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3.42 Wave representation, scattering matrix

If the n-Dort is described by a relationship between input and */118

output waves, then we talk about a wave representation. We have

already repeatedly pointed out that this representation is parti-

cr_larly suited to the treatment of microwave switching. The scalar

variables of state of wave representation are the input and output

voltages Uk , Uk , respectively the input and output currents Ik,
I  or the input and output variables ak , b  defined in section 2.52. **

These reduced variables of state a k or, respectively, bk--the half-

squared quantity of which represent the actual output transmitted

by the input or, respectively, output wave (cf. equation 2.5/22)--

are particularly descriptive, physically, precisely because of thi3

direct relationship to the actual output transmitted as already

mentioned in section 2.52. In addition, they are more suitable

than current and voltage "waves" I  and U  in many instances of micro-

wave measurement technology. Hence, in what follows we shall base

the description and calculations of microwave n-ports and networks

on these wave variables.

Now we must establish a suitable pattern to inter-relate the 2n wave

variables ak , bk . From it will depend the physical meaning of the

n2 coefficients, which will then represent the n-port in the scalar

relations. To begin with, we shall investigate a pattern in which

the output waves at each port are described explicitly as a function

of all input waves. In that case, the n linear equations are

Li sdll a l +sl=a=... ++lkak... +*luau.
G= s 1121 al + rt_= at ... + •yk ak ... + asa am.

(3.413s)

bk : Akl a l -I" Sk! as ... + Okk ak ... + sku as.

i s — on, u l + *at al ..• + ask ak •• + ton as

* Numbers in the margin indicate pagina t ion in the foreign text.

** Translator's note. The reader is referred to the original foreign text.
1
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or, in matrix notation,

bl	 1811	 O1! ••• Olk ... Ol a 	 al

b,	 hl	 on oft ha	 42

bk 	hl	 M . • . Ott Oka 	 at	
(3.4/3 bj

ba	 Sol	 aat ... Oak... Oaa	 n^

The n-row square matrix of the coefficients skl

811	 O1! ... Olt... n a

•4(3 -4/4)
*kL	 Rk2 • •	 Okk Oka

O at	 Sal ... Oak ... San

is designated "scattering matrix" or, sometimes also distri:,ution

matrix.	 Correspondingly, the coefficients skl are called coeffi-

cients of the scatter'.ng matrix or, in short, scattering coefficients.

The column matrices

41 bl

a2 b2

1nk	 (3.415a) or. B =	 (3.4/5b)

an ba

eacompass the totality of the input wave variables a k , respectively

that of the output wave variables b  in a fixed arrangement. There-

by they obtain the meaning of independent, n-dimensional variables

of state. The n equations 3.4/3a,b can then be expressed, using

those abbreviations, as

B = SA	 ( 3.4/30
(see also [B13], [B151 to [B171 and [71 to [111).

What, then, is the physical meaning of the coefficients s kl in the

2
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pattern establish(A by ^.•^lu:rt.1 ^ ► ,:: ;. ;.!'^, ,• ;.I,^ • ntivrl,y	 .4,	 ,

answer this question we sh..rll live orm, to uur • Smarination,

series of characteristic measurement:,, lookinr, for an exar..r

at the branching sketched in Figure 3/7.
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port no. 	 type —

t	 L

re aKgncea
Structure 
function

t, - t► Y1,A)8E, _ _
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Figure 3/7 Example for a correspondence process for representation of a

5-port oy non-structural related state variables;
a) definition of reference..planes, coordinate systems and refere: :e structures;
b) selection of a unique frequency range;
C) establishment of port order and structural functions.
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wave type

(2) 5-port

4

The waveguides W2 (circular waveguide) and W 3 (rectangular wave-

guide) are terminated by means of suitable ideal absorbers. A

source is connected to the coaxial conductor W 1 that emits an L

wave with a frequency within the definition range of the 5-port,

towards the branching. This wiring can be symbolically represented

by means of a replacement wiring diagram witL unipolar connectors,

as shown in Fi gure 3/8 below. Here. the function of'the absorbers
wette^-

1 teiterwtyp

0 -- °'~ ;'0'	 (1) waveguide and

(M	 OF POOR QUALM

e^-

Figure 3/8. For the determination of the scattering
matrix coefficients, using the example of a 5-Port,
assigned according to the branching of Figure 3/7;
excitation by means of a wave type at port 1

is represented by means of four separate, reflection-free 1-ports

connected to ports 2, 3, 4 and 5. As an aid to memory, in front

of each port are noted waveguides and wave types assigned each of

them. Due to forced switching (absorber termination), at the

reference planes BE  and BE 3--and hence, at the ports 2, 3, 4 and 5--

there can ")nly exist output waves represented by b 2 , b 3 , b 4 and b5;

this means that a2 = a3 = a4 = a5 = 0. At port 1, besides the

exciting input wave al , in general we also have an output wave bl.

