (1+z)3 (x;z). [AI.12]
 

Any change in c indicates a physical change in the distribution of the
 

objects, i.e. some evolutionary change in number or luminosity. The
 

number of objects observed in a particular redshift range is
 

*(x;z) (dV/dz) dz = *c(x;z) (dVc/dz) dz [AI.13]
 

Cosmological N(S)
 



Al 410
 

where dVc is the comoving volume element given by
 

dVc = (i+z)3 dV 

41wo-3 (l+z) -3 (l+2qoz)-I/2 F2(z;qo) dz. [AI.14]
 

Again, Ho sets the scale size of, the universe. A convenient
 

characteristic volume is the Hubble volume,
 

-
VH = (4/3)x Ho-3 = 900 h50
3 Gpc3 . [A1.15]
 

The true value of h50 is unimportant when calculating N(S) or Sas as 

long as the value used in dVc is the same as when calculating 4. This 

is because the product 4 x dV/dz is independent of the exact value of 

HO.
 

Calculating the number counts
 

Given the relationship S(x,z), the integral number of sources with 

fluxes above S is 

N(>S') = Gc(X;z) . [AI.16]f dz (dVc/dz) f dx e(S(x,z)-S') 


For intervals of x where £(x), the shape of the emitted energy spectrum,
 

is constant, x may be replaced with the luminosity L. In addition, for
 

a particular redshift S is proportional to L so that we can rewrite the
 

Heaviside function as S(L(S,z)-L(S',z)). For simple forms of *c the
 

inner integral can be done analytically. Only the dz integral need be
 

done numerically. The differential N(S) can be found by a limiting
 

difference process:
 

N(>S+6S)-N(>S)

N(S) = lim [AI.17]


SS+0 6S
 

Again for cases of constant spectral shape the inner integral of [Al.16]
 

reduces to an integral from L(S,z) to L(S46 S,z). Other interesting
 

quantities that can be calculated from variants of [A1.16] are W(S), the
 

mean redshift of all objects with observed flux S, and T(S), the mean
 

luminosity of such objects. An examination of such quantities
 

illustrates how different flux-selected samples are dominated by
 

different regions of redshift or luminosity space.
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A first order correction to the Euclidean model that is valid for
 

low redshifts can be calculated when the source spectra may be 

represented by a simple power law with energy index a and the luminosity 

function is a power law of index 8 (see Piccinotti et al. [1972] 

equation .8-- -taken -in turn -from Weinberg [1972] equation 14.7.34). We 

ignore the effects of detector spectral response so that S and L are the 

energy flux and luminosity defined over the same bandpass AE. In this
 

simple case the source counts are proportional to
 

N(S) S-512x 

-
{1 - 3.7xi0 27 h50 (1-Ia) 	(2.5-) A(L3-) [A1.18] 
(3-8) A(L2 5-) 

where
 

" ) -A(L Lax a Lmin - a 	 [A1.19] 

and Lmax and Lmin are the upper and lower cutoffs of the luminosity
 

function. From equation [A1.18] we see that at the highest flux values
 

the source counts initially' follow the Euclidean 5/2 index power law,
 

but at low enough fluxes there will be a flattening in the curve as the
 

correction term begins to be significant. The appearance of the source
 

spectra through (1+a) indicates that this correction involves both the
 

redshifting and geometric effects. Note, however, there is no explicit
 

dependence on qo in the first order correction. The approximations used
 
2
in deriving [A1.18] are accurate over values of S >> H0 L / 41.-

Equation [A1.18] also illustrates a general property of the N(S) curves 

for all non-evolving populations with suitable spectra (a noninverted 

photon spectrum, a > -1): the cosmological corrections flatten N(S) 

below the Euclidean 5/2 power law. Source counts steeper than Euclidean 

provide strong evidence for evolution of e" 

Particular models -for the evolution of the luminosity function are
 

discussed in Section VII:3. Current models are usually parameterized in
 

terms of redshift or emission epoch. The explicit redshift evolution
 

forms, usually involving powers of. (1+z), have no dependence on q. but
 

often require an explicit high z cutoff to avoid infinite sky flux
 

(Olber's paradox). The models which are explicitly dependent on epoch,
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rather than redshift, usually use T, the fractional look-back time
 

T = 1 - (tem/to)", [Al.20]
 

- where tem is the epoch of emission and to is the current epoch of 

detection. The value of T as a function of redshift can be calculated 

by integrating the differential relationship between redshift and epoch 

for a Friedmann solution: 

dt= Ho dz [A1.21
 

(I + z)2 (1 + 2qoz)i /2
 

Solutions exist for t(z) with the integral performed. However, they 

have forms dependent on the value of k. A simple case is where k = 0, 

equivalent to qo = 1/2: 

tLB = t0 =,(2/3) Ho- "( - (1+z)-3/ 2). [A1.22]
 

Cosmological N(S)
 



413 

APPENDIX A2
 

DISTRIBUTIONS, PROBABILITIES, AND TRANSFORMS
 

This appendix is a general description of distributions, with an 

application to the evaluation of the effects of overlapping data. The 

Mellin transform is also presented as a possible tool for future 

analysis of complicated fluctuations models. 

1: Characteristic Function and Cumulants of a Distribution
 

We outline several ways the distribution of a random
 
variable may be described. The characteristic function of a
 
distribution provides a simple way to describe the addition
 
of independent random variables through the convolution
 
theorem. The characteristic function can also be used to
 
define the cumulants of a distribution. Expressions for the
 
fifth and sixth cumulants are presented.
 

This section is a ready reference for statistical concepts mentioned in
 

the main body of the thesis. A description of cumulants can be found in
 

almost any intermediate text book on distributions, probability, or
 

transforms (see for example Wilks [1963]). In addition this section
 

presents formulae for the 5th and 6th cumulants, which are not found in
 

most accessible references, as well as the general algorithm for the
 

derivation of any higher cumulants needed. Other formulae not derived
 

here are collected in Abramowitz and Stegun [1965].
 

Distributions, moments, and the characteristic function
 

The behavior of a continuous random variable is often .described in
 

terms of a differential probability density, the distribution function 

Px(X), which is the probability that x is.in the interval x to x+dx. 

Px (x) is normalized so that f px(x) dx = 1. Given any function of x, 
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f(x), its expectation value, <f(x)>, is just
 

<f(x)> = ds p,(s) f(x) . [A2.1]
 

(All integrals henceforth are presumed to be definite integrals over the
 

entire range of the variable of integration.) Several sets of 

expectation values are used to characterize px. The nth moment about 

the-origin is: 

11I <xn>. [A2.2] 

P'I is the mean of the distribution. The central moments are the 

moments about the mean, Vn = <(x-i' 1 )n>" The second and third such 

moments are the variance, a2 , and the skewness of the distribution, 

respectively. The mean, variance, and skewness of a distribution are 

usually a sufficient description of a distribution. Of course they 

cannot tell the whole story, particularly when the distribution has an 

unusual shape. In some cases, as with the fluctuations, the values may 

be formally undefined because the integral in [A2.1] is infinite. 

All the information of the distribution is contained in another
 

expectation value, or rather a function produced from expectation
 

values, the characteristic function:
 

X(t) R <exp(itx)> = f dx px eitx [A2.3]
 

This is closely related to the Fourier transform of Px(X),
 

Xt = 1E(Px,X; -t) [A2.4] 

The minus sign is due to the convention where the forward transform is
 

-
IF(f(x),x;t) E f dx f(x) e ixt • [A2.5] 

and the inverse transform given by
 

-
r1'(g(t),t;x) = (21) I f dt g(t) e+i x t . [A2.6] 

Thus in a similar way we can invert the characteristic function and re-
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derive the probability density:
 

px(x) = r-(4(t),-t;x) . [A2.7] 

So in this way we see that $x(t) contains all the information of px(x).
 

Both charactertz the fandbm variable, x.
 

To make this more explicit we consider jn)(t), the nth derivative
 

of x(t):
 

n itn
M - dn(t) = f dx px(x) (ix) e [A2.8] 

Therefore
 

(n)(t=0) = in <xn> ,[A2.9]
 

relating the characteristic function to the moments of the random
 

variable.
 

