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SUMMARY

This report describes a new algorithm for fast, automatic integration of
chemical kinetic rate equations describing homogeneous, gas-phase combustion
at constent pressure. Particular attention is paid to the distinguishing
physical and computational characteristics of the induction, heat-release and
equilibration regimes. The two-part predictor-corrector algorithm, based on
an "exponentially-fitted trapezoidal rule", includes filtering of ill-posed
initial conditions, automatic stepsize selection, and automatic selection of
Newton-Jacobi or Newton iteration for convergence to achieve maximum computa-
tional efficiency while observing a prescribed error tolerance. The new algo-
rithm was found to compare favorably with LSODE on two representative test
problems drawn from combustion kinetics.

INTRODUCTION

The problem of economical integration of the coupled, nonlinear ordinary
differential equations describing exothermic, homogeneous gas phase combustion
reaction kinetics has not yet been optimally solved. Multistep methods, based
on traditional explicit numerical integration schemes such as the fourth-order
Runge-Kutta method, dominated the thinking of early workers performing single-
point calculations modeling one-dimensional combustion processes in shock tubes
and rocket nozzles. 1In the 1960's, considerable progress was made with respect
to reliability and efficiency of single-point calculations, due to the intro-
duction of implicit methods by Tyson (ref. 1), and Treanor's introduction of
locally exact solutions (exponential functions) to extend the convergence ra-
dius of explicit Runge-Kutta methods (ref. 2). Lomax and Bailey (ref. 3) ex-
plored the combined use of explicit and implicit methods based on low-order
polynomial approximations as an alternative to Treanor's method.

In the 1970's, Treanor's algorithm was utilized by Dimitrov to model hy-
drogen-air combustion (ref. 4), and Tyson's and Lomax and Bailey's ideas were
incorporated into production codes (refs. 5,6). The first implementation
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of Gear's variable-order, variable-step, backward-difference formulas
(refs. 7,8) was produced by Lawrence Livermore Laboratory (ref. 9).

At the same time, increasing attention was focused on mulitipoint calcula-
tions, required for modeling of multidimensional reactive flows (refs. 10-12).
This increasing interest in modeling of furnaces and combustors resulted in a
major reassessment of available algorithms. It was recognized that all pro-
posed techniques for modeling of complex chemically reacting flow--whether
Eulerian space discretization with operator splitting for treating coupled
phenomena, or Lagrangian mass or vorticity discretization with coupled phenom-
ena treated by the method of fractional steps--all require a very stable but
only moderately accurate homogeneous batch chemistry integrator (refs. 10-12).
The same requirements exist for the single-point, stochastic simulation of
turbulent mixing-influenced, inhomogeneous gas-phase continuous combustion
systems (refs. 13-16). '

At the present time, the latest of a series of Lawrence Livermore
Laboratory's implementations of the Gear algorithms, LSODE (refs. 17,18) is
considered to be the best available, state-of-the-art code for solving stiff
systems of ODE's. However, it is recognized by combustion device modelers
that LSODE is not fast enough for economical calculations of multidimensional
reacting flowfields.

While LSODE is regarded as the best available "packaged" code for solving
an arbitrary system of ODE's, it may be possible to construct a superior method
for solving a uniquely specified system of ODE's. A clue to a better method
for the present problem than the variable order-variable stepsize algorithm
utilized by LSODE is given by Lambert (ref. 9, p. 18):

"For stiff equations, for which a typical solution is a rapidly decaying
exponential, the error in interpolating such functions by a polynomial of
high degree is very large, and correspondingly we find that 1inear multi-
step methods of high stepnumber cannot be used successfully for such
problems."

The present paper describes the development of an algorithm, denoted
CREK1D (for Combustion Reaction Kinetics-One-Dimensional), which has been spe-
cifically designed to integrate chemical kinetic rate equations, and which
compares favorably with LSODE.

GOVERNING ALGEBRAIC AND DIFFERENTIAL EQUATIONS

The equations for adiabatic, homogenous gas-phase chemical reaction ki-
netics at constant pressure are given by:

do '

T = fuloLT), 1,k = T,N (1)
where
-] J :
fy=-p ng (agy - aj)(Ry - R_4) (2)
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where

Bj N aéj
Rj = AJT exp(—Ej/RT) E (o) (3a)
and
B, N a."(j' ,
Ry = AT ™ exp(-E_y/RT) TT" (poy) (3b)

k=1

In equations (1) to (3), oy 1is the mole number of the ith species
(1 = 1,N); T 1is the temperature; p 1s the mass density; ojy and aij
are the stoichiometric coefficients of species 1 (1 = 1,N) in reaction
j(3 =1,3) as a reactant and as a product species, respectively; Aj, A_j, Bj,
B_j, E;, and E_y are constants in the modified Arrhenius rate expres-
sions for Ry and R_j, which in turn are the forward and reverse rates
of -the jth reaction (J = 1,J) as a reactant and as a product species, respec-
tively. N and J are, respectively, the total number of distinct chemical
species in the gas mixture and the total number of distinct elementary
reactions in the reaction mechanism.

For adiabatic constant-pressure chemical reaction, the following enthalpy
conservation equation constitutes an algebraic constraint on equations (1) to

(3):

N
12?1'101 = H, = const. (4)
|

where ﬁ} is fhe molal-specific enthalpy of species 1, and Hy is the
mass-specific enthalpy of the mixture.

The mass density p 1in equations (2) and (3) is determined by the equa-
tion of state for an ideal gas,

p = P/(RTom) (5)

where P 1is the absolute pressure, R the universal gas constant, and
N
o = 2 o (8
i=1
is the reciprocal mean molar mass of the mixture.

PHYSICAL AND COMPUTATIONAL SCENARIOS

A typical constant pressure batch combustion problem consists of three
distinctly different chemical-physical regimes: induction, heat release and
equilibration (see fig. 1). To accommodate the widely different characteris-
tics of these regimes, a two-part algorithm was developed as follows.



During induction and early heat-release, the species equations are domi-
nated by positive time constants, and the temperature also exhibits a positive
time constant. Since very small steps are required for integrating unstable
equations, a simple predictor-corrector scheme with functional iteration as-
sures the least computational work possible. However, during late heat release
and equilibration, when the temperature and species equations exhibit negative
time constants, large stepsizes can be used, so Newton-Raphson iteration with
calculation of the full Jacobian matrix is the optimal convergence method.

Although the governing ordinary differential equations (ODE's) are stable
during late heat release and equilibration, they are characterized by widely
differing time constants. This behavior--termed "stiff" by Curtiss and
Hirschfelder (ref. 20)--causes classical integration techniques (such as the
popular explicit Runge-Kutta method) to use very small steplengths, thereby
resulting in excessive computational work (refs. 19, 21-23).

The equilibration process does not have a clearly defined termination,
due to the asymptotic nature of the approach to the chemical equilibrium state.
Since equilibrium values of temperature and species concentration can be de-
termined a priori by a Gibbs function minimization scheme (refs. 11,24), the
end of the equilibration period can be defined as the time at which all of the
mole numbers and the temperature are within (say) one percent of their chemi-
cal equilibrium values.

CANDIDATE ALGORITHMS
A number of single-step a]gorithms were considered, including:

Implicit Euler rule (refs. 1, 3, 19, 25, and 26)

Implicit midpoint rule (refs. 27, and 28)

Trapezoidal rule (ref. 19)

Exponential-fitted trapezoidal rule: “Liniger-Willoughby No. 1"

(refs. 12, 25, 26, and 29-31) .

5. Trapezoidal rule with end correction: cubic spline, or "Obreschkoff
(2,2)" (refs. 25, 28, and 29)

6. Exponential-fitted trapezoidal rule with end correction: "Liniger-
Willoughby No. 3" (refs. 25, 26, and 29)

1. Locally-exact or exponential solutions (refs. 19, 25, and 26).

Hw N -

Variations and combinations of the seven basic algorithms were explored;
for example, Young and Boris' SAIM (Selected Asymptotic Integration Method),
which utilizes a combination of locally-exact ("asymptotic") solutions and an
explicit Euler-trapezoidal rule predictor-corrector method (refs. 10, 32, 33).

