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LOSUMMARY

A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is
investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and

linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the
unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by
assuming harmonic motion.

The work of this report is a direct extension of earlier studies and includes correlation with experimental
results for two rectangular wings and investigations of possible solution techniques for three-dimensional wings
of more general planform.

The main results of the study are as follows:

1. An alternating direction implicit (ADI) procedure is investigated and a pilot program is developed for both
two- and three-dimensional wings. This program provides a relatively efficient relaxation solution without
previously encountered solution instability problems.

2. Pressure distributions for two rectangular wings are calculated and the results correlated with experimental
data.

3. Conjugate gradient techniques are developed for the asymmetric, indefinite problem. The conjugate gradient
procedure is evaluated for applications to the unsteady transonic problem. Several preconditioning methods
are investigated.

4. Difference equations for the alternating direction procedure are derived using a coordinate transformation

for swept and tapered wing planforms. For a coordinate transformation which is continuous up to the second
derivative, the ADI method converged for sweep angles up to 45 deg. The pressure distribution for the swept,
untapered flat plate is correlated with the kernel function method.

The results for the conjugate gradient method are preliminary and further testing ofthe method is contem-
plated. Of the techniques studied, the most efficient procedure for the analysis of three-dimensional wings on
computers of limited memory (i.e., on the order of one million words or less) appears to be the ADI method.



2.0 INTRODUCTION

The development ofa capability for calculating unsteady transonic airforces for use in flutter analysis con-
tinues to be of interest. The considerable effort on this subject falls generally into two categories; (1)finite dif-
ference solutions of the transonic small perturbation equation for the velocity potential and (2) a modified strip
theory procedure in which the subsonic coefficients are corrected empirically for transonic flow characteristics.
In the first category, there are two main approaches; the first consists of a time integration of the nonlinear
differential equations for the unsteady velocity potential, and the second involves separating the velocity poten-
tial into steady and harmonically varying unsteady parts. The latter is the approach we have used, and its for-
mulation results in the usual nonlinear differential equation for the steady velocity potential and a linear equa-
tion for the unsteady velocity potential, with spatially varying coefficients which are functions of the steady
velocity potential. Developments following this last approach have been documented in a series of NASA CRs
(refs. 1through 7). Results have shown that the two-dimensional, typical section problem can be handled by this
harmonic approach relatively efficiently and accurately. However, the direct numerical solution technique
which is successful for two-dimensions appears to be expensive when used on the full three-dimensional
problem.

The purpose of the work discussed in this report is to explore the feasibility of solving the three-dimen-
sional problem. This was accomplished by investigating several different procedures. The first is a finite dif-
ference formulation which results in a set of equations to be solved by ADI relaxation techniques. Then conju-
gate gradient techniques were investigated. Finally, the out-of-core direct solution module was rewritten from
two dimensions to three dimensions and transferred from the CYBER to the CRAY.

The ADI method was derived by expressing the time-dependent differential equation for small perturba-
tion transonic flow in difference equations using the alternating direction implicit (ADI) technique and then
making the assumption of harmonic motion. The resulting ADI procedure does not have the frequency limita-
tion on convergence, as do the standard block relaxation techniques. The ADI method was first tried on the two-

dimensional problem. Correlations of examples for airfoils ofvanishing thickness andfor finite thickness airfoils
are presented in section 5 with some discussion of convergence rates. The method was also extended to the rec-
tangular wing for which the equations are derived in appendix A. Results for configurations of vanishing thick-
ness are correlated with results from the integral equation method which is described in section 6 ofreference 19.
Also, results for rectangular wings with a 5%-thick circular arc airfoil and with a 12%-thick supercritical airfoil
are correlated with experimental measurements. Problems in convergence were encountered when the method
was applied to swept wings using a coordinate transformation aligning the streamwise variable with the lead-
ing and trailing edges ofthe wing. This was alleviated by using a swept wing coordinate transformation having
continuous second derivatives across boundaries of mapping regions. Solutions for the swept untapered wing
were obtained for sweep angles up to 45 deg. and correlated with the integral equation method of references 8
and 9. The solution for a 50 deg. swept untapered wing failed to converge.

The classical conjugate gradient method is for solving systems of linear equations ofthe form Ax =b with
coefficient matrices which are symmetric and positive definite. This procedure proved to be efficient for large,
sparse, well conditioned systems. Work for this report has resulted in an algorithm for system matrices which
need only to be nonsingular. Before applying the conjugate gradient algorithm, the coefficient matrix for the
transonic problem must be preconditioned in order to speed convergence. Three methods of preconditioning were
tried and are discussed in section 7. The most effective procedure is derived from the partial LU decomposition of
the coefficient matrix. The derivation of the complete algorithm is presented in appendix E.
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The pilot program for the out-of-core direct solution of two-dimensional airfoils was extended to rec-
tangular three-dimensional wings. This pilot program was also converted from the CYBER to the CRAY com-
puter to take advantage of the significantly larger core storage. The resulting test runs were expensive, but the
cost was dominated by charges for input/output operations. The availability of machines with even larger core
storage capability, and the characteristic that a large number of mode shapes may be handled for a minimal
additional cost over that for one mode, warrant further work on the direct solution.



3.0 ABBREVIATIONS AND SYMBOLS

a Amplitude of wing oscillations

b Root semichord
~

Cp Pressure coefficient, (p-p0)/(1/2 PoUo 2) where p is the local pressure, Po the freestream static pressure, and
Pothe freestream air density

A Matrix of coefficients, also aspect ratio (Section 6)

f Frequency in Hertz

fo Undisturbed wing or airfoil shape

fl Unsteady contribution to wing or airfoil shape

ij
I,J x,y subscripts and indices for points in the mesh

i v!i-

I Identity matrix

k Reduced frequency based on semichord, 2_ fb/U; same as co.

K Transonic parameter, (1-M2)/(M2_)

le Leading edge

M Freestream Mach number

n (nx, ny, nt), unit normal vector to shock

q c02/a- i0_(7- lkooxx

t Time in units ofb/U

te Trailing edge

u K-(y+l)_ox

U,Uo,V Freestream velocity

x Freestream coordinate. Vector of unknowns in matrix equations.

xo,Yo Physical coordinates, made dimensionless with the root semichord

4



x,y Scaled coordinates (Xo,_yo)for the two-dimensional problem

Xo Steady chordwise shock location

X1 Complex amplitude of shock oscillation

Xm Magnitude of X1

(_ Angle of attack

_1 ---- ei°)At

_2 ---- _Ux_

7 Ratio of specific heats for air

ACp Jump in pressure coefficient across airfoil or wake

At Time step in ADI procedure

Aq)1 Jump in _1at plane of wing or vortex wake

A(Plte Jump in (Plat wing trailing edge

6 Thickness ratio; also finite difference operator

a (6/M)2/3

_1 °)M/(1-M2)

Scale factor ofyo, _ = 5v3 M2/3

Fraction of semichord

_,q,_ Swept wing coordinates

¢ Unsteady time dependent perturbation potential

_, _0 Complete, scaled perturbation velocity potential; also used for the unsteady potential in finite difference
equations with subscripts

(Po,_0 Steady scaled perturbation velocity potential

_1, _1 Unsteady scaled perturbation velocity potential

o Reduced frequency in radians; same as k



Notation

[ ] Denotes jump in quantity across shock

< > Denotes mean value of quantity at shock

A Denotes jump in quantity across airfoil except for At



4.0 FORMULATION AND SOLUTION

Since the mathematical derivation of the method for the solution of the unsteady velocity potential for the
flow about a harmonically oscillating wing is presented in reference 1, the discussion here will be limited to a

brief outline ofthe procedure for two dimensions. The complete nonlinear differential equation was simplified by
assuming the flow to be a small perturbation from a uniform stream near the speed of sound. The resulting
equation for unsteady flow is

[K - (-/- 1) _t - ('/+ 1) _x] _xx + _yy - (2_xt + _tt)/_ =0 (4.1)

where K = (1-M2)/ (M2a),M is the freestream Mach number of velocity Uo in the x-direction, x and y are made

dimensionless to the semichord b ofthe airfoil and the time t to the ratio b/Uo.With the airfoil shape as a function
of time defined by the relation

Y0 =6f(x,t)
the linearized boundary condition becomes

_y =fx (x,t) + ft (x,t) (4.2)

The quantity 5 is associated with properties of the airfoil (such as maximum thickness ratio, camber, or
maximum angle of attack) and is assumed to be small. The coordinate y is scaled to the dimensionless physical
coordinate Yoaccording to

y =61/3 M2/3y 0
and 8is given in terms of 5 by

=(5/M)2/3
The pressure coefficient is found from the relation

Cp : - 2e (_x + _t)

The preceding differential equation is simplified by assuming harmonic motion and by assuming the
velocity potential to be separable into a steady-state potential and a potential representing the unsteady effects.
We write for a perturbation velocity potential

=_0 (x,y) + _1 (x,y) ei°Jt (4.3)

and for the body shape

Y0 =tif (x,t) =6 [f0 (x) + fl (x) ei°Jt]

Since the steady-state terms must satisfy the boundary conditions and the differential equation in the
absence of oscillations, we obtain

[K - (_,+ 1) _0x] _0xx + _0yy =0 (4.4)

with

CP0y= f0 (x), y =0, - 1 _< x _< 1 (4.5)



On the assumption that the oscillations are small and products of (1)1may be neglected, equations (4.1)and
(4.2) with the aid of equations (4.4) and (4.5) yield

{[K - (7 + 1) _0x ] ¢lx}X + _lyy - (2im/_) _1 x + q€1 = 0 (4.6)

where

q = oJ2/¢ - ioJ (_/- 1) _0xx

subject to the wing boundary conditions

_ly = flx + it°fl (x), y = 0, - 1 _<x _<1 (4.7)

The boundary condition that the pressure be continuous across the wake from the trailing edge was found
in terms of the jump in potential A(p1to be

A_p1 =AcPltee-i_ (x-xte) (4.8)

where A(l)lte is the jump in the potential at x =xtejust downstream of the trailing edge and is determined to
satisfy the Kutta condition that the jump in pressure vanish at the trailing edge. The quantity Aq)1is also used in

the difference formulation for the derivative Olyyto satisfy continuity of normal flow across the trailing edge
wake.

For the set of difference equationsto be determinate, the boundary conditions on the outer edges of the
mesh must be specified. In the original unsteady formulation, these boundary conditions were derived from
asymptotic integral relations in a manner parallel to that used by Klunker (ref. 10)for steady flow.A later for-
mulation (ref. 3) applies an outgoing plane wave boundary condition to the outer edges ofthe mesh. This bound-
ary condition is numerically simpler to apply and is equivalent to the first order nonreflecting boundary condi-
tions derived by Engquist and Majda (ref. 11).

A computer program for solving the steady state transonic flow about lifting airfoils based on equations
(4.4)and (4 6)was developed by Cole, Murman, and Krupp (refs. 12and 13).Steady-state solutions required for the
coefficients of equation (4.6) were obtained by using the latest version of this program, TSFOIL (reference 14),
and also by using the steady-state solutions from the time dependent method of Rizzetta and Chin (ref.15)called
EXTRAN2. An additional improvement on locating the shock is also available both in TSFOIL and EXTRAN2.
For airfoils at high Mach numbers and angles of attack, TSFOIL and EXTRAN2 predict shock positions consid-
erably aft of experimental measurements. To overcome this difficulty, Jou and Murman (ref. 16) developed a
phenomenological model for the displacement thickness effects of shock wave boundary layer interactions. A
wedge (or ramp) is introduced behind the shock to simulate the thickening ofthe boundary layer. This procedure
was not needed for the results reported here, however. For three dimensions, we usedXTRAN3S, the time
dependent method of Borland, Rizzetta, and Yoshihara in reference 17, to compute the required steady state
potential.

The similarity ofthe unsteady differential equation to the steady state equation suggests that the method
ofCole, Murman, and Krupp should be an effective way to solve equation (4.6)for the unsteady potential (Pl.Note
that equation (4.6) is of mixed type, being elliptic or hyperbolic whenever equation (4.4) is elliptic or hyperbolic.
Central differencing was used at all points for the y derivative and all subsonic or elliptic points for the x deriva-
tives. Backward (or upstream) differences were used for the x derivatives at all hyperbolic points. The preferred

8



numerical approach to solving the resulting large-order set of difference equations is a relaxation procedure,
which permits the calculation to be made as a sequence of relatively small problems. However, as discussed in
preceding NASA reports by the authors (refs. 3 and 4), a significant problem of solution convergence with the
relaxation procedure was encountered that severely limits the range ofMach number and reduced frequency for
which solutions may be obtained. Accordingly, an out-of-core solver (ref. 18)was developed to solve the complete
set of difference equations simultaneously, which for two-dimensional flow is relatively efficient.

The size of practical three-dimensional problems is such that the out-of-core direct solver would appear to
be very expensive. This and other solution procedures are under investigation. First, conjugate gradient tech-
niques have been examined as a more efficient means for obtaining a direct solution. Since the matrix ofcoeffi-
cients is neither symmetric, nor always positive definite, nor well conditioned, special procedures must be used
in applying the conjugate gradient technique. Discussion of the algorithms tried during the current work is
presented in section 7. Second, a relaxation-type method based on the time-dependent ADI method to obtain
frequency domain solutions was derived which does not have the frequency limitations of classical block relaxa-
tion. If, in place of substituting equation (4.3) into equation (4.1),we use instead

_(x,y,t) =_0 (x,y) + _1 (x,y,t)

we obtain the following linear differential equation for (Pl:

{[K - (_/+ 1)_0x] _0x} x + _lyy - (2_lxt + _ltt)/_ =0.

The ADI method ofBorland, Rizzetta, and Yoshihara (ref.17)was applied to the equation, and then the harmonic
assumption for the nth approximation

n n e-ino_At1 (x,y,t) =_ 1 (x,y)

was substituted into the difference equations. Here At is the time step between successive approximations, and
has no physical significance to the problem. This yields a set ofequations which has the same form as alternating

row and column relaxation but for which the solution is convergent for all frequencies. The finite difference
procedure was derived in reference 7 for two-dimensional flow.The equations for three-dimensional flow are also
derived in Appendix A for the rectangular wing and in Appendix B for the swept and/or tapered wings.

9



5.0 ADI RELAXATION SOLUTIONS FOR AIRFOILS

In NASA CR 3537 (ref. 7),we showed that the direct solution of the difference equations for the harmonic
motion of an airfoil in transonic small perturbation flow yields aerodynamic forces that take into account the
effect of moving shock waves, at least in a first order sense. A program for two-dimensional flow based on the
direct solution is reliable, efficient, and yields results which are in good agreement with experimental measure-

ments (e.g., see ref. 7).Also, typical section flutter boundaries calculated with airforces from this program exhibit
the characteristic 'transonic bucket.' The direct solution is also applicable to three-dimensional flow, but here
the computer requirements are large and costly. Accordingly, a method of relaxation was developed in which
simple harmonic motion was assumed after the finite difference formulation rather than before (see section 4.0).
The resulting set of difference equations is solved by implicit alternating direction techniques, and hence the
procedure has been entitled the "ADI" method. This ADI method does not have the convergence problem of the
conventional block relaxation procedures. The differential equations were derived in NASA CR 3537 and pre-
liminary two-dimensional examples were included. The derivations for three-dimensional rectangular wings
and for swept, tapered wings are given in appendices A and B of this report.

The equations ofthe ADI procedure and direct solution differ in several respects. First, there is a time step,
At, which appears in the ADI equations but not in the direct solution. This time step, which has no physical

significance, does lead to truncation errors which are discussed in the next section. Second, the shock point oper-
ator which proved to be satisfactory for the direct solution had to be modified for use in the ADI difference equa-
tions. This is discussed in section 5.2.

To test the practicality of the method for eventual application to three dimensions, the two-dimensional
ADI method was applied to a number of problems which include airfoil configurations both with and without
thickness. Correlations are made with solutions from a program based on a compressible kernel function (see ref.
19),and from the direct solution program evaluated in reference 7.

Because ofthe low cost of each two-dimensional iteration, the solutions were generally run until the max-
imum of the difference between time steps was less than 10-4,a criterion found acceptable for the earlier relaxa-
tion techniques. The number of iterations depends upon the time step chosen, smaller time steps requiring a
proportional increase in the number of iterations. There also is a considerable Mach number influence on the
rate of convergence. For a frequency of about 0.8 and choice of time step of 0.4, it was found that for M =0.9
convergence required about 600 iterations while for M =0.7 less than 300 were needed, with the variation with
Mach number being roughly linear.