The utility of characteristic functions is particularly easy to
 

appreciate when we form combinations of random variables. This is due
 

to the convolution property of Fourier transforms. We define the
 

convolution f*g (x) of two functions f(x), g(x) as
 

f*g (x) = f dx{ f(x') g(x-x') .A2.1]
 

The convolution theorem states that
 

1(f*g (x),x;t) = IKf,x;t) x TKg,x;t) . [A2.11] 

To demonstrate this we use characteristic functions, for the example of 

two independent random variables, x and y. The independentness means 

that the joint probability distribution is separable, i.e. px,y(x,y) 

Px (x) py(y). The expectation of a function g(x,y)-i-s 

<g(x,y)> = fdy py fdx px g(x,y) . [A2.12] 

The distribution of a new random variable z H x+y is given by the 

Distribution Properties Cumulants
 



A2:1 416
 

convolution of the distribution of x and y:
 

pz(Z) = fdx px X) py(Z-X)'. [A2.131 

The characteristic function of z, z(t) is easily calculated, given that
 

x and y are independent:
 

4z(t) = <exp(izt)> = <exp(i(x+y)t> 

m <exp(ixt)> <exp(iyt)> 

= X(t) Yt) [A2.14] 

By the relationship between characteristic function and Fourier
 

transform-we see that this is an equivalent form of the convolution
 

theorem. In general given a sum of independent variables, xi, we can
 

describe the characteristic function of the sum by
 

z = xi [A2.15a] 

i 
zt)= *xiCt)' [A2.15b] 

Cumulants and reduced cumulants
 

The natural logarithm of *(t) may be expanded in a Taylor
 

series in (it) about t=O:
 

in *,jt) = ) (it)n [A2.16] 
n=O nI
 

The nth coefficient of the expansion, Kn;x, is the nth cumulant of x. 

If we form a sum of random variables, z = xi, then since *z(t) was 

formed by the product of the characteristic functions, the cumulants of 

z are just sums of the cumulants of the xi . The cumulants, like the 

characteristic function, contain all the. information about the 

distribution of the random variable, as long as the cumulants are well 

defined (i.e. when the Taylor series expansion is valid). 
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Table A2.1: First six cumulants in terms of moments about zero
 

= <x> = meanK I 

= <x2> - <x>2 = a2 = variance
 

K3 = <x3 > - 3<x><x2> + 2<x>3 = 13
 

K4 = <x4> - 4<x><x3 > - 3<x2 >2 + 12<x>2 <x2> - 6<x>4
 

= U4 - 3 a2 

= <x5> - 5<x><x4 > - 10<x ><x > + 20<x>2<x3 > + 30<xXx2 >2 

K 2 


K5 
2 > + 24<x>

5
 
- 60<x>3<x


K6 = <x 6 > - 6<x><x5 > - 15<x2><x4 > - 10<x 3 >2 + 30<x>2 <x 4 >
 

+ 120<x><x 2 ><x3 > + 30<x2 >3 

- 120<x> 3 <x3> - 270<x>2<x 2 >2 
4
 

+ 360<x> <x2> - 120<x>6
 

If we define T H it, then the nth cumulant is
 

K =n In *(i-IT) I [A2.17]n Tn IT=O
 

where for the time being we drop the -subscript ";x". Recalling [A2.9] 

and knowing that 4(t=O) = 1, we can generate relationships between the 

cumulants and the moments about zero. Inspection of Table A2.1 shows 

that the second and third cumulants are identical to the second and 

third moments about the mean. Thus the well known additivity of 

variances is a result of the equivalence of the variance and the second 

cumulant. This property does not extend higher than the third moment 

about the mean.
 

The cumulants of the Gaussian distribution, other than the mean
 

and variance, are all zero. The cumulants of the Poisson distribution
 

are all equal.
 

The nth cumulant is a linear combination of the first n moments.
 

This may be inverted, as we show in Table A2.2, giving the nth moment
 

about the origin in terms of the first n cumulants. This closely
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Table A2.2: Moments about the origin of a random variable
 

in terms of its cumulants.
 

<x> = K 
2
 

<x2> m K2 + K1

<X3> = K3 + 3KIK2 + K1
3
 

2 4
 
<x4 > = K 4 + 4KIK3 + 6K1c2K 2 + 3K 2 + Ki1 

coupled relationship between moments and cumulants allows the
 

calculation of the cumulants for new distributions defined as functions
 

2
of variables with known cumulants. For example, consider y E x . The 
first cumulant of y is K1;y = <y> = <X2> = 2; + K; 5 . The variance 

~~2;x ;x Tevrac1;y 
of y is K2;yy = 4<2> + 4 cl;x 21 2.x + 2 r<x> 4;x +4KI1 xK3; 

Linear combinations of variables can be constructed. As an example, 

consider X2 which is the sum of V independent variables X12, each of 

zero mean and unit variance (V is the number of degrees of freedom). 

Therefore KI;X = 0 and K 2;X = 1, so that we can show that KI;x 2 = 

V I K2;X + I1;X 2 ] = V. All higher cumulants of X are zero, therefore 

the variance of the x2 distribution is 2 K2 ;5
2 = 2V. This could be 

found directly from the series expansion of the characteristic function 

for X2 , but using the moments to derive the cumulants is in some 

circumstances computationally easier. 

In the body of the text we introduced the dimensionless reduced
 

cumulants (equation [111.21]) which are quantitative measurements of the
 

distribution's deviation from a pure Gaussian. The differential
 

distribution, the integral probability, and the inverse of the integral
 

probability for any distribution can be approximated with a power series
 

expansion in the reduced cumulants. The form of this expansion is given
 

by Abramowitz and Stegun [1965] in their equations 26.2.47-50.
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2: Overlapping Data and Corrections to Data Weighting
 

The effective number of measurements for overlapping data is
 

investigated using the example, of non-independent
 
measurements drawn from a Gaussian -distribution.
 

In Section IV:2 we outlined a correction for X2 determinations that used
 

overlapping data. This correction weighted the individual measurements,
 

using equation [IV.4]. If the ith observation has a weight Wi equal to
 

0.7, for example, then the observation is counted as equivalent to 0.7
 

of an independent observation. The contribution of this observation to
 

X2 is weighted by this factor, and by analogy so is its contribution to
 

the likelihood estimators and moment statistics of the fluctuations
 

fits. The form for the weighting factor we have suggested is
 

Wi = 1 / (1 + I wij) [A2.18] 
j*i 

where wij is the contribution to the ith measurement's weight due to
 

correlation with the jth measurement. This depends on the size of the
 

covariance coefficient, oij, relative to the size of the jth
 

observation's variance:
 

wij = iJ / a2. " [A2.19] 

Note that for the discussion in this appendix, we assume that a2 is the
 

total variance, which includes a contribution from fluctuations, c2 J;f,
 

which may be correlated with other overlapping measurements, and a
 

contribution from photon counting statistics, a2j;p* The latter
 

variation is statistically independentof the other measurements.
 

In this section, we present plausibility arguments that such a
 

weighting is appropriate. For a few simple cases we can show that this
 

weighting has exactly the correct properties. Slightly more complicated
 

examples have been investigated, and the appropriateness of the
 

weighting confirmed, using Monte Carlo techniques. However, we have not
 

yet performed a full examination of the most complicated situation: the
 

analysis of N(S) models from the fluctuations in a manner similar to
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that used in this dissertation. This weighting is an improvement over
 

previous attempts to use overlapping data when analyzing the
 

fluctuations, but some additional examination may be useful.
 

Consider a series of observations yi, not necessarily independent,
 

each with a variance 021 . All the observations have the same (unknown)
 

mean, y. N is the total number of observations. The observations can
 

be used to estlmate y by minimizing
 

E(y) - (Y - y)2 [AZ.20] 
i i 

We note thatwwhen the y1 are independent, E(y) is distributed as X
2 with
 

N degrees of freedom. Let yo be the estimator of 7 obtained by minizing
 

E(y). Then we can show that
 

Yo= A [ (yi/a2i) , [A2.21] 

where
 

A 1 1 [ (1I 5 i) • [A2.22] 

The expectation value for the estimator, yo, is
 

2<yo > = A 1 (<yi>/ 1i ) = 7 [A2.23] 

since allthe observations have the same mean, <yi> y. Therefore, yo 

is an unbiased estimator of 7. The efficiency of yo as an estimator is 
measured by the variance of yo, G2 = <yo2> - <yo> . By squaring both 

sides of equation [A2.21], and finding the expectation value, we can 

derive 

A2 1.2 = A + {- I ij [A2.24] 

02 i ji a29i. 

