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WAVE MULTIPLE SCATTERING BY A FINITE NUMBER OF UNCLO§
CIRCULAR CYLINDERS

E.I. Veliyev and V.V. Veremey

Introduction

Study of the problem of wave multiple scattering by structures 	 /3*

which consist of a finite number of screens is of interest in the

resolution of a number of practical questions in UHF electronics and

antenna and measurement technology.

The solution of this problem involves complex numerical com-

puter calculations.

A large number of studies [1-9j have dealt with the problem of

wave multiple scattering by a finite number of smooth scatterers. The

problem is solved by both rigorous and approximate methods in these

studies. The simplest approximate method of solution of the problem

of multiple scattering by N smooth scatterers is to disregard the

effect of the screens of the structure on each other. It is suffi-

cient for the solution to knew the solution of the problem of multiple

scattering by each of the sca.tterees separately. As experiments show

however, this method leads to very significant errors even when the

scatterers are at a considerable distance from each other. All the

remaining approximate methods are reduced to more or less complete

accounting for the reciprocal influence of the screens 17, 8, 233.

The problem of multiple scattering of a plane electromagnetic

wave by a finite number of flat strips is discussed in [103. When

all the strips are in one plane, the problem is reduced to the solu- /4

ticn of one integral Fredholm equation of the second kind. Smooth

scatterers and flat tape do not have distinct resonance properties.

Numbers in the margin indicate pagination in the foreign text.
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Study of the properties of structures formed of high quality screens

capable of intensely scattering an electromagnetic field therefore

arouses special interest.

As was shown in [14], an infinite periodic array which consists

of unclosed circular cylinders has qualitatively new resonance prop-

erties which are of great practical interest. These resonances are

observed upon excitation of the natural oscillations of the array by

the incident wave [14].

Any actual structure cannot consist of an infinite number of

elements. Solution of the problem of wave multiple scattering by a

finite number of unclosed screens in the form of cylinders with lon-

gitudinal slits is therefore of special importance.

We discus; two rigorous methods of solution of such problems.

Following [3], we call the first rigorous method, which is conven-

tionally used in study of the properties of N bodies [121, self con-

sister.t. The excitation of each cylinder by the incident wave and

unknown fields of adjacent scatterers is analyzed here. This leads

to the solution of systems of simultaneous equations or to systems

of integral equations. Such systems usually are solved by computer,

and the basic complexity is to obtain a system of equations which is

convenient for numerical solution.

We call the second method, first used by Schwarzchild [11] in

studies of wave multiple scattering by slits, iteration [1]. This

rethod is directly associated with the first one. This method es-

sentially consists of successive study of the stages of wave scat- 	 /5

tering by the elements of the structure. It is assumed that the solu-

tion of the protlem of wave multiple scattering by a single element

is known. The scattered field of the system is presented in the form

of superposition of the scattered fields of the individual elements

N

2



and the scattered field of an arbitrary S-th element in the form of

the sum of an infinite number of scattering orders

t/l	
•

Ts	 ,^	 ORIGINAL PAGE is
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A scattered field of the first order is the scattered field of

a single S-th scatterer. The scattered field of the second order

is the response of the S-th scatterer to superposition of the

scattered fields of the first order of the remaining scatterers, etc.

It is easy to note that the boundary conditions of the total field

are fulfilled on the surface of each scatterer in this formulation of

the problem. The convergence of the series by scattering orders fol-

lows from physical considerations and can be proved mathematically.

These two rigorous methods, developed for structures made of

smooth scatterers, can also be applied to study of resonance systems

of a finite number of unclosed circular cylinders. The interaction

between these screens is of special importance in study of the elec-

trodynamic properties of such structures. The use of the iteration

method makes it possible to estimate the extent. of this interaction.

Other advantages of this method over the extremely frequently used

[16] self consistent method also are discussed in the work.

1. Solution of Problem of Wave Multiple Scattering by Finite Number
of Scatterers by Successive Scattering Method

A plane H polarized wave strikes a structure which consists of

a finite number (N) of scatterers in the form of unclosed circular

cylindrical screens at angle ^I to the OY axis (see Fig. 1).

The surface of the cylinders are infinitely thin and ideally

conducting, cylinder rauii are p S , the angular dimensions of the

slits are 28 S and the orientation angles are C S (S= 1, 2, . . ., N).

The generatrices of the cylinders are parallel to each other. It is

I

/6
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required to determine the field scattered by the structure.

KwrO 	 X4
Z.

N
K f

3

2

2

_2	 Q4	 46 48	 ;0	 1,2	 1,4 	 1,6	 1,8	 40 42 2,4 	 216

Fig. 1. Total scattering cross section vs. wave dimensions of struc-
ture, ^i=0: 1. kd 1= 4.0 ka, e l= e 2= 1°; 2. kd 2=7.0 ka, e1=e2=10.

We consider the case of nonoverlapping screens. We will find 	 I_

the solution of the problem by the successive scattering method pro-

posed in [1, 11], which has a number of advantages because of the

clear physical interpretation.