The following table gives data on the number of iterations required for convergence for several time steps
for the severe case ofM =0.9 and a reduced frequency ofk =0.9 for a symmetric flow using a 72 by 60 mesh (2160
mesh points).

Time step Iterations CP seconds (CRAY)
0.1 1000 55
0.47 26 40
0.6 514 28
0.8 406 22
1.0 372 20
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An indication of the superiority of the direct solutions for two dimensions is seen from the time required for the
full (72 by 60) and half(72 by 30) matrix solutions; that is, 17cps for the full matrix and 4.5 cps for the half matrix.

5.1 CORRELATION OF EXAMPLES FOR AIRFOILS OF VANISHING THICKNESS

The ADI method was first applied to calculating the pressure distribution on a flat plate pitching harmon-
ically about the leading edge. Agreement between solutions from the ADI method and the program of reference
5.1using an integral equation method were good for a Mach number of 0.9 and reduced frequencies up to 0.3 as
seen in figure 1. However, agreement for a reduced frequency of 0.45 is not as good (fig. 2), and for a reduced
frequency of 0.6 the agreement was found to be poor (see fig. 3). Reducing the time step improved the solution
somewhat.

Basically, the time step is irrelevant to the problem but it does lead to truncation errors. By adding equa-
tions (A-5)and (A-6)to (A-7)and equating the three successive values of_0,that is, setting _0_ = _0n = Cn . 1,we
obtain a difference equation which we can recognize as resulting in the following differential equation (see equa-
tions (A-62) and (A-64)):

(U x)x. yy.¢zz (1.81) Cx (1.81)

where _1 = ei o, At. When the time step At goes to zero with u = K, this equation reduces in the limit to the
classical linearized equation for harmonic unsteady flow.To check whether the program contained basic errors,

this differential equation (without the Czzterm) was solved by the direct method used for the classical equation.
The resulting solution agrees very closely with the ADI solution as seen in figure 4. This verifies that the

algorithm was properly programmed. A second order (Ottdifference which required saving an additional time
step was also tried but introduced no significant improvement.

Since the direct solution of the regular equations used a second order central difference for the _0Xterm, a
second order backward difference was derived and introduced into the ADI method. The derivation of this q_x
operator as well as the q)ttoperator enabling a change in the time step during a run are presented in Appendix D.
Considerable improvement resulted, and now the ADI is in good agreement with the kernel function results.
This is shown in figure 5 for a reduced frequency of 0.6. Therefore, to obtain sufficient accuracy at the higher
frequencies we must use a second order difference for the first derivative in x.

The effect of varying the size ofthe time step, At, for M =0.9 and k =0.6 is shown in figures 6 and 7, with the
results plotted with an expanded ordinate scale. Figure 6 presents solutions from the program of reference 19
and ADI results for the smallest and largest values of At tried. For the range studied, At =0.1 to 1.5, the best
correlation is obtained with the smallest value ofAt. Generally, the ADI calculations move towards the integral
equation results in monotonic fashion as At is decreased. A reasonable compromise with accuracy for the sake of
economy of calculations is found by using At =0.6.

5.2 CORRELATION OF EXAMPLES FOR AIRFOILS WITH THICKNESS

A second set of examples was prepared for airfoils offinite thickness. The pressure coefficient distributions
for the NACA 64A010 airfoil, oscillating in pitch about the quarter chord, tested by NASA Ames, were calculated
with both the ADI and direct solution procedures. Calculations were made for a Mach number of M =0.85 and

reduced frequency ofk =0.15 and for M =0.86 and k =0.4. The resulting pressure distributions are presented in
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figures 8 and 9. Agreement is quite good in both cases except for the real parts in the vicinity of the shock. In
figure 8, the real part of the pressure aft ofthe shock from the ADI program is significantly larger than that from
the direct solution. In figure 9, the ADI results underpredict the pulse while overpredicting the pressures aft of
the shock. The difference in results between the ADI and direct solutions may well be a difference in shock point
operators. Since use of the shock point operator which is the exact equivalent to that in the direct solution causes
divergence in the ADI solution, the shock point operator was applied only to the second derivative with respect to
x in the ADI program and not to both the first and second derivatives as in the direct solution.

Pressure distributions for a Mach number of 0.85 and for reduced frequencies of 0.25 and 0.4 are also pre-
sented in figures 10and 11.The distributions are presented for two ADI solutions and the direct solution. The ADI
solutions differ in the representation of the first derivative with respect to x, one using a first order finite dif-
ference and the other a second order. It is seen that there is relatively little difference between the two. However,
in this particular case, the shock pulse of the ADI solutions differs considerably from that obtained by the direct
solution.

Since a singularity occurs across the shock in the pressure distribution, a more accurate method of deter-
mining the influence of the shock point operator is to plot the difference in velocity potential across the airfoil.
This jump is plotted in figure 12for k =0.25. Two ADI solutions are compared with the direct solution and are
indicated by the legend on the figure. Again, one solution uses a first order difference for the first derivative with
respect to x and the other uses a second order difference. For a shock of this strength, a distinct jump in the
unsteady potential difference is observed, which can be related to the amplitude of shock motion by the shock
relations derived in appendix A of reference 7. We note that there is very little jump in the real part of the
potential difference at the shock for either ADI method compared with the direct solution.

To obtain a better shock representation, shock boundary conditions were derived for application to the ADI
method of relaxation, and the derivation is presented in appendix D. The expressions are similar to those
obtained for the direct solution and described in NASA CR 3537. An example ofthe captured shock on the NACA
64A010 at the Mach number of 0.85 is shown in figure 13.When the shock strength is defined as

[u]= Ui+lj- uij

some improvement in the jump in the real part of the unsteady potential for the airfoil oscillating in pitch about
the leading edge is obtained, but results for the imaginary part are worse than those from the shock point oper-
ator (fig.14).When the shock strength is defined by the more realistic value of

[u]= ui+2j- Ui_lj

the jump in the real part of the unsteady potential difference is in close agreement with the direct solution, and
the jump in the imaginary part is somewhat less than that for the direct solution. The corresponding pressure
distributions are shown in figure 15. In the direct solution, shock boundary conditions were found to lead to
somewhat different results for the jump in the unsteady potential from those obtained by the shock point oper-
ator. In reference 7, it was shown that the shock point operator for the direct solution lacked one term in the shock
jump conditions. The application of the shock boundary conditions appears to be an acceptable method of repre-
senting the effect ofthe shock in unsteady flow in the ADI relaxation method.
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Tostudy the effect of first- and second-order difference representations ofthe _0xterm on airfoils with thick-
ness, the preceding configuration was run at M =0.85 and reduced frequencies of 0.25 and 0.40. The results of

the ADI method for both representations of _x are compared with the direct solution in figures 10 and 1l. The
greatest deviation occurs in the vicinity ofthe shock where the pressure pulse is significantly underestimated by
the ADI calculations. Inclusion ofthe second-order difference does not appear to be as important for the airfoil as
for the configurations of vanishing thickness.
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6.0 ADI RELAXATION SOLUTIONS FOR
THREE-DIMENSIONAL WINGS

6.1 CORRELATION OF EXAMPLES FOR
RECTANGULAR WINGS OF VANISHING THICKNESS

:

Pilot programs for three-dimensional unsteady transonic flow using the direct solution procedure
(OPTRAN3) and the ADI relaxation method (OPTRAD3)have been applied to a zero thickness rectangular wing
of aspect ratio 3 which corresponds to the planform geometry of the wing model of NASA TN D-344. Typical
results from these two programs are compared with corresponding calculations from the RHOIV program of
reference 8 in figures 16 through 18. These results are for a Mach number of 0.9 and a reduced frequency, based
on the semichord, of 0.10,with the wing oscillating in pitch about the leading edge. The correlation of the results
from the two finite difference procedures with the results from RHOIV is considered very good, even close to the
tip.

For the real part, results from the three theories match nearly exactly for the inboard two chords, and
RHOIV lies slightly below OPTRAD3 and OPTRAN3 for the tip chord. For the imaginary part, OPTRAD3 and J
RHOIV match closely over the inboard two chords with the OPTRAN3 curve lying slightly below. For the tip
chord, OPTRAD3 and RHOIV match closely over the front part of the surface (OPTRAN3 again lies slightly
below), while OPTRAN3 and RHOIV match closely aft of the midchord (OPTRAD3 lies slightly above). The
better agreement of OPTRAD3 and RttOIV is surprising since truncation errors due to the time steps At were
observed in the two-dimensional solutions.

The solutions are for a 50 by 20 by 40 xyz mesh (symmetry in z assumed so the order of the coefficient
matrix is 20,000). As expected, the direct solution proved to be very expensive to run for this three-dimensional
problem, and the ADI solution requires about a quarter of the computing resources of the direct solution.

6.2 CORRELATION OF EXAMPLES FOR RECTANGULAR WINGS OF FINITE THICKNESS

Steady-state pressure distributions for the wing of NASA TN D-344 with a 5%-thickcircular arc airfoil are
presented in figure 19. Included in the figures are pressure distributions for the upper and lower surfaces (as
digitized from the graphs of TN D-344, ref. 20) and analytical results from XTRAN3S. It is noted that, despite a
symmetric airfoil shape and zero angle of attack, the pressures for the upper and lower surfaces do not coincide.
The report mentions a cross tunnel variation in stream angle which may account for the differences. The pres-
sure distributions are presented for four spanwise stations. The analytical stations are closely matched to the
experimental stations in all cases, so that a good estimate ofthe correlation between theory and experiment may
be obtained by reviewing the figures. At the root (fig. 19),the analytical results extend to a larger negative pres-
sure coefficient than the experimental results. Also, the analytical distribution shows a'relatively sharp shock
while the experimental results show some supersonic flow but almost no shock. Since there is a shock at mid
semispan, a shock at the root would be expected too. The lack ofa shock at the root may be due to the cross tunnel
variation in stream angle and may also be due to boundary layer effects. The pressure orifices at the root are on
the tunnel wall, rather than on the wing, and there is no mention ofa splitter plate to remove the boundary layer
on the tunnel wall. A thick boundary layer over the orifices might mask shock effects in the pressure
measurements.

At the mid semispan section, y/Ab =0.5 (fig. 19), the correlation between theory and experiment is quite
good. The analytical result matches that for the upper surface well, particularly with respect to the shock
strength. The maximum pressure is slightly less for the analytical result than for the experimental result, other-
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wise the analytical result seems to lie between the measured distribution for the upper and lower surfaces. For
y/Ab =0.70 in figure 19,the analytical results fall slightly below the measured distributions, however, the shock
strengths appear about the same. For y/Ab =0.9 in figure 19, analytical results fall slightly farther below the
measured distributions. Again, the shock strength looks about the same for analytical as for the measured
results.

Using the potential distribution from the steady state solutions of XTRAN3S just discussed, we analyzed
the wing of NASA TN D-344 (ref. 20), with its circular arc airfoil section, under the bending mode presented in
figure 20. The results are for M =0.9 and reduced frequency of 0.13. Three distributions are presented in each
figure: (1)the ADI relaxation calculations for the wing with the circular arc airfoil, (2) the ADI calculations for a
flat plate and (3) the experimental measurements as obtained from figure 9c of TN D-344 using an automated
digitizing process on the unflagged data. The amplitude and phase angle of the pressure difference across the
wing are presented for three spanwise stations: y/Ab =0.5, 0.7, and 0.9.

The results from the ADI method in figures 21 and 22 for the thickness case reflect a much sharper and
stronger pressure pulse than do the experimental measurements. Comparison of the amplitudes at the three
spanwise stations is presented in figure 21. At y/Ab =0.5 and 0.7, the experimental and analytical shock loca-
tions agree relatively well. At y/Ab =0.9, ADI calculations show a very small shock pulse, while the presence of a
shock in the experimental data is unclear due to variations between the flagged and unflagged data in figure 9c

• of TN D-344. Ahead of the shock, the amplitude ofmeasured pressure is greater than the calculated pressure for
all three spanwise stations.

A comparison of the phase angle distributions is given in figure 22. Overall, the correlation appears about
like that for the pressure amplitudes. The analytical results show a sharp rise in phase angle across the shock at
all three spanwise stations, with the phase angle decreasing aft of the shock for the two inboard stations.
Although there are only two data points aft of the shock, the experimental data does generally resemble the
analytic data. At y/Ab =0.5 and 0.7 (fig. 22), the experimental data show a much larger jump in phase angle
across the shock than the analytic data. Behavior of the experimental data aft of the shock, although described
by just two data points, generally matches the analytic behavior at y/Ab =0.9 in figure 22. The experimental
data does show a large spike in phase angle (presumably due to a shock), while the analytic results show a jump
across the shock.

The results of analyzing the wing ofNASA TN D-344 presented in figures 21and 22 are replotted in figures
23 and 24 to include the second set of experimental data (the flagged data) from the report. The flagged data were
included in the report to show the repeatability ofthe measurements. Measurements in the vicinity ofthe shock
show large variations between the two sets of data.

Three-dimensional plots of the real and imaginary parts of the calculated pressure distribution for this
problem are shown in figures 25 and 26. Figure 25 is for the vanishing thickness configuration, while figure 26 is
for the wing with a circular arc airfoil section. The pressure pulse due to the presence of the shock shows up
dramatically for the circular arc configuration. There is a noticeable blip in the pressure distributions at the
trailing edge of the tip chord for both the zero thickness and airfoil distributions. Such a blip has been encoun-
tered in other time-integration finite difference solutions. It seems to be associated with the solution mesh and is
considered to make an insignificant contribution to the overall flow solution.

The overall correlation between theory and experiment is somewhat less than satisfying, although the
basic properties of the pressure distribution in the experiments are reflected in the theoretical calculations. The
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theoretical solution has been checked for convergence by running an additional 100 iterations with no apparent
change in pressure distribution.

More recent experiments reported by Rickets, Sanford, Seidel, and Watson ofthe NASA Langley Research
Center (ref.21)correlate better with calculations by the frequency domain method. A rectangular wing of aspect
ratio 4.0 with a supercritica112%-thick airfoil is oscillated in pitch about the leading edge. Freon gas was used in
the wind tunnel for which the ratio of specific heats is 7 =1.131.

The steady state solution for a Mach number of 0.7 and angle of attack of 2 deg. was computed by
XTRAN3S. The resulting chordwise pressure coefficient distributions are shown in figures 27 through 30 at
fractions of the semispan oft =0.31,0.59, 0.81,and 0.95, respectively. The agreement of the experimental meas-
urements with theory is seen to be quite good.

Using the steady-state potential just described for calculating the coefficients ofthe three-dimensional ADI
method, we ran the program for the rectangular wing oscillating in pitch about the leading edge at reduced
frequencies of0.178 and 0.356. Figure 31presents the distribution ofamplitude ofthe jump in pressure across the
wing for k =0.178 at spanwise stations oft =0.31,0.59, 0.81,and 0.95, while figure 32 shows the corresponding
phase angle distributions. The pressure amplitude over the aft 3/4 chord ofthe wing is in good agreement with
experimental values. The OPTRAD3 results show the leading edge singularity at all four spanwise stations,
while this singularity appears only for the outer two chords in the experimental data. A shock pulse appears just
aft ofthe leading edge for the two inboard chords in both the OPTRAD3 and the experimental results. The shock
pulse is sharper in the theoretical calculations, and the theory shows a singularity at the leading edge which has
the same sign at all cross sections. This is not seen in the experimental values. The agreement of the theory with
the phase angle measurements is not as good as for the amplitude. The experimental results indicate a rise in
phase angle to about 3/4 chord and then a fall to zero, while the theory continues upward. Similarly, comparison
ofthe ADI results with the first harmonic from XTRAN3S, as digitized from the graphs ofreference 21,is shown
in figures 33 and 34. The pulse near the leading edge from XTRAN3S is stronger than the harmonic solution for

=0.31. For the more outboard spanwise locations the agreement is better. The phase angle from XTRAN3S
shows a rapid rise at the trailing edge not observed either in the experiments or the ADI solution. For k =0.356,
the correlation of the ADI solution with experimental results is similar to that for k =0.178, as seen in figures 35
and 36. The correlation with the first harmonic of XTRAN3S is shown in figures 37 and 38, and is similar to the
results found for the correlation of two-dimensional results with XTRAN2.