0f the seven algorithms and their variants tested, it was found that the
most useful algorithms were variations of "Liniger-Willoughby No. 1," the
exponential-fitted trapezoidal rule.



METHOD FORMULATION: THE EXPONENTIAL-FITTED TRAPEZOIDAL RULE

Consider an approximate solution to equation (1) based on a variation of
the trapezoidal rule, the "tuneable trapezoid" (refs. 12, 25, and 26) or
"theta-method" (ref. 28), as follows:

di,n"_] = 0'1’n + h[U,‘f“'n+] + (1 - U-‘)f-r"n]t i =1,N (7)

where, oy p is the approximation to the exact solution to equation (1) at

the current time, tp, h 1is the time steplength (= tp4y- tp), f4 0 = fi(ok,n,Tn),
and Tp, the temperature at tp, is obtained from equation (4)--see

appendix A for details. Also, Uy 1is a degree-of-implicitness or “"tuning"

factor such that Uy = 0 recovers the explicit Euler approximation, Uy =1
recovers the implicit Euler approximation, and U4 = 1/2 recovers the trape-
zoidal rule (or modified Euler method).

Following the ideas of Liniger and Willoughby (ref. 29) and of Brandon
(refs. 30 and 31), we introduce the concept of "exponential-fitting" the para-
meter Uy to a locally-exact solution of equation (1). Assume a locally-
Tinearized form of the rate equations, equation (1):

f1 = (fi,n - e1°1,n) + 0,0, (8a)

or

Q.

g
..__1.=(f

dt = 9394 ) * 849 (8b)

i,n

where the choice of o4, a suitable linearization constant, is discussed

in detail in the next section. Integration of equation (8b) gives the follow-
ing result

= 1,N (9)

exp(e1h)—1]
—_—1, i
1

C4nel C %,nt hfﬁ,n [ o.h

which Miranker (ref. 26) calls the "filtered Euler" approximation.

Application of equation (Ba) to the entire step of length h gives

0,0

f = (Fy 0 = %4%,0) * 949 o (%)

1,n41

Substituting equation (10) for the term f1 N+l in equation (7), eliminating

%5 el between equations (7) and (9), and 561v1ng explicitly for U

i
1 1

1 7o, " 1-exp(o,h) an

u

which relates the tuning factor Uy 1in equation (7) to the linearization
constant 64 1in equation (8). Equation (11) is graphed in figure 2.
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However, in order to maintain the absolute A-stability of equation (7)
(i.e., oy n+1 remains bounded as h 1is increased indefinitely), it is nec-
essary to restrict Uy to the interval (0.5, 1.0) (refs. 19, 25, 26, and
28-31). Thus, equation (7) is made to default to the second-order-accurate
trapezoidal ru]e whenever ©4 1s greater than zero. However, whenever
03 1s negative, equations (7) and (11) together are equivalent to the
locally-exact or exponential solution, equation (9). Brandon (refs. 30 and
31) has shown that the equivalent po]ynom1a1 accuracy of equation (9) is typi—
cally of order six to eight.

Thus, equations (7) and (11), with the restriction (0.5 < Uy < 1), con-
stitute an exponential-fitted trapezoidal rule, a method which is A-stable,
and has a polynomial-order accuracy of at least two, and as great as six-to-
eight. It is interesting to note that, using Liniger and Willoughby's termi-
nology, Treanor's method (ref. 2) wou]d be ca]]ed an "exponential-fitted,
fourth-order Runge-Kutta" method.

LINEARIZATION OF THE RATE EQUATIONS
There are at least two distinct ways of interest to determine the line-
arization constants €4 1in equations (8) to (11). First, the traditional
"chemist's" approach, which may be termed a formal l1inearization, is reviewed.
Formal Linearization of the Rate Equations: "L-Formulation"

Equation (2) may be expressed as a difference between two positive-
definite terms as follows (refs. 10, 32, 33)

£y = 0y - Dy | - (2
where |
-1 J
Q, = »p 5%% (asR_y + aijRy) (13)
I
D, = o E‘“iJRJ * afiR_y) (14)

The terms Q3 and Dy represent the gross rates of production and
consumption of species-i, respectively, due to the contributions of all J
forward and reverse reactions. The objective of this decomposition is to en-
able factorization of the mole number from the destruction term:

D, = L1o1 (15)

where 14, obtained simply by dividing D3 by o3, 1s given by

J
Ly = (poi)—T 3§% (af4Ry + aiiR_y) (16)



With the notation of equations (12) to (16), equation (1) may be rewritten
as:

do‘i

at = 4 - Lyoy (17)

Equation (17) 1s now formally linear in o4, and it can be seen by inspection
that (-Ly) 1s the appropriate linearization constant 63. With e4 replaced
by (-Ly), and f4 replaced by (Q4 - Ljoy), equation (8a) may be rewritten

in the form

Uner T L0y p/hy qd Doy - Qg /Ly T exp(-Ly b (18)

N n
Since the loss coefficients (Ly, 1 = 1,N) are all positive-definite,

the first terms in brackets in equation (18) may be regarded as the local as-

ymptotic solution (refs. 10, 32), which represents the large-timestep value of

the locally exact solution, equation (18).

Inspection of equation (18) reveals that the coefficients (Ly, 1 = 1,N)
represent inverse characteristic time constants for the L-formulated rate
equations; that is, an accurate approximate solution according to equation (18)
would have to be resolved on a steplength of order /(L) max-

Functional Linearization of the Rate Equations: "Z-Formulation"

Integration of equation (17) to yield equation (18) required that 04
and Ly in equation (17) be constant over the timestep h. It very often
happens that this condition does not exist. Therefore, a more careful exami-
nation of the actual coupling between variables in equation (1) requires a
functional linearization of the rate equations.

Equation (10) can be solved explicitly for o4 to give

f - f
0, = ;1J"+] - di n - Z, (19)
1,n+1 i,n

The parameter Z3 1is termed by Brandon the "diagonal transition matrix"
or the "state variable differential" (ref. 30). Also, Zy may be recognized

as the average value over the interval h of the ratio of second-to first-time
derivatives of the mole number oy:

dzoi/dtz df , /dt

- (20)
do, /dt f

Therefore, Zj is a measure of the local curvature of the trace of
oy With time, as for example in figure 1. The parameter Z3y 1s also
equivalent to Treanor's parameter Pj3 (ref. 2).

An important relationship which follows from the locally exact solution
Is obtained by substituting equation (9) into equation (10) (with 64 = Z3 )
to give ’



fi,n+1 = fi,n exp (Zy, nh) (21)

Equation 21 emphasizes the role of the state variable differential Z4 as a
"diagonal transition matrix" (refs. 30, 31). Thus Z4 may be thought of as
a finite-difference analog of the eigenvalues of the Jacobian matrix of
equations (1) and (2).

Comparison of Land Z-Formulations

Because the loss coefficients Ly, equation (16), are all positive-
definite, the integrated rate equations, equations (7) to (11), are always
stable when 64 = -L4. However, they are not always accurate, because
strong coupling between variables often results in observed positive time con-
stants Z4 for traces of oy versus time--see figure 1.

In contrast to the formally-linearized equations (64 = -Ly), the
functionally-linearized equations (o3 = Z4) are always accurate, but are
stable only when Z3 1s negative; when any species exhibits a positive
Zy, both the physical equation and the corresponding approximate solution,
equations 7 to 11 with @3 = Zj, are unstable. As a consequence, when
the rate equations are dominated by positive Z4's, as occurs during induc-

tion and early heat release, it is necessary to take small steplengths of the
order 1/1Z3lpax-

The use of the Z-formulated equations may result in extremely small step-
lengths (of size 1/1Z3lpax) being taken if the initial values for
ay(i = 1,N) are 111-posed. These non-physical initial conditions may arise,
for example in multidimensional modeling because of the averaging of mole num-
bers over adjacent grid nodes. In this case, use of 64 = -L4 with a
time steplength of order 1/|Ljlmax 15 desirable. On the first call
to CREK1D, the L-formulated equations are solved over one timestep of Tength
1/|L3lpax to filter the initial conditions--that is, to remove spuri-
ous transients of time scale 1/|Z4lmax and to provide physically
meaningful initial values.

