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SINGULAR ASYMPTOTIC EXPANSIONS IN NONLINEAR RUTORDYNAMICS

BY

WILLIAM B. DAY, Ph..D.
ASSOCIATE PROFESSOR OF COMPUTER SCIENCE

AUBURN UNIVERISTY, ALABAMA

ABSTRACT

During hot firing ground testing of the Space Shuttle's
Main Engine, vibrations of the liquid oxygen pump have
occurred at frequencies which cannot be explained by the
linear Jeffcott model of the rotor. The model becomes
nonlinear after accounting for deadband, side forces,
and rubbing. Two phenomena present in the numerical
solutions of the differential equations are unexpected
periodic orbits of the rotor and "tracking" of the
nonlinear frequency. A multiple-scale asymptotic
expansion of the differential equations is used to give
an analytic explanation of these characteristics.
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1. Introduction:

Excessive vibrations of the liquid oxygen turbopump
in the Space Shuttle's Main Engine have been recorded
during hot firing ground testing. Examination of the
power spectral density (PSD) plot reveal frequencies
which cannot be explained using the linear rotordynamics
model of Jeffcott [S]. Consequently, numerous investi-
gations have been undertaken to study such rotors and to
provide descriptions of the solution of the two, coupled,
second-order differential equations which describe the
motion of the rotor's center of mass. Following the early
work in rotordynamics by Yomamoto [7], one introduces a
nonlinearity to the Jeffcott equations by including the
effect of bearing clearance or deadband. In the pump this
deadband refers to the load carriers (ball bearings) and
physically describes the clearance between the outer race
of the bearing and the support housing. Both empirical
results by Childs [1,2] and Gupta et al. [4] and numerical
solutions using the fourth order Runge-Kutta algorithm by
Control Dynamics Company [3] have been helpful in under-
standing the rotor's motion for the nonlinear problem.
This report extends the earlier work by using analytic
expressions obtain r:d from singular asymptotic expansions
(methods of multiple scales) to quantize the solution.

Section 2 preL^.nts the general analysis of a Jeffcott
rotor with deadband and sinusoidal forcing. This discus-
sion includes a derivation of the characteristic, non-
linear frequency which is responsible for "tracking", a
shift in the subsynchronous frequency as a function of the
external force. Then the method of multiple scales provides
justification for inclusion or exclusion of the subsynchro-
nous term in the solution expression.

Section 3 displays three examples. The first example
illustrates the major theoretical devices of section 2.
Example 2 uses data from CDC report [3] where the subsyn-
chronous frequency begins at one-half the forcing frequency.
It reiterates the mathematical development of section 2.
The last example uses the da*a of example 1 to produce a
frequency-response plot for the nonlinear problem. How
this plot differs from the corresponding linear case and
what one may expect in the general case are the major points
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made in this example. All the examples use the method of
Runge-Kutta to obtain numerical solutions.

I	 Section 4 concludes the report with brief descriptions
of extension and related problems. These include multiple
external forces (e.g. sideforce), rubbing, asymmetric stiff-
ness, and stability analysis.

i
2. General Theory:

The linear Jeffcott equations which describe the motion
of a rotor in the inertial, Cartesian coordinate system are
these:

(1.) my=-Csy-Ksy-Qsz+muw'coswt

(2.) mz=-Csz+QsY-Ks7+muw2sinwt

where

m = mass (kg.)

G, = seal damping (kg./s.)

Ks = seal stiffness (kg./s.2)

Qs = cross-coupling stiffness of seal (kg./ s.2)

u = displacement of the shaft center of mass
from the geom ,.;tric center (m.)

w = angular velocity of the shaft (rad./s. )

For the model to include bearing forces which hold the
rotor in position, one adds tie terms

- KB(Y-Y 6 1 ^)+uKB(z-zd/^2)
and

-uKB(Y-YS/^)-KB(z-zd/ Y +z2) ►

respectively, to the right-hand sides of equations (1.)
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and (2.). Here KB (kg./s. 2 ) is the bearing stiffness, 6
(m.) is the clearance or deadband between the housing and
the bearing, and u (nondimensional) is the coefficient of
friction between the housing and the bearing. These bear-
ing forces occur only when 7y+_77 >6; otherwise, they are
zero. Equations (1.)-(2.) then become

(3,) y+(Cs/m)y+(I/m)[K;+xR(1-6/r)]y+(l/m)[Qs'11KB(1-6/r)]z

=uw2coswt

(4.) z+(Cs/m)i-(l/m)[Qs'uKB(1-6/r)]y+(1/m)[Ks+KB(1-6/r)]z

=uro sinwt

when r	 otherwise, KB=O.