6.3 SOLUTION CONVERGENCE PROBLEMS FOR SWEPT WINGS

The ADI program was modified to include the swept wing coordinate transformation. The problem of con-
struction of a mesh system for a swept wing is considerably simplified by using a coordinate transformation
which defines the leading and trailing edges as single values of the streamwise coordinate system. This makes it
easier to refine the grid in the neighborhood of the leading and trailing edges.

Since XTRAN3S was selected to compute the steady-state potential distribution required in the coeffi-
cients of the difference equations, the mapping used in XTRAN3S was adapted to our program. The coordinate
transformation is given by

= (x- XLE)/S(y ) - 1

77 =y

= z (6.31)
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where S(y)is the semichord at the span location y. This differs from the transformation in reference 17in order to

make the leading and trailing edges be given by _ =-1and 1, respectively. The differential equation resulting
from applying this transformation and the resulting difference equations are derived in appendix B.

The three-dimensional ADI relaxation program using the swept wing coordinate transformation has been
, applied to the clipped delta planform (as a zero thickness configuration) of Hess, Wynne, and Cazier (ref. 22),

which has a swept leading edge of50.45 deg. an unswept trailing edge, and a semispan of0.708 chords. The time

step had to be reduced to 0.002 before convergence occurred. However, after 570 iterations, the solution again
started to diverge. A plot of the pressure distribution at the time when convergence stopped was in very poor
agreement with the RHOIV solution. A modified clipped delta wing with a leading edge sweep angle of 20 deg.
was also run to determine the effect of the leading edge sweep. The convergence rate was somewhat improved.

The grid region for the 50.45 deg. clipped delta wing is shown in figure 39. Note that the outboard section
covers only a small region ofthe flow and may account in part, at least, for the lack ofagreement with the RHOIV
solution as well as the tendency toward solution divergence.

Tofind the effect ofsweep alone, a simple swept untapered wing was analyzed. Convergence was obtained
for a sweep angle of 20 deg. but failed at 30 deg. When the mapping was changed to make the leading and

trailing edges turn normal to the line of symmetry as in figure 40, the convergence was extended to 30 deg. but a
40 deg. sweep failed to converge with the maximum growth occurring at the point where the edges curved
sharply. At this point the mapping has discontinuous second derivatives. This suggests that a mapping with a
continuous second derivative may improve the convergence. To test this, a swept untapered wing was analyzed
using a cubic to bend the leading and trailing edges normal to the plane of symmetry. A finer grid spacing in the
streamwise direction was also applied on the downstream boundary. It was found that, for the new transforma-
tion, convergence was obtained for sweep angles up to 45 degrees.

Additional studies concerning solution divergence of swept configurations using coordinate transforma-

tions may be found in references 23 and 24. In the former, care is taken to assure that the derivative _y,which
appears as a coefficient in the transformed differential equation, is well behaved in the solution region. In refer-
ence 24, linear stretching is applied to the transformation in the regions both upstream and downstream ofthe
wing planform to assure that the region of perturbed flow is included in the flow solution region. Both concepts
appear to significantly improve convergence. We assume that our new transformation is close to that used in

reference 23. However, we have also made a point of removing the singularities resulting from the sharp plan-
form apex at the root by artificially rounding offthe leading and trailing edges at the root.

To test convergence at the higher frequencies, the 45 deg. sweep wing was calculated using k =0.5. The
solution converged as easily as for the lower frequency calculations. As seen from figures 50 through 52, the
agreement with RHOIV is, however, not as good. As in the two dimensional solutions, the second order difference

for the first derivative with respect to x appears to be required to improve the accuracy.

6.4 CORRELATION OF EXAMPLES FOR SWEPT WINGS OF VANISHING THICKNESS

Calculations were performed at a Mach number of 0.9 and reduced frequency of 0.13for sweep angles of30
deg, 40 deg, and 45 deg. Figures 41through 43 show the real and imaginary parts ofthe jump in pressure coeffi-
cient across the flat plate for the three sweep angles using a time step of 0.05. The greatest variation with sweep
angle occurs at the plane ofsymmetry (figure 41).The solutions for a sweep angle of 30 deg are shown in figures
44 through 46 for spanwise locations at fractions of semispan of 0., 0.51,and 0.93. The results after 150 and 300
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iterations are compared with the integral equation solution of RHOIV. It appears that 300 iterations yield better
results, and agreement with the RHOIV is seen to be excellent.

The jump in pressure coefficient for 45 deg, the largest sweep angle for which the program converged, is
compared with the RHOIV solution in figures 47 through 49. The agreement is seen to be as good as for the lower
sweep angles.

To test convergence at the higher frequencies, the 45-deg swept wing was calculated using k -- 0.5. The
solution converged as easily as for the lower frequency calculations. As seen from figures 50 through 52, the
agreement with RHOIV is, however, not as good. As in the two dimensional solutions, the second-order dif-
ference for the first derivative with respect to x appears to be required to improve the accuracy.
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7.0 CONJUGATE GRADIENT TECHNIQUES
FOR THE DIRECT SOLUTION

7.1 DESCRIPTION OF BASIC CONJUGATE GRADIENT TECHNIQUES

' Although the direct solution as used in OPTRAN2 provides an efficient and practical procedure for analyz-
ing two-dimensional configurations with mesh systems of the order of 4500, three-dimensional problems using
mesh configurations of the order of 50,000 to 100,000 would appear to require alternate procedures to achieve
comparable efficiencies. Review of the literature indicated that conjugate gradient techniques might provide a
practical way to obtain a direct solution for larger systems. However, our problem is asymmetric and indefinite,
and thus the classical conjugate gradient methods are not applicable.

The classical conjugate gradient method for solving systems of linear equations ofthe form Ax = b whose
coefficient matrices, A, are symmetric (Hermitian in the case of complex matrices) and positive definite was
presented by Hestenes and Stiefel (ref. 25) in 1952. This method converges to the true solution of the linear sys-
tem in a finite number of iterations in the absence of round-off errors and hence may be thought of as a direct
solution. However, the method was not widely used and little was heard about it until the mid 1960s. J.K. Reid
(ref. 26) noticed that the method is very efficient for large sparse symmetric positive definite systems that are
well conditioned, with the asymptotic rate of convergence being inversely proportional to the square root of the

condition number. In the last decade, many variants ofthe conjugate gradient method have been applied to large
sparse problems with considerable success (See Hafez and Wong, ref. 27).

When the coefficient matrix, A, is asymmetric, the usual procedure is to multiply both sides of the equa-
tions by the conjugate transpose, A*, to obtain a Hermitian positive definite linear system of the form
A*Ax = A*b on which to apply the conjugate gradient method. However, the condition number of the matrix
A*A is the square ofthat ofA. That is, the asymptotic convergence rate of the conjugate gradient method applied
to the above equation would be inversely proportional to the condition number of A instead of to the square root
of the condition number of A.

Various authors, such as Axelson (ref. 28),Concus and Golub (ref. 29), and Elman (ref. 30),have generalized
the conjugate gradient method to a larger class ofmatrices, so that the asymptotic convergence rate is inversely
proportional to the square root of the condition number of A. Yet all of these methods still assume the coefficient

matrix to have certain properties, such as A* + A being positive definite, and thus they are not always applica-
ble to general nonsingular matrices. In appendix E, a variant of the conjugate gradient method is developed
which is applicable to general nonsingular matrices and which has an asymptotic convergence rate inversely
proportional to the square root of the condition number. This new algorithm together with examples of its
application will be discussed in the following.

However, for the new algorithm, when the coefficient matrix is even mildly ill-conditioned, the convergence
rate of the conjugate gradient method is impractically slow. This difficulty, frequently encountered with the

matrices for the transonic problem, can be remedied by preconditioning, which attempts to improve the condi-
tion number of the matrix. Various authors, such as Lewis and Rehm (ref. 31),Kershaw (ref. 32), and Chandra
(ref. 33) have suggested different preconditioners for specific problems. The success of the method for a particular

problem very much depends on the preconditioner chosen. For our problem we have tried preconditioners from
the following sources:

(1)A sparse capacitance matrix method
(2) The ADI operator
(3) The incomplete LU factorization procedure.
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The preconditioner from the incomplete LU factorization has proved to be most efficient. We shall describe these
three preconditioners in detail in section 7.2.

7.2 PRINCIPLE OF PRECONDITIONING

The principle of preconditioning is to recast the system of equations in the form

(I + T) x =b

where T is a matrix whose magnitude is small. One procedure for accomplishing this is to find a matrix N such
that its inverse is easy to compute and N is very close to the coefficient matrix A. If such an N can be found, then
the matrix

R=A-N

is of small magnitude. The matrix N-1Ris also ofsmall magnitude if A and N are well conditioned. Wecan write
the equation Ax = b as (N + R) x = b. When we premultiply both sides of the latter equation by N-1,then we
obtain

(I - N- 1R) x =N- lb

Note that the singular values of(I + T) = (I-N-1R) (SeeHouseholder, ref. 34)are defined as the square roots ofthe
eigenvalues of

(I+T)*(I+T) = I + T + T* + T*T.

Since the magnitude of T is small, the singular values of the matrix (I + T) are close to 1. This is the ideal
situation for applying conjugate gradient type methods.

Aside from the case in which the matrix A is a so-called M-matrix, which is a matrix with negative diago-
nal entries, non-negative off-diagonal entries with all its eigenvalues on the right half-plane, (see Varga, ref. 35),
there are no theoretical results in the literature concerning the choice of N. Almost all of the results in the
literature concerning preconditioning are empirical and therefore are problem-dependent. The most popular
and successful preconditioner is the incomplete factorization procedure.

7.2.1THE INCOMPLETE FACTORIZATION

The concept ofincomplete factorization may be used for preconditioning in the following manner: the L and
U matrices resulting from the lower and upper triangular decompositions of the coefficient matrix (or some por-
tions thereof) are modified to obtain matrices which are easy to invert and store. In the current algorithm, L and
U are modified to be lower and upper tri-diagonal matrices.

The incomplete factorization of the matrix A in comparison with the complete factorization of A is illus-
trated in figures 53, 54, and 55. Figure 53 represents the sparsity ofthe original matrix A. Figure 54 shows the
sparsity structure ofthe two matrices resulting from the complete LU factorization of matrix A. Figure 55 shows
the sparsity structure of the incomplete LU factorization of the matrix A. The incomplete L and U are obtained
from the regular Gaussian elimination by retaining only the nonzeroes in the sparsity structure of A. The
details are expounded in appendix E. Our results are summarized as follows:
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Problem Grid No. of Formulation No. of CRAY

size mesh points iterations CPU sec

(1) 72x60 2160 ADI (t = .3) 263 15.3
(2) 72x60 2160 direct 346 20.3

, (3) 50x15x40 15000 direct 564 179.

In comparison with other methods, the ADI described in section 6 takes 40 seconds for problem 1, and the
out-of-core solver takes 4.5 seconds for problem 2, and 400 seconds for problem 3.

In the two-dimensional problem, the ADI formulation (problem 1of the test problems) seems to have better
convergence properties than the direct solution formulation. This might well be true for the three-dimensional
case also.

As an iterative method, the conjugate gradient is not so "operator-sensitive." For instance, in problem I of
the test problems, second order central differencing is used for the (_xtterm. In the ADI method described in
section 6, second order upwind differencing is used for the _xt terms because the ADI diverges when central
differencing is used.

7.2.2 THE ADI OPERATOR AS A PRECONDITIONER °

The ADI method can be represented by the following matrix equation:

Cn+l =GCn + P¢n- 1 + c (7.2.1)

Assume equation (7.2.1)converges, then _n+l = On = On-l,and equation 7.2.13 can be written as

(I - G - P) € =c. (7.2.2)

Weapply our conjugate gradient method (USYMLQ) to equation (7.2.1).Experimentally, we find that the rate of
convergence ofthis method is similar to that ofthe ADI and hence more expensive than the ADI because for each
iteration, we have to compute (I - G - P)xk as well as (I - G - P)*xk.

Wehave only tried this on the 2D problems. Since this method is not comparable in efficiency with the ADI,
we do not list the results.

7.2.3 THE SPARSE CAPACITANCE MATRIX METHOD AS A PRECONDITIONER

The method we discuss in this section is motivated by the two-step method discussed in Ehlers and Weath-
erill (ref.7). The fiat plate equation without the boundary condition on the airfoil can be solved by Fast Poisson
Solvers like FISHPACK (see Sweet and Swartztrauber, ref. 36). Since Ehlers and Weatherill (ref.7) observed that
the solution of the airfoil equation is close to the solution of the flat plate equation in the far field, we thought a
matrix of the form:

[s]
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where S is the coefficient matrix of the difference equation of the airfoil equatio n for the near field mesh points
(the mesh points inside the box which encloses the airfoil and all the supersonic points), and F is the coefficient
matrix of the flat plate equation for the far field mesh points, would closely approximate the coefficient matrix of
the airfoil equation (see fig. 56 below). In other words, if T is the coefficient matrix of the difference equation for
the airfoil equation for the far field mesh points, that is, if

we assume (T- F) is of small magnitude. Therefore we use M in equation (7.2.3) as a preconditioner. Equations of
the form M-ix = b are solved by a sparse capacitance matrix method. This preconditioner proves to be inefficient
for the following reasons:

1. The sparse capacitance matrix method requires an efficient complex sparse linear equation solver. The solver
we were using, ME28A from Harwell, was written for IBM machines and is extremely inefficient for the
CRAY.

2. The two-step method discussed in reference 7 proves to be successful only for symmetric flow, thus the matrix

M in equation (7.2.3) does not closely approximate the original coefficient matrix. Therefore convergence is
slow.

3. The box which encloses all the supersonic points can be almost as big as the full grid.
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8.0 THE DIRECT SOLUTION FORTHREE-DIMENSIONAL WINGS

The pilot program for the direct solution of two-dimensional configurations has been rewritten forapplica-
tion to three-dimensional rectangular configurations. This new pilot program, called OPTRAN3, is pro-

, grammed for the CRAY.Application of OPTRAN3 is discussed in section 8.1 and an improved algorithm for an
out-of-coresolver is discussed in section 8.2.

8.1 APPLICATION OF OUT-OF-CORE SOLVER

One large and several small examples were run to test OPTRAN3. The large run, the only one to approxi-
mate a practical configuration, was a 50 by 20 by 40 mesh system applied to an aspect ratio 3rectangular wing of
vanishing thickness. Since the flow for this configuration is symmetric top to bottom, this problem consisted of
20,000 points. Pressure distributions from this calculation are compared with results from OPTRAD3 and
RHOIV in figures 16 through 18. Correlation of all the results from the two finite difference procedures with
reference results from the kernel function method is goodand is about what we would expect from our experience
with two-dimensional calculations. The overwhelming characteristic for the example is its running time which
was some 1200 CPU seconds. Perhaps of even more significance is the fact that using the company cost

algorithm, the CPU seconds only accounted for about one-fourth of the total cost of the run, while the remainder
of the cost is mainly due to input/output operations. It is also noted that costs rise rapidly with increasing mesh
points. For example, a problem with three-fourths the mesh points requires about one-third as many CPU
seconds.

The pilot program that was tested was developed on a version ofthe CRAYwhich has one million words of

core storage. It was also developed during the installation period at Boeing of both the CRAY hardware and
software. Now the operating system has been stabilized, and the original machine has been replaced by one with
two million words of core storage. The larger memory allows us to bring larger blocks into memory. Larger
blocks mean that the length of the vectorizable do-loops is longer, and execution time should be reduced signifi-
cantly. It also means a reduction in the number ofdisk access operations. With the new algorithm, the number of
words written on disk is also significantly reduced. When solutions for a number ofright hand sides are required,
the out-of-core solver may be competitive with iterative methods, such as the ADI and the preconditioned conju-
gate gradient procedure.

The total cost ofthe initial three-dimensional run using the direct solution program was large enough that
it was decided to concentrate efforts on the ADI procedure of section 6. If the running time can be reduced signifi-
cantly as described above, the advantage ofbeing able to include a number ofmode shapes (i.e., a number of right
hand sides to the set of difference equations) with little increase in cost would make the direct solution again

competitive with other procedures such as the ADI method.

