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1.0 SUMMARY

A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is
investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and
linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the
unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by
assuming harmonic motion.

The work of this report is a direct extension of earlier studies and includes correlation with experimental
results for two rectangular wings and investigations of possible solution techniques for three-dimensional wings
of more general planform.

The main results of the study are as follows:

1. An alternating direction implicit (ADI) procedure is investigated and a pilot program is developed for both
two- and three-dimensional wings. This program provides a relatively efficient relaxation solution without
previously encountered solution instability problems.

2. Pressure distributions for two rectangular wings are calculated and the results correlated with experimental
data.

3. Conjugate gradient techniques are developed for the asymmetric, indefinite problem. The conjugate gradient
procedure is evaluated for applications to the unsteady transonic problem. Several preconditioning methods
are investigated.

4. Difference equations for the alternating direction procedure are derived using a coordinate transformation
for swept and tapered wing planforms. For a coordinate transformation which is continuous up to the second
derivative, the ADI method converged for sweep angles up to 45 deg. The pressure distribution for the swept,
untapered flat plate is correlated with the kernel function method.

The results for the conjugate gradient method are preliminary and further testing of the method is contem-
plated. Of the techniques studied, the most efficient procedure for the analysis of three-dimensional wings on
computers of limited memory (i.e., on the order of one million words or less) appears to be the ADI method.



2.0 INTRODUCTION

The development of a capability for calculating unsteady transonic airforces for use in flutter analysis con-
tinues to be of interest. The considerable effort on this subject falls generally into two categories; (1) finite dif-
ference solutions of the transonic small perturbation equation for the velocity potential and (2) a modified strip
theory procedure in which the subsonic coefficients are corrected empirically for transonic flow characteristics.
In the first category, there are two main approaches; the first consists of a time integration of the nonlinear
differential equations for the unsteady velocity potential, and the second involves separating the velocity poten-
tial into steady and harmonically varying unsteady parts. The latter is the approach we have used, and its for-
mulation results in the usual nonlinear differential equation for the steady velocity potential and a linear equa-
tion for the unsteady velocity potential, with spatially varying coefficients which are functions of the steady
velocity potential. Developments following this last approach have been documented in a series of NASA CRs
(refs. 1through 7). Results have shown that the two-dimensional, typical section problem can be handled by this
harmonic approach relatively efficiently and accurately. However, the direct numerical solution technique
which is successful for two-dimensions appears to be expensive when used on the full three-dimensional
problem.

The purpose of the work discussed in this report is to explore the feasibility of solving the three-dimen-
sional problem. This was accomplished by investigating several different procedures. The first is a finite dif-
ference formulation which results in a set of equations to be solved by ADI relaxation techniques. Then conju-
gate gradient techniques were investigated. Finally, the out-of-core direct solution module was rewritten from
two dimensions to three dimensions and transferred from the CYBER to the CRAY.

The ADI method was derived by expressing the time-dependent differential equation for small perturba-
tion transonic flow in difference equations using the alternating direction implicit (ADI) technique and then
making the assumption of harmonic motion. The resulting ADI procedure does not have the frequency limita-
tion on convergence, as do the standard block relaxation techniques. The ADI method was first tried on the two-
dimensional problem. Correlations of examples for airfoils of vanishing thickness and for finite thickness airfoils
are presented in section 5 with some discussion of convergence rates. The method was also extended to the rec-
tangular wing for which the equations are derived in appendix A. Results for configurations of vanishing thick-
ness are correlated with results from the integral equation method which is described in section 6 of reference 19.
Also, results for rectangular wings with a 5%-thick circular arc airfoil and with a 12%-thick supercritical airfoil
are correlated with experimental measurements. Problems in convergence were encountered when the method
was applied to swept wings using a coordinate transformation aligning the streamwise variable with the lead-
ing and trailing edges of the wing. This was alleviated by using a swept wing coordinate transformation having
continuous second derivatives across boundaries of mapping regions. Solutions for the swept untapered wing
were obtained for sweep angles up to 45 deg. and correlated with the integral equation method of references 8
and 9. The solution for a 50 deg. swept untapered wing failed to converge.

The classical conjugate gradient method is for solving systems of linear equations of the form Ax =b with
coefficient matrices which are symmetric and positive definite. This procedure proved to be efficient for large,
sparse, well conditioned systems. Work for this report has resulted in an algorithm for system matrices which
need only to be nonsingular. Before applying the conjugate gradient algorithm, the coefficient matrix for the
transonic problem must be preconditioned in order to speed convergence. Three methods of preconditioning were
tried and are discussed in section 7. The most effective procedure is derived from the partial LU decomposition of
the coefficient matrix. The derivation of the complete algorithm is presented in appendix E.




The pilot program for the out-of-core direct solution of two-dimensional airfoils was extended to rec-
tangular three-dimensional wings. This pilot program was also converted from the CYBER to the CRAY com-
puter to take advantage of the significantly larger core storage. The resulting test runs were expensive, but the
cost was dominated by charges for input/output operations. The availability of machines with even larger core
storage capability, and the characteristic that a large number of mode shapes may be handled for a minimal
additional cost over that for one mode, warrant further work on the direct solution.



3.0 ABBREVIATIONS AND SYMBOLS

a Amplitude of wing oscillations
b Root semichord
Cp Pressure coefficient, (p-py)(%2 poUy2) where p is the local pressure, p, the freestream static pressure, and

Po the freestream air density

A Matrix of coefficients, also aspect ratio (Section 6)

f Frequency in Hertz

£, Undisturbed wing or airfoil shape

f, Unsteady contribution to wing or airfoil shape

}JJ x,y subscripts and indices for points in the mesh

i NAE

I Identity matrix

k Reduced frequency based on semichord, 2n fb/U; same as .

K Transonic parameter, (1-M2)/(M2g)

le Leading edge
M Freestream Mach number
n (n,, n, n,), unit normal vector to shock
q w?/e - iy - Do,
XX
t Time in units of b/U

te Trailing edge

u K-(y+1 Po_

U,U,,V Freestream velocity

X Freestream coordinate. Vector of unknowns in matrix equations.

X0.Yo Physical coordinates, made dimensionless with the root semichord




X,y Scaled coordinates (x,,1ty,) for the two-dimensional problem
X, Steady chordwise shock location
Xy Complex amplitude of shock oscillation

X Magnitude of X,

o Angle of attack

Bl = eginat

B = <u,>

Y Ratio of specific heats for air

AC,  Jump in pressure coefficient across airfoil or wake

At Time step in ADI procedure
Ao, Jump in ¢, at plane of wing or vortex wake
Ao, Jump in ¢, at wing trailing edge

te

) Thickness ratio; also finite difference operator
€ (&/M)2/3

A owM/1-M2)

1 Scale factor of y,, p =&V3 M2/3

Fraction of semichord

=

En  Swept wing coordinates
) Unsteady time dependent perturbation potential

¢, ¢ Complete, scaled perturbation velocity potential; also used for the unsteady potential in finite difference
equations with subscripts

®y, ¢ Steady scaled perturbation velocity potential
¢;> ¥1 Unsteady scaled perturbation velocity potential

0] Reduced frequency in radians; same as k



Notation
[] Denotes jump in quantity across shock
< > Denotes mean value of quantity at shock

A Denotes jump in quantity across airfoil except for At




4.0 FORMULATION AND SOLUTION

Since the mathematical derivation of the method for the solution of the unsteady velocity potential for the
flow about a harmonically oscillating wing is presented in reference 1, the discussion here will be limited to a
brief outline of the procedure for two dimensions. The complete nonlinear differential equation was simplified by
assuming the flow to be a small perturbation from a uniform stream near the speed of sound. The resulting
equation for unsteady flow is

[K-(v=Deg- (v+ 1) oy] oyt Pyy = (20xtt ett) /=0 @D

where K = (1-M2)/(MZe), M is the freestream Mach number of velocity U, in the x-direction, x and y are made
dimensionless to the semichord b of the airfoil and the time t to the ratio b/U,. With the airfoil shape as a function
of time defined by the relation

. yo= of(x,t)
the linearized boundary condition becomes

Py = £y (x,t) + ft (x,t) 4.2)

The quantity 3 is associated with properties of the airfoil (such as maximum thickness ratio, camber, or
maximum angle of attack) and is assumed to be small. The coordinate y is scaled to the dimensionless physical
coordinate y, according to

y= 5173 M2/3yO
and € is given in terms of § by
e =(5/M)2/3
The pressure coefficient is found from the relation

Cp= - 2¢ (“’x+ ‘pt)

The preceding differential equation is simplified by assuming harmonic motion and by assuming the
velocity potential to be separable into a steady-state potential and a potential representing the unsteady effects.
We write for a perturbation velocity potential

¢ =) (x,Y) * ¢y (x,y) el (4.3)

and for the body shape
¥o = 8f (x,0) = 8 [fy (%) + £ (x) elt]

Since the steady-state terms must satisfy the boundary conditions and the differential equation in the
absence of oscillations, we obtain

[K=(y+1) wox] POyx * Poyy = 0 “.4)
with

€0y =fy (%), y =0, “l=x=1 (4.5)



On the assumption that the oscillations are small and products of ¢, may be neglected, equations (4.1) and
(4.2) with the aid of equations (4.4) and (4.5) yield

{[K -(y+1) <P()x] (Plx}x + <p1yy - (2iw/¢€) ?ly tqey = 0 4.6)

where

q=w2/e- iw(y - 1)<poxX
subject to the wing boundary conditions
(ply = le + lwfl (x), y=0, -1=x<1 4.7)

The boundary condition that the pressure be continuous across the wake from the trailing edge was found
in terms of the jump in potential Ag, to be

A(,Dl = A(pltee_lw (X—Xte) (48)

where A(p1te is the jump in the potential at x =x,, just downstream of the trailing edge and is determined to
satisfy the Kutta condition that the jump in pressure vanish at the trailing edge. The quantity A, is also used in
the difference formulation for the derivative ¢l,, to satisfy continuity of normal flow across the trailing edge
wake.

For the set of difference equations to be determinate, the boundary conditions on the outer edges of the
mesh must be specified. In the original unsteady formulation, these boundary conditions were derived from
asymptotic integral relations in a manner parallel to that used by Klunker (ref. 10) for steady flow. A later for-
mulation (ref. 3) applies an outgoing plane wave boundary condition to the outer edges of the mesh. This bound-
ary condition is numerically simpler to apply and is equivalent to the first order nonreflecting boundary condi-
tions derived by Engquist and Majda (ref. 11).

A computer program for solving the steady state transonic flow about lifting airfoils based on equations
(4.4) and (4.6) was developed by Cole, Murman, and Krupp (refs. 12 and 13). Steady-state solutions required for the
coefficients of equation (4.6) were obtained by using the latest version of this program, TSFOIL (reference 14),
and also by using the steady-state solutions from the time dependent method of Rizzetta and Chin (ref. 15) called
EXTRANZ2. An additional improvement on locating the shock is also available both in TSFOIL and EXTRANZ2.
For airfoils at high Mach numbers and angles of attack, TSFOIL and EXTRAN2 predict shock positions consid-
erably aft of experimental measurements. To overcome this difficulty, Jou and Murman (ref. 16) developed a
phenomenological model for the displacement thickness effects of shock wave boundary layer interactions. A
wedge (or ramp) is introduced behind the shock to simulate the thickening of the boundary layer. This procedure
was not needed for the results reported here, however. For three dimensions, we used XTRANS3S, the time
dependent method of Borland, Rizzetta, and Yoshihara in reference 17, to compute the required steady state
potential. :

The similarity of the unsteady differential equation to the steady state equation suggests that the method
of Cole, Murman, and Krupp should be an effective way to solve equation (4.6) for the unsteady potential ¢,. Note
that equation (4.6) is of mixed type, being elliptic or hyperbolic whenever equation (4.4) is elliptic or hyperbolic.
Central differencing was used at all points for the y derivative and all subsonic or elliptic points for the x deriva-
tives. Backward (or upstream) differences were used for the x derivatives at all hyperbolic points. The preferred




numerical approach to solving the resulting large-order set of difference equations is a relaxation procedure,
which permits the calculation to be made as a sequence of relatively small problems. However, as discussed in
preceding NASA reports by the authors (refs. 3 and 4), a significant problem of solution convergence with the
relaxation procedure was encountered that severely limits the range of Mach number and reduced frequency for
which solutions may be obtained. Accordingly, an out-of-core solver (ref. 18) was developed to solve the complete
set of difference equations simultaneously, which for two-dimensional flow is relatively efficient.

The size of practical three-dimensional problems is such that the out-of-core direct solver would appear to
be very expensive. This and other solution procedures are under investigation. First, conjugate gradient tech-
niques have been examined as a more efficient means for obtaining a direct solution. Since the matrix of coeffi-
cients is neither symmetric, nor always positive definite, nor well conditioned, special procedures must be used
in applying the conjugate gradient technique. Discussion of the algorithms tried during the current work is
presented in section 7. Second, a relaxation-type method based on the time-dependent ADI method to obtain
frequency domain solutions was derived which does not have the frequency limitations of classical block relaxa-
tion. If, in place of substituting equation (4.3) into equation (4.1), we use instead

o(x,y,t) = oo (x,¥) + 1 (X,y,1)

we obtain the following linear differential equation for ¢,:
{[K - ('Y * 1) ‘p0x] ‘p()x}x + (p].yy - (2¢1Xt + ‘pltt) /6 =0.

The ADI method of Borland, Rizzetta, and Yoshihara (ref. 17) was applied to the equation, and then the harmonic
assumption for the nth approximation

o] (xy.t) = o] (xy) eTINWAL

was substituted into the difference equations. Here At is the time step between successive approximations, and
has no physical significance to the problem. This yields a set of equations which has the same form as alternating
row and column relaxation but for which the solution is convergent for all frequencies. The finite difference
procedure was derived in reference 7 for two-dimensional flow. The equations for three-dimensional flow are also
derived in Appendix A for the rectangular wing and in Appendix B for the swept and/or tapered wings.



5.0 ADI RELAXATION SOLUTIONS FOR AIRFOILS

In NASA CR 3537 (ref. 7), we showed that the direct solution of the difference equations for the harmonic
motion of an airfoil in transonic small perturbation flow yields aerodynamic forces that take into account the
effect of moving shock waves, at least in a first order sense. A program for two-dimensional flow based on the
direct solution is reliable, efficient, and yields results which are in good agreement with experimental measure-
ments (e.g., seeref. 7). Also, typical section flutter boundaries calculated with airforces from this program exhibit
the characteristic ‘transonic bucket.” The direct solution is also applicable to three-dimensional flow, but here
the computer requirements are large and costly. Accordingly, a method of relaxation was developed in which
simple harmonic motion was assumed after the finite difference formulation rather than before (see section 4.0).
The resulting set of difference equations is solved by implicit alternating direction techniques, and hence the
procedure has been entitled the “ADI” method. This ADI method does not have the convergence problem of the
conventional block relaxation procedures. The differential equations were derived in NASA CR 3537 and pre-
liminary two-dimensional examples were included. The derivations for three-dimensional rectangular wings
and for swept, tapered wings are given in appendices A and B of this report.

The equations of the ADI procedure and direct solution differ in several respects. First, there is a time step,
At, which appears in the ADI equations but not in the direct solution. This time step, which has no physical
significance, does lead to truncation errors which are discussed in the next section. Second, the shock point oper-
ator which proved to be satisfactory for the direct solution had to be modified for use in the ADI difference equa-
tions. This is discussed in section 5.2.

To test the practicality of the method for eventual application to three dimensions, the two-dimensional
ADI method was applied to a number of problems which include airfoil configurations both with and without
thickness. Correlations are made with solutions from a program based on a compressible kernel function (see ref.
19), and from the direct solution program evaluated in reference 7.