^N

5

4

We write the total

position of the incident

each unclosed cylinder:

H tot
r

field of the structure in the form of super-

field and the scattered fields sought from

Hsi , Hiscat 
Hz
	 it eat	 1

s&I

Field HZwave everywhere outside the elements of the structure satis-

4



Pies the Helmholtz equation and, on the surfaces of the cylinders,

the boundary condition of Neumann, the condition of radiation to

infinity and the condition of finite energy in any bounded region of

space.

Following [11, we present the scattered field of the S-th cyl-

inder In the form of an infinite sum over the so called orders of

scattering:

s scat ° a ,R
	 (2)Ha _ ^ HZ

M-:

We define the field of the first order of scattering as the response

of a single S-th cylindrical screen to an incident plane wave, i.e.,

the Helmholtz equation, the radiation condition and the Neumann bound-

ary condition of the surface of the S-th cylinder are satisfied by

superposition of fields H z i+SHz l . The scattered field of the first

order can consequently be written in the form [171

where (RS , ^ S ) are polar coordinates centered on the axis of the

S-th cylinder, J' m , Hm (1) are Bessel functions, and Sum1 are the

Fourier coefficients of the current density function of the first

order on the surface of the S-th cylinder.

For determination of coefficients Sum1 , we subordinate total

field Hzi+SH z l to the Neumann boundary condition on the surface of

the S-th cylinder

Rs ;Ps

In the system of functional equations of the first order obtained in

this manner, inversion of the static portion of the matrix can be

carried out by the met:aod of the Riemann-Gilbert problem, ar:d a sys-

tem of linear algebraic equations of the second kind can be obtained

1191:

ORIGINAL F^ _ n =
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where

	

K	 •	 e (	 VIS 1, wraO,Atfo

am
1) •t/ / e 'As ^^p ^J^ nsfO,a^o

(tee ^i^/K AX eii•yt/iji^yitro
6

Kd

A^ = e tKr, •S4 (VIC • 5.0

	

J is a random number from 1 to N.	 /9

System of linear algebraic equations of the second kind (4) is

Fredholmian [19] and can be solved by the reduction method. Its solu-

tion can consequently be obtained with any preassigned accuracy. Sys-

tem (4) can be solved by the successive approximation method in a

number of cases [17], which substantially simplifies the calculations.

By summing the scattered first order fields of each cylinder, we

obtain the solution of the multiple scattering problem in the single

scatterer approximation. As has been stated, this approximation gives

a strongly distorted concept of the field scattered by the system.

The degree of accuracy of the results can be estimated by means of

accounting for the subsequent scattering orders.

We will call the response of the S-th cylinder to superposition

of the first order scattering field the second order scattering field

of this cylinder, i.e., we assume that superposition of the scattered

i A

6



first o^der fields from

and the scattered seconi

Helmholtz equation, the

inder and the radiation

form

URICHNAL PA , e
OF POOR A I	 '.:

the cylinder
U
 w^th numbers i#S (1-1, 2,	 ., N)

3 order field of the S-th cylinder satisfies the

boundary conditions on the surface of the cyl-

condition. We write this total field in the	 j
7.

q=t

where S H z 2 is the second order scattering field of the S-th cylinder, /10

and the E' symbol specifies that the value of summation notation q=S

is excluded.

The second order field which satisfies the wave equation and the

radiation condition outside cylinder S (like the first order field)

can be written in the form

5Ht (Rr, ^Ps^ -^	 ^,^ (x,'A)H^ (KRs) Lo"7 	(7)

With Eq. (3) and (7) taken into account, we write field SHzn2

sHe `-4^^ rr jug ;7^,(K.l^) H,^ CKR^)-e ` ^ *	
(8)o^

For determination of Sun_2 , we subordinate field 
SHzn2 to the

Neumann boundary condition on the surface of the S-th cylinder, i.e.,

bus = o	 ps<s +Bs .

In subordination of the total field to the boundary conditions,

a change must be made to the (R S , ^S ) coordinate system connected

7
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with the S-th cylinder. The summation theorem for Bessel functions

must be used for this

Ĥ '(̂ )̂ 
e^"`t`v^'- )=^^ro(K44)•^p`^^C^^ r. V__ 	 (lo)

Series (10) converges with RS<rqs' rqs is the characteristic position

angle of the q-th cylinder relative to the S-th cylinder and r qs is

the distance between these cylinders.

By using Eq. (10), we obtain from Eq. (9) the system of func-

tional equations for determination of Su 2
m

s	 s	 ^s'^r•

P;P;^ ^ie`er - 0	 s-Bs < sp.^;^'s 'a,

AP

e<

where ^P,n '4L./G./uo'^"^K,/°9^'^°^rP

The Fourier coefficients of the first order surface current

density function qum1 are determined from the solution of system

(4). System of Eq. (11) is similar to the system of functional

equations obtained by solution of the problem of excitation of a

single cylinder by a plane wave, i.e., by determination of the first

order scattering field. These systems only differ on the right

sides, which characterize the exciting field. This is completely

understandable, since both the first and second order scattering

fields are defined as the response of the same cylinder to different

perturbing fields. This is the incident plane wave in the first case

and the first order scattering field of the remaining cylinders in

the second.

