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SUMMARY

This reportdescribesa new algorithmfor fast, automaticintegrationof
chemicalkineticrate equationsdescribinghomogeneous,gas-phasecombustion
at constantpressure. Particularattentionis paid to the distinguishing
physicaland computationalcharacteristicsof the induction,heat-releaseand
equilibrationregimes. The two-partpredlctor-correctoralgorithm,based on

, an "exponentlally-flttedtrapezoidalrule", includesfilteringof Ill-posed
initialconditions,automaticstepslzeselection,and automaticselectionof
Newton-Jacoblor Newton iterationfor convergenceto achievemaximum computa-
tional efficiencywhile observinga prescribederror tolerance. The new algo-
rithm was found to comparefavorablywith LSODE on two representativetest
problems drawn from combustionkinetics.

INTRODUCTION

The problemof economicalintegrationof the coupled,nonlinearordinary
differentialequationsdescribingexothermlc,homogeneousgas phase combustion
reactionkineticshas not yet been optimallysolved. Multlstepmethods, based
on traditionalexplicitnumericalintegrationschemessuch as the fourth-order
Runge-Kuttamethod,dominatedthe thinkingof early workers performingsingle-
point calculationsmodeling one-dlmenslonalcombustionprocessesin shock tubes
and rocket nozzles. In the 1960's,considerableprogresswas made with respect
to reliabilityand efficiencyof slngle-polntcalculations,due to the intro-
duction of implicitmethods by Tyson (ref. l), and Treanor'sintroductionof
locallyexact solutions(exponentialfunctions)to extend the convergencera-
dius of explicitRunge-Kuttamethods (ref. 2). Lomax and Bailey (ref. 3) ex-
plored the combineduse of explicitand implicitmethods based on low-order

•" polynomialapproximationsas an alternativeto Treanor'smethod.

In the 1970's,Treanor'salgorithmwas utilizedby Dlmltrovto model hy-
" drogen-alrcombustion(ref. 4), and Tyson'sand Lomax and Bailey'sideas were

incorporatedinto productioncodes (refs. 5,6). The first implementation
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of Gear's varlable-order,varlable-step,backward-dlfferenceformulas
(refs. 7,8) was producedby LawrenceLivermoreLaboratory(ref. 9).

At the same time, increasingattentionwas focusedon multlpolntcalcula-
tions, requiredfor modelingof multidimensionalreactiveflows (refs. lO-12).
This increasinginterestin modeling of furnacesand combustorsresultedin a
major reassessmentof availablealgorithms. It was recognizedthat all pro-
posed techniquesfor modeling of complexchemicallyreactingflow--whether
Eulerlanspace dlscretlzatlonwlth operatorsplittingfor treatingcoupled
phenomena,or Lagranglanmass or vortlcltydlscretlzatlonwith coupledphenom-
ena treatedby the method of fractionalsteps--allrequirea very stable but
only moderatelyaccuratehomogeneousbatch chemistryintegrator(refs. lO-12).
The same requirementsexist for the slngle-polnt,stochasticsimulationof
turbulentmlxlng-lnfluenced,Inhomogeneousgas-phasecontinuouscombustion
systems(refs. 13-16).

At the presenttime, the latestof a series of LawrenceLivermore
Laboratory'simplementationsof the Gear algorithms,LSODE (refs.17,18) is
consideredto be the best available,state-of-the-artcode for solvingstiff
systemsof ODE's. However, it is recognizedby combustiondevice modelers
that LSODE is not fast enough for economicalcalculationsof multidimensional
reactingflowflelds.

While LSODE is regardedas the best available"packaged"code for solving
an arbitrarysystem of ODE's, it may be possibleto constructa superiormethod
for solvinga uniquely specifiedsystemof ODE's. A clue to a bettermethod
for the presentproblem than the variableorder-varlablestepslzealgorithm
utilizedby LSODE is given by Lambert(ref. 9, p. 18):

"For stiff equatlons,for which a typicalsolutionIs a rapidlydecaying
exponential,the error in interpolatingsuch functionsby a polynomialof
high degree is very large,and correspondinglywe find that linearmulti-
step methodsof hlgh stepnumbercannot be used successfullyfor such
problems."

The present paper describesthe developmentof an algorithm,denoted
CREKID (for CombustionReactionKinetlcs-One-Dimenslonal),which has been spe-
cificallydesigned to integratechemicalkineticrate equations,and which
compares favorablywith LSODE.

GOVERNINGALGEBRAICAND DIFFERENTIALEQUATIONS

The equationsfor adiabatic,homogenousgas-phasechemicalreactionki-
netics at constant pressureare given by: ".

d_i
dT = fi(_k'T)' l,k = I,N (1) ""

where

J

-I ' - '_)(Rj - R_j) (2)fl = -O _ (_lj _iJ=l



where

Bj N _'
Rj = AjT exp(-Ej/RT)"IT (oak) kJ (3a)k=l

and

B_j N "
R Tr- (p_k)akj (3bi_j = A_jT exp(-E_j/RT)k k=l

In equations(1) to (3), _i is the mole number of the ith species
(I = l,N); T is the temperature;p is the mass density;_j and _
are the stolchlometrlccoefficientsof speciesI (I = 1,N) i_ reaction

j(J = l,J) as a reactantand as a productspecies,respectively;Aj, A j, Bj,
B_j, Ej, and E_j are constantsin the modifiedArrhenlusrate expres-
si6ns _or Rj And R j, which in turn are the forwardand reverserates
of.the jth r_actlon(J-= l,J) as a reactantand as a product species,respec-
tively. N and J are, respectively,the total number of distinctchemical
speciesin the gas mixture and the total number of distinctelementary
reactionsin the reactionmechanism.

For adiabaticconstant-pressurechemicalreaction,the followingenthalpy
conservationequationconstitutesan algebraicconstrainton equations(1) to
(3):

N

___-_h'iol= H = const. (4)
i=l o

where _'i is the molal-speciflcenthalpyof species i, and Ho is the
mass-speclflcenthalpyof the mixture.

The mass density p In equations(2) and (3) is determinedby the equa-
tion of state for an ideal gas,

p = P/(RTom) (5)

where P Is the absolutepressure,R the universalgas constant,and

N

°m = _ '_i (6)l=l

"" is the reciprocalmean molar mass of the mixture.

" PHYSICALAND COMPUTATIONALSCENARIOS

A typicalconstantpressurebatch combustionproblemconsistsof three
distinctlydifferentchemlcal-physlcalregimes: induction,heat releaseand
equilibration(see fig. 1). To accommodatethe widely differentcharacteris-
tics of these regimes,a two-partalgorithmwas developedas follows.



During inductionand early heat-release,the speciesequationsare domi-
nated by positivetime constants,and the temperaturealso exhibitsa positive
time constant. Since very small steps are requiredfor integratingunstable
equations,a simple predlctor-correctorschemewith functionaliterationas-
sures the least computationalwork possible. However,during late heat release
and equilibration,when the temperatureand speciesequationsexhibitnegative
time constants,large stepslzescan be used, so Newton-Raphsoniterationwlth
calculationof the full Jacoblanmatrlx is the optimalconvergencemethod.

Althoughthe governingordinarydifferentialequations(ODE's)are stable
during late heat releaseand equilibration,they are characterizedby widely
differingtime constants. This behavlor--termed"stiff"by Curtlssand
Hirschfelder(ref. 20)--causesclassicalintegrationtechniques(such as the
popularexplicit Runge-Kuttamethod) to use very small steplengths,thereby
resultingin excessivecomputationalwork (refs.19, 21-23).

The equilibrationprocessdoes not have a clearlydefined termination,
due to the asymptoticnature of the approachto the chemicalequilibriumstate.
Since equilibriumvalues of temperatureand speciesconcentrationcan be de-
termlneda priori by a Gibbs functionminimizationscheme (refs. 11,24),the
end of the equilibrationperiod can be definedas the time at which all of the
mole numbersand the temperatureare within (say) one percentof their cheml-
cal equilibriumvalues.

CANDIDATEALGORITHMS

A number of slngle-stepalgorithmswere considered,including:

I. ImplicitEuler rule (refs.l, 3, 19, 25, and 26)
2. Implicitmidpoint rule (refs.27, and 28)
3. Trapezoidalrule (ref. 19)
4. Exponentlal-flttedtrapezoidalrule: "Linlger-WilloughbyNo. l"

(refs. 12, 25, 26, and 29-31)
5. Trapezoidalrule with end correction: cubic Spllne,or "Obreschkoff

(2,2)" (refs.25, 28, and 29)
6. Exponentlal-flttedtrapezoidalrule with end correction: "Linlger-

WilloughbyNo. 3" (refs.25, 26, and 29)
7. Locally-exactor exponentialsolutions(refs.19, 25, and 26).