According to equations 3.4/3, this special operating state can be

described by the following equations of state:

bl — ell at
ba — sit at
bs — 8i1 at	 (3.4/6)

b4 — 841 at
bs — 8si at

G2 - as — a4 — as — 0-

Here, the coefficients 
s11 obviously indicates how much of the input

wave al is transformed into the output wave b l , of the same wave



type. Hence, in its physical meaning, it is a reflection factor.

However, since it is only equal to the ratio b l/al when no input

waves exist at all the ruining ports, it is appropriate to dis-

tinguish it also in its designation from factors that characterize
the wave ratio b l/al under general operating conditions. Hence,

we shall call 
sll the self-reflection coefficient or, more briefly,

the reflection coefficient of port 1.

Under the same special operating conditions, the coefficient s2l

in equations 3.4/6, for a 2 = a3 - a4 - a5 = 0 indicates hoiv much

of the input wave al (here of the L wave type) is transmitted to the

output. wave b2 of a different type (here of the 
He 

wave). Corres-

pondingly, we call s 21 the self-transmission coefficient or, in

short, the transmission coefficient between ports 1 and 2. The sig-

nificance and designation of the coefficients s 31 , respectively s41

and respectively a51 becomes obvious when we consider the trans-

mission from port 1 to ports 3, 4 and 5, respectively.

We may generalize the interpretation and call

skk the (self) reflection coefficient of port k

and

skl the (self) transmission coefficients between ports 1 and k.

The customary sequence of the two scattering coefficient subindices

is more readily remembered, based on the equation b  - skla1 of

equations 3.4/6, according to the following rule: the first subindex

is equal to the index of the output wave (response), while the

second subindex equals that of the input (excitation) wave. The n2

coefficients skl are the quantities that characterize the n-port

in scattering matrix representation. Since they relate variables

of state of the same dimensions ir, vector form, the coefficients

themselves are dimensionless and in general complex and frequency

dependent.

It is often necessary to represent an n-port not by means of the n2

individual scattering coefficients, but by appropriately formed

5
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groups of them. Let us become familiar with this method using

the branching sketched in Figure 3/7 as an example. The three

waveguides provide a meaningful sub-pattern. We shall begin by

setting up the equations of state for the 5-port in the notation

corresponding to equation 3.4/3b; to this end we shall combine the

wave variables of the swne waveguide into groups corresponding to

the scattering coeff-cients:

bl

6=
811	 812...........
i,i an

813	 4114..............
eza	 +

. . ...
:4

S16
daa

al

a:
t

ORIGINAL p ^,.A^^:
OF	
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b4 841:842 843 :844 845 44

bi 851	 S5a 858	 S64 8" a5

Using the follcwing abbreviations for the sub-columns.

Al — a1,	 81 — bl,

A= _ ( 	 (3.4/8a)	 B= —
and	 ts)	 (3.4/8b)

a4	
(b'4At — (a3)	 Bs — a)

as well as for the y sub-matrices

Sll - x11 , Sit — (83Y 813) , Sit — (814 813)

S—
S = (034 au).571 —

(431/ :a
` aaa/ ,

:a 13.4'8c)

Sal —
041)

(Ou

(
8aa

' 
Sal 

i 833) ' S^ _ (854 Sia)\•aa

we then obtain, from equation 3.4/7a

	

(BI )	 Su Sl= S1a	 Al

	

ih— Sa l Su Su	 As	 (3.4/7b)

	

B3	 Sal Saa Su	 Aa

In the first place, by this grouping into subcolumns and sub-

matrices we can considerably reduce the writing effort in compari-

son to the more detailed notation of equation 3.4/7a. The deeper

significance of this technique, however, will only become clear

when we think of the task to be dealt with in Chapter 4, i.e.,

brancnings with several wave types on the waveguide (multitype

6
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waveguides) connected to other, suitable branchings. In the

example according to Figure 3/7 considered here, in any wiring

of the circular waveguide, the two H11 wave types must always be
treated as a "package", in wiring. This package "wave type group"

is here represented by the two sub-columns A 2 and B2.