Equations (3.)-(4.) can be put in nondimensional form using
a displacement g and a frequency a. Thus, using Y=y/g,
Z = z/g, and T =at, the dimensionless equations are these:

(5.) Y''+CY'+[A+k(1-A/R]Y+[B-uk(1-A/R)]Z=E^2co...^t

(6.) Z ''+CZ'-[B-uk(l-A/R)]Y+[A+k(1-A/R)]Z=E^2sin^T

where prime denotes differentiation with respect to T and
C=Cs/m/a, A = Ks/m/a 2 , k=KB/m/a 2 , B =Qs/m/o 2 ,6 = 6 /g, R=r/g,
E=u/g, and ^=w/a.

Equations (5.)-(6.) can be reduced to the following single
equation by defining W=Y+iZ:

(7.) W''+CW'+{A+k(l-A/IWI)+i[-B+uk(1-A /IWI)] }W=Em2exp(i^T)

Furthermore, the polar form of equations (S.)-(6.) is

(8.) R''+CR'+[A+k(1-A/R)-(0')2]R=E^2cos(^T - 0)

(9.) RO ''+(2R'+CR)0'=R[B-uk(1-0/R)]+E^2sin(^T-0)

where R=(Y2+ZZ) 1/2 and O=Arctan (Z/Y) . Since u is nondimen-
sional and typically small, one may regard it as zero with-
out affecting the qualitative results.

Consider the homogeneous (E = 0) equation corresponding
to equation (7.). If this equation were also linear (A=0),

r
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then exponentially growing or decaying solutions would
result for a given set of system parameter.;. In the special
case that (B/C)2=A+k, a sinusoidal solution is obtained with
frequency B =B/C. To see this, consider the 7haracteristic
equation for W=exp(mT):

m2+Cm+[A+k-iB]=0

m=- C/2*-{C2 /4-A-k+iB}1/2

m = -C-iB/C, A/C.

In the nonlinear, homogeneous problem, k is replaced by
k(1-A/R); hence, if R is a constant, then there is a wide
spectrum for which (B/C)2=A+k(1-A/R); i.e., if

(10.) A<(B /C)2 <A+k,

then there is a constant value of R (with R>A) for which
(B /C)2=A+k(1-A/R). This value of R is denoted by a and
the corresponding frequency by Bo =B/C. This frequency is
labeled the characteristic, nonlinear Frequency. Thus,
whenever inequality (10.) is satisfied, equations (S.)-(6.)
with E =0 have steady-state solutions Y =a cos(BoT) and Z=a sin (BoT).

The same results can be found from the polar equations
(8.)-(9.) by assuming R and 0' are constants. Then with E=0
those equations become	 t

[A+k (1-A/R) - (0 ) 2 ] R=0 ,	 C 0 '=B .

Thus, Bo =O' =B/C and a=R=kA/(A+k -Bo 2).

Notice that Bo=B/C<A+k={(Ks+KB)/m}1 /2 /a=wo, the dimen-
sionless natural frequency of the linear system. Thus, in
considering the general nonhomogeneous problem, it is nec-
essary to be aware of these three dimensionless frequencies:

Bo - the characteristic, nonlinear frequency,

mo - the natural frequency,

0 - the driving frequency.
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Either ao or wo is an appropriate choice for o, the non-
dimensionalizing frequency. Correspondingly, one would
select either a (with $o)or u (with wo) as the base dis-
placement g.