Because of the low cost of each two-dimensional iteration, the solutions were generally run until the max-
imum of the difference between time steps was less than 104, a criterion found acceptable for the earlier relaxa-
tion techniques. The number of iterations depends upon the time step chosen, smaller time steps requiring a
proportional increase in the number of iterations. There also is a considerable Mach number influence on the
rate of convergence. For a frequency of about 0.8 and choice of time step of 0.4, it was found that for M =0.9
convergence required about 600 iterations while for M = 0.7 less than 300 were needed, with the variation with
Mach number being roughly linear.

The following table gives data on the number of iterations required for convergence for several time steps
for the severe case of M = 0.9 and a reduced frequency of k = 0.9 for a symmetric flow using a 72 by 60 mesh (2160

mesh points).

Time step Iterations CP seconds (CRAY)

0.1 1000 55
047 26 40
0.6 514 28
0.8 406 22
1.0 372 20
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An indication of the superiority of the direct solutions for two dimensions is seen from the time required for the
full (72 by 60) and half (72 by 30) matrix solutions; that is, 17 cps for the full matrix and 4.5 cps for the half matrix.

51 CORRELATION OF EXAMPLES FOR AIRFOILS OF VANISHING THICKNESS

The ADI method was first applied to calculating the pressure distribution on a flat plate pitching harmon-
ically about the leading edge. Agreement between solutions from the ADI method and the program of reference
5.1 using an integral equation method were good for a Mach number of 0.9 and reduced frequencies up to 0.3 as
seen in figure 1. However, agreement for a reduced frequency of 0.45 is not as good (fig. 2), and for a reduced
frequency of 0.6 the agreement was found to be poor (see fig. 3). Reducing the time step improved the solution
somewhat.

Basically, the time step is irrelevant to the problem but it does lead to truncation errors. By adding equa-
tions (A-5) and (A-6) to (A-7) and equating the three successive values of ¢, that is, setting ¢* = ¢» = ¢n + 1, we
obtain a difference equation which we can recognize as resulting in the following differential equation (see equa-
tions (A-62) and (A-64));

2
_ 4 1-B1\, - _2 =B\ o-
] G Rl e B

where 3, = e @ At. When the time step At goes to zero with u = K, this equation reduces in the limit to the
classical linearized equation for harmonic unsteady flow. To check whether the program contained basic errors,
this differential equation (without the ¢,, term) was solved by the direct method used for the classical equation.
The resulting solution agrees very closely with the ADI solution as seen in figure 4. This verifies that the
algorithm was properly programmed. A second order ¢,, difference which required saving an additional time
step was also tried but introduced no significant improvement.

Since the direct solution of the regular equations used a second order central difference for the ¢, term, a
second order backward difference was derived and introduced into the ADI method. The derivation of this ¢,
operator as well as the ¢, operator enabling a change in the time step during a run are presented in Appendix D.
Considerable improvement resulted, and now the ADI is in good agreement with the kernel function results.
This is shown in figure 5 for a reduced frequency of 0.6. Therefore, to obtain sufficient accuracy at the higher
frequencies we must use a second order difference for the first derivative in x.

The effect of varying the size of the time step, At, for M = 0.9 and k = 0.6 is shown in figures 6 and 7, with the
results plotted with an expanded ordinate scale. Figure 6 presents solutions from the program of reference 19
and ADI results for the smallest and largest values of At tried. For the range studied, At =0.1to 1.5, the best
correlation is obtained with the smallest value of At. Generally, the ADI calculations move towards the integral
equation results in monotonic fashion as At is decreased. A reasonable compromise with accuracy for the sake of
economy of calculations is found by using At =0.6.

5.2 CORRELATION OF EXAMPLES FOR AIRFOILS WITH THICKNESS

A second set of examples was prepared for airfoils of finite thickness. The pressure coefficient distributions
for the NACA 64A010 airfoil, oscillating in pitch about the quarter chord, tested by NASA Ames, were calculated
with both the ADI and direct solution procedures. Calculations were made for a Mach number of M =0.85 and
reduced frequency of k =0.15 and for M = 0.86 and k = 0.4. The resulting pressure distributions are presented in
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figures 8 and 9. Agreement is quite good in both cases except for the real parts in the vicinity of the shock. In
figure 8, the real part of the pressure aft of the shock from the ADI program is significantly larger than that from
the direct solution. In figure 9, the ADI results underpredict the pulse while overpredicting the pressures aft of
the shock. The difference in results between the ADI and direct solutions may well be a difference in shock point
operators. Since use of the shock point operator which is the exact equivalent to that in the direct solution causes
divergence in the ADI solution, the shock point operator was applied only to the second derivative with respect to
x in the ADI program and not to both the first and second derivatives as in the direct solution.

Pressure distributions for a Mach number of 0.85 and for reduced frequencies of 0.25 and 0.4 are also pre-
sented in figures 10 and 11. The distributions are presented for two ADI solutions and the direct solution. The ADI
solutions differ in the representation of the first derivative with respect to x, one using a first order finite dif-
ference and the other a second order. It is seen that there is relatively little difference between the two. However,
in this particular case, the shock pulse of the ADI solutions differs considerably from that obtained by the direct
solution. :

Since a singularity occurs across the shock in the pressure distribution, a more accurate method of deter-
mining the influence of the shock point operator is to plot the difference in velocity potential across the airfoil.
This jump is plotted in figure 12 for k = 0.25. Two ADI solutions are compared with the direct solution and are
indicated by the legend on the figure. Again, one solution uses a first order difference for the first derivative with
respect to x and the other uses a second order difference. For a shock of this strength, a distinct jump in the
unsteady potential difference is observed, which can be related to the amplitude of shock motion by the shock
relations derived in appendix A of reference 7. We note that there is very little jump in the real part of the
potential difference at the shock for either ADI method compared with the direct solution.

To obtain a better shock representation, shock boundary conditions were derived for application to the ADI
method of relaxation, and the derivation is presented in appendix D. The expressions are similar to those
obtained for the direct solution and described in NASA CR 3537. An example of the captured shock on the NACA
64A010 at the Mach number of 0.85 is shown in figure 13. When the shock strength is defined as

[ul=vie35 - u;

some improvement in the jump in the real part of the unsteady potential for the airfoil oscillating in pitch about
the leading edge is obtained, but results for the imaginary part are worse than those from the shock point oper-
ator (fig. 14). When the shock strength is defined by the more realistic value of

[u]= Ui+ = Uj-1j

the jump in the real part of the unsteady potential difference is in close agreement with the direct solution, and
the jump in the imaginary part is somewhat less than that for the direct solution. The corresponding pressure
distributions are shown in figure 15. In the direct solution, shock boundary conditions were found to lead to
somewhat different results for the jump in the unsteady potential from those obtained by the shock point oper-
ator. In reference 7, it was shown that the shock point operator for the direct solution lacked one term in the shock
jump conditions. The application of the shock boundary conditions appears to be an acceptable method of repre-
senting the effect of the shock in unsteady flow in the ADI relaxation method.
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To study the effect of first- and second-order difference representations of the @, term on airfoils with thick-
ness, the preceding configuration was run at M = 0.85 and reduced frequencies of 0.25 and 0.40. The results of
the ADI method for both representations of ¢, are compared with the direct solution in figures 10 and 11. The
greatest deviation occurs in the vicinity of the shock where the pressure pulse is significantly underestimated by
the ADI calculations. Inclusion of the second-order difference does not appear to be as important for the airfoil as
for the configurations of vanishing thickness.
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6.0 ADI RELAXATION SOLUTIONS FOR
THREE-DIMENSIONAL WINGS

61 CORRELATION OF EXAMPLES FOR
RECTANGULAR WINGS OF VANISHING THICKNESS

Pilot programs for three-dimensional unsteady transonic flow using the direct solution procedure
(OPTRANS3) and the ADI relaxation method (OPTRAD3) have been applied to a zero thickness rectangular wing
of aspect ratio 3 which corresponds to the planform geometry of the wing model of NASA TN D-344. Typical
results from these two programs are compared with corresponding calculations from the RHOIV program of
reference 8 in figures 16 through 18. These results are for a Mach number of 0.9 and a reduced frequency, based
on the semichord, of 0.10, with the wing oscillating in pitch about the leading edge. The correlation of the results
from the two finite difference procedures with the results from RHOIV is considered very good, even close to the

tip.

For the real part, results from the three theories match nearly exactly for the inboard two chords, and
RHOIV lies slightly below OPTRAD3 and OPTRANS for the tip chord. For the imaginary part, OPTRAD3 and
RHOIV match closely over the inboard two chords with the OPTRANS curve lying slightly below. For the tip
chord, OPTRAD3 and RHOIV match closely over the front part of the surface (OPTRANS again lies slightly
below), while OPTRAN3 and RHOIV match closely aft of the midchord (OPTRADS lies slightly above). The
better agreement of OPTRAD3 and RHOIV is surprising since truncation errors due to the time steps At were
observed in the two-dimensional solutions.

The solutions are for a 50 by 20 by 40 xyz mesh (symmetry in z assumed so the order of the coefficient
matrix is 20,000). As expected, the direct solution proved to be very expensive to run for this three-dimensional
problem, and the ADI solution requires about a quarter of the computing resources of the direct solution.

6.2 CORRELATION OF EXAMPLES FOR RECTANGULAR WINGS OF FINITE THICKNESS

Steady-state pressure distributions for the wing of NASA TN D-344 with a 5%-thick circular arc airfoil are
presented in figure 19. Included in the figures are pressure distributions for the upper and lower surfaces (as
digitized from the graphs of TN D-344, ref. 20) and analytical results from XTRANS3S. It is noted that, despite a
symmetric airfoil shape and zero angle of attack, the pressures for the upper and lower surfaces do not coincide.
The report mentions a cross tunnel variation in stream angle which may account for the differences. The pres-
sure distributions are presented for four spanwise stations. The analytical stations are closely matched to the
experimental stations in all cases, so that a good estimate of the correlation between theory and experiment may
be obtained by reviewing the figures. At the root (fig. 19), the analytical results extend to a larger negative pres-
sure coefficient than the experimental results. Also, the analytical distribution shows arelatively sharp shock
while the experimental results show some supersonic flow but almost no shock. Since there is a shock at mid
semispan, a shock at the root would be expected too. The lack of a shock at the root may be due to the cross tunnel
variation in stream angle and may also be due to boundary layer effects. The pressure orifices at the root are on
the tunnel wall, rather than on the wing, and there is no mention of a splitter plate to remove the boundary layer
on the tunnel wall. A thick boundary layer over the orifices might mask shock effects in the pressure
measurements.

At the mid semispan section, y/Ab = 0.5 (fig. 19), the correlation between theory and experiment is quite

good. The analytical result matches that for the upper surface well, particularly with respect to the shock
strength. The maximum pressure is slightly less for the analytical result than for the experimental result, other-

14




wise the analytical result seems to lie between the measured distribution for the upper and lower surfaces. For
y/Ab =0.70 in figure 19, the analytical results fall slightly below the measured distributions, however, the shock
strengths appear about the same. For y/Ab =0.9 in figure 19, analytical results fall slightly farther below the
measured distributions. Again, the shock strength looks about the same for analytical as for the measured
results.

Using the potential distribution from the steady state solutions of XTRANS3S just discussed, we analyzed
the wing of NASA TN D-344 (ref. 20), with its circular arc airfoil section, under the bending mode presented in
figure 20. The results are for M = 0.9 and reduced frequency of 0.13. Three distributions are presented in each
figure: (1) the ADI relaxation calculations for the wing with the circular arc airfoil, (2) the ADI calculations for a
flat plate and (3) the experimental measurements as obtained from figure 9c of TN D-344 using an automated
digitizing process on the unflagged data. The amplitude and phase angle of the pressure difference across the
wing are presented for three spanwise stations: y/Ab=0.5, 0.7, and 0.9. '

The results from the ADI method in figures 21 and 22 for the thickness case reflect a much sharper and
stronger pressure pulse than do the experimental measurements. Comparison of the amplitudes at the three
spanwise stations is presented in figure 21. At y/Ab=0.5 and 0.7, the experimental and analytical shock loca-
tions agreerelatively well. At y/Ab = 0.9, ADI calculations show a very small shock pulse, while the presence of a
shock in the experimental data is unclear due to variations between the flagged and unflagged data in figure 9¢

- of TN D-344. Ahead of the shock, the amplitude of measured pressure is greater than the calculated pressure for
all three spanwise stations.

A comparison of the phase angle distributions is given in figure 22. Overall, the correlation appears about
like that for the pressure amplitudes. The analytical results show a sharp rise in phase angle across the shock at
all three spanwise stations, with the phase angle decreasing aft of the shock for the two inboard stations.
Although there are only two data points aft of the shock, the experimental data does generally resemble the
analytic data. At y/Ab=0.5 and 0.7 (fig. 22), the experimental data show a much larger jump in phase angle
across the shock than the analytic data. Behavior of the experimental data aft of the shock, although described
by just two data points, generally matches the analytic behavior at y/Ab = 0.9 in figure 22. The experimental
data does show a large spike in phase angle (presumably due to a shock), while the analytic results show a jump
across the shock.

The results of analyzing the wing of NASA TN D-344 presented in figures 21 and 22 are replotted in figures
23 and 24 to include the second set of experimental data (the flagged data) from the report. The flagged data were
included in the report to show the repeatability of the measurements. Measurements in the vicinity of the shock
show large variations between the two sets of data.

Three-dimensional plots of the real and imaginary parts of the calculated pressure distribution for this
problem are shown in figures 25 and 26. Figure 25 is for the vanishing thickness configuration, while figure 26 is
for the wing with a circular arc airfoil section. The pressure pulse due to the presence of the shock shows up
dramatically for the circular arc configuration. There is a noticeable blip in the pressure distributions at the
trailing edge of the tip chord for both the zero thickness and airfoil distributions. Such a blip has been encoun-
tered in other time-integration finite difference solutions. It seems to be associated with the solution mesh and is
considered to make an insignificant contribution to the overall flow solution.

The overall correlation between theory and experiment is somewhat less than satisfying, although the
basic properties of the pressure distribution in the experiments are reflected in the theoretical calculations. The
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theoretical solution has been checked for convergence by running an additional 100 iterations with no apparent
change in pressure distribution.

More recent experiments reported by Rickets, Sanford, Seidel, and Watson of the NASA Langley Research
Center (ref. 21) correlate better with calculations by the frequency domain method. A rectangular wing of aspect
ratio 4.0 with a supercritical 12%-thick airfoil is oscillated in pitch about the leading edge. Freon gas was used in
the wind tunnel for which the ratio of specific heats is y =1.131.

The steady state solution for a Mach number of 0.7 and angle of attack of 2 deg. was computed by
XTRANSS. The resulting chordwise pressure coefficient distributions are shown in figures 27 through 30 at
fractions of the semispan of 1 = 0.31, 0.59, 0.81, and 0.95, respectively. The agreement of the experimental meas-
urements with theory is seen to be quite good.

Using the steady-state potential just described for calculating the coefficients of the three-dimensional ADI
method, we ran the program for the rectangular wing oscillating in pitch about the leading edge at reduced
frequencies of 0.178 and 0.356. Figure 31 presents the distribution of amplitude of the jump in pressure across the
wing for k = 0.178 at spanwise stations of 7 = 0.31, 0.59, 0.81, and 0.95, while figure 32 shows the corresponding
phase angle distributions. The pressure amplitude over the aft 3/4 chord of the wing is in good agreement with
experimental values. The OPTRADS results show the leading edge singularity at all four spanwise stations,
while this singularity appears only for the outer two chords in the experimental data. A shock pulse appears just
aft of the leading edge for the two inboard chords in both the OPTRAD3 and the experimental results. The shock
pulse is sharper in the theoretical calculations, and the theory shows a singularity at the leading edge which has
the same sign at all cross sections. This is not seen in the experimental values. The agreement of the theory with
the phase angle measurements is not as good as for the amplitude. The experimental results indicate a rise in
phase angle to about 3/4 chord and then a fall to zero, while the theory continues upward. Similarly, comparison
of the ADI results with the first harmonic from XTRANSS, as digitized from the graphs of reference 21, is shown
in figures 33 and 34. The pulse near the leading edge from XTRANBSS is stronger than the harmonic solution for
11 =0.31. For the more outboard spanwise locations the agreement is better. The phase angle from XTRAN3S
shows a rapid rise at the trailing edge not observed either in the experiments or the ADI solution. For k = 0.356,
the correlation of the ADI solution with experimental results is similar to that for k = 0.178, as seen in figures 35
and 36. The correlation with the first harmonic of XTRANSS is shown in figures 37 and 38, and is similar to the
results found for the correlation of two-dimensional results with XTRAN2.

