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Abatreet’

The present paper deals with the investigation of-the hel%cgl flow.ln an
annulus between two coaxial cylinders a regards its stability against the
formation of helical vortices of the type known as Taylor's annular
vortices. Assuming the annulus to be small and the velocities to vary
linearly with radius, it is shown that the prohlem can he reduced to the
classical case of flow between two rotating cylinders. An appropriate

stability criterion for helical flows is derived from Rayleigh's stability
criterion applicable to such flows.
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STABILITY OF FLUID FLOW IN A CYLINDRICAI, ANNULUS
Hubert Ludwieg
1. INTRODUCTION

Consider a fully developed rotationally symmetric flcow in a
cylindrical annulus. In such a flow, there is no radial component
of the velocity, and the longitudinal and tangential velocity
components do not vary longitudinally or tangentially but depend
only on the radius. Thus, only two types of instabilities are
important.

The first type of instability arises due to separation of the
flow on the inner boundary of the cylindrical annulus and gives
rise to the so-called dead water. This instability has been
discussed by several authors [1,2] and will not be considered

here.

The second type of instability is fairly well known for the
special case of a fully developed rotationally symmetric flow
in an annulus in which the longitudinal velocity component
vanishes. This type of flow occurs in the annulus between
rotating coaxial cylinders. The case of inviscid flow has
already been discussed by Lord Rayleigh [3]. It was shown that

the circulation is unstable when the tangential velocity decreases

*Numbers in right margin indicate foreign pagination.
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faster than 1/r. The instability of similar flow when

friction is considered has been treated by G. I. Taylor [4] where
it has been shown that friction stabilizes the flow, i.e., the
stability limit is extended into the previously unstable fluid
flow region. For large Reynolds numbers (where the effect of

friction goes to zero), Rayleigh stability limit is reached again.

In this paper, the stability of a fully developed rotationally
symmetric annular fluid flow is studied for the general case of
non-zero longitudinal velocity component. Since we shall apply it
to a fluid flow with large Reynolds numbers, we shall consider only

the s:mple case of inviscid flow.
2. STABILITY CRITERION

Let us consider an inviscid fluid flow in a cylindrical
annulus between two coaxial cylinders which is fully developed and
rotatio..ally symmetric. The circulation is assumed to be result-
ing from the fact that a fluid whose axial and tangential com-
ponents depend only on r flows from a fixture V into the
annulus R (Figure 1). A radial equilibrium is considered to

exist in this flow at

L <
\L‘

-

— Y
-}

TF Ll
Figure 1. Cylindrical Annulus

egress (centrifugal force = force due to radial pressure gradient).
The fluid medium thus flows into the annulus without a change in
velocity. We shall investigate this flow for its stability.

(If the flow at the time of discharge from V is not in radial

equilibrium, it is reached in a short distance from V).



We shall use cylindrical coordinates r,¢,z and denote
the corresponding velocity components by Vr' V¢, Vz. Thus,

Voo V-V, Vo= Vo). (1)

Because the flow is considered to be frictionless (inviscid),

V_. and Vz need not be zero on the wal’s r=r, and r r

q
For brevity, we set

a.

i a =r,

v

and denote the velocities V¢ and VZ at the point r = I, as
V¢>0 and VzO' For simplicity, we further assume that
re—ri=dr<€ry. and that Vv

write that

and VZ are linear in r. We can, then,

¢

' Vi=Vietee (r—ry). (2)
V=Vt (r—ry.

In spite of these constraints, the fluid flow described by
Equation (2) is quite general. The flow is not irrotational and

is not governed by constant pressure.

Let us next consider the simple case of Vz = 0. In this
case, the flow is only in the tangential direction and so the
Rayleigh stability criterion is valid. This criterion states
that the fluid flow is stable when V¢ decreases slower than 1/r

or perhaps increases, for increasing radius.

Thus, in our notation, the flow is stable for

Cx e
>-1
vm. (3)
For,
€y To
<-1
V,.
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perturbations known as Taylor ring vortices appear and lead
to a quick change in velocity profile.

The occurrence of the Rayleigh stability limit V, pro-

portional to 1/r can be easily understood when a ring¢shaped
fluid element coaxial with the annulus is considered. Due to
rotational symmetry, parts of this fluid element are dispersed
radially, so that a ring shaped element having a larger radius
is formed. From the law of conservation of angular momentun,

this displacement results in a change in tangential velocity V¢

which is proportional to 1/r. If the velocity V¢ of the outer
fluid in the neighboring region decreases faster than 1/r, the
centrifugal force occurring in the ring dominates the restoring
force due to pressure gradients of the surrounding fluid flow
and thus causes instability. If V¢ in the outward direction
decreases slower than 1/r or even increases, the force resulting
from pressure gradients exceeds the centrifugal force, and the
flow is stable.

The case Vz=V i.e., c, = 0, does not lead to anything

’

new compared to t;g results of VZ = 0. We need only to cons’ ler

the flow phenomenon in a reference frame moving with a velocity

Vzo' It is clear immediately, that we have the same flow as in

the case of V20=0, and therefore, have the same stability criterion.
We now consider the case c, # 0. We could use, here, the

usual technique to derive a stability criterion, i.e., apply a

suitable perturbation to the flow and with the help of the

theory of small oscillations study the conditions under which the

perturbation increases with time. Relative to Rayleigh case, a

complication arises that, in addition to the generalization of

the flow, it is no longer justified to apply purely ring vortices

as perturbation (Taylor vortices). We need to also consider

perturbation due to helical vortices. These calculations can,



however, be performed economically if we could,by making a good
approximation, possibly reduce the problem to the Rayleigh case.