Variationsand combinationsof the seven basic algorithmswere explored;
for example,Young and Boris'SAIM (SelectedAsymptoticIntegrationMethod),
which utilizesa combinationof locally-exact("asymptotic")solutionsand an
explicit Euler-trapezoldalrule predlctor-correctormethod (refs. lO, 32, 33).

Of the seven algorithmsand their variantstested,it was found that the
most usefulalgorithmswere variationsof "Linlger-WilloughbyNo. l," the
exponentlal-flttedtrapezoidalrule. "-



METHOD FORMULATION: THE EXPONENTIAL-FITTEDTRAPEZOIDALRULE

Consideran approximatesolutionto equation(1) based on a variationof
the trapezoidalrule, the "tuneabletrapezoid"(refs. 12, 25, and 26) or
"theta-method"(ref. 28), as follows:

. h[Uifi + (I - Ui)f n], i = 1 N (7)_i,n.l = _l,n ,n+l i, '

. where, _i n is the approximationto the exact solutionto equation (1) at
the currenttime, tn, h is the time steplength(= tn+l- tn), fl,n = fl(ak,n,Tn),
and Tn, the temperatureat tn, is obtainedfrom equation(4)--see
appendixA for details. Also, Ui is a degree-of-lmpllcltnessor "tuning"
factor such that Ui = 0 recoversthe explicitEuler approximation,Ui = 1
recoversthe implicitEuler approximation,and Ui = I/2 recoversthe trape-
zoidal rule (or modified Euler method).

Followingthe ideas of Linlgerand Willoughby(ref. 29) and of Brandon
(refs. 30 and 31), we introducethe conceptof "exponentlal-fltting"the para-
meter Ui to a locally-exactsolutionof equation (1). Assume a locally-
llnearlzedform of the rate equations,equation (1):

fl = (fl,n - el_l,n) . el_l (8a)

or

doi
= (fl,n - el°i,n). el°i (8b)

where the choice of eI, a suitable llnearlzatlonconstant,is discussed
in detail In the next section. Integrationof equation (8b) gives the follow-
ing result

= .hfi i:I,N (9)_i,n+l _i,n ,n

which Miranker(ref. 26) calls the "filteredEuler"approximation.

Applicationof equation(8a) to the entire step of length h gives

fi,n+l = (fl,n - OlOl,n) + °l°l,n+l (10)

Substituting equation (lO) for the term fi,n.l in equation (7), eliminating

"" _l,n+l between equations (7) and (9), and solving explicitly for Ut

1 1

U1 = el h . l_exp(elh) (ll)

which relatesthe tuning factor Ui in equation(7) to the llnearlzatlon
constant ei in equation(8). Equation(ll) is graphedin figure 2.



However,in order to maintain the absoluteA-stabilltyof equation(7)
(i.e., _i n.l remainsboundedas h is increasedindefinitely),it is nec-
essary to'restrlct Ui to the interval(0.5, l.O) (refs. 19, 25, 26, and
28-31). Thus, equation(7) is made to defaultto the second-order-accurate
trapezoidalrule whenever ei is greaterthan zero. However,whenever
el is negative,equations(7) and (ll) togetherare equivalentto the
locally-exactor exponentialsolution,equation(9). Brandon (refs.30 and
31) has shown that the equivalentpolynomialaccuracyof equation (9) is typi-
cally of order six to eight.

Thus, equations(7) and (ll), with the restriction(0.5 < Ui < 1), con-
stitutean exponentlal-flttedtrapezoidalrule, a method which is A-stable,
and has a polynomlal-orderaccuracyof at least two, and as great as slx-to-
eight. It is interestingto note that, using Linlgerand Willoughby'stermi-
nology,Treanor'smethod (ref. 2) would be called an "exponentlal-fltted,
fourth-orderRunge-Kutta"method.

LINEARIZATIONOF THE RATE EQUATIONS

There are at least two distinctways of interestto determinethe llne-
arlzatlonconstants ei in equations(8) to (ll). First, the traditional
"chemist's"approach,which may be termed a formal llnearlzatlon,is reviewed.

Formal Linearlzatlonof the Rate Equations:"L-Formulatlon"

Equation (2) may be expressedas a differencebetweentwo positive-
definiteterms as follows (refs.lO, 32, 33)

fi = Qi - Di (12)

where

J

#-I _ (_jR_j . :"R ) (13)Qi
j:l lJ J

J
-1 , ii

p _(_ljRj . ai.R .) (14)Di
j =l 3 -j

lhe terms Ol and Di represent the gross rates of production and
consumption of specles-i, respectively, due to the contributions of all 3
forward and reverse reactions, lhe objective of this decomposition Is to en-
able factorlzatlon of the mole number from the destruction term:

Di= Li_i (15) -.

where I.i, obtainedsimply by dlvldlng Di by oi, is given by

J

Li - (o_i)-I _ (_jRj . _R_j) (16)
j=l



With the notationof equations(12) to (16), equation (I) may be rewritten
as:

d_i
dT = Qi - Li°i (17)

Equation(17) is now formallylinear in ai, and it can be seen by inspection
that (-Li) is the appropriatellnearlzatlonconstant oi. With 8i replaced
by (-Li),and fl replacedby (Qi - Liei), equation(Sa) may be rewritten
in the form

Ol,n+1 = [Qi,n/Li,n]+ [oi,n - Ql,n/Li,n]exp(-Li,nh) (18)

Since the loss coefficients(Li, i = l,N) are all posltlve-deflnlte,
the first terms in bracketsin equation(18) may be regardedas the local as-
ymptotic solution(refs. lO, 32), which representsthe large-tlmestepvalue of
the locallyexact solution,equation (18).

Inspectionof equation(18) revealsthat the coefficients(Li, i = l,N)
representinversecharacteristictime constantsfor the L-formulatedrate
equations;that is, an accurateapproximatesolutionaccordingto equation(18)
would have to be resolvedon a steplengthof order I/(Li)max.

FunctionalLinearlzatlonof the Rate Equations:"Z-Formulatlon"

Integrationof equation(17) to yield equation (18) requiredthat Qi
and Li in equation (17) be constantover the tlmestep h. It very often
happens that this conditiondoes not exist. Therefore,a more carefulexami-
nation of the actual couplingbetweenvariablesin equation (1) requiresa
functionalllnearlzatlonof the rate equations.

Equation(lO) can be solvedexplicitlyfor oi to give

fl,n+l - fl,n Z Zi (19)
0i = al,n+1 - al,n

The parameter Zi is termed by Brandonthe "diagonaltransitionmatrix"
or the "state variabledifferential"(ref. 30). Also, Zi may be recognized
as the averagevalue over the interval h of the ratio of second-toflrst-time
derivativesof the mole number ai:

-" d2oi/dt 2 dft/dt

d°I/dt - fl (20)

Therefore, Zi is a measure of the local curvatureof the trace of
ai with time, as for examplein figure I. The parameter Zi is also
equivalentto Treanor'sparameter Pil (ref. 2).

An importantrelationshipwhich followsfrom the locallyexact solution

is obtained by substitutingequation(9) into equation(lO) (with ei = Zi,n)to give

7



fl,n.l = fl,n exp (Zl,nh) (21)

Equation21 emphasizesthe role of the state variabledifferential Zi as a
"diagonaltransitionmatrix" (refs.30, 31). Thus Zi may be thoughtof as
a flnlte-differenceanalog of the elgenvaluesof the Jacoblanmatrlx of
equations(1) and (2).

Comparisonof Land Z-Formulatlons

Becausethe loss coefficients Li, equation(16), are all positive-
_ definite,the integratedrate equations,equations(7) to (ll), are always

stablewhen oi = -Li. However,they are not always accurate,because
strong couplingbetweenvariablesoften resultsin observedpositivetime con-
stants Zi for traces of _i versus tlme--seefigure l.

In contrast to the formally-llnearlzedequations(ei = -Li), the
functlonally-llnearlzedequations(ei = Zi) are always accurate,but are
stable only when Zi is negative;when any speciesexhibitsa positive
Zi, both the physicalequationand the correspondingapproximatesolution,
equations7 to II with ei = Zi, are unstable. As a consequence,when
the rate equationsare dominatedby positive Zi's, as occurs during induc-
tion and early heat release,it is necessaryto take small steplengthsof the
order I/IZilma x-

The use of the Z-formulated equations may result in extremely small step-
lengths (of size I/IZilmax) being taken if the initial values for
_i(i = l,N)are Ill-posed. These non-physlcal initial conditions may arise,
for example in multidimensional modeling because of the averaging of mole num-
bers over adjacent grid nodes. In this case, use of 0i = -L i with a
time steplength of order I/ILilma x is desirable. On the first call
to CREKID, the L-formulated equations are solved over one tlmestep of length
1/ILilma x to filter the initial condltlons--that is, to remove spuri-
ous transients of time scale I/IZilma x and to provide physically
meaningful initial values.