The first term, A, gives the variance when there is no correlation
 

between the observations. The second term was derived using the
 

= aij + relationship <yi yj> 


If we consider first the case where there is no correlation, i.e. 

aij = 0 for all i,j, and where the observations all have identical 
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2
variances, a , then the uncertainty in the yo estimator for y reduces to
 

2
a = A = a2 / N-. [A2.25]
yo
 

Thus increasing the number of observations decreases the variation in
 

Yo. As we discussed in Section IV:2, additional--observatfons with total
 

correlation to one of the original set of independent measurements (aij
 

= a2 ) cannot add any new information. The function E(y) is no longer
 
.
distributed as X2 The addition of such observations in equation
 

[A2.21] will not decrease the uncertainty in Yo through the increase in
 

the second term of equation [A2.24]. If the total set of N observations
 

consists of n groups of M totally correlated measurements then
 

02 yo = A2 I M/02 
i = o2 / n . [A2.26] 

If the groups did not each have the same number of observations then
 
2
a would actually be increased, so that the utility of equation

Yo 

[A2.21] as an estimator of y would degraded by the additional 

observations. The correct solution is to weight the observations in 

each group so that they will contribute the equivalent of a single 

independent observation in total. Thus, if an observation is a member 

of a group with M totally correlated measurements then its contribution 

to the sum in equation [A2.21] should be weighted by 1/M. A similar 

weighting of the terms of the sum for E(y) in equation [A2.20] will 

restore it to a X2 distribution with a number of degrees of freedom 

determined by the number of groups. 

When the correlation is less than total the correct weighing is
 

not intuitively obvious. Consider a generalization of the least squares
 

measure in equation [A2.20]
 

E(y) = ) W Y )2 [A2.271
i 
 i
 

Minimization of this weighted sum is
 

yo = A' I (Wiyi/a2i) [A2.28] 

Distribution Properties Corrections for Overlap
 



A2:2 422
 

with
 

A' = I / I(Wi/a 2 ) .[2.29]
 

The estimator yo is still unbiased, i.e. <yo> . The variance in the
 
estimator is
 

02 (A')2 )Wi2Yo ic- Bt [A2.30] 

where the effects of measurement correlation are expressed in the term
 

Bi I+ _ wA2.31]= 
Ji a i
 

So far in this discussion we have not determined what values are to be
 

used for the Wi weighting parameters. The expression in equation
 

[A2.30] is correct no matter what particular weights are chosen. (Note
 

that it reduces to equation [A2.24] when the Wi are fixed equal to one.)
 

The optimal values for Wi are clearly those that will minimize the
 

variance in the estimator yo. These values can be found from partial
 

derivatives of equation [A2.30]. It can be shown that such optimal
 

weights must satisfy the relationship
 

W= (Bi)- = 1 / {i + ) oij } . [A2.32]J~i 0-jwi 

When the Wi satisfy this condition, the weighted least squares sum in
 

equation [A2.27] is distributed (to first order) as X2 with Nw degrees
 

of freedom where Nw is the weighted number of observations
 

Nw = I Wi -[A2.33] 

Unfortunately, equation [A2.32] does not directly determine the correct
 
value for W, as it contains Wi on both sides of the equation. The exact
 

form requires an iterative solution of equation [A2.32]. An approximate
 

solution is the weighting of equation [A2.18], where we have assumed
 

that whenever two observations are correlated then Wi - W . This is the
 

weighting that we used in the analysis for this dissertation. It is
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exactly true for the example of the groups of totally correlated
 

observations.
 

To calculate even the approximate weight for -the- overlapping data
 

requiresan estimate of the correlation coefficient, oij. Here is where
 

we must approximate the fluctuations as a Gaussian with a size 02i;f for
 

the ith observation. This should not be identified with the true
 

variance of the PI distribution, but instead with some crude measure of
 

the size of the quasi-Gaussian aspect of the fluctuations away from the
 

high intensity tail of the distribution. If the fluctuations are
 

Gaussian, and if ri(O, ) and rj(O, ) are the response functions of the
 

ith and jth measurment, then
 

Tj _ ri r1 [A2.34] 

02i;f fd ri 2 

3: The Mellin Transform and Calculation of n(I)
 

An algorithm for folding a general N(S) function through the
 
detector response is presented using Mellin transforms.
 

Equation [111.33]. gives the general integral form for using the detector 

response frequency, V(r), to transform the detector independent function 

N(S), to the detector dependent mean number of sources observed in the 

field of view of a single measurement, n(I). The process of taking two 

functions, V and N, to create a third, n, is reminiscent of the 

convolution process (equation [A2.10), although now the-combination is 

a multiplication, I = rS, rather -than a sum, z,= x+y. The standard 

convolution could be quickly performed in terms of Fourier components, 

so that the convolution integral reduces to a calculation of forward and 

inverse fast Fourier transforms. The "multiplicative" convolution also 

has a transform form, using Mellin transforms. Mellin transforms and 

their properties are presented in more detail in many books on general 
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mathematical transforms [e.a. Bracewell, 1978]1. This section will touch
 

on some of these properties, usually without proof, and present an
 

outline of an algorithm to convert Mellin transforms to a Fourier form,
 

so that the fast Fourier transform computational tools can be used for
 

efficient calculation. In analyzing the fluctuations using the A-2
 

data, we had no need to use these sophisticated techniques, however in
 

the future when N(S) is investigated at lower fluxes, the more
 

complicated N6,S) models that will be required may benefit from the
 

techniques we present here.
 

The Mellin transform of a real function f(x) is the integral
 

operator
 

M(f(x),x;s) =f dx xs-1 f(x) ,[A2.35
 

where s is the new independent complex variable. The integral may not
 

converge, depending on the behaylor of f(x), for certain values of
 

Re(s), the real part of s. Note the range of the integral, from 0 to
 

infinity, means that the transform is sensitive only to the positive
 

behavior of f(x). It can be shown [Bracewell] that the inverse
 

transform is
 

(g(s)ds;x) = 4Wfdw g(r+iw) x-(r+iw), [A2.36]

27 -

where the complex variable s has been broken into real and imaginary
 

parts
 

s = r + iw. [A2.37] 

The real component, r, is held constant, and is chosen so that the path 

integral of the inverse transform, - C t C - , is over a domain where 

g(r+iw) is always defined. If this is true then the inverse transform 

will retrieve the original function: 

f(x') = M-l( M(f(x),x;s), s; x') . [A2.38] 

Consider three functions, f, g, and h, related by the
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multiplicative convolution
 

h(x) = f0 du f(x/u) g(u)/u . [A2.39] 

This is the same form as equation [111.33], with h(x) = n(I), g(u) 

V(r)/4T, and f(x-/.u) -N(-S). Performing Mellin transforms on all three 

functions, it can be shown that a property of the Mellin transform is
 

M(h(x),x;s) = M(f(x),x;s) x M(g(x),x;s+l) . [A2.40] 

Thus, the Mellin transform plays a similar role for multiplicative
 

convolutions that the Fourier transform plays for the more ordinary
 

additive convolution. Some care is needed in selecting the constant r 

for the real part of s in the inverse transform path integral. It must 

have the property that M(f;r+iW) and M(g;(r+l)+iw) are defined over the 

entire range - w 4 -+. 

To have any computational advantage, we must have a quick and
 

efficient way to calculate the Mellin transform and its inverse. We 

accomplish this by rewriting the Mellin transform as a Fourier 

transform: 

-M(f(x),x;r+iw) = 3K f(e-t)e rt , t; w) , [A2.41] 

and
 

I-l(g(r+iW), r+i; x) = x-r -1 ( g(r+iW), W; -ln x) . [A2.42] 

The Fourier transforms may be evaluated with fast Fourier algorithms 

(e.. Bergland [1969]). In preforming the FFTs, note that there is 

significant signal for both the positive and negative values of the 

Fourier variable t = -In x. Because of this change of variables, the 

N(S), V(r), and resultant n(I) functions are not sampled at equally 

spaced intervals, but rather at points that are more closely spaced at
 

the low values. Given that the strongest variations in the functions is
 

expected at these low values, this assists an accurate calculation of
 

n(I). However, interpolation is needed to convert the unequally spaced
 

values of n(I) to an equally spaced estimate to continue with the
 

calculation of the fluctuations distribution (see Appendix A3).
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APPENDIX A3
 

COMPUTATIONAL ISSUES IN CALCULATING AND FITTING FLUCTUATIONSMODELS
 

We outline the general techniques used in the actual
 
construction of the PE,(9') curve and the subsequent fit to
 
data. The finite discrete Fourier transforms used have
 
important properties that are allowed for. A proposal is
 
made to extend the application of these techniques to cases
 
where the detector spatial response includes significant
 
regions with negative response.
 