By applying the method of the Riemann-Gilbert problem to system

/11
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(11), we obtain a system of linear algebraic equations of the second

kind for Sum2 , the matrix of which equals the matrix of system of

Eq. (4)

A 	 C`
t'"U

j : ^^'^_ (^^'^ a r.^'̀  ^•+^R e"^(^' 'A^ `` , 
/4 00	 (12)

^ 	̂ R

	

— fit X / ^.r ^+s 
4 ^^^r • aJ ryJ	 ow

	

K	 R
Fr1

where.' ,^	 t	 112,^( 

System (12) is analagous to system (4)_ It can also be solved

by the reduction method and by the successive approximations method

in particular cases.

We will camel the response of the S-th cylinder to the second

order scattered field of the remaining cylinders the third order

scattered field
N

F
OHN8 , H̀s̀  -:fly

' :,

in which	 AHD '.	 0 with s•9,^So^^Pa+ ^-8,,

The third order scattered field is found just like the second

order field was found.

In a similar manner, it is easy to determine the fields of all

the remaining orders of scattering. By then summing the scattering

orders, we obtain the field scattered by the structure

yscat't ,r, IHi 
= L

	

'7A. (KX^,(KRt^f	

(13 )
-rG-.r.

where

9
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Sump are determined for random parameters of the structure by solution

of the system of linear algebraic equations of the second kind

where	

R 
`o<54)`A"`61r,^,_r;,c^,T^^P e

0&'-4 s
^ /goo

8*	 w

IQsdP 
'7P^ ŝ/ P	 s

1 ,i0a

e ^ ' i"°^^ rr rr

fX pi

The resulting solution of the multiple scattering problem can 	 /13

be called rigorous if, by assigning the order of iterations, i.e.,

by taking account of a specific number, cf scattering orders, the solu-

tion of the problem can be obtained with any preassigned accuracy.

We note that the matrix of the system of equations is defined

only by the cylinder number and does not depend on the scattering

order. This substantially speeds up the calculation process and

simplifies its management.

More than that, In the particular case when the cylinders have

narrow slits (e S Y0, S=1, . . ., N), system (14) permits analytical

solution. Analysis of the behavior of the coefficients of the matrix

oi' the system of equations shows that, with increase of indices n and

m and when 
6  

(angular dimension of the slit)-O, C nmS with m9'0, n9i0,

m#n are very small, and they can be disregarded in solution of the

system of equations, i.e.,
,^̂ / R 	 t R	 4j A	 jR

.woo

l/► 	 ej •	 jr i + 6a

10
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In this manner, by leaving the diagonal Nlements and the elements

of the zero column and zero line in the matrix of the system of equa-

tions, the solution can be written in the form
t w

(15)
A.Co sR

	A numerical test of Eq. (15) was carried out. The results were 	 /14

compared with the rigorous solution of the problem of wave multiple

scattering by a single unclosed cylinder. With a<10°, the error with

ka<5.0 is from 0.01% to 1%. At angles etil°, Eq. (15) gives an ac-

curate vesult (to within 1%) over a significantly wider range of

change of ka (see Fable 1).

Because the solution of the multiple scattering problem as es.*0

of an unclosed cylinder is written in explicit form, a closer expres-

sion can be obtained for the field scattered by the structure 5y in-

troducing some designations (similar equations were obtained in E1],

which dealt with study of the scattering pront.rties of !ircular cyl-

inders)

'4f
wry. r	 w^l

where .+ ^w

,ri / l

.,qJ,,, ZG_ e4w,

in which	 ,^ (s^^s	
ej^O-^`^^`^(^t ^K^IF/r"

OP

v^

F. R	
r

11
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1-1 order to better explain the iteration procedure of obtaining

the .solution of the problem of multiple scattering by a finite number

of scatterers, we repeat the stages of calculation in order to show
that the boundary conditions are fulfilled on the surface of each un-

closed cylinder.

We show that
ato/

R':AX'5Z, Hi 	 =O

with	 gs •9 < <ss* ŝ -Ba (we will subsequently imply this condition) .
S•-J.2,...,N

In this manner

d Htot= a i d cat a r 8 s "'ra
8Ra j	 6,Ps Ht -aRs	 ae, Xs spa ys	

.yZ

L a H``	
aa N 	 with	 Rr.a

That is, the total field consists of the superposition of the inci-

dent wave, the wave scattered by the S-th cylinder and the waves

scattered by the remaining cylinders. By presenting the scattered

fields in the form of an infinite sum of the scattering orders, we

write

9 
Hltot/a yZ ;. a sNz )* a S^sHi a j-6Xz

with Rs 1/09.