Another difficulty with the use of the Z-formulated equations arises
whenever any species is in "quasl-steady state"; that is, when the time trace
of oi closely approaches an asymptote or passes through an extremum. In
either case, Zi becomes singular due to division by zero or a small number
(see eq. 19). When this condition occurs--that is, when fl N 0 and/or
(Ol,n+1 - Ol,n) N O--Qi and Li (eq. 17) are locallyonly slowly
varyingwith time, so that use of the L-formulatedequations(i.e.,ei =
-Li), which are now both stable and accurate,is appropriate.

SOLVINGTHE INTEGRATEDRATE EQUATIONS

A fundamentalquestionwhich must be addressedis whetheror not to use
Newton-Raphsoniterationto convergethe implicitequations,equations(7) to
(ll), togetherwith the enthalpyconservationconstraint,equation (4). The
tradeoffswhich must be consideredinvolveaccuracy,convergenceradiusand
rate, and computationalwork.

8



Newton-Raphson(NR) iterationis attractivebecauseit convergesquadrat-
icallyand has an infiniteconvergenceradius. However,NR iterationrequires
frequent evaluationof the 3acoblanmatrix and its inverse,usuallydone by
either Gausslaneliminationor (equivalently)LU-decomposltlonand back-
substitution(ref. 34).

On the other hand, functionaliterationtechniquessuch as nonlinear
Gauss-Seldel,3acobl,or Jacobi-Newton(3N) iteration(ref. 35) do not require
evaluationof the 3acoblanmatrix or its inverse,but have severelyrestricted
convergenceradii. In addition,for these methods, the convergencerate is
only linear,or at best, super llnear--betterthan linearbut not quite
quadratic--Inthe case of 3N iteration.

For reasonspresentedIn the sectionPhysicaland ComputationalScenarios,
3N iterationis used during inductionand early heat release;however,during
late heat releaseand equilibration,NR iterationis used. Detailsof both 3N
and NR iterationmethodsare given in appendixA.

Approximationsfor State VariableDifferentials

The "tuningfactors" Ui in equation (7) are given by equation (ll)
with ei representingthe correspondingstate variabledifferentials

Zi,n. To minimizecomputationalwork, the Zi,n'S are evaluatedonly
once per step--atthe beginningof the time step, using equation (19). How-
ever, since _i,n+l and fl,n.l are not known at the start of the step,
an approximationhas to be developedfor Zi,n. Thls is done simply by using
values from the previous step, so

N fl,n - fi,n-I
= (22)

Zl'n Oi,n - Oi,n-I

Selectingthe IterationTechnique

CREKID automaticallyselectsthe iterationscheme (JN or NR) to be used
for solvingequation(7). During inductionand heat release,when small step-
lengthsare requiredfor solutionstability(refs.21, 23), JN iterationis
used to minimizecomputationalwork. During late heat releaseand equilibra-
tion when the differentialequationsare more stable and larger steplengths
can be used (refs. 21, 23), NR iterationis preferredsince it has a much
larger radius of convergencethan JN iteration. The regime identification
test exploitsthe fact that during extremaor equilibration("quasi-steady
state": QSS) many reactionsachievea conditionin which the forwardand re-
verse reactionsare large but with vanlshlnglysmall differences(refs. 36,
37). The actual test employedat the beginningof the time step Is

Ifll_ lO-3(Qi + Di) (23)

where, Qi and Di are the productionand destructionrates, respectively,
of species i (see eqs. 12 to 14). If any two are in QSS--thatis, satisfies
equation (23)--NRiterationis used for the step. If fewer than two species
satisfy equation(23) JN iterationis used for the step.



Non-PhyslcalInitialConditions

As discussedin the sectionComparisonof Land Z-formulatlons,nonphysical
initialconditionsmay result in extremelysmall steplengthsbeing taken. To
filter the initialcondltlons--thatis, to providephysicallymeaningfulini-
tial mole numbersand net speciesproductionrates--theL-formulatedequations
are solved over one tlmestep. On the first call to CREKID,it uses this for-
mulationover a tlmestepof length hI given by

l

hl = max Li (24)
i

The predlctor-correctoralgorithmuses equation (18) as the predictor

1 - exp(-Li(O)hl)]
a(0) ai(O) . hlf (0) (25)
i,l = i Li(O)h1

An implicit Euler correctorequation is then iteratedto convergence

(m+l) (26)
a(m.l) al(O) + hlfl,li,l =

In these equations al(O) are the initialvalues,fl(O) = fl(ak(O),
T(O)), T(O) is the initialtemperature,and the subscriptl is used to indi-
cate that this is the first step. Using equations(17) and (Al2)

(m.l) _(m) and I(m.l) = l(m) equation (26)
togetherwith the approximations Ql,l = Vl,l _l,l "l,l'
can be rewrittento providethe followingexpressionfor the Iog-varlable

corrections alog (m)
al,I

ai(O) - alm) Im)
,l. hlf ,l. i = l,N (27)

(m)

alog ai,l = (m) + hiD(m) 'al,I i,I

Equation (27) is iterateduntil converged(see appendixA). If convergenceis
not achievedafter lO iterations,the steplengthis halved and the step re-
tried. If convergenceis obtainedafter M (M _ lO) iterations,the step is
acceptedas successful,and the solutionfor aI is updated

IM).al,1 : a ,I' i = I,N (28)

and the temperature T1 is obtainedby a singleNewton-Raphsoniteration

N

Ho - _ ai hi(T(O))
i=I ,I ..

Tl = T(O) . N N (29)
ai,lCpi(T(O))

i=l

where Cpl is the constant-pressuremolal speclflc-heatof species i.

lO



Species in Quasi-SteadyState

Whenever the reactionrate for any species i satisfiesequation (23),
that speciesis consideredto be in "quasl-steadystate" (QSS). For reasons
presentedin the sectionSolvingthe IntegratedRate Equations,the
L-formulatedequations(ei = -Li) are employedfor all speciesin quasi-
steady state.

ACCURACY,STABILITY,CONVERGENCEAND STEPLENGTHCONTROL

It is particularlyuseful to define two tlmescalesneeded for steplength
control: "haccy,"the estimatedmaximum stepslzeto stay within a pre-
scribed local t_uncatlonerror tolerance €, and "hlter,"the maximum step-
size which will admit efficientconvergence(refs. 38, 39).

Local TruncationError (Ite)

In the nonstlff regimewhere 3N iterationis used, many speciesequations
have positivetime constants. Such species,which we term unstable,have
values of Zi > O. In the presentversionof the code, whenever Zi > O,
the "tuningfactor" Ui (eq. 7) is set equal to 0.5, so that with the fol-
lowing relationsdeducedfrom equation(ll) (with ei = Zi),

exp(Zih)- l
l l (30)- l

Zih - 1 - UiZih 1 - _ Zih

the predictorequation(A21) for unstablespeciesbecomes

I hfi'n (31)
O) = _i + 1 h
,n+l ,n l - _ Zi,n

where Zi n is determinedby equation(22). The correctorequation for
unstablespeclesis equation(7) with Ui = O.5--thatis, the trapezoidal
rule

(m.l) = _i, . h [ . f(m) ]_i,n+l n 2 fl,n i,n.l (32)

It can be shown that equation(31) has approximatelythe same Ite as a
second-orderAdams-Bashforthpredictor,so the Ite for unstablespeciescan be

" conservativelyestimatedas

1 o10) 1 (33). (ite)iN _ l_i,n+1 _ ,n+l

where _i,n,l is the convergedsolution.

Speciesequationsthat are stable are not limitedto Ui = 0.5, so
equation(33) does not apply for such species. In fact, no such estimateas

II



equation (33) can be made for the presentmethod because it is not a poly-
nomial method (refs. 30 and 31). Nevertheless_equation (33) is used even
though it seriouslyoverestimatesthe Ite for stable species.

For all species,stableand unstable,an averageweighted Ite estimateis
made by

1 _i,n+l - al,n+l (34)
Ite = _ max(_i _i, )i=l ,n' n+l

and the projectednext steplengthwhich would satisfythe user-speclfledlocal
error tolerance € is calculatedfrom

I/3

haccy = h(c/Ite) (35)

In the computatlonallystiff regimewhere more of the speciesare stable,
and where use of the NR iterationpermitsmuch larger steplengths,equations
(33) to (35) are far too conservative. In fact, in this regime,the local
truncationerror for stable speciesmay decreasewith an increasein the step-
length. Therefore,a differentestimateof the Ite is used in the stiff
regime. The estimateis based on the norm of the differencebetweenthe con-
verged solutionand that obtainedafter the first Newton iteration. This
estimateis actuallya measureof the local llnearlzatlonerror due to the use
of NR iteration,and not that of the local truncationerror. The relations
used In the stiff regime in place of equations(34) and (35) are

I I
Ite l _i,n+l - _ ,n+l

= 3 max(_i, _i, ) (36)i=l n' n+l

and

haccy = h(c/Ite)I/3 (37)

In equations(36) and (3?), the factor (I/3) must be regardedas strictly
empirical.

