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DFVLR Rotor Test Stand - Design and Development /3

Introduction

- The development of helicopters presently manufactured on an

assembly line has reached its limits in terms of flight

performance (speed, range).

Further developments require better knowledge of the

fundamentals, the control of conventional methods, and the

development of possibilities for improving conventional

systems. In order to improve performance, it is very

important to investigate new kinds of configurations based

on a modern rotor concept.

Extensive wind tunnel tests are required to complement and

verify theoretical analysis. Therefore the following tests

were planned in the wind tunnel during the intial phase:

- Investigation of the static stability behavior of the
rotor

- Measurement of dynamic rotor components
- Downwind measurements.

Since already in the definition phase it was clear that

performance improvements in helicopters could be brought

about by influencing the blade aerodynamics, we decided

to use two principally different rotor systems.

- A hingeless GfK (fiberglass reinforced plastic) rotor ..o

as a model of the BO 105 with shaft drive (hingeless

rotor)

- a 2-blade rotor with a central flapping hinge (teetering

rotor), which can be used both by using reaction drive

and shaft drive, as well as the combination of the two

drive systems (hybrid).
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The results are of interest in such investigations by industry.

We found that at the request of the DFVLR, a rotor test stand

for large wind tunnels was to be built. It has to be /4

capable of satisfying the various requirements from project

oriented research'and basic research.

In the design of the test facility we assumed that a wind tunnel

was only required for producing the drive wind. Otherwise,

the system had to be completely independent except for elec-

trical power supply.

i. Rotor Carriers

In the definition of the tasks when building up the rotor

test stand, the DFVLR was given the task of designing and

manufacturing the rotor carrier (Fig. i).

i.i Drive System

" i.i.i Hydraulic Pump

A hydraulic facility was used as a drive system, which is

driven by an electrical motor (Fig. 2). The hydraulic

installation essentially consists of two parts: a hydro-

pump and a hydromotor. Both are connected through hose

lines over ii meters long. The separation of the hydro-

motor and the hydropump has the advantage that the rotor

carrier itself can be designed in a relatively narrow way.

The hydromotor has a power of about 90 kW at 1050 rpm.

The hoses are connected to the test stand using fast "

disconnect couplings. This has the advantage that

• connections can be made without tools and very fast.

Anti-return valves make it unnecessary to remove air

from the hydraulic system.
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In order to simplify the installation end increase operational

safety, all of the additional equipment required for a closed

circuit with a supply unit are enclosed in tubes, This

includes supply valves, rinsing valves and supply pressure

valves, safety valves, auxiliary pumps, air coolers, filters

and pumps (Fig. 3). Because of the total length of the hoses /5m

(< 30 m outgoing and return line) an additional oil switch

is not necessary. The auxiliary pump provides a continuous

fluid flow through filters and air oil coolers for compen-

sating leakages, cooling and liquid exchange in the main

circuit. The excess fluid produced by the supply system is

removed from the main circuit through a rinsing and supF12

pressure valve, from the low pressure side.

The drive current of the primary part is proportional to

the drive. By turning on the adjustment motor, the supply

volume can be changed continuously using a red,orion gear

and a self-retarding threaded spindle. The running of the

hydromotor in the left and right directions is adjusted

here. For safety reasons, the end positions are mechanical!y

fixed. Since we are using supply operation, supply occurs

in the opposite direction, when one passes through th_ zere

position.

1.1.2 Hydraulic Motor

An axial piston motor using a oscillating drum design with

a constant lift volume per revolution is used as a rotor

drive system. The principle of the motor is given Jn

Fig. 4. The liquid is pressed into one side of a cylinder

by the valve plate, and this forces the piston in the side

of the cylinder away from the plate. The force of the
a

piston rotates the axis, because the cylinder block is

inclined with respect to the axis drive.



The swallowing current is proportional to the rpm and the

torque being delivered increases with the pressure difference

between the high pressure side and the low pressure side
(Fig. 5).

When selecting the hydraulic liquid, it is important to

realize that it is not only used for energy transmission

but also has a lubrication function. Therefore, a liquid /6

has to be used with good adhesion properties and wear

properties. This is required so that the required

pressures and rotation rates can be adjusted.

The drive unit was selected so that the maximum torque

load is around 930 Nm and corresponds to a pressure of

a maximum of 275 bar. Pressure peaks up to 400 bar
are allowed.

1.1.3 Hydraulic Tipping Facility (Fi@. 6)

The hydraulic tipping facility is installed on the fixed

column between the fixed and moveable part. The hydraulic

cylinder is installed outside the fixed part, as is the

installation plate with the various valves, etc. By

using a hydraulic double lock, it is possible to lock

the tipping device. This means that a static rotor angle

of attack can be maintained over a long period. The

velocity with which the tipping device can be adjusted

in the positive and negative directions is adjusted at

two-path flow control valves. From a 40 liter tank, the

hydraulic oil is pressed into a hydraulic storage unit

using a cog wheel pump (Q = 2,7 i/min, P = 120bar }

which is driven by an electrical motor (N = 750 W). The

system pressure is maintained between 100 bar and 120 bar

by two pressure signaling devices. If the required

pressure is present, then the hydraulic cylinder is

4



controlled through a electromagnetic valve. The cylinder

has an- adjustment path which corresponds to a rotor angle

of attack range of _17° < < €o- _ - +1_ •
Ro

We did not consider free motion between the rotor shaft

and the hydraulic motor connected with a coupling-braking

- combination as originally planned. This is because the

heat development during the braking process was undesirable.