6.3 SOLUTION CONVERGENCE PROBLEMS FOR SWEPT WINGS

The ADI program was modified to include the swept wing coordinate transformation. The problem of con-
struction of a mesh system for a swept wing is considerably simplified by using a coordinate transformation
which defines the leading and trailing edges as single values of the streamwise coordinate system. This makes it
easier to refine the grid in the neighborhood of the leading and trailing edges.

Since XTRANSS was selected to compute the steady-state potential distribution required in the coeffi-
cients of the difference equations, the mapping used in XTRANS3S was adapted to our program. The coordinate
transformation is given by

= (X - XLE)/S(Y) -1
n=Yy
C =z (6.31)
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where S(y) is the semichord at the span location y. This differs from the transformation in reference 17 in order to
make the leading and trailing edges be given by £ =-1 and 1, respectively. The differential equation resulting
from applying this transformation and the resulting difference equations are derived in appendix B.

The three-dimensional ADI relaxation program using the swept wing coordinate transformation has been
applied to the clipped delta planform (as a zero thickness configuration) of Hess, Wynne, and Cazier (ref. 22),
which has a swept leading edge of 50.45 deg. an unswept trailing edge, and a semispan of 0.708 chords. The time
step had to be reduced to 0.002 before convergence occurred. However, after 570 iterations, the solution again
started to diverge. A plot of the pressure distribution at the time when convergence stopped was in very poor
agreement with the RHOIV solution. A modified clipped delta wing with a leading edge sweep angle of 20 deg.
was also run to determine the effect of the leading edge sweep. The convergence rate was somewhat improved.

The grid region for the 50.45 deg. clipped delta wing is shown in figure 39. Note that the outboard section
covers only a small region of the flow and may account in part, at least, for the lack of agreement with the RHOIV
solution as well as the tendency toward solution divergence.

To find the effect of sweep alone, a simple swept untapered wing was analyzed. Convergence was obtained
for a sweep angle of 20 deg. but failed at 30 deg. When the mapping was changed to make the leading and
trailing edges turn normal to the line of symmetry as in figure 40, the convergence was extended to 30 deg. but a
40 deg. sweep failed to converge with the maximum growth occurring at the point where the edges curved
sharply. At this point the mapping has discontinuous second derivatives. This suggests that a mapping with a
continuous second derivative may improve the convergence. To test this, a swept untapered wing was analyzed
using a cubic to bend the leading and trailing edges normal to the plane of symmetry. A finer grid spacing in the
streamwise direction was also applied on the downstream boundary. It was found that, for the new transforma-
tion, convergence was obtained for sweep angles up to 45 degrees.

Additional studies concerning solution divergence of swept configurations using coordinate transforma-
tions may be found in references 23 and 24. In the former, care is taken to assure that the derivative €,, which
appears as a coefficient in the transformed differential equation, is well behaved in the solution region. In refer-
ence 24, linear stretching is applied to the transformation in the regions both upstream and downstream of the
wing planform to assure that the region of perturbed flow is included in the flow solution region. Both concepts
appear to significantly improve convergence. We assume that our new transformation is close to that used in
reference 23. However, we have also made a point of removing the singularities resulting from the sharp plan-
form apex at the root by artificially rounding off the leading and trailing edges at the root.

To test convergence at the higher frequencies, the 45 deg. sweep wing was calculated using k =0.5. The
solution converged as easily as for the lower frequency calculations. As seen from figures 50 through 52, the
agreement with RHOIV is, however, not as good. As in the two dimensional solutions, the second order difference
for the first derivative with respect to x appears to be required to improve the accuracy.

6.4 CORRELATION OF EXAMPLES FOR SWEPT WINGS OF VANISHING THICKNESS

Calculations were performed at a Mach number of 0.9 and reduced frequency of 0.13 for sweep angles of 30
deg, 40 deg, and 45 deg. Figures 41 through 43 show the real and imaginary parts of the jump in pressure coeffi-
cient across the flat plate for the three sweep angles using a time step of 0.05. The greatest variation with sweep
angle occurs at the plane of symmetry (figure 41). The solutions for a sweep angle of 30 deg are shown in figures
44 through 46 for spanwise locations at fractions of semispan of 0., 0.51, and 0.93. The results after 150 and 300
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iterations are compared with the integral equation solution of RHOIV. It appears that 300 iterations yield better
results, and agreement with the RHOIV is seen to be excellent.

The jump in pressure coefficient for 45 deg, the largest sweep angle for which the program converged, is
compared with the RHOIV solution in figures 47 through 49. The agreement is seen to be as good as for the lower
sweep angles.

To test convergence at the higher frequencies, the 45-deg swept wing was calculated using k =0.5. The
solution converged as easily as for the lower frequency calculations. As seen from figures 50 through 52, the
agreement with RHOIV is, however, not as good. As in the two dimensional solutions, the second-order dif-
ference for the first derivative with respect to x appears to be required to improve the accuracy.
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7.0 CONJUGATE GRADIENT TECHNIQUES
FOR THE DIRECT SOLUTION

71 DESCRIPTION OF BASIC CONJUGATE GRADIENT TECHNIQUES

Although the direct solution as used in OPTRANZ2 provides an efficient and practical procedure for analyz-
ing two-dimensional configurations with mesh systems of the order of 4500, three-dimensional problems using
mesh configurations of the order of 50,000 to 100,000 would appear to require alternate procedures to achieve
comparable efficiencies. Review of the literature indicated that conjugate gradient techniques might provide a
practical way to obtain a direct solution for larger systems. However, our problem is asymmetric and indefinite,
and thus the classical conjugate gradient methods are not applicable.

The classical conjugate gradient method for solving systems of linear equations of the form Ax = b whose
coefficient matrices, A, are symmetric (Hermitian in the case of complex matrices) and positive definite was
presented by Hestenes and Stiefel (ref. 25) in 1952. This method converges to the true solution of the linear sys-
tem in a finite number of iterations in the absence of round-off errors and hence may be thought of as a direct
solution. However, the method was not widely used and little was heard about it until the mid 1960s. J.K. Reid
(ref. 26) noticed that the method is very efficient for large sparse symmetric positive definite systems that are
well conditioned, with the asymptotic rate of convergence being inversely proportional to the square root of the
condition number. In the last decade, many variants of the conjugate gradient method have been applied to large
sparse problems with considerable success (See Hafez and Wong, ref. 27).

When the coefficient matrix, A, is asymmetric, the usual procedure is to multiply both sides of the equa-
tions by the conjugate transpose, A*, to obtain a Hermitian positive definite linear system of the form
A*Ax = A*b on which to apply the conjugate gradient method. However, the condition number of the matrix
A*Aisthesquare of that of A. That is, the asymptotic convergence rate of the conjugate gradient method applied
to the above equation would be inversely proportional to the condition number of A instead of to the square root
of the condition number of A.

Various authors, such as Axelson (ref. 28), Concus and Golub (ref. 29), and Elman (ref. 30), have generalized
the conjugate gradient method to a larger class of matrices, so that the asymptotic convergence rate is inversely
proportional to the square root of the condition number of A. Yet all of these methods still assume the coefficient
matrix to have certain properties, such as A* + A being positive definite, and thus they are not always applica-
ble to general nonsingular matrices. In appendix E, a variant of the conjugate gradient method is developed
which is applicable to general nonsingular matrices and which has an asymptotic convergence rate inversely
proportional to the square root of the condition number. This new algorithm together with examples of its
application will be discussed in the following.

However, for the new algorithm, when the coefficient matrix is even mildly ill-conditioned, the convergence
rate of the conjugate gradient method is impractically slow. This difficulty, frequently encountered with the
matrices for the transonic problem, can be remedied by preconditioning, which attempts to improve the condi-
tion number of the matrix. Various authors, such as Lewis and Rehm (ref. 31), Kershaw (ref. 32), and Chandra
(ref. 33)have suggested different preconditioners for specific problems. The success of the method for a particular
problem very much depends on the preconditioner chosen. For our problem we have tried preconditioners from
the following sources:

(1) A sparse capacitance matrix method

(2) The ADI operator
(3) The incomplete LU factorization procedure.
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The preconditioner from the incomplete LU factorization has proved to be most efficient. We shall describe these
three preconditioners in detail in section 7.2.

7.2 PRINCIPLE OF PRECONDITIONING
The principle of preconditioning is to recast the system of equations in the form
I+T)x=b

where T is a matrix whose magnitude is small. One procedure for accomplishing this is to find a matrix N such
that its inverse is easy to compute and N is very close to the coefficient matrix A. If such an N can be found, then
the matrix

R=A-N

is of small magnitude. The matrix N-1R is also of small magnitude if A and N are well conditioned. We can write
the equation Ax = bas(N + R)x = b. When we premultiply both sides of the latter equation by N, then we
obtain

I- N 1Ry x=N"1p

Note that the singular valuesof (I + T) = (I-N"1R) (See Householder, ref. 34) are defined as the square roots of the
eigenvalues of

(I+T)*(I+T) =1+ T + T* + T*T.

Since the magnitude of T is small, the singular values of the matrix (I + T) are close to 1. This is the ideal
situation for applying conjugate gradient type methods.

Aside from the case in which the matrix A is a so-called M-matrix, which is a matrix with negative diago-
nal entries, non-negative off-diagonal entries with all its eigenvalues on the right half-plane, (see Varga, ref. 35),
there are no theoretical results in the literature concerning the choice of N. Almost all of the results in the
literature concerning preconditioning are empirical and therefore are problem-dependent. The most popular
and successful preconditioner is the incomplete factorization procedure.

7.21 THE INCOMPLETE FACTORIZATION

The concept of incomplete factorization may be used for preconditioning in the following manner: the L and
U matrices resulting from the lower and upper triangular decompositions of the coefficient matrix (or some por-
tions thereof) are modified to obtain matrices which are easy to invert and store. In the current algorithm, L and
U are modified to be lower and upper tri-diagonal matrices.

The incomplete factorization of the matrix A in comparison with the complete factorization of A is illus-
trated in figures 53, 54, and 55. Figure 53 represents the sparsity of the original matrix A. Figure 54 shows the
sparsity structure of the two matrices resulting from the complete LU factorization of matrix A. Figure 55 shows
the sparsity structure of the incomplete LU factorization of the matrix A. The incomplete L and U are obtained
from the regular Gaussian elimination by retaining only the nonzeroes in the sparsity structure of A. The
details are expounded in appendix E. Our results are summarized as follows:
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Problem Grid No. of Formulation No. of CRAY

size mesh points iterations CPU sec
1) 72x60 2160 ADI(t = .3) 263 15.3
(2) 72x60 2160 direct 346 20.3
3) 50x15x40 15000 direct 564 179.

In comparison with other methods, the ADI described in section 6 takes 40 seconds for problem 1, and the
out-of-core solver takes 4.5 seconds for problem 2, and 400 seconds for problem 3.

In the two-dimensional problem, the ADI formulation (problem 1 of the test problems) seems to have better
convergence properties than the direct solution formulation. This might well be true for the three-dimensional
case also.

As an iterative method, the conjugate gradient is not so “operator-sensitive.” For instance, in problem 1 of
the test problems, second order central differencing is used for the ¢, term. In the ADI method described in

section 6, second order upwind differencing is used for the ¢, terms because the ADI diverges when central
differencing is used.

7.2.2 THE ADI OPERATOR AS A PRECONDITIONER
The ADI method can be represented by the following matrix equation:
¢n+1=Gop +Poy g +c (7.2
Assume equation (7.2.1) converges, then ¢,,, = ¢, = ¢, ,, and equation 7.2.13 can be written as
I-G-P)e=c (7.2.2)
We apply our conjugate gradient method (USYMLQ) to equation (7.2.1). Experimentally, we find that the rate of
convergence of this method is similar to that of the ADI and hence more expensive than the ADI because for each

iteration, we have to compute (I - G - P)x, as well as (I - G — P)*x,.

We have only tried this on the 2D problems. Since this method is not comparable in efficiency with the ADI,
we do not list the results.

7.2.3 THE SPARSE CAPACITANCE MATRIX METHOD AS A PRECONDITIONER
The method we discuss in this section is motivated by the two-step method discussed in Ehlers and Weath-
erill (ref. 7). The flat plate equation without the boundary condition on the airfoil can be solved by Fast Poisson

Solvers like FISHPACK (see Sweet and Swartztrauber, ref. 36). Since Ehlers and Weatherill (ref. 7) observed that
the solution of the airfoil equation is close to the solution of the flat plate equation in the far field, we thought a

matrix of the form:
M = [ S] (7.2.3)
F
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where S is the coefficient matrix of the difference equation of the airfoil equation for the near field mesh points
(the mesh points inside the box which encloses the airfoil and all the supersonic points), and F is the coefficient
matrix of the flat plate equation for the far field mesh points, would closely approximate the coefficient matrix of
the airfoil equation (see fig. 56 below). In other words, if T is the coefficient matrix of the difference equation for
the airfoil equation for the far field mesh points, that is, if

- [4]

we assume (T - F) is of small magnitude. Therefore we use M in equation (7.2.3) as a preconditioner. Equations of
the form M-1x = b are solved by a sparse capacitance matrix method. This preconditioner proves to be inefficient
for the following reasons:

1. The sparse capacitance matrix method requires an efficient complex sparse linear equation solver. The solver
we were using, ME28A from Harwell, was written for IBM machines and is extremely inefficient for the
CRAY.

2. The two-step method discussed in reference 7 proves to be successful only for symmetric flow, thus the matrix
M in equation (7.2.3) does not closely approximate the original coefficient matrix. Therefore convergence is

slow.

3. The box which encloses all the supersonic points can be almost as big as the full grid.
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8.0 THE DIRECT SOLUTION FOR THREE-DIMENSIONAL WINGS

The pilot program for the direct solution of two-dimensional configurations has been rewritten for applica-
tion to three-dimensional rectangular configurations. This new pilot program, called OPTRANS, is pro-
grammed for the CRAY. Application of OPTRANS is discussed in section 8.1 and an improved algorithm for an
out-of-core solver is discussed in section 8.2.

8.1 APPLICATION OF OUT-OF-CORE SOLVER

One large and several small examples were run to test OPTRANS. The large run, the only one to approxi-
mate a practical configuration, was a 50 by 20 by 40 mesh system applied to an aspect ratio 3 rectangular wing of
vanishing thickness. Since the flow for this configuration is symmetric top to bottom, this problem consisted of
20,000 points. Pressure distributions from this calculation are compared with results from OPTRAD3 and
RHOIV in figures 16 through 18. Correlation of all the results from the two finite difference procedures with
reference results from the kernel function method is good and is about what we would expect from our experience
with two-dimensional calculations. The overwhelming characteristic for the example is its running time which
was some 1200 CPU seconds. Perhaps of even more significance is the fact that using the company cost
algorithm, the CPU seconds only accounted for about one-fourth of the total cost of the run, while the remainder
of the cost is mainly due to input/output operations. It is also noted that costs rise rapidly with increasing mesh
points. For example, a problem with three-fourths the mesh points requires about one-third as many CPU
seconds.

The pilot program that was tested was developed on a version of the CRAY which has one million words of
core storage. It was also developed during the installation period at Boeing of both the CRAY hardware and
software. Now the operating system has been stabilized, and the original machine has been replaced by one with
two million words of core storage. The larger memory allows us to bring larger blocks into memory. Larger
blocks mean that the length of the vectorizable do-loops is longer, and execution time should be reduced signifi-
cantly. It also means a reduction in the number of disk access operations. With the new algorithm, the number of
words written on disk is also significantly reduced. When solutions for a number of right hand sides are required,
the out-of-core solver may be competitive with iterative methods, such as the ADI and the preconditioned conju-
gate gradient procedure. :

The total cost of the initial three-dimensional run using the direct solution program was large enough that
it was decided to concentrate efforts on the ADI procedure of section 6. If the running time can be reduced signifi-
cantly as described above, the advantage of being able to include a number of mode shapes (i.e., a number of right
hand sides to the set of difference equations) with little increase in cost would make the direct solution again
competitive with other procedures such as the ADI method.