Another difficulty with the use of the Z-formulated equations arises
whenever any species is in "quasi-steady state"; that is, when the time trace
of o3 closely approaches an asymptote or passes through an extremum. In
either case, Z4 becomes singular due to division by zero or a small number
(see eq. 19). When this condition occurs--that is, when f4 ~ 0 and/or
(o4,n+1 - oi,n) ~ 0--Q3 and Ly (eq. 17) are locally only slowly
varying with time, so that use of the L-formulated equations (i.e., 64 =
-Ly), which are now both stable and accurate, is appropriate.

SOLVING THE INTEGRATED RATE EQUATIONS

A fundamental question which must be addressed is whether or not to use
Newton-Raphson iteration to converge the implicit equations, equations (7) to
(11), together with the enthalpy conservation constraint, equation (4). The
tradeoffs which must be considered involve accuracy, convergence radius and
rate, and computational work.



Newton-Raphson (NR) iteration is attractive because it converges quadrat-
ically and has an infinite convergence radius. However, NR iteration requires
frequent evaluation of the Jacobian matrix and its inverse, usually done by
either Gaussian elimination or (equivalently) LU-decomposition and back-
substitution (ref. 34).

On the other hand, functional iteration techniques such as nonlinear
Gauss-Seidel, Jacobi, or Jacobi-Newton (JIN) iteration (ref. 35) do not require
evaluation of the Jacobian matrix or its inverse, but have severely restricted
convergence radii. 1In addition, for these methods, the convergence rate is
only linear, or at best, super linear--better than linear but not quite
quadratic--in the case of JN iteration.

For reasons presented in the section Physical and Computational Scenarios,
JN iteration is used during induction and early heat release; however, during
late heat release and equilibration, NR iteration is used. Details of both JN
and NR iteration methods are given in appendix A.

Approximations for State Variable Differentials

The "tuning factors" Uy 1in equation (7) are given by equation (11)
with 64 representing the corresponding state variable differentials
Zy n. To minimize computational work, the Zy n's are evaluated only
once per step--at the beginning of the time step, using equation (19). How-
ever, since o4 p4y and fy .y are not known at the start of the step,
an approximation has to be developed for Z4 n. This is done simply by using
values from the previous step, so '

~ fi,n B fLn—]

Tl 90 7 %00

(22)

Selecting the Iteration Technique

CREK1D automatically selects the iteration scheme (JN or NR) to be used
for solving equation (7). During induction and heat release, when small step-
lengths are required for solution stability (refs. 21, 23), JN iteration is
used to minimize computational work. During late heat release and equilibra-
tion when the differential equations are more stable and larger steplengths
can be used (refs. 21, 23), NR iteration is preferred since it has a much
larger radius of convergence than JN iteration. The regime identification
test exploits the fact that during extrema or equilibration ("quasi-steady
state": QSS) many reactions achieve a condition in which the forward and re-
verse reactions are large but with vanishingly small differences (refs. 36,
37). The actual test employed at the beginning of the time step is

1£41 < 1075(q, + 0,) (23)

where, Q; and Dy are the production and destruction rates, respectively,

of species 1 (see eqs. 12 to 14). If any two are 1in QSS--that 1s, satisfies
equation (23)--NR iteration is used for the step. If fewer than two species
satisfy equation (23) JN iteration is used for the step.



Non-Physical Initial Conditions

As discussed in the section Comparison of Land Z-formulations, nonphysical
initial conditions may result in extremely small steplengths being taken. To
f11ter the initial conditions--that is, to provide physically meaningful ini-
tial mole numbers and net species production rates--the L-formulated equations
are solved over one timestep. On the first call to CREK1D, it uses this for-
mulation over a timestep of length hy given by

: 1
N = max L (24)
v i i

The predictor-corrector algorithm uses equation (18) as the predictor

1 - exp(-L,(0)h.)
(0) _ i 1
o1'] = 01(0) + h1f1(0) L1(0)h1 (25)
An implicit Euler corrector equation is then iterated to convergence
(m+1) (m+1)
% 1 = 01(0) + h1f1'] (26)

In these equations o4(0) are the initial values, f3(0) = f3(ok(0),
T(0)), T(0) 1is the initial temperature, and the subscript 1 is used to indi-
cate that this is the first step. Using equations (17) and (A12)

together with the approximations ng;])= ng% and Lgm{]) = Lgmz, equation (26)

can be rewritten to provide the following expression for the log-variable

(m)

corrections Alog 9% 9

(m) (m)
0) - oo™y nf
m % it Mo
Alog = ; 1 = 1,N (27)
A SRR

Equation (27) is iterated until converged (see appendix A). If convergence is
not achieved after 10 iterations, the steplength is halved and the step re-
tried. If convergence is obtained after M (M < 10) jiterations, the step is
accepted as successful, and the solution for o4 is updated

M), :
d,l’.l = 01'1, i =1,N (28)

and the temperature Ty 1s obtained by a single Newton-Raphson iteration

N
Hy - E] 01,]ﬁ1(1(0))

T, = T(0) + — —
3 93,15p1(T(O)
i=1

1

(29)

where Eb1 is the constant-pressure molal specific-heat of species 1.
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Species in Quasi-Steady State

Whenever the reaction rate for any species 1 satisfies equation (23),
that species is considered to be in "quasi-steady state" (QSS). For reasons
presented in the section Solving the Integrated Rate Equations, the
L-formulated equations (€3 = -L4) are employed for all species in quasi-
steady state.

ACCURACY, STABILITY, CONVERGENCE AND STEPLENGTH CONTROL

It is particularly useful to define two timescales needed for steplength
control: "hzcey," the estimated maximum stepsize to stay within a pre-

scribed local truncation error tolerance ¢, and "hjter," the maximum step-
size which will admit efficient convergence (refs. 38, 39).

Locé] Truncation Error (1te)

In the nonstiff regime where JN iteration is used, many species equations
have positive time constants. Such species, which we term unstable, have
values of Zj > 0. 1In the present version of the code, whenever Zj > 0,
the "tuning factor" Uy (eq. 7) is set equal to 0.5, so that with the foil-
lowing relations deduced from equation (11) (with 64 = Z3),

exp(Z1h) -1

1 1
= = (30)
Z4h B L R X
the predictor equation (A21) for unstable species becomes
hf
(0) i,n
4,041 = %0 * 1.l (31)
T2 T,n
where I3 ,n is determined by equation (22). The corrector equation for
unstable species is equation (7) with Uy = 0.5--that is, the trapezoidal
rule
(m+1) h (m)
“,n¢1 T %,n t2 [fi,n ¥ f1,n+1 (32)

It can be shown that equation (31) has approximately the same 1te as a
second-order Adams-Bashforth predictor, so the 1te for unstable species can be
conservatively estimated as :

(0)

1
(Tte)y ~ § |°1,n+1 T %, (33)

where o4 p,7 1s the converged solution.

Species equations that aré stable are not limited to Uy = 0.5, so
equation (33) does not apply for such species. 1In fact, no such estimate as

IR



equation (33) can be made for the present méthod because it is not a poly-
nomial method (refs. 30 and 31). Nevertheless, equation (33) is used even
though it seriously overestimates the 1te for stable species.

For all species, stable and unstable, an average weighted 1te estimate is
made by :

1"/1 : % - °§0) 1 ‘

1 n+
e = - YV« E 212 : (34)
6 N 1=]~ max(c1,n, °1,n+1)

and the projected next steplength which would satisfy the user-specified local
error tolerance ¢ 1is calculated from

1/3
haccy = N(e/1te) (35)

In the computationally stiff regime where more of the species are stable,
and where use of the NR iteration permits much larger steplengths, equations
(33) to (35) are far too conservative. In fact, in this regime, the local
truncation error for stable species may decrease with an increase in the step-
length. Therefore, a different estimate of the 1te is used in the stiff
regime. The estimate is based on the norm of the difference between the con-
verged solution and that obtained after the first Newton iteration. This
estimate is actually a measure of the local linearization error due to the use
of NR iteration, and not that of the local truncation error. The relations
used in the stiff regime in place of equations (34) and (35) are

1 ‘V/1 N % - °§]) ¢
Tte = ~ 1 E ,n+] ,n*'] (36)
3 VN T [ maxCoy 10 9y nyq)
and
h. = hie/1te)'’3 (37)

accy
In equations (36) and (37), the factor (1/3) must be regarded as strictly
empirical.
Convergence Control
During JN and NR ijteration the rate of convergence is monitored, both to
detect divergence and to optimize the rate of iterative convergence.