Also the lamella coupling generated imbalances in the fixed
column.

1.2 Balance Systems

The rotor test stand was equipped with two balances, in

order to measure forces and moments over the fuselage and

on the rotor head.

One design difficulty consisted of the fact that the

required rotor power has to be transferred through the

balance to the rotor shaft without falsifying the

measurement points.

1.2.1 Rotor Balance

Since the balance will be discussed in detail in the chapter

on "Measurement Data Collection," we will only give a short

description of its design.

The rotor balance consists of a lower plate on which there

are installed seven force measurement capsules, and the I.o

upper plate where the transmission elements are installed.

There is a torque measurement shaft between two lamella

packages between the upper and lower plates. These lamella

packages ensure that only the rotor torque is transmitted

and tipping moments only are recorded by the balance. The



forces in the longitudinal direction, transverse direction and

thrust direction are also only transmitted to the balance• This

means that the balance is independent of the influences of the

drive. The requirement of having the least possible distance

• between the rotor plane and the.measurement plane of course can

only be maintained within certain limits, because control of

the rotor has to be maintained. The smaller the design height,

the lower will be the lever arms and therefore the forces on

the force measurement capsules. Fig. 7 shows the balance

control configuration in an old version. In a newer version,

the measurement plane is placed higher up because of the

better geometric conditions, in the direction of the upper

plane. Later on we will discuss that there are some problems

associated with this configuration•

The transmission elements from the force measurement capsule /8
to the upper plate on the one hand should be as elastic as

possible so that the force measurement capsule does not have

to absorb any transverse forces. On the other hand, it should

be as rigid as possible, so that the oscillation system con-

sisting of the lower balance part and the upper balance part

(plate, control, rotor and telemetry) has the highest pos-

sible eigen frequencies.

The transmission elements consist of steel wires 4 mm in

diameter in the x, y direction and the z direction• These

wires are pasted onto the corresponding sensors. We found

that the glue did not have the required continuous _trength,

because it became separated from the transmission elements

which we barely noticed. This "creeping effect" is only

found when the balance is calibrated again, which would

occur before and after each test run. Also, we made our

own investigations of whether the measurement capsule

signals return to the original values.
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The transmission elements which were used today are rotating

parts made of copper-beryllium with completed connection

pieces for the force measurement capsules and for the upper

holders. This material can be worked easily and has good
stiffness values.

For safety reasons, the balance can be electromagnetically

locked by two bolts, so that horizontal oscillations such

as occur when the rotor is raised do not affect the force

measurement capsules. As soon as the rotor has reached a

specified rotation rate, the balance is released. Also,

there are supports between the balance plates which hold

the upper-plate and lower plate system in a centered fashion

when the balance is overloaded. When designing the balance

we have to ensure that the system will be as stiff as possible,

so that a twisting of the upper plate or a bending of

the support arms is prevented• This has the advantage that,

when calibrating the system, terms of higher order can be /9

ignored.

1.2.2 Fuselage Balance

The fuselage balance based on DMS (strain gauges) also had

seven force measurement capsules just like the rotor balance.

One DMS balance will only provide useable results if the

balance reference point is as close as possible to the force

application point of the model. In order to be able to

satisfy this condition, we selected a box balance which is

elongated in all directions, which was built up around the

rotor shaft. In the case of the model fuselage matched to

this balance, the balance is below the fuselage and has to

be covered with a covering body against the wind tunnel flow.

The DMS balance essentially consists of two steel plates

which are stiff with respect to bending, between which the



measurement capsules and the holders as well as the soft

bending rods are arranged as transmission elements. The

lower steel plate of the balance is connected to the model

and with the model fuselage through consoles•

In order to calibrate the balance, a calibration frame and

a force introduction frame had to be built• With these

frames, the three forces and the three moments were intro-

duced according to a certain calibration scheme (Fig. 8).

The calibration determines the following three parameters:

I. Direct calibration factors which can be derived from

geometric dimensions.

2. Linear interference factors, which result from the

fact that the system is not completely uncoupled.

This means, for example, force in the x-direction

gives a signal in the z-capsule.

3. Product interferences which result when two components

act on a force mesurement capsule. For example, force

in the x-direction and the y-direction results in a

signal in the z-capsule.

As the calibration matrices show, the values due to product /i0

interferences are small. This is because of the fact that

the elastic deformations are small for the loads which occur.

1.3 Control

Three actuation motors attached to the upper plate, the swash

plate and therotating control rods which deflect the blades

make up the rotor control system.