The equations which determine the calculation of a model
 

fluctuations distribution and how it should be tested against
 

observations have been detailed in the body of the dissertation (see
 

equations [111.43], [111.46] et seq., [111.61] et seq., [V.2], and
 

[V.4], and associated discussions). The implementation of these
 

equations in a computer program raised many issues. The problem of
 

determining what constitutes acceptable accuracy led eventually to the
 

concept of the likelihood difference of two models (Section 11:5). The
 

expected quality of the A-2 data and the number of observations in the
 

WW dataset required that care be used in turning the general formulae
 

into an algorithm. The eventual result was a body of subroutines, each
 

covering a single phase of the process that turned data plus model
 

parameters into a set of statistics for determining the acceptability 6f
 

the fit and the parameter confidence region. The subroutines were
 

written in FORTRAN IV (using the IBM H Extended Enhanced compiler
 

dialect). Rather than present a listing of the programs, this appendix
 

consists of brief notes on the general issues of technique. The actual
 

source code is available on request. Data with lower signal to noise or
 

fewer observations than the A-2 data may not require the care used in
 

these subroutines, and might instead be analyzed with more efficiency by
 

a simpler implementation.
 

Calculating n()
 

The basic model tested is a power law n( ) d , with a roll over
 

Calculating P(D)
 



A3 427
 

beginning at Ec (corresponding to a sharp cutoff at some low flux So, 

see equation [111.611 et seq.). The fluctuations from this distribution 

may also include an additional pure Gaussian component of variance d2c. 

The result is a distribution in the dimensionless value E, which is 

related--to the -- This approach providesobserve& -intensities by Weff.-


some economy in computation, in that the fluctuations distribution need
 

be calculated only once for a given value of Y, 9., and ae.
 

The discrete nature of numerical calculations with computers, as
 

opposed to exact algebraic closed form solutions, requires that the
 

models and resulting distributions exist as a series of sample points.
 

Therefore n(E) dC is replaced by an array of points Nj . The size of the
 

array is a power of two, usually 2048 points. The array index, J, is
 

proportional to the dimensionless intensity 9 associated with a 

particular array element. jl, which need not be an integer, corresponds 

to the point where 9 = 1. N. is the mean number of sources expected 

with intensities 

91 = i / Jl, [A3.1] 

so that
 

Nj 0 n(Ej) AE [A13.2]. 

A 1i / 5l . [A3.3] 

The exact value chosen for J9 is unimportant. For the fits presented in
 

this dissertation, we used jl = 30. Values much smaller than 10 did not
 

allow sufficient room to model accurately the form of the low intensity
 

roll off. Values much larger than 50 tended to have very large mean
 

intensities for the fluctuations distribution. Such distributions
 

suffered from precision difficulties. The zeroth element of the array,
 

N, corresponded to the number of sources with no intensity. By
 

convention this was set to zero.
 

The cumulants of the Nj array (see Section A2:2 and Section 111:2)
 

are easily calculated. Similarly accurate calculations can be made for
 

the cumulants of the exact n(E) model distribution and compared with the
 

array values. Because of the discrete nature of the array (and the
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approximation inherent in [A3.2]) the two will'not be in agreement. For
 

the modified power law n(C) models we fit,-most of the disagreement
 

originates where the model is changing rapidly from one array element to
 

the next, i.e. at the lowest few elements. Thus the formal divergence
 

of the higher model cumulants can be avoided by restricting the
 

comparison of the cumulants contributed by the elements from I to jl
 

versus the model range E = 0 + 1. By adding or subtracting sources from
 

the first few (low intensity) elements of the array, the third cumulant
 

of the Nj can -be adjusted to exactly match the corresponding value for
 

the model distribution. Any residual difference in the second cumulant
 

(variance) is then calculated, Aa2 . The array mean intensity, j, is
 

calculated for the entire array. This mean could be much larger than
 

the size of the array, especially if JI is large so that there are a
 

large number of low flux sources in the array. (Remember that the mean
 

of the fluctuations depends on the behavior of the low flux sources for
 

y > 2.)
 

Calculation of the fluctuations array
 

The Nj array is used to calculate the fluctuations distribution
 

using the Fourier techniques of equation [111.43]. Because the array
 

size was chosen to be a multiple of two and the values are all real, the
 

radix 8 fast Fourier transform technique [Bergland 1969] offers an
 

efficient realization of the transforms. Double precision calculations
 

of the transforms proved necessary to avoid unacceptable accumulation of
 

round-off error. Because of the nature of the floating point hardware
 

in the IBM machines used in the analysis (360 Model 91 and 3081) there
 

was little computational penalty in this, except for the calculation of
 

the complex exponentials.
 

The intrinsic Gaussian variation, both from the model a2 and Aa2
 

(the correction for any difference between the model N- low intensity
 

end variance), can be easily included in this step. The convolution
 

with the additional Gaussian is equivalent to multiplying the
 

transformed fluctuations distribution with the Gaussian before applying
 

the inverse transform. (As the magnitude of the counting statistics
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variance changed from one data point to the next, that variation is not
 

included in this step. Such inclusion would also destroy the scale free
 

nature of the resulting distribution, where all scale information is
 

determined by the value of Weff.)
 

The final inverse transform (Fourier synthesis) returns an array 

P. The array is normalized so that P. is the probability of an 

observation with intensity Ej ± k x M, where k is some integer and M is 

the array size. The imprecision is due to the finite Fourier 

transform's treatment of the Nj as a periodic function with period M. 

The mean of the distribution will correspond to the bin position j 
modulus M. The distribution may continue past the physical edge of the 

array by wrapping around, i.e. bin zero is between bin M-i and bin 1. 

This wrap-around can actually contaminate the probabilities near the 

mean of the distribution with an additional contribution from the power

law high intensity tail. This can be explicitly calculated and removed 

from the distribution. Alternatively, the behavior of the high
 

intensity sources responsible for the tail can be excluded in the
 

initial Nj array by zeroing a portion of the high intensity elements.
 

The existence of a high intensity cutoff in Nj, either from the explicit
 

zeroing or from the top of the array, must be included in calculating 

the proper correction to the array distribution mean i for comparison 

with the true intensity mean (equations [111.56] and [VI.2]). 

Calculating the integral and differential probabilities
 

In fitting the newly derived fluctuations distribution to
 

observations the array must be scaled by Meff and convolved with each
 

observations photon statistics distribution. The convolutions are 

necessary to calculate the differential probability ([v.2]) for 

likelihood estimates and the integral probability ([V.4]) for the 

goodness-of-fit estimates. We assumed that the photon statistics were
 

Gaussian and independent of the model intensity. The computation was
 

greatly speeded up by replacing the evaluation of the Gaussian with a
 

look-up in a pre-calculated table. For the integral probability the
 

order of integration was reversed so that the inner integral could also
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be handled by table look-up. Thus, only multiplications and adds were
 

needed for most of the performance of the noise convolution integral.
 

Cubic interpolation was used for the Pj array, with linear interpolation
 

for the noise distributions.
 

Negative response calculations
 

The techniques that we have outlined above can be easily modified
 

for-use in situations where the spatial response function, r(6,$),
 

includes positive and negative response regions. Examples of such an
 

effective detector response are: the internal background measuring FOV
 

combination rB (equation [11.13]); baseline subtraction estimates of the
 

sky flux (Section 111:7); and, in the radio, phase-switching
 

interferometers. As discussed at the end of Section 11:2, the general
 

approach is to divide the response into two portions, covering the
 

positive and negative response regions respectively. The V+(r) response
 

frequency is used to derive an Nj array as described earlier in this
 

Appendix. The wrap-around character of the array is now exploited.
 

From v_(r) we can calculate a similar N(-)j, but the value of the scale
 

point bin is fixed at
 

jl_ = jl (R.;(yi) I R+;(yI)) [A3.4] 

4
where R ;(y_1) are the indicated detector response weights for the v!(r)
 

response frequencies. N(-) is then added to the M-j element of the N
 

array. The derivation of P. is the same as before, though we note that
 
the variance corrections of the two regions are added together. When
 

scaling the resultant Pj array for the fits, we must use W(+)eff, the
 

effective width from the positive response portion of the detector.
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APPENDIX A4
 

THE SCANER DATABASE
 

The forma-6f' the SCAARE database is given, with a detailed 
description of the header blocks and the SPINAXIS file used 
to access the data.
 