Following Shampine (refs. 38, 39) and Pratt (ref. 40), the convergence rate
Rcony 1s defined by

12



{m) 2
%E (alog o, ne1) /N
conv =

VZ(A]og ag'“nl%) /N

where (m-1) and (m) denote the iteration numbers. Note that at least two
iterations are required to define R¢yny; if convergence is obtained after
the first iteration, a default value of Regpy = 0.1 for JIN iteration and
0.05 for NR iteration is used. As with the convergence test, the summations
in equation 38 include only species with mole numbers greater than 10-20

(38)

If Reony 1s greater than one, the solution is diverging and the step
must be attempted with a decreased steplength. 1In CREK1D, a more conservative
test Reopny 2 0.8 1s used to detect divergence. If convergence is not ob-

tained or if divergence is detected, the steplength is decreased as discussed
in the next section.

Steplength Control

During both JN and NR iteration the convergence rate, Rcopy, 1S used to
control the steplength. If corrector convergence is not obtained after ITMAX
iterations, where ITMAX is the user-supplied maximum number of corrector
iterations to be attempted, or if divergence is detected (i.e., Regpy > 0.8),

the steplength is decreased. The new steplength, h', is calculated as follows

h' = h min {0.5, max(0.1, O.S/Rconv)} (39)

and the step retried with the decreased steplength.

After corrector convergence, the steplength is adjusted up or down as
necessary to keep Rcgpy 1n the range (0.4, 0.5). An estimate, hyter, is
made of the steplength that would result in the desired convergence rate:

1/2

h(o.4/R )" R < 0.4
hyter = N ; 0.4 <R . <0.5 (40)
172,
h(0.5/R_ o )% Regny > 0.5

In addition, the maximum permissible steplength, haccy (given by eq. 35 or
37) that would result in a local truncation error equal to the user-specified
value for the local relative error, ¢, allowed per step, is calculated.

The steplength, h', to be attempted for the next step is then taken to be
the minimum of hyter and hyccy; however, the ratio h'/h is restricted
to be no larger than 10. Hence, h' 1s given by
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To inhibit oscillations of the steplength, h (due to repeated failures of
the convergence test after increases in h), an increase in h 1is allowed only
if convergence was obtained in the previous step without a reduction in h.
Following any step for which corrector convergence could not be obtained or
divergence was detected (and so h was reduced), the new steplength h' 1is
calculated from

h' = min (h, h' given by eq. 41) (42)

COMPUTATIONAL STRATEGY

The objective of the calculation is to efficiently and reliably solve the
following initial value problem: given a set of initial conditions (o4; 1 =
1,N), T and P (constant), find the values of o4 (1 = 1,N) and T at the

end of a prescribed time interval at. The overall steps taken to accomplish
this are: :

a. Filter the initial conditions: evaluate the fy's; choose a time-
step hy = 1/(Ly)paxs use the "filtered Euler" predictor, equation (9)
with 64 -Ly (1 = 1,N), and converge equations (A19) and (A20) by JN
iteration, with all U4's set to unity (implicit Euler corrector).

W o

b.  Adjust the timestep according to the observed Rcgny from step a.
Use an explicit Euler predictor (eq. 9) with o4 = 0 (1 = 1,N); use JIN
iteration, equations (A19) and (A20), with all U4's set equal to one-half
(trapezoidal rule). _

c. Calculate Rcopy, haccy and hyter; choose IN or NR iteration,
according to whether or not two or more species are in QSS. Adjust the time-
step as described in the section Steplength Control.

d. Evaluate Z4's from equation (22), Uy's from equation (11) and
iterate equation (17) until converged.

e. Repeat step d to the end of the prescribed interval at; return
solution.

The strategy outlined above, in conjunction with the robust integration algo-
rithm, leads to minimum computational time with acceptable accuracy.

COMPUTATIONAL TACTICS

The computational work of evaluating logarithms and exponentials may be
avoided by judicious use of approximating functions. For example, the term
(eX - 1)/x in equation (9) is evaluated in the code by means of a (2,2) di-
agonal Pade' (rational function) approximation for eX,

X X2

e B I V) (43)
(2,2) ~ . 2
1-5+35
2 " 12
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which results in F

ex -1

X

: ]
1 - x(1/2 - x/12)* X

(2,2) = <0 (44)

Similarly, the "tuning factor" Uy of equation (11) can be evaluated with
sufficient accuracy by means of an approximation which has no singularity

L52)

1 1 12

+

~ | - (45)

1
1-ex 2
The right-hand side of equation (44) requires only five operations to

evaluate, and does not exhibit the singularity at x = 0 of the exact left-

hand side. Equation (44) is used only for the predictor equation (9).

Equation (45) 1s graphed in figure 2; note that equation (45) defaults to

U3 = 0.5 (the trapezoidal rule) for x > 0.

Another significant reduction in computational work was achieved by lo-
cally linearizing the fifth-order polynomial approximations used in evaluating
the species-i enthalpy hy and specific heat capacities Eb1, which appear
in equations (A11) and (A20).

Finally, it should be noted that, while log-variable corrections are used
in the algorithm, (appendix A), evaluation of logarithms of the variables
themselives 1s avoided by use of the approximate equations (A12). The only
evaluation of exponentials in the code are those necessarily required for the
Arrhenius rate expressions in equation (3) and those required for the tuning
factor, equation (45).

PERFORMANCE OF CREK1D--COMPARISON WITH LSODE

A preliminary version of CREKID (ref. 40) has been tested by Radhakrishnan
(refs. 21 to 23) against LSODE (refs. 17,18) on two test problems drawn from
combustion kinetics. Both problems described adiabatic, constant pressure,
transient batch chemical reaction and included all three regimes of
combustion--induction, heat release and equilibration.

Test problem 1, §1lustrated in figure 1, described the ignition and sub-
sequent combustion of a mixture of 33 percent carbon monoxide and 67 percent
hydrogen with 100 percent theoretical air, at a pressure of ten atmospheres
and 1000 K initial temperature. It consisted of 12 reactions involving 1
species. Test problem 2 described the ignitien and subsequent combustion of a
stoichiometric mixture of hydrogen and air at a pressure of two atmospheres
and 1500 K initial temperature. It involved 30 reactions among 15 species.
Both test problems were solved over a time period of 1 ms in order to obtain
near-equilibration of all species and the temperature.

In applying LSODE to the problem of solving chemical kinetic rate equa-
tions, two different methods (A and B) for calculating the temperature were
attempted. 1In method A (LSODE-A), the temperature was calculated from the
mole numbers and the initial mixture enthalpy using the algebraic enthalpy
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conservation equation (4) and a Newton-Raphson iteration technique. 1In method
B (LSODE-B) the temperature was evaluated by integrating its time-derivative,
obtained by differentiating equation 4 with respect to time

N
- Z; h

ar =1
R (46)
o, C
Z 7p
=1 L

In applying the present version of CREK1D to the two test problems dis-
cussed above, we have adopted the procedure described by Radhakrishnan
(ref. 23) and summarized here. A typical computational run consisted of ini-
tializing the species mole numbers, temperature and CPU time. The integrator
was then called with values for the necessary input parameters, including the
local error tolerance, ¢, required of the numerical solution and the elapsed
time (= 1 ms for both problems) at which the integration was to be terminated.
On return from the integrator, the total computer time (CPU) required to solve
the problem was calculated.

Figures 3 and 4 present the computational work (expressed as the CPU time
in seconds required on the NASA Lewis Research Center's IBM 370/3033 computer)
required by the single-precision codes CREK1D and LSODE, plotted against the
local relative error tolerance, ¢.

Figures 3 and 4 show that CREKID compares favorably with LSODE for large
values of the relative error tolerance, ¢. But for small values of e
CREKID is slower than LSODE. However, use of low values of ¢ is wasteful
because of uncertainties in reaction rate coefficients (ref. 10). In addition,
the proposed purpose of CREK1D is to perform multipoint calculations of chemi-
cally reacting flows by coupling it with a hydrodynamic equation solver. These
solvers are at best accurate to within a few percent, so generation of highly
accurate chemical kinetic solutions is wasteful (ref. 10).