ConvergenceControl

During 3N and NR iterationthe rate of convergenceis monitored,both to
detect divergenceand to optimizethe rate of Iteratlveconvergence. .
FollowingShamplne (refs.38, 39) and Pratt (ref. 40), the convergencerate
Rconv is definedby

12



_i___l(alog olm),n+l)2/N
= (38)

(alog _ ,n.l)2/N

where (m-l) and (m) denote the iteration numbers. Note that at least two
iterations are required to define Rconv; if convergence is obtained after

" the first iteration,a default value of Rconv = 0.I for 3N iterationand
0.05 for NR iterationis used. As with the convergencetest, the summations
in equation38 includeonly specieswlth mole numbersgreaterthan 10-20.

If Rconv Is greater than one, the solutionIs divergingand the step
must be attemptedwith a decreasedsteplength. In CREKID,a more conservative
test Rconv _/0.8 Is used to detect divergence. If convergenceis not ob-
tained or if divergenceis detected,the steplengthIs decreasedas discussed
in the next section.

SteplengthControl

During both 3N and NR iterationthe convergencerate, Rconv, is used to
controlthe steplength. If correctorconvergenceis not obtainedafter ITMAX
iterations,where ITMAX is the user-supplledmaximumnumber of corrector
iterationsto be attempted,or if divergenceIs detected (i.e.,Rconv _ 0.8),
the steplengthis decreased. The new steplength,h', Is calculatedas follows

h' = h mln {0.5, max(O.l, 0.5/Rconv) } (39)

and the step retried with the decreased steplength.

After corrector convergence, the steplength Is adjusted up or down as
necessary to keep Rconv in the range (0.4, 0.5). An estimate, hiter, is
made of the steplength that would result in the desired convergence rate:

)I/2, < 0.4h(O.4/Rconv • Rconv

= < 0 5 (40)hlter h ; 0.4 _ Rconv _ .

h(O.5/R )I/2; R > 0.5cony cony

• In addition,the maximumpermlsslblesteplength,haccy (given by eq. 35 or
37) that would result in a local truncationerror equal to the user-speclfled
value for the local relativeerror, _, allowedper step, is calculated.

The steplength,h', to be attemptedfor the next step is then taken to be
the mlnlmumof hiter and haccy; however,the ratio h'/h is restricted
to be no largerthan lO. Hence, h' is given by

h' = mln (hlter,haccy, lOh) (41)

13



To inhibitoscillationsof the steplength,h (due to repeatedfailuresof
the convergencetest after increasesin h), an increasein h is allowed only
if convergencewas obtained in the previous step withouta reductionin h.
Followingany step for which correctorconvergencecould not be obtainedor
divergencewas detected (and so h was reduced),the new steplength h' is
calculatedfrom

h' = mln (h, h' given by eq. 41) (42)

COMPUTAIIONALSTRATEGY

The objectiveof the calculationis to efficientlyand reliablysolve the
followinginitialvalue problem: given a set of initialconditions(_i; i =
1,N), T and P (constant),find the values of _i (i = l,N) and T at the
end of a prescribedtime interval At. The overall steps taken to accomplish
this are:

a. Filter the initialconditions: evaluatethe fi's; choose a time-
step hI = I/(Li)max;use the "filteredEuler" predictor,equation (9)
with ei = -Li (i = l,N), and convergeequations(Alg) and (A20) by JN
iteration,with all Ui's set to unity (implicitEuler corrector).

b. Adjust the tlmestepaccordingto the observed Rconv from step a.
Use an explicitEuler predictor(eq. 9) with ei = 0 (i = l,N); use JN
iteration,equations(Alg) and (A20),with all Ui's set equal to one-half
(trapezoidalrule).

c. Calculate Rconv, haccy and hlter; choose JN or NR iteration,
accordingto whether or not two or more speciesare in QSS. Adjust the time-
step as describedin the sectionSteplengthControl.

d. Evaluate Zi's from equation (22), Ui's from equation (ll) and
iterateequation (17) until converged.

e. Repeat step d to the end of the prescribedinterval At; return
solution.

The strategyoutlinedabove, in conjunctionwlth the robust integrationalgo-
rithm, leads to minimumcomputationaltime with acceptableaccuracy.

COMPUTATIONAL TACTICS

The computational work of evaluating logarithms and exponentials may be "
avoided by Judicious use of approximating functions. For example, the term
(ex - l)/x in equation (9) is evaluated in the code by means of a (2,2) di-
agonal Pade' (rational function) approximation for ex, "

2
x x___

x l +2+12
e(2,2) _ 2 (43)

x x__
l - _ + 12
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which resultsin r

x

e - l (2,2) _ 1
x l - x(I/2 - x/12)' x < 0 (44)

Similarly,the "tuningfactor" Ui of equation (ll) can be evaluatedwith
sufficientaccuracyby means of an approximationwhich has no singularity

• I+ 1 -I 1
x x - _ (45)

l-e

The rlght-handside of equation(44) requiresonly five operationsto
evaluate,and does not exhibitthe singularityat x = 0 of the exact left-
hand side. Equation(44) is used only for the predictorequation(9).
Equation(45) is graphedin figure 2; note that equation(45) defaults to
Ui = 0.5 (the trapezoidalrule) for x > O.

Another significantreductionin computationalwork was achieved by lo-
cally llnearlzlngthe fiLth-orderpolynomialapproximationsused in evaluating
the specles-ienthalpy hi and specificheat capacities Cpl, which appear
in equations(All) and (A20).

Finally,it should be noted that, while Iog-varlablecorrectionsare used
in the algorithm,(appendixA), evaluationof logarithmsof the variables
themselvesis avoided by use of the approximateequations(Al2). The only
evaluationof exponentialsin the code are those necessarilyrequiredfor the
Arrhenlusrate expressionsin equation(3) and those requiredfor the tuning
factor, equation(45).

PERFORMANCEOF CREKID--COMPARISONWITH LSODE

A preliminaryversionof CREKID (ref. 40) has been tested by Radhakrlshnan
(refs. 21 to 23) against LSODE (refs.l?,18) on two test problemsdrawn from
combustionkinetics. Both problemsdescribedadiabatic,constantpressure,
transientbatch chemical reactionand includedall three regimesof
combustlon--Inductlon,heat releaseand equilibration.

lest probleml, illustratedin figure l, describedthe ignitionand sub-
sequentcombustionof a mixture of 33 percentcarbon monoxideand 67 percent
hydrogenwith lO0 percenttheoreticalair, at a pressureof ten atmospheres
and lO00 K initialtemperature. It consistedof 12 reactionsinvolvingII
species. Test problem2 describedthe ignitionand subsequentcombustionof a

: stolchlometricmixtureof hydrogenand air at a pressureof two atmospheres
and 1500 K initialtemperature. It involved30 reactionsamong 15 species.
Both test problemswere solvedover a time period of l ms in order to obtain

•" near-equillbratlonof all speciesand the temperature.

In applying LSODE to the problem of solvingchemicalkinetic rate equa-
tions, two differentmethods (A and B) for calculatingthe temperaturewere
attempted. In method A (LSODE-A),the temperaturewas calculatedfrom the
mole numbersand the initialmixture enthalpyusing the algebraicenthalpy
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conservationequation (4) and a Newton-Raphsoniterationtechnique. In method
B (LSODE-B)the temperaturewas evaluatedby integratingits tlme-derlvatlve,
obtainedby differentiatingequation4 with respectto time

N

- TI. lfi
dT i=I

= N (46)

i=l

In applying the presentversionof CREKID to the two test problemsdis-
cussed above, we have adopted the proceduredescribedby Radhakrlshnan
(ref. 23) and summarizedhere. A typicalcomputationalrun consistedof Inl-
tlallzlngthe speciesmole numbers,temperatureand CPU time. The integrator
was then calledwith values for the necessaryinput parameters,includingthe
local error tolerance,c, requiredof the numericalsolutionand the elapsed
time (= l ms for both problems)at which the integrationwas to be terminated.
On return from the integrator,the total computertime (CPU) requiredto solve
the problemwas calculated.

Figures3 and 4 presentthe computationalwork (expressedas the CPU time
in secondsrequiredon the NASA Lewis ResearchCenter's IBM 370/3033computer)
requiredby the slngle-preclsloncodes CREKID and LSODE,plottedagainstthe
local relativeerror tolerance,c.