12	 ORIGINAL PAGE 19
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,k 0.3745 0.1849 0.04I8 -0.0528 -0.0203

a 1^ I.5938 -0.II99 -0.I012 -0.0286 0.0394
^ 4

I
b

^►̂ 0.3745 0.I849 0.04I8 -0.052b -0.0203

I.b938 -0.I199 -0.I0'.' -0.0286 0.0394

k -0.4274 0.282I U.I186 0.015I -0.038I•

a rA 70010 -0.8787 -0.362I -0.II58 -0.CI85

-0.4274 0.2821 O.II86 0.015I -0.038I

^b
r,. -I.00IC -0.8787 -0.362I -0.II58 -0.085

,t^ -I.5530 I.0493 0.48% 0.379 0.0508• 2

A. -0.2515 -I.5575 -I.3550 -0.8032 .39A^

-I 6680 I.0497 0.48% 0.3796 0.06ff

-0.2516 -I.5587 -1.3548 -0.8034 -0.39214

•
t,

-2.22I7 1 -0.04I8 -0.1718 0.0312 0.0764o
g a

r... 0.3349 -0.6081 0.0283 0.1070 -0.02210

M
Rt -2.222I -0.0424 -O.I'lI8 0.03I2 0.0765

s̀  b
I,^, 0.3354 -0.6078 0.0264 0.1070 -0.022I

0 a
ke -0.3221 0.2313 0.2045 0.01.3I -0.0684

Q
% 1... -1.0646 -0.7286 -0.358I -0.I633 -0.0I66
9
1^ ? b  -0.32I8 0. 2293 0.2037 0.1296 -0.0686
Q

I.w -I.0659 -0.7207 -0.3527 -0.I617 0.0156

,Y^ -1.6206 -0.5715 I.5045 0.2I48 -0.3552
e

0 g t,,,, -0.6306 -4.70I6 -I.3099 -1.4946 -0.2277
V^

Q

IN 'Q, -1.660I -0.8767 I.446b MOW -0.3180

Q
^ 1. -0.6244 -4.4720 -I.4337 -I.4337 -0.4891

Key: a. Rigorous	 b. Approximate
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It follows from equality (9) that we can drop out the first two

terms and in the same manner for all scattering orders, since the

scattered fields from the remaining cylinders constitute the excita-

tion of any individual cylinder and as a response to which the field

of the next scattering order is formed.

Consequently, the n-th order of excitation

ar
8^t Hr	 ^

and hence	 / .O	 (in metal).A

The physical principles which are the basis of the iteration al-

gorithm of construction of the solution of the problem of multiple

scattering by a finite number of scatterers give the rigzt to speak

of the convergence of the iteration process, i.e., the series byr
scattering orders converges	 ^`XZ	 This also can be proved

A.V
mathematically.

It is completely evident that the convergence rate of the

series depends on the incident wavelength as well as on the geometric

dimensions of the structure (primarily on the distance between, scat-

terers). The rate of convergence of this series can be estimated nu-

merically (see Section III). Estimates show that, even when .:he

cylinders are located quite close to each other (there is one diameter

between cylinders), the scattering order series converges quite ra-

pidly (eight members of the series is sufficient to obtain results

which are accurate to within 0.1%).

The availability of clearly defined stages of construction of	 /19

the solution of the problem and the algorithmic nature of the solu-

14
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tion makes the iteration method very convenient for computer program-

ming of the problems. Compared with direct self consistent method

(described in Section II), there are substantial savings in working

storage here, which makes rigorous solution of such problems possible

even on a computer of medium capacity. *A great advantage of the

iteration method is the physical foundations of presentation of the

scattered field in the form of superposition of the scattering orders.

This method makes it possible to estimate the extent of interaction

between structural elements and to show the region to which a given

approximation can be restricted and the frequency region and struc-

tures for which single scattering theory can be used, i.e., to gen-

erally disregard the interaction.

We note in concluding this section that the field within the

cylindrical screens can be determined in the following manner:

scat ^a

where	 zg
R •^

II. Rigorous Solution of Multiple Scattering Problem Based on Self
Consistent Method

Following [3], we will call the method described in this section

self consistent. The substance of the self consistent method is that

the field scattered by some cylinder is found on the assumption that 	 120

known, i.e., by

Ling the exciting

wave and unknown

structure, after

at a system of

of the scattered

the field 5?attered by the remaining cylinders is

considering all the scatterers in turn and presen-

field in the form of the superposition of a plane

scattered fields of the remaining elements of the

application of the boundary conditions, we arrive

simultaneous equations for the unknown amplitudes

fields of the structural elements [12].

Quite high efficiency of the self consistent method is ac-

hieved in the case in question by partial inversion of the matrix

15
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of the system of functional equations of the first kind, similar to

the way this was done in study of the unclosed cylinder array [14].

We present the total field in the form of superposition of the

incident and scattered fields. The field scattered by the structure

is written in the form of superposition of the fields scattered by

the individual elements

HtotalHz + N^sc tN^',	 scat

	

t	 (16)

We will use the (RS , O S ) coordinate system (S = 1, 2, . . ., N) tied

to the centers of the corresponding cylinders to record the incident

and scattered fields.

By presenting the scattered field in the form of superposition

of the bilayer potentials and by using the property of periodicity

of the surface curre;it density function on the cylinders with respect

to OS , we obtain [17]

tie'
N	

ry

 

Cat	 +^Ar 
^l^„^ (K̂ ) ŷ^ l K̂Qq) e^ , f̂ ,̂/Of.

;•t M)

By applying the summation theorem for cylindrical functions, the

field scattered by the structure can be written in the (R S , ^S ) co-

ordinate system of a random cylinder of number S

scat

N

IEZ -e k4w

16
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Total field (16) should satisfy the wave equation, radiation condi-	 121

tion, the condition of finite energy in any finite space, as well as

the boundary conditions on the surface of each scatterer.