The solution of the coupled hydrodynamic-reaction rate equations requires
the solution of the reaction rate equations at several thousand grid points
for relatively short periods of time (ref. 10). Hydrodynamic codes also have
large storage requirements. Hence, reaction rate integrators with both a small
storage requirement and a low initialization (start-up) time are needed. The
storage and start-up time requirements of CREKID have been shown to be signif-
jcantly less than those required by LSODE (ref. 24). These factors make CREK1D
more attractive than LSODE for multipoint calculations.

To further explore the differences in computational work required by
CREK1D and LSODE, we present in figures 5 and 6 plots of the steplength suc-
cessfully used by these codes through the course of each problem. For test
problem 1 (fig. 5) and for test problem 2 at long times (fig. 6), the step-
lengths selected by CREKID are comparable to those selected by LSODE. How-
ever, at early times (t < 5 us) for problem 2, CREK1D uses much smaller
steplengths than LSODE and is hence slower.
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The present version of CREK1D will be available for testing from COSMIC,
University of Georgia, Athens, Georgia 30602. Details of the subprograms
included in CREKID are given in appendix B. 1In appendix C, we present a
sample input data set and the resulting output. These were generated on the
NASA Lewis Research Center's IBM 370/3033 using single-precision accuracy.

CONCLUSIONS

A major conclusion of the present work is that the L-formulated equations,
widely used at present for modeling both atmospheric chemistry (refs. 32 and
33) and combustion processes (ref. 10), should be employed in the initial in-
duction period, when some mole numbers may be very small, and whenever any
species is in quasi steady-state. At all other times, use of the Z-formulated
equations completely obviates the need to use asymptotic or quasi-steady-state
assumptions to resolve the near-equilibrium stiffness problem uniquely associ-
ated with the L-formulated equations (refs. 10, 27, 32, and 33). For atmos-
pheric chemistry problems in particular, the present algorithm without the
enthalpy constraint should constitute a very fast and robust method for calcu-
lation of isothermal, batch homogeneous gas-phase kinetics.

The success of the present algorithm stems from recognition of the fact
that the approximating equations describing the induction processes are
stability-1imited, whereas the corresponding post-induction equations are
accuracy-limited. In the former case, low-accuracy methods with the least
possible computational work per iteration are indicated due to the necessarily
restricted stepsize, as pointed out by Young and Boris (ref. 10). However, in
the post-induction processes, where inherent stability is not a problem, step-
sizes may be as large as the accuracy and convergence radius of the approxi-
mating equations permit. The use of exponentials as approximating functions
satisfies the accuracy requirement, and Newton-Raphson iteration gives an
infinite convergence radius. The added computational work of Jacobian evalua-
tion and matrix inversion required for Newton-Raphson iteration is offset by
very large stepsizes and quadratic convergence (refs. 19, 25, and 26).

NOMENCLATURE

AJ, A_j preexponential constants in forward and reverse rate equations
for reaction j (eq. 3), units depend on reaction type

By, B_j3 temperature exponent in forward and reverse rate constants for
reaction j (eq. 3)

CPU total CPU time required on IBM 370/3033, s

Eb1 constant-pressure molal-specific heat of species 1, J/kmole K

D4 rate of destruction of species 1 (eq. 12), kmole i/kg mixture s

Ej, E_j activation energy in forward and reverse rate equations for reac-
tion J (eq. 3), cal/mole

4 net rate of formation of species 1 (eq. 2), kmole i/kg mixture s

Ho initial mixture mass-specific enthalpy, J/kg
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%4

%m

steplength used by integrator, s

[
estimated steplength that would result in solution with desired
accuracy (eqs. 35 and 37), s

estimated steplength that would result in a convergence rate 1in
the range (0.4, 0.5) (eq. 40), s

molal-specific enthalpy of species i, J/kmole

maximum number of corrector iterations to be attempted by the
integrator

total number of distinct elementary reactions in reaction
mechanism

loss coefficient for species 1, inverse of characteristic time
constant for species 1 (eq. 15), 1/s

local truncation error for species i

total number of distinct chemical species in the gas mixture
absolute pressure, N/m2

production rate of species 1 (eq. 12), kmole i/kg mixture s
universal gas constant, 8314.3 J/mole K (1.9872 cal/mole K)
jteration convergence rate (eq. 38)

molar forward and reverse rates per unit volume for reaction j
(eq. 3), kmole/m3s .

temperature, K

time, s

degree of implicitness or tuning factor for species 1 (eq. 7)
state variable differential for species 1 (eq. 19)
stoichiometric coefficients for species 1 in forward and
reverse reaction j (eq. 3), number of kmoles 1 1in elementary
reaction j as a reactant and as a product, respectively
local relative error tolerance

suitable linearization constant for species 1 (eq. 8)
mixture mass density, kg/m3

mole number of species 1, kmole 1/kg mixture

reciprocal of mixture mean molar mass (eq. 6), kmole/kg
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APPENDIX A
OUTLINE OF NR AND JN ITERATION TECHNIQUES

Newton-Raphson Iteration

A Newton-Raphson functional F(m) 1 1s defined from equation (7) by

i,n+
(m)
- 1-U
(m)  _ %,n417%,n i (m)
Fionn = Ush - U, fion - f1.n+1 , (A1)
where m 1is the iteration number, ngz+] = fi(ciT;+], T;T%). and

(m) _ (m)
% n+] (k = 1,N) and Tn+1 are the mth approximations to the exact values

°k(tn+1) and T(tn+]), respectively.

The Newton-Raphson functional for temperature is determined from equation (4),

N A
(m) 3 (m) = ,.(m)
FT,n+] = ) 9%, h1(Tn+1) - HO (A2)

where ﬁi (TgTi) is the molal-specific enthalpy of species i at

temperature TgT% and Hp 1s the initial mixture mass-specific enthalpy.

Newton-Raphson corrector equations with log variable corrections (for
self-scaling of the widely-varying mole numbers) are given by

N
aF¢m aF{m
1,n+1 (m) i1,n+1 (m) (m)
— = - M = -
m Alog Ok, n+1 + ———*——(ay Alog Tn+] = F1’n+], =1 N
dlog %% Nl a]og_Tn+]
N
e m . i (m) _ (m)
nt+ m T,n+1 m) _ m
1o d(m) Alog ., n+1 + ;;;*—;Zay Alog Tn+1 = —FT,n+1 (A4)
9 %, n+ 9 Tnn
k=1
The partial derivatives in equation (A3) are given by
J
(m) (m)
af $,, o
1,n+1 ik i,n+] -1 E
= 2 + 1 - [N R [ - R L] , 1 = ,
2109 Oém) U1h P (C!.1J a1j)( jakj —jakj) 1,N (A5)
,N+1
3=1
and
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aF¢m

__i,n+l

(m) =~
alog Tn+1

is

5ﬁk}

In the above equations, &4y

and n', and

j respectively,

nj'

] (3} (m)
<°1J - °1J>[RJ(BJ *_EJ/RTn+1

- nj + 1)

S R_y(By ¢ E_y/RTAT < nit 1] ()
the Kronecker symbol
=0; 1Kk
1=k (A7)
= 1 ; =

are the molecularities of the forward and reverse reactions

N
"

\ (A8)
SR ot

In equations (A3, A5 and A6), the partial derivatives with respect to the
reciprocal of the mean molar mass, op, are assumed to be negligible in com-

parison with the other terms.