Figures3 and 4 show that CREKID comparesfavorablywith LSODE for large
values of the relativeerror tolerance,c. But for small values of
CREKID is slower than LSODE. However,use of low values of c is wasteful
becauseof uncertaintiesin reactionrate coefficients(ref. lO). In addition,
the proposedpurposeof CREKID is to performmultlpolntcalculationsof chemi-
cally reactingflows by couplingit with a hydrodynamicequationsolver. These
solversare at best accurateto within a few percent,so generationof highly
accuratechemicalkinetic solutionsis wasteful (ref. lO).

The solutionof the coupled hydrodynamlc-reactlonrate equationsrequires
the solutionof the reactionrate equationsat severalthousandgrid points
for relativelyshort periodsof time (ref. lO). Hydrodynamiccodes also have
large storagerequirements. Hence, reactionrate integratorswith both a small
storagerequirementand a low initialization(start-up)time are needed. The
storageand start-uptime requirementsof CREKID have been shown to be signif-
icantlyless than those requiredby LSODE (ref. 24). These factorsmake CREKID
more attractivethan LSODE for multlpolntcalculations.

To furtherexplorethe differencesin computationalwork requiredby
CREKID and LSODE,we present in figures5 and 6 plots of the steplengthsuc-
cessfullyused by these codes throughthe course of each problem. For test
probleml (fig. 5) and for test problem2 at long times (fig. 6), the step- .
lengthsselectedby CREKID are comparableto those selectedby LSODE. How-
ever, at early times (t _ 5 _s) for problem2_ CREKID uses much smaller
steplengthsthan LSODE and is hence slower.
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The presentversionof CREKIDwill be availablefor testingfrom COSMIC,
Universityof Georgia,Athens,Georgia30602. Detailsof the subprograms
included in CREKID are given in appendixB. In appendixC, we presenta
sample input data set and the resultingoutput. These were generatedon the
NASA Lewis ResearchCenter's IBM 370/3033using slngle-preclslonaccuracy.

CONCLUSIONS

A major conclusionof the presentwork is that the L-formulatedequations,
• widely used at presentfor modelingboth atmosphericchemistry(refs. 32 and

33) and combustionprocesses(ref. lO), should be employedin the initialin-
duction period,when somemole numbersmay be very small, and whenever any
species is in quasi steady-state. At all other times, use of the Z-formulated
equationscompletelyobviatesthe need to use asymptoticor quasl-steady-state
assumptionsto resolvethe near-equillbrlumstiffnessproblemuniquelyassoci-
ated with the L-formulatedequations(refs.lO, 2?, 32, and 33). For atmos-
pheric chemistryproblemsin particular,the presentalgorithmwithout the
enthalpy constraintshould constitutea very fast and robustmethod for calcu-
lation of isothermal,batch homogeneousgas-phasekinetics.

The successof the presentalgorithmstems from recognitionof the fact
that the approximatingequationsdescribingthe inductionprocessesare
stabillty-llmlted,whereas the correspondingpost-lnductlonequationsare
accuracy-llmlted. In the former case, low-accuracymethodswith the least
possible computationalwork per iterationare indicateddue to the necessarily
restrictedstepslze,as pointedout by Young and Boris (ref. lO). However,in
the post-lnductlonprocesses,where inherentstabilityis not a problem,step-
sizes may be as large as the accuracyand convergenceradius of the approxi-
mating equationspermit. The use of exponentialsas approximatingfunctions
satisfiesthe accuracyrequirement,and Newton-Raphsoniterationgives an
infiniteconvergenceradius. The added computationalwork of Jacoblanevalua-
tion and matrix inversionrequiredfor Newton_Raphsoniterationis offset by
very large stepsizesand quadraticconvergence(refs. 19, 25, and 26).

NOMENCLATURE

Aj, A j preexponentlalconstantsin forwardand reverserate equations
for reaction J (eq. 3), units depend on reactiontype

Bj, B_j temperatureexponentin forwardand reverserate constantsfor
reaction J (eq. 3)

CPU total CPU time requiredon IBM 370/3033,s

C_p_ constant-pressure molal-speclfic heat of species i, J/kmole K

" Di rate of destructionof species i (eq. 12), kmole i/kg mixture s

Ej, E_j activationenergy in forwardand reverserate equationsfor reac-
tion J (eq. 3), cal/mole

fl net rate of formationof species i (eq. 2), kmole I/kg mixture s

Ho initialmixturemass-speclflcenthalpy,J/kg
l?



h steplengthused by integrator,s

haccy estimatedsteplengththat would result in solutionwith desired
accuracy (eqs. 35 and 37), s

hlter estimatedsteplengththat would result In a convergencerate in
the range (0.4, 0.5) (eq. 40), s

hl molal-speclflcenthalpyof species i, 3/kmole

ITMAX maximumnumber of correctoriterationsto be attemptedby the
integrator

3 total number of distinctelementaryreactionsin reaction
mechanism

Li loss coefficientfor species i, inverseof characteristictime
constantfor species i (eq. 15), I/s

Itei local truncationerror for species i

N total number of distinctchemicalspeciesIn the gas mixture

P absolutepressure,N/m2

Qi productionrate of species i (eq. 12), kmole I/kg mixture s

R universalgas constant,8314.3 3/moleK (1.9872cal/mole K)

Rconv iterationconvergencerate (eq. 38)

Rj, R_j molar forwardand reverserates per unit volume for reaction j
(eq. 3), kmole/m3s

T temperature,K

t time, s

UI degree of implicitnessor tuning factor for species i (eq. 7)

Zi state variabledifferentialfor species i (eq. 19)
I II

_lj, _lj stolchlometrlccoefflclentsfor species i in forwardand
reversereaction J (eq. 3), number of kmoles i in elementary
reaction j as a reactantand as a product,respectively

c local relativeerror tolerance

ei suitable linearlzatlonconstantfor species i (eq. 8) "

p mixture mass density,kg/m3

oI mole number of species i, kmole I/kg mixture

am reciprocalof mixturemean molar mass (eq. 6), kmole/kg
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APPENDIXA

OUTLINEOF NR AND SN ITERATIONTECHNIQUES

Newton-RaphsonIteration

- _(m) is definedfrom equation(7) byA Newton-Raphsonfunctional _i,n.l

o(m) -_i [l-Uil
_(m) _ = i,n+l ,n _ flm)
rl,n+l - Uih - Ui j fl,n ,n+l (Al) _

c(m) T(m)where m is the iterationnumber f(m) = f ( ) and' i,n+l i k,n.l'"nfl '

(m)
Ok,n+l (k = l,N) and "n+l are the mth approximationsto the exact values

_k(tn+l)and T(tn.l),respectively.

The Newton-Raphsonfunctionalfor temperatureis determinedfrom equation(4),

N

(m) _i_T(m)rT,n+,_(m)_ = i=l_ _i,n+l , n+l) - H0 (A2)

where hl (T_TI) is the molal-speclflcenthalpyof species i at

temperature T_TI and H0 is the initialmixturemass-speclfIcenthalpy.

Newton-Raphsoncorrectorequationswith log variablecorrections(for
self-scalingof the widely-varylngmole numbers)are given by

N
(m) (m)

aFi,n.l _(m) aFi,n.l alog T(m) r(m)
.

c_m_+l_.,alog k,n+l alogT!T_._. n.l -rl,n+l;i = l - N
alog

k=l
(A3)

N
m) (m)

aF_,n.l _(m) . alog = (A4)
aFT,n.l T(m) -(m)

alog c(m) Alog k,n+l T(m) n.l -FT,n+l
k=l k,n+l alog n+l

The partialderivativesIn equation (A3) are given by

J

aFlm) m),n+l 61k_l,n+l

Uih + p-l.._ , - R _"_ i = l,N (AS)(°lj- -JkJ"

and
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at(m) a

rl,n.l -I ( )[ j T(m)n+i
- . EI/R - n_ . l)

J

alog "n+l J=l

- /RIn.1 - n_ + I] (A6)R_j(B_j. E j _(m) ,

In the above equations,_Ik is the Kroneckersymbol

=O ;i_k

61k (AT)
=I ; I =k

and n' and n'.' are the molecular_tlesof the forwardand reversereactions
J a

j respectively,

N

ni--T.l=l
(A8)

N

In equations(A3, A5 and A6), the partialderivativeswith respectto the
reciprocalof the mean molar mass, am, are assumedto be negligibleIn com-
parisonwith the other terms.