8.2 AN IMPROVED OUT-OF-CORE SOLVER PROCEDURE

In the 2D program, the out-of-core direct solver, ETCSM, is a general-purpose banded solver. Because of the
size of the 3D problem, we intend to design a direct solver specialized for our problem. The key idea in the new
solver is “implicit factorization”, which means that the LU factorization of the diagonal blocks, which are prod-
ucts of sparse matrices, is computed as needed. The “implicit factorization” requires the matrix to be block-
tridiagonal. The following 3 by 3 block system serves to explain the difference between the algorithm used in
ETCSM (the out-of-core solver of ref. 18) and implicit factorization:
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We are interested in solving Ax = b, where A is represented by the block system:

A;; A 0 by
0 Agg  Agg bg

1 0 0 Uil U12 0
A=LU-= L21 I 0 * 0 U22 U23 (8.2.2)
0 Lgg I 0 0 Usz

where, by comparison with equation (8.2.1), we see that
Ui = A1 Ugg = A
Loy = AgiA11™h Ugg = Agg - LyjUyg, Ugg = Agg
Lgy = AggUgg ™'
Ugs = Agg ~ L3aUss.
Thus Ax = bistobesolvedintheform LUx = b.Lety = Ux.Then Ly = beanbe solved by forward substitution:

y1 =by

yg = bg-Lgiyg

The solution vector x, which satisfies the equation Ux = y, can now be found by backward substitution:
xq = Usq !
3 33 Y3

-1
Ugg™ "(v2 - Uggxy)

Xl = Uu_l(yl - U12X2) (8.2.4)

X2
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In practice we do not need to compute the inverses of Ugg, Uy, and Uy, but can use their lower and upper tri-
angular factors to obtain xg, x,, and x, by forward and backward substitution. Continued application of LU
decomposition results in inverses being required only for diagonal matrices, a simplification that, in turn,
requires storing only the original block matrices. Thus, for Ly, = A,,V;,1, we store A, and A, ( = Uy instead of
L,,.

In the explicit factorization, as in the algorithm used in ETCSM, all the nonzero blocks of the factorization
(except the identity matrices of L) are stored on disk, and the sequence of calculation is exactly as those described
by equations (8.2.2) to (8.2.4). In the implicit factorization, we store only the diagonal blocks Uy, Uy, and Uy in
their factored form on disk in order to conserve disk space. The sequence of calculation for the factorization stage
is the same as (8.2.2); the sequence of calculation for the forward substitution stage is different: in place of L,,, we
use its equivalent, Ay A 7 in place of Lg,, we use its equivalent, A4, U,, 1 (see equation (8.2.2)).

Thus equation (8.2.3) becomes:
yi =b
- - -1
Y2 T bg-AgA)T Ty

- b - -1
Y3 = bg = AgoAgg "y (8.2.5)

The sequence of calculation for the backward substitution is the same as described by equation (8.2.4), with the
exception that we take advantage of the fact that U;, = A}, Upg = A,,, and substitute A, in place of U,,, A5 in
place of U, in equation (8.2.4), which now becomes:

-1
xg = Ugg “y3

X9 U22_1(y2 - Agsx3g)

X1

In this approach, we do not need to store the off-diagonal blocks of the lower triangular matrix L on disk, and we
can obtain the off-diagonal blocks of the upper triangular matrix U readily from the original matrix A.

We have tried this approach on the two-dimensional problem; the cost is about one-third of that of ETCSM.

For the 3D problem, the matrix needs to be reordered with one level of nested dissection to reduce the bandwidth
in order to use this approach more effectively.
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9.0 CONCLUSIONS

This investigation has centered on the development of procedures for calculating the unsteady transonic
flow about harmonically oscillating three-dimensional wings. The work has included studies of the direct solu-
tion method, a relaxation procedure using ADI techniques, and preconditioned conjugate gradient procedures.

The most practical procedure for three-dimensional analyses requiring a limited number of mode shapes
and using a computer with one million words of memory or less appears to be the ADI procedure. A pilot pro-
gram, including a coordinate transformation for swept and tapered wings, has been developed and applied to
several wings. Results appear generally reasonable and in good agreement with experiment and kernel function
methods. Solution convergence characteristics appear similar to those of XTRANS3S, and results have been
obtained for a swept, untapered wing with a leading edge sweep of 45 deg. However, it should be noted that the
solution time is proportional to the number of modes.

A pilot program for rectangular wings using the direct solution has been developed for the CRAY com-
puter. As expected, this program has proved expensive to run for practical problems. However, a significant part
of this expense is due to the cost algorithm that penalized input/output operations. This was a problem with the
one-million-word CRAY on which the current program was developed. With CRAYs having larger core storage
now available (we are currently working with a two-million-word core, and there is talk of an eight- to thirty-two-
million-word core capability in the future), the direct solution remains a viable procedure, particularly for prob-
lems involving a large number of modes, since solutions for additional modes are obtained at minimal extra cost.

Finally, an algorithm for the conjugate gradient procedure as applied to asymmetric, indefinite coefficient
matrices has been developed with a solution convergence rate proportional to the square root of the condition
number. Several preconditioning procedures have been tested, and one based on incomplete LU decomposition
has proved most efficient. Running times appear to be generally comparable to those for the ADI procedure. This
procedure is still under development.
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APPENDIX A

DERIVATION OF THE ADI DIFFERENCE EQUATIONS FOR THE
RECTANGULAR WING

A1THE BASIC TIME-DEPENDENT DIFFERENCE EQUATIONS

In the same manner as for the two dimensional ADI method, we consider the time-dependent linear equa-
tion for the perturbation unsteady potential. Thus

(d’tt * 2¢xt) /6 - (u¢x)x * d’yy * d’zz (AD

Following the procedure used by Borland, Rizzetta, and Yoshihara (ref. 17), we write the difference equation for
the three sweeps as

X sweep:

25, (6*%0")/ (e At = [6x(u6xd>°‘) + 6x(u6x¢n) ]/2 +o0 o0 +8,,0" (A-2)

y sweep:
28, (-9 /(e by = 5, (#*-6") /2 (a-3)

z sweep:
(67 1-247+ 6771) /(e A12) & gax(¢n+1—¢")/(e Aty =5, (6™*1-g7)/2 (A4)

The superscripts o« and A denote intermediate steps between the n and n + 1 iterations. The difference oper-
ator & is a backward difference, while & (ud,) is a central difference for u positive (elliptic) and backward dif-

ference for u negative (hyperbolic).

Asin the two-dimensional version, we introduce harmonic motion and write for the nth and the next inter-
mediate approximation

n_ niwn At’ d))\ _ <p}\ei w (n+l) At’ %= ‘paei w(n+l) At

¢ =pe

Substituting these expressions into equations (A-2) through (A-4) yields

26, (%= By &%) /(e bt) = O(udyo™) /2 + by [ 5, (us ™) /24 8y 0"+ 5,,6" ] (A-5)
2‘6_X(<p)\- wa)/(e At) = 6yy(¢)‘—ﬂl¢n)/2 (A-6)
(4pn+1 - 28,07 + B 2™ 1)/(6 At) + 2’§X(¢n+1 - <p)‘)/(e At) = 5zz(¢n+1- et /2 @A

where
81 = e- l w At
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To write the equation for coding, we use the same operators as in the direct two-dimensional method. For
the difference operators, we write

2050/ (e A1) = cgi( @4k ~ @51 jk)
By (udy0)= 2 Uiy 1 (@it jk ~ “ijk) ™ 2d; Wik (“ijk ~ 4i-1k)
for (ui+1 jk+ uijk)> 0,
6, (8, 0)= 2651 Wiie (@i = @it k)™ 251 Yot k(i1 jk T -2 jk)

for (ui+1 jk+ uijk)<0'

Syy® = 22(¢i .1 k ~ “ijk) ™ ZPj(%ijk ™ i j+1 k)
8,20 = 281 (%1 jk-1 ™ “ijk) ™ 2Pk(%ijk ~ “ij k1) (A-8)
where C;; = 2/A t(x; - %, 1), and the other coefficients are defined in reference 1.

A.2 THE X SWEEP DIFFERENCE EQUATIONS

With the aid of equations (A-8), equation (A-5) for the x sweep becomes
25, /(e At) - 5x(uax¢°‘) /2= Bl[zlﬁ—xcpn/ (e At) + 6x(u6xcpn) /24 6yy<pn + Bzzq?n] (A-9)
or ‘
°3i(“’0iljk - “";-uk ) 9 “i+1jk("";+1jk - ‘Poitjk )
¥ diuijk(‘poiljk " i1k ) =81 eai Ok T 91 ik )
* e (e i i ) - A<k ™ T ji )
#285 (55100 @k ) 25 (e < )
" 28y (¢r;j k1™ ik )~ 2y (‘pI;jk e )] (A-10
Writing the equation in the form

SUBL() * % j

o
2k + SUB(I) * @5

o o = -
1k + DIAG() * ¢ ijk + SUPER(I) * ¢ i1 jk RHS({I) (A1
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we see that
SUB1()=0.0
SUB(I) = -Cg; _diuijk
DIAGQ) = Cg; * Gy, ik + diuijk
SUPER(I) =-c;u, ik (A12)

Note that DIAG() = — SUB(I) - SUPER(I). The right hand side term becomes

RHS(I) = B,(RHS1 + RHS2 + 2+RHS3 + 2+RHS4) + 2RHS4) (A13)
where
- n _ n
RHS1 = cg; (¢~ @1 jk )

= n - B - A - F
RES2 =0y, jic (k™ i) ™ %k (2 ik “i1ik)

RHS3=2; (¢, 11 =) ~ b (“Sk™ “iix )
RHS4=a) (“’I;j kel “’I;jk ) - by (‘pr;jk B “’I;j k+1 ) (B-14)

When the point ijk is supersonic, then equation (A-10) becomes

a

“si (“’ijk ey jk) ~ G1Y%k (“";jk " i1k ) +d;qui; ix (951 ik e jk)

By [°3i (‘pI;jk - ‘Pri.l ik ) * 1%k (“’I;jk - "’?-1 jk ) - di 195 5k (‘Pri.l ik ""I;-z ik )

+2a, (@50 1T ik ) =255 (¢S @5 x)
+2ay (“’r;j k1 “’I;jk) - 2by (‘prijk - O ke )] (A15)

Comparison of equation (A-15) with equation (A-11) yields
SUBL(D = - dj u; 51

SUB(I) = - cg; + 1Y%k * CRLS jk
DIAG(I) = Cq; ~ Ci-luijk

SUPER (I)=0.0 (A16)
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Note that SUB(I) = - SUBI(I) - DIAG(I). The terms RHS1 and RHS2 become
- n _ n
RHS1 = cg; (¢ = 1 5 )

- n _ n - d u .. n _ n .
RHS2=c; i (¢~ “hg) ~ %1%k (“hage ™ #i2jk) (A1)

RHS3 and RHS4 remain unchanged.

A.3 BOUNDARY CONDITIONS FOR THE X SWEEP

We apply the outgoing wave type boundary conditions of Engquist and Majda (ref. 11) on the upstream and
downstream boundaries. Following the two-dimensional method, we obtain

“Ie™ OB A1 (“oe ™ Crac) (A18)
¢O;maxjk =Ek3“’(;max-1 ikt Bl("’r;max-l ik 'EkB“’I}maxjk) (A-19)
where |
Cyq = M(x2 - x1)/[(1- M) At]
Cis = M(ximax - ximax_l)/ [+ M) At]
Cy= (1 Cy)/(1+Cpy)
Cyz= (1 - Cyg)/(1*Cya) | _ (A-20)
The equations (A-12) are modified fori = 2 and i=1i,.-1by
DIAG(2) + DIAG(2) + SUB(2)+Cy
RHS(2) = RHS(2) - SUB(z)*Bl(lejk - Cyq J;jk)
SUB(2) = 0.0 (A-21)

DIAG(IMAX1) = DIAG(IMAX1) + SUPER (IMAXl)*-(—Jk3
1) = RHS(IMAX1)-SUPER(IMAX1)* n vy = Cy oo )
RHS(IMAX1) ( ) ( )*By (‘plmax'llk Cyg® 1maxlk)

SUPER(IMAX1)=0.0 (A-22)
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For k = k_, just below the wing plane, and k = k, + 1, we apply the wing boundary conditions when
i, <1<y, for j<j,, the index of the first spanwise variable beyond the wing tip. The conditions are in the form

(3/82); — - 0= Flx,y)

@e/d2), _, o =F (xy)

Fork = k,,, we have

_ — _ L

whereh =z, -z, o Similarly, fork = k_, +1,

- - — U
akm+1((pijkm. 21 km+1) = | hakm+1 F " (A-24)
We see that for k = k_, the right hand side term is modified by
RHS(I) = RHS(I) + 28, b, [hFIf, +ot = (A-25)
m ij ijky, ij km+1]
Similarly, for k = k,, +1we have
= - U n _.n
RHS(I) = RHS(I) 2akm+1 Bl[hF i +o ik, ¢ i km“] A (A-26)

Fori > i; andj < j,, we must satisfy the continuity of the normal derivative across the wake sheet and
continuity of pressure. Detailed discussion of this is given in reference 1. The jump in the potential at
X = x; + lischosen to satisfy the Kutta condition that the jump in pressure at the trailing edge be zero. Con-

tinuity of pressure is assumed by setting

By = Doy s1ye @ (5T ¥ip1)

where Ag;; denotes the jump in potential at x = x;. The continuity of normal derivative is assured by adding to
the ¢,, term the quantity

by A4
fork = k., and

akm+1 A(pij

fork =k, + 1
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A4 THE DIFFERENCE EQUATIONS FOR THE Y SWEEP-
The difference equation for the y sweep, equation (A-6), becomes
RS Ao N, o5 a i
26x<p /(e At) + Byyq: /2= ﬁlayy‘p /2 20x<p /(e At) (A-27)

or
a(¢ii1k" ‘p)}jk) ) bi(‘p)ijk - j+1 k) c3i(‘p);jk - jk)
=B1[ (<% . i) PGk “an) ]
- a5 ™ S k) (A28)
Writing this equation as

= RHS(J) (A-29)

SUB(J)* ‘p’; 1k

+ DIAG(J) (,o"ijk + SUPER(J) J; 1k

and comparing equations (A-28) and (A-29), we obtain
SUB(J) = a;

DIAG(J) = - a; - bj - cg

SUPER() = b,
RESW) = 8y [25(« 5 1 1~ i) = Pi(* k™ “igen ) ]

e (2 - A R
°31(“’ijk ‘pi-ljk+"’i-1jk) (A-30)

Note that ¢?, ;  is known from the previous sweep, since we always move in increasing i. Since the ¢* and ¢
values are not saved, the quantity
a

?i1jk

has been written over with ¢?, ; by the previous step in the y sweep. Hence, after the i - 1 sweep we must save
oY ik by

PHIOLD(J) =¢°i‘_ (A-31)

1jk

before storing the results of the i - 1step. In each step of the y sweep the value of k is fixed, while i varies from
i = 2toi_,, -1 Thenk isincreased by 1and i is varied from 2 to i, - 1 until the entire grid is swept.
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A.5 BOUNDARY CONDITIONS FOR THE Y SWEEP
The difference equations for the y sweep require boundary conditions on the upstream x boundary. Hence,

the value of i = 2 is a special case. Then the term -c5;0; ; j, is missing from the right hand side RHS(J) term, and
we replace it with the expression

- a A
3i Crca [ By ‘p2jk]
The diagonal term is modified by
DIAG(J) = DIAGW) * ¢35Cy4