8



1.3.1 Blade Control

The conversion of the actuation paths from the aircraft-fixed

system into the rotating system is done through the swash plate

. (Fig. 9). By a translation motion in the z-direction and a

rotation around the !ongitudinal axis and the transverse

axis, :itmakes the blades move collectively and cyclically.

The transmission of the actuation paths tothe blade has to

be done so that the desired amplitude variation occurs £n

the blade, both in terms of magnitude and phase.

Usually one defines three control angles on a rotor:

collective angle, longitudinal control angle and transverse

angle. The total angle at the blade is derived from the

following relationship:

eBlade = _o s c+ e sin_ + % cos_

In the case of completely contr.olledflights, _s is always

negative and _ is always positive, where it is assumed that

the rotor rotates in a counter-clockwise fashion. The blade

angle is the smallest for _ = 90° , for purely !ongitudinal

control and for ¢ = ©o it is largest for the pure transverse

control angle. In order to produce a pure pitching moment on

the rotor it is not sufficient to only operate the !ongitudinal
control unit. Instead, a transverse control deflection has to

be implemented. This task is called phase shift and is on!y /i!

dependent on the flapping hinge distance, if one assumes that

the aerodynamic damping is the same for all o_ the

rotors. A rotor with a central flapping hinge therefore has

a phase shift of 90° and a propeller has a shift of 0°. For

the research rotor, it is about 80°. This has to be taken

into consideration if the rotor has to be controlled eccording



to flight characteristics. That is where longitudinal control

input results in a pitching moment.

The control was dimensioned in such a way, that the reaction

• rotor mentioned at the beginning which requires a large shaft

diameter for passing through gas can be operated. This requires

" a larger swash plate and a modified control kinematics. The

conversion of the actuation paths from the electrical motors

to the blade angle variation is done through an analog computer.

One disadvantage is that the relationship between the actuation

path and the blade angle cannot be linearized. When designing

the swash plate, one should design the geometric parameters of

the rotor blade in such a way that the trigonometric functions

can be linearized. If this is not possible, the analog computer

circuit becomes rather ccmplicated because of the required SIN

and COS function components. Fig. i0 gives a diagram of the

geometric relationship between the actuation paths Zl, z2, and

z3 and the blade angle (_o _ 0 blade).

• The following data are importan_ for designing the control
system:

Blade number z = 4 m

Rotor rpm n = 1050 rpm

Required path of the

swash plate (for

collective control) s = ±9.6 [mm]

Required inclination /12

angle of the swash

plate (for cyclical
+ _O

control) _ = - IO,z

We use the following loads in the calculations• These only

occur at extreme operational conditions.
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Axial force 400 [N] _ 60 [N]

Tipping moment,

longitudinal 7 [N] _ 3 [Nm]

Tipping moment,
transverse 11,5 [Nm]_ 9 [Nm]

Resulting force

• at an actuator Pmax 320 [N]

deflection point

In order to have universal applicability in other rotors,

the control should have reserves with respect to these data.

For instance, the axial path can be raised to -12/+15 [m_],

the inclination can be raised to _ = -+14° and the

permissible force per actuator could be raised to

P ,, - _EO I'-]

It has been found that in many test configurations the

permissible actuator force can even be exceeded.

The swash plate is structured as follows from the inside

to the outside (Fig. ii). The basic element is a flange

cover made of stainless steel, part No. 9, whose inner

diameter is such that both the mechanical rotor shaft

and the exchange of the rotor mass which carries air

can be passed through it. There is a spherical ring,

part No. 3, on the cover, which is installed so it can

be displaced in height in order to al!ow collective control.I

Because of the good sliding properties, aluminium-bronze

was used as a material for the spherical ring. The fixed

part of the swash plate can be rotated on the sphere (for

cyclical control). The lower part l and the upper part 2

are connected with bolts, and on the inside they enclose

° the spherical ring with their rounded sliding surfaces.

On the outside they also hold the inner ring of the 4-

point bearing.

ii



In order to prevent rotation of the fixed part of the /13

swash plate, it is held through two columns which move

in curved grooves and they are held radially on the

spherical ring. It is supported by two pass springs on

. the flange cover. There are three fork shaped openings

nailed into this separated by 120°, in which the thrust

- rods of the three actuation motors are supported by jointed

bearings which require no maintenance. The rotating parts

of the swash plate, parts 7 and 8, are tensioned by the

outer ring of the 4-point bearing. Both parts have labyrinth

like grooves, in order to seal off the inner part of the

bearing which is filled with grease. This is propelled in

the direction of rotation by the rotor head through a

scissors having a hinged bearing. There are four cavities

into which the hinged bearings of the control rods penetrate.

1.3.2 Swash Plate Control with Electrical Actuators

Three actuation motors are required for controlling the swash

plate. The actuators must have the greatest possible paths

so that the complete possibilities of lifting and tipping of

the swash plate can be exploited• In order to obtain the

simplest possible control loop, linear motors are used. One

of the difficulties is that the torsion moments have to be

compensated for by the rotor blade if such a large actuation

force is to be produced with such a small size. It was

determined that a maximum actuation force of 450 N was

sufficient.