In general, the submatrices relating the sub-columns are rectangu-

lar; in this example, both S 12 and S13 are single-row and two-
column matrices, and S21 and S31 are two-row and single-column.
In special cases the submatrices may be square, as S 2,, S23 , S32
and S33 in our example, or even single element matrices, i.e.,
scalar coefficients such Ps S 11 in our example.

The physical meaning of the submatrices shall be discussed, once

more, performing an imaginary experiment. Corresponding to Figure

3/9 below, this time we shall connect the coaxial conductor

Wellen-
leitef V.drp

L

"A.-

O

fK__

"I.O
N..

(1) waveguide and
wave type

(2) 5-port

OPMNAL PAGE t^"
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Figure 3/9. To determine the scattering matrix
coefficient of a 5-port arranged in conformance to
the branching in Figure 3/7; excitation by a wave
type group at ports 2 and 3

(i.e., port 1) and the rectangular waveguide (i.e., ports 4 and 5)

to suitable terminations, such as ideal absorbers, and feed the

branching via the circular waveguide. Here we shall have to assume,

An general, that both a Hi t wave (a2 ) and an H11 wave (a 3 ) approach
+he branching. In general, there will be output waves at all

pores. This special operating condition can be described--now

7
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expressed in terms of subcolumns and submatrices--by means of	 !

the following equations of state:

Jh . Sss 
At 1	 (8.4/9)

Ai —0, As —0.

The submatrix S 22 here describes the interaction of the two H11

wave types within the same waveguide. Physically, it represents

the reflection of a wave type group when the input waves of all

other wave type groups disappear. Referring to the designation

self-reflection coefficient, we shall thus call this submatrix

self-reflection matrix or, in short, reflection matrix of the wave

type group 2.

Submatrix S 32 describes the transmission from the waveguide W 2 to

a different waveguide W 32 i.e., the coupling of a wave type group

(H10 and H20 ), again under the same special operating conditions,

that the input waves disappear in waveguides W 1 and W3 . Hence,

we shall call this submatrix S 32 self-transmission matrix or, in

short, transmission matrix 6 between the port (or respectively, wave

type) group at W2 and the port (or respectively, wave type) group

at W3 . Correspondingly, we shall call 3 12 the transmission matrix

between the port groups at W 2 and the port group at W 1 , which here

consists of a single L-type.

We can now once again generalize the interpretation, and call

SKK the (self) reflection matrix of port group K

and

SKY the (self) transmission matrix between port group L and port

group K.

6 Let us point out that the submatrix S of the scattering matrix
called transmission matrix here, is nP identical to the wave
chain matrix dealt with in section 3.44 which is often also
called transmission matrix.

oFUaINA . Pjl.j rt
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There is always a reflection matrix SKK in the main diagonal of

complete scattering matrix, designat°d as a supematrix, in this

case, since its elements are matrices themselves. In addition,

a reflection matrix is always square.

To conclude, we shall consider some transformations of the equa-

tion of state 3.4/3. If we rezolve it for the column of the input

waves A. we obtain

A - S-1 8
	 (3.430)

with the inverse scattering matrix S-1 . While a scattering matrix

can be indicated, in principle, for every technically feasible,

l.near, time-independent and sourceless n-port, the inverse scatter-

ing matrix exists only in exceptional cases. Hence, it is not

generally suitable for the representation of n-ports. In the cal-

culation of n-port networks on the basis of scattering matrix

representation, however, the inverse is occasionally required. In

each individual case it must then be tested whether S-1 exists.

If we transpose the matrix equation 3.4/3c, we obtain
BT -AT ST	 (3.4/11)

with the row matrices AT and BT and the transposed scattering
matrix ST (see, for instance [B3J). In comparison to equation
3. 4/3, equation 3.4/11 contains no new physical information. It
is, however, necessary in several calculations, such as in the for-

mation of scalar products for the determination of the energy

balance of n-ports. In this context a representation by submatrices

is often useful. In terms of submatrices, the transposed scattering

matrix--using the example of equation 3.4/7b--can be written

Sii Si, Si,)T 	a J)
.4=i Sit
	

(9.4/12)
Sii Sit S33	 ,

ORKNNAL PAGE IS
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Below we shall consider the scattering matrix representation

always as the basic form for the treatment of microwave n-parts

and we shall refer all other forms of representation to it.

3.43 Voltagelcurrent representation

When an n-port is represented by means of relationships between

voltages and currents, we talk of a volLaLge/current repre-

sentation. As is known, this kind of representation is particular-

ly suited to the treatment of switchings of concentrated components.