Theliney = 0(j = 2)is a plane of symmetry for the solution since it is the location of the root chord. Thus &
¢/6y= 0aty = Qyields

PN )
“i1k ~ “isk (A-32)
Application of the boundary condition to equation (A-29) yields

SUPER(2) = SUPER(2) + SUB(2)
SUB(2)=0.0 (A-33)

We appIy the Majda and Engquist nonreflecting boundary conditions at the outer spanwise boundary,
Y = (j max * Yjmax - /2. This takes the form

A n
.. =C .. + .. -C .. (A-34)
i Jmaxk k294 Jmax-l k Bl(‘p 1jmax1k k29 Jmax k)

where

K = (1- M2) /(M%) (A-35)
This requires the following modifications
DIAG(JMAXI1) = DIAG(JMAX]) + C} o*SUPER(JMAX1)
RHS(JMAX1) =RHS(JMAX1) ~-SUPER(JMAX1)=* B1 ( ¢I;jmax'1 Kk vl}jmaxk)

SUPER(JMAX1)=0.0 (A-36)
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A.6 THE DIFFERENCE EQUATIONS FOR THE Z SWEEP

The difference equation for the z sweep in equation (A-7) may be written as

8,0 1r2 - A L/(e at2) - 2fs‘x<pn+1/(e At)

=81[8,,"/2 - (26" - 8™ /(e0t)] - 28,0M (e o) (A-37)

With the aid of equation (A-8) we obtain

n+l _ n+ly\ _ n+l_ n+l \ _ n+l n+l_ n+l
ak(“’ij k-1 ‘*’ijk) bk(“’ijk % 1) 1%jjk °3i("’ijk 1k

) Bl[ak(“’rij k-1 ¢I;jk) B bk(‘prijk B ‘P.I;j k1)
- B (26, - e 8) ] | (A-39)

Writing equation (A-38) in the form

n+l n+1 n+l _
SUB(K) * ‘pij k1 + DIAG(K) * ‘pijk + SUPER(K) * "Dij K+l - RHS(K) (A-39)

and comparing with equation (A-38) yields the following relations for the coefficients:
SUB(K) = aj
DIAG(K) == ak - bk - El - C3i

SUPER(K) = b,
RESE) = 8y [ (101 ™ i) P~ o)
~E1(25 A1) ] eai e Rt i) (4-40)

where E; = 1/eAt2. Note that the right hand side term, RHS(K), contains the known value of the n + 1 approx-
imation, @Pj%}. Since the n + 1approximation replaces the A approximation, ¢%, ; , must be saved in the pre-
vious step. Thus we define

PHIOLD(K) = ¢} | ik (A4
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A.7TBOUNDARY CONDITIONS FOR THE Z SWEEP

For the z sweep we must apply the boundary conditions on the wing, on the wake, and on the mesh bound-
aries except for the side boundaries, that is, the x-z plane boundaries. On the upstream boundary, we use

n+l _~ n+l n _@~ n
“1ik - Ck1%9ik +Bl(“’2jk Ckl‘pljk) (A-42)

No boundary conditions are actually needed in the difference equations on the downstream boundary, but for the
next step we need the values of ¢, which satisfy the downstream boundary conditions. Thus we set

n+l ral n+l n - n
. .. = Ciqe. Lt 5 .~ C . . (A-43)
‘plmax]k k3¢lmax'1 jk B1(¢ imax-1ik k3% imax Jk)
where
Cyo=M(x. - X. /(M +1) At
k3 (xlmax Xlmax'l) ( )
Cia = (1~ Cg)/ (1 * Cucs) (a-44)

On the upper boundary, we have for the nonreflecting boundary conditions

n+l ral n+l n ral n
. =Cyro.. + .. -C .. (A45)
i kmax k5¢1] kmax-1 [31(«0 1j kppax-1 k5% 1j kmax)
where
Cpr=M - vi /1(1- m?)at]
k5 (kaax kaax'l)
Cis = (1~ Cks)/(1* Cxs) (A-46)
The lower boundary nonreflecting condition is
n+l_~ n+l n _n~ n
i =Ckasia *A1( 2~ Cai1) (4D
where
- _ w2
Cpeq = M(zg - 27) VE/1 - M2t
Cka= (1~ Cra)/(1+Cyy) (A-48)

On the wing, for i, < i < i, where i, and iy may depend on j, we have forz = (z, | + 2, ,,)2 =0,

FL.
ij

(0¢/9z)” =

d0/92)" = Fg
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Fork = k., the term b, (o}t 1~ oni1,) becomes

ntl _ ntl __ p L
Pk (ki i k1) Phim® 557 Phe Fj (449

Fork = k,, + 1, theterm a,,,(0}i{ — of1) becomes

n+l n+l

- = - U ]

These same boundary conditions must be applied to the corresponding terms for ¢» as well. On the wake fori >i,,
to satisfy the continuity of the normal derivative across the wake, we must add for k = k,, the terms

ntl - ntl _ n+l, n+l )=b ¢}1.+1 - il n+1
bkm(“’ij kyy  Gikgtl L YU ) km( ijkpm 1ka+1) +bkmA“’ij (A-51)

where Ap = @y - ¢,. Similarly, fork = k,, + 1we have

n+l _ n+l ) (A-52)

+ Aeg..
"km*1 (% ke i kpt1) 1%

Equations (A-51) and (A-52) are applied to ¢ as well.

For all k, the boundary conditions on the upstream boundary require the following modifications of the coeffi-
cients. Wheni = 2,

DIAG(K) = DIAG(K) + c32’ék1
- n _ n A
On the lower boundary, fork = 2
DIAG(2) = DIAG(2) +Ek 4*SUB(2)
RHS(2) = RHS(2) - SUB(2) *ﬁ1(¢‘}j2 - Cy ¢‘}j1)
SUB(2) = 0.0 (A-54)

On the upper boundary, fork = k-1 = KMAX1

DIAG(KMAXI1) = DTAG(KMAXI1) + SUPER(KMAXl)*6k5

RHS(KMAX1) = RHS(KMAX]I) - SUPER(KMAXI)*BI( <pr;j

- n
17 Ck5¢; kmax)

kmax

SUPER(KMAX1) =0.0 (A-55)
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For the wing boundary conditions at k = k,,, we have

DIAG(KM) = DIAG(KM) + bk
m

SUPER(K) = 0.0

_ _ L n _ n
RHS(KM) = RHS(KM) bkmh F ; + Bl[bkm(‘p i Q..

L
; ke i ket 1) + bkmh F ] (A-56)

1
For the wing boundary conditions at k = k,,, + 1, we have
DIAG(KMP) = DIAG(KMP) + ay 41
m
SUB(KMP) = 0.0

_ _ U n _.n ’
RHS(KMP) = RHS(KMP) - 8 [ h 1 Bl Bl 01 (e bk ™ ik )]+ ay_4h Fg (A-57)

For the wake boundary conditions, at k = k,, we have
- n+l n
RHS(KM) = RHS(KM) + by, _(A¢j}"™ 8140 ij)

RHS(KMP) = RHS(KMP) - 2y, ( A¢§+1 - BiA0) (A-58)

A.8 PROVISION FOR THE SYMMETRY OF THE STEADY FLOW
When the steady flow is symmetric and

FU =FL (A-59)
i

then the unsteady potential is antisymmetric, and we have
“ijkp*tl - " %k,
Ciikpt2 ™ " Pijkpy-1 (4-60)

These may be employed as boundary conditions, and half the matrix can be solved with a considerable saving in
computing cost. .

In place of the boundary conditions for K = KMAX1 (k,,,, -1), we apply boundary conditions for k = k.
Thus the asymmetry conditions yield fork = k,, andfori >ijandi <i,,

DIAG(KM) = DIAG(KM) -by
m

SUPER(KM) = 0.0 (A-61)
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A.9 EXACT EQUATION SOLVED BY THE ADI METHOD

The ADI method of relaxation leads to a complex potential in much the same way as the block relaxation
procedure that is used to solve the harmonic oscillation equation. The time step At is irrelevant to the solution,
but its use leads to truncation errors which are of the order of At. To find the differential equation solved by the
ADI method, we add equations (A-5), (A-6), and (A-7). We obtain

(‘Pn+1 -9 ,31<pn + B% ¢n'1)/(e Atz) - 2‘6—x(<pn+1 - Bl(pn)/(e At)
= ax(usxw")/z + 315x(“6x“’n)/2 + ayy(‘p" + Bl¢“)/2
+azz(¢“*1+-31¢n)/z (A-62)

Let pn+1 = @ = ¢, then the differential equation can be recognized as

4L Ay) 2(1- Ay)?
.y - . =0 A-63
(s * oyy * O (L+8) at X e At%(1+B)) ’ e

Letting At— 0 yields the classic unsteady equation for the perturbation potential.
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APPENDIX B

DERIVATION OF THE ADI DIFFERENCE EQUATIONS FOR
SWEPT AND TAPERED WINGS

B.1 BASIC COORDINATE TRANSFORMATION

In analyzing swept wings, it is convenient to use a coordinate transformation in which the leading edge
and trailing edge are defined by single values of the streamwise coordinate. The partial differential equation for
time-dependent transonic small perturbation flow is given by

(2¢xt * d’tt)/e - (ud’x)x gyt ¢zz B-)

yy

This equation is the classical form of the transonic small perturbation equation and does not include the higher
order swept wing terms. (To obtain the basic steady state potential, ¢, these higher order terms must be included
to locate correctly the shock wave.)

A coordinate transformation, which meets the foregoing criteria, is shown in figure B-1 and is described by the
following equation,

é= [X - XLE(Y)]/S(Y) -1
n=y '
(=2 B-2)

where S(y) is the semichord of the wing cross section at the spanwise location y. Then
0= 0/S 8= (368y7 )
¢, <i>£ (B-3)

The differential equation (B-1) becomes

-1 ’ 2 0
(2d>£t/S + d)tt)/e 3 (ud>§/S)f + gyTg’ (d’ffy + ¢77) +aT (¢§ fy + ¢17) + d)CC (B4)
Multiplying by S yields
- 9
(201 Seyy)/e= (uog/S)* £[S(Sp by * )] * S, (9 by * ¢) * S¥y B9

The second and third terms from the last can be combined to obtain a conservation form of the differential equa-
tion. Thus '

(204 * Soyy) e = (ubg/S) e * [Sty(@ely * @n) e * [S(8ety * ¢n) ]y * Gy B8
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For convenience, we define the following quantities

X-= Sfy(d>§§y + d)n) B-7
Y =Sg,¢, B8)
Then the differential equation becomes
- d d
(265 + Styy)/ e = (ubghp)p+ Xp+ Y, + 57(5%,) * 57 (S9¢) B9)

Following Borland, Rizzetta, and Yoshihara (ref. 17) we construct an ADI procedure for the solution of this differ-
ential equation. We obtain

For the £ sweep: ’
(2/¢) ‘Sf(L[;tQ“l )A= s (w/S)(0% + 67)/2]
+ an(sanqsn) +86,0" +6,X" + 5 Y" (B-10)
For the n sweep:
[2/(c At 5, (" - 0) = ‘Sn[S(‘Snd’}\ -5,4") ]2 B1D)
For the { sweep:
[(2/(c n2)] (6P*1 - 267 + 7°1) 4 12/ Ab)] 3f(¢n+1 - M) =%6¢(¢“’L1 - ") B12)

As in the rectangular wing, we represent the nth approximation and the intermediate approximations between
the nth and n +1st in the form

ph=elD® At‘pn’ ¢)\ =it w At(p)\
%= ei(n+1) ) At(pa

Substituting into equations (B-10), (B-11), and (B-12), we obtain the following equations:

For the & sweep:
[2/(e At)]?f(q:a - Bl<pn) = 66[(u/S)6§(<pa + Blcpn) ]/2

n n n n
+ Blsn(san¢ ) +Blac(Sa€¢ )+ B8, X"+ B15 Y (B13)
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where X» = S (5., +6,¢") and Yn = S8, (¢nE,). Writing the equation with ¢* on the left hand side yields
[2/(e DO 50 = 8, (/8) 8,00 |2 = gy {12/(e 5T TP
n n n n n g
+ af[(u/S) 8¢ ]/2 + 617(8517“’ ) + 6,00 + 5,XP+5 ¥ } (B-14)
For the n sweep:
- — A _
[2/(e At)] %( o™ - wa) = a,,[s( By - ﬁ15n¢n) ]/2
Writing the equation with ¢* on the left hand side yields
[2/(e D] g - 57](867}90)‘)/2 =[2/(e AV 50 - 31( san¢n)/2 | (B15)
For the { sweep:
2 n- ’y -
[S/(e AL)] (¢n+1— 2By 0" + B0 1) +[2/(e At)] 8g( 0?1 - o) = % 6€§(¢n+1 - Bl<p“)
writing the equation with ¢n+1 on the left hand side yields, after dividing by S,
byre™*1/2 - n*1/ (¢ 5t2) - [2/(c Bt 9)] 50
= 31[555«’“/2 - [1/(e At2)](2<pn - 31¢n-1)] - [28/( At)]3;<p}‘ (B-16)

In the £ sweep, when we replace u by T = w/S, then the terms J; (Ud,) are the same form as the unswept
coordinate system. Similarly,

(800" )/2=858; v (] i1k ‘Pr;jk) “ bS5 1 (K~ 9 g ) B17)

In the § and n sweeps, replacing

aij_ 1/2 :aj
bij+ 1/2 = bj (B'18)
the term 8,(S8, ") becomes
2. (" — Y =20 (B - B-1
2‘3‘1(‘Pi1‘-1k “’ijk) ZbJ(“’ijk “’ij+1k) (B-19)
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The difference equations for the £ sweep become

C3i(‘poiljk e jk) " Glis j(‘pof+1 ik~ ‘p‘;jk) * diﬁij(‘polfjk -0 jk)

= P TP -
A1 esi( i~ o k) * (e @ ijk)
- du (o, - oh 2a. (o -0
if( ijk = ?i1 jk) *28( ¢ ij1k "¢ ijk)
— b - + {.n _ n
(e ik~ “ij+1 K) 280 k1 ¢ ijk)
- 2b, (%, - " +86,X%+5 YD -2
k(™ ) oK Y] (B-20
where cg; = 2/[e At(X; - X, )]. The difference equations for the § sweep of the swept wing differ in form from the
rectangular version only in the factor S; multiplying a, and b, and the addition of the cross terms,
3 Xn-8,Yn.

We require the difference form of the derivatives, 8 X» + 8, Y™, for the right hand side of the equations.
With G(E,n) = &, we have

6§Xn = 6£[SG(G6§¢I‘ + a,fpn)] = 6§(SG26§¢n) + 65( Gﬁncpn)s B-21)

The first term is the same form as (@8, ¢"), with G2 replacing u, and can be easily written down. The Y term is
5,Y" = an(SG5§¢n) (B-22)

From reference 1, the second order difference for &, is seen to be given by

% L e1i(¥%e1 i ™ k) * 195k ™ %01 ) B23)

where c;; and d;; are defined on page 40 of reference 1. Similarly, we write

5@ = €13(#i j+1 k ~ Aijk) * dj(¥ijk T €151 k) B-24)
where the subscript j denotes that c,; is defined in the same way as c;; but with the variables y; .
Combining the two difference equations, we obtain for the cross derivative term
8¢ Goye] = ¢13Giaq Hiut jk ~ (¢15 ~ 911) CGijHijk ~ d13iGi jHi1 jk (B-25)

where Hyj = ¢;; (93541 - Piji) + dlj (Psjx - Pijax)
Similar results may be written down for 8, [SG&,¢). No special application of boundary conditions is required
since the boundary values of ¢ are calculated from the boundary conditions at each sweep.