The following are the technical details:

Design: Linear actuator

Current type and

voltage = 28 [V]

12



Current supply

(maximum) about 2 [A]

Actuation rate at a

load of 450 [N] 2.8 [mm/s]

Lift 64 [mm], can be expanded to

85 [mm]
Lift limit With end switch

Actuator force per /i__4

actuator 450 [N]

Gear Self-retarding

Actual lift value Potentiometer

Resistance of the potis

(potentiometer) i [k_]

Investigations have shown that the running rate of the

actuators is almost the same. Therefore, it is not possible

for cyclical angles to be given to the rotor when there are

collective changes.

" In order to maintain the deviation between the nominal value

and the actual value of the control angles to be adjusted,

the actuation motors have an additional brake in order to

prevent overshoot. Potentiometers are used to relay back the

nominal value.

1.3.3 Swash Plate with Hydraulic Actuators

Compared with electrical actuators, hydraulic actuators have

two special advantages. I. Large loads can be over-

come with relatively small actuators. 2. Diameter control

signals can be better transmitted. The running of pressure

lines and the hydraulic supply are a disadvantage because

• they are complex. Also, the electrical actuators are much

cheaper than hydraulic actuators, because of the small cost

of the periphery.

13



The decision of replacing the electrical actuators by electro-

hydraulic actuators was influenced essentially by additional

research work in the area of active control. The possibility

of inputting dynamic control signals into the swash plate opens
up a large area of research on which much work is now in

progress. Essentially there are three applications, which

could be investigated with this method:

- Reduction of rotor-induced vibrations in the range /15
between 3 _"Ro to 5 _Ro •

- Gust reduction

- Determination of dynamic derivatives.

At the present time for the model rotor we are only investigating

the area of reducing rotor-induced vibrations, which we will

report on in a future paper.

The requirements for the actuator motors are the greatest for

the tasks of reducing vibrations, because trigonometric functions

have to be input up to the limiting frequency of 80 Hz.

The following specifications were established (Fig. 12) :

Design height _ 233 mm _ 32 _m
+

Displacement path - 32 m_

Load 500 N ± 3CO N dynamics
Mass forces <- 3 kg
Actuator frequencies 80 Hz at ! 3 mm lift

For SIN operation 20 Hz at i 7 _:mlift

-.°

In the calculations for the design of the actuator, we assumed

a system pressure of 210 bar*. This pressure has to be available

to the servo valves as supply pressure. Therefore the flow ]osses

* 1 h,- '" :I Jj ".
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in the 15 meter long lines have to be made as small as possible,

that is, only really necessary fast connection parts may be

used and the line has to be bent as little as possible. The

return line pressure also has to be made small. This can be

done by a large dimension line diameter, which does not have

any influence on the dynamic behavior of the drives.

In order to obtain a constant pressure as much as possible,

a pressure reservoir is installed ahead of the servo valves•

In the return line, that is, after the actuator drives, there

is a reservoir with a low preliminary voltage (4 bar). This

is to prevent diesel and cavitation effects which are caused

by long return lines. An anti-return valve in the return /16

line makes sure that the oil column does not break up.

In order to ensure certain operation and so that the trans-

mission behavior of the actuator remains constant, the

degree of contamination of the hydraulic liquid is an

important factor• Therefore, in the initial line, filters

• with contamination indications are installed. The filter

fineness is _ _m (IO-6_)with a nominal flux of 80 i/m_n

In order to not obtain any dangerous load states on the

rotor in the case where there is a failure of the hydraulic

supply or if the electrical control system of the actuator

fails, so-called fail safe manifolds (fast-operating blocking

valves) are installed, which prevent the actuator from reaching

the hard stop position (end position).

The electrohydraulic actuators consist of the following:

a) Servo cylinder with 4-edge design, loaded twice (uniform

• motion cylinder) with piston rod on one side.

Test pressure: 360 bar; maximum piston velocity:

90 m/min; piston diameter: 25 mm; piston rod diameter:
14 mm.
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b) Path indicator, installed on the side with a linearity of

0.3% of the total traveled.

c) Blocking valve, fast acting.

d) High response servo valve with a nominal flux of 38 I/min

for a valve pressure drop of 70 bar. Continuous operating

pressure: 210 bar (Fig. 13).

This figure shows the design of a servo valve. The torque motor

with the spring and the control piston is the central part of

this valve. The edges of the control piston and the edges in

the surrounding cylinder are especially subject to wear. There-

fore, any deviation from the nominal dimensions is then felt by

a corresponding error in the transmission function. Since we /i__7

cannot assume that all actuators are equipped with servo valves

having no tolerances, they therefore also have different trans-

mission functions. As I already mentioned, contamination in

the control edges of the pistons has a great influence on the

• dynamic behavior of the servo.