The partialderivativesin equation(A4) can be derived from equation(A2)
and are given by

aF!m)

T,n.l _(m) hk T(m) (A9)
_(m) - k,n.l n+lalog k,n+l

N

aF(m) _ .(m)
T,n.l T(m) _(m) _ (AlO)
T(m) - n.l l,n.l Cpl "n.lalog
n+l I=l

(m)
where _pl(Tn+l)Is the constant-pressuremolal-speclflcheat of species i at

temperature T(m) Substitutionof equations(A9) and (AlO) Into equation (A6)n.l"

resultsin the followingIog-varlablecorrectionequation for the temperature

N N

(m) _k(T_T_)Alog (m) .(m)_(m) N ,T(m))Alog.(m) _F(m)_k,n.l _k,n+l + In+l l,n+l Cpi'-n+l "n.l = T,n+l
k=l i=l

(All)
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Equations(A3) and (All) are solved simultaneouslyby LU-decomposltlonand
back-substltutlon,and the resultinglog variablecorrectionsare used to up-

date the current iteratevalues of _i,n+l and Tn+l by the approximate
equations

Im*l) Im) [ _(m) ]" i = 1 N (Al2a),n+l = _ ,n+l 1 + alog i,n.l '

and

= T(m) [ + T(m)]
T(m+l) 1 alog

n+l "n+l n.lJ (Al2b)

To start this iteration process, the predicted values denoted by 0(0) (i = 1 N)i ,n+l

and T(0)n.l are obtained quite simply by setting them equal to the values at the

current time step

iO) i : I,N (Al3a),n+l = Oi,n'
o

T(O)n+l= Tn (Al3b)

Jacobi-NewtonIteration

The form of equations(AI), (A3), (A5) and (A6) was chosen to ensure di-
agonal dominanceof the Jacoblanmatrix. If it is furtherassumed that the
off-dlagonalelementscan be neglectedwlth respectto the diagonal elements,
equations(A3) and (All) can be rewrittenas

_(m)
a_i,n+l

alog o(m) = -F(m)
i,n+l i,n+l; i = l,N (Al4)

alog _(m)i ,n+l

and

N

T(m) i_1 o(m) _ IT(m))alogT(m) F(m) (Al5)n.l = i,n_l pl_ n.l n.l = - T,n+l

" In equation (Al4),the partialderivativesare given by

m) J

Ulh . °-I_ (:%J ''. v v'- :i.i)(R_i_- R_j:")'lj' i = l,N
alog olm) -

,n+l J=l (AI6)

which is approximated by
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3
aF(m) _(m)

i,n.l el,nil + o-I_(_jRj _ljR_j) (AIT)alog _(m) = Uih + "
i,nil J=l

which when combinedwith equation (14) gives

(m) (m)

aFl,n+l _ D_m)
(m) - Ulh + ,n+l (AI8)

alog +i,n+l

(m) . the destructionrate of species i can be evaluatedalong with
where Di,n+,'

f!m)" without calculatingthe entire 3acobianmatrix. With this+,n+l'
simplification,equation (Al4) can be solvedexplicitlyfor the Iteratlve
corrections

(m) )
(m) = _F(m) . + D(m)

Alog +i,n+l i,n+l Ulh l,n+l ;i = l,N (A19)

lhe temperaturecorrectorequation (AlS) can be solved for the log-
temperaturecorrection

Alog "n+l = i:l ,n+lCpi\n+l]

As with NR iteration,the iteratevalues of _i,n+l and Tn+l are
updated using the approximateequations(Al2)

I [ (o,Ire+l) (m) l + Alog _i,n+lJ I = l N (Al2a),n+l = _l,n+l ' '

and

[ -,-(+1T(m.l)n.l= -n.lT(m) 1 + Alog "n+lJ (Al2b)

, _(0)To start the iterationprocess the predictedvalues i,n.l are obtained
from equation(9). (with +i = ZI)

°) +hfi rexp(Zi,nh)-I],n+l= +i,n ,nL--Zl,nh " ; i = l,N (A21)

The predictedtemperatureIs obtainedby a singleNewton-Raphsoniteration.
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N

Ho-i_1 °lO),n+|'h_(T). n
T,0,r\ : Tn . N (A22)n.l (o)~

iZ=__l°i,n+lCpi(Tn)

ConvergenceTest

For both NR and JN iteration,the test for convergenceof the iterates

(m+l) is based on the values Alog o ,n+l and is given by°i,n+l

 1ogoI:  ii2i=l
< c

N : (A23)

where, c is a user-supplledlocal relativeerror tolerance. The above test
is used only for specieswhose mole numbersare greaterthan I0-20; i.e.,
the summationdoes not includespecieswith mole numbers less than or equal to
10-20. In addition,mole numbers less than l0-20 are set equal to 10-20.
If convergenceis not obtainedafter ITMAX iterations,where ITMAX is the user-
suppliedmaximumnumber of correctoriterationsto be attempted,the steplength
is reducedas discussedin the sectionSteplengthControland the step retried.
If convergenceis achieved in M iterations(M < ITMAX),the step is accepted
as successfuland the solutionis updated.

= o(M) • i = l - N
°i,n+l i,n+l'

(A24)

= T(M)
Tn+l n+l
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APPENDIX B

DESCRIPTIONOF SUBPROGRAMS

ALGORI - Filtersinitialconditions. Computesinitialstepslze,iterates
L-formulatedimplicitEuler approximationsto convergence.

,.

ALGOR2 - Nonstlff regime solver. EmploysJN iterationto solve equations.

ALGOR3 - Stiff regime solver. EmploysNR iteration.

BSOLV - Standard routinefor forwardand back substitutionof a previously
LU-decomposedmatrix.

CONVG - Managescontroland monitoringof both NR and JN iteration;indi-
cates when convergencecriteriahave been satisfied.

CREKEQ - Managescalls to subroutineEQUIL.

CREKO - Initializingroutinefor elementaland thermochemlcaldata. Reads
and catalogsdata in NASA format from data file.

CREKID - Main routine. Sets initialtlmestep,manages controlof solution
until end of prescribedtimestep,and returnssolutionto calling
program.

DCOMP - Performs standardLU-decomposltionof a square matrix.

DERIVS - Evaluateskineticexpressions,and on demand,elementsof Jacoblan
matrix.

EQUIL - Calculatesadiabaticflame temperatureand equilibriumspeciesdis-
tributionfor a mlxture of gases at prescribedpressureand enthalpy.

ERATIO- Calculatesfuel-alrequivalenceratio of a mixture of gases.

GLOBL - Calculateskineticrates and contributionsto Jacoblanfor specially
-prescribedglobal kineticrate expressions.

HCPG - Evaluatesenthalpy,constant-pressurespecificheat capacityand
one-atmospherespecificmolar Gibbs functionof a mixture of gases.

MECHN - Initializingroutinefor readingand catalogingkineticrate data
and establishingreactionstolchlometryvectors.

NAMLS1 - Initializingroutinefor readingand catalogingproblemcontrol
parameters,debuggingoptions,etc.

TEMPRK - Performsa single Newton iterationto determinethe temperatureof a
given mixture of gases.
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APPENDIXC

SAMPLE INPUT AND OUTPUT

Sample input

ELEMENTS
C 12.01115 _.0
H 1.00797 1.
0 15.9994 -2.0
N 14.0067 0.0

THERMO
CO J g/65C 1.0 1.00 0 O00.G 300.000 5000.000
0.298qO689E Ol O.148gI387E-O2-O.57899678E-06 O.1035q576E-Og-O.69353q99E-14

-0.1q245227E 05 0.63479147E Ol 0.37100916E 01-0.161_?_6qE-02 0.36923584E-05
-0.20319673E-08 O.23953344E-12-O.14356309E 05 0.29555340E 01
C02 J 9/65C 1.0 2.00 0 O00.G 300.000 5000 000
0.4_608040E 01 O.30981717E-O2-O.12392566E-05 O.22741323E-O9-O.155259_HE-13

-0.48961438E 05-0.98635978E O0 0.24007788E 01 O.87350905E-O2-O.66070861E-05
0.20021860E-08 0.63274039E-15-O.4B377520E 05 0.96951_47E 01

H J 9/65H 1.00 0.00 0 O0 O.G 300.000 5000 000
0.25000000E 01 0.0 0.0 0.0 0.0
0.25471625E 05-0.46011758E O0 0.25000000E 01 0.0 0.0
0.0 0.0 0.25471625E 05-0.46011758E O0

H2 J 3/61H 2.0 0.0 0 0 O.G 300.000 5000 000
0.31001883E O1 0.51119458E-03 0.52644204E-O7-O.3490996_E-10 0.369453_IE-14

-0.87738013E 03-O.19629q12E 01 O.30574q46E 01 O.2676519BE-O2-O.58099149E-05
O.55210343E-OH-O.18122726E-11-O.g8890430E 03-0.22997046E _I

H20 J 3/61H 2.0 1.00 0 O0 O.G 300.000 5000 000
0.27167616E 01 0,29451370E-02-0.80224 68E-06 O.10226681E-Og-O.48472104E-14