The SCANER database is the basic HEAO I database used in the
 

analysis of the X-ray sky. Its creation is detailed in Section IV:1.
 

The SCANER data exist as tape files. Those produced directly by the
 

program SHFSCN have the best resolution, each scan corresponding to one
 

spinaxis select period (nominally 0.5 days) with the scan divided into
 

1800 bins (0.20 resolution). Lower resolution scans are produced by the
 

program SUSCAN, which combines adjacent scans and also can produce a
 

coarser binning.
 

The SCANER tape format
 

Each scan, or superimposed scan, is a single file. Each file is a
 

series of 500 byte records. The first is the header record, containing
 

information on the organization and the accumulation of the data:
 

iafile 1*2 The output file number of the BIGSCN tape. 

irun 1*2 The run number of the BIGSCN run that produced this 

data. 

nspin 1*2 The number of good major frames for this scan. 

ftime R*8 The start time of the scan (in DOY 1977). 

stime R*8 The stop time of the scan. 

xax R*8(3) The scan plane x-axis as a real triple. 

yax R*8(3) The scan plane y-axis as a real triple. 

zax R*8(3) The scan plane z-axis, i.e. the mean spinaxis, as a 

real triple. 

spnper 1*4 The mean spin period (in minutes) for the data. 

spnexc R*4 The mean variation in the spin period (in minutes). 

excurs R*4 The approximate mean excursion of the spInaxis from 

its mean position during data acumulation. 
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amxmac R*4 


dattap R*8 


darch R*8 


nbin 1*4 


nrec 1*4 


darmak R*8 


darmak R*8 


dmemo R*8 


iadmac 1*4 


naxott 1*4 


nspnml 1*2 


nspnuc 1*2 


mfilef 1*4 


qflag L*1(8) 


The maximum value of Macilwain L, for LOWMAC files
 

only (see following description of McIlwain L
 

classification), ALLMAC files this value is
 

meaningless.
 

The name (a8) of an input data XRATES tape (for some
 

part of the data used the scan).
 

The name (a8) of the output BIGSCN tape for low
 

McIlwain data
 

The number of bins into which the scan plane is
 

divided, less than or equal to 1800.
 

Spare.
 

The name (a8) of the output BIGSCN tape for the high
 

McIlwain L data.
 

The name (a8) of the original SHFSCN tape used for
 

this scan.
 

The name (a8) of the SPINAXIS member that originally
 

had a record that points to this file.
 

The MacIlwain L index used for selecting LOWMAC
 

data, aA Integer value derived from amxmac
 

above.
 

The total number of major frames that had acceptable
 

data for at least one detector.
 

The number of major frames that did not meet the
 

McIlwain L selection criterion.
 

The number of major frames that produced not
 

electron superclean MED data.
 

The file number of the original SHFSCN tape.
 

A flag array specifying the qualities of this tape:
 

(1) If True, indicates includes all values of
 

McIlwain L; if False, the data was selected by
 

the criterion indicacted in amxmac.
 

(2) If True, indicates the scan is a superposition
 

of many scans, if False, the data was produced
 

directly by SHFSCN from the BIGSCN output
 

tapes.
 

(3-8) Spare.
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qpad L*I Sufficient bytes to pad out to total record size of
 

500. For For superposed scans produced by
 

SUSCAN this array contains information about 

where the data used in superposition came from. 

Each bin on the scan plane, 1800 of them for the SHFSCN output
 

scans, usually 360 for the SUSCAN output files, is contained on one of
 

the following 500 byte records. Each record consists of 5 100 byte
 

subrecords, one for each of the five detectors: BED-i HED-2,
 

MED(superclean), HED-3, MED(all data). The subrecords organization is:
 

lds 1*4(8) LDS(n) is the sum of the counts of the nth Discovery 

Scaler. 

numexp 1*4 The number of exposures. 

CAUTION: Many subroutines, in particular 

GTRATL, which returns a particular rate, is 

passed LDS as an array and assumes that NUMEXP 

is the 9th entry of that array. As long as the 

records from the tape are read using FREAD onto 

a common block and not moved around, this is 

valid., To -avoid problems, NUMEXP should be 

picked up as the 9th entry for LDS whenever LDS 

is copied to a new location. 

ldssqr L*4(8) LDSSQR(n) is the sum of the squared counts of the 

nth Discovery Scaler. 

ldetrs 1*4(4) LDSCRS(n) is a sum of the cross product of the 

counts in the Nth pair of Discovery scalers, 

e.g. LDSCRS(1) is the sum of the product of 

counts in Discovery Scalers 1 and 2. 

ldelz 1*4 The sum of the excursion from the scan plane, in 

units of 0.05 degrees. 

Idelz2 1*4 The sum of the square of the excursions from the 

scan plane. 

macsum 1*4 The sum of L, where L is (100. * (Mcllwain L -1)). 

qdatfl L*1(4) A set of logical data quality flags. 

(1) If true, then the detector was pointing to this 

-bin during an exposure when the Discovery 
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Scaler LSB register had an overflow, so that no
 

1.28 second data was provided. This is usually
 

due to a bright source in the field of view.
 

There is no attempt to estimate the correct
 

data and the number of exposures was not
 

incremented.
 

(2) If true, then the sum of counts squared -became
 

so large that some of the entries in LDSSQR and
 

LDSCRS may be invalid. However all of the
 

other accumulations were madeand the number of
 

exposures was incremented.
 

(3) If true then some of the data in this bin were
 

taken during a major frame where the detector's
 

Source-in-Small-Field-of-View flag had been 

set. 

(4) 	If true then as for (3), save an indicator that
 

the Source-in-Large-Field-of-View flag had been
 

set.
 

The 	 SCANER files are usually files on 6250 bpi density tapes. 

There are a set of tapes for all the data, and another set that is for
 

Low Mcllwain L data only. All low L data was taken when L was less than
 

1.18.
 

The SPINAXIS file format
 

The 	SCANER tape files are approximately in time order. However
 

due to some correction programs, some of the scans were placed, out of
 

order, on an auxillary tape. To determine the tape volume and file
 

number associated with a particular time interval, or spinaxis position,
 

there are the SPINAXIS files. These members of various PDSs contain a
 

short summary record for each SCANER file:
 

ftimes R*8 Begin time for scan accumulation. 

stimes R*8 End time for scan accumlation. 

spinax R*8(3) Vector triple for the spinaxis position for the 

scan. 

SCANER Database
 



A4 435
 

Sspnpr R*4 Scan period. 

sspnex R*4 Mean variation in scan period. 

sexces R*4 Mean deviation from position given in spinax (in 

degrees). 

(It is often wise to discard data with too 

large a value for SEXCES, as this is an 

indication of possibly abnormal conditions 

during data accumulation. In particular some 

data near a pointing period might have been 

included with a particularly large displacement 

from the nominal scan plane.) 

itflag L*4 Spare 

tname R*8 Tape volume name (aS) of associated SCANER file. 

ifile 1*2 File number of associated SCANER file. (CAUTION: 

As this is a two byte integer it CANNOT be used 

as an argument to the FTIO routine MOUNT and 

POSN which expect a full word integer. It 

should be converted by an assignment 

"IFULL=IFILE" where IFULL is 1*4 and then use 

IFULL as the argument.) 

nspins 1*2 The number of major frames that contributed data to 

the scan. This is a good indication of the 

amount of good data avalable in this scan. 

The SPINAXIS members are time ordered, although it may take one or
 

more members to cover an entire set of SCANER files. The current
 

SPINAXIS files available are: ALLMAC.SPINAXIS, the master all-McIlwain-L
 

data produced by SHFSCN; LOWMAC.SPINAXIS, the low-Mcllwain SHFSCN
 

produced data; SUSALL.SPINAXIS, the superposed data (1 degree by 2 days)
 

for all-Mcllwain data produced by the program SUSCAN; and
 

SUSLOW.SPINAXIS, the superposed low-Mcllwain data.
 

Programming hints
 

To -change the data array into rates, look at XTRACT and in
 

particular the subroutine GTRATL. They are fairly well documented.
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GTRATL is used to convert the summed counts into a rate of a given type,
 

i.e. LFOV, SFOV, L+S, L-S, and Internal Background as well -as to return
 

the photon variance.
 