The rough calculations made during the design about the

dynamic actuator behavior for an amplitude height of _+3mm,

could not be realized in practice. The reason for this is

the deficient knowledge about the entire control path. There-

fore, it was not possible to take into account the nonlinear

influences such as the coulomb friction of the cylinder and

that of the bearings as well as the spring stiffness and damping

characteristics of the coupled components, which is necessary

for an exact calculation.

The design goals, that is
a

90° phase displacement at about 75 Hz

45° phase displacement at about 35 Hz

100% amplitude at about 80 Hz
16



were not achieved as Fig. 14a and Vig. 14b s_ow. The actual

values are the following

90° phase displacement at 32 Hz

45° phase displacement at 16 Hz

• 100% amplitude at 50 Hz

However, the required values can be obtained _ithout difficulty

by means of an adjustment• An adjustment is necessary because

the frequency and phase variation of the actuators depend on
the following

a) The zero position of the actuator piston

b) The load on the actuator

c) The amplitude around the working point

d) The dynamic behavior of the high-response servo

e) The degree of contamination.

One suggestion for implementing the designed actuator /18

• behavior is shown in Fig. 15. Each actuator is equ_p_,ed

with such a controller, in order to obtain the same

• actuator characteristics. The principle consists of

controlling these phases as well as the magnitude in such

a way until the deviation from a reference curve has

become zero. Results from tests with and without the

controller are shown in Fig. 16. It can be seen that

amplitude and phase positions can be maintained constant

over the considered frequency range•

2. Rotor and Fuselage

When designing a model rotor or a model fuselage, the

• application is very important• The question of which

research task is to be investigated with the model first

. has to be answered. Fundamental research can only be

17



performed conditionally with a model that does not allow any

modifications. On the other hand, such a model can be used

very efficiently to test the correlation between measurements

and calculations.

A model derived from a full scale version in addition has the

possibility of correlating measurement results from flight

tests and wind tunnel tests with calculations•

After agreement was reached with the customers, two rotor

models and one fuselage model were constructed and manufactured.

The important data follow:

Research Rotor I (Fig. 17)

Design: hingeless, shaft drive
Diameter: D = 4 m

Number of blades: n = 4

Area density: _,7 = 7,64 %

Blade shape: rectangular; -8C/m linear twist

• Blade profile: NACA 23012

Blade tip velocity: UTip = 220 m/s /19
" Flapping frequency ratio: _B/_= 1,12

Deflection frequency

ratio: _/_= O,71

Design thrust: T = 3600 N

Maximum thrust for

hovering flight: T = 4400 Nmax
Lock coefficient: 4.47

Blade material: GfK (fiber reinforced plastic)

with foam, core and lead center

Rotor head material: Steel

Manufacturer: MBB

18
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Research Rotor II (Fig. 18)

Design: 2-blade rotor with central

flapping hinge, reaction -

and/or shaft drive

Diameter: .D = 4 m

• Blade number: n = 2

Area density: _o,7=6,O5 %b

Blade shape: Rectangle; -5°/m linear

twist

Cone angle: _ = Oc _'o

Blade profile: NACA 633 -013
Blade tip velocity: 220 m/s

Flapping frequency ratio: _/'.q=1,O9
Deflection frequency

ratio: _/_= I'I__

Deflection thrust: T = 3600 N

Lock: 5.095

Blade material: Aluminum, strand cast profile

for conducting gas, A1 honeyc,)lub

• Rotor head material: Steel

Manufacturer: Dornier/DFVLR

Fuselage /2_O0

Length: 3.85 m

Width: 0.66 m

Height: 0.55 m

Material: GfK shell (glass fiber

reinforced plastic),

A1 (aluminum) frame

Manufacturer: MBB (previously VFW-Fokker)

Since most of the results are available from tests with the

• research rotor I, we will now discuss the design and manu-

facture of the 4-blade rotor because this rotor belongs to

. one of the most modern designs because of its construction.
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2.1 Specification of the Main Data of the Rotor Blades

In order to provide enough margin on operating strength and

a freedom from ground resonance of the model rotor, it is

designed as much as possible wiZh dynamic similarity with

• respect to the main rotor of the BO 105. The linear reduction

scale therefore is to be s = 2.5 (s-scale factor). The rotor

blade for hingeless rotors has an important effect on whether

dynamic similarity with the BO 105 blade has been achieved

because of its elastic characteristics and its mass distribu-

tion. Therefore, maintaining the specified stiffness

distributions and mass distributions is an important part of

the design. Compared with the rotor blade of the main design,

the linear reduction of all lengths and wall thicknesses is

carried out, with some exceptions, and the same blade design

made of GfK is used (glass fiber reinforced plastic) in order

to obtain the closest possible material values.