We consider the flow in a reference frame moving with a
constant velocity U along the z-axis. In this reference system,
we have once again a fully developed rotationally symmetric flow

in a ring annulus, having velocities and velocity-gradients

Voo Va=Va—U, cp ¢
respectively. The velocity U is chosen such that the slope of
all helically shaped streamlines of this flow is independent of
the radius r. The planes containing the streamlines which are
normal to the cylindrical surface are then purely helical. The
condition for U is thus given by

Ve -—-U _Va—u+c,Ar
Y 2rryg=-2_". - 27 (ry + 4r)

By approximating the solution to be linear, we obtain for U/V,,
and VyV.,

u __Vz.+ fz"olvc.

V,;—V,. l—é-;;'tlvn’ (4a)
b 6" zz. _ Cz '4V¢. ~
B0 T Ve 1—cprdVie” (4b)

where § is the angular slope of the streamlines relative to
the radius L in the moving frame.

Consider now a tube of streamlines which is formed from two
neighboring helical planes with slope § and the walls of the cylinder.
It can be seen that by changing the reference system, an almost
planar flow is obtained. This tube of streamlines is different
from those from the Rayleigh case only by the fact this tube is
also curved in a direction perpendicular to the streamlines. And,
as we advance along the direction of flow, this tube of constant
cross-section slowly rotates around its axis. It should be realized
that the stab_lity or instability of the Rayleigh flow arises due
to the interplay between centrifugal force and the pressure gradient.

OoRrIG £ {ORBI .
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It follows immediately that, under the assumption of narrow annulus
(Ar/roe<<l), only the curvature along the streamlines is important for
stability and that both deviations from the Rayleigh case discussed
above have no influence on the stability. We can, therefore, apply
the Rayleigh stability criterion, and introduce the following
effective quantities

Ty

Toel = "
costd’

- - -V
V = ! \/ £ e
el = YV B+ V=
Cref=cyco80+c;sind.

By setting these quantities in Equation (3), the following condi-

tion is obtained

Cy e Tpell _ LOY (('-, +(1' tg h) >-1
Ve V.. '

Using the value of tangent § from Equation (4b), we obtain as /137
stability criterion of our flow*:

Csro _ (card/Vid)*
Vie l—c,r./V,.> 1 {(5)

3. DISCUSSION (OF THE RESULT)

For reduction of the variables, we substitute for Vg4/roin
our stability calculation, the dimensionless velocity gradients

- Cs Ty - Csy 1
c’=V , Cp= 00
" Vae

The stability condition, then, becomes

Ev- E:' >—-1. (6)

1-¢c,
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Subsequently, it can also be verified numerically from the
differential equations for a friction free flow that helical
vortices which correspond to Taylor ring vortices, having velocity
given by Equation (4a) and slope given by Equation (4b) can

occur in the fluid flow when condition (5) is not satisfied. This
will be shown in the appendix.



The resulting stable and unstable regions are drawn in a ¢,, ¢:-

pPlane in Figure 2. We see immediately that for ¢ =0 ’

unstable

ORIGINAL PAGE 4
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Figure 2. Stable and unstable regions in
<.:;, Plane.

the Rayl=igh condition ¢,>--1 is obtained again. For CZ

values different from zero, the condition g >-1 (weaker

than potential vortex) is insufficient for stability. Thus, an
additional z-component of the velocity gradient C, functions
always as a destabilizer, irrespective of its sign. The stability
limit for C, values for which¢,>-1, is given by the straight

line ¢=1 , is shown in Figure 2. In this case, the neutral
equilibrium is reached by a distribution of the tangential
velocity component V¢, which corresponds to a rigid body

rotation. (V is proportional to r.)

¢

Let us consider the form of the unstable perturbation. It is
clear immediately by differentiation that it follows the
direction of wvelocity flow in the reference system moving with
velocity U. We thus have a stationary helically shaped vortex
whose slope is given by Equation (4b). 1In a ¢4 ¢ diagram (Figure
3), the direction o0f a helical vortex corresponding to the point P
having value ¢,¢é,- and consistent with Equation (4b) is given by
a straiqght line through the points P and R (coordinates 1,0), if the
¢ direction is considered as 8¢ -axis and the z-axis as ¢, . 1In
a stationary reference system, these helical vortices move with
a velocity U along the z-axis.
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Figure 3. Change in ¢,.;. values for an unstable flow

shown at point P.

Let us now consider an unstable flow which flows from a
fixture V into an apparatus, as shown in Figure 1. Then, the
perturbations will grow very rapidly and produce a momentum
exchange which will give rise to an effective velocity gradient
¢zt . The components of the gradient vector (¢.¢) along the
direction of the vortex decrease whereas those perpendicular to
it remain unchanged. The latter do not correspond to shear
but only to a rotation of the fluid. 1In ¢, ¢,-diagram (Figure 3),
the motion is therefore along the straight line through points
P and R.

At the stability circle (point Q), the momentum exchange
becomes stationary, and the velocity profile is now stable,
However, by some combination of normal turbulence, particularly
for large Reynold numbers, the velocity profile may possibly
change. 1In addition, because of the frictional effect of the
walls which cannot be switched off, the velocity profile will
change slowly duvue to presence of the walls, even after reaching
a stable point.

4, FLCW STABILITY IN WIDE ANNULUS

The calculations presented here are valid under the assumption
that the annulus is small (4r/r,€1), and that the velocity com-
ponents can be written as linear functions of r. When these

conditions do not hold, our stability criterion is no longer



directly applicable. In this case, we can, however, divide the
cylindrical annulus into a number of small ones of differential
width adr and apply our stability criterion to each of them.

The question, then, arises if it is possible to make a statement
concerning the total flow. It can be safely stated that our
stability condition is definitely a necessary condition for each
radius of the annulus. If this is not the case for an annulus of
given radius, then the flow in that region, as observed from a