It should be noted that it is fairly expensive to run through even
 

6 months of the data base, so a fair amount of debugging should be done
 

on a small subset. It is also very expensive to keep an entire SHFSCN
 

file (1800 bins by 500 bytes) in core, so a bit of economy here goes a
 

long way.
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APPENDIX A5
 

NEW SOURCE IDENTIFICATIONS FOR THE X-RAY COMPLETE SAMPLE
 

Sources from the X-ray Complete Sample of Piccinotti et al. 
[1982] are discussed. New identifications are presented, as 
well as the classification of the galactic sources. 

New identifications
 

The identifications are presented here as a public service. We
 

also make additional notes about the characteristics of some of the
 

previously identified sources. The order of the sources is the same as
 

Table 1 in Piccinotti et al. Information from "A-I" is usually from the
 

catalogue of sources compiled with the A-i experiment on HEAO 1 [Wood et
 

al. 1982, NASA data center]. Improved error boxes are also provided
 

for some sources by the third Ariel'V catalogue of high latitude sources
 

[Mcardy, Lawrence, Pye, and Pounds 1981] indicated by the prefix "3A".
 

Other sources of identifications are the HEAO 1 A-3 experiment scanning
 

modulation collimators and the imaging detectors from the Einstein
 

Observatory.
 

The sources are:
 

H0111-149: Identified with Markarian 1152 [Ward, Elvis, Lawrence et
 

al., in preparation]. Seyfert 1.
 

H0235-52 (2A0235-52): Identified with ESO 198-624 [D. Schwartz, private
 

communication 1982]. Seyfert 1.
 

"H03f6-443 (2A 0316-443): Identification with the cluster source
 

associated with PKS 0316-443 is strengthened by smaller A-i and
 

Ariel V (new designation 3A 0316-442) error boxes.
 

H0917-074: Currently unidentified. Though a tentative A-i
 

identification was made with the cluster of galaxies Abell 780, a
 

GSFC IPC field shows no flux from the cluster. No additional
 

Abell clusters are in the detector field of view. The source
 

intensities were 1.36±0.28 RI and 1.21±0.3 taken during
 

obserVations six months apart, consistent with no variability.
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H0952+699 (2A 0954+700 and others): Although identified with the
 

peculiar galaxy M82, there is the possibility for confusion with
 

the active galactic nucleus in M81. Based on the A-2 2-10 keV
 

luminosity of 0.0024 L44 and the estimates of the luminosity of 

M81 of 0.0001 L44 [Elvis and van Speybroeck 1982], the amount of 

contamination is less than 10%; however, these two measurements
 

were not simultaneous. The X-ray spectrum observed with A-2 for
 

this source is consistent with a 5 keV thermal [Mushotzky].
 

H1257-042: Probable identification with Abell 1651 is strengthened by
 

smaller A-i error box (new designation H1257-042).
 

H1325-020: Currently no identification. The first scan intensity was
 

1.47±0.25 RI5, while six months later the 95% confidence upper
 

bound was 1.0 RI5. This probably variable behavior is
 

inconsistent with a cluster identification. A galactic source, or

N 

perhaps an AGN are therefore more likely possibilities.
 

H1344-333 (2A 1344-325): Possible identification with the cluster SC
 

1344-32 is improved by A-i (H1834-326).
 

H1630+057 (2A 1630+057): Possible identification (A-i) with the distance
 

class 5, richness 3, Abell cluster of galaxies 2204 [Johnson et
 

al 1983]. With large uncertainties, the derived luminosity of
 

50 L44 makes this object the most luminous cluster in the XCS.
 

The A-2 spectrum, obtained from point data, is best fit with a 6.5
 

keV thermal bremsstrahlung [Mushotzky].
 

H1829-591 (4U 1830-60): Identified by J. Patterson with a narrow
 

emission line galaxy, classifying this source as an AGN.
 

H1834-653: The identification with the Seyfert 1 galaxy ESO 103-G35 is
 

strengthened by the smaller A-i error box (H1832-652).
 

H1846-786 (IM 1849-781): Identified by Remilard and Bradt with a Seyfert
 

1.
 

H2154-304 (2A 2151-316): Piccinotti et al. identify this object with
 

the BL Lac object PKS 2155-304. On the basis of the redshift 

used, z = 0.17, this object is the most luminous in the XCS, 150 

L44. There is some disagreement over the validity of this 

redshift (see the discussion in Urry and Mushotzky [1982] who also 

provide a detailed analysis of the emission from this object). 

H2151-605 (2A 2155-609): The possible identification with the cluster
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Str 2159-602 is improved by the observation of a thermal X-ray
 

spectrum [Mushotzky] and small A-i error box.
 

H2158-321 (2A 2151-316):The possible identification with NGC 7172 has
 

been confirmed by an IPC detection [M. Elvis]. The source is
 
probably more unusual than a "normal galaxy", as identified in 

Piccinotti et al. The X-ray luminosity of 0.18 L44 is much larger
 

than that expected from a normal galaxy. Longmore and Sharples
 

[1982] have detected strong, variable, infrared emission.
 

Subsequent work [Longmore] indicates emission lines from the
 

nucleus, so that the identification probably should be revised to
 

"other AGN".
 

H2216-027 (2A 2220-022): A possible identification with the AGN 3C 445
 

was made. The source was subsequently confirmed as an X-ray
 

emitter by an IPC observation, but with greatly reduced flux. The
 

high luminosity from A-2, 4.7 L44, makes it unlikely that the
 

discrepancy is due to absorption, so that the difference requires
 

marked variability. A-2 saw a 37% reduction in the flux between
 

two observations seperated by six months. Some fraction of the
 

flux attributed to this object is probably due to Abell 2440,
 

whose flux is -0.35 RI, based on an IPC measurement.
 

Classification of high-latitude galactic sources
 

The 10 galactic sources analysed in Section VII:2 consist of 3 RS
 

CVn stars and 7 cataclysmic variables. These are presented in Table 2
 

of Piccinotti et al. The RS CVn stars are: H0123+075 (a transient, HD
 

8357); 4U 0336+01 (HR 1099); and 2A 1052+60 (BD 61+1211). The
 

cataclysmic variables are: 2A 0311-22; 2A 0526-32; H0751+22 (U Gem);
 

2A 1249-28 (EX Hya); 2A 1815+50 (AM Her); H2215-08 (incorrectly
 

identified as Wolf 1561, see Patteri-n and Steiner [1983]); and
 

H2252-035. See Worrall and Marshall [1983] for a further analysis of
 

the cataclysmic variables. Two other sources in Table 2 of Piccinotti
 

et al., are not used in our analysis as their first scan fluxes are
 

below the 1.25 Ri completeness limit. These are H0328+05 and
 

2A 1704+24. Doxsey et al. [1983] have improved the X-ray position for
 

H0328+05, redesignating it H0323+022. They discuss several interesting
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APPENDIX A6
 

THE MALMQUIST CORRECTION AND THE FLUCTUATIONS
 

We examine the'effects of the fluctuations on the Malmquist
 
correction technique. Though the intensity measurements may
 
no longer have the 5a significance, if the variation is
 
predominatly confusion noise from the fluctuations, there is
 
a natural low flux cutoff to the probability distribution
 
that removes the divergence. We estimate the correction to
 
the resolved source N(S) fits due to an additional confusion
 
noise term.
 

The problem
 

As we remarked in Section VII:1, the analysis of Piccinotti et al.
 

[1982] may have not properly calculated the total uncertainty of a
 

source intensity measurement. This was based on the observation that
 

the average source flux error was less than the total error observed
 

when least-square fits were made of random positions in the sky (see
 

Section 111:7). It is certainly true that the Piccinotti et al.
 

analysis did not explicitly include the effects of confusion. It is
 

less certain whether the correct magnitude of the confusion uncertainty
 

is the extra variance derived in Section 111:7 (see the discussion of
 

Figure 111.15). This is because the error term derived by Piccinotti et
 

al. was determined by a SX2 fit, treating the position of the source to
 

be an (uninteresting) unknown parameter. In contrast the extra variance
 

of 6I;fluct of Section 111:7, did not vary the position and calculated
 

the error by inverting the correlation matrix. It might be argued that
 

X2
the errors are less prone to confusion noise because they are
 

determined by a process that is explicitly testing for a signal shaped
 

like the detector response. A proper test of the magnftude of confusion
 

noise contribution requires a Monte Carlo simulation following the exact
 

technique used by Piccinotti et al. In the absence of such a test, in
 

this section we will assume that each of the Piccinotti et al. source
 

flux errors must be increased by an additional variance term due to
 

confusiofi, 2S.fl = (0.2 R15)2 . The exact value is not important, a%
 

the purpose of this appendix is to estimate the possible effect. The
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total a, then ranges from 0.29 to 0.34 R15, depending on the source (see
 

Table VII.1).
 