42




Similarly, we obtain for the n sweep
ai( o i1k~ (p);jk) - By ‘p);jk e j+1k)
=g <L i) = i %5 T i)
G i1k ‘pI;jk) - b; (“’I;jk ke j+1 k)] 26
This is seen to have the same form as the rectangular wing version.
Finally, the { sweep becomes
ak( “’E+1<1-1 - “’3;1 ) - bk( “’ir;;: - ‘”r;j k+1) - El‘”;};cl
= Siegi( i ™ T )
=12 k1 ™ k) ~ Pk~ Gy cen)
~E1( G eic) ]~ Siem( 9 #ha i) ®B27)
This has the same form as the rectangular version except c;; is replaced by Sica;.
B.2 WING AND WAKE BOUNDARY CONDITIONS
The wing boundary conditions are of the general form
0, = (%) +iwflx)

where z = 8f(x)eivt is the motion of each cross section. In terms of the variable &, this becomes
0, = Oty +i wf(®)
Since
f:(X' XLE)/S_ 1
then
@, = f(&)/S+iwf(f) (B-28)

This differs from the rectangular version in the term S; dividing the slope f'(%). For the boundary conditions on
the wake, we have

A¢X+iwAsp=O
or

At,o§+inA<p=0 (B-29)

43



In the wake boundary conditions, the reduced frequency is replaced by the product of reduced frequency and S;.

B.3 MESH BOUNDARY CONDITIONS

On the upstream boundary, the condition for outgoing plane waves is
by = Mq&t/(l-M) =0

In swept wing coordinates this becomes

d>§ - MSd)t/(l-M) =0 (B-30)

This is the same form as the rectangular wing version except for the factor of the semichord on the quantity
M/(1-M). Hence the parameter C,; now depends upon j. We then have for the boundary conditions
n+l _"~ n+l n ~ n
= . + - . -
1k = Ck1j®9ik Bl(“’2jk Cli‘°1jk) ®-3D

where

Cue1j = (1~ Cpej) /(1 * Coyj) (B-32)
Similarly, for the downstream boundary
¢f +MS¢, / (1+tM) = 0
This leads to
n+l _ n+l ) n _r n !
G ik CkSI% 1k By a1k~ OR3Py jk) ®-33)
where
Ciaj = (1~ Cigj)/(1* Cks;)

B.4 CONDITIONS OF SYMMETRY AT THE ROOT CHORD PLANE

At the root chord plane y = n = 0, we apply the condition of symmetry given by

<py=0

In the swept wing coordinate system this becomes

¢§fy te, =0
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Welet GEn) = £ and letj = 2be the plane of symmetry y = 0. Indifference form, the conditions of symmetry at
the point x; become

A A A A _ _
Gio(@lg5 ™ #h1g) /(6 &1) * (“lak ™ #Tk) /(13 = m1) =0 (B-35)

Here we use backward difference in £ since we sweep in the direction of increasing i. Since M, = -Ng, we define

cs = Gio(n3= 1) /(& ~ &.1) = 213Gi0/ (& ~ &.1) (B-36)
The boundary condition then becomes
A A AN L
i ok~ “hok) * Pk~ ik O
from which
S Y v W\ -
ik = sk~ 4i(#ox ~ ¥ 21) (B-37)

For the outer boundary condition, we have
by WK Mg,/ (1-M2) =0
In swept wing coordinate, this becomes
bety, + &, +VEMa,/ (1:M2) = 0 - (B-38)
We write equation (B-38) in implicit difference form, for j = j,,,, - 1. We obtain
gt Voo L 4ot
Gij( by 2 - g Vo )/ (&~ &)t S

ik " %1 jk Moo

+ VKM

n+l _,n i
(1-M2) At (¢ ¢ ) =0 B39

i+ bk i+l k

Let c2i = G] jmax’l(njmax - njmax'l) /(El - fi-l)

and Gy, = MVE] )/[(1-m2)at]

Mimax Mmax-1
then the boundary conditions become

n+l n _ n+l _ n n+1 n
2i( %k * 1%k T ik T P15 ) ek A e

n+l

n+1l n n+l n n _
- oL -8, =B )=0 (B40
%k P1et Ciea( ¥ i1k 4k P19k Are uk) )
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Rearranging the terms leads to

n+l - — n+l — +1
Q. . =(CrLo = Co:)eo. . + Copr ol
1jmaxk ( k2 21) 1imaxlk’ “2%.1 imax-1k

- s (.n _ n ~ n _.n
Bl[c2l(¢ 1 J.max'1 k ¢ 1 jmax'2 k) ' Ck2(p ij ¢ ijmax'1 k] B4

ijmax k

where &y; = /(1 + C,p)and Cyp, = (1-Cy o)1 + Cyp).

The boundary conditions on the wing and the wake are treated in the same way as for the rectangular
wing, with the additional factor of the semichord as described in the preceding section. The boundary
conditions on the outer { mesh boundaries are unchanged from the rectangular wing since the ¢ variable is
unaffected by the swept wing transformation.

B.5 DERIVATION OF THE SWEPT WING TRANSFORMATION
Toillustrate the method of deriving the swept wing coordinate transformation, we consider the simple swept

‘tapered wing whoseleadingandtrailingedgesarestraightlines. Let 6, bethesweptangleoftheleadingedge and
R be the taper ratio. Then the x coordinate of the leading edge is given by

Xig=-1+ytan gy (B-42)
For the trailing edge, we write
Xrg=1+by (B-43)
and determine b so that at y = y, (that is, at the tip), the chord of the wing is equal to 2R. We then obtain
b =2(R-1)/yt + tan Ogy, = 2C9 + Cq (B-44)

where

Co=(R-1)/yt and Cy = tan Ogy. (B-45)

Because of the slope singularity in the pressure at the wing tip, the tip is placed halfway between grid
points in the spanwise direction. The grid lines which coincide with the leading and trailing edges of the wing
are extended beyond the last spanwise grid point on the wing planform, j = js, using a quadratic to preserve
continuity of slope. At a point midway between the wing tip and the intersection of the linear extensions of the
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edges, y,,, the slopes of the edge coordinate lines are both set equal to the average of the edge slopes at the tip.
The edge coordinate lines are extended beyond the point y,, in linear fashion. The point of intersection of the edge

extensions is found by setting x; p = xrg in equations (B-42) and (B-43).
y=-1/2Cq
Let y;n, be the grid value of y for which
Yim <-1/402 < Yim+1
Thus for j < jm, we define
Xpp=-1+Cqy+ by(y- yjs)2
Xpg =1+ (Cy+2Cg)y + by(y - vis)?
The coefficients b, and b, are determined so thataty = Yims
Xig=XmE= [Cl + (Cl + 202) ]/2 =C1+Co
This leads to two equations for b, and b, which yield
| bg = Cog /2(ij - yjs) =-by
Beyondy = y;,,, the trailing edge and leading edge are given by
Xpg =1+ C1¥jm * b1(¥jm - yjs)2 *(C1+C2)(y - ¥jm)
Xrg =1+ (C1+2C2)¥jm * b2(Yjm - yjs)2 *(C1+C2)(y - Yjm)
In summary, we have, for0 <y < Yisr
Xjp=-1+Cyy
Xrg=1+ (01 + 202)y
S(y) = (XTE - XLE)/2 =1+Coy
for y;s <Y < ¥jm»
Xpp=-1+C1y - Co(y - yjs)2/2(yjm ~ ¥js)
X1g =1+ (C1+2C2)y + Co(y - vi6)2/2(vim - ¥js)

S(y) = 1+ Cay + Ca(y = ¥is)2/2(¥jm - js)

(B-46)

(B47)

(B-48)

(B-49)

(B-50)

(B-51)

(B-52)

(B-53)

(B-54)
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andfory > y;.,

XLg = =1+ C1¥jm - Cg(yjm - Yjs)/2+ (01 + Cz)(y - yjm) (B-55)
Xtg=1+ (Cl + 2C2)yjm + C2(yjm - yjs)/2 + (01 + Cz)(y - yjm) (B-56)
Sy)=1+ C2yjm + CZ(ij - yjs)/2 (B-57)

The transformation is given by
¢(n) =[x = XL () ]/S) - 1 (B-58)
The mapping function required at every grid point is
G(&m = == 8" (E+1) - X Lg/S(n) (B-59)

where X'| . and S’ are found by differentiating the expressions in equations (B-49) through (B-57)).

B.6 ELIMINATION OF SLOPE DISCONTINUITY AT PLANE OF SYMMETRY
Some discontinuity affects at the line of symmetry can be alleviated by making the lead and trailing edges
bend normal to the plane of symmetry. For j > 4, the coordinates of the leading and trailing edges are described
in the foregoing section. The portion of the leading edge forj = 2 toj = 4 is fitted to a quadratic of the form -
Xig = X p(0) + ay2 : (B-60)
The quantity a is determined to match the slope at j = 4. Hence,
a=C1/2y4
Thus atj = 2 or 3 we have
Xpg = XLg(0) + C1y2/2y4
We determine x, (0) so that aty = y,, X p matches the known value, X; .,. Thus
XLE(0) + C1y4/2= X gy
and we finally obtain
Xig=Xppg - Cl(y4 - y2/y4)/2 (B-61)
Similarly,

Xrg = Xrgs - (C1+2C2) (¥4 - ¥2/y4)/2 (B-62)
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We see that
S(y) =8(v4) = Co(v4 - y%/y4)/2 (B-63)

Equations (B-61) through (B-63) replace equations (B-49) through (B-51) for j = 2 and 3. For larger sweep angles,
the region should contain more than j = 2toj = 4 to adequately represent the geometry in the differencing.
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APPENDIX C
REVISED DIFFERENCE OPERATORS

C1THE §,, OPERATOR FOR A CHANGE IN TIME STEP

The.differencing in the equation for the x and y sweeps remains unchanged when the time step At is
changed. In the z sweep, the only term which is affected is the second derivative with respect to time. Let the
time step between the n-1and the nth approximation be At, and between the n and n + 1st approximation be At,.
We express the time derivative in difference form as

n+l

ag™" !+ b + ca"! = gy

and expand the equation about the nth approximation. We then determine a, b, and ¢ so that the left hand side
gives ¢, at the nth approximation. Thus we obtain

2 2
Aty At
a[¢>+ At1¢t+ _2—¢tt+ '"] +b¢ + c[¢ - At0¢t+ T¢tt + ."] = ¢tt

Equating coefficients on the right and left sides of the equation yields
a+b+c=0

2 2
+ =2
alt 1 cAt 0
Solving the last two equations simultaneously yields
a= 2/[At1(At0 + Atl)]
c= 2/[At0(At0 + Atl)]
from which we obtain
1 1
b=- 2
oy Log ]
Introducing the variable R = At/At;and E, = 1+R)/2R, E; = 1eEjAt,2]; then

B/ € = E1[¢“+1 - 2EgRe™ + R¢n'1]
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C.2 SECOND ORDER BACKWARD DIFFERENCE FOR & 4
For the first derivative with respect to x at the point x;, we write
a(ey; = ¢j.15) ~P(%i15 ~ Yigj) T ex

Expanding about the point x;, we get

2
Ax
a[(p -t Axl(px -Tl “xx + -o.]

2 2
A
- b[<p - Ax1<px +TXI oxxtr ot (Axl + sz)cpx - (_Af.];_AXZ) Oux t "‘] = oy

where Ax; = x; -X;; and Ax, = X;, - X; 5. Setting the coefficient of ¢, on the left hand side equal to unity and the
coefficient of ¢, equal to zero yields

aldx; - bAx,=1

a Ax? + b[Axf - (Bxq + Ax2)2] =0
We solve the two equations simultaneously for a and b and obtain

as= (2 Axq+ Ax2)/[Ax1(Ax1 + sz)]

b=ax,/Ax, (8xq + Axy)
Writing
Ci(¢ij = ¢i-1j) ~ d3i(@i1j - @i2j) = o
yields finally

°gi = [2(%i ~ *i.1) * Xior ~ X5.2]/[(%5 ~ Xi2) (X5 T Xi1) ]

dai = (%~ %) /[(%5 ~ %i2)(Xi-1 ~ Xi-2) ]
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APPENDIXD
SHOCK BOUNDARY CONDITIONS FOR THE ADI METHOD

Shock boundary conditions were derived by Hafez, Riszk, and Murman (ref. 37), by Williams (ref. 38), and
by Seebass, Yu, and Fung (ref. 39). The results were reported in reference 6 and extended to harmonic motion for
application to the direct solution of the difference equations. The condition that the potential be continuous
across the shock is given by

[¢]=0

where[ ]denotes the jump in the quantity across the shock. The condition of continuity of mass across the shock
from equation (A-11) of reference 7 is

2 9X ' :
TW+<]{-(7+1)>=O (DD

where < > denotes mean value of the quantity at the shock. We now expand the shock conditions about the
steady location X,, with the shock position at time t being given by X, + aX,. Then continuity of the potential
across the shock becomes

[e)= g+ aeq ] * aXy[0gy * aepy ¥+

[“00] =0 : (D-2)
[#1]* %1 [€0x] =0 D-3)
Similarly, expanding equation (D-1) yields
2a dX
1 a s ® —
e ot rk- (04D [“ox *ae1x * aX;(eoxx * a¢1xx) * ]> =0 (D4)

Equating the coefficients of each power of a equal to zero yields

<k =(v*Dey > =<u>=0 (D-5)

2%

€

-6+ K “1x * X1“’0xx> =0 (D-6)

Eliminating X, by equation (D-3) yields

2 a[#1] )
St PO D[egy]< o1y > - D) < pey > [#1]70 (D7)
Since K - (y + Do, = u, we have
2 a[e1] _ i} _
; aat [u] <‘P1x> + <ux> [(pl] 0 (D-8)

52




In implicit difference form, this becomes

eZAt [o1]* <u> [01]/2 - [l < 9y, >/2
=8 62Tt [‘P?] -<u > [¢?]/2 + [u] <¢,111x >/2} D9)

In terms of the variables on the grid, we write

Cog = [ul =141 j = ujj

COI =2/(e At)

002 = ux> (D-10)
From the equation following (A-22) of reference 7, we have

Ui T Yy, Yir2 T Ui (D11)
X~ X2 Xj+2 T Xj

Cog =

Then the equation becomes

(Coz * Cog/2)[1] = Coa < @1x >/2=1{(Coy - 002/2)[(,};] +Coz < ¢, >/ 2l ow©

We now express the jump and average values across the shock in terms of the values of ¢ at the grid points
for the point x; for which u; , ; ;>0 and u;<0. We have

[21]= @i~ @11 (D13)

—~

P A
~ 1 i+l j 1 + "1-1) -2
) = = (D14)
<1 > 7 g { X7 X X7 Xig

We let Cy, = Cya/d(x;,,-%x)and Cys = Cys/d(x;; - X; 2)- Then we get

(Co1 * Co2/2) (%35 = ¢i.15) ~ Coa(@is1j = i) ~ Cos(@i1 ~ i2;)

n

“P1[(Co1~ Coo/2)(?55 ™ “i15) * Coa(“Tr; ™ <)

+ Cos(“’?-u - “’I;-z J)] (D15)

This equation replaces the difference equation in the x sweep.
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APPENDIX E
A CONJUGATE GRADIENT ALGORITHM FOR
ASYMMETRIC INDEFINITE COMPLEX MATRICES

In this section, we present a conjugate-gradient-type algorithm for unsymmetric complex matrices. The
algorithm has an asymptotic convergence rate inversely proportional to the square root of the condition number
of the coefficient matrix and does not assume the coefficient matrix to have any special property other than
nonsingularity.

In section E.1, we shall present the principle of the classical conjugate gradient method. In section E.2, we
shall present our algorithm and related theories.

E1DESCRIPTION OF THE CONJUGATE GRADIENT METHOD
Suppose we are interested in finding the solution x of the equation
Ax=D (E-D

In the case that A is symmetric (or Hermitian in the case of complex matrices) and positive definite, the k-th step
of the classical conjugate gradient method finds an approximate solution x, for equation (E-1), so that the norm of
the residual r, is minimum in the space spanned by the vectors {Av,, Av,, ..., Av,} , where v;, v, ..., v, are
orthonormal vectors, that is, (v;, v;)) = 0, fori # j, and the lengths of the v,’s are equal to one. These orthonormal
vectors are the backbone of the conjugate gradient method, and x, is a linear combination of these v;’s.