2.1.1 Blade Chord

In order to have dynamically similar aerodynamic forces which

act on the rotor blade, the blade tip velocity of the rotor

blades is made equal to that of the full-scale version. For /21

this purpose the rotation rate of the model rotor has to be

increased 2.5 times. By using the same blade profile the Mach

numbers are provided for. Since the Re number in the case of

Mach number similarity cannot be maintained, the blade chord

is made slightly larger than for linear scaling. In the case

of rotor blades, the fact that the same Re number is not

insured is not so serious as for a lifting wing. Therefore,

in the case of the model rotor, when there was linear reduction,

the aerodynamic forces relative to the mass forces and elastic

• forces became too small. Therefore, it was appropriate to make

the blade chord somewhat greater, that is, c = 0.121 m.
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2.1.2 Cross-sections for Maintaining the Frequency Ratios

In the case of helicopters and also during rotor test stand

tests, ground resonance is influenced by the deflection frequency

ratio of the rotor and the magnitude of its deflection damping•

In the large version, a frequency ratio of _ /_ = 0,666 and 2%

to 3% of the critical damping are sufficient in order to exclude

ground resonance. When there is geometric reduction, it is not

certain that the parts which are important for damping, such as

for example the grommet, the blade covering and the blade throat

will result in a dynamically similar damping coefficient, the
/'_> 0,7 in the case of thefrequency ratio is increased to_ ..

model rotor blade. Therefore it is possible to exclude the

possibility of ground resonance when the damping reduces to

< 2% of the critical damping of the rotor. The rotor blades
therefore have to be stiffer at the blade root in the case of

the model in the deflection direction• This is achieved by

increasing the depth of the blade root and by increasing the

almost rigid rotor head, and the blades are shortened by the

• same amount• The increase in the rotor head however can only

be done to a slight extent because with this deviation from

geometric similarity, the flapping frequency ratio is increased

and the rotor becomes dynamically dissimilar in its flapping

motion. The calculation of the stiffness and mass distri- /22

bution of the individual blade cross sections is done on a

computer. When calculating the stiffness values, the

asymmetric cross sections are replaced by symmetric ones,

which represent an average from the top and bottom halves.

In this way, the computation accuracy of the deflection

stiffness is maintained and the calculation complexity is

reduced. These parameters are varied until the desired

frequency ratios are achieved•

€

When selecting the cross sections, we were primarily interested

• in maintaining the laws of dynamic similarities• Because of
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the increased blade depth mentioned above and the equalizing

reduction in the wall thickness of the homogeneous part of the

blade, we already have a few slight deviations from the scale

factor.

BO 105 To Scale _kx_elSize Dim.

BladeChord 0.27 0.I08 0.i2i i m

Centerof GravityPosition,abs.0.0648 0.02592 0._2783 [ m
Centerof GravityPosition,re]24.00 24.00 23._?0 i %

Weight 5 c, i _.
._ 0.8864 0.83 c._/m

FlappingStiffness 695.C0 17.792 23.57 i_:_/mzl
t

Deflection Stiffness 17700.00 453. 12 557.0.,3 _dN/m-
I

ThrustStiffness 1630000.00 ]00_u0.00 9000C._0 'dN !m-

2.1.3 Distribution of the Masses and Stiffness over the Radius /23

From the values of the individual cross sections, one determines

the masses and stiffnesses over the radius (see Fig. 19a, 19b).

From Fig. 19b one can see that only in the case of the deflection

• stiffness is there a stiffness reduction in the area where the

deflection hinge is usually found.

The values given in the region of the rotor head are scaled

reductions of the main design. Since in the case of the model

the rotor head is made of steel and not titanium, the running

weights and stiffnesses with the higher specific weight and the

higher elastic modulus of steel compared with titanium have been

considered.

The support of the blade connection at the rotor head by two

radial bearings requires consideration of the double beam when

calculating the stiffness distribution. According to model laws,

, the spring constants of the two bearings are only linearly

reduced.
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2.1.4 Results of the Frequency Calculation

Using a program for calculating the flapping eigen frequencies

and the deflection eigen frequencies of a bending support, it

is possible to determine the required frequency ratios. The

cross sections at the blade root are varied until the desired

frequency ratio of the first deflection mode is achieved. In

addition, frequency calculationswith different blade weights

were performed, which assume a 5% manufacturing tolerance. An

increase in the weight by this percentage makes the first

deflection eigen mode be reduced from _l_ /_= O,716 to

0.6985. Therefore, it would be closer to the data of the BO 105.

When determining the flapping eigen frequencies, variation

calculations over the radius with an additional mass of 0.064 kg

were performed (corresponding to 1 kg in the full scale design).

For a distance of r = 0.9 m, the flapping frequency ratios /24

agree with those of the BO 105 up to the third eigen mode.

2.1.5 Errors in Blade Manufacturin@ and Their Effects

Here we will give a qualitative discussion of several errors

which can occur when manufacturing hingeless rotor blades.

When the rotor blades are scaled down, the manufacturing

tolerances have to be reduced to scale. This requirement

can usually not be satisfied in most cases, because already

in the original version one attempts to make deviations from

the nominal dimensions as small as possible.