In trying to estimate the impact of this additional uncertainty on
 

the Malmquist correction, (so that we can calculate the resolved source
 

Euclidean N(S) normalization, see Section VII:1), we are faced with a
 

limitation of our algorithm. The lowest flux sources, with S - 1.25 RI
 

are no longer formally significant detections at the 5a level. As
 

determined by Jauncey, Crawford, and Murdoch [1973], the 5o criterion is
 

needed to avoid divergences in evaluating the Malmquist correction. For
 

sources with lesser significance, the power law of the underlying N(S)
 

overwhelms the Gaussian error term in the convolution in equation
 

[VII.9]. A low flux cutoff will eliminate the divergence, however for
 

sources with S<5a, the size of the Malmquist correction depends to an
 

unacceptable degree on the position and form of the cutoff. An attempt
 

to determine the NCS) for the resolved sources should not rely on the
 

form of N(S) at much lower fluxes.
 

The partial solution to this problem requires a more careful study
 

of the- Malmquist correction equations [VII.8] and [VII.9]. The
 

difficulty is that there are an enormous number of low flux sources,
 

which by equation [VII.8], have a small individual chance of being
 

detected with a much larger flux. This picture is inaccurate. Let us
 

assign the fit source flux to the brightest source in the field of view.
 

The effect of all dimmer sources is only through the confusion noise.
 

Therefore, although there may be an enormous number of low flux sources,
 

the probability that one of them is the brightest source is vanishingly
 

small. We therefore replace the N(S) distribution in [VII.9] with
 

Pb(S), the differential probability distribution of the brightest 

source. This is found by 

Pb(S) = d;(S) / dS [A6.1] 

where rb is the integral probability, found by
 

]P(S) = 1 - exp( fW n(S) dS) . [A6.2] 

n(S) is the expected number of sources in the field of view of the 
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measurement with flux S. (For the exposition in this section we ignore
 

the nicety of the distinction between source intensity and flux, though
 

care has been taken to make the proper correction in the results
 

reported later in this appendix.) The cor ected number of sources in
 

the sample, is found distr-i-but-ion :by the -totalby-multiplying- -the-- 1-

number of observations. This is equivalent to the correction by the
 

survey solid angle in equation [VII.4]. Pb has the expected behavior at
 

both limits of S. The order of the limits of the integral in equation 

[A6.2] insures that the argument of the exponential is less than zero, 

so that P has the property of being initially zero for high values of S, 

and then approaching 1 as S goes to zero. In addition at high fluxes, 

where it is almost certain that a source of flux S will be the brightest 

source in the measurement, Pb is proportional to N(S), so that the 

correction is the same as the usual Malmquist factor we calculated in 

Section VII:1. At lower flux values Pb rolls over so that a natural 

cutoff is imposed. Unfortunately, where before the normalization of the 

N(S) model was unimportant for the calculation of the correction term, 

now the cutoff does depend on the normalization chosen. On the surface, 

it appears that as the correction term now depends on a detail of the 

model (the normalization) that this is similar to the original 

correction which strongly depended on the position and form of the 

cutoff for the <5a significant sources. It turns out, though, that 

because the particular, natural, form of the Pb cutoff the correction 

term varies only slowly as a function of Weff, the N(S) normalization
 

even for the sources with -3a detections.
 

Malmquist Bias Reconsidered
 



A6 444
 

Table A6.1: Estimated new Malmquist corrections
 

The bins are the same as used in Table VII.1. The atot is
 
the total uncertainty, with a confusion noise of 0.2 R15
 
added in quadrature to the original uncertainty. fold is
 
the old Malmquist cbrrection. fnew is the new correction
 
using the larger photon uncertainty, and N(S) replaced with
 
Pb" The calculation of Pb assumed a W of 0.062 HILl,
 
equivalelt to a Weff of 0.066 R15.
 

Bin 0 old anew fold fnew 

1 0.28 0.34 1.007 1.010 

2 0.24 0.31 1.018 1.029 

3 0.22 0.30 1.030 1.055 

4 0.22 0.30 1.048 1.092 

5 0.24 0.31 1.084 1.149 

6 0.23 0.30 1.104 1.194 

7 0.23 0.30 1.136 1.273 

8 0.21 0.29. 1.137 1.339 
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APPENDIX A7
 

FLUX CONVERSIONS
 

Using the concepts and formulae developed in Section 11:3, this 

appendix presents the conversion coefficients from ergs to detector
 

counts and the effective spectral range of various A-2 counters and
 

idealized windows of the Einstein Observatory IPC.
 

1: Conversions for Selected Discovery Scaler Windows of the A-2
 

Experiment
 

We present conversion tables for selected windows of the
 
HED i,NED, and HED 3.
 

The tables include: the Discovery Scaler window, -with Li or L2
 

representing the total first or second layer response; and AEQ, the
 

energy range in keV that includes all values where the total efficiency,
 

Q(E), is greater than 10% of its peak value (see equation [11.23]).
 

Then for each of three incident spectra (two thin thermal
 

bremsstrahlung, and a single power law model, all with no absorption) we
 

tabulate the energy range where 90% of the detected counts originate
 

(AE9 0 , see discussion of equation [11.25]); and the conversion
 
- - - 2 ,
coefficient from counts to 10 8 ergs s 1 cm 2-10 keV (ex108, see
 

equation [11.27]). All values presented use the detector response
 

matrices as determined around day 257 of 1977. See Section 11:3 foi
 

further details.
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Table A7.1: Spectral response for RED 1
 

Taken from detector matrices H111095C and H121095C
 

Window AEQ Incident Spectrum
 

keV kT = 6 keV kT 40 keV a = 0.65
 

Li 2.6-46.5
 

AE 9 0  2.6-9.9 2.5-13.3 2.2-12.7
 

ex10 8 1.54 1.27 1.33
 

1A+1B 2.6-36
 

AE9 0  2.5-6.4 2.6-6.6 2.6-6.6
 

sx10 8 2.11 2.32 2.28
 

1C+1D 5.7-46.5
 

AE90  5.8-12.8 5.75-46.5 5.4-17.4
 

SX10 8 5.69 2.84 3.18
 

L2 3.85-64.5 

AE9 0  3.6-15.1 3.7-25.4 3.5-30.4 

exl08 21.6 8.88 9.68 
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Table A7.2: Spectral response for MED
 

Taken from detector matrices M1IN and M12N
 

Window AEQ 

keV 

L1 1.7-12.2 

AE90 

sx108 

L2 1.9-16.4 

AE90  

exi08 

2A 1.8-3.2 

AE9 0  

ex108 

2B 2.6-18 

AE90  

Cx 108 

Incident Spectrum
 

kT = 6 keV kT = 40 keV a = 0.65
 

1.5-6.2 1.5-7.5 1.5-7.1
 

1.60 1.84 1.75
 

1.7-8.0 1.7-10.1 1.5-9.5
 

3.32 3.35 3.31
 

1.8-3.1 1.8-3.1 1.8-3.1
 

9.96 15.3 12.6
 

2.5-8.8 2.8-11.2 2.6-10.6
 

4.99 4.28 4.06
 

Flux co i-- ----------------_----n---- --- - A-.W. 
 n--------------
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Table A7.3: Spectral response for HED 3
 

Taken from detector matrices H31257c and H321095C
 

Window AEQ Incident Spectrum 

key kT = 6-keV kT = 40 keV =O0.65 

Li 2.55-46.5 

AE9 0  2.6-9.7 2.6-13.4 2.2-12.6 

6X108 1.52 1.26 1.32 

1A+1B 2.55-36.0 

AE9 0  2.6-7.0 2.8-7.4 2.7-7.3 

Ex108 1.86 1.95 1.95 

1C+ID 6.85-46.5 

AE90 6.4-13.2 6.4-18.0 6.6-19.3 

Ex10 8 8.34 3.60 4.06 

L2 3.85-64.5
 

AE90  3.0-14.4 3.7-35.4 3.5-30.4
 

sxl08 21.4 8.85 9.64
 

2: IPC Spectral Response and Flux Conversion
 

The approximate form of the Einstein Observatory IPC
 
spectral response is presented. This is used to calculate
 
the effective bandpasses for the Deep and Medium Sensitivity
 
Surveys. Conversion coefficients to absolute units (ergs
 
2-10 keV) and HEAO 1 flux units (HILl) are estimated. The
 
exact value of the conversion is strongly dependent on the
 
assumed incident spectrum.
 