The partial derivatives in equation (A4) can be derived from equation (A2)

and are given by

aF(m.) ( (m)
T,n+1 o (m) = m
210 (m) - ok,n+1 hk Tn+'| (A9)
9 % n+l
aF(m " :
T,n+l T(m) (m) . (m) (A10)
alo T(m) o n+l i,n+1 “pi n+l
I el 121

(m)

where cp1(Tn+1

) is the constant-pressure molal-specific heat of species i

at

temperature TﬁT). Substitution of equations (A9) and (A10) into equation (A6)

1

results in the following log-variable correction equation for the temperature

N

~

(m §

°k,n+1

(m)

(m)
(1 k,n+l

n+1)A]og o

k=1

(m) (m)
+ Tn+1 g

N
(m)

(M) a10g (M - _¢{™

Cp1(T n+l T,n+1

1,n+l
=1

(A11)
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Equations (A3) and (A11) are solved simultaneously by LU-decomposition and
back-substitution, and the resulting log variable corrections are used to up-
date the current iterate values of oi,n+1 and Tpyy by the approximate
equations

(me1)  (m) (m) Cos L
i+l * 01'n+] [] + Alog 01,n+]] ;1 = 1,N (A12a)
and
riml) T{m [1 + alog TET%] (A12b)

To start this iteration process, the predicted values denoted by 020%+] (1 = 1,N)

and Tg?% are obtained quite simply by setting them equal to the values at the

current time step

(0) .%o

61’n+] = 01,n, 1 =1,N (A13a)
(0) _
Tn+] = Tn (A13b)

Jacobi-Newton Iteration

The form of equations (A1), (A3), (A5) and (A6) was chosen to ensure di-
agonal dominance of the Jacobian matrix. If it is further assumed that the
off-diagonal elements can be neglected with respect to the diagonal elements,
equations (A3) and (A11) can be rewritten as

(m)

af
i,n+1 (m) _ (m) -,

;0_:(—"])_ A]og 01’n+_| = —F1'n+.|, i= 1,N (A]4)
g c"1,n+1

and
m < (m o~ (m) (m _ (m)
Tnel 2o 4,ne1 Cpt(Tner)8T00 Ty = - (A13)

In equation (A14), the partial derivatives are given by

J
(m) (m)
aF a
1,n+1 _ _1,n#1 -1 . ) ' o
dlog oM Uyh te z :(aij - °1j)(Rj“1j - R_ja1j), 1 =1,N
,n+1 i

(A16)
which is approximated by
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ar{m "

i,n+1 °§ ) i 1 :EE:

,N+ _ Nt - ! N

3log ogm) S Uh "F =iy aiJR'J) (o
J=1

,N+1

which when combined with equation (14) gives

(m) (m)
Fina i, () .
310 (m) B U1h i,n+]
9 94 n+1
where ngz+1, the destruction rate of species 1, can be evaluated along with
fgm%+], without calculating the entire Jacobian matrix. With this

simplification, equation (A14) can be solved explicitly for the iterative
corrections

(m)
(my _ (m) %041 . o(m) Y.,
Alog o nal = -F1'n+] ——ﬁqﬁ— + 01'n+] i1 = 1,N (A19)

The temperature corrector equation (A15) can be solved for the log-
temperature correction

N |
(m) (m ~
N [ REA ()] e

As with NR iteration, the iterate values of o4 py1 and Tpyy are
updated using the approximate equations (A12)

(m+1) (m) (m) . 4
Sy nel = °1,n+1[1 + Alog 01'n+]], i=1,N _ (A12a)
and
(m+1) _ (m) (m)

Tn+1 = Tn+1 1 + alog Tn+1 (A12b)
To start the iteration process, the predicted values o§0;+] are obtained

from equation (9). (with ey = Zy) ’

exp(Z h)-1
(0) _ i.n Co4 -

d1,n+'| _01,n +hf‘i,n|: 21 nh ], i=1,N (A21)

The predicted temperature is obtained by a single Newton-Raphson iteration.
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nel = 'nt (A22)

Convergence Test

For both NR and JIN iteration, the test for convergence of the iterates

(m+1) (m)

% N+l s based on the values Alog °1,n+1 and 1s given by

N
(m) 2
E] Qﬂog % '"”)
N

HA

€

(A23)

where, ¢ 1s a user-supplied local relative error tolerance. The above test

is used only for species whose mole numbers are greater than 10-20; i e.,

the summation does not include species with mole numbers less than or eaua] to

10-20, In addition, mole numbers less than 10-20 are set equal to 10-20,

If convergence is not obtained after ITMAX iterations, where ITMAX is the user-
supplied maximum number of corrector iterations to be attempted, the steplength
is reduced as discussed in the section Steplength Control and the step retried.
If convergence is achieved in M 1iterations (M < ITMAX), the step is accepted

as successful and the solution is updated.

(M)

01,n+1 - d1,n+]; 1=1-N
(A24)
_ (M)
Tn+1 h Tn+1
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ALGOR1

ALGOR?

ALGOR3

BSOLV -

CONVG -

CREKEQ

CREKO -

CREK1D

DCOMP -

DERIVS

!

EQUIL -

ERATIO

GLOBL -

HCPG -

MECHN -

NAMLST -

TEMPRK -

APPENDIX B
DESCRIPTION OF SUBPROGRAMS

Filters initial conditions. Computes initial stepsize, iterates
L-formulated implicit Euler approximations to convergence.

Nonstiff regime solver. Employs JIN iteration to solve equations.
Stiff regime solver. Employs NR iteration.

Standard routine for forward and back substitution of a previously
LU-decomposed matrix.

Manages control and monitoring of both NR and JN iteration; indi-
cates when convergence criteria have been satisfied.

Manages calls to subroutine EQUIL.

Initializing routine for elemental and thermochemical data. Reads
and catalogs data in NASA format from data file. '

Main routine. Sets initial timestep, manages control of solution
until end of prescribed timestep, and returns solution to calling
program. :
Performs standard LU-decomposition of a square matrix.

Evaluates kinetic expressions, and on demand, elements of Jacobian
matrix. '

Calculates adiabatic flame temperature and equilibrium species dis-
tribution for a mixture of gases at prescribed pressure and enthalpy.

Calculates fuel-air equivalence ratio of a mixture of gases.

Calculates kinetic rates and contributions to Jacobian for specially
-prescribed global kinetic rate expressions.

Evaluates enthalpy, constant-pressure specific heat capacity and
one-atmosphere specific molar Gibbs function of a mixture of gases.

Initializing routine for reading and cataloging kinetic rate data
and establishing reaction stoichiometry vectors.

Initializing routine for reading and cataloging problem control
parameters, debugging options, etc.

Performs a single Newton iteration to determine the temperature of a
given mixture of gases.
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ELEMENTS

c 12.01115
H 1.00797

0 15.9994

N 14.0067

THERMO

co

0.29840689E 01 0
~0.14245227E 05 0.
-0.20319673E-08 0.

co2
0.44608040E 01 O.
-0.48961438E 05-0.
0.20021860E-08 O©.
H
0.
0.
0.
H2
0.
-0.
0.
H20
0.27167616E 01 0
-0.29905820E 05 0.
-0.29637404E-03 0
N
0.24502678E 01 0.
0.56116035E 05 0

25000000E 01 O.
25471625E 05-0.
0

31001883E 01 0O

87738013E 03-0.
55210343E-08-0.

NO

0.31889992E 01 0.
0.98283242E 04 0.
-0.61139254E-08 0.

N2
0.28963194E 01 0.

-0.90586182E 03 0.

~0.63217520E-09%-0.
o

0.25420580E 01-0.

0.29230801E 05 0.
-0.16028432E-08 0.
CH

0.29106417E 01 0.
0.39353811E 04 0.
0.18713971E-09~0.
02

0.36219521E 01 0.
-0.12019822E 04 O.
-0.67635071E-08 O.

MECHANISM
co OH

0.0
.51119458E-03 0.52644204E-07-0

APPENDIX C

SAMPLE INPUT AND OUTPUT

Sample input

J 9/65C 1.0 1.00 0.00 0.G

.14891387E-02-0.57899678E-06 0.

63479147E 01 0.37100916E 01-0.
23953344E-12-0.14356309E 05 0.
J 9/65C 1.0 2.00 0.00 0.G
30981717E-02-0.12392566E-05
98635978E 00 0.24007788E 01
63274039E-15-0.48377520E 05
J 9/65H 1.00 0.00 0.00 0.6
0 0.0

46011758E 00 0.25000000E 01
0.25471625E 05-0.
0.0 0.0 0.6

oo ocoo

J 3761H 2.0
19629412E 01 0.305764446E 01 0.
18122726E-11-0.9889043GE 03-0.
J 3/6lH 2.0 1.00 0.00 0.G

.29451370E-02-0.80224368E-06 0.
66305666E 01 0.40701275E 01-0.
.80702101E-12-0.30279719E 05-0.