The Neumann boundary condition applies in our case:

2 toy
2'9 	 with	 •^^ ^ ^	 -^ 	 (18 )

4:4 0 . I,2. ... ff.

The following condition is fulfilled in the remaining portion of the

interval of change of ^S:

~^,' e ms°' = v-B^Sa <, • B^ •	 (19)

We substitute the expressions for the incident and scattered fields

(16), (17) in Eq. (18) and we differentiate. The resulting equation

here together with Eq. (19) form a system of functional summator

equations with a trigonometric kernel_ for the unknown u S
P '

Cpl 	 0s;

gym,

(mil /^i^ 
e	 0	 1s

	 e
	

(20)

where	
^^ LPL p 3P

1
(/' ^P"`Ck)e^^^l^^;
	

/22

4^^ Cry

its

s'

A similar system of equations was obtained in [14] in solution of
the problem of multiple scattering of a plane wave by an infinite

periodic array of unclosed circular cylinders. However, in view of

the fact that the surface current densities on the cylinders are

17
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different in the problem in question in distinction from [15, 141,

the system of functional equations for u nq , with 4=1, 2, . . ., N,

must be considered jointly. As is well known, systems of the first

kind are unsuitable for numerical analysis. We therefore partially

invert the matrix which corresponds to the problem of wave multiple

diffraction by a single cylinder by the Riemann-Gilbert method. The

procedure of expansion of the matrix in the completely continuous and

easily inverted portion is discussed in detail in [20].

Thus, by using the Riemann-Gilbert method, we obtain a set of

simultaneous linear algebraic equations of the second kind which are /23

convenient for computer utilization:

^t[R -^ C,a,.^tl,,, *^'i^ly,7,^lP ♦ 8a^ R= S1, s1,...	 ( 21)

where CnmS and bnS were determined in Section I (with bn S = S bn1)

P

Bs ,

ell

The scattered field should satisfy the condition on the edge, i.e.,

the condition of limited energy in any finite volume of space. It

can be shown that, to satisfy this condition, the Fourier coefficients

of the surface current density function must be found in Gilbert

Zspace X 2 , i.e., the inequality

r

should be fulfilled.

18
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By using estimates for Bessel functions of higher order, it can be

shown that

,^wwv f	 < wv

Rte•+

r	 t

N

System of Eq. (21) can be solved by the reuuction method with
	

/24

any preassigned accuracy.

The matrix of the resulting system of equations is of a distinct

cellular nature. In some particular case of mutual location of the

cylinders, the matrix of the system of equations can be cellularly

Teplitsian, which permits the use of the efficient numerical algo-

rithms developed for the calculation of such systems X181.

We discuss the total scattering cross section of a system of

unclosed circular cylinders.

We write the scattered field in the form

qscat

P-••	^rsm••^
Jr..,

0.

^....	 with
where	 '"s	 a	 ~^	 ^.,+^r	 '

By determining the flow of the Umov-Poynting vector through a cylin-

drical Surface of infinitely large radius with the center on the axis

of one cylinder, we obtain

da - Re E^, Ni dj; - K///s	 (22 )

e

The series found by calculation of 
umS proves to be slowly converging

19



1_____ _

OPJQINAL PAGE 19
4F, POOR QUALITY

however. Thus, Eq. (22) proves to be unsuitable for the calculations.

By using optical theorem, a convenient equation for calculation

of the total scattering cross section was successfully obtained:

m 
ee (e '00-- "./

N ^„	
^y	 )	 /{Q e^1

Study of the total scattering cross section permits analysis of the

scattering power of the structure.

III. Discussion of Calculation Results

Computer calculation of various characteristics of a structure

which consists of a finite number of unclosed cylinders was performed

by both the self consistent and iteration methods. The advantages of

the iteration method was shown in the preceding sections. They are

primarily the algorithmic and graphic nature of the method and then

the economical use of the working memory of the machine, which makes

it possible to calculate multielement structures on medium capacity

machines without the use of external memory, and finally the advantage

in calculation time.

The question arises however of the convergence rate of the itera-

tion process. It is physi p ally obvious that the convergence is th,^

higher the greater the distance between scatterers.

Numerical computer utilization of the iteration method makes it

possible for us to estimate the convergence rate of the successive

scattering process.

We limited ourselves to study of structures which consist of two

scatterers in the calculations, since the purpose was to test the suc-

cessive scattering procedure for subsequent application to study of

multielement structures.

20
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Fig. 2. Total scattering cross section vs. ka: kd=7.0
ka, 01=e 2=50.

The calculation results were compared with the results of

rigorous calculation of a similar structure by the self consistent 	 /26

method. It turned out that the total scattering cross section of a

structure with kd 1=4.0 ka and kd2=7.0 ka (where d is the distance be-

tween scatterers, a is the cylinder radius, k = 2 n/a) with eight suc-

cessive scatterings taken into account can be calculated to within

0.5% (see Fig. 1-3 and Table 2). As should have been expected, the

accuracy of calculations with kd 1 is higher than when kd 2 , and 5-6

iterations are sufficient for calculation of such a structure. The

accuracy of calculations in the resonance regions is reduced because

of amplification of the effect of the elements on each other. The

calculation error is less than 0.5% however.