8.2 AN IMPROVED OUT-OF-CORE SOLVER PROCEDURE

In the 2D program, the out-of-coredirect solver, ETCSM, is a general-purpose banded solver. Because of the
size of the 3D problem, we intend to design a direct solver specialized for our problem. The key idea in the new
solver is "implicit factorization", which means that the LU factorization of the diagonal blocks, which are prod-
ucts of sparse matrices, is computed as needed. The "implicit factorization" requires the matrix to be block-
tridiagonal. The following 3 by 3 block system serves to explain the difference between the algorithm used in
ETCSM (the out-of-core solver ofref. 18)and implicit factorization:
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We are interested in solving Ax = b, where A is represented by the block system:

LorAllA120][bl]A = /A21 A22 A23 b = b2 (8.2.1)

A32 A33 b3

The matrix A is now decomposed into a product of block-lower and block-upper triangular matrices:

I!°il [!11°1A = LU = 21 I * U22 U23 (8.2.2)

L32 0 U33 j

where, by comparison with equation (8.2.1),we see that

Ull = All, U12 = A12

L21 = A21Al1-1, U22 = A22 - L21U12 , U23 = A23

L32 = A32U22-1

U33 = A33 - L32U23.

Thus Ax = b is to be solved in the form LUx = b. Let y = Ux. Then Ly = b can be solved by forward substitution:

Yl = bl

Y2 = b2- L21Yl

Y3 = b3 - L32Y2. (8.2.3)

The solution vector x, which satisfies the equation Ux = y, can now be found by backward substitution:

x3 = U33-1y 3

x2 = V22-1(y2- U23x3)

x 1 = Ull-l(yl - U12x2) (8.2.4)
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In practice we do not need to compute the inverses of U33 , U22 , and Um but can use their lower and upper tri-
angular factors to obtain x3, x2, and x1by forward and backward substitution. Continued application of LU
decomposition results in inverses being required only for diagonal matrices, a simplification that, in turn,

requires storing only the original block matrices. Thus, for L21= A21Vn-1,we store A21and An ( = Un) instead of
L21.

In the explicit factorization, as in the algorithm used in ETCSM, all the nonzero blocks of the factorization

(except the identity matrices ofL) are stored on disk, and the sequence of calculation is exactly as those described
by equations (8.2.2) to (8.2.4). In the implicit factorization, we store only the diagonal blocks Um U22, and U33 in
their factored form on disk in order to conserve disk space. The sequence ofcalculation for the factorization stage

is the same as (8.2.2); the sequence of calculation for the forward substitution stage is different: in place of L21,we
use its equivalent, A21Au-1;in place of L32, we use its equivalent, A32U22 -1 (see equation (8.2.2)).

Thus equation (8.2.3) becomes:

Yl = bl

Y2 = b2- A21A11-1yl

Y3 = b3 - A32A22-1y2 (8.2.5)

The sequence of calculation for the backward substitution is the same as described by equation (8.2.4), with the

exception that we take advantage of the fact that U_2= A12,U23 = A23, and substitute A12in place of U_, A23in
place of U2_ in equation (8.2.4), which now becomes:

x 3 = U33-1y 3

x2 = U22-1(y2- A23x3)

x 1 = Ull-I(yl - A12x2) (8.2.6)

In this approach, we do not need to store the off-diagonal blocks ofthe lower triangular matrix L on disk, and we
can obtain the off-diagonal blocks of the upper triangular matrix U readily from the original matrix A.

Wehave tried this approach on the two-dimensional problem; the cost is about one-third ofthat ofETCSM.
For the 3D problem, the matrix needs to be reordered with one level of nested dissection to reduce the bandwidth

in order to use this approach more effectively.
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9.0 CONCLUSIONS

This investigation has centered on the development of procedures for calculating the unsteady transonic
flow about harmonically oscillating three-dimensional wings. The work has included studies of the direct solu-

tion method, a relaxation procedure using ADI techniques, and preconditioned conjugate gradient procedures.

The most practical procedure for three-dimensional analyses requiring a limited number of mode shapes
and using a computer with one million words of memory or less appears to be the ADI procedure. A pilot pro-
gram, including a coordinate transformation for swept and tapered wings, has been developed and applied to
several wings. Results appear generally reasonable and in good agreement with experiment and kernel function
methods. Solution convergence characteristics appear similar to those of XTRAN3S, and results have been

obtained for a swept, untapered wing with a leading edge sweep of 45 deg. However, it should be noted that the
solution time is proportional to the number of modes.

A pilot program for rectangular wings using the direct solution has been developed for the CRAY com-
puter. As expected, this program has proved expensive to run for practical problems. However, a significant part
ofthis expense is due to the cost algorithm that penalized input/output operations. This was a problem with the
one-million-word CRAY on which the current program was developed. With CRAYs having larger core storage
now available (weare currently working with a two-million-word core, and there is talk of an eight- to thirty-two-
million-word core capability in the future), the direct solution remains a viable procedure, particularly for prob-
lems involving a large number ofmodes, since solutions for additional modes are obtained at minimal extra cost.

Finally, an algorithm forthe conjugate gradient procedure as applied to asymmetric, indefinite coefficient
matrices has been developed with a solution convergence rate proportional to the square root of the condition
number. Several preconditioning procedures have been tested, and one based on incomplete LU decomposition
has proved most efficient. Running times appear to be generally comparable to those for the ADI procedure. This
procedure is still under development.
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APPENDIX A

DERIVATION OF THE ADI DIFFERENCE EQUATIONS FOR THE
RECTANGULAR WING

• A.1 THE BASIC TIME-DEPENDENT DIFFERENCE EQUATIONS

In the same manner as forthe two dimensional ADI method, we consider the time-dependent linear equa-
tion for the perturbation unsteady potential. Thus

(¢tt + 2¢xt)/_= (UCx)x + Cyy + Czz (A-1)

Following the procedure used by Borland, R_zzetta, and Yoshihara (ref.17),we write the difference equation for
the three sweeps as

x sweep:

cn
2_x (¢a_¢n)//(_ At)=[ 6x(UtixCa)+ tix(U6x ¢n) ]/2 +6yy + 6zzCn (A-2)

y sweep:

25"-x (¢k_¢a)/(_ At)= tiyy(¢_'-¢n)/2 (A-3)

z sweep:

(¢n+l-2¢n+ cn'l)/(_ At2) + 2_x(¢n+l-¢X)/(_ At)= 6zz(¢n+l-¢n)/2 (A-4)

The superscripts _ and k denote intermediate steps between the n and n + 1iterations. The difference oper-
ator 5-xis a backward difference, while 5x(U5x) is a central difference for u positive (elliptic) and backward dif-
ference for u negative (hyperbolic).

As in the two-dimensional version, we introduce harmonic motion and write for the nth and the next inter-
mediate approximation

cn= nei_nAt,¢k= )_e ioj(n+l) At,¢a= aei_(n+l) At

Substituting these expressions into equations (A-2)through (A-4)yields

2_- (_-fll _n)/(_At) ( )/2 +ill _iyy_nx :6 x U_x_a [Sx(Utix_n)/2+ + fizz_n] (A-5,

X
25x(_p -_pa)//(_ At)= 6yy(_k-fll_pn)//2 (1-6,

( n+l_ 2fl1 n +ill2 n-1)/(_at)+ 2_-x( n+l - _)/(_At)=6zz( n+i_ fiX n)/2 (A-7)

where

fll =e- ioJat
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To write the equation for coding, we use the same operators as in the direct two-dimensional method. For
the difference operators, we write

28x€/(_ At) =e3i(¢ij k - €i-1 jk)

8x(USx'_)=2ci Ui+ljk(_i+l jk- '_ijk)-2di Uijk('Pijk- _i-1jk)

for (ui+ ljk + Uijk)>0,

6x(USx_) = 2ei-1 Uijk (_ijk- _i-1 jk)- 2di-x ui-1 j k(_i-X jk- _i-2 jk)

for (ui+ ljk + Uijk)<0.

8yy_ =2aj(¢i j-1 k- ¢ijk)- 2bj(¢ijk - €i j+l k)

8zz¢ = 2ak(¢i jk-1 - _ijk)- 2bk(¢ijk - ¢ij k+l) (A-8)

where C3i = 2/A t(x i - xi.1), andthe other coefficients are defined in reference 1.

A.2 THE X SWEEP DIFFERENCE EQUATIONS

With the aid of equations (A-8),equation (A-5)for the x sweep becomes

2_x _/(_ At) _ 8x(USx_)/2=fll[28x,_ n/(_ At)+ 8x(USx_n)/2 + 8yy_n + 8zz n] (A-9)

or

_ _ _ cp_
c ,_ ,pc_ jk( 'p i+1 jk ijk )3i( 'pijk i-ljk ) - eiui+l

+diu;;1.( a.. _ c_ ) =fill c3i( n _ cpn )•J"\ 13K _i-1 jk ijk i-1 jk

( n _ n ) _diUijk(+njk_+n )+ ciui+l jk _ i+l jk _ ijk i-ljk

_pn n cpn n
+2aj( ij.lk)-_ijk )-2bj( ijk-_ij+lk )

n n _ n
+2a k( njk.l_ _ijk )-2bk(¢ijk ¢ijk+l )] (A-10)

Writing the equation in the form

SUBI(I)* a + SUB(I)* Ca + DIAG(I) * Ca + SUPER(I) * a RHS (I) (A-11)
i-2 jk i-1 jk ijk _ i+l jk =
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we see that

SUBI(I) =0.0

SUB(I) = -c3i -diuij k

DIAG(I) =c3i + ciui+ 1 jk + diUijk

SUPER(I) =-ciui+ 1 jk (A-12)

Note that DIAG(I) = - SUB(I) - SUPER(I). The right hand side term becomes

RHS(I) =fll(RHS1 + RHS2 + 2*RHS3 + 2*RHS4) + 2 RHS4) (A-13)

where

RHS1 =e3i (_on - n )ijk _ i-1 jk

RHS2=ciui+ ljk ( n _ n _ ni+l jk _ ijk )- diuij k (_nJ k _oi-1 jk )

RHS3=aj( nj.lk_ n n _ n

RHS4=a k(_ijk.1 n n _ nn - ijk) -bk( ijk _ijk+l) (A-14)

When the point ijk is supersonic, then equation (A-10)becomes

c3i('Pijk 'Pi-ljk) - ci-luij k( 'pijk ,pa a _ a :a _ ,_ a _ i-ljk) +di-lui-ljk( 'pi.ljk 'Pi-2jk)

fll[c3i(¢ijk ,pn n _ n n _ nn _ i-ljk) +Ci-lUijk(¢ijk ¢i-ljk) -di-lUi-ljk(¢i.ljk ¢i-2jk)

n _ _on n _ n
+2a'(¢ij_lk ijk)-2bj(_ijk _ij+lk)J

+2a k(_o n. _ n n _ n1, k-1 ijk)- 2bk ( _ ijk _ ij k+l ) ] (A-15)

Comparison of equation (A-15)with equation (A-11)yields

SUBI(I) = - di.lUi. 1 jk

SUB(I) = - c3i + Ci_lUijk + di.iui. 1jk

DIAG(I) =c3i - Ci.lUijk

SUPER (I) =0.0 (A-16)
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Note that SUB(I) = - SUBI(I) - DIAG(I). The terms RHS1 and RHS2 become

n _ n
RHSI=e3i( ijk ¢i-ljk)

n _ n n _ n
RHS2=ei-lUij k (_ ijk _ i-1 jk ) - di-lUi-ljk ( i-1 jk _ i-2jk ) (A-17)

RHS3 and RHS4 remain unchanged.

A.3 BOUNDARY CONDITIONS FOR THE X SWEEP

We apply the outgoing wave type boundary conditions of Engquist and Majda (ref.11)on the upstream and
downstream boundaries. Following the two-dimensional method, we obtain

a -- a n -- n
¢ljk = Ckl_2jk + fll (_2jk - Ckl_ljk ) (A-18)

a =-_ a ( n -_k3 nma ). . k3 € imax_l - (A-19)lmaxJk jk + fll € imax. 1 jk xJk

where

Ckl =M(x 2 - Xl)/[(1-M) At]

Ck3 =M(Ximax- Ximax_l)//[(1 + M) At]

-Ckl=(1- %1)/(1+%1)

Ck3 = (1 - Ck3)//(1 +Ck3 ) (A-20)

The equations (A-12)are modified for i = 2 and i = imax-1by

DIAG(2) + DIAG(2) + SUB(2)*Ckl

RHS(2) = RHS(2) - SUB(2)*fll(_2jk-CkI _ljk)

SUB(2) = 0.0 (A-21)

DIAG(IMAX1) = DIAG(IMAX1) + SUPER (IMAX1)*Ck3

n m n

RHS(IMAX1) = RHS(IMAX1)- SUPER(IMAX1)*B 1 (_ imax.1 j k - Ck3 imaxJk )

SUPER(IMAX1) = 0.0 (A-22)
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For k = kin, just below the wing plane, and k = km + 1, we apply the wing boundary conditions when
i1_<i< io, for j <Js, the index of the first spanwise variable beyond the wing tip. The conditions are in the form

(8¢/_Z)z -- - 0 =FL(x,Y)

=FU(x,y)(a - +0
Fork = kin,we have

bk m (_ijk m - _ij km+l ) = - hFL'bkmu (A-23)

where h = Zk_ + 1- Zkm" Similarly, for k = km+ 1,

akm+l(_Pijkm.- _ij km+l ) = - hakm+l FUj (A-24)

We see that for k = kin, the right hand side term is modified by

RHS(I) =RHS(I) + 2fllbkm[hFLj + nijkm _ _nij km+l] (A-25)

Similarly, for k = km+ 1we have

RHS(I) =RHS(I)- 2akm+l fll[hFUj+L 1 n _ n J]ijkm _ ij km+l (A-26)

For i > i1and j < Js, we must satisfy the continuity of the normal derivative across the wake sheet and
continuity of pressure. Detailed discussion of this is given in reference 1. The jump in the potential at

x = xh + 1is chosen to satisfy the Kutta condition that the jump in pressure at the trailing edge be zero. Con-
tinuity of pressure is assumed by setting

A_ij = A_il+l j e" i _ (x i - Xil+l )

where A(pij denotes the jump in potential at x = xi. The continuity of normal derivative is assured by adding to
the _0zzterm the quantity

- bkm A_ij

for k = kmand

akm+ 1 A_ij

for k = km + 1.
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A.4 THE DIFFERENCE EQUATIONS FOR THE Y SWEEP

The difference equation for the y sweep, equation (A-6),becomes

_- _ _yy_'/2 _ a= - 2Ox_ /(_ At) (A-27)- 2_x_ /(_ At) + fll_yy_n/2

or

_ _ph £ k k k
aj(_j.lk ijk)- bj(_ijk- _ij+l k) -c3i( _ijk- _i-1 jk)

_ n n n _ n
-fll[aj(_ij-lk- _ijk)-bj(_ijk _ij+lk)]

(°-° )- c3i _ijk _i-ljk (A-28)

Writing this equation as

SUB(J)* ¢ij-1 k_" + DIAG(J)* Chijk + SUPER(J) * h ij+lk =RHS(J) (A-29)

and comparing equations (A-28) and (A-29), we obtain

SUB(J) =aj

DIAG(J) =- aj - bj - c3i

SUPER(J) =bj

RHS(J) =fll[aj( nj.lk_ _njk)-bj(_njk- nj+lk)]

-c3i _ijk _i-ljk _i-ljk

Note that q0_.1j k is known from the previous sweep, since we always move in increasing i. Since the q0_ and q0_
values are not saved, the quantity

i-1 jk

has been written over with (Di-1_"jk by the previous step in the y sweep. Hence, after the i - 1sweep we must save
(_ik-1jk by

PHIOLD(J) =a (A-3D
i-1 jk

before storing the results of the i - 1 step. In each step of the y sweep the value of k is fixed, while i varies from
i = 2 to imax - 1. Then k is increased by 1and i is varied from2 to imax - 1until the entire grid is swept.
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A.5 BOUNDARY CONDITIONSFORTHE Y SWEEP

The difference equations for the y sweep require boundary conditions on the upstream x boundary. Hence,

the value ofi = 2 is a special case. Then the term -c3iq)i.1 jk is missing from the right hand side RHS(J) term, and
we replace it with the expression

|

_2jk]c3i-_kl[ _2jk - k

The diagonal term is modified by

DIAG(J) = DIAG(J) + c32Ckl

The line y = 0 (j = 2) is a plane of symmetry for the solution since it is the location ofthe root chord. Thus 5
_/3y = 0 at y = 0 yields

h k (A-32)
ilk =_ i3k

Application of the boundary condition to equation (A-29)yields

SUPER(2) =SUPER(2) + SUB(2)

SUB(2) =0.0 (A-33)

Weapply the Majda and Engquist nonreflecting boundary conditions at the outer spanwise boundary,
Y = (Yjma×+ Yjmax-1)/2"This takes the form

=-_k2_ _ +ill( njmax_l _--Ck2¢n
_a (A-34)

i Jmax k Jmax-1 k k i Jmax k!