-0.29905820E 05 0.66305666E 01 0.40701275E 01-O.11084499E-02 0._1521180E-05
-'0.2963740_E-08 O.80702101E-12-O.30279719E 05-0.32270038E O0
N J 3/61N 1.00 0.00 0 O0 O.G 300.000 5000 000

0.24502678E 01 O.10661458E-O3-O.74653315E-07 0.18796520E-10- .10259837E-1_
0.56116035E 05 O.44qH7572E Ol 0.25030699E 01-O.21HOO181E-04 .54205284E-07

-0.56475602E-10 0.2099903HE-13 0.56098898E 05 0.41675749E 01
NO J 6/63N 1.0 1.00 0 O0 O.G 300.000 5000 000

O.31889992E 01 O.13382279E-O2-O.52899316E-06 0.95919314E-10- .6484792HE-14
O.98283242E 04 O.67q58115E Ol 0.40459509E 01-O.34181783E-02 .79819174E-05

-O.61139254E-OH 0.15919072E-11 O.97453867E 04 0.29974976E 01
N2 J 9/65N 2.0 0.0 0 0 O.G 300.000 5000 000

0.28963194E Ol O.15154863E-O2-O.57235275E-06 0.99807385E-I0- .65223536E-14
-0.90586182E 03 0.61615143E 01 0.36748257E 01-0.12081496E-02 .23240100E-05
-0.63217520E-Og-O.22577253E-12-O.IO611587E 04 0.23580418E Ol
0 J 6/620 1.00 0.00 0 O0 O.G 300.000 5000 000

0.25420580E OI-0.27550603E-O4-O.3102H 29E-08 0.45510670E-11- .436HOagiE-15
0.2923080iE 05 O.qg203072E 01 0.29464283E 01-O.16381664E-02 .24210303E-05

-O.16028432E-OH O.3HgO696qE-12 O.291476qlE 05 0.29639931E 01
OH J 3/660 I.H 1.00 0 O00.G 300.000 5000 000

0.29106417E 01 O.95931627E-O3-O.19441700E-06 0.13756646E-I0 0.14224542E-15
0.39353811E 04 O.5q423428E 01 0.38375931E 01-O.I0778855E-02 O.96830_5_E-06
O.18713971E-Og-O.22571089E-12 O.36412820E 04 0.49370009E O0

02 J 9/650 2.0 0.0 0 0 O.O 300.000 5000 000
0.36219521E 01 O.73618256E-O3-O.19652219E-06 O.36201556E-lO-O.28965623E-l_

-" -0.12019822E 04 0.36150942E 01 O.362559HOE 01-O.18782183E-02 0.70554543E-05
-0.67635071E-08 O.21555977E-11-O.lO475225E 04 0.43052769E 01

MECHANISM
CO OH C02 H 11.49 0.0 0.596 CG5 1
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H 02 0 OH 16.3_ 0.0 16._92 CGS 2
H2 0 H OH 13.68 0.0 9.339 CGS 3
H20 0 OH OH 13.92 0.0 18.121 CG5 4
H H20 H2 OH 1_.0 0.0 19.870 CG5 5
N 02 NO 0 9.81 1.0 6.250 CGS 6
N2 0 tl NO 13.85 0.0 75.506 CGS 7
NO M H 0 M 20.60 -1.5 149.025 CGS 8
H H M H2 M 18.0 -I.0 0.0 CGS 9
0 0 M 02 M 18.14 -i.0 0.340 CGS IO "
H OH M H20 M 23.88 -2.6 0.0 CGS II
H2 02 OH OH 13.0 0.0 43.0 CGS 12

&INPUT EPS:I.0E-O2,ITMAX=IO,TKIN:IOOO.O,PATM=IO.O,LDEBUG=.F.,
HDEBUG=I,DELT:2.0,SECS=I.E-3, STOP=I.E-03 &END

REACTANTS
C I. 0 1. CO 1.0 M G STOICH,
H 2. H2 2.0 M O PYRLIZED
H 2. H2 7.52 M G CH4-AIR
0 2. 02 1.5 M G MIXTURE.
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ELEMENTS
C 12.0111_9 4.000000

H 1.007970 1.000000

0 15.999399 -2.000000

N 14.006700 0.000000

THERM0
CO J 9/65 C 1.0 1.00 0 00 0. G 300.000 5000.000 0

0.29840689E O1 O.14891387E-O2-O.S7899678E-06 0.1036_576E-O9-O.69353465E-14 0
-0.1_2_5227E 05 0.634791_7E Ol 0.37100916E 01-0.16190964E-02 0.36923575E-05 0
-0.20319673E-08 0.23953344E-12-O.14356309E 05 0.29555340E O1 0

C02 J 9/65 C 1.0 2.00 0 00 0. G 300.000 5000.000 0
0.44608040E O1 0.30981717E-O2-O.12392566E-O5 0.22741323E-O9-O.I55259_8E-13 0

-0.48961438E 05-0.98635978E O0 0.24007788E O1 0.87350905E-O2-O.66070852E-O5 0
0.20021860E-08 0.63274039E-15-O.48377520E 05 0.96951447E Ol 0

H J 9/65 H 1.00 0.00 0 00 0. G 300.000 5000.000 0
0.25000000E O1 0.00000000 0.00000000 0.00000000 0.00000000 0
0.25471625E 05-0._6011758E O0 0.25000000E O1 0.00000000 0.00000000 0

0.00000000 0.00000000 0.25471625E 05-0.46011758E O0 0

H2 J 3/61 H 2.0 0.0 0 0 O. G 300.000 5000.000 0 3
0.31001883E O1 0.511!9458E-03 O.5264_204E-OT-O.3_909964E-lO 0.369453_1E-14 0 -_

-0,87738013E 03-0.19629412E Ol 0.30574446E O1 0.26765198E-O2-O.58099140E-05 0
O.35210343E-OS-O.18122726E-II-O.98890_30E 03-O.Z2997046E O1 0

"'J H20 J 3/61 H 2.0 1.00 0 00 O. G 300.000 5000.000 0 0
0.27167616E O1 0.29451370E-O2-O.8022_368E-06 O.10226681E-O9-O.48472070E-14 0

-0.29905816E 05 0.66305666E O1 0._0701275E 01-0.11084_99E-02 0,41521180E-05 0
-0.29637404E-08 0.80702101E-12-O.30Z79719_ 05-0.32270032E O0 0

H J 3/61 N 1.00 0.00 0 00 O. G 300.000 5000.000 0 _"
0.2_502678E 01 0.10661_58E-03-0.74653315£-07 0.18796520E-lO-O.10259837E-14 0
0.56116031E 05 0.44487572E O1 0,25030699E 01-0.21800181E-04 0.5_20528_E-07 0

-0.56475602E-10 O.ZO999038E-13 0.56098895E 05 0.41675749E 01 0

HO J 6/63 N 1.0 1.00 0 O0 O. G 300.000 5000.000 0
0.31889992E O10.13382279E-O2-0.S2899316E-06 0.95919300E-lO-O.648_7928E-14 0
0.98283203E 04 0.67458115E O1 0.40_59509E 01-0.34181783E-02 0.79819165E-05 0

-0.61139254E-08 0.15919072E-11 0.97_53828E 04 0.29974976E O1 0

N2 J 9/65 N 2.0 0.0 0 0 O. G 300.000 5000.000 0
0.28963194E O10.1515_863E-OZ-O.57235275E-06 0.99807385E-lO-O.65223536E-14 0

-0.90586182E 03 0.61615143E O1 0.36748257E 01-0.12081496E-02 0.232_0100E-05 0
-0.63217498E-O9-O.22577253E-12-O.lO611587E 04 0.23580_18E 01 0

0 J 6/62 0 1.00 0.00 0 00 O. G 300.000 5000.000 0
0.25420580E 01-O.27550603E-O_-O.31028027E-08 O._5510670E-11-O.436BO494E-15 0
0.29230801E 05 0.49203072E O1 0.29464283E 01-0.1638166_E-02 0.2421029_E-05 0

-0.16028432E-08 O,38906964E-1Z 0.291476_1E 05 0.29639931E 01 0

OH J 3/66 0 1.H 1.00 0 00 O. G 300.000 5000.000 0



0.29106417E O1 0.95931627E-O3-O.19441700E-06 0.13756646E-10 0.14224542E-15 0
0.39353809E 04 0.54423428E Ol 0.38375931E 01-0.10778853E-02 0.96830354E-06 0
O.18713971E-Og-O.22571089E-12 0.36412820E 04 0.49370009E O0 0

02 J 9/65 0 2.0 0.0 0.0 O. G 300.000 5000.000 0
0.36219521E O10.73618256E-O3-0.19652214E-06 0.36201556E-lO-O.28945621E-14 0

-0.12019822E 04 0.36150942E O1 0.36255980E 01-0.18782183E-02 0.70554543E-05 0
-0.67635071E-08 0.21555969E-11-O.lO475225E 04 0._3052769E 01 0