J 3/61N 1.00 0.00 0.00 0.6

10661458E-03~0.74653315E-07 0.
.44487572E 01 0.25030699E 01-0.
-0.56475602E~10 0.

20999038E-13 0.56098898E 05 ¢
J 67638 1.0 1.00 0.00 0.6

13382279E-02-0.52899316E-06 0.
67458115E 01 0.40459509E 01-0.
15919072E-11 0.97453867E 04 0.

J 9/65N 2.0 0.0 0.0 0.6

15154863E-02-0.57235275E-06 0.
61615143E 01 0.36748257E 01-0.

22577253E-12-0.10611587E 04 0
J 6,620 1.00 0.00 0.00 0.G

27550603E-04-0.31028029E-08 0.
$9203072E 01 0.29464233E 01-0.
38906964E-12 0.29147641E 05 0.
J 37660 1.H 1.00 0.00 0.G

95931627E-03-0.19441700E-06 0.
56423428E 01 0.383375931E 01-0.
22571089E-12 0.36412820E 04 ©
J 97650 2.0 0.0 0.0 0.6

73618256E-03-0.19652219E-06 0.
36150942E 01 0.36255980E 01-0.
21555977E-11-0.10475225E 04 0.

coz2

25

.0
.0

300.000 5000.000
10364576E-09-0.69353499E-14
161¢7%64E-02 0.36923584E-05
29555340E 01

300.000 5000.000

.22741323E~09~0.15525948E-13
.87350905E-02-0.66070861E-05
.96951447E 01

300.000 5000.000
0.0
0.0

46011758E 00
300.000 5000.000

.34909964E-10 0.36965341E-14

26765198E-02~0.58099149E-05
22997046E Ul

300.000 5000.000
10226681E-09~-0.486472104E-14
11084499E-02 0.41521180E-05
32270038E 00

300.000 5000.000
18796520E~-10-0.10259837E-14
21800181E-04 0.54205284E-07

.41675749E 01

300.000 5000.000
95919314E~10-0.64867928E-14
36181783E-02 0.79819174E-05
29974976E 01

300.000 5000.9000
99807385E-10-0.65223536E~-1%
12081496E-02 0.23240100E-05

.23580418E 01

300.000 5000.000
45510670E-11-0.43680%494E-15
16381664E-02 0.24210303E-05
29639931E 01

300.000 5000.000
13756646E-10 0.164224542E-15
10778855E-02 0.96830354E-06

.49370009E 00

300.000 5000.000
36201556E-10-0.28945623E-14
18782183E-02 0.70554543E-05
43052769E 01

11.49 0.0 0.596 CGS



H 02 0 OH 16.34

H2 0 H OH 13.48
H20 0 OH OH 13.92
H H20 H2 OH 14.0
N 02 NO 0 9.81
N2 0 H NO -13.85
HO M N 0 M 20.60
H H M H2 M 18.0
0 0 M 02 M 18.14
H OH M H20 M 23.88
H2 02 OH OH 13.0

&INPUT EPS=1.0E-02,ITMAX=10,TKIN=1000.0,PATM=10.0,LDEBUG=.F.,

NDEBUG=1,DELT=2.0,SECS=1.E-3, STOP=1.E-03 &END
REACTANTS

c 1. 0 1. co 1.0
H 2. H2 2.0
N 2. N2 7.52
0 2. 02 1.5
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cocoowum

N bt ot o o
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0.0

ODOOD

16.692
9.339
18.121
19.870
6.250
75.506
149.025

0.3640
0.0
43.0

CGS
CGS
CGS
CGS
CGS
CGS
CGS
CGS
CGS
CGS
CGS
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STOICH,
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zZ O X O

ELEMERTS

THERMO
co
0

-0

-0
0

H

.
0.

H2

0
-0
0
0
-0
N
0
0
-0
NO

0.

0
-0

N2
0.
=-0.
-0.
0

0
0

OH

12.011149

1.007970
15.999399
14.006700

.29840689E 01 0.
-0.

14245227E 05 0.

.20319673E-08 0

co2

0.44608040E 01 0.
.48961438E 05-0.
.20021860E~08 0

.31001883E 01 0.
.87738013E 03-0.
.55210343E~-08-0.

H20
0.2716761

6E 01 0.
29905816E 05 0.
4E-03 0

.2963740

.24502678E 01 0.
-56116031E 05 0.
.56475602E-10 0

31889992E 01 0.
.98283203E 04 0
.61139254E-08 ©

28963194E 01 0.
90586182E 03 0.
63217498E~09-0

.25420580E 01-0
.29230801E 05 0
-0. 08 ¢

16028432E-

.275506035—04~0‘31028027E-08 0. 0E~11-0
.49203072E 01 0.29464283E 01-0.16381664E~02 0.
.38906964E-12 0.29147641E 05 O©. 1E 01

4.000000
1.000000
-2.000009
0.000000

J 9765 € 1.0 1.00 0.00 0.
14891387E-02-0.57899678E-06 0.10364576
63479147E 01 0.37100916E 01-0.16190964%

.23953344E-12-0.14356309E 05 0.29555340

G
E~
E-
E
J 9765 C 1.0 2.00 0.00 0. G
30981717E-02-0.12392566E-05 0.22741323E~
98635978E 00 0.24007788E 01 0.87350905E-
7€

G

0

0

E

G

.63274039E-15-0.48377520E 05 0.9695144

J 9765 H 1.00 0.00 0.00
0.00000000 - 0.000
46011758E 00 0.2500000
0.00000000 0.2547162

J 3761 H 2.0

00000
0E 01
5E 05-0.46
0

0.

.0000000
.0000000
1758E ©

09
02
01

09
02
01

ooco

300.000 5000.

-0.69353465E-14
0.36923575E-05

300.000 5000
-0.15525948E-13
-0.66070852E-05

300.0

- X-- 3

300.000 5000,

0. 0.0 0.
51119458E-03 0.52644204E-07~0.34909964E~10 0.36945361E-14
19629412E 01 0.30574446E 01 0.26765198E-02-0.58099140E-05

18122726E-11-0.98890430E 03-0.22997046E

J 3761 H 2.0 1.00 0.00 0. G
29451370E-02-0.80224368E-06 0.10226681E-
66305666E 01 0.40701275E 01-0.11084499E~

.80702101E-12-0.30279719E 05-0.32270032E

J 3761 N 1.00 0.00 0.00

01

09
92
10

300.000 5000.

0.48472070E-14
0.41521180E-05

300.000 5000

6. G
10661458E-03-0.74653315€-07 0.18796520E-10-0.10259837E-14
44487572E 01 0.25030699E 01-0.21800181E-04 0.54205284E-07

.20999038E-13 0.56098895E 05 0.41675749E

J 6763 N 1.0 1.00 0.00 0.
13382279E-02-0.52899316E-06 0.959193

J 9/65 N 2.9 0.0 0.0 0.
15154863E-02-0.57235275E-06 0.9980738

.22577253E-12-0.10611587E 04 0.2358041

J 6762 0 1.00 0.00 .00 g.
4551067

2963993
J 3766 0O 1.H 1.00 0.00 0.

G
E
E
E
G
SE
61615143E 01 0.36748257E 01-0.12081496E~
8E
G
E
E
E
G

01

0C0E-10-0
.67458115E 01 0.40459509E 01-0.34181783E-02 0.
.15919072E-11 0.97453828E 04 0.29974976E 01

10
02
0l

300
.668647928E-16
79819165E-05

300.000 5000
-0.65223536E~14
0.23240100E-05

300.
.43680494E-15
24210294E-05

300.000 5000

.000 5000.

000 5000.

000

.000

ooo

000

.000

000

.000

000

.000

caoo oo coo coo coo coo coo ocoo

coo
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0.
0.
0.
02
.
-0.

29106417E 01 O©.
39353809E 04 0.
18713971E-09-0.