Provided these v;’s can be computed easily, there is a whole class of algorithms which minimize the norm of
the residual in the vector space spanned by Av;, Av,, ... Av, in the k-th step. These algorithms can be considered
as variants of the classical conjugate gradient method. Among these are the conjugate residual, the modified
conjugate residual, the variational method, SYMMLQ (Conjugate gradient method with LQ factorization for
symmetric indefinite system), LSQR (Conjugate gradient method with QR factorization for least squares prob-
lems, A*A x = A*b, where A is rectangular matrix), etc. Chandra (ref. 33) gave a detailed comparison of the ones
applicable to symmetric matrices.

For the sake of completeness, we present the classical conjugate gradient algorithm:
Algorithm 1. Classical Conjugate Gradient

Step 1: Choose x,,
Computer, = b- Ax,
Set p, = 1,
ag = (r,ro)(po,Apo)
X1 = X + 2P
ry = To-3Apy

Step 2: Compute
a; = (r,r)p;,Ap)),
X, +1=x + ap;
Ty = X - aAp;
b; = (r;, 1, 1y Ty
Pir1 =Tie1 + b
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Step 3: If r; , ; is small enough, terminate the iteration; else seti = i + 1 and go to step 2.

The vectors p; are orthogonal to each other, although they are not unit vectors. The vectors v; may be constructed
by normalizing p;.

In section E.1.1, we shall discuss orthogonalization. In section E.1.2, we shall discuss solution of equation
(E-1) based on the orthonormal vectors.

E.1.1. ORTHOGONALIZATION

There are two classical orthogonalization processes for solutions of different numerical linear algebra
problems.

First, there is the Lanczos’ orthogonalization process for symmetric (or Hermitian) positive definite
matrices. This process is computationally very efficient and extremely economical because it only requires the
presence of v, and v, ; to compute v, , ;. If we let V| be the matrix whose columns are v,, v,, ..., v, then the
Lanczos’ orthogonalization process at the k-th step has performed the following decomposition:

(Vk *)AVk = Tk (E-2)
where T, is a tridiagonal matrix.

More general for asymmetric matrices is the Gram-Schmidt orthogonalization process. This procedure
does not have the computational efficiency of the Lanczos’ process. To find the v, vector, it requires presence of all
the v;’s computed before. At the k-th step, the Gram-Schmidt orthogonalization process performs the following
decomposition:

(Vk*)AVk = Rk (E'3)

where R, is an upper triangular matrix. When the dimension of A is large, we see that the Gram-Schmidt proc-
ess is computationally infeasible.

The new algorithm we present here involves finding two sets of orthonormal vectors U and V. Similar to
the Lanczos’ process, it only requires the presence of v, ; and v, and u,_; and u, to computev, ,; andu,, ;. The
k-th step of our algorithm performs the following decomposition:

E.1.2 COMPUTATION OF THE APPROXIMATE SOLUTION

Note that the second equation of Step 2 in Algorithm 1computes the (i + 1)-th approximation of the solution.
The vector p; is sometimes called the directional vector. Other approaches proposed by Paige and Saunders (ref.
40), Bunch and Kaufman (ref. 41), and Chandra (ref. 33) to extend the classical conjugate gradient method to
symmetric (Hermitian) nondefinite problems have been motivated by the following observation:
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Let A be a symmetric (Hermitian) positive definite matrix. In the k-th step of Lanczos’ orthogonalization
process, the following matrix decomposition is performed:

V, *AV, = T,

If we choose v, = ry/||r,l, then x, in equation (E-5) below is mathematically the same as the approximation
to x in the k-th iteration of the classical conjugate gradient method:

Tyyi = lirolle; (E-5.2)
and

Xk = XO + kak (E'5.b)
(e, is the vector with 1in its first entry and zeroes everywhere else.)

Of course when A is symmetric (Hermitian) but not positive definite, the above statement is no longer true;
but one can still solve equation (E-5) to obtain an approximate solution.

We have found that solving equation (E-5.a) by an LQ factorization (where L is lower triangular and Q is
orthonormal) is numerically much more stable than generating directional vectors for the approximation of x, ’s.

Thus there are two features in our new algorithm that are distinct from the classical conjugate gradient:

1. A new way of generating orthonormal vectors.
2. A tridiagonal system by an LQ factorization to obtain an approximation to the solution.

E.13. TRIDIAGONALIZATION ALGORITHM FOR UNSYMMETRIC MATRICES (USYMLQ)

As stated in section E.1.2, the k-th step, k=1,2, ... of the algorithm to be described in this section involves
the following decomposition:

U *AV, =T,

where U, and V) are matrices whose columns are orthonormal and T, is a tridiagonal matrix. We shall first
describe our process with which we generate the orthonormal vectors, the u,’s and the v, ’s:

Algorithm 2 (Tridiagonal Process)

(@) Set u, =0,
By = b,vv; = ¢

®)

(b.1) p = Au; - vjuy,

b2) q=A*y-Bv;,

®3) o, =u¥yp 1=123,...
(b.4) By = P-oyy

®.5)  YiyVier = -0y
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where b is the right hand side vector of the matrix equation we want to solve, and B; and y; are chosen so that the
vectors u; and v; will have norms equal to 1. We shall discuss the choice of ¢ later in this section. For the moment,
let us set ¢ = b. The process terminates when p; or v; equal zero.

Intherest of this section, we shall give an overall picture which relates the k-th approximate solution x,  to
the k-th step of Algorithm 2. If we substitute (b.1) and (b.2) into equations (b.4) and (b.5) respectively and let U,
and V) be nxk matrices whose columns are respectively the u;’s and the v;’s obtained from the first k steps of
algorithm 2, and if we define a tridiagonal matrix T, as

0 Yo
Bz 0z v3
To= | By
et Yk
By o

where q,, B;, and v; are defined for each i in equation (b), then the first k steps of Algorithm 2 can be written in the
following matrix equations:

AVy = U Ty + By, 18T (E-6.2)
A*Uy, = ViTL* + v 1Vie 18" (E-6.b)

where e, _is a vector of length of n with 1 at the k-th entry and zero everywhere else. Multiplying (E-6.a) by an
arbitrary k-vector, y,, whose i-th element is n;, we obtain

AV = U Toyy + Bro ey Ty

Sinceb = U,(B,e)) by definition, then if y, and x, are defined by the following equations

Ty = B (E-7.2)

X, = ViV (E-7.b)
then we shall have
Ax =b + nBy Uy

Hence x, may be taken as an approximation to x, and will solve the original system if n, B, , , is negligibly small.
The above arguments are not complete, but they provide some motivation for defining the sequence of vectors x,,
according to equations (E-7.a) and (E-7.b).
If x, is as defined in equation (E-7), then the residual r;, will be

r, = b-Ax, (E-8.a)

= Uy ,1B,e;-Siyy) (E-8.b)

57



where

Sk = Tk
Brsr€x”

If we define t, = Bye; - Uy, ;S,yi, thenry = Uy, t,, and [r, || = [t ]|, assuming U, has been computed by
exact arithmetic. Hence it is natural to solve the least square problem

min ||B,e, - Tyyy I (E-9)
Yk

which is the basis for USYMLQ. Computationally it is advantageous to solve this problem by the standard LQ -
factorization (see Paige and Saunders ref. 42).

In this section, we have given a brief discussion of the motivation behind the algorithm USYMLQ. We shall
go into greater details concerning the theoretical and computational aspect of the algorithm.

E.2 THE VECTORS OF ALGORITHM 2

In section E.2.1, we shall discuss the properties of the vectors u, and v, generated by Algorithm 2; in sec-
tion E.2.2, we shall discuss the possible choices for the initial vectors u, and v,; in section E.2.3, we shall discuss
in detail the LQ factorization. The arguments used for the proofs of the theorems in these sections are based on
basic linear algebra tools such as linear independence, minimum polynomial, etc. These sections are included

for the sake of completeness.
E.21 PROPERTIES OF THE VECTORS U, AND V,
This section describes the theory governing the vectors u, and v, generated by Algorithm 2.

We define the symbol ¢ x;, X,, ..., X, ) as the vector space spanned by the vectors x, x,, ..., X,. The following
theorem summarizes the properties of u, and v, which are generated by Algorithm 2. It is proved by induction.

Theorem 1. The following four statements are true:

Vk*Vk = I

2) 1, is a linear combination of vectors in the vector space
Uy = (b, AA*D, ..., (AA*)x1b, Ac, AA*c,...,(AA*)1Ac)
Uy, is a linear combination of vectors in the vector space
Usy o1 = (b, AA*Db, ..., (AA*)kD, Ac, AA*c, ..., (AA®)K1Ac)
Vg 1s a linear combination of vectors in the vector space
Vax
= (c,A*Ac,...,(A*A)kIc, A*b, A*Ab, ..., (A*A)1A*D )
Voi +118 @ linear combination of vectors in the vector space

V2k +1
= {c, A*Ac,...,(A*A)kc, A*b, A*Ab, ..., (A*A)-IA*b)
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3) Let A = UDV*bethe singular value decomposition of A; that is, U and V are orthonormal matrices, and D is
a positive and real diagonal matrix: D = diag(d,, ...,d,) and let

b= I hu,

i=1

=

L k7,
i=1

where the h; and the k; are scalars, ; is the i-th column of the matrix U and ¥, is the i-th column of the matrix
V.Ifb = c, then the following is true:

n n n
%h,, ..., Z d;2%-Dh;, Z dk;, ..., Z d;2k-D+ ki, )

n n n
d-zh-ui, ooy iEI diZkhiui, iEl dikiui, ooy iEI di2(k-1)+ lkiui )

Vo = ¢ £ k9, ZdPkg, .., £ d2evkg, T dhg,..., I deevtihy)

. H
1_lll

17

n n n n n
V2k+1 = ( 151 kIVl, igldi2kivi,..., 1§1d12kklvl’ 1El(il'l‘/ ey igldiz(k.l)+lhivi)

Also if x, is generated by (E-7.a) and (E-7.b), then the k-th residual r, = b- Ax, isin U, , ;. We use the
symbols u, and v (without the hats) to denote the orthonormal vectors generated by Algorithm 2, and u, and v,
(with the hats) to denote the singular vectors of the matrix A.

4) If x, is computed by equation (E-7), and the residual vector r, is as defined by equation (E-8), then r, #0
impliesu, ,,#0and v, ,,#0.

Note that parts1) and 2) of the Theorem 1described the “‘Lanczos-like” characteristics of Algorithm 2. Part
3) of Theorem 1 implies that the asymptotic convergence rate of the conjugate-gradient-type method based on
Algorithm 2 is dependent on the square root of the condition number of A rather than the condition number
itself, as in the case of solving the normal equation A*Ax = A*b by the classical conjugate gradient method. Part
4) takes care of the case when Algorithm 2 terminates, that is, when u,_or v, are zero vectors; this part of the
theorem asserts that in the case when the algorithm terminates, we have arrived at the solution.

We called the procedure of computing the u,’s and the v, ’s by Algorithm 2 and the x, s by equations (E-7.a)
and (E-7.b) USYMLQ.

Proof of Theorem 1

1) We prove the following statements by induction:

(u;,u) = 0 fori<j (E-10.a)
(v,v) = 0 fori<j (E-10.b)
(Aviu) =0 fori<j+1 (E-10.0)
(A*ui,vj) =0 fori<j-1 (E-10.d)

When i =1, the statement is true by construction. Suppose the statement is true for i = k; we show that it is true
fori=k +1. By Algorithm 2,

Pr 1l +1 = AV - Vil g - 04y
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Forming inner products with u; on both side of this equation, we obtain
By 141 W) = (Avy, u)- Yk(uk.puj) - ak(uk’uj)

When j<k-1, by the induction hypothesis regarding (E-10.a) and (E-10.c), we see that (u, , »Y) = 0. Whenj =k, the
definition of o, and the induction hypothesis regarding (E-10.a), (uy , ,,u;) = 0. As for j = k-1, we note that the last
line of part (b) of Algorithm 2 yields:

Afuyy = NV + BrVies + 00tV
which again implies:
VieA*™ ) = vV, + Br(vi, Vi) + o (v, vy ).
By the induction hypothesils regarding (E-10.b), the equality we just derived yields:
ViuA*u, ) = 7. Vi, v) = vy,
The properties of the inner product imply (v,,A*u, ;) = (Av,,uy ;). Thus (u, , ,,u;) = 0 when j =k-1. Therefore we
have proved (E-10.a). The proof of (E-10.b) is similar and therefore will not be repeated here. By construction

(u,,uy) = 1and(v,,v,) = 1for all k. Therefore the proof of part 1) of Theorem 1 will be completed if we prove (E-10.c)
and (E-10.d) above.

Note that Algorithm 2 implies -

AVl = Breraticre + Vs W + O Wy,
S0

(Avk + 1ruj) = Bk + 2(uk + 2’uj) + Yk + 1(uk’uj) + Oy 4 l(uk + 1’uj)

which equals zero when j<k. The proof of (E-10.d) is similar and therefore is omitted here. Thus we have com-
pleted the proof of part 1) of Theorem 1.

2) The proof of part 2) of Theorem 1 is also by induction. When k = 0, the statement in 2) is true by construction.
Now we assume the same statement is true for k and prove that it is true for k + 1. Note that for any non-negative
integer j,

Uj
Vi

A*V,

cu,
E V+1
V+1
AVJ U+1

Thus By , 14y 41 = Avy - gy -y, 0y € Uy ;. Similarly, we can establish the proof regarding vy, | ;.
3) The singular decomposition A = UDV* implies that
AV = DUand A*U = DV

which is equivalent to
AY; = d;4;and A*j; = di¥;forj=1,2..
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Since

and
A*b = j§1th*ﬁj = j}=21 hid;¥;
Then
* 2 R n 2%
A*Ab = j§1 kjde 4; = j§1kid3' V;
and
AA*p = j§1 hdAd¥; = j£‘1 h,d2q;
Also
(A*A) b = jglkjdfkw‘/j
and
Ak = & hdowig
Also note that
(A*A)A*b = A¥(AA*)kDb = j-_§-1 hidZkA*; = jgl hidj2k+1y,
and

(AA*)xAb = A(A*A)Db = j§1 hjd 2kAV; = jgl h;d 2k +1q;
Substituting all these equalities into part 2) of Theorem 1 will yield part 3).
4) To prove part 4), we are going to show that if either u, , , or v, , , the (k + 1)-th orthonormal vector generated by
Algorithm 2 is zero; thenr, = 0. Let U, and V, be nxk matrices whose columns are respectively the u,’s and the
v;’s in the first k steps of Algorithm 2, and T, is the tridiagonal matrix which was defined above equation (E-6.a)
and (E-6.b). If we multiply both sides of equation (E-6.a) on the right by the matrix U,, then

Uk*AVk = Tk

Let r) be defined in equation (E-8); then

Uk*l’k = Uk*(b - A'Xk)'
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Since x,, is as defined by equation (E-7) and b = B,U, e, by Algorithm 2, the above equality can be rewritten as

U*ry, = U *(Uy Bye, - AVyyy)
= Bye; - U *AVyyy
= Bre; - Ty
which is equal to 0 by construction. Thus (u;,r,) = 0 for j<k. However, equation (E-8) implies that

Uy ar®ry = Uy ¥ Uy *Brey - Syyid) = Biey - Sy = by

If u,,, = 0, then t, = 0. However as we have pointed out in a remark following equation (E-7),
el = [ty ]l- Therefore t, = Oimpliesr, = 0.

We shall now consider the case v, , ; = 0.If we define x, and y,. by

Ty = Biey (E1l.a)
%, = Uy, (E-1Lb)

then £, will be an approximation to the solution of A*% = b. Using an argument similar to the one used for the
caseu, ,,; = 0, wecanshowthatifv, ,, = 0,thenf, = b-A*%, = 0. However, we are not interested in f,, and we

really want to show thatr, = 0.