The real and imaginary parts of the Fourier coefficients of the

surface current density in response to the electromagnetic field next

to the scatterers are presented in Tables 3-8. The Tables 3-8 data

21
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are accuratt to within 10 -6 . It is easily seen here how, by incor-

porating the additions which respond in turn to all stages of scat-

tering, i.e., repeated successively scattered waves, we arrive at a

more complete accounting of the interaction between the scatterers.

Fig. 3. Total scattering cross section vs. ka: 1. kd=
2.1 ka, 

E1= C 2=90°, e l= e 2=5 0 ; 2. kd= 2.1 ka, ^1=00, &2=
180°, e1=e2=5°•

Thus, to obtain

ka- 0.4 and 1cd l , it i
ings and, for ka- 0.4

stated here that the

substantial distance

is one diameter with

Fourier coefficients with less than 1% error and

s sufficient to allow for six successive scatter-

and kd 2 , only four are sufficient. It cannot be
elements of the structure in question are at a

from each other. The distance between cylinders

kd l .

22
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TABLE 2. TOTAL SCATTERING CROSS SECTIONS
OBTAINED BY ITERATION AND SELF CONSISTENT
METHODS FOR STRUCTURES CONSISTING OF TWO

CYLINDERS: &10&2-9001 81 n 82=10

,ra ow •	 o Are ^'4^=	 o Ka

Ago crov

u

11/^

ffirspe^^

0.2 0.0eW19 0.0822826 0.2 0.100M 0.066304

0.3 8.489884 8.486422 0.8 '2.948066 2.%3II2.

0.35 L657888 I.66ffn 0:82 6.WM%I 6.081947

0.45 0.66186 0.68II87 0.33 4.1WW4 4.721018

0.6 0.608246 0.608413 0.85 I.55MI I.5RW

•0.8 0.68I977 0.5WA43 0.4 0.468834 0.4588I8

1:0 0.551453 0.56I441 0.45 0.9DW?i 0.30-

Li 0.586818 0.586090 0.5 0.28,2176 0.282I49

I.2 0.648281 0.642972 0.7 0.46829I 0.458278

I.4 0.850676 0.860773 0.8 ,0.5W7I 0.596738

.I.5 0.9116463 0.445369 1.0 00908104 . 0.953266

I.6 1.14778 1.147332 I.I I.I80883 I.I868I0

I.7 1.24306 I.29205I I.2 1.321485 I.321451

1.8 I.44I822 I.44I889 1.28
1
I.222493 I.222808

Key: a. Self consistent
b. Iteration

We also investigated the case when the cylinders are located

very close to each other (but do not overlap). To calculate the

total scattering cross section with less than 5% error even in the

case kd-2.1 ka, only eight iterations are sufficient (see Table 9).

To obtain results with very high accuracy (in calculation of both

the near and distant fields), it is sufficient to account for 18-19

Of-

23
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successive scatterings. In this case, the correction to the Fourier

coefficients in the 19th iteration is less than 10" 3 (see Table 10),

which is less than 0.1%.

TABLE 3. REAL PARTS OF FOURIER
COEFFICIENTS OF SURFACE CURRENT DENSITY

M'on'.TIONS OF DIFFERENT SCATTERING ORDERS WITH
ka/0.4, &,44 & 2=90°, 8 1=82 1°, kd=4.0 ka;

PRECISE VALUES OF COEFFICIENTS:

&A 0.00866508,
ge,^/i	 0. I30034114 ,

0. 243484507

N

&M
klr^. ,^'^ 'ee^uv Mr^'^t/, Ride/,, R'^v .

I -0.325I -0.325I -0.1576 -0.1576 0.1579 0.1576

2 0.1589 -0.1661 0.0134 -0. 1444 0.0753 0.2331

3 0.0630 -0.IO24 0.0056 -0.1486 0.0116 0.2+447

4 0.015I -0.0973 0.0010 -0.I379 0.0001 0.2449

5 0.00I7 -0.0856 -0.0000 -0.1379 -0.0009 0.2440

6 -0.0005 -0.0861 -0.0001 -0.1380 -0.0004 0.2436

7 -0.0004 -0.0665 -0.00Q1 -0.I390 -0.000I 0.26

d -0.0001 -0.0866 -0.0001 -0.1800 -0.0000 0.2435

Key: a. Iteration number (i)

Conclusion

By using the method of solution of the problem of multiple

scattering by a finite number of scatterers developed for systems

which consist of smooth nonresonant components, the problem of mul-

tiple scattering of a H polarized wave by N unclosed screens in the

24
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form of cylinders with longitudinal slits with distinct resonance

properties was solved.

TABLE 4. IMAGINARY PORTIONS OF FOURIER
COEFFICIENTS OF SURFACE CURRENT DENSITY

j	 FUNCTIONS OF DIFFERENT SCATTERI14G ORDERS WITH
kam0.4, 01042=90°, e lse 2a la s kd=4.0 ka;

PRECISE VALUES OF COEFFICIENTS:

•w.^ • 1.41081392.
n 0.15I179047.