where

Ck2 = (1- Ck2)/(1 + Ck2 )

Ck2 = M(yjmax- yjmax.1 ) _-'/(1 - M2)At

K = (1 - M2)/(M2_) (A-35)

This requires the following modifications

DIAG(JMAXl) =DIAG(JMAXl) + Ck2*SUPER(JMAXl)

RHS(JMAX1) :RHS(JMAX1) -SUPER(JMAX1)*BI( _nijmax-1 k -_nijmax k)

SUPER(JMAXl) =0.0 1A-36)
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A.6 THE DIFFERENCE EQUATIONS FOR THE Z SWEEP

The difference equation for the z sweep in equation (A-7)may be written as

6zz_pn+l/2 _ n+l/(_ At 2) _ 2_-x n+l/( _At)

.... 26x_ /(_At) (A-37) ,fll[_zz n/2 (2 n fll n_l)/(_At2)] l__ )_

With the aid of equation (A-8)we obtain

/ n+l n+l b / n+l_ n+l \ ,_ n+l / n+l n+l \
ak[ ¢ij k-1 - ¢ijk ) - k[ ¢ijk ¢ij k+l) - r_l_ijk- c3i[ ¢ijk - €i-1 jk)

n n _ n
=fll[ak ( njk.l_ _ijk)-bk( ¢ijk ¢ijk+l)

- E1 (2_njk - _i_'k ill) ] (A-38)

Writing equation (A-38)in the form

n+l n+l+ SUPER(K) n+l =RHS(K) (A-39)
SUB(K)* ij k-1 + DIAG(K)* ijk * ¢ij k+l

and comparing with equation (A-38)yields the following relations for the coefficients:

SUB(K) =a k

DIAG(K)=-a k-b k-E 1-c3i

SUPER(K) =bk

n _ ca _ n
RHS(K) =/31[ak( € ijk-1 ijk) - bk(¢njk € ij k+l)

- fll¢ijk)] - c3i( _ - _,_ El(2njk n-1 € ijk € i-1 jk + _ i-1 jk ) (A-40)

where E1 = 1/gAt2. Note that the right hand side term, RHS(K), contains the known value of the n + I approx-

imation, _pp._lk. Since the n + I approximation replaces the )_approximation, (P_Ij k must be saved in the pre-
vious step. Thus we define

PHIOLD(K) = _)_ (A-41)
i-1 jk
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A.7 BOUNDARY CONDITIONS FOR THE Z SWEEP

For the z sweep we must apply the boundary conditions on the wing, on the wake, and on the mesh bound-
aries except for the side boundaries, that is, the x-zplane boundaries. On the upstream boundary, we use

• n+l _-_ n+l n -- n
_ljk - Wkl¢2jk + El(¢2jk - Ckl_ljk) (A-42)

' No boundary conditions are actually needed in the difference equations on the downstream boundary, but for the
next step we need the values of _1which satisfy the downstream boundary conditions. Thus we set

n+l =-_ n+l + cn --
¢imaxjk k3¢imax-1 jk El( ,max-1 jk Ck3¢nmaxJk) (A-43)

where

Ck3 =M(Ximax - Ximax.1)/(M + 1) At

-Ck3 : (1 - Ck3)/(1 + Ck3 ) (A-44)

On the upper boundary, we have for the nonreflecting boundary conditions

n+l _-_ n+l + El( n -- n ) (A45)¢ij kma x - Wk5¢ij kmax-1 ij kmax-1 - Ck5CPij kma x

where

Ck5 = M(Zkmax- Zkmax.1 ) %/K/I(1 - M2)At]

-Ck5 = (1 - Ck5)/(1 + Ck5 ) (A-46)

The lower boundary nonreflecting condition is

n+l -_ n+l n -- n
_ijl = _k4_ij2 + El( _ ij2 - Ck4_ ijl) (A-47)

where

Ck4: M(z 2 - Zl) "Vr'K_(1_ M2)At

Ck4 : (1 - Ck4)/(1 + Ck4 ) (A-48)

On the wing, for io _<i _<i1where ioand i I may depend onj, we have for z = (zkm + Zkm+1)/2= 0,

(0¢/0Z)- = F L.
U

(0_/0z)+ = F U
U
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For k = km,the term L,k_.%vijkh[,an+ 1 __ (D_{11)becomes

b _ n+l n+l , L
km[ ¢ijkm - _ij km+l ) = -bkmh 0z0-P-=-bkmh Fij (A-49)

For k = kn_+ 1,the term "km'Vijk-l'_(ran + 1 -- q)ijkn. z) becomes

/¢n+l n+l \ = F U
akm+l _ ijk m - ¢ij km+l ) -h akm+l 1j (A-50)

These same boundary conditions must be applied to the corresponding terms for q_nas well. On the wake for i > il,
to satisfy the continuity of the normal derivative across the wake, we must add for k = kmthe terms

b / n+l n+l n+l n+l )= L / n+l n+l ._ _ + Ukm[¢ijkm + L ^ n+lkm[¢ij km ij km+l Ca ¢U - ¢ijkm+l ) Ukm,,Cij (A-51)

where A_0= (Pc q_a"Similarly, for k = km + 1we have

/ n+l _ n+l _ + A n+l
akm+l [¢ij km ij km+l ] akm+l_¢ij (A-52)

Equations (A-51)and (A-52) are applied to q0"as well.

For all k, the boundary conditions on the Upstream boundary require the following modifications of the coeffi-
cients. When i = 2,

DIAG(K) =DIAG(K) + c32 Ckl

n _ n --
RHS(K) =RHS(K) - c32 fll(¢2jk ¢ljk Ckl) (A-53)

On the lower boundary, for k = 2

DIAG(2) =DIAG(2) + Ck4*SUB(2)

RHS(2) : RHS(2) - SUB(2)*ill( _nj2- -Ck _njl)

SUB(2) =0.0 (A-54)

On the upper boundary, for k = kma x - 1 = KMAX1

DIAG(KMAX1) =DIAG(KMAXl) + SUPER(KMAXl)*Ck5

RHS(KMAX1) : RHS(KMAX1) - SUPER(KMAX1)*fll(¢n. _-_k5 nj kmax )J kmax-1

SUPER(KMAX1) = 0.0 (A-55)
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For the wing boundary conditions at k = km, we have

DIAG(KM) =DIAG(KM) + bkm

, SUPER(K) = 0.0

..+ _ n. F L
RHS(KM)=RHS(KM)-bkmhFLlj _l[bkm(¢njkm 1Jkm+l) +bkmh ij] (A-56)

Forthe wingboundaryconditionsat k = km+ 1,wehave

DIAG(KMP)=DIAG(KMP)+akm+l

SUB(KMP)=0.0

RHS(KMP) =RHS(KMP) - fll[hL akm+l FU + cn nij akm+l ( ijkm - _ ijkm+l)] + akm+lh FU'" (A-57)D

For the wake boundary conditions, at k = kmwe have

= + b ' A n+l../31A_onj)RHS(KM) RHS(KM) km[ _ij

RHS(KMP) = RHS(KMP) - akm+l \f A_'n'+lJ1 _ fll A_nj_11 (A-58)

A.8 PROVISION FOR THE SYMMETRY OF THE STEADY FLOW

When the steady flow is symmetric and

F U = F L (A-59)
ij ij

then the unsteady potential is antisymmetric, and we have

_ijkm+l =_ ¢ijkm

_ijkm+2 =- _ijkm.1 (A-60)

These may be employed as boundary conditions, and half the matrix can be solved with a considerable saving in
computing cost.

In place of the boundary conditions forK = KMAX1 (kmax -1),we apply boundary conditions for k = km.
Thus the asymmetry conditions yield fork = kmand for i >_ioand i < i1,

DIAG(KM) = DIAG(KM) -bkm

SUPER(KM) =0.0 (A-61)
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A.9 EXACT EQUATION SOLVED BY THE ADI METHOD

The ADI method of relaxation leads to a complex potential in much the same way as the block relaxation
procedure that is used to solve the harmonic oscillation equation. The time step At is irrelevant to the solution,
but its use leads to truncation errors which are of the order of At. To find the differential equation solved by the

ADI method, we add equations (A-5), (A-6),and (A-7). Weobtain

( n+l_2B1 _n +fll2_n'l)/(_At2) -2_x(_n+l-fll_n)/(_At)

=6x(U6x, a)/2+fll6x(U6x n)/2+6yy( £+fll n)/2

+ 6zz(_pn+l+ fll_n)/2 (A-62)

Let _0n+1 = _0n= _0,then the differential equation can be recognized as

4(1 - ill) 2(1 - ill)2
(U_x)x + + - _x + € =0 (A-63)

Cyy Czz (1 + ill) _At _At2( 1 +ill)

Letting At-- 0 yields the classic unsteady equation for the perturbation potential.
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APPENDIX B

DERIVATIONOF THE ADI DIFFERENCE EQUATIONSFOR
SWEPT AND TAPERED WINGS

B.1BASIC COORDINATE TRANSFORMATION

In analyzing swept wings, it is convenient to use a coordinate transformation in which the leading edge
and trailing edge are defined by single values ofthe streamwise coordinate. The partial differential equation for
time-dependent transonic small perturbation flow is given by

(2¢xt + Ctt)/_ = (UCx)x + Cyy + Czz (B-l)

This equation is the classical form of the transonic small perturbation equation and doesnot include the higher
order swept wing terms. (Toobtain the basic steady state potential, _0othese higher order terms must be included
to locate correctly the shock wave.)

A coordinate transformation, which meets the foregoing criteria, is shown in figure B-1and is described by the
following equation,

: [x - XLE(Y)]/S(y) - 1

,7=y

= z (B-2)

where S(y)is the semichord of the wing cross section at the spanwise location y. Then

¢X = ¢_/S Cy = (€_: _:y + Cr/)

Cz =¢_ (B-3)

The differential equation (B-l)becomes

(2¢_t/S+¢tt)/_-l(u¢_/S)+'_y--a_)_(¢_(y-_ + Cr/) + 0_-_-(6_: _:y+ 4).)+ €_ (B-4)

Multiplying by S yields

(2¢_t + SCtt)/( : (u¢_/S)_: + _:y[S(¢_: _:y+ ¢7)]_:+ S _-_-(€_ _:y+ ¢7) + S¢_ (B-5)

The second and third terms from the last can be combined to obtain a conservation form ofthe differential equa-
tion. Thus

(2€_t + SCtt)/_ = (u¢_/S)_ + [S_y(€_y+ ¢7)]_+ [S(¢_:y + €7/)]r/+ (S€)_ (B-6)
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For convenience, we define the following quantities

X = S_y(¢_y + €_) (B-7)

Y =S¢_y (B-8)

Then the differential equation becomes

(26_t + SCtt)//_ = (u€_¢_)_ + X_+ Y + _(S¢_) + _ (S€_) (B-9)

Following Borland, Rizzetta, and Yoshihara (ref.17)we construct an ADI procedure for the solution of this differ-
ential equation. We obtain

For the _ sweep:

(2/_)_-_(¢aACn).=6_[(u/S)(¢ a+ ¢n)/2]

+ _ (S6 €n) + St_¢ n + t}_Xn + 6 Yn (B-10)

For the _ sweep:

[(2/(_ At)] t_'_(¢_- Ca)= _ [S(t_¢ _'- _¢n) ]/2 (B-11)

For the _sweep:

[(2/(_ At2) ] (¢n+l _ 2¢n+ €n-l)+ [2/(_ At)] _- (¢n+l _ CX) =S_(¢n+l _ cn) (B-12)

As in the rectangular wing, we represent the nth approximation and the intermediate approximations between
the nth and n + 1st in the form

¢n=e ino_At n, ¢_.=e-i(n+l)_At £

Ca =ei(n+l) oJAt _

Substituting into equations (B-10),(B-11),and (B-12),we obtain the following equations:

For the _ sweep:

[2/(_At)]_( a_fll, n)=6,[(u/S)_,(,a+fll n)]/2

+ fllt_ (S_ _n)+ fll6_(St}_n)+ f116,xn + fll_Y n (B-13)
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where Xn = S_n(5_"_n + 8_(pn)and Yn=$5_(_). Writing the equation with q_ on the left hand side yields

+ 5_[(u/S)5_€ n]/2+ 8 ($8 Cn)+ $8(_€n+ 6_xn+ 6 yn} (B-14)

For the 11sweep:

[2/(_ At)] 6_( X _a) =_[S(8_ x- fl16_ n)]/2

Writing the equation with (p_on the left hand side yields

[2'(_ At)]_ X- 8r/(S_r/_X)'2-- [2/(_ At)] tt_ _- fll(S_r/_n),2 (B-15)

For the _ sweep:

[S/(_ At)] (_n+l_ 2fll_n + fl_n-1)+ [2/(_ At)]_(_n+l _ _)=S_(_n+l _ fll_n)

writing the equation with _n .* on the left hand side yields, after dividing by S,

6_€n+1/2 _ ,_n+l/(_ At 2) _ [2/(_ At S)]_€ n+l

=fill _ _n/2. [1/(_ At 2) ](2_ n- fll_n'l)] - [2S/(_ At)] _'_X (B-16)

In the _ sweep, when we replace u by _ = u/S, then the terms 6_(g6_) are the same form as the unswept
coordinate system. Similarly,

n _ ¢n _ n
t_(SSvCn)/2=ajSj - 1/2(_Pij-lk ijk)- bjSj+ 1/2(¢njk ¢ij+l k) (B-17)

In the _ and q sweeps, replacing

ajSj_//2 =aj

bjSj+ //2 =bj (B-18)

the term 5,($5_ ") becomes

2_j(_nj.lk - _pnjk)_21_j( n _ _n
(B-19)

ijk i j+l k.
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The difference equations for the _sweep become

C o_ _ _ - _ q_o_
3i( € ijk € i-1jk) -ciui+l J( € i+1jk- ¢_'jk) +diffiJ(Ca -ijk i-1jk.

=/31[c3i( njk_ n - n _ ni-ljk) +ciui+l J(_ i+ljk _ ijk)

n _ n _n
- diffiJ (€ ijk € i-1 jk) + 2ffj(,_ j-I k ijk)

_ n _ n
- 2b-j(_pnjk _i j+l k) + 2akSj( nj k-1 ijk)

_2bk( njk - n + +t_7?yn]ij k+l) /5_Xn (B-20)

wherec3i= 2/[_ At(Xi -Xi.1)].Thedifferenceequationsforthe _sweepofthesweptwingdifferin formfromthe
rectangular version only in the factor Sjmultiplying ak and bk and the addition of the cross terms,
8_Xn-8nyn.

We requirethedifferenceformofthederivatives,6_Xn + 6nYn,fortherighthandsideoftheequations.
WithC4_j])= _ywe have

i_xn =6_[SG(G6_pn + 6_?€n) ] = 6_(SG28_¢n)+ i}_(G6_¢n)s (B-21)

The first term is the same form as 6_(_6_0n),with G2 replacing u, and can be easily written down. The Y- term is

/_Yn =/_,?(SG_n) (B-22)

From reference 1, the second order difference for 6gis seen to be given by

8_ lijk =eli(_i+ 1 jk - _ijk) + dli(_ijk - _i-1 jk) (8-23)

where cli and dli are defined on page 40 of reference 1. Similarly, we write

6_ =elj(¢i j+l k - _ijk) + dlj(_ijk - _1 j-1 k) (8-24)

where the subscript j denotes that % is defined in the same way as cxibut with the variables yj.
Combining the two difference equations, we obtain for the cross derivative term

i_[GSn_] =CliGi+l jHi+l jk - (c lj - dli)GijHijk - dliGi-1 jHi-1 jk (8-25)

where Hij k = cij (q)ij + lk - (Pijk) + dlj (q)ijk - q)ij-lk)

Similar results may be written down for 6,[SG6_q_].No special application of boundary conditions is required
since the boundary values of_0are calculated from the boundary conditions at each sweep.
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Similarly, we obtain for the _ sweep

- e3i('P_jk X _ a _ a- i-ljk): e3i( _ijk i-ljk)

+_[_j(n. _-nj_)__-j(%_nJ+_0] _
This is seen to have the same form as the rectangular wing version.

Finally, the _sweep becomes

a ! n+l n+l b ! n+l n . n+l
k_ijk-1 ijk )- kk¢ijk-_ijk+l)-- r_1,_ijk

/ n+l n+l \
- _jc3i[_ijk - _i-1 jk}

=fll[ak( nj nk-l- _ijk) - bk(_njk- _ ij k+l)

_(%- _kl)]-_jc_i(_ -_ijk i-1 jk) (B-27)

This has the same form as the rectangular version except c3iis replaced by Sjc3i.