36219521E 01
12019822E 04

~0.67635071E-08

MECHANISM
1. co
CALCULATED

2. H
CALCULATED

3. H2
CALCULATED

OH
REVERSE

02
REVERSE

0
REVERSE

J 9765 0

. .0 0.
0.73618256E-03-0.19652214E-06 0.36201556E~-
0.36150942E 01 0.36255980E 01-0.18782183E~

2.0

95931627E-03-0.19441700E
54623428E 01 0.38375931E
22571089E-12 0.36412820E

0.0

-06
01-
04

G

0.2155596%E-11-0.106475225E 04 0.43052769¢E

RATE DATA,

RATE DATA,

RATE DATA,

4. H20 0
CALCULATED REVERSE RATE DATA,

5. H
CALCULATED
6. N
CALCULATED
7. N2
CALCULATED
8. NO
CALCULATED
9. H
CALCULATED
10. 0
CALCULATED
11. H
CALCULATED
12, H2
CALCULATED
1. c
2 H
3 H2
4. H2
5
6
7

N2

H20
REVERSE

02
REVERSE
Y
REVERSE
M
REVERSE
H
REVERSE
o
REVERSE

OH
REVERSE

02
REVERSE
0 OH

0 0

RATE DATA,
RATE DATA,
RATE DATA,
RATE DATA,
M
RATE DATA,
M
RATE DATA,
M
RATE DATA,

RATE DATA,

Cc02
STD DEV

0

STD DEV
H

STD DEV
OH

STD DEV
H2

STD DEV
NO

STD DEV
N

STD DEV
N

STD DEV
H2

STD DEV
02

STD DEV
H20

STD DEV
OH

STD DEV

H
AND

OH
AND
OH
AND
OH
AND
OH
AND
0
AND
NO
AND
0
AND
AND

AND

AND

CORR

CORR

CORR

CORR

CORR

CORR

CORR

CORR

CORR

CORR

CORR

COEF
COEF
COEF
COEF
COEF
COEF
COEF
M
COEF
M
COEF
M

COEF

M
COEF

OH
_AND CORR COEF

c02

OH
H2
NO

10-0
02 0
01

300.000

0.13756646E-10 0.14226542E~-15
0.10778853E~02 0.96830354E-06
0.49370009E 00

5000.00

.28945621E-14
.70554543E-05

.490
.545

.340
.235

.480
.123

.920
.923

.000
.359

.810
.800

.850
.196

.600
.620

.000
.949

.140
.837

.880
.611

.000
.538

[~X-] (=R =0 o or oo o oo (=X =] oo oo Qo

0
0
0
0

0

O 00O ol 00 O 00 00 OO QO oo

co 00 00 00 0o oo

o (=R} oo [=X~) (=% =] oo oo oo oo o

O 0o oo oo

000

.600
.000

.000
.000

0.596
22.716

16.492
0.476

9.339
7.308

18.121
1.025

"19.870
4.803

6.250
41.408

75.506
0.281

149.025
-6.109

0.000
101.227

0.349
115.552

0.000
111.213

43.000
24.955

CGS 1
6.513E-02

CGS 2
2.083E-02
CGS 3
2.608E-03
CGS 4
1.380E-02
CGS 5
1.634E-02
CGS 6
5.705€-02
CGS 7
4.718E-03
CGS 8
5.933E-02

€GS 9
5.105E~02

CGS 10
7.434E-02
CGS 11
1.6489E-01

CGS 12
1.825E-02

9.996E-01
9.262E-01
1.000E 00
;.9225-01
9.9§5E-01
9.999E-01
9.881E-01
9.959E-01
1.000E 00
1.000E 00
9.999€-01

1.000E 00
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8 NO M
9 H M
10. o] M
11. H OH M
12. H2 02
J MODR IDb
1. 1 1 10 2
2. 1 3 11 9
3. 1 4 9 3
4. 1 5 9 10
5. 1 3 5 4
6. 1 6 11 7
7. 1 8 9 6
8. 2 7 0 [}
9. 3 3 3 4
10. 3 9 9 11
11. 3 3 10 5
12. 1 4 11 10
$INPUT
DELT= 2.0
EPS= 0.9999998z-02
ITMAX= 10
TKIN= 1000.0
PATM= 10.0
TINY= 0.10E-19
SECS= 0.9999999E-03, 29%0.10E10
STOP= 0.9999999E-03
LDEBUG= F
NDEBUG= 1
$END
REACTANTS
c 1.00000 O 1.00000 ¢
H 2.00000 0.00000 0
N 2.00000 0.00000 ¢
o] 2.00000 0.00000 Y

¥%¥ REACTANT STREAM 1 »x%x
I SPECIES

co

co2

H

H2

H20
N

NP U

KINETIC RATE DATA 1IN

et 4t et e

COOOVNVOOOOW
e e e s e s e e

ocooVnoooonoO

S T ™)
ONNMNNOR OO
LI )
ONHIFHOMODOOOO
ccooooooooo0o
COOO0O0DO0O00O0O

[

cococo

MOLECULAR WEIGHT
(KGMOLE I)/7(KG I)

MOLE NUMBERS
(KGMOLE I)/(KG X)

coocococo
——0 O -

x X X XX

SI UNITS

TACT

21640

1.00000
2.00000
7.52000
1.50000

22X

MASS FRACTIONS
(KG I/ (KG X)

9.636E-02

299.
8299.
4700.
9119.
9999.
3145.

37999.
764999.
0.000
171.
0.000
.668

949
945
047
770
996
446
977

112

o000

b bt e bt et et bt
BUNMALAVOVOVOOO
cocoocoocoooo0coooo

coococooooo

et ot et

TEN2
.000 .

=X-1
oo
oo

coooococoo
SR X -R-X-F-¥-F-¥-}

TACT2

116432.273
239.505
3677.744
515.668
2417.458
20839.703
141.567
-3074.641
509644.621
58153.891
55970.6461
12558.973



o€

7. NO 3.001E 01
8 N2 2.801E 01
9 0 1.600E 01
10 OH 1.701E 01
11 02 3.200€ 01

.000E 03 DEG K

TEMPERATURE = 1

ENTHALPY = 5.090E 05 JOULES/KG
PRESSURE = 1.013E 06 N/7MX%2
DENSITY = 2.947E 00 KG/Mx¥#%3
MEAN MOL WT = 2.418t 01 KG/KGMOLE

HYSUBO, ER, PA, SM, RHOP, TK, TAU, TIME, NSTEP =
5.090E 05 1.000E 00 1.013E 06 3.674E-02 1.266E 00
SPECIES NAMES :

co co2 H H2 H20
02
SPECIES MOLE NUMBERS, S2(I)

6.6051E-04 2.7794%E-03 3.8895E-05 2.4178E-04
2.8757E-0¢

SPECIES MOLE FRACTIONS
1.7976E-02 7.5645E-02 1.0586E-03 6.5802E-03
7.8265E-03
HSUBG, ER, PA, SM, RHOP, TK, TAU, TIME, NSTEP =

5.090E 05 1.000E 00 1.013E 06 3.666E-02 1.269E 00

SPECIES NAMES
Cco co2 H H2 - H20
02

SPECIES MOLE NUMBERS, S2(I)

6.1412E-04 2.8292E-03 3.9434E-05 2.1601E-04
3.9741E-04

SPECIES MOLE FRACTIONS

1.6752E-02 7.7173E-02 1.0756E-03 5.8921E-03
1.0840E-02

0.000
2.587E-02
0.000
0.000
5.160E-03

2.6192E 03

6.4945E-03

1.7675E-01 2.2090E-07 5.3472E-03

6.3588E-03

1.73645E-01

0.000
7.247E-01
0.000
0.000
1.651E-01

0.000 9.990E 09 0

NO N2

8.1164E-0% 1.96647E-04

.6186E 03 7.064E-05 1.000E-03 93

NO N2

1.1887E-08 5.7265E-05

3.2425E-07 1.5620E-03

OH

2.5770E-02

7.0136E-01

OH

2.5840E-02

7.0484E~01

2.5897E-05

7.0481E-04

3.26643E-05

&.9041E-04

2.4847E-04

6.7624E-03

2.7593E-04

7.5267E-03
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Figure 1. - Variation with time of chemical species mole fraction and temperature in adiabatic batch reac -
tion. (Pryolized methane-air, stoichiometric, initial temperature = 1000 K, pressure = 10 atm),
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Figure 2. - Degree-of-implicitness or "'tuning" factor U; in equation (7). Solid curve is the exact
equation (11), dashed curve is the approximate equation (45).
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