One final rearrangement of equation (9.) is made here
to emphasis the characteristic, nonlinear frequency:

(11.) W "+CW'+KW=c!(W)+E02exp(i^T)

where K=A+k(1-A/a) +i(-B+uk(1-A/a)] and

f (11)=k0 (1+iu)/e [1/ [W1 -1 /a]W.

Asymptotic expansions may now be introduced to solve
equation (11.). The singular method of multiple scales,
as described by Nayfeh [6], is appropriate for this problem.
The method of averaging gives similar results.

Instead of one time scale T, assume the problem depends
on many time scales:	 -

To = T; T 1 = ET, T2=E2T,...

Henceforth, only To and T 1 are used. Let W(T)=W(To,Tl)=
Wo(To,Tl) + EW1(To, T 1 )+... Equation (11.) becomes a partial
differential equation since

V

	

	 d/dT=( 3/ aTo)(dTo/dT) +(3 /aT,)(dT,/dT)=Do+ED1

and (d2/dT2)=(Do+ED1)2.

Thus, one finds

(12.) (Do+ED1)2(Ao+EW1+...)+C(Do+ED1) (Wo+EW1+...)

+K(Wo+EW1+...)=Ef(Wo+EWl+...)+E^2exp(iOTo).

Equating like powers of c yields

(13.) Eo:Do2Wo+CDoWo+K Wo=E02eXp(iOTo)•

This is a linear problem with this steady-state solution

Wo=Mexp(iRoTo)+Nexp(imTo)
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where N-EO 2 /(-O 2 +iCO+K) and M =M(T 1 ). To determine M one
must examine the c-order problem and chose M to eliminate
secular terms; see Nayfeh [6]:

E 1 : Do`W l +CW1+KW1=-2DoD1Wo-CD1Wo+f(Wo).

with L = kA/E, the right-hand side of the last equation
becomes

-2iBoM'exp(iBoTo)-CD1'exp(iBoTo

+L(l/ lWol -1/a)[Mexp(iBoTo)+Nexp(i^pTo)]

where IWoI={IMI2+INI2+F[Nexp[i(p-6o)To]+MNexp[i(Bo-(^)To] }1/2

To avoid secular terms one requires that the collective co-
efficient of exp (iBoTo) be zero. Although an analytic
solution of the differential equation for M(T 1 ) has not
been found, one can qualitatively assess M based on a
similar problem (van der Pol l s equation) and specific
numerical results (presented in the next section).

Since M(T1) is complex, it may be written as
M(T1) =p (T1)exp[ie(T 1 )]. Thus,

W, = p(T1)exp[iBoTc!i6(T 1 )]+Nexp(i^To) or, assuming
s(T1) is analytic near t = 0, Wo=p(T1)exp[i(Bo +E61)T +...]+
Nexp(i^T). Thus the fundamental frequency of the nonlinear
problem is not Bo but 6=Bo+E61+...; however, B must reduce
to Bo when EQ Z= O. This frequency shift can account for the
phenomenon of "tracking" that has been observed experimentally
[2]. Similarly, the frequency Y=^-Bo that appears in the 	

r

expression for lWol shLuld be considered as y = ^-B. Then
1 /l Wo l shows all frequencies ny and Wo/lWolshows all fre-
quencies ny±B, for n = 0,1,... This suggest that M has a com-
plex Fourier series of the form

00

E sn exp(inyT1).
n=-co

Another factor of M must also be included since numerical
examples show that M=0 if E0 2 is greater than some fixed
value. This is similar tL the behavior of the van der Pol
oscillator; see [6]. Thus, one may speculate that M has a

a

: • i
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factor of the form F-1/[l+exp(-nTl)] where n=n(E^2).
This would imply that F-+1 as T-►- when n>0 and F-+0 as
T -+W when n<O. Thus, M looks like

Go

1/[l+exp(-nT,)] E s n exp (inyTl).
n=-oo

PSD plots of R show frequencies of ny only while plots
of Y show frequencies of 0 and ny±6.