B.2 WING AND WAKE BOUNDARY CONDITIONS

The wing boundary conditions are ofthe general form

_z = f° (x) + i o_fix)

where z = 5f(x)ei°'t is the motion of each cross section. In terms of the variable _, this becomes

'Pz = f° (0_x + i _ f(D

Since

_= (X- XLE)/S- i

then

_z = f" (_)/S + i _ f(_) (B-28)

This differs from the rectangular version in the term Sj dividing the slope f_(_).For the boundary conditions on
the wake, we have

or ACx +i °Jzx_= 0

A_+ i _ S A_ = 0 (B-29)
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In the wake boundary conditions, the reduced frequency is replaced by the product of reduced frequency and Sj.

B.3 MESH BOUNDARY CONDITIONS

On the upstream boundary, the condition for outgoing plane waves is

Cx - MCt/(1-M). =0

In swept wing coordinates this becomes

¢_ - MSct/(1-M) =0 (B-30)

This is the same form as the rectangular wing version except for the factor of the semichord on the quantity
M/(1-M).Hence the parameter Ckl now depends uponj. We then have for the boundary conditions

n+l -_ n+l n
_°ljk - t_klj_°2jk fll(_°2j k -- n+ - Cklj,Pljk/ (B-31)

where

Cklj =(_2 - El) MSj/(1-M)At

Ckli : (1- Cklj)/(1+Cklj) (B-32_

Similarly, for the downstream boundary

¢_ + MS€ t / (I+M) =0

This leads to

n+l _-_ n+l n -- n
_° _ . m

,maxJk t_k3j_°imax-ljk + ill( _ imax-ljk Ck3j 'p imaxJk) (B-33)

where

Ckaj : (1- Ckaj)/(1+Ckaj)

Ck3 j =MSj(_ima x - _imax_l)/(l+M) At (B-34)

B.4 CONDITIONS OF SYMMETRY AT THE ROOT CHORD PLANE

At the root chord plane y = T1= 0, we apply the condition of symmetry given by

_y=O

Inthesweptwingcoordinatesystemthisbecomes

_Y + _'7=0
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We let G(_J1)= _yand letj = 2 be the plane ofsymmetry y = 0. In difference form, the conditions ofsymmetry at
the point xi become

Gi2( X _ _ _ x_i2j _-12j)/( _i _i-1)+( x'Pi3k ilk)/(_3 - 71)=0 03-35)

Hereweusebackwarddifferencein _sincewesweepin thedirectionofincreasingi.Since1"11= "q3,wedefine

c4i =Gi2(_3- 'l)/(_i- _i-1) =2_3Gi2/(_i- _i-1) 03-36)

The boundary condition then becomes

e4i( _ _ h )+ h _ h =0i2k €i-2k _i3k €ilk

from which

h h _c4i(_ _ h )ilk = _ i3k 2k _ i-1 2 k 03-37)

For the outer boundary condition, we have

Cy+VrK- MCt/(1-M2) =0

In swept wing coordinate, this becomes

¢_Y + €7 +_-KMct/(l'M2) = 0 03-38)

We write equation 03-38) in implicit difference form, forj = Jmax - 1. We obtain

cn+ '/2 _ cn+ 1//2

[ .n+ 1/2 jlk/2 _ ij+l k ijkGijk¢ijk _ cn_. )/(_i _i-1) + Oj+l- _j

+ _--M , n+l _ cn
(I_M2)At (¢ij+ 1/2 k lj+ 1/2 k) =0 03-39)

Let e2i =Gi Jmax.l(OJmax - _Jmax.1)/(_i- _i-1)

and Ck2 =MV_-(OJmax VJmax.1)/[(1-M2)At]

then the boundary conditions become

n+l n+l + fll ne2i('_jk 1+fll'_'jk - _i-1 jk -/31€n-1 jk) + _i j+l k j+lk

n+l ,_ [ n+l +n+l_ n _
-_ijk-/31_njk+_k2_ij+lk ijk Bl_ij+l k fll_njk)=0 (B-40)
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Rearranging the terms leads to

cn.+l =(-Ck2- _ "" n+l - n+l1Jmax k 21)€i Jmax-1 k + c2i€i.1 Jmax.1 k

cn k ] (B-41)fll[_2i (¢njmax "lk iJmax-2k) -- n _ n- - +Ck2¢iJmaxk qiJmax-1

where c2i = c2i/(l . Ck2)and Ck2 = (1-Ck2)/(1 + Ck2).

The boundary conditions on the wing and the wake are treated in the same way as for the rectangular

wing, with the additional factor of the semichord as described in the preceding section. The boundary
conditions on the outer _ mesh boundaries are unchanged from the rectangular wing since the _variable is
unaffected by the swept wing transformation.

B.5 DERIVATION OF THE SWEPT WING TRANSFORMATION

Toillustrate the method ofderiving the swept wing coordinate transformation, we consider the simple swept
tapered wing whose leading and trailing edges are straight lines. Let 0swbe the swept angle ofthe leading edge and

•R be the taper ratio. Then the x coordinate ofthe leading edge is given by

XLE = -1 +y tan 0sw (B42)

For the trailing edge, we write

XTE = 1 + by (B-43)

and determine b so that at y = Yt(that is, at the tip), the chord of the wing is equal to 2R. We then obtain

b =2(R- 1)/y t + tan 0sw =2C 2 + C 1 (B_I4)

where

C2 =(R-1)/y t and C 1 =tan 0sw. (B45)

Because of the slope singularity in the pressure at the wing tip, the tip is placed halfway between grid
points in the spanwise direction. The grid lines which coincide with the leading and trailing edges of the wing
are extended beyond the last spanwise grid point on the wing planform, j = js, using a quadratic to preserve
continuity of slope. At a point midway between the wing tip and the intersection of the linear extensions of the
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edges, Ym,the slopes of the edge coordinate lines are both set equal to the average of the edge slopes at the tip.

The edge coordinate lines are extended beyond the point Ymin linear fashion. The point of intersection ofthe edge
extensions is found by setting XLE----XTEin equations (B-42) and (B-43).

y = - 1/2C 2 (B-46)

Let Yjmbe the grid value ofy for which

Yjm <-1/4C2 < Yjm+l (B47)

Thus forj < jm, we define

XLE = -1 + Cly + bl(y-Yjs) 2

= 1 + (C 1 + 2C2)Y + b2(Y - Yjs)2XTE (B-48)

The coefficients b1and b2are determined so that at y = Yjm,

--[cl. (cl. 2c2)]/2:cl . c2
This leads to two equations forbI and b2which yield

b2 = C2/2(Yjm - Yjs) :-bl

Beyond y = Yjm,the trailing edge and leading edge are given by

XLE = -1 + ClYjm + bl(Yjm - Yjs) 2 + (C 1 + C2)(y - Yjm)

= 1 + (C 1 + 2C2)Yjm + b2(Yjm - Yjs)2 + (C 1 + C2)(y -XTE yjm)

In summary, we have, for0 < y _<Yis,

XLE : -1 + Cly (B-49)

XTE = 1 + (C 1 + 2C2)y (B-50)

S(y) = (XTE - XLE)/2 = 1 + C2y (B-51)

for Yjs -<Y--<Ysm,

XLE = -1 + ClY - C2(y - Yjs)"/2(Yjm - Yjs) (B-52)

XTE = 1 + (C 1 + 2C2)y + C2(y - Yjs)2/2(Yjm - Yjs) (B-53)

S(y) : 1+ C2Y + C2(Y - Yjs_2/2/Yjm,\ - Yjs) (B-541
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and for y > Yjm,

XLE = -1 + ClYjm - C2(Yjm - yjs)/2 + (C 1 + C2)(y - Yjm) (B-55)

XTE =1 + (C 1 + 2C2)Yjm + C2(Yjm - Yjs)/2 + (C 1 + C2)(y - Yjm) (B-56)

S(y) = 1 + C2Yjm + C2(Yjm - Yjs)/2 (B-57)

The transformation is given by

_:(r/)= [x - XLE(U)]/S(_7) - 1 (B-58)

The mapping function required at every grid point is

G(_,_?)=_? = - S" (_?)(_+ 1) - X"LE/S(_7) (B-59)

where X'LE and S' are found by differentiating the expressions in equations (B49) through (B-57)).

B.6 ELIMINATION OF SLOPE DISCONTINUITY AT PLANE OF SYMMETRY

Some discontinuity affects at the line of symmetry can be alleviated by making the lead and trailing edges
bend normal to the plane of symmetry. Forj >_4, the coordinates of the leading and trailing edges are described
in the foregoing section. The portion of the leading edge forj = 2 toj = 4 is fitted to a quadratic ofthe form

XLE =XLE(0) + ay 2 (B-60)

The quantity a is determined to match the slope atj = 4. Hence,

a =C1/2y 4

Thus atj = 2 or 3 we have

XLE = XLE(0 ) + Cly2/2y4

We determine XLE(0 ) SO that at y = Y4,XLE matches the known value, XLE4. ThUS

XLE(0 ) + CLY4/2 = XLE 4

and we finally obtain

XLE : XLE4 - CI(Y 4 - y2/y4)/2 (B-61)

Similarly,

XTE= XTE 4 - (CI+ 2C2)(y 4 - y2/y4)/2 (B-62)l\ ]
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We see that

S(y) = S(Y4)- C2(Y 4 - y2/y4)/2 (B-63)

Equations 03-61)through 03-63) replace equations 03-49)through 03-51)forj = 2 and 3. For larger sweep angles,
the region should contain more than j = 2 to j = 4 to adequately represent the geometry in the differencing.
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APPENDIX C
REVISED DIFFERENCE OPERATORS

C.1 THE _tt OPERATOR FOR A CHANGE IN TIME STEP

The. differencing in the equation for the x and y sweeps remains unchanged when the time step At is
changed. In the z sweep, the only term which is affected is the second derivative with respect to time. Let the
time step between the n-1and the nth approximation be Atoand between the n and n + 1st approximation be Ate.
We express the time derivative in difference form as

acn+l + ben + ccn'l =Ctt

and expand the equation about the nth approximation. We then determine a, b, and c so that the left hand side
gives (_tt at the nth approximation. Thus we obtain

At2 + c[€- at0¢t + --_-¢tt + "'" ] =Cttale+ atlCt + ---_-¢tt + ""]+ be At2

Equating coefficients on the right and left sides ofthe equation yields

a+b+c=0

aAt 1 - cAt 0 =0

aAt_+ cAt_ =2

Solving the last two equations simultaneously yields

a =2/[Atl(At 0 + At1) ]

c : 2/[At0(At0 + atl)]

from which we obtain

[1,]b=- (At0+At 1) _i+_Xt_

IntroducingthevariableR = AtJAtoandEo = (i+R)/2R,EI= I/[aEoAtl2];then

t_tt¢/e =Eli€ n+l - 2EoR¢ n + Re n'l ]
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C.2 SECOND ORDER BACKWARD DIFFERENCE FOR _x

For the first derivative with respect to x at the point xi, we write

a(_°ij- _°i-lj)-b('_i-lj- _i-2j) = _x

Expanding about the point xi, we get

AXl2"[_-_*_X_x--r-_xx,.-.]

Ax_ Ax2)2xx-b[_-_Xi_x+-€_xx+...._+(AXl*_x2)_x-/_xi*_. ""']=_x
where AxI = xi -xi.1and AX 2 ---- Xi. 1 - Xi.2. Setting the coefficient of _0x on the left hand side equal to unity and the
coefficient of _0xxequal to zero yields

a Ax 1 - b ax 2 =1

a Axe+ b[ax_- (axl+ Ax2)2]=0

We solve the two equations simultaneously for a and b and obtain

a: (2 Ax 1 + Ax2)/[Axl(AX 1 + ax2) ]

b : Ax1/Ax 2 (ax 1 + ax2)

Writing

e3i(_ij- _i-1 j)- d3i(_i-1 j - _i-2 j) "=-_x

yields finally

c3i = [2(x i - xi.1) + xi_1 - xi.2]/[(x i - xi.2)(x i - xi.1) ]

d3i = (x i - xi.1)/[(xi- xi.2)(xi. 1 - xi.2) ]
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APPENDIX D
SHOCK BOUNDARY CONDITIONSFOR THE ADI METHOD

Shock boundary conditions were derived by Hafez, Riszk, and Murman (ref. 37), by Williams (ref. 38), and
by Seebass, Y.u,and Fung (ref. 39).The results were reported in reference 6 and extended to harmonic motion for
application to the direct solution of the difference equations. The condition that the potential be continuous
across the shock is given by

[_] =0

where [ ]denotes the jump in the quantity across the shock. The condition ofcontinuity of mass across the shock
from equation (A-H)of reference 7 is

2 0X
T 8--_ + _k - (_/+ 1)_ = 0 (D-l)

where < > denotes mean value of the quantity at the shock. We now expand the shock conditions about the

steady location Xo, with the shock position at time t being given by Xo + aXr Then continuity of the potential
across the shock becomes

[€]= [_0 + a_ 1]+ aXl[_0x + a¢lx + ""]

(D-2)

[_1]+ X1 [_0x] =0 (D-3)

Similarly, expanding equation (D-l)yields

2a 0X 1
at + _k-(6+l)[¢0x+a_lx+axl(¢0xx+a¢lxx) + " " " ]_=0 (D-4)

Equating the coefficients of each power of a equal to zero yields

_k -(_+l)_0x_ =<u> =0 (D-5)

2 aX 1
at - ( 6 + 1) _ €ix + xl¢oxx_ =0 (D-6)

Eliminating X1by equation (D-3)yields

2 0[_1] +(_/+l)[_:Ox]< > (_/+i)< > [_1]:0 (D-7)7 8t _lx - _0xx

Since K- (y+ 1)(POx= u, we have

O[_1] -[u]<¢ix>+<Ux> [€i]:0 (D-8)
2

at
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In implicit difference form, this becomes

2
At[_1]+<Ux>[J1]/2- [u_<_ix>/2

In terms of the variables on the grid, we write

C03 = [u] =ui+ 1 j - uij

C01 =2/(_ At)

C02 =< Ux> (D-10)

From the equation following (A-22) of reference 7, we have

C02 = uij - Ui'lj + ui+2j - Ui+lj (D-11)
xi-xi. 2 xi+2 - x i

Then the equation becomes

(Oo1.Oo_,_)[_1]-%<;_x>,_=_1{(Oo1-Oo#_)[_]+Oo_<_x>/_} ('-">
We now express the jump and average values across the shock in terms ofthe values of It at the grid points

for the point xi for which ui. 1j _"0 and uii < 0. Wehave

V1] =_ij - "_i-1j (D-13)

_'_lx _ = 1{ _°i+lj"_iixi+l xi + _°i'lj-_i'2J}xi_lxi-2 (D-14)

We let Co4 = Co3/4(xi. 1- xi) and Co5 = Co3/4(xi.1-xi.2).Then we get

(C01 + C02/2)('_ij - "_i-1j) - C04('_i+l j - "_ij) - C05('_i-1 j - "_i-2j)

=ill[ (C01- C02/2)(_°nj - _°n.1 j)+ C04(_°n+1 j- _°nj)

( n _ n )]+C05 ¢i-lj €i-2j (D-15)

This equation replaces the difference equation in the x sweep.
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APPENDIX E
A CONJUGATE GRADIENT ALGORITHM FOR

ASYMMETRIC INDEFINITE COMPLEX MATRICES

In this section, we present a conjugate-gradient-type algorithm for unsymmetric complex matrices. The
algorithm has an asymptotic convergence rate inversely proportional to the square root ofthe condition number
of the coefficient matrix and does not assume the coefficient matrix to have any special property other than
nonsingularity.

In section E.1, we shall present the principle ofthe classical conjugate gradient method. In section E.2, we
shall present our algorithm and related theories.

E.1 DESCRIPTION OF THE CONJUGATE GRADIENT METHOD

Suppose we are interested in finding the solution x ofthe equation

A x = b (E-l)

In the case that A is symmetric (or Hermitian in the case ofcomplex matrices) and positive definite, the k-th step
ofthe classical conjugate gradient method finds an approximate Solution xkfor equation (E-l),so that the norm of

the residual r k is minimum in the space spanned by the vectors {Av1,Av2, ..., AVk} , where vl, v2..... vk are
orthonormal vectors, that is, (vi, vj) = 0, for i € j, and the lengths of the vi's are equal to one. These orthonormal
vectors are the backbone of the conjugate gradient method, and xk is a linear combination of these vj's.