Contour errors from the blade profile, especially at the

r leading edge and the trailing edge, which are not eliminated

during manufacturing, have a much greater effect on the

models than for the original blade, because the absolute
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error remains the same. Contour errors of the blade profile

produce strong vibrations at the rotor head, especially for

fast forward flight. This is because compressibility effects

become intensified with increasing speed.

Fig. 20 shows the effects of manufacturing inaccuracies on the

center of gravity, the blade sweep at the connection bolts, the

blade twist, and the trailing edge shape and how they affect

tracking, weights and control forces of the rotor. Since there

are various operational states for helicopters (running on the

ground, hovering flight, cruise, flying curves) we investigated
the effects of the inaccuracies mentioned above.

2.2 Design and Construction of the Rotor Head

In the full scale design of the rotor head, the parts which

define the strength and the stiffness and the rotor star as

well as the inner shells are made of titanium in order to /25

save weight.

Single fabrication of these parts of the rotor model made of

- titanium would result in major expenses and major time

requirements which are not jusitified.

Since these parts only experience unimportant elastic

deformations and they only produce small dynamic mass

forces, they were made of steel in the model. The higher

specific weight and the larger elastic modulus of steel

compared with titanium does not lead to impermissible

deviations from the dynamic similarity of the model rotor

in these stiff parts, if the distance is maintained with

geometric similarity between the blade main bolts and the
- axis of rotation.
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In the case of the hingeless rotor, there is a rotating

hinge (Fig. 21) in the rotor head, in order to incline

the blade. Since there are no other hinges, they experience

a greater load than for a rotor with a hinge. The inner

shells connected with the blades, therefore, have to be

supported in the radial and axial directions of the blade.

In the case of the model therefore, needle bearings with

small dimensions and relatively large carrying capacity as

well as low torsion tension members for absorbing the axial

forces can be used in the model just like in the full scale

version. In this way, similar geometric conditions are

achieved as are found in the full scale version of the

rotor head.

Then it is important, when arranging the radial bearings,

to absorb the flapping and deflection moments with as little

play as possible and to have a large axial separation of the

bearing centers from one another. Since the model size of

the needle bearings, however, is relatively large compared

with their carrying capacity, special design features are

required considering the given size of the model rotor head

in order to approximately satisfy the geometric conditions

of the full scale version.

In order to make the tension members have as little torsion /26

resistance as possible, it is required to make them as

long as possible. Since the model size of the tension

members however requires a substantial axial length for

their connections compared with their carrying capacity,

for a given size of the model rotor there is relatively

little free length available for the torsion members and

therefore special design requirements are required for this

detail in order to approximately satisfy the geometric

relationships of the full scale version.
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The rotor head is screwed into the rotor shaft through

a flange. Cylindrical bushings provide radial centering

and transmission of the torque. The 2-blade reaction

rotor can also be used with this rotor shaft using the

same flange connection.

2.3 Blade Manufacturing and Final Assembly

First of all, a two-part negative crest mold is made,

which insures that the blade profile is maintained and

that there is geometric similarity of all of the blades

(Fig. 22).

The two mold halves are designed with a tissue skin 0.4 mm

thick over the entire blade length and this is wetted with

the prescribed weight of resin. After this, several layers

of tissue are applied at the blade throat and are impreg-

nated with the prescribed amount of resin. Finally, five

rowings of the homogeneous part are laid into each half

around the grommet and this is set into the profile mold

using a templet. Then the short rowings are laid in

around the blade neck. Then the lead strand and the trim

chamber are installed at the end of the blade using a

holder. The rowings remain in the preheated mold, heated

to 45°C, for about 4 hours. There, they gell and become

solid somewhat. Then the two halves of the foam core are

impregnated with a small amount of resin and inserted into

the molds. These two halves of the mold are closed and /27

tensioned. Finally the mold is held in a hardening oven

for about 8 hours at a temperature of 100°C. The raw blades

after removal from hhe mold are cleaned, and the nose shell

and the end shell are laminated on in the blade throat area.

The nose shell is checked with a templet and is ground down

to the nominal dimension.
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The blade is then embedded into a 2-part connection fitting

with its gro_xLet (Fig. 23), and a special device holds the

position of the blade with respect to the fitting during the

hardening process. Finally a cover made of GfK tissue is

laminated on at the end of the blade.

The finished rotor blades are then assembled into a set of

four each. One attempts to get the equal static mass moment

around the rotor rotation axis. Often, extensive tests have

to be performed for this, which are performed on a balancing

device as shown in Fig. 24.

In order to test the dynamic similarity with respect to the

BO 105, the blades were excited in the flapping, deflection

and torsion directions at {_Ro= O and their eigen frequencies

were measured with DMS (strain gauges). It is found that

the accuracy of the first eigen frequencies are in the area

of ±3% and therefore one can assume that there is good dynamic

similarity between the model and the original.

We will later on report about extensive measurements on the

higher eigen frequencies and eigen modes.

Fig. 25 shows the rotor before delivery to the DFVLR.