3. Examples:

Example 1. In this example the system constants
used are these: P = 0, m= 1 lb.-s.2/in., Cs=240 lb.-s./in.,
K S= O., Kb = 1,305,000 lb./in., Qs=200,000 lb./in.,
6=.0000285 in., and w=S00 Hertz =100011 i •ad./s. Thus,
Bo = 833.33 rad./s. and a = .000060915 in. The system is made
nondimensional using a for the g-displacement and 8 for the
a-frequency. With these choices, the constants of this
equation

W''+CW'+[k(1-0/ IWI)-iB]W=E^2exp(iOT)

have these values: C=.288, k=1.8792, A=.467865, B=.288, and
0=6n/S.

Figures 1 and 2 show changes in the solution Y vs. Z as E
assumes the values 100n/(1000n) 2 a for n=0,1,...,7. The
graphs are plotted for .2<t<.Ss. The initial circle
(for E=0) opens into an annular region, which becomes larger
and thicker as E increases until a (transition) value of E
occurs and the coefficient of ex (iST) becomes zero. Thus, 	 5

W=Nexp(imT), a circle of radius yNi. As E increases beyond
this transition value, the solution remains a circle
(figure 2.d) with radius INi= IE02/(-02+icy+k(1-A/INI)-iB,I.

The characteristic, nonlinear frequency Ro is the angular
frequency of the circle when E = 0, but this frequency increases
as E increases. This tracking phenomenon is displayed in the
PSD plots of figures 3 and 4 using the dimensional frequency Q.
In these figures only the 120-180 Hertz range is shown. At
E=7/10,00011 a, there is no frequency in this range; instead,
the circle is tranversed at the forcing frequency, w.

VIII-7

6
fto



1

Figure 5, a typical full PSD plot, is the case
E-4/10 ' 000n 2 a. As shown earlier, one expects frequencies
of w and S to appear, as well as harmonics of ny +_ 6

where Y =w-S and n = 1, 2,	 Thus, with 5 = 150 Hertz, and
w-500Fertz, one predicts that the PSD plot will exhibit
peaks at 150, 200, 500, 550, 850, 900, ... Hertz.

Example 2. In this example, the system constants
from CDC[3] are these: u=0, m=.20422 lb.- s.2 /in.,
Cs = 20u lb. - s./in., K = 200 , 000 lb. / in., K = 1,000 , 000 lb./in.,
w=500 Hertz, Qs =Csw/ I lb./in., and 6 =. 0085 in. Thus,
$-250 Hertz - 500Trrad. / s. and a-.0007183 in. Figure 6 sum-
marizes changes in Y vs. Z as E varies by 2SOn/(1000n)2a,
n=0,1,....,4. These graphs are plotted for .^S<t <.5s.

In general, if the time interval is sufficiently large,
the plots of annular regions will be completely filled
(visually if not mathematically). However, when tha ratio
of 8 to Y is p/q for small, positive integers p and q, then
the curve actually falls on itself as time evolves and some
attractive patterns appear. Figure 6.d is a case where
6/Y = 5/4, and the picture would look essentially the same
whether shown for . 45<t<.S s. ( actual) or for .4S<t<50 s.
On the other hand, figure 6.c is more typ ical and would
show a black annulus for . 45<t<SO s.

Example 3. This example uses the same data as example 1,
but considers variations in the forcing frequency rather
than E; i.e., E=.7 and 0 varies.

For each frequency 0 one expects to see a plot similar
to one of those shown for example 1; thus, at each value
of 0 either a circle or an annulus will describe Y vs. Z.
Furthermore, based on contin •.iity considerations, the 0-axis
will be subdivided into intervals within which each curve
is a circle or an annulus.

Example 1 showed that as E increased, the magnitude
of the forcing function, Em', increased, and all plots
were circles above the transition value of E (and hence
E0 2 ). A more careful analysis shows that this transition
value is based not on the magnitude of the forcing function,
but rather on the magnitude of the response at the forcing
frequency; i.e., on E0 2 /(- 0 2 +iCO + K;, 	In example 1, m is far

VIII-8
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from So and the magnitude of the response is roughly E.
But in the present example, one must consider values of
0 near and far from So. For those values near So, not
only tYe size of E but also the proximity of 0 to So
will make the magnitude of the response large. Therefore,
one may predict that a circle at the forcing frequency will
be seen for a plot of Y vs. Z when m is near 8, except for
very small values of E. Elsewhere, one predicts an annular
region unless the value of E is large.