Provided these vj's can be computed easily, there is a whole class of algorithms which minimize the norm of
the residual in the vector space spanned by Av1,Av2, ... Avk in the k-th step. These algorithms can be considered
as variants of the classical conjugate gradient method. Among these are the conjugate residual, the modified

conjugate residual, the variational method, SYMMLQ (Conjugate gradient method with LQ factorization for
symmetric indefinite system), LSQR (Conjugate gradient method with QR factorization for least squares prob-
lems, A*A x = A'b, where A is rectangular matrix), etc. Chandra (ref. 33)gave a detailed comparison ofthe ones
applicable to symmetric matrices.

For the sake of completeness, we present the classical conjugate gradient algorithm:

Algorithm 1.Classical Conjugate Gradient

Step 1: Choose xo
Compute r o = b - Axo
Set Po = ro

ao = (ro,ro)/(po,Apo)
x1 = xo + aoPo
r 1 = ro -aoApo

Step 2: Compute
ai = (ri,ri)/(pi,Api),
x i + l = x i + alP i,

ri + 1 = ri - aiAPi

bi = (ri + 1, ri + 1)/(ri,ri )

Pi+l = ri+l + biPi
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Step 3: Ifr i+ 1is small enough, terminate the iteration; else set i = i + I and go to step 2.

The vectors Piare orthogonal to each other, although they are not unit vectors. The vectors vimay be constructed
by normalizing Pi.

In section E. 1.1, we shall discuss orthogonalization. In section E. 1.2, we shall discuss solution of equation
(E-l) based on the orthonormal vectors.

E.I.1. ORTHOGONALIZATION

There are two classical orthogonalization processes for solutions of different numerical linear algebra
problems.

First, there is the Lanczos' orthogonalization process for symmetric (or Hermitian) positive definite
matrices. This process is computationally very efficient and extremely economical because it only requires the

presence of vk and Vk.1to compute vk+ 1. If we let Vk be the matrix whose columns are vl, v2..... vk, then the
Lanczos' orthogonalization process at the k-th step has performed the following decomposition:

(Vk*)AVk = Tk (E-2)

where T k is a tridiagonal matrix.

More general for asymmetric matrices is the Gram-Schmidt orthogonalization process. This procedure
does not have the computational efficiency ofthe Lanczos' process. To find the vkvector, it requires presence of all

the vj's computed before. At the k-th step, the Gram-Schmidt orthogonalization process performs the following
decomposition:

(Vk*)AVk = Rk (E-3)

where R k is an upper triangular matrix. When the dimension of A is large, we see that the Gram-Schmidt proc-
ess is computationally infeasible.

The new algorithm we present here involves finding two sets of orthonormal vectors U and V. Similar to

the Lanczos' process, it only requires the presence OfVk.1and vk, and Uk.1and ukto compute vk+ 1and uk+ _.The
k-th step of our algorithm performs the following decomposition:

Uk*AVk = Tk (E-4)

EJ.2 COMPUTATION OF THE APPROXIMATE SOLUTION

Note that the second equation of Step 2 in Algorithm 1computes the (i+ 1)-thapproximation ofthe solution.
The vector Pi is sometimes called the directional vector. Other approaches proposed by Paige and Saunders (ref.
40), Bunch and Kaufman (ref. 41), and Chandra (ref. 33) to extend the classical conjugate gradient method to
symmetric (Hermitian) nondefinite problems have been motivated by the following observation:
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Let A be a symmetric (Hermitian) positive definite matrix. In the k-th step of Lanczos' orthogonalization
process, the following matrix decomposition is performed:

Vk*AVk = Tk

If we choose vI = ro/[[ro[[,then xkin equation (E-5)below is mathematically the same as the approximation
to x in the k-th iteration of the classical conjugate gradient method:

TkYk = [[ro[[el (E-5.a)

and

Xk = Xo+ VkYk (E-5.b)

(e_is the vector with 1in its first entry and zeroes everywhere else.)

Of course when A is symmetric (Hermitian) but not positive definite, the above statement is no longer true;
but one can still solve equation (E-5)to obtain an approximate solution.

We have found that solving equation (E-5.a) by an LQ factorization (where L is lower triangular and Q is

orthonormal) is numerically much more stable than generating directional vectors for the approximation OfXk'S.

Thus there are two features in our new algorithm that are distinct from the classical conjugate gradient:

1. A new way of generating orthonormal vectors.
2. A tridiagonal system by an LQ factorization to obtain an approximation to the solution.

EJ.3. TRIDIAGONALIZATION ALGORITHM FOR UNSYMMETRIC MATRICES (USYMLQ)

As stated in section E.1.2, the k-th step, k = 1,2, ... of the algorithm to be described in this section involves
the following decomposition:

Uk*AVk = Tk

where Uk and Vk are matrices whose columns are orthonormal and Tk is a tridiagonal matrix. We shall first
describe our process with which we generate the orthonormal vectors, the Uk'Sand the Vk'S:

Algorithm 2 (Tridiagonal Process)

(a) Set uo =0,
_1ui = b, Yivl = c

(5)

(5.1) p = Au i - _iUi.1

(5.2) q = A*u i - _iVi.1

(b.3) _i = u*ip i = 1,2, 3....
(5.4) _i + lUi + 1 ---- P- (_iUi

(5.5) _i+lVi+l = q- (X'iV i
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where b is the right hand side vector ofthe matrix equation we want to solve, and _i and 7iare chosen so that the
vectors ui and viwill have norms equal to 1.We shall discuss the choice ofc later in this section. For the moment,
let us set c = b. The process terminates when _i or 7i equal zero.

In the rest of this section, we shall give an overall picture which relates the k-th approximate solution xkto
• the k-th step. ofAlgorithm 2. If we substitute (b.1)and (b.2)into equations (b.4) and (b.5) respectively and let U k

and Vk be nxk matrices whose columns are respectively the ui's and the vi's obtained from the first k steps of
algorithm 2, and if we define a tridiagonal matrix Tk as

_2_2 7a
Tk = _3""""

"'" "'" "_k

_k _k

where ui, _i, and 7iare defined for each i in equation (b),then the first k steps of Algorithm 2 can be written in the
following matrix equations:

AVk = CkWk + _k + lUk + lek w (E-6.a)

A*Uk -- VkWk* + 7k+lVk+lek w (E-6.b)

where ek is a vector of length of n with 1at the k-th entry and zero everywhere else. Multiplying (E-6.a) by an
arbitrary k-vector, Yk, whose i-th element is _, we obtain

AVkyk = UkTkyk + 6k+lUkekWyk

Since b = Uk(_le1)by definition, then ify k and xk are defined by the following equations

TkYk = 61el (E-7.a)

Xk = VkYk (E-7.b)

then we shall have

Ax k = b + 1]k_k+lUk+ 1

Hence xkmay be taken as an approximation to x, and will solve the original system ifTlk_k + 1is negligibly small.
The above arguments are not complete, but they provide some motivation for defining the sequence of vectors xk
according to equations (E-7.a) and (E-7.b).

fix k is as defined in equation (E-7), then the residual rk will be

rk = b- Ax k (E-8.a)

= UR+1(61el- SkYk) (E-8.b)
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where

If we define tk = _1el- Uk.lSkYk, then r k = Uk+lt k, and [[rkll----IItkll,assuming Uk. 1has been computed by
exact arithmetic. Hence it is natural to solve the least square problem

° ,

min 1[_lel - TkY k11 (E-9)
Yk

which is the basis for USYMLQ. Computationally it is advantageous to solve this problem by the standard LQ
factorization (see Paige and Saunders ref. 42).

In this section, we have given a brief discussion ofthe motivation behind the algorithm USYMLQ. We shall
go into greater details concerning the theoretical and computational aspect of the algorithm.

E.2 THE VECTORS OF ALGORITHM 2

In section E.2.1, we shall discuss the properties of the vectors uk and vk generated by Algorithm 2; in sec-

tion E.2.2, we shall discuss the possible choices for the initial vectors uI and v1;in section E.2.3, we shall discuss
in detail the LQ factorization. The arguments used for the proofs of the theorems in these sections are based on
basic linear algebra tools such as linear independence, minimum polynomial, etc. These sections are included
for the sake of completeness.

E.2.1 PROPERTIES OF THE VECTORS Uk AND Vk

This section describes the theory governing the vectors ukand vk generated by Algorithm 2.

Wedefine the symbol ( x1,x2..... xn ) as the vector space spanned by the vectors Xl,x2,..., x,: The following
theorem summarizes the properties ofu k and vk which are generated by Algorithm 2. It is proved by induction.

Theorem 1. The following four statements are true:

1) Uk*U k = I
Vk*V k = I

2) U2kis a linear combination of vectors in the vector space
U2k = ( b, AA*b .... , (AA*)k-lb,Ac, AA*c..... (AA*)kIAc)
U2k_lis a linear combination of vectors in the vector space
U2k+l = ( b, AA*b ..... (AA*)kb,Ac, AA*c, ..., (AA*)k-IAc)
V2kis a linear combination ofvectors in the vector space
Y2k
= ( c, A*Ac..... (A*A)k-lc,A'b, A*Ab ..... (A*A)kIA*b)
V2k+1is a linear combination of vectors in the vector space
Y2k+l

= (c, A*Ac..... (A*A)kc,A'b, A*Ab ..... (A*A)kZA*b)
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3) Let A = I:IDV*be the singular value decomposition ofA; that is, !:l and V are orthonormal matrices, and D is
a positive and real diagonal matrix: D = diag(dl ..... d,) and let

n

b = E1'= h i 1]i,

ki vi,i=1

where the h i and the k i are scalars, fii is the i-th column of the matrix 121and _'i is the i-th column ofthe matrix
V. Ifb = c, then the following is true:

n n

U2k---- ( _. hilJ.i, i_ldi2hil].i,.. _ di2(k-1)hil_.i, _ dikifii ..... i_ldi2'k-l'+lkifii )i=1 "' i=1 i=1

S2k +1 = ( ,_1 hifii' _ di2hil]i ..... _ di2khil]i' _ dikil]i"" _ di2(kl)+ lkil]i )"= i=1 i=l i=1 "_ i=1
n n n n

V2k ---- ( ,Y:Ikiwi'= ,]_1di2ki_'i''= "'" i=l_ di2{kl)kix)i' ,Zldihi'¢i"= "'" i=lY:d2{kl)+lhivi' )
n n n n n

l_l ki_'i, lY:ldi2ki'¢i,..., _ lY'l _ d2_ka_+lh.-_.)V2k+l---- ( "= "= i ldi2kki_'i' '= dihi'¢i ..... i=l ' I l

Also if xk is generated by (E-7.a) and (E-7.b), then the k-th residual r k = b- Axk is in U k. r We use the
symbols ukand vk (without the hats) to denote the orthonormal vectors generated by Algorithm 2, and ukand vk
(with the hats) to denote the singular vectors of the matrix A.

4) If xk is computed by equation (E-7), and the residual vector rk is as defined by equation (E-8), then r k€ 0
implies uk. 1€ 0 and vk+1:€:0.

Note that parts 1)and 2) of the Theorem 1described the "Lanczos-like" Characteristics ofAlgorithm 2. Part
3) of Theorem 1implies that the asymptotic convergence rate of the conjugate-gradient-type method based on
Algorithm 2 is dependent on the square root of the condition number of A rather than the condition number

itself, as in the case of solving the normal equation A*Ax =A*b by the classical conjugate gradient method. Part

4) takes care of the case when Algorithm 2 terminates, that is, when uk or vk are zero vectors; this part of the
theorem asserts that in the case when the algorithm terminates, we have arrived at the solution.

We called the procedure ofcomputing the Uk'Sand the Vk'Sby Algorithm 2 and the Xk'Sby equations (E-7.a)
and (E-7.b) USYMLQ.

Proof ofTheorem 1

1) We prove the following statements by induction:

(ui,uj) = 0 for i<j (E-10.a)
(vi,vj) = 0 for i<j (E-10.b)
(Avi,uj) = 0 for i<j + 1 (E-10.c)
(A*ul,vj) = 0 for i<j - 1 (E-10.d)

When i =1, the statement is true by construction. Suppose the statement Js true for i =k; we show that it is true
for i =k + 1. By Algorithm 2,

_k + lUk + 1 = AVk - _kUk-1" 0[kUk
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Forming inner products with uj on both side of this equation, we obtain

[3k+l(Uk+1,Uj) = (AVk,Uj)-_/k(Uk.l,Uj)- _k(Uk,Uj)

Whenj < k-l, by the induction hypothesis regarding (E-10.a)and (E-10.c),we see that (uk+1,uj) = 0. Whenj =k, the
definition of _k and the induction hypothesis regarding (E-10.a),(uk+1,uj) = 0. As forj =k-l, we note that the last ..
line of part (b) ofAlgorithm 2 yields:

A*Uk. 1 = _/kVk -I- _kVk.2 -I- _kSVk.1

which again implies:

(Vk,A$Uk.1) = "_k(Vk,V k) + _k(Vk,Vk.2) "t- {2kg(Vk,Vk.1).

By the induction hypothesis regarding (E-10.b),the equality we just derived yields:

(Vk,A*Uk-1) = _/k(Vk,Vk ) = _/k

The properties of the inner product imply (Vk,A*Uk.1) = (AVk,Uk.1).Thus (uk+1,uj) = 0 whenj =k-1.Therefore we
have proved (E-10.a). The proof of (E-10.b) is similar and therefore will not be repeated here. By construction
(uk,uk) = 1and (Vk,Vk) = 1for all k. Therefore the proof ofpart 1)ofTheorem i will be completed if we prove (E-10.c)
and (E-10.d)above.

Note that Algorithm 2 implies

AVk+ 1 = _k+2Uk+2 4- _/k+lUk -[- {_k+lUk+l,

SO

(AVk+1,uj) = [_k+2(Uk+2,Uj)+ ?k +I(Uk,Uj)+ _k +l(Uk+1,Uj)

which equals zero when j < k. The proof of (E-10.d) is similar and therefore is omitted here. Thus we have com-
pleted the proof of part 1)of Theorem 1.

2) The proof of part 2) of Theorem 1is also by induction. When k =0, the statement in 2) is true by construction.
Now we assume the same statement is true for k and prove that it is true for k + 1.Note that for any non-negative
integer j,

uj c_U +l
vj gvj+l

A*Vj CVj+ 1
AVj Z Uj+I

Thus_k+lUk+I= AVk"_kUk-YkUk-1g Uk+rSimilarly,we canestablishtheproofregardingvk+r

3)ThesingulardecompositionA = UDV* impliesthat
AV = DO andA*U = DV

whichisequivalentto

A_j = dj_ andA*fij = dj_jforj=l, 2..
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Since

b= F. hjfij= Z kj4j,j=l j=l

n n

Ab = J=Z,kjA4j = jE+kjd_fij,

and

A*b = _. hjA*fij : _: hjdj+j
j=l j=l

Then

n n

A*Ab = j=l_-_kjdjA*fij = j__Zt kjdj2_)j

and

n n

AA*b = j__EhjdjAdfi"5 = j=Zhjdj2fij

Also

n

<A'A)kb : j__Zkjdj2k+j

and

n

(AA*)kb = _2 hjdj2kfij
j 1

Also note that

(A*A)kA*b = A*(AA*)kb = _: h:d:2kA*fi: =
n

Z hal. 2k+1+.
j=l JJ J j=l j :1 J

and

II n

(AA*)kAb = A(A*A)kb = =Zhjdj2kA4j = Z h.d.2k+lfi.j 1 j=l J--J J

Substituting all these equalities into part 2)of Theorem 1will yield part 3).

4)Toprove part 4),we are going to show that ifeither uk+1or vk+1,the (k + 1)-thorthonormal vector generated by
Algorithm 2 is zero; then r k = 0. Let Uk and Vkbe nxk matrices whose columns are respectively the u_'s and the
vi's in the first k steps of Algorithm 2, and Tk is the tridiagonal matrix which was defined above equation (E-6.a)

and (E-6.b). If we multiply both sides of equation (E-6.a) on the right by the matrix Uk, then

Uk*AV k = T k

Let r kbe defined in equation (E-8);then

Uk*r k ---- Uk*(b - AXk).
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Since xk is as defined by equation (E-7) and b = _lUkel by Algorithm 2, the above equality can be rewritten as

Uk*rk = Uk*(Uk [31el-AVkYk)
= [31e1- Uk*AVkYk
= [31e1- TkYk

which is equal to 0 by construction. Thus (uj,rk) = 0 forj < k. However, equation (E-8) implies that

Uk +l*rk = Uk+l*(Uk+1"([31el- SkYk))= [31e1- SkYk= tk-

If Uk+l = 0, then t k = 0. However as we have pointed out in a remark following equation (E-7),
[[rk[[ = [[tk[[. Therefore t k = 0 implies r k = 0.