~ Note that f;, = 0 means the solution % for A*% = b isin Uy, and r, = 0 means that the solution x for
Ax = bisin V. We shall show that % in U, implies x in V. Let us first write these solution vectors in terms of
the singular vectors and singular values of A. Recall that

where h is a vector whose entries are hy, hy, ..., and k is a vector whose entries are k;, k,, .... Note that
x = Alb = VD10*b = VD*Uh = VD' = igldi-lhi\‘ri.
Similarly,
x = A% = ¥ dlkg,
For simplicity, let us assume k even and replace k by 2k. % eU,, means

d 1 -lkiﬁi

X = i

I ™M=

i=1

Mz

k-1 o kol s
i 1( j=20mjdi Jhi + jZ':onjdi I ki)ui

Since the ;s are linearly independent, this means thatfori=1,2, ...,

ik = (F'mdzh, + T ndae
d; i=(j§'01njdi"hi+ j:zonjdiJ k,)
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Multiply both sides of the above equation by d;, and move the left hand side to the right hand side; we obtain
k-1 241 k-1 2
0 =(j§0mjdiJ+ hi + _)505(11 Jki)
where n, = -1, andgj =n,, forj=12,...
Multiply both the above equations on the right by d,3; and add all the equations together:
n k-1 2ih k-1 25+ 1 )i
0 = . E]( jEOdel J i + J:ZO I_lel J i)l—li

The vector on the right hand side of the above equation isin U, , ;. This equality implies that the basis vectors of
U,y ,, as defined in part 3) of Theorem 1 are linear dependent. Therefore, we can express the first basic vector

n
Z h;§; as a linear combination of the other basis vectors:

n n k-1 . k-1 . N
T hg= (X md;%h; + I nd2+1k)
i=1 i=1 j=1 j=0
The linear independence of the vectors u; implies that foreachi=1,2, ...,
k-1 ) kst
Multiply both sides of the equation by d; v, and sum each side to obtain

n

n _ k-1 L
igldihlvihi = E’l( j§1midizj+lhi + jgl n;d; %k;)¥;

]

Note that the left hand side is the solution vector for Ax = b, and the right hand side is a vector in V. The
conjugate gradient algorithm can be considered as choosing x,, in V,, so that the residual norm is the least.
Therefore, we conclude that r,, = O when ¥y, ,, = 0.

The proof for k odd is similar and therefore is omitted here.

The proof of part 4) of Theorem 1yields the following corollary which is useful in defining a stopping crite-
ria for our algorithm: ‘

Corollary: [r, || = ||S,y, - Ble||, where r, and S, are as defined in equation (E-8).

E.2.2 CHOICE OF THE INITIAL VECTORS U, AND V,

Choosing u, such that B;u; = b is reasonable. Such a choice is made in the standard CG-type algorithms
like SYMMLQ and LSQR. However, we know of no works in the literature to provide us with guidelines or
motivation regarding the choice of v;. The proof of part 4) of Theorem 1 shows that a solution procedure for the
equation A*x = cis “implicitly” embedded in Algorithm 2, combined with equations (E-7.a) and (E-7.b), and this
implicit procedure occurs simultaneously with our explicit procedure for Ax =b. The proof of part 4) of the the-
orem also implies that we want to choose ¢ such that we do not solve A*x =b before we solve Ax =b. This is why
we cannot choose ¢ aA*b, because the solution vector, which happens, for A*x =c, to be b, liesin U}, A*x =c is
solved (implicitly) in 1 step, Algorithm 2 terminates and we are not even close to the solution for Ax =b. In the
proof of part 4) of Theorem 1, we also showed that if we choose ¢=b, then A*x = ¢ cannot be solved (implicitly)
before Ax =b is solved. In other words the choice of ¢ =b guarantees that our algorithm will arrive at the solu-
tion. However, this is not the optimal choice. The reason for this is given in the following theorem.
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Theorem 2. If the matrix A has m distinct singular values, then the number of iterations USYMLQ takes to
converge is bounded by min(2*m,n), while the number of iterations required by the classical CG applied to the
normal equation is bounded by min(m,n).

Proof of Theorem 2
From part 3) of Theorem 1, we see that
V2m = (c, A*Ac,...,(A*¥A)1c, A*b, A*Ab, ..., (A*A)m1A*Db)
= ¢ E k¥, 42K, ..., T A2k,
£ dhg, ... )§1¢2‘m-1’+1hivki>

which is obtained after 2m steps, contains the solution vector, As for applying the classical CG to the normal
equations, we see that the solution vector is in

n n n
= i)_:,ll«:ivi, igldi2kivi’-“’ i)_:ldiZ(m'DkiVi>

Basis vectors for V,_ are generated within k steps of the classical CG applied to the normal equation. Thus the
theorem is proved.

We note that the solution vector is contained in the vector space:
Wi =< Ek9, Edko, Ldzkg,.., Ldmokg, ¥ dmke)
Noteb = 21 h,u;, for some h;’s. If we could choose ¢ such that ¢ = Z hlvl, then V, = W,, and the number of
iterations requlred by USYMLQ will be bounded by min(m,n). ‘With an argument similar to the proof used for
part 4) of theorem 4, we can show that we will not solve A*x = ¢ before we solve Ax =b. However, in practice, we
do not want to compute the singular values and singular vectors of the matrix A. Although we can express ¢ in

terms of A, A*, and b, namely, ¢ = A-{AA *)*b, we know of no computationally efficient way of computing this
ideal c.

The above discussion regarding this ideal ¢ proves the following theorem:
Theorem 3
Ifc = AAA *)%b, and if u, and v, are as defined in Algorithm 2, and x,. is as defined in equations (E-7.a) and

(E-7.b), then ry #0 implies u, #0, and v, #0; also the number of iterations for this algorithm to converge is
bounded by min(m, n) where m is the number of distinct singular values of A, and n is the order of the matrix A.
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E.2.3 THE LQ FACTORIZATION

In this section, we describe the solution of equations (E-7.a) and (E-7.b) in detail. As we remarked before, it
is computationally advantageous to solve this system by the standard LQ factorization on T).. The LQ factoriza-
tion on T, takes the form:

B Py 7]
81y
Ty €18903
S5,.Q, = Q=L = Ey05 - (E-12)
L &3 -

Px1
By.1Pk

L ‘Eak-lak N

where Q. * = Q,.Q3 5 ... Q) 1.1 is a product of plane rotation designed to eliminate the superdiagonal elements
Y1 Yo - - - - Therefore, the left hand side of equation (E-7.a) can be written as

Tyy, = LyQy = By

We note that y, has no elements in common with y, ;. We are actually not interested in y, , but rather it is x,_as
defined in equation (E-7.b) that we are after. We want to organize the computation of x, so that only the most
recent iterates need to be saved. The scheme we discuss below avoids the explicit computation of y,. We let z, =
QYo Wy = Vi Q. Thus x, = W, z,. We will show that z, and w,_can be computed by simple recursions.

If we let z,. = Q,, ¥, then the first (k-2) entries of z, are the same as those of Zi1- That is, if we write
zy = (23,25, ..., 21, 2,)7, then

Ziq = (Bx3 g - Oy 2 o) Prcy (E-13.a)
Zk = (-E)k-2 Zk-2 - 8k-l zk-l)/ pk (E-13.b)

Note z, will be replaced by z, in the next iteration.

Now consider the plane rotation Q, . ;. Qy .., operates on the (k-1)-th and k-th row of T}, to eliminate y, . This
gives the following simple recursion:

Pr1 Vi Cic Sk Pia 0
Be1 0y scC | = | Oka1Px (E-14)
0 By 8k1 8k

where p; = o, and 8, = B,, and the scalar ¢, and s, are the nontrivial elements of Q, ; ;. The quantity p, and &,
are to be replaced by p, and 8, in the next iteration. Consider the nxk matrix

Wk = Vka*
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Note that the first (k-2) columns of W, are the same as those of W, ;. That is, if we write
Wk = (Wl, W2, ey wk-l’ Wk)
where the w;’s are the columns of W, then

wk-l = Ck* Wk-l + Ska (E-15.a)

Wi = SpWiq - GV (E15.b)

Note that W, will be replaced by w,_in the next iteration. Therefore, if we first substitute z, = Q,y,, then
W, = V,Q, into equation (E-7.b), we get

X, = Vi = VilQu ¥z, = Wiz,
Ifweletx, = 0,
X = X + WiaZin, (E-16)
then
Xy = Xy + W ‘ (E17)
Note that z,_;, w, 5, and &, together with z,, are computed in the k-th iteration. Also note that z, is to be
replaced in the next iteration. We could have computed x, according to equation (E-17), but it is not necessary to

do so until the last iteration. From the above discussion, we see that only the last two iterates need to be saved.

Now we consider the stopping criteria of our algorithm. Two stopping criteria are implied by part 4) of
Theorem 1 as well as Corollary 1:

a) If B, or v, are small enough, r; will be small enough.

b) However it is possible for r, to be small when the norms of either u, or v, are not small. Corollary 1 permits us
to compute the norm of the k-th residual r, explicitly:

[l = lsy - Bieall = Isyzy s - €4 Zi "By 44 (E-18)

In summary, at the k-th iterations, the following quantities are computed:

1) The vectors u, and v, according to Algorithm 2

i1) ¢, and s,, which are the nontrivial elements of the plane rotation Q,  , defined in equations (E-14) and
(E-12)

iii) The scalars p,_;, 8y 1, &x.1» Px and &y, which are the nonzeroes of the last two columns of L, defined in
equation (E-12)

(@iv) 2, as defined in equation (E-13)

) W)..; as defined in equation (E-15)

(vi) X)..1 as defined in equation (E-16)

(vii) [lr, ]l according to equation (E-18).
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Note that if the algorithm terminates, we need to compute x,, according to equation (E-17) before returning to the

calling program.

Algorithm 3 USYMLQ

1

(Initialize.)

Bu; = b, vy = u, w; = v, x5 = 0,7, = B, p; = 0,8, = B,

Fori =1,2,...,repeat steps 3 to 7.

(Continue the tridiagonalization.)

p = Au; - vy,
q = A*yu;- By,
o; = u*p

Biv1Uis1 = P-oyy
Yiv1Vis1 = 4-O4V;

(Construct and apply the plane rotation.)
diagonal element of L; in row G-1): p,; = (;,2 + v;2V/
planerotation: ¢; = p,,/p;;

Si = Yi/Pia
subdiagonal element of L; inrow i: §; = §;,¢; + ¥;5;
diagonal element of L inrow i: §; = §,s; - v;c;

(Update z, x, and w.)

2y, = (€;.3%;5 - 8,22, 0)/ Pi4
Z; = (8,925~ 6,471/ p;

- - fem
X1 = Xg + 2i,(¢*W 5 + 5;V)

Wit = WisS;i - ViG
(Test for convergence.)
If one of the following holds

() P, issmall enough
(ii) v, is small enough

thel’l Wl = Wi_lsl - VlSl

EXIT

else gotostep 3.
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- E3NUMERICAL EXPERIMENTS

Our new algorithm, USYMLQ (UnSYMmetric LQ factorization) looks very much like Paige and Saunders’
LSQR (Least Square QR factorization) (see ref. 40). The theoretical results in sections E.1 and E.2 show that they
are indeed different algorithms. In this session, we present numerical experiments which demonstrate that they
have different convergence properties.

E.31 GENERATION OF PROBLEMS

We generated three test problems to compare the performance of USYMLQ with LSQR. The test problems
have coefficient matrices of the form:

A =PDQ

where P and Q are Householder transformations and D is a complex diagonal matrix. Since P and Q are
orthonormal matrices, the condition number of A, say, K, is defined as follows:

K=d_./d,

max in

whered,,,, and d,,,;,, are respectively the largest and smallest absolute values of the diagonal entries of D. More-
over, the singular values of the matrix A are just the absolute values of the diagonal entries of D.

We set the i-th entry of the true solution, x, for our test problems to be (n-i) where n is the order of the matrix.
The right hand sides, b, are obtained by multiplying the true solution with the coefficient matrix: b = Ax.

E.3.2 CONCLUSION FROM THE NUMERICAL EXPERIMENTS

The numerical results of our experiment are illustrated by the graphs in figures 58, 59, and 60. The x-axis
of the figures is the iteration number; the y-axis is the residual norms. The solid lines represent the convergence
history of USYMLQ, and the dashed line represents the convergence history of LSQR.
N stands for the order of test matrix, K is the condition number, and S is the number of distinct singular values.

Test problem 1 illustrates that USYMLQ can handle an ill-conditioned problem with distinct
singular values quite satisfactorily whilst LSQR seems to have trouble. The result of test problem
2 is predicted by Theorem 2; when there are multiple singular values, LSQR converges better. Test problem 3

illustrates the performance of the algorithms for large, well-conditioned matrices. In this case, the convergence
rates approach the asymptotic convergence rates.

E.4 THE INCOMPLETE FACTORIZATION

There are many variants of the incomplete factorization of a matrix. The one that we have been using is a
product of a unit lower and an upper triangular matrix: M = LU, and M satisfies the following properties:

L Ifa; ; # O,thenm, ; = a; ;.

68




2. L has the same sparsity structure as the lower triangular matrix of A, and U has the same sparsity structure
as the upper triangular matrix of A,

where A is the matrix obtained from the finite difference equation of the small disturbance transonic flow poten-

tial equation, without the wake terms. In other words, in the two-dimensional case, A is a 5-diagonal matrix. We

obtain L and U by starting with the regular Gaussian elimination, and ignoring all the “fill-ins.”

As an example in the two-dimensional case, when IMAX = 5and JMAX = 4, we may write M = LU as in figure
61 with the coefficients defined by Algorithm 4 below:

If we write A = (a, ), then Algorithm 4 describes L and U for the harmonically oscillating flat plate problems:
Algorithm 4 (Incomplete LU factorization)

1= a1
Fori = 12,....(IMAX-2)*(JMAX-2)
W = 8549
qi = 34+ IMAX-2
Fori =2,3,...,JMAX-2
], = a;;,/d;;
d; = a;;-1*u;,
Fori = JMAX-1, JMAX,...(IMAX-2)*(JMAX-2)
I, = a;;,/d;,

3
Pi = 3 0MAX-2/d;1
d; = a;;-Lu;; - pigi gmaxe

ThenR = (r;)) = A — M has one subdiagonal and one superdiagonal of nonzeroes, that is, R is of the form shown
in figure 62.

Thus if A is the matrix of the finite difference equation of the small disturbance transonic flow potential equa-
tion, then

A-M=R+W
where W is a matrix with eight nonzero columns contributed by the wake terms.

We apply the conjugate gradient method to an equation of the form:

I+ MR + W) )x = M
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Figure 48.—Comparison of OPTRAD3 With RHOIV, Pressure Distributions for a 45-deg Swept,

Untapered Wing, M=0.9, k=0.13, n=0.51

0.6

1.0

O OPTRAD3

0O RHOlV

O OPTRAD3
O RHOIV




30

26

22

AC
real 18

O OPTRAD3
14 O RHOIV

10\

0.6 /;fa%\s\i:\w%
0.4 ﬂr | “ ’Eg%
. 0.2 I \,W%n

imaginary 0 4

o OPTRAD3
O RHOIV

-0.6
-1.0 -0.6 -0.2 0.2 0.6 1.0
x-axis

Figure 49.—Comparison of OPTRAD3 With RHOIV, Pressure Distributions for a 45-deg Swept,
Untapered Wing, M=0.9, k=0.13,n=0.93
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Figure 50.—Comparison of OPTRAD3 With RHOIV, Pressure Distributions for a 45-deg Swept,
Untapered Wing, M= 0.9, k= 0.5, Root Chord
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Figure 51.—Comparison of OPTRAD3 With RHOIV, Pressure Distributions for a 45-deg Swept,
Untapered Wing, M=0.9, k=0.5, n=0.51
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Figure 55.—Sparsity Structure of Incomplete LU Factorization
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Figure 56.—Near and Far Field Boundaries for the Sparse Capacitance Matrix Method for
Two-Dimensional Flow
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Figure 62.—Remainder of Incomplete LU Factorization
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