2.4 2-Blade Reaction Rotor

In spite of its thick blade profile a reaction rotor has good

possibilities of investigating the efficiency of blade modifi-

cations. Therefore, one central point of the wind tunnel /28

investigations was the following.

- Investigations when mixing blade tip drive and shaft
drive

- Modification at the air exit point at the blade tip
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- Variations of the blade tip shape

- Flap control for higher harmonic aerodynamic force

components.

Because of the simple design of.the blades made of a strand-

cast-pressed hollow profile it is possible to perform pressure

distribution measurements over the blade contour without any
d

measurement difficulties. In contrast to the 4-blade Gfk

(glass fiber reinforced plastic) rotor, pressure sensors and

cables can be laid in without any problems. The sensor weight

divided by the blade weight is a very favorable ratio, so that

the blade eigen frequencies are hardly changed at all. By

using an easily removable blade tip section, one can then

optimize the profile shape without much complexity.

2.4.1 Rotor Head (Fig. 26)

The rotor head is a semi-rigid 2-blade rotor with a central

flapping hinge. Two forks which are connected to spring

packages in the rotor support the rotor blades and absorb

the centrifugal forces as well as the flapping and deflection

moments. The gas is let out to the side from the rotor head

and runs to the center of the fork through a tube, so that the

gas flows through an intermediate part into the rotor blade.

The gas supply tube is designed so that the rotor control and

the resulting blade motion does not impart any bending moments

on the tube. The rotor hub is made in two parts due to

assembly considerations. The flapping hinge is supported on

the gas distribution tube. This is flanged onto the rotor mass

and is then used to support the rotor. The blade displacement

is provided by two oil lubricated roller bearings. The flapping

hinge and the sealing bearings are filled with grease.

In order to reduce the Coriolis forces, the rotor has an /2__9

• "underslung" configuration. In other words, the flapping
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axis is above the intersection point of the blade torsion

axis. Therefore the centrifugal forces above the flapping

axis produce a different direction of rotation than they

do below it. This, then, leads to a reduction in the

Coriolis forces during the flapping motion.

2.4.2 Rotor Blades (Fig. 27)

The rotor blades consist of a strand-pressed light metal

hollow profile. The blade connection is glued on as a lamella

construction to this profile. The trailing edge is designed

as a light metal sandwich web construction and is also glued

on. There is a round nozzle screwed into the blade tip, which

provides for rotor drive. The rotor blades are twisted (5°/m)

and have a cone angle of 0o54 ' with respect to the horizontal.

Therefore, only small bending moments occur in the flapping

direction in the blade fork during hovering flight and the
load factors are n = i.

2.4.3 Hybrid Drive

One special feature of the rotor is the possibility of investi-

gating combinations of blade tip drive and shaft drive. If the

rotor is to be driven pneumatically only, then a pressurized

air generator must produce the required amount of air of 1 kg/s

at a pressure of 2.65 bar. The temperature of the air will then

rise to about 424°K (about 150°).

Fig. 28 shows the design of a hybrid drive for the rotor test
stand.

The hydromotor and the air supply are attached to the rotor

shaft along the lower plate. There is an electrical brake on

the plate, which can stop the rotor if only the pneumatic

drive is used. Above this there are five pulley disks, which
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are connected to the hydromotor with V belts. After this, there

is a cog belt disk with a cog belt, which drives a tachogenerator,

and therefore provides information about the rotation rate and /30

the rotor position.

Except for a changed hollow rotor shaft, all other parts of the

rotor carrier and the control system can be retained.

During the test program of the 2-blade rotor, in 1983 we will

carry out a test stand test program, which will provide informa-

tion about the performance of the rotor with different drive

conditions. Then operating points with different fractions of

pneumatic drive and shaft drive will be investigated. Finally,

we would like to point out that the rotor has a higher resistance

and therefore a higher power requirement than does the 4-blade

rotor because of the fixed blade profile and the flow losses.

However, in the case of the helicopter this could be different,

because blade tip drive does not require any torque equalization

by the tail rotor. During hovering flight, the power requirement

of the tail rotor is about 10% of the total power. The power

requirement however decreases with increasing degree of advance

because of the influence of the wing.
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Fig. 9: Blade control
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Fig. ii: Swash plate with cover

1 - 2 separation discs, 1.5 thick, adjusted; 2 - after installation
of the swash plate, this is in a plane; 3 - rotated by 30 degrees;
4 - rotated; 5 - rotated
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Fig. 14a: Amplitude variation of a hydraulic actuator
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Fig. 17: Research rotor I, 4-blade rotor, hingeless
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Fig. 18: Research rotor II, 2-blade rotor with central
flapping hinge
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Fig. 21: Rotor head of a 4-blade rotor
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Fig. 23: Blade connection fitting and GFK cartridge
embedded in it
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Fig. 24: Model rotor with static balancing on
marvel device
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Fig. 25: Model rotor head installed
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Fig. 27: Rotor blade of the 2-blade rotor
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" Fig. 28: Rotor test stand with hybrid drive
(designstructure}
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