It is of use to microwave technology when the internal structure of

a switching--and hene.:, the behavior of the corresponding n-port--

can be predicted on the basis of a replacement wiring diagram of

concentrated components. This is often the case especially for

branchings of double conductors, used in the L-wave area and for

which the dimensions of the "internal" components is still small

in comparison to the operating wavelength.

Here we are considering only descriptions by means of reduced

voltages u  and reduced currents i k , codimensional with the wave

variables ak , b  and which, according to equation 2.5/12

%k — Rk + bkr

ik — ak — bk

can be expressed directly by means of them.

Several patterns are known to relate voltages and currents. In

the so called impedance form

1 it • • • si a •i

Y ei =n

or in abbreviated form,

(3.4/13&)

U - et
	

(3.4/13 b)

ORIG NAL PAn- I-q
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the part voltages u  are given as explicit functions or the port

currents ik. Here,

1
1
	

and

U M 	 (3.4/14&)
	 (3.4/(14 b)

r

are the column matrices of the port voltages or port currents,

respectively, and

II... gin

(3.4/15)

si•••saa

is the impedance matrix in normalized notation. The coefficients

Zkl of this impedance matrix are dimensionless and in general,

complex and frequency dependent.

If we solve the equation of state 3.4113 for the port currents, we

obtain the so-called admittance form

	

i	 ^11••• Ylo	 1

(3.4/16&)

a 1 • • Ys

or, in abbreviated form,

i = Y u.	 (3.4/16b)

The coefficient pattern

11•••Ys.

	

Y •	 (3.4/17)

(21 Yep

is the admittance matrix in normalized notation. Its coefficients

ykl are also dimensionless and in general complex and frequency

dependent.

ORIGINAL PAGE
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From a comparison of the two equations, 3.4/13 and 3.4116, it

follows that the admittance matrix is the ir.verse of the impedance

matrix and that hence we have

N s - s g - E	 (3.4/19)

with the n-row unit matrix E.

The physical meaning of the coefficients of the impedance matrix

or admittance matrix, respectively, results from open-circuit load

or short-circuit measurements, respectively. If, for instance,

we supply the n-port at the 1-port (i1 1( 0) and leave all other

ports in open circuit load mode (i k 2 0 for k - 1,...,n, k )1 1),

then we obtain voltages that are proportional to i1:

Uk - =kl it

for k = 1, voltages and currents at the same port are related to

each other; hence the quantity z11 is a directly measurable impe-

dalice that we shall call open circuit load input impedance of

port 1. For k 4 1, the coefficients have the meaning of a "current-
to-voltage" transmission factor, also called core impedance in

the four-pole theory [B111. The coefficients of the admittance

matrix are obtained in a corresponding manner, by supplying port

1 (ul # 0) and short-circuiting all other ports (u k = 0 for k -

1,..n, k # 1). Thus n currents are obtained, proportional to ul:

tk — Ykl U1.

The quantity yll is here called short-circuit input admittance of

port 1. For k yt 1, the coefficients have the meaning of a

"voltage-to-current" transmission factor, called core admittance

in the four-pole theory [B11).

The column matrices A, B of the scattering form and the column

matrices u, i of the impedance or admittance form, respectively,

have in common that in each case they contain only variables of

state of the same kind, that are arranged in the same sequence

in all four cases (Dort numbering). For this reason, it is easy

ORIGINAL PAGE It
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to convert into each other state columns and the matrices relat-

ing them. Instead of the n times four equations 2.5/12a, b and

2. 5/13a, b we then obtain the matrix equations

	

w = A +D,	 (3.4/19,)

	

-A -8	 (3.4/19b)

OMAN& PAGE ra
(3.4/20,)	 OE POOR QUALITY
(3.4/20 b)

respectively

A = } (u + i),
I3 =Pa-().

in the scatter form

h i- S A

we now replace the columns of the wave variables with equations

3.4/20a, b by means of the columns u and i and arrange the equa-

tions in terms of these columns:

U-i=Su+Si,
a-Su=i+Si.

By means of the unit matrix, u and i can be factored out

(E-S)n=(E+S)(

and assuming that (E - S) is not singular, the equations can then

be solved for u(i):

u -(E - S)-'(E + S) i.

As can be seen from a comparison with equation 3.4/13b, the result-

ing matrix is the impedance matrix, z. By means of a correspond-

ing Rolving for i(u)--or directly, by inversion of z--we obtain

the admittance matrix y as a function of the scattering matrix.

The result is

and	 ; ^` (E - S)-1 (E + S) _ (E + S) (E - S)-1 (3.4/.1 a)

y = (E + S)-1 {E -	 _ (E - S) (S + S) - ' . (3.4/21b)

If one starts with the impedance or, respectively, admittance equa-

tion 3.4/13 or, respectively, 3.4/16, and solve for B(A), then the

scattering matrix S is obtained, expressed in terms of the impe-

dance and, respectively, admittance matrix::

1?



i

and

	

S -(S +E) -"(*  - B) .- (s -8) (s +X)-1 	 (3.4/210)
_ g - ( +J + E) -1 - B) -	 1,(y - ^ (^ + B)- (3-4/21d)

A precondition for the validity of the transformation 3.4/21 is

the existence of the matrix inversions. We should furthermore

point out that matrix products of the above form are'always inter-

changeable. The equations 3.4/21 can formally be considered as

n-dimensional generalizations of the equations 3.2/9, already

known from the 1-port, between the reflection factor and the nor-

malized impedance or, respectively, admittance. The scalar opera-

tor variables r, z or, respectively, y here correspond to the

matrix-operator variables S, z or, respectively, y.

Besides the impedance, respectively admittance form, there are

other forms of relating in the voltage/current representation,

among which the series-parallel form is of some significance. For

a two-gate ([B111, [B121), it is

(! ,)	 kis}^i

12  — (

hit

hat 

1,

22 	 (it
(3.4/22)

and it is preferred primarily for the description of the small-

signal behavior of transistors. The connecting matrix h is here

called hybrid matrix. The experimental determination and hence

also the physical meaning of the coefficients hkl is again derived

from the equating to zero of the state variables i t or, respectively,

u2 , i.e., by means of short-circuit measurements at port 2, res-

pectively open-circuit load measurements at port 1.

X11 = 
Y 1
2 1 ! M,-A

M1 =
h
^l

h it — 
161

Ut (i-8

short-circuit input impedance of port 1

short-circuit current ratio of port-1 to port-2

------ open-circuit load voltage ratio of port-2 to port-1

_4 -_,.+• load input admittance of port-2

OIN01NAL PAGE 19
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In the microwave area, short-circuit aril oc^en-c`• r^ /;i*. load mea-

surements are accompanied by great difficulties, or, she one hand,

because of the realization of these operating conditions and on

the other, because of the tendency to oscillation (instability) of

active systems *under these operating conditions. These diffi-

culties do not occur in measuring circuits as in Figures 3/8 or,

respectively, 3/9--i.e., when the ports that are not supplied are

terminated with ideal absorbers. For this reason, it is appropriate

to also characterize transistor amplifiers in the microwave range

by means of scattering coefficients. The frequently needed recal-

culations between the coefficients of the voltage-current repre-

sentation, 
zkl' ykl' hkl and the scattering coefficients s k} , are

shown in Table 5 for a 2--port.

TABLE 5. Relationships between coeffici-nt5 s l,i and 2.
hkl of a 2-port	 k
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For a definition of the concepts active, passivt-, ei;c• -: CF 4.6.
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3. 44 Chain forms

In the n-purt representation of the scattering, impedance and

admittance forms, we combined state variables of the same kind

in columns and inter-related thew in appropriate manners. It is

possible, however, to combine variables of state of different: kinds

in other meaningful ordering systems, if they refer to the same

port; for instance, into columns that can then be connected by

n-port matrices. The chain forms are constructed according `o this

pattern and we shall, initially, discuss them for a 2-port. In the

representation, we shall use reduced variables of LAate throughout..

Using; these reduced variables of state . , the Vest known of these
chain forms becomes, in the voltage/current: repr%sentati.on

`U`kli kit) ( _!2 	 (3.4123x)
kt, k1t	 S2)

with the normalized chain matrix

h. (kii k12)1 	(3.4123 b)Al k221

Their coefficients are dimensionless. Since usually they are

defined between variables of state in asymmetrical or chain repre-

sentation ( u E' i F and uA , 'A ) according to Figure 3/1, but we want

to use the symmetrical representation throughout, we have replaced

I  in equaLinn 3.4/23a with -i 2 . The transmission equation. 3.1/5

Is a special example of the chain form 3.4/23a.

In the chain form of the wave representation the input and ^utput.

wave variables of port 2 are transformed into the output and input

wave variables of port 1 according to the pattern

16

(ai) less ^1 W

The matrix of the coefficients

C	 ell C1Sj
(ell *S2/

(3.4/24&)

(3.41124 b)
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we Gail wave chain matrix or, in short, cascade matrix. The desig-

nation cascade matrix and the symbols C for the matrix and 
akl for

its coefficients were adopted for two reason3. On the one side,

based on the application of this form of representation to the cal-

culation of chain or cascade switchings of 2-ports; and on the

other, to make a distinction with the voltage/current chain matrix°.

The coefficients c kl are dimensionless wave re-.ation variables. It

is in general not possible to determine them by measurement, term-

inating a port through a short-circuit, open-circuit load or absor-

ber, and they neither have the physical meaning of a reflection nor

that of a transmission coefficient. Only c 22 become-. the ratio al/

b 2 for a2 = 0 and can be directly determined as the inverse trans-

mission coefficient s21'

In the third possible chain form, the wave variables of one port

and the voltage/current variables of the other port are inter-

related ([121, 1131). Thus, we here have a mixed manner of repre-

sentation

(

L11. `=11 Nis) (!2)	
(3.4/25a)

all	 M21 M2± i.

with the mixed chain matrix

	

rn = (m 11 M12^ 	 (3.4/25 b)`
M21 M22

This mixed form is particularly useful when in a microwave network

statements in a voltage/current representation (for instance, with

concentrated components) must be translated into wave representa-

tion. The dimensionless coefficients 
mkl 

of the mixed chain matrix

can be determined as a relationship between the input, respectively

output waves at port-1 and short-circuit current, respectively open-

circuit-load voltage at port-2. The three chain forms indicated are

three forms of chain differing in principle. For each of the three

forms 3.4/23, 3.4/24 and 3.4/25, it is possible to find an inverse,

° In the literature the cascade matrix is often called trans-
mission m trix. But since its coefficients in general do not
have the physical meaning of transmission coefficients, we
submit the nomenclature developed here.
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provided the matrices k, C and m do not happen to be singular.

Other forms are obtained exchanging variables of state inside the

columns or, in the mixed form, exchanging port numbers. All of

these forms, however, do not result in new relationships and hence,

we shall discuss them no further. The three chain matrices k. C,

m are easily transformed one into the other because of their inter-

nal relatedness. To this end, first we shall recalculate the state

columns by means of the following system of orthogonal matrices

E	
(U 

I ) , J " ^'l	 U) ' K = (t)	 ) . L - (O 0) (3.4/26)

From the fundamental equations 2.5/12
Uk — ak + bk .
fk — ak — bk

for the variables of state at the same port k, we then obtain the

following column transformations, with the aid of the E. J, K, L

matrices:	 tti11 = (l, 
_ .l) ^al) (3.4/27&) , —' 1 (E — J) (b=), (3 .4/27 b)

( ) (	 /
K + L) (bs/ (3.4/27 c)
	 IUA s It ( 12) . (3.4/27 d)

as well as V21

From the voltage/current chain form

il/ k

we now obtain, with equations 3.4/27a and 3.4/27b

(E - J) (Qi) k (E -J) N1ll

and by inversion, the wave chain form

tbl) a (E 
—.I)- 1 k(E —•I) (bi) — A(E +J)k(E —•J) (

,a ^`al

with the iascade matrix

C - j (E +J) Jr (E -J) - J (k - kJ +-1k - JkJ). (3.4/28&1

By solving equation 3.4/28a for k(C), we obtain

k -;(E - J)C(E I. J) -.1(C +C.I -J(" -.ICJ). (3.4/28 b)

Fo1j.owing a similar procedure, we can interconverter the m and k

rza±r ix and the m and C matrix:

ORIGINAL PAGE 19
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»a— I(F. ^J,bri j(kK -LJkK).

k —(B -J )NaK — m K-J»#K

(3.4/299a)

(3.4j:0 b)

and

	

f^a = C (K + l.^ ^ s CK — CL) .	 (3.4/304%)

C — in ,K + L , - in K + in L .	 (3: 4/30 b)

In all three cases the coefficients ckl, 
kkl and mkl 

are obtained

as simple linear combinations of the coefficients of the corres-

ponding other matrix.

A similarly simple, inversion-free transformation between the

chain matrix and the scattering matrix is not possible.

We shall first consider the transformation of the scattering matrix

into the wave-chain matrix or cascade matrix. In the system of

equations

	

1)11 — `II I i 1 Y 1 12 a 2 . 	 (3.4/31 a).

b2 — -qsl al	 '!2 as 	 (3.4/31 b)

we solve the second line (3.4/31b) for al:

al : — dgi l An a. + a il b.	 (3.4/31 e)

and replace equation 3.4/31c in equation 3.4/31a:
bl - ("It - "11 "A l *22) Z2 + "11 "_i l br	 (3.4/31 a)

The two equations 3.4/31d and 3.4/31c then form, arranged after

the pattern in 3.4/24a, the wave-chain form. By comparison, we

obtain the coefficients ekl expressed in terms of the scattering

coefficients
cal — au — oil rill +n,	 Cu — •11 hi l	 (3.4/310)
ki - — till on,	 % — aui

We can see here that it is possible to build the cascade matrix

for 2-ports only if coupling exists bet-seen port-1 and port-2, i.e.,

when the transmission coefficients 8 21 p( 0. If, however, the cascade

matrix does not exist, then--because of their "linear relatedness"

with C--it also will not be possible to build the other two chain

matrices, k and m.

0 MAI' P G7"
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I

If we once again solve the cascade form (3.4/31d, c) with the

coefficients of equation 3.4/3le for the scattering form 3.4/31a,

b, then we shall obtain the scattering coefficients expressed in

terms of the cascade coefficients

*11 - C12 
Clil	

#12 — ell — X12 X1=1 ell	 (3.431 f)
du — Cil,	 on — — Cfil en-

With the help of equations 3.4/28 and 3.4/30, it then also becomes

possible to express the coefficients kkl and mkl by means of the

scattering coefficients and vice versa. These recalculations were

combined in Table 6 below.

TABLE 6. Relations between the coeffic-ants 	 ^ 
.019GINAL

 QkA,_-skl and 
ckl , kk1 l

 mkt of a 2-port

pit a
— det S

kll =
oil -• an + I --- det 3
'---	 -- -	 11	 Ict S

8!t 2a31
Pill	 2`

!1

C	 ac1!
*it

kl! =
J1t + l!! + I + dot S alt — detS

821 2841 pg.. _ - - 28- --
1

Col =
- en

k21 =

- all - on + I + dot S 1 -- 82t
=

831 1841
in 21	 -

2821 

°!z —
1

k!! =
—811+sn+i— dot S — I --an 

821 2+41 +++z! =	
2 8!t

C12 kit + k12 — ksl — ka M11

Cn k11+ kit +kst+kn
sit	

1712t	 M22

dot c 2 dot k 2 dot malt -

C!!
812

k11 + kl! + ktl + k=!
+1!	

Pi!t - Pia

824 =
t
--en 8!1 °

3
kll + k l! + k21 + ka

8!1 ,^ - -^. _	 -	 -Pi:1 __ .;,n

822 a
- Ctl-

e
- k11 + kl! -- k21 + ka - nllt - "Itt

C!! ktl + k12 + kst + ;!t
8!!	

—►h21 -pus!

ski	 Cki +kl	 kkl ski	 0 Pikl

For many switching tasks it seems desirable and appropriate to be

able to describe an n-port by means of chain forms also for pert

ro-mbers n > 2. Below we shall investigate and discuss the permissi-

ri � it,y of this extension and the always possible transformation
in'. the scattering form only in the wave representation (cascade

1

e. ,-V.

0
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a

To this end we first consider a branching to which can be assigned

an n-port with an even number of ports n - 2m (in agreement with

Figure 3/10a), and the 2m wave types or, respectively, ports can

be meaningfully divided into two groups with the same number of m

wave types, or ports, respectively. In correspondence to the pro-

cedure used in section 3 . 42 (cf. equation 3.4/7 and 3.4/8), we

shall combine the input, or respectively, output wave variables of

the same port groups into subcolumns:

:t l ^ ai

^m
(:3.4/32a)

am+ i

«n

bi

Bi —

Gm

and	 bm+1

Us

bn

^^NA P
4f poR 

QUA
(3.4/3: b)

thus obtaining the scattering form

Bi — S11 Ai + Six A&	 (3.4/338)

Bs = Ssi A,+ Sss As •	 (3.4/33 b)

Since in this case both port groups have the same number (m=n/2)

of variables of state, here all the matrices S KL will be square

and of m -rows. The equation of state 3 .4/33b can thus be solved

for instance for A l if only S21 is regular. We then obtain, in

analogy to equation 3.4/31c,

A i - - Sul Sn At + Su s Bs	 (3.4/33 c)

and, replacing this equation in equation 3.4/33a and rearranging:

Bi - ( Sis - Sii Sill Sts) As + S11 Sfi B=.	 (3.4/33d)

We submit, now, that a wave—chain form

Bi — C11 As + Cis Bs .	 (3.4/34&)
Al — Col As + Cs= Bs	 (3.4/34 b)

exists for the 2m—port to be built according to the same pattern

as the wave-chain form of the 2-port ( cf. equation 3.4/24a). The

submatrices CKL and the cascade matrix C are then obtained from

21
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the submatrices S KL by comparison of equdtlons 3.4/33c, d and

3.4/34a, b, as

CIL - Su - Su sui 8u	 Cu - 311 s:ii	 (3.4/35)
C=1 - - siii Su -	 Ca SA, .

The submatrices CKL -to the extent that they exist--will be as

square as are the submatrices SKL , and of m rows. The wave-chain

form 3.4/34 can conversely be transformed into the scattering form,

if only C22 '_s regular. Since, however, C22 is the inverse of 521,
C22 will be regular when S21 is regular, i.e., when the transforma-

tion from the scattering form to the wave-chain form was possible.

The submatrices SKL are then obtained in a corresponding manner from

the submatrices CKL'

S11 Cu CA,	 S1: r C11 - Cu Cni Cu	 (3.4138)
S21 - Cif ,	 Sn - - Cal C!1 .

To conclude, we now want to consider two more cases, in which the

port numbers in the two port groups are not equal. Here the trans-

mission matrices of the scattering form S 12 and S21 as well as all

submatrices CKL of a wave-chain form, are rectangular.

In the first place we shall consider an n-port where port number m1

of group 1 is smaller than the port number m 2 of group 2 (m1<m?)'

In the example sketched in Figure 3/10b (page 23), m l = 2 and m2 =

3. The submatrix S21 then has m1 columns and m2 rows and is rec-

tangular on end. If S 21 is also column-regular', then equation 3.4/

33b can be transformed into equation 3.4/33c by means of the so-

called left-inverse" G-1S?1 and thus we obtain the wave-chain form

from the scattering form. In equation 3.4/35 the inverse S21 must
be replaced by the left-inverse (€ 1S21' Here, G = S21S21 is the

Gaussian transformation of 521 ; it has m1 rows, is square and not

singular. All CKL have then m1 rows and m2 columns. All told, the

C matrix then has 4m1m2 coefficients, compared to the (M1 + m2)2

coefficients of the S matrix, where 4m 1m2 < (m1+m2)2.

9
Cf., for instance, [B3].
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With the transformation S - C, an information loss is thus incurred.

Since we had assumed S21 as column regular, its left inverse 4-1ST21

= C22 is row rsgular 9 (see footnote page 22).
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(1) port group	 (2) n—port	 (3) m ports

Figure 3/10. For the construction of chain-wa,
with 2 port groups:

a) number of ports of group 1 = number of
b) number of ports of group 1 < number of
c) number of ports of group 1 > number of

(4) example

ve forms of n- ports

ports of group 2
ports of group 2
ports of group 2

In order to now obtain the scattering form, again, from the cascade

form of equation 3.4/34, we would have to solve equation 3.4/34b

for B2 and ift thb process also eliminate C 22 by left-multiplication

with its left inverse. Since, however, for a row-regular,

23



i»

Upwr
e^

T 
a

rectangular matrix C22 only a right inverse' (se- footnote page 22)

exists, this transformation process is not possible. Hence, the

back-transformation C ♦ S is not possible in the case ml < m2'

Finally, we shall consider the case of port number ml being greater

than port number m2 . Figure 3/10c (page 21) provides an example

with ml	3 and m2 - 2. To begin with, we submit that a cascade

form exists. All CKL then have ml rows and m2 columns. In this

case, the rectangular matrix would be rectangular on end. Assuming

that C22 is column regular, it would be possible to perform a C S

transformation with a corresponding left inversion 
(CTC22 )-1CT -

S21 . The rectangular matrix S 21 with ml columns and m2 rows would

then be row regular and since for it only a right inverse exists,

in this case the transformation S 4 C would not be possible. On

the other hand, however, every physically fea3ible n-port has a cor-

responding scattering matrix S. From this we conclude that in the

case ml > in  the cascade matrix does not exist.. This is immediate

for the case m2 - 1: if we formally construct the left inverse for

the single row matrix 5 21 , for the S wo C transformation, then we
T

obtain, as the Gaussian transformation 
S21S21, 

a diadic product that

is singular and hence, not inversible.

These difficulties in the construction of the C matrix or its trans-

formation into an S matrix show that the wave-chain form is not

suited to the description of n-ports with two port groups with

different numbers of ports. For the treatment of cascade switchings

for such ports-number asymmetrical n-ports, we shall thus have to

develop methods in Chapter 4 in the wave representation that only

build upon the universally applicable scattering matrix.
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