The spectral response of the IPC depended on both the intrinsic
 

response of the proportional counter and the telescope imaging
 

efficiency. The physics of the latter included the reflectivity of
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nickel for grazing incidence X-rays, with corrections for scattering of
 

the photons by small and large scale inhomogeneities in the scattering
 

surface. For the HEAO detectors we worked with the total response
 

function R(h,d) (see section 11:3). We do not have available a fully
 

detailed response for the IPC, but scientists at the Harvard-Smithsonian
 

Center for Astrophysics have distributed the effective area as a
 

function of energy, A(E). This is similar to our total efficiency
 

(equation [11.23]) multiplied by the concentrating area of the imaging
 

system. Thus A(E) has units of cm2 . If s(E) is the incident
 

differential energy flux, then the expected count rate in a pixel is
 

Scounts = f dE E-1 s(E) A(E) [A7.1]
 

(compare equation [11.24]). All information in this section is taken
 

from the memo of 29 September 1982 from D. Fabricant. The spectral
 

response is calculated for image bins of 3' radius, using the on-axis
 

spatial response. A plot of A(E) is presented in Figure A7.1(b). The
 

response is separated into two regions by the edge at 0.284 keV. A
 

substantial number of counts can be contributed by the below 0.284 keV
 

region. This can be seen in Figure A7.1(a), where the probability
 

distribution of incident photons is plotted, assuming a 0.7 power law
 

spectrum and low absorption. 90% of the photons across the entire IPC
 

bandpass come from 0.2-2.45 keV. This is almost totally disjoint with
 

the HILl bandbass.
 

There is increased noise in the very lowest channels, therefore
 

for both the Medium and Deep Surveys, the investigators restricted their
 

consideration to a subset of the IPC pulse height channels. The intent
 

was to have a well defined energy bandpass. Unfortunately, the IPC
 

channel bandpass corresponding to a particular energy range was strongly
 

variable, particularly early in the life of the instrument. Thus the
 

calibration of the gain was needed to choose the particular pulse height
 

boundaries for a particular observation. As an ddditional complication,
 

the initial calibration used in both the Deep Survey [Giacconi et al.
 

1979] and the Medium Survey [Maccacaro et al. 1982] has since been
 

found to be wrong. Using the improved calibration [Harnden, private
 

communication] we estimate that the Deep Survey channels used actually
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Figure A7.1: P(E) and A(E) for IPC
 

(a) 	 The probability distribution of counts for an
 
-
incident a = 0.7 spectrum with NH = 3x10 20 cm 2 (galactic
 

absorption). The distributions are shown for the total
 
IPC response, as well as idealized estimates for the
 

channel ranges selected for the Deep and Medium Surveys.
 
The distribution for the HILl window is also shown for
 
comparison. (b) The effective area A(E), with the
 
indicated ranges defining the Deep and Medium Survey
 
bandpasses.
 

i I I l 	 I i I 

IPC-ALL DETECTOR 90% 	 (a) 

1.6 MED.SURVEY WINDOW 90% 

DEEP SURVEY WINDOW 90% i 
90%S1.2H1L1 


I IPC ALL-


0.- - MEDIUM SURVEY 
DEEP SURVEY 

OA 
: ",,HILL 	 .
 

2 3 4 5 
E (keY) 

100 	 (b) 

30 
~DS
 

E 

I.
10 

3 

0.1 0.3 	 3 
E (keY) 

Flux Conversions 	 IPC Flux Conversion
 



A7:2 451
 

correspond to slightly different energies- - than the- - and- 3 keV 

boundaries desired. The exact impact depends on the particular
 

observation out of the four that make up the Deep Survey. We estimated
 

that in an average sense the effect is to raise the true Deep Survey
 

band pass from 1-3 kev to 1.1-3.3 keV. A similar shift can affect the
 

Medium Survey band (nominally 0.3-3.5 keV), but we have not estimated
 

the magnitude.
 

In Figure A7.1(a) we plot the P(E) curves for our estimated 

responses of the Medium and Deep Survey windows. The calculation of 

these curves, and the response actually used for the MS and DS windows, 

are based on the A(E) function truncated at the low and high energies of 

the particular bandwidth. This is an approximation. The true window 

definition is in terms of pulse height channels, rather than energies 

(see equations [11.23] and [11.24]). Because of the stochastic nature 

of the number of electron-ion pairs generated by an incident X-ray in a 

proportional counter, there is significant spread in the pulse height 

distribution for a given energy.. The effect is greatest for low energy 

photons. For the IPC, the spread for energies 1 keV is -100%. Thus, 

contrary to our approximation for Figure A7.1, an incident photon of 

energy 0.7 keV has a non-negligible chance of being detected in the Deep. 

Survey pulse height range. Because of the intrinsic falloff of the 

detector response at the high end of the bandpasses used, this
 

approximation is not important at that end. For our purposes, this
 

approximation means that we have underestimated the size of the expected
 

count rate for a given incident spectrum. For figures where we have
 

plotted the K(S) curves based on the XCS derived luminosity functions
 

(e.j . Figures VII.24 et seq.) the use of a more correct version of the 

IPC response function is expected to shift the K(S) curves slightly up 

and to the right. Therefore, the upper limits on AGN evolution 

consistent with the Medium and Deep Survey counts are conservative ones. 

Similarly when transforming the IPC results to the higher energy HILl
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band (Figure VII.30 and the discussion of the contribution to the total
 

sky flux from the Deep Survey sources) the correct conversion will have
 

slightly fewer HILl counts per IPC count. This lowers the estimate of
 

the contribution of the Deep Survey sources to the sky flux.
 

Figure A7.2: Conversion of IPC fluxes to absolute and HILl values
 

The abclssa is the power law energy index of the incident
 
spectrum. Two values of the absorption are used, both
 
assuming no intrinsic redshift in the absorption energy.
 

-2
 "Low absorption" is N 3x1020 atoms cm , "high
 
absorption" is 3.6xi022H cm

- 2 . (a) The corresponding
 
number of ergs (2-10 keV) for one TPC count. (b) The
 
ratio of IPC counts to HILl counts. The dashed horizontal
 
and vertical lines indicate the ratios and equivalent
 
power law indices for thin thermal spectra with kT - 6 and
 
40 keY.
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Figure A7.2 presents the conversion coefficients for the Deep
 

Survey and Medium Survey IPC windows. A7.2(a) gives the equivalent
 

- 2
number of ergs cm in the 2-10 keV range (see equation [11.27]). 

A7.2(b) presents the ratio of the expected IPC counts to HILl units. 

From this ratio we see, for example, that an a = 1.0 spectrum (low 
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absorption) produces a count rate in the IPCMS band equal to 650 cm2 of 

an HILl detector. The horizontal dashed lines indicate the ratio for a 

thermal bremsstrahlung spectrum of either kt = 6 keV or 40 keV. The 

associated vertical dashed lines show the equivalent power law index. 

-For -example-, a kT = 40 keV -spectrumis equivalent, in converting to the 

IPCMS 	band, to an a = 0.36 power law.
 

The spectral dependence of the IPC flux rates applies not only to
 

conversion to HEAO 1 flux rates, but also to ideal differential rates.
 

For example, the differential X-ray flux at 2 keV, s2' often used in
 

calculating Olox is not directly measurable from the IPC rates but must
, 


be estimated using an assumed incident spectral form. For example, a 1
 
- I
 

IPCMS 	source with low absorption and a = 0.4 will have s2 = 1.84xi0 1


- I - -I
 ergs s cm 2 keV . If a flattens to 0.0, s2 for 1 IPCMS increases by 

15%, while if the spectrum steepens to 0.7, it decreases by 12%. Thus, 

if the true source spectrum is not known, the above range in the value 

of a corresponds to uncertainty in aox of ±0.02. If the true a is 

outside the range 0.0-0.7 -or if there is significant absorption the 

uncertainty in aox is magnified. 
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