MECHAHISH

1. CO OH C02 H 11.490 0.000 0.596 CGS 1
CALCULATED REVERSE RATE DATA, STD DEV AHD CORR COEF = 13.545 0.000 22.716 6.513E-02 9.996E-01

2. H 02 0 OH 14.340 0.000 16.492 CG5 2
CALCULATED REVERSE RATE DATA, STD DEV AND CORR COEF = 13.235 0.000 0.476 2.083E-02 9.262E-01

3. H2 O H OH 13.480 0.000 9.339 CG5 3
CALCULATED REVERSE RATE DATA, STD DEV AHD CORR COEF = 13.123 0.000 7.308 2.608E-03 1.O00E O0

_. H20 O OH OH 13.920 0.000 18.121 CG5 4
CALCULATED REVERSE RATE DATA, STD DEV AHD CORR COEF = 12.923 0.000 1.025 1.380E-02 9.922E-01

5. H H20 H2 OH 14.000 0.000 19.870 CGS 5
CALCULATED REVERSE RATE DATA, STD DEV AHD CORR COEF = 13.359 0.000 4.803 1.634E-02 9.995E-01

6. H 02 HO 0 9.810 1.000 6.250 CGS 6
CALCULATED REVERSE RATE DATA, STD DEV AHD CORR COEF = 12.800 0.000 _1.408 5.705E-02 9.999E-01

7. H2 D H HO 13.850 0.000 75.506 CGS 7
CALCULATED REVERSE RATE DATA, STD DEV AHD CDRR COEF = 13.196 0.000 0.281 4.718E-03 9.881E-01r_

CO
8. HO M H 0 H 20.600 -1.500 149.025 CGS 8

CALCULATED REVERSE RATE DATA, STD DEV AHD CORR COEF = 11.420 0.000 -6.109 5.933E-02 9.959E-01

9. H H M H2 M 18.000 -I.000 0.000 CGS 9
CALCULATED REVERSE RATE DATA, STD DEV AHD CORR COEF = 17.949 0.000 101.227 5.105E-02 1.000E O0

10. 0 O M 02 M lB.140 -1.000 0.340 CGS 10
CALCULATED REVERSE RATE DATA, STD DEV AHD CORR COEF = 18.837 0.000 115.552 7.43_E-02 1.O00E O0

11. H OH M H20 M 23.880 -2.600 0.000 CGS 11
CALCULATED REVERSE RATE DATA, STD DEV AHD CORR COEF = 18.611 0.000 111.213 1.489E-01 9.999E-01

12. H2 02 OH OH 13.000 0.000 _3.000 CGS 12
CALCULATED REVERSE RATE DATA, STD DEV AHD CORR COEF = 11.538 0.000 24.955 1.825E-02 1.O00E O0

1 CO OH .... = CO2 H

2 H 02 .... = O OH

3 H2 O .... = H OH

4 H2D 0 OH OH

5 H H20 .... = H2 OH

6 H 02 NO 0

7 H2 0 H HO



8. NO M ....= N 0 M

9. H H M ....: H2 M

lO. 0 0 M ....= 02 M

ll. H OH M .... = H20 M

12. H2 02 OH OH

KINETIC RATE DATA IN SI UNITS

J MODR ID BX TEN TACT BX2 TEN2 TACT2

i. i I I0 2 3 8.490 0 000 299.949 I0.565 0 000. 11432.273
2. I 3 Ii 9 I0 11.340 0 000 8299.945 10.235 0 000 239.505
3. i 4 9 3 I0 I0.680 0 000 4700.047 10.123 0 000 3677.746
4. 1 5 9 I0 I0 10.920 0 000 9119.770 9.923 0 O00 515.668
5. i 3 5 4 I0 ii.000 0 000 9999.996 10.359 0 000 2617.658

6. i 6 II 7 9 6.810 I 000 3145.646 9.800 0 000 20839_703
7. i 8 9 6 7 10.850 0 000 37999.977 10.196 0 000 161.567
8. 2 7 0 6 9 17.600 -i 500 76999.938 5.420 0 000 -3076.641
9. 3 3 3 6 0 12.000 -I 000 0.000 16.969 0 000 50944.621

lO. 3 9 9 Ii 0 12.140 -I 000 171.112 15.837 0 000 58153.891
II. 3 3 I0 5 0 17.880 -2.600 0.000 15.611 0 000 55970.661
12. i 4 ii i0 I0 I0.000 0.000 21660.668 8.538 0 000 12558.973

&IHPUT
bELT= 2.0

f_3 EPS: 0.9999998E-02
LO ITMAX = i0

TKIH= I000.0
PATM = I0.0
TINY= 0.IOE-19

5ECS= 0.9999999E-03, 29wO.IOEI0
STOP: 0.9999999E-03
LDEBUG = F
HDEBUG= i
&END

REACTANTS

C 1.00000 0 l. O0000 0.00000 0.00000 C0 1.00000 M G I
H 2.00000 0.00000 O.O000O 0.00000 H2 2.00000 M G I
H 2.00000 0.00000 0.00000 0.00000 N2 7.52000 M G I
0 2.00000 0.00000 0.00000 0.00000 02 1.50000 M G I

www REACTAHT STREAM I _

I SPECIES MOLECULAR WEIGHT MOLE NUMBERS MASS FRACTIONS
(KGMOLE I)/(KG I) (KGMOLE I)/(KG X) (KG I)/(KG X)

1. CO 2.801E O1 3.460E-03 9.636E-02
2. C02 4.601E Ol 0.000 0.000
3. H 1.O08E O0 0.000 0.000
4. H2 2.016E O0 6.880E-03 1.3L7E-02
5. H20 1.802E Ol 0.000 0.000
6. H 1.401E 01 0.000 0.000



7. NO 3.001E O1 0.000 0.000
8. H2 2.801E O1 2.587E-02 7.2qTE-O1
9. 0 1.600E O1 0.000 0.000

I0. OH 1.701E O1 0.000 0.000
11. 02 3.200E O1 5.160E-03 1.651E-01

TEMPERATURE = 1.000E 03 DEG K
EHTHALPY = 5.090E 05 JOULES/KG
PRESSURE = 1.Ol3E 06 N/M_2
DENSITY = 2.9q7E O0 KG/Hw_3
MEAN HOL WT = 2.418E 01 KG/KGMOLE

HSUBO, ER, PA, SH, RHOP, TK, TAU, TIME, HSTEP =
S.090E 05 1.O00E O0 1.O13E 06 3.67qE-02 1.266E O0 2.6192E 03 0.000 9.990E 09 0

SPECIES NAMES

CO C02 H H2 H20 H NO H2 0 OH
02

SPECIES MOLE NUMBERS, S2(I)

GO 6.60SIE-Oq 2.779_E-03 3.8895E-05 2._178E-0_ 6.q945E-03 8.116qE-09 1.9647E-04 2.5770E-02 2.5897E-05 2._B47E-O_
C_, 2.8757E-0_

SPECIES HOLE FRACTIONS

1.7976E-02 7.56_5E-02 1.0586E-03 6.5802E-03 1.7675E-01 2.2090E-07 5..3_72E-03 7.0136E-01 7.0_81E-0_ 6.762_E-03
7.8265E-03

HSUBO, ER, PA, SH, RHDP, TK, TAU, TIME, NSTEP =
S.090E OS 1.O00E O0 1.O13E 06 3.666E-02 1.269E O0 2.6186E 03 7.06_E-05 1.O00E-03 99

SPECIES NAMES

CO C02 H H2 H20 N HO H2 0 OH
02

SPECIES MOLE NUMBERS, S2(I)

6.1_12E-0_ 2.8292E-03 3.9q3qE-05 2.1601E-0_ 6.3588E-03 1.1887E-08 5.7265E-05 2.58_0E-02 3.26_3E-05 2.7593E-0_
3.97_1E-0_

SPECIES MOLE FRACTIOHS

1.6752E-02 7.7173E-02 1.0756E-03 5.8921E-05 1.73qSE-Ol 3.2_25E-07 1.5620E-03 7.0q8_E-01 8.90_1E-0_ 7.5267E-03
1.08_0E-02

," i J
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Figurei.-Variationwithtimeofchemicalspeciesmolefractionandtemperatureinadiabaticbatchreac-
tion.(Pryolizedmethane-air,stoichiometric,initialtemperature-1000K,pressure-I0atm).
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Figure2.-Degree-of-implicitnessor"tuning"factorUiinequation(1).Solidcurveistheexact
equation(11),dashedcurveistheapproximateequation(45).
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Figure 3. - Variation of CPUtime with local relative error tolerance for test problem1.
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Figure4. - Variationof CPUtimewith localrelativeerror tolerancefor testproblem2.
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