Weshall now consider the case vk+1 = 0. If we define xk and YRby

Tk*Yk = [31eI (E-11.a)

Xk = UkYk (E-11.b)

then ffk will be an approximation to the solution ofA*ff = b. Using an argument similar to the one used for the
case uk+1= 0, we can show that ifv k. 1 = 0, then rk = b- A*_k = 0. However, we are not interested in rk, and we
really want to show that rk = 0.

Note that rk = 0 means the solution _ for A*ff = b is in Uk, and r k = 0 means that the solution x for
Ax = b is in Vk. We shall show that _ in Uk implies x in Vk. Let us first write these solution vectors in terms of
the singular vectors and singular values of A. Recall that

b = _ hil_ i = _lh
i=1

n

i _1 ki'_i = Vk

where h is a vector whose entries are hi, h2..... and k is a vector whose entries are kl, k2..... Note that

x = A-lb = _rn-lO*b = _rD-10*Uh = _'D-'h = Z d('hi%
i=l

Similarly,

n

x = (A*tlb = X di-lkitli.=1 1

For simplicity, let us assume k even and replace k by 2k. _ EV2k means

:_ = _ di'lkifii
i=l

n k-1 k-1

= i_1 ( j=_omjdi2Jhi + j_onjdi2j+lki)l]i

Since the fii's are linearly independent, this means that for i =1, 2.....

k-1 k-1

di-Xki= ( j=Zomjdi2Jhi + =Zo Bjdi2J + lki)- j
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Multiply both sides of the above equation by _, and move the left hand side to the right hand side; we obtain

k-1 k-1

_0 mjdi2J + lhi +0 = ( J j=Z° __di2Jki)

wheren o = -1, and_ = nj+l for j = 1,2.....

Multiply both the above equations on the right by difi i and add all the equations together:

k-1 k-1

0 = ,'_1( j_omjdi2Jhi.= + jEo.n.Adi2j+lki)fii

The vector on the right hand side of the above equation is in U2k + 1"This equality implies that the basis vectors of
U2k + 1as defined in part 3) of Theorem i are linear dependent. Therefore, we can express the first basic vector

hifi i as a linear combination of the other basis vectors:i=l

n n=_ k-1 k-1"=Z1hifii = i 1( j-=_lmjdi2Jhi + j=oYnjdi2J +xki)fii

The linear independence of the vectors ui implies that for each i =1, 2.... ,

k-1 k--1

hi = ( j=x_'_ mjdi2Jhi + j _o njdi2J+lki)"

Multiply both sides of the equation by di'lvi and sum each side to obtain

n n k-1

iEldi-l_?ihi= ,_1 ( j__Zlmjdi2j+lhi+ jE1= njdi2Jki)vi

Note that the left hand side is the solution vector for Ax = b, and the right hand side is a vector in V2k. The
conjugate gradient algorithm can be considered as choosing X2kin V2k so that the residual norm is the least.
Therefore, we conclude that r2k ----0 when "€2k + 1 ----0.

The proof for k odd is similar and therefore is omitted here.

The proof of part 4) of Theorem 1yields the following corollary which is useful in defining a stopping crite-
ria for our algorithm:

Corollary: [[rk[ [ ----[[SkYk - [31ell,where rk and S k are as defined in equation (E-8).

E.2.2 CHOICE OF THE INITIAL VECTORS U1AND V1

Choosing u1such that _1ul = b is reasonable. Such a choice is made in the standard CG-type algorithms
like SYMMLQ and LSQR. However, we know of no works in the literature to provide us with guidelines or
motivation regarding the choice of v r The proofof part 4) of Theorem i shows that a solution procedure for the
equation A*x = c is "implicitly" embedded in Algorithm 2, combined with equations (E-7.a)and (E-7.b), and this
implicit procedure occurs simultaneously with our explicit procedure forAx --b. The proof of part 4) of the the-
orem also implies that we want to choose c such that we do not solve A*x = b before we solve Ax = b. This is why
we cannot choose c aA*b, because the solution vector, which happens, forA*x = c, to be b, lies in/_71,A*x = c is
solved (implicitly) in i step, Algorithm 2 terminates and we are not even close to the solution forAx = b. In the

proof of part 4) of Theorem 1, we also showed that if we choose c = b, then A*x = c cannot be solved (implicitly)
before Ax = b is solved. In other words the choice ofc= b guarantees that our algorithm will arrive at the solu-
tion. However, this is not the optimal choice. The reason for this is given in the following theorem.
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Theorem 2. If the matrix A has m distinct singular values, then the number of iterations USYMLQ takes to
converge is bounded by min(2*m,n), while the number of iterations required by the classical CG applied to the
normal equation is bounded by min(m,n).

Proof of Theorem 2

From part 3) of Theorem 1, we see that

V2m = (c, A*Ac..... (A*A)kac, A'b, A*Ab ..... (A*A)maA*b)

n n

= ( 1_1ki_'i'= di2ki_'i ..... i=lYdi'2(m'l)ki'¢i'

n n

=Zdihi*_i, ..., ]E d2(m-1)+lh.vk._i=1-1 1 1-i 1

which is obtained after 2m steps, contains the solution vector. As for applying the classical CG to the normal
equations, we see that the solution vector is in

n n i2 n<= ( Z ki'_i, _ d ki'¢i, ..., Z 2_m-1)ki'¢i)x 1 1 1 l 1

Basis vectors for Vm are generated within k steps of the classical CG applied to the normal equation. Thus the
theorem is proved.

We note that the solution vector is contained in the vector space:

n n n n n

W k = (1Zlki'¢i,.= iEldiki'_i,= lEldi2kivi,.= .--, 1Zldi(m-2)kivi,.= lZldi(m'Dki'_i).=

n n _

Note b = Z hitli, for some hi's. If we could choose c such that c = Z hi'€i, then Vk = Wk, and the number of
• . i=l . i=l . .
Iterations reqmred by USYMLQ will be bounded by min(m,n): With an argument mmllar to the proof used for
part 4) of theorem 4, we can show that we will not solve A*x =c before we solve Ax =b. However, in practice, we
do not want to compute the singular values and singular vectors of the matrix A. Although we can express c in
terms of A, A*, and b, namely, c =Aa(AA *)'_-'b,we know of no computationally efficient way of computing this
ideal c.

The above discussion regarding this ideal c proves the following theorem:

Theorem 3

Ifc = Aa(AA *)'/_b,and ifu k and vkare as defined in Algorithm 2, and xk is as defined in equations (E-7.a) and
(E-7.b), then rk€ 0 implies uk€0, and vk€ 0; also the number of iterations for this algorithm to converge is
bounded by min(m, n) where m is the number of distinct singular values of A, and n is the order of the matrix A.
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E.2.3 THE LQ FACTORIZATION

In this section, we describe the solution ofequations (E-7.a) and (E-7.b)in detail. As we remarked before, it
is computationally advantageous to solve this system by the standard LQ factorization on Tk. The LQ factoriza-
tion on Tk takes the form:

m

Pl
61P2

SkQk _ °Qk = Lk = _2_3 ... (E-12)
_k_*k _a "'.

Pk-1
5k-lOk

where Qk* = Q2,rQ3,2... Qk,k-1is a product ofplane rotation designed to eliminate the superdiagonal elements
71,72..... Therefore, the left hand side of equation (E-7.a) can be written as

TkYk = LkQk = _1el

We note that Ykhas no elements in common with Yk-rWe are actually not interested in Yk,but rather it is xk as

defined in equation (E-7.b) that we are after. We want to organize the computation of xk so that only the most
recent iterates need to be saved. The scheme we discuss below avoids the explicit computation ofy k. We let zk =
QkYk,Wk = VkQk-Thus xk = WkZk. Wewill show that zk and wk can be computed by simple recursions.

If we let Zk = Qk, Yk,then the first (k-2)entries ofzk are the same as those ofzk.1.That is, if we write
zk = (z1,z2.... , Zk.1,Zk)w then

Zk-1 _- ('_k-3 Zk-3- 5k-2 Zk-2)/0k-1 (E-13.a)

Zk = ('_k-2Zk.2-5k.1Zk.x)/Ok (E-13.b)

Note _k will be replaced by zk in the next iteration.

Now consider the plane rotation Qk,k-r Qk,k-1operates on the (k-1)-thand k-th row ofT kto eliminate 7k-This
gives the following simple recursion:

where Pl -- _1 and 81 = _1, and the scalar ck and sk are the nontrivial elements OfQk,k. r The quantity Pk and _k

are to be replaced by Okand 5k in the next iteration. Consider the nxk matrix

Wk = VkQk*
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Note that the first (k-2)columns ofW k are the same as those Of Wk. 1. That is, if we write

W k -- (Wl_ w2_ ..._ Wk.l_ _€'k)

where the wi's are the columns of Wk, then

Wk.1 = Ck*Wka + SkYk (E-15.a)

V_ = SkVCk.1- CkVk (E-15.b)

Note that Wk will be replaced by wk in the next iteration. Therefore, if we first substitute zk = QkYk, then
Wk = VkQkinto equation (E-7.b),we get

X k = VkY k = VkQk*Zk = WkZ k

If we let xo = O,

Xk-1 ---- X'k-2 4- Wk.lZk. D (E-16)

then

Xk = X-k-1 4- WkZk (E-17)

Note that Zk.1,Wk.1,and X'k-1 together with Z-k, are computed in the k-th iteration. Also note that zk is to be
replaced in the next iteration. Wecould have computed xk according to equation (E-17),but it is not necessary to
do so until the last iteration. From the above discussion, we see that only the last two iterates need to be saved.

Now we consider the stopping criteria of our algorithm. Two stopping criteria are implied by part 4) of
Theorem 1as well as Corollary 1:

a) If [3k or _'k are small enough, r k will be small enough.

b) However it is possible for rkto be small when the norms of either Ukor Vkare not small. Corollary 1permits us
to compute the norm of the k-th residual rk explicitly:

[Irk[[ = [ISk - [31el1[ = ISkZk.1 - Ck Zkl*_k+l (E-18)

In summary, at the k-th iterations, the following quantities are computed:

i) The vectors uk and vkaccording to Algorithm 2
ii) Ckand sk, which are the nontrivial elements of the plane rotation Qk,k-1 defined in equations (E-14) and

(E-12)

iii) The scalars Pk-1,8k-1,_k-1,Pk and 6k, which are the nonzeroes of the last two columns of Lk defined in
equation (E-12)

(iv) Zk.1as defined in equation (E-13)
(v) Wk._as defined in equation (E-15)
(vi) Xk-1as defined in equation (E-16)
(vii) Ilrkllaccording to equation (E-18).
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Note that if the algorithm terminates, we need to compute xkaccording to equation (E-17)before returning to the
calling program.

Algorithm 3 USYMLQ

1. (Initialize.)

[31uI = b, vI = u1,w1 = Vl,xo = 0, _'1= [31,Pl = al, 61 = [31

2. For i = 1,2..... repeat steps 3 to 7.

3. (Continue the tridiagonalization.)

p = Au i - 7iui.1
q = A*u i - [3i*vi. 1

(Zi = u*p

[_i+lUi+l ----P'(XiUi

_i + 1Vi + 1 ----q" {_ivi

4. (Construct and apply the plane rotation.)
diagonal element ofLi in row (i-1):Pi-1 = (Pi-12 + Yi2)/

plane rotation: ci = Pi.1/ Pi-1
Si ---- _/i / Pill

subdiagonal element ofL i in row i: 5i = 8i.lCi + Yisi
diagonal element ofL i in row i: 8i = 8i-lSi-Yici

5. (Update z, x, and w.)

Zi-1 = (-_i-3Zi-3 " 5i-2Zi-2)/Pi-1

Zii ---- (-_ i-2Zi-2 "5i-lZi-1)/P-i

X_i.1 ---- X'_.2 4- Zi.l(Ci*Wi. 2 4" SiVi)

Wi_ 1 ---- Wi.lS i -vie i

6. (Test for convergence.)

If one of the following holds
(i) [3i is small enough
(ii) _/iis small enough

then _'i ---- Wi-lSl "ViSi

Xi = X'i "4"ZiW i
EXIT

else go to step 3.
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• E.3 NUMERICAL EXPERIMENTS

Our new algorithm, USYMLQ (UnSYMmetric LQ factorization) looks very much like Paige and Saunders'
LSQR (Least Square QR factorization) (see ref. 40).The theoretical results in sections E.1 and E.2 show that they

are indeed different algorithms. In this session, we present numerical experiments which demonstrate that they
have different convergence properties.

E.3J GENERATION OF PROBLEMS

We generated three test problems to compare the performance of USYMLQ with LSQR. The test problems
have coefficient matrices of the form:

A = PDQ

where P and Q are Householder transformations and D is a complex diagonal matrix. Since P and Q are
orthonormal matrices, the condition number of A, say, K, is defined as follows:

K = dma x / dmi n

where dma x and d_i nare respectively the largest and smallest absolute values of the diagonal entries of D. More-
over, the singular values of the matrix A are just the absolute values of the diagonal entries of D.

Weset the i-th entry ofthe true solution, x, for our test problems to be (n-i)where n is the order of the matrix.
The right hand sides, b, are obtained by multiplying the true solution with the coefficient matrix: b =Ax.

E.3.2 CONCLUSION FROM THE NUMERICAL EXPERIMENTS

The numerical results of our experiment are illustrated by the graphs in figures 58, 59, and 60. The x-axis

of the figures is the iteration number; the y-axis is the residual norms. The solid lines represent the convergence
history of USYMLQ, and the dashed line represents the convergence history of LSQR.
N stands for the order of test matrix, K is the condition number, and S is the number of distinct singular values.

Test problem 1 illustrates that USYMLQ can handle an ill-conditioned problem with distinct
singular values quite satisfactorily whilst LSQR seems to have trouble. The result of test problem
2 is predicted by Theorem 2; when there are multiple singular values, LSQR converges better. Test problem 3
illustrates the performance ofthe algorithms for large, well-conditioned matrices. In this case, the convergence
rates approach the asymptotic convergence rates.

E.4 THE INCOMPLETE FACTORIZATION

There are many variants of the incomplete factorization of a matrix. The one that we have been using is a
product of a unit lower and an upper triangular matrix: M = LU, and M satisfies the following properties:

1. Ifai, j #: 0, thenmi, j = ai, j.
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2. L has the same sparsity structure as the lower triangular matrix of A, and U has the same sparsity structure
as the upper triangular matrix of A,

where A is the matrix obtained from the finite difference equation ofthe small disturbance transonic flow poten-
tial equation, without the wake terms. In other words, in the two-dimensional case, A is a 5-diagonal matrix. We
obtain L and U by starting with the regular Gaussian elimination, and ignoring all the "fill-ins."

As an example in the two-dimensional case, when IMAX = 5 and JMAX = 4, we may write M = LU as in figure
61 with the coefficients defined by Algorithm 4 below:

If we write A = (aij), then Algorithm 4 describes L and U for the harmonically oscillating flat plate problems:

Algorithm 4 (Incomplete LU factorization)

d1 = al, 1

For i = 1,2,.... (IMAX-2)*(JMAX-2)

Ui ----ai,i + 1

qi = ai,i + JMAX-2

For i = 2, 3..... JMAX-2

11= ai,i.1/di.1

d_ = ai, i - li*ui. 1
For i = JMAX-1, JMAX,... (IMAX-2)*(JMAX-2)

1i = ai,i.1/di. 1

Pi = ai,i-JMAX-2/di.1

di = ai,i - liui-1 - Piqi-JMAX-2

Then R = (ri_) = A - M has one subdiagonal and one superdiagonal ofnonzeroes, that is, R is of the form shown
in figure 62.

Thus if A is the matrix of the finite difference equation of the small disturbance transonic flow potential equa-
tion, then

A-M =R+W

where W is a matrix with eight nonzero columns contributed by the wake terms.

Weapply the conjugate gradient method to an equation of the form:

(I + M-_R + W))x = M'lb
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Figure 20.-The Normalized Bending Mode for the Aspect Ratio 3 Rectangular Wing With Circular Arc Airfoil 
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