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3.42 Wave representation, scattering matrix

If the n-vort is described by a relationship between input and #/118
output waves, then we talk about a wave representation. We have
already repeatedly pointed out that this represeritation is parti-

cvlarly suited to the treatment of microwave switching. The scalar

variables of state of wave representation are the input and output
voltages U+, U;, respectively the input and output currents I;,

I; or the input and output variables ay » bk defined in section 2.52. i,
These reduced variables of state a, or, respectively, bk——the half-
squared quantity of which represent the actual output transmitted

by the input or, respectively, output wave (cf. equation 2.5/22)--

are particularly descriptive, physically, precisely because of this
direct relationship to the actual output transmitted as already
mentioned in section 2.52. In addition, they are more suitable

than current and voltage "waves" Ii and Ui in many instances of micro-
wave measurement technology. Hence, in what follows we shall base

the description and calculations of microwave n;ports and networks

on these wave variables.

Now we must establish a suitable pattern to inter-relate the 2n wave

variables a s bk‘ From it will depend the physical meaning of the

n2 coefficients, which will then represent the n-port in the scalar

relations. To begin with, we shall investigate a pattern in which
the output waves at each port are described explicitly as a function
of all input waves. In that case, the n linear equations 2zre

by =811a; +91283... + 0k Gk... + 12 Gn,
bg = 23101 4 223G2... +82x0x... + 820Cp,

(3.4/3a)
By = ayyay + sxgag... + Sxx Uk ... + 8xaOn,

Up =on14u) +6p30s... +8px8x ..+ 8pp0Ga

* Numbers in the margin indicate pagination in the foreign text.

** Translator's note. The reader is referred to the original foreign text.
1
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or, in matrix notation, QuALITY
b len ag... (k... fa a
b M M M i ag
] "l mom a | B43Y

.b‘ ;nl Sng ... 8ak. .: ;.. ;lq} .

The n-row square matrix of the coefficients Sk1

811 &82... 8k-.-.. fia
21 S22 ax 1

§ = Sx1  Axg... &k xn ' (3-4/4)

Snl ﬁng..-’“...'n.}

is designated "scattering matrix" or, sometimes-also distrilution
matrix. Correspondingly, the coefficients 8,, are called coeffi-
cients of the scatter‘ng matrix or, in short, scattering coefficients.
The column matrices

b

g

a2

. =1" 4/5b
A= o (34/5a) or. B b (3.4/5b)

. W

encompass the totality of the input wave variables a,, respectively
that of the output wave variailes bk in a fixed arrangement. There-
by they obtain the meaning of independent, n-dimensional variables
of state. The n equations 3.4/3a,b can then be expressed, using
those abbreviations, as

B = SA (3.4/3¢)
(see also [B13], [B15] to [B17] and [7] to [11]).

What, then, is the physical meaning of the coefficients Sy in the

1
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;attern established by cquuttons .00/00 renpeetively . uzL00 o

answer this question we shall perform, in our fmarination, -
series of characteristic measurcment:, lookinr for an exany.
at the branching sketched in Figure 3/7.

Y
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Figure 3/7 Example for a correspondence process for representation of a
5-port by non-structural related state variables;

a) definition of reference.planes, coordinate systems and referc se structures; .
b) selection of a unique frequency range;

¢) establishment of port order and structural functions.

3




The waveguides W, (circular waveguide) and w3 (rectangular wave-
guide) are terminated by means of suitable ideal absorbers. A
source is connected to the coaxial conductor Wl that emits an L
wave with a frequency within the definition range of the 5-port,
towards the branching. This wiring can be symbolically represented
by means of a replacement wiring diagram witl unipolar connectors,

as shown in Figure 3/8 below. Here. the function of the absorbers
Wellen=

Leiterudyp
@ L--—=t (1) waveguide and
wave type
OJ“"' ~r, (2) 5-port
LH,', b-—b:,,.__ 2 S-Tor
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Figure 3/8. For the determination of the scattering
matrix coefficients, using the example of a 5-port,
assigned according to the branching of Figure 3/7;
excitation by means of a wave type at port 1

is represented by means of four separate, reflection-free l-ports
connected to ports 2, 3, 4 and 5. As an aid to memory, in front

of each port are noted waveguides and wave types assigned each of
them. Due to forced switching (absorber termination), at the
reference planes BE2 and BE3--and hence, at the ports 2, 3, 4 and 5--
there can only exist output waves represented by b2, b3, bu and b5;
this means that a, = az; = a, =ag = 0. At port 1, besides the

exciting input wave a;s in general we also have an outpuvc¢ wave bl'

According to equations 3.4/3, this special operating state can be
described by the following equations of state:

:l - 811 Gy

g = 8 G}

by = 83101 (3.4/6)
by = 24101
bs = &5 a4 ‘

ag may =ay =ag = 0.