Iw^,t •-0.I84i79659

^ !t!

a^.

t / t f

1 1.3203 I.3203 0.I499 0.I499 -0.I496 -0.14%

2 0. An I.4532 0.0068 0.I657 -0.0154 -0.I6b3

3 O.000b 1.4540 -0.0038 .0.I533 -0.0128 -1. M1

4 -0.0I04 I.423b -0.0015 0.2618 -0.0000 -0. =I

5 -0.0060 I.4I05 -0.0006 0. IBM -0.0012 -0. IM

6 -0.0015 I.4IA -0.0W1 0.I5II -0. 0001 -0. IM

7 -0.0003 I.4166 -0.0000 0. 1511 O.(=O -0. Is"

8 0.0000 I.': i08 0.0000 0.311 0.0000 0.18 4

Key: a. Iteration number (i)

The problem was solved by two methods: self consistent, which

takes full account of the interaction between cylinders, and the

iteration, in which the degree of accounting for the interaction is

directly proportional to the number of iterations.

It was shown on the basis of numerical calculations that the

25
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iteration method of solution gives correct results, even in the case

of cylinders located very close to each other (more than 20 itera-

tions must be taken into consideration here).

TABLE 5. REAL PARTS OF FOURIER.
COEFFICIENTS OF SURFACE CURRENT DENSITY

FUNCTIONS OF DIFFERENT SCATTERING ORDERS WITH
ka= 0.4, El= c2=90° , 81= 82=1° , kd=7.0 ka;

PRECISE VALUES OF COEFFICIENTS:

,& jam, - -0.4I9716M.
Re*, - -0.168262608,
1(11 Ivf R 0. 196131449

ar

ep -LM (il
zelllo ^i ^j

fit
Ae^ ,Pe 'BUJ` Re^j

I -0.3251 -0.395I -0. 578 -0.J578 0. =78 0.1578

2 -0.053' -0.3788 0.0015 -0.1564 0.0366 0. 19U

3 -0.0294 -0.4082 -0.0010 -0.1574 0.0029 0.I973

4 -0.0089 -0.4I71 -0.0006 -0.1560 -0.0005 0.1967

5 -0.002I -0.4I92 -0.0002 -0. MCI -0.0004" 0.1%4

6 -0.0004 -0.41% -0.0000 -0.1582 .-0.0001. 0.1962

7 -0.0001 -0.4I97 -0 .0000 -0.I582 -0.0'J00 O.I962

6 -0.0000 -0.4197 -0.0000 -0.1582 -0.0000 0.1962

Key: a. Iteration number (i)

The basis for solution of the problem of multiple scattering by

a finite number of smooth scatterers is solution of the problem of

wave multiple scattering by a single element.

Efficient use of the iteration method became possible due to

the solution of the problem of a single unclosed screen obtained

•

f

:I
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TABLE 6. IMAGIN:,RY PORTIONS OF FOURIER CO-
EFFICIENTS OF SURFACE CURRENT DENSITY FUNCTIONS

OF DIFFERENT SCATTERING ORDERS WITH
ka=0.4, Y&

2= 90°, e
l= e 2= 1°, kd=7.0 ka;

PRECISE VALUES OF COEFFICIENTS:

A, r, - I.604780I9,
r,	 O.I677mm,
z1^^ • 0.0909355889

a.

I 1.32033 I.0320 0.I499 0.1499 -0.I499. -0.I499

x 0.I55I I.4754 0.0059 0.I635 0.0444 -0.I055

3 0.0295I I .bO30 0.0035 0.1670 0.01I3 -0.0942

4 10.0027 I.5056 0.0006 M677 0.0027 -0.09I4

.5 -0.0004 I.5052I 0.0001 0.I677 0.0005 -0.0909

6 -0:0004 I.5049 0.0000 0.I677 0.0001 -0.0909

7 -0.0000 I..5049 -0.0000 M677 0.0000 .09088

8 -0.0000 I.5049 -0.0000 0.I677 0.0000 -0.09088

Key: a. Iteration number (i)

in analytical form (in the case of narrow slits, e<10 0 ), i.e., just

as for a smooth scatterer (closed screen).

By using the procedure of inversion of the static portion of

the matrix of the system of equations in solution of the problem of

multiple scattering by a single cylinder with a longitudinal slit

[21], the problem of ,aultiple scattering by N unclosed screens by	 /39
the self consistent method was reduced to solution of a system of

Fredholm equations of the second kind, more precisely, to a set of

27
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TABLE 7. REAL PORTIONS OF FOURIER
COEFFICIENTS OF SURFACE CURRENT DENSITY FUNCTIONS

OF DIFFERENT SCATTERING ORDERS WITH
ka=1.57, E1 Y90°, 

g 1
=e 2=1°, kd=4.0 ka;

PRECISE VALUES OF COEFFICIENTS:

*t*. • I.OI885437,

41*1 • -0.399932611,
let*, - -0. IIO26?68

ar
McPa-

1 (L f
I

^P^..
1

^t
I	 i

^C^/
/

^Cf /mss
p 1 i

.^G f
p Ts1 f
^cifC

I 1. 1883 1. 1883 0.0443 0.0443 -0.0448 -0.0449

-0.2602 0.928I -0.2333 -0.I892 -0.4983 -0.5425

3 M325 I.0606 MIN -0.0780 0.19% -0.3432

4 -0.0585 I.002I 0.0439 =0.IM -0.M -0.4204

:, 0.0227 I.0248 0.0I54 -0.I066 0.0269 -0.3934

-+ .0079 I.OI69 -0.0047 -0.III3 -0.0083 -0.40I8

7 0.0024 I.OI93 0.00I2 -a.IIOI 0.002I -0.3097

6 -0.0006 I.OI87 -0.0002 -0.II03 -0.0006 -0.4003

Key: a. Iteration number (i)

N simultaneous systems of linear algebraic equations of the second

kind.

The advantages of the iteration method of solution over the

self consistent method were shown in the work. In our opinion, the

most significant advantage of the iteration method is the physical

foundations of its construction. It is evident that the degi^^a of

interaction between the structural elements depends on many parameters,

primarily on the relationships between the wavelength and dimensions

28
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TABLE 8. IMAGINARY' PARTS OF FOURIER
COEFFICIENTS OF SURFACE CURRENT DENSITY FUNCTIONS

OF DIFFERENT SCATTERING ORDERS WITH
ka=1.57, E 1= E2=90 0 , 8 1= 8 2-1°, kd=4.0 ka;

PRECISE VALUES OF COEFFICIENTS:

0.47I6833I6,

I.3047I64b,

-1.76I85287

R

ru
l i_?_ / iI01/v, I:t,^^^u,

I 0.7863 0.7863 I.4847 I.48%'' -I.47 -I.W,.

2 1-004005 0.3858 -0.2I80 I.X67 -0.3439 -I.8286

3 0.I043 0.490I 0.04I3 I.3080 0.0723 4.7W,

4_ -0.0202 0:4699 -0.0008 I.3072 -0.0022 -1.757S

V. 0.0000 0.4699 -0.u050 I.3022 -0.0088 -I.7662A

•	 6 u.0027 0.492b O.u03b I.30b8 0.0063 -I.7800

7 -O.00I9 0.4708 -0.00IS I.3M -0.0032 4.7=

8 0.0009 0.4717 0.0008 1.3047 0.0013 -I.7618

Key: a. Iteration number (i)

cf the screens and the distance between the structural elements. For

calculation of a multicomponent structure, it therefor., is very use-

ful to indicate zones of strong and weak interaction. The iteration

method of solution makes it possible to do this. The iteration method

of solution of the multiple scattering problem has still other advan-

tages here. Because of the strict sequence of operations, it is easy

to perform i.t by computer, and it does not require large memory

volume. All this permits the solution of such complex problems even

on a medium capacity computer.
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TABLE 9. TOTAL SCATTERING CROSS SECTION
OBTAINED BY ITERATION AND SELF CONSISTENT
METHODS FOR STRUCTURES CONSI"TING OF TWO
CYLINDERS: ^1=& 2=90°1 6 1= 8 2=5°, kd= 2.1 ka

Ara a ^° ^^Camoorxaoo	 YmA
b

I^sp^rio	 sqA.

0.2 0.13359 0.18202

U.22 0.20697 0.20292

0.25 0.40982 0.40180

0.3 I.5I08 I.4963

0.3I 1.9937 I.9904

0.33 3.2II2 3.2243

0.36 3.7107 3.6646

0.39 2.4939 2.6185

0.4 2.1628 2.1325

0.45 I . 3245 I.32I7

0.43 I.I568 I.I549

0.5 1.1040 I.1018

0.55 1.0765 I.0726

0.6 1.1221 I.II77

Key: a. Self consistent method
b. Iteration method

In conclusion, the authors thank V.P. Shestopalov for con-

tinual attention to the work and comprehensive discussion of the

results.
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TABLE 10. ZERO FOURIER COEFFICIENT OF
SURFACE CURRENT DENSITY FUNCTION OF

DIFFERENT SCATTERING ORDERS FOR STRUCTURE
OF CLOSELY SPACED CYLINDERS, ka=4.0,

81=g2=5°, F'1M Yq 0 0 , kd=2.1 ka

xse •

I 0.44347 0.41347 374469 3.4469

2 0.30470 0.74817 . -2.325 I.I334

3 -1.0369 -0.2888 0.84754 1.96094

4 0.75795 0.469I43 -0.06775 I.9I318

5 -0.38494 0.084795 -0.25552 I.65766

6 0.0847I 0.I69509 0.24568 I.90424

9 0.05248 0.i9442 0.002346 I.bom

II 0.00382 0.I7473 O.OI74U I.806I2

12 0.00444 0.I79I7 - 0.009636 I.7lab9

I4 0.00352 0.I7727 0.00060 L8000I

i5 -0.00M 0.I7585 -0.00158 I.79847

I6 0.00011 0.17597 0.00I21 I.79969

Ib -0.00036 0.175% 0.00014 I.79923

I9 0.00023 0.176I9 0.00007 I.79930

20 -0.00008 0.176I08 -0.000II I. 799I8

Key: a. Iteration number
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