Figures 8 and 9 show the response values Y vs. Z for
.4<t<.S s.	 as 0 assumes the values .33, .38S, .66, .99,
1.10, 1.32, 1.43, 1.65, 2.2, and 3.3 with E held at .7.
Here the o-frequency for nondimensionalizing is wo. These
irregularly-spaced frequencies were chosen for these reasons:

a. .33 and .385 bound the value of transition from
annulus to circle;

b. .66 0 .99, 1.10 are values close to S;

c. 1.32 and 1.43 bound the value of transition from
circle to annulus;

d.	 1.65 has	 a nice picture;
e

e.	 2.20 and 3.30 are	 limiting values of interest	 g

At another value of E, the pictures would be similar although
the transition values would be different. The extreme case
E= 0 is a circle of radius a with frequency So,	 regardless	 of	 k

O's value.	 This was shown in figure l.a.

If a three-dimensional plot Y vs. Z vs. 0( =w/wo) were
made for fixed E, one would find a frequency-response plot
similar to the usual plots in linear theory. In particular,
the maximum value of (Y 2 +Z 2 )'A occurs near 0=1. This is
shown in figure 8.d where zhe scale is four times as large
as the scale of the other plots. The height of the response
curves corresponds to the radius of the steady-state response
when the plot is a circle or the outer radius when the plot
is an annulus. In general, these response curves will be
discontinuous at the transition points.
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4. Conclusion:

In studying the Jeffcott rotor with deadband and
sinusoidal forcing, one must consider these three fre-
quencies: (a) the forcing frequency w; (b) the natural
frequency, wo, of the associated linear preblem (deadband
-6-0); and (c) the characteristic, nonlinear frequency Bo•
The frequency a depends only on the forcing function; wo
depends only on the system parameters; B, with its base
value Bo, depends on both the forcing function and the
system parameters.

For a given system and a nonzero, external, sinusoidal
force, the y-z response is either a circle at the forcing
frequency or an annulus composed of the (major) frequencies
B and w as well as the (minor) harmonic frequencies
n(w-B)*-B, for positive integers n.

Frequency-response curves for a nonlinear problem and
its associated (6-0) problem are similar, both reaching
a maximum near w-wo. Each point of the nonlinear plot,
however, may represent either the radius of a circle or
the outer radius of an annulus. There are also jump dis-
continuities in the response curves at points of transition
between circles and annuli.

Two related problems, which show similar results in
preliminary analyses, are rotors with sideforces and rotors
with rubbinf. Since the analysis of set-tion 2 remains
valid if Em is replaced by one coefficient C, one may
consider sideforces as sinusoidals of the ferm Gexp(iwT)
where w = e.. A rubbing problem may be reduced tc a problem
with a sideforce if one examines the response is the rotating
rather than inertial coordinate system. Both of these pro-
blems will be considered more carefully in future work.

The principal obstacle remaining in this analysis is
that of finding an explicit expression for transition values;
i.e., expressing the transition point from an annulus to a
circle as a function of the system and forcing parameters.

This analysis does not allow two or more external forces
(e.g., mass imbalance and sideforces). These problems appear
to introduce no iew theory, but do increase the computational

i
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complications since one must consider not only forcing
frequencies w l ,w 2	but also harmonic frequencies
w l +w 2, wl-w2, etc.

The addition of asymmetric stiffness introduces diffi-
culties that promise intriguing analyses based on prelim-
inary Runge-Kutta solutions. Not only do the circle/annulus
plots become elliptic and occur with their axes rotated with
respect to the y, z axes, but there may be other shapes and
more than one transition point to consider. These problems,
however, greatly extend the model's mimicry of an observed
rotor's behavior.

Finally, one needs to cons der stability questions for
these nonlinear problems. Superficially, their stabilities
are dictated by the corresponding linear problem's stability,
but this has not yet been proven.

^f ^1
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