Here, the coefficients s11 obviously indicates how much of the input

wave a, is transformed into the output wave bl’ of the same wave




type. Hence, in its physical meaning, it is a reflection factor.
However, since it 1s only equal to the ratio blla1 when no input
waves exist at all the remaining ports, 1t 13 appropriate to dis-
tinguish it also in its designation from factors that characterize
the wave ratio blla1 under general operating conditions. Hence,
we shall call 814 the self-reflection coefficient or, more briefly,
the reflection coefficient of port 1.

Under the same special operating conditions, the coefficient 854

in equations 3.4/6, for a, = az;=a =a; = 0 indicates how much

of the 1input wave ay (here of the L wave type) is transmitted to the
outpu. wave b, of a different type (here of the Hil wave). Corres-
pondingly, we call 853 the self-transmission coefficient or, in
short, the transmission coefficient between ports 1 and 2. The sig-
nificance and designation of the coefficients 331, respectively Si
and respectively 351 becomes obvious when we consider the trans-

mission from port 1 to ports 3, 4 and 5, respectively.

We may generalize the interpretaticn and call

Sy the (self) reflection coefficient of port k

and

Sk1 the (self) transmission coefficients between ports 1 and k.

The customary sequence of the two scattering ccefficient subindices
is more readily remembered, based on the equation bk = 5,12 of
equations 3.4/6, according to the following rule: the first subindex
is equal to the index of the output wave (response), while the
second subindex equals that of the input (excitation) wave. The n?
coefficients 8, are the quantities that characterize the n-port

in scattering matrix representation. Since they relate variables

of state of the same dimensions ir. vector form, the coefficients
themselves are dimensionless and in general complex and frequency
dependent.

It is often necessary to represent an n-port not by means of the n?
individual scattering coefficients, but by appropriately formed
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groups of them. Let us become familiar with this method using
the branching sketched in Figure 3/7 as an example. The three
waveguides provide a meaningful sub-pattern. We shall begin by
setting up the equations of state for the S5-port in the notation
corresponding to equation 3.4/3b; to this end we shall combine the
wave variables of the same waveguide into groups corresponding to
the scattering coefficients: .

b oo di3 e o L
bs 231:80 823 8u S ar ORIGINAL PAGE g
by J= | soriter s fa o3 o | @eme OF POOR QUALITY
ba 841843 843841 Su5 a4
bs #31 852 853 ss4 838 as

Using the follcwing abbreviations for the sub-columns.

A, = a, B, - g"’
A, = (22 , By = ,
A: - %‘Zg (B4f82) B:._ g;; (3.4/8b)

as well as for the sub-matrices

Sip= *11 , Sig= (812 513), Si3 = (814 219) .
. 21 433 923 . (#20 o3
Sa = (’n) » St = (m m)' Su (lu au)’ 3.4/8¢)

m)’ S ~ [*0 8«)’ Sy = (:« la)

Su = (‘n \os2 953, 54 483

we then obtain, from equation 3.4/7a

B Su Sis Sis A,
By|=|Sn Sz S Ag (3.4/7b)
By S;1 Siz S As/.

In the first place, by this grouping into subcolumns and sub-
matrices we can considerably reduce the writing effort in compari-
son to the more detailed notation of equation 3.4/7a. The deeper
significance of this technique, however, will only become clear
when we think of the task to be dealt with in Chapter 4, 1i.e.,
branchings with several wave types on the wavegulde (multitype




waveguides) connected to other, suitable branchings. In the
example according to Figure 3/7 considered here, in any wiring

of the circular waveguide, the two Hll wave types must always be
treated as a "package", in wiring. This packzge "wave type group”
is here represented by the two sub-columns A2 and 82.

In general, the subtmatrices relating the sub-columns are rectangu-
lar; in this exanmple, both S12 and 313 are single-row and two-
column matrices, and S21 and S31 are two-row and single-column.

In special cases the submatrices may be square, as 822, 823, 832
and 833 in our example, or even single element matrices, i.e.,
scalar coefficients such es Sl1 in our example.

The physical meaning of the submatrices shall be discussed, once
more, performing an imaginary experiment. Corresponding to Figure
3/9 below, this time we shall connect the coaxial conductor

Wellen-

leiter u. «yp
@ v =b= ] B (1) wavegulide and
o wave type
o{"&---_i'..;:_’!__ (2) 5-port
A
H;""'_bx‘l-‘.'&'— §-Tor
byee ]
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Figure 3/9. To determine the scattering matrix
coefficient of a 5-port arranged in conformance to
the branching in Figure 3/7; excitation by a wave
type group at ports 2 and 3

(1.e., port 1) and the rectangular waveguide (i.e., ports 4 and 5)
to suitable terminations, such as ideal absorbers, and feed the
branching via the circular wavegulide. Here we shall have to assume,
in general, that both a Hil wave (az) and an Hil wave (a3) approach
he branching. In general, there will be output waves at all

ports. This speclal operating condition can be described--now




expressed in terms of subcolumns and submatrices--by means of
the following equations of state:

B, = 8;3 A
By = Si Az ‘ (8.4/9)
By = Sy Ao

H

Ay =0, 43 = 0.

The submatrix 822 here describes the interaction of the two Hll
wave types within the same waveguide. Physically, it represents
the reflection of a wave type group when the input waves of all
other wave type groups disappear. Referring to the designation
self-reflection coefficient, we shall thus call this subtmatrix
self-reflection matrix or, in short, reflection matrix of the wave
type group 2.

Submatrix 832 describes the transmission from the waveguide w2 to

a different waveguide w3, i.e., the coup;ing of a wave type group
(Hlo and HZO)’ again under the same special operating conditions,
that the input waves disappear in waveguldes wl and w3. Hence,

we shall call this submatrix 832 self-transmission matrix or, in
short, transmission matrix® b2tween the port (or respectively, wave
type) group at W, and the port (or respectively, wave type) group
at w3. Correspondingly, we shall call 812 the transmission matrix
between the port groups at w2 and the port group at wl, which here
consists of a single L-type.

We can now once again generalize the interpretation, and call
SKK the (self) reflection matrix of port group K

and

SKL the (self) transmission matrix between port group L and port
group K.

¢ Let us point out that the submatrix S of the scattering matrix
called transmission matrix here, 1is ng% identical to the wave
chain matrix dealt with in section 3.44 which is often also
called transmission matrix.

ORIGINAL PEGE 7
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There is always a reflection matrix SKK in the main diagonal of

complete scattering matrix, designat-d as a supermatrix, in this
case, since its elements are matrices themselves. In addition,

a reflection matrix is always square.

To conclude, we shall consider some transformations of the equa-
tion ot state 3.4/3. If we re:znlve it for the column of the input
waves A, we cbtain

A=8-1B 3.4/10

with the inverse scattering matrix S'l. While a scattering matrix
can be indicatec, in principle, for every technically feasible,
linear, time-independent and sourceless n-port, the inverse scatter-
ing matrix exists only in exceptional cases. Hence, it is not
generally sultable for the representation of n-ports. In the cal-
culation of n-port networks on the basis of scattering matrix
representation, however, the inverse 1s occasionally required. In
each individual case it must then be tested whether S'l exists.

If we transpose the matrix equation 3.4/3c, we obtailn

BT = AT 8T (3.4/11)
with the row matrices AT and BT and the transposed scattering
matpix ST (see, for instance [B3J). In comparison to equation

3.4/3, equation 3.4/11 contains no new physical information. It

is, however, necessary in several calculations, such as in the for-
mation of scalar products for the determination of the energy
balance of n-ports. In this context a representation by submatrices
is often useful. 1In terms of submatrices, the transposed scatterirg
matrix--using the example of equaticn 3.4/7b--can be written

S Sn Sis\*
Se1 Sie Sps (3.4/12)
\Ss S Sas
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Below we shall consider the scattering matrix representation
always as the basic form for the treatment of microwave n-ports
and we shall refer all other forms of representation to it.

3.43 Voltage/current representation

When an n-port is represented by means of relationships between
voltages and currents, we talk of a voliage/current repre=-
sentation. As is known, this kind of representaticn is particular~
ly suited to the treatment of switchings of concentrated components.
It 1s of use to microwave technology when the internal structure of
a sw'tching--and hencu, the behavior of the corresponding n-porte-
can be predicted on the basis of e replacement wiring diagram of
concentrated components. This is cften the case especially for
branchings of double conductors, used in the L-wave area and for
which the dimensions of the "internal" components is still small

in comparison to the operating wavelength.

Here we are considering only descriptions by means of reduced
voltages U and reduced currents 1k’ codimensicnal with the wave
variables L bk and which, according to equation 2.5/12

uy = ax + by,

g max — by
can be expressed directly by means of them.

Several patterns are known to relate voltages and currents. In
the 80 called impedance form

1 11 -+ + 21
P (3.4/13a)
ol Zq
or in abbreviated form,
u =-gi (3.4/13b)
ORIGINAL PAGE 8
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the port voltages u, are given as explicit functions of the port
currents 1k’ Here,

and

PR
[

(3.4/14a) e=l- ] B4

are the column matrices of the port voltages or port currents,
respectively, and

e={. . | (3.4/15)

al.-..%an

is the impedance matrix in normalized notation. The coefficients
211 of this impedance matrix are dimensionless and in general,
complex and frequency dependent,

If we solve the equation of state 3.4/13 for the port currents, we
obtain the so-called admittance form

1 Y1 .. Y1n
- (3.4/108)
S
or, in abbreviated form,
{=yw. (3.4/16b)
The coefficlent pattern
1n::.Y1n
v=|. . (34117)
sl ¥aa

is the admittance matrix in normalized notation. 1Its coefficients

Vi1 are also dimensionless and in general complex and frequency
dependent.
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From a comparison of the two equations, 3.4/13 and 3.4/16, it
follows that the admittance matrix is the 1irverse of the impedance
matrix and that hence we have

yr=zy=E (3.4/18)

with the n-row unit matrix E.

The physical meaning of the coefficients of the impedance matrix
or admittance matrix, respectively, results from open-ciicuit load
or short-circuit measurements, respectively. If, for instance,

we supply the n-port at the l-port (1l # 0) and leave all other
ports in open circuit load mode (ik =0 fork=1,...,n, k #1),
then we obtaln voltages that are proportional to il:

Up =28y

for k = 1, voltages and currents at the same port are related to
each other; hence the quantity 244 is a directly measurable impe-
dance that we shall call open circuit load input impedance of
port 1. For k # 1, the coefficients have the meaning of a "current-
to-voltage" transmission factor, also called core impedance in
the four-pole theory [Bll]. The coefficients of the admittance
matrix are obtained in a2 corresponding manner, by supplylng port
1 (u1 # 0) and short-circuiting all other ports (uk =0 for k =
1.,.:.n, k # 1). Thus n currents are obtained, proporticnal to u,:
= yxi .
The quantity Y11 is here called short-circult input admittance of
port 1. For k # 1, the coefficients have the meaning of a
"voltage-to~-current” transmission factor, called core admittance
in the four-pole theory [Bll].

The column matrices A, B of the scattering form and the column
matrices u, 1 of the impedance or admittance form, respectively,
have in common that in each case they contain only variables of
state of the same kind, that are arranged in the same sequence
in all four cases (vort numbering). For this reason, it 1is easy

ORIGINAL PAGE W
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to convert into each other state columns and the matrices relat-,
ing them. Instead of the n times four equations 2.5/12a, b and
2.5/13a, b we then obtain the matrix equations

u=A+B, (3.4/10a)
{f =mA-B (3.4/19Y)
respectively
DRIGINAL PaGE 19
A=fu+i), (3.4/20a) OF POOR QUALn"e
B=}u-1. (3.4/20b)

in the scatter form

B =84

we now replace the columns of the wave variables with equations
3.4/20a, b by means of the columns u and 1 and arrange the equa-
tions in terms of these columns:

U—iwSu+S8i
H—=Su=i+ Sy,

By means of the unit matrix, u and i1 can be factored out
(E—-S)u=(E+ 8)i

and assuming that (E - S) is not singular, the equations can then
be solved for u(i):

u =(E - S)-1(E + S)i.

As can be seen from a comparison witbh equation 3.4/13b, the result-
ing matrix is the impedance matrix, z. By means of a correspond-
ing solving for i(u)--or directly, by inversion of z--we obtain
the admittance matrix y as a function of the scattering matrix.

The result 1is

g=(E—-S)V(E+S) =(E+ S)(E— 8)-1 (3.4/21a)

and y=(E+ S)-1(E — S) =(E — S)(E +8)-1. (3.4/21b)

If one starts with the impedance or, respectively, admittance equa-
tion 3.4/13 or, respectively, 3.4/16, and solve for B(A), then the
scattering matrix S is obtained, expressed in terms of the impe-
dance and, respectively, admittance matrix:

12 N




S=(z+E)\(s —E)=(s - E)(s + E)7? (3.4/210)

and gy +E) iy -E) -(y - E)(y + B)-1.  (3.4/214)

A precondition for the validity of the transformation 3.4/21 is
the existcnce of the matrix inversions. We should furthermore
point out that matrix products of the above form are always inter-
changeable. The equations 3.4/21 can formally be considered as
n-dimensional generalizations of the equations 3.2/9, already
known from the l-port, between the reflection factor and the nor-
malized impedance or, respectively, admittance. The scalar opera-
tor variables r, z or, respectively, y here correspond to the
matrix-operator variables S, z or, respectively, y.

Besides the impedance, respectively admittance form, there are
other forms of relating in the voltage/current representation,
among which the series-parallel form is of some significance. For
a two-gate ([B11], [B12]), it is

() =G 2 () 3.4/22)

and it 1s preferred primarily for the description of the small-
signal behavior of transistors. The connecting matrix h is here
called hybrid matrix. The experimental determination and hence
also the physical meaning of the coefficients hkl is again derived
from the equating to zero of the state variables 11
Uy, i.e., by means of short-circuit measurements at port 2, res-
pectively open-circuit load measurements at port 1.

or, respectively,

u

11 w0

1 TSN short-circuit input impedance of port 1

1 [we0 = ghort-circuit current ratio of port-l to port-2
hu“{%ﬁﬁ-o —=  open-circuit load voltage ratio of port-2 to port-l

i | —— open-circuit load input admittance of port-2

ORIGINAL PRGE 18
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In the microwave area, short-circuit and open-circuit load mea-
surenents are accompanied by great difficulties, on ihe one hand,
because of the realization of these operating conditions and on
the other, because of the tendency to oscillation (instability) of
active systems *under these operating conditions. These diffi-
culties do not occur in measuring circuits as in Figures 3/8 or,
respectively, 3/9--i.e., when the ports that are not supplied are
terminated with ideal absorbers. For this reason, it is appropriate
to also characterize transistor amplifiers in the microwave range
by means of scattering coefficients. The frequently needed recal-
culations between the coefficients of the voltage-current repre-
sentation, 212 ykl’ bkl and the scattering coefficients S, are
shown in Table 5 for a 2-port.

TABLE 5. Relationships between coefficircnts q11 and z

k] 4 -) k-i s
b o 2-port
K1 f a P
. e e e e e
(14 a11) (1 —922) + 51292 = —m) (1 +s22) + oz g 2110 (14 229) — sz om
M T a (T— ) — nzem Y= T e (1 Foza) — mzem (1= i -2c:) - Azon
282 el — 232 o P 211% ] i
M e (1= ) — sp2mm e (14 211) (1 + 222) — 81292 T g (o sun) s
= b5 £ —2a 4 N =2 e
BT T (T =) - maem - (14 811) (1 4 322) — 81202, 3 T § S BT
(v _a) (4 42 = (14 811) (1 - 222) +8120m e ; o)l et
el O T (=) naey & (: 4+ a11) (1 4-522) — 31200 % e il o) e,
(21— 1) (222 + 1) — 21220y 2 A=y (1-+522) —yizyn ik (hes = Vatozg= oY - Ryzhe,
Ten+ N lza+ ) =122 U W F ) (1 ye2) — vizy = Vithas 1)~k ko
.'l. s .__.—_2__,‘1_—. g = - = - H.‘.'._ -
M F Dt D= BT W F ) (1 F y22) — fnzvm I (a4 1 ik ) = binte
R 2 e —2yn_ i R B ke ne
BT EnF (et 1) — 2 - (|+yn)(|+!m)—vuyn ! (had Nhaag =kt
_ e 1) (i — 1)~ ngzay aan 2z AL Y0) (L y22) = yi2ym o 2o WM ()~ Ag2di-Rizngy
T T EnF Dt ) - nam 2 W) (U ya2) — waewss T i DRz ) Ak
Yl 2y gl — Yn) et fiwi . l
- D i S S o G S S it i IS 5o SR e ——— — -

®
For a definition of the concepts active, passive, etc. ice 2.6.
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3.44 Chain forms

In the n-purt representation of the scattering, impedance and
admittance forms, we combined state variables of the same kind

in columns and inter-related them in appropriate manners. It is
possible, however, to combine variables of state of different kinds
in other meaningful ordering systems, if they refer to the same
port; for instance, into columns that can then be connected by
n-port matrices. The chain forms are constructed according *¢ this
pattern and we shall, initially, discuss them for a 2-port. In the
representation, we shall use reduced variables of ustate throughout.

Using these reduced variables of statc, the best known of these
chain forms becomes, in the veoltage/current repr2sentation

() (ki Kig) (w2 3.4/232)

(ﬁ’x) (‘:zl kzz) (—‘z) 34/
with the normalized chain matrix

= (k11 Eia .

k= (1 ,m). (3.4/23b)
Thelr coefficients are dimensionless. Since usually they are
defined between variables of state in asymmetrical or chain repre-
sentation (uE, 1E and Ups iA) according to Figure 3/1, but we want
to use the symmetrical representation throughout, we have replaced

iA in equavien 3.4/23a with -1,. The transmission equation 3.1/5
is a special example of the chain form 3.4/23a.

In the chain form of the wave representation the input and ~utput
wave variables of port 2 are transformed iato the output a'd input
wave variables of port 1 according to the pattern

(@)= 2 () (3.4/240)
The matrix of the coefficients

' - [E1 €12 o
¢ (C:x '.':z) (3.4:24b)
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we call wave chain matrix or, in short, cascade matrix. The desig-
nation cascade matrix and the symbols C for the matrix and r1 for
Jts coefficients were adopted for two reason3. On the one side,
based on the application of this form of representation to the cal-
culation of chain or cascade switchings of 2-ports; and on the
other, to make a distinction with the voltage/current chain matrix®.
The coefficients ¢,y are dimensionless wave re ation variables. It
is 1n general not possible to determine them by measurement, term-
inating a port through a short-circuilt, open-circuit load Or absor-
ber, and they neither have the physical meaning of a reflection nor
that of a transmission coefficient. Only Csp become * the ratio al/
b2 for a, = 0 and can be directly determined as the inverse trans-
mission coefficient sgi.

In the third possible chain form, the wave variables of one port
and the voltage/current variables of the other port are inter-
related ([12], [13]). Thus, we here have a mixed manner of repre-
sentation

(le)a(:: ﬁlf) (:‘.2) (3.4/25a)
with the mixed chain matrix
m = (71 ), (3.4/25b)

This mixed form is particularly useful when in a microwave network
statements in a voltage/current representation (for instance, with
concentrated components) must be translated into wave representa-
tion. The dimensionless coefficients My of the mixed chain matrix
can be determined as a relationship between the input, respectively
output waves at port-l and short-circuit current, respectively open-
circuit-load voltage at port-2. The three chain forms indicated are
three forms of chain differing in principle. For each of the three
forms 3.4/23, 3.4/24 and 3.4/25, it is possible to find an inverse,

® In the literature the cascade matrix is often called trans-
mission motrix. But since its coefficients in general do not
have the piysical meaning of transmission coefficients, we
submit the nomenclature developed here.
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provided the matrices k, C and m do not happen to be singular.
Other forms are obtained exchanging variables of state inside the
columns or, in the mixed form, exchanging port numbers. All of
these forms, however, do not result in new relationships and hence,
we shall discuss them no further. The three chain matrices k, C,

m are easlly transformed one into the other because of their inter-
nal relatedness. To this end, first we shall recalculate the state
columns by means of the following system of orthogonal matrices

R W B R O R

From the fundamental equations 2.5/12
ug = ax + by,
t.x - dg —bk

for the variables of state at the same port k, we then obtain the
following column transformations, with the aid of the E, J, K, L

matrices: (’.‘1) =(E - J) (2) (3.4/270), (_‘::) =(E -J) (‘;:) (3.4/27b)

U

(- een ) S ()= (3): wame

From the voltage/current chain form

u ug
(‘1)=k(—‘3)
we now obtain, with equations 3.4/27a and 3.4/27b
b1 ) as
5 =0 () - im0 ()
and by inversion, the wave chain form
b . 1 a1 . (%
(a:)=(b ~J) L R(E =) (b’) HE +J)R(E -J) (bl)
with the cascade matrix

CmE+I)k(E ~J) =}tk ~ kJ +Jk —Jkd).  (3.4/288)
By solving equation 3.4/28a for k(C), we obtain

k=3(E -J)CIE +J) = }(C +CJ —JC - JCJ). (3.4/28b)

Foliowing a similar procedure, we can interconverter the m and k
matrix and the m and C matrix:

ORIGINAL PAGE 2
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me=lE+DER kK +JkEK. (3.4/20a)

k m(E-J)mK=mK -JmK (3.4/20D)
and

m=JCK+1)~ 3 CR~CL). (3.4/304)

C =mK+L =mK+mlL. (8.4/30b)

In all three cases the coefficients 1’ kkl and m, , are obtained
as simple linear combinations of the coefficients of the corres-
ponding other matrix.

A similarly simple, inversion-free transformation between the
chain matrix and the scattering matrix is not possible.

We shall first consider the transformation of the scattering matrix
into tne wave-chain matrix or cascade matrix. 1In the system of
equations

by = sy, iy + S320a2. (3.4’3‘.)
by = 821 Uy -“ Re2 g (3.4/3[ b)
we solve the second line (3.4/31b) for a,:
ay = — a5} 200 @y + 851 by (3.4/31¢)

and replace equation 3.4/31c in equation 3.4/31a:
by = (80 — a1 851" 223) a3 + 2y 2011 by, (3.4/31d)

The two equations 3.4/31d and 3.4/31lc then form, arranged after
the pattern in 3.4/2U4a, the wave-chain form. By comparison, we
obtain the coefficlents c expressed in terms of the scattering

kl
coefficlents -
cu - "u - ‘l‘ "-l‘ ‘”l ‘u - “‘:ﬁl' (3.4/310)
cu-—‘ﬁ“av °a"8_l‘

a -

We can see here that it is possibie to btulld the cascade matrix
for 2-ports only 1if coupling exists between port-l and port-2, 1i.e.,

when the transmission coefficients 559 # 0. If, however, the caascade

matrix does not exist, then--because of their "linear relatedness"
with C--1t also will not be possible to build the other twe chain
matrices, k and m.
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If we once again solve the cascade form (3.4/31d, c) with the
coefficients of equation 3.4/3le for the scattering form 3.4/3la,
b, then we shall obtain the scattering coefficlients expressed in
terms of the cascade coefficients

8y =Cralh!, 833 =€y — Gyl ey,

1

- -1 (3.4/311)
8 = Cas'» 833 = — Cgn Oy

With the help of equations 3.4/28 and 3.4/30, it then also becomes
possible to express the coefficients kkl and m. by means of the
scattering coefficients and vice versa. These recalculations were
combined in Table 6 below.

‘ ORIGINAL Pac
TABLE 6. Relatlions between the coeffic.ents OF POOR QUALITY
s,. and ¢,., k., ., m . of a 2-port Y
kl kl kl kl
= detS 8y — 1--det S
= ORI, | il + e It det 8§
o1 ki 249 ™ - 229 T
m st et i4dot S . ey —detS N
Cig = - 11 (o E]
12 221 ki3 = 2en mig = —~ __:..;.‘_2‘_____
. : ~a1—a24+1+dar 8 1 -
Coy = = . a2
! L) k2 2en mey = 2_;;; —
1 - 811 + 1 — de
€22 = —— — = —mtent t S —1--223
b ) kaa 282y " T 3
:
¥
oy e —12 . kyy + kyg — kay — kga myy - myg
P 11 = — : ny = . :
23 kyy + kyg+ kay + kg2 may — mes
det
82 == —'-:;ti g = T $dot b r g - —— 2 de"!'l, ]
18+ ke + kay + kaa Mgy — mgs a
. z L=
o o=— - -——— b ;
c22 u kay + kg + kay + kaa o2t LT ™ !
—n — ki + kg~ by + kng —mgy —m f’
a9y = - - —— 121 — g2
€2 e ku+kigtkay+Le f13 mey - mas b
i — oy 1 by sx) e+ my ‘

For many switching tasks it seems desirable and appropriate to be

able to describe an n-port by means of chain forms also for port

n'mbers n > 2. Below we shall investigate and discuss the permissi- !
bility of this extension and the always possible transformation “
in‘c the scattering form only in the wave representation (cascade

N 20
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matrix).

To this end we first consider a branching to which can be assigned
an n-port with an even number of ports n = 2m (in agreement with
Figure 3/10a), and the 2m wave types or, respectively, ports can
be meaningfully divided into two groups with the same number of m
wave types, or ports, respectively. In correspcndenée to the pro-
cedure used in section 3.42 (cf. equation 3.4/7 and 3.4/8), we
shall combine the input, or respectively, output wave variables of
the same port groups into subcolumns:

ay () ORIQ,N
M= B - * Poofa"&‘,“gf i
i : i ’WJ
dm bm
(3.4/32a) (3.4/32D)
flnul and bm+1
Ao = 1. By =
“n bn

thus obtaining the scattering form
By = S A; + S11 As, (3.4/33a)
Bs = Sa1 4y + S A2 (3.4/33b)

Since in this case both port groups have the same number (m=n/2)
of variables of state, here all the matrices SKL will be square
and of m —ows. The equation of state 3.4/33b can thus be solved
for instance for Al if only 821 is regular. We then obtain, in
analogy to equation 3.4/31c,
A‘ - Sﬁl Sn .4, + Sﬁl B’ (3.4/330)
and, replacing this equation in equation 3.4/33a and rearranging:
B, =(S;s - S, Sii' Sp) 4, + 8, S B, (3.4/33d)

We submit, now, that a wave-chain form

B = Cyy Ay + C)3 By, (3.4/34a)

Ay = Cyqy Ag + Cy3 By (3.4/34b)

exists for the 2m-port to be built according to the same pattern
as the wave-chain form of the 2-port (cf. equation 3.4/24a). The
submatrices CKL and the cascade matrix C are then obtained from

21
3

F
!
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the submatrices SKL by comparison of equations 3.4/33¢, 4 and
3.4/34a, b, as

Ciy=8,—8,;,85' 89, Cpu=38,8;,

Cy = = Sii' S, Cy = Sg'. (3473

The submatrices CKL--to the extent that they exist--will be as
square as are the submatrices SKL’ and of m rows. The wave-chain
form 3.4/3L4 can conversely be transformed into the scattering form,
if only 022 {8 regular. Since, however, 022 is the inverse of 821,
C22 will be regular when 821 is regular, i.e., when the transforma-
tion from the scattering form to the wave-chain form was possible,

The submatrices SKL are then obtained in a corresponding manner from

the submatrices CKL:

S =CuyCs'y 8;3=~Cy -CuyCqCy,

.4/36
Sy =Cg, Sy = — C31 Cy; . (3.4/36)

To conclude, we now want to consider two more cases, in which the
port numbers in the two port groups are not equal. Here the trans-
mission matrices of the scattering form 812 and 821 as well as all
submatrices CKL of a wave=-chain form, are rectangular.

In the first place we shall consider an n-port where port number m,
of group 1 is smaller than the port number m, of group 2 (ml<m2).

In the example sketched in Figure 3/10b (page 23), m = 2 and m, =
3. The submatrix 821 then has m, columns and m, rows and is rec-
tangular on end. If 821 1s also column-regular®, then equation 3.4/
33b can be transformed into equation 3.4/33c by means of the so-
called left-inverse® G'lsg1 and thus we obtain the wave-chain form
from the scattering form. In equation 3.4/35 the inverse S'1 must

21

-1.T = T
be replaced by the left-inverse G 521' Here, G 821821 is the

Gaussian transformation of 821; it bhas m, rows, 1s square and not
singular. All CKL have then m, rows and m, columns. All told, the
C matrix then has ltmlm2 coefficients, compared to the (Ml + hz)z

coefficierts of the S matrix, where ltmlm2 < (m1+m2)2.

’
Cf., for instance, [B3].




With the transformation S + C, an information loss is thus incurred.
Since we had assumed 821 as column regular, its left inverse G'IST

21
= 022 is row regular’ (see footnote page 22).
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(1) port group (2) n-port (3) m ports (4) example

Figure 3/10.
with 2 port groups:

For the construction of chain-wave forms of n-ports

a) number of ports of group 1 = number of ports of group 2
b) number of ports of group 1 < number of portsof group 2
¢) number of ports of group 1 > number of ports of group 2

In order to now obtain the scattering form, again, from the.cascade
form of equation 3.4/34, we would have to solve equation 3.4/34b
for 82 and in the process also eliminate C22 by left-multiplication

with its left inverse.

Since, however, for a row-regular,

23
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rectangular matrix C22 only a right inverse' (se= footnote page 22)
exists, this transformation process 1s not possible. Hence, the
back-transformation C - S 18 not possible in the case m, < m, .
Finally, we shall consider the case of port number my being greater
than port number m,. Figure 3/10c (page 23) provides an example
with m = 3 and m, = 2. To begin with, we submit that a cascade
form exists. All CKL then have m, rows and m, columns. In this
case, the rectangular matrix would be rectangular on end. Assuming
that 022 is column regular, it would be possible to perform aC+38
transformation with a corresponding left inversion (022 22)'1032 "
821. The rectangular matrix 821 with my columns and m, rows would
then be row regular and since for 1t only a right inverse exists,

in this case the transformation S + C would not be possible. On

the other hand, however, every physically feasible n-port has a cor-
responding scattering matrix S. From this we conclude that in the
case m, > i, the cascade matrix does not exist.. This is immediate
for the case m, = l1: 1if we formally construct the left inverse for
the single row matrix 821, for the § =+ CTtransformation, then we
obtain, as the Gaussian transformation 821821, a diadic product that
1s singular and hence, not inversible.

These difficulties in the construction of the C matrix or its trans-
formation into an S matrix show that the wave-~chain form 1s not
suited to the description of n-ports with two port groups with
different numbers of ports. For the treatment of cascade switchings
for such ports-number asymmetrical n-ports, we shHall thus have to
develop methods in Chapter U4 in the wave representation that only
build upon the universally applicable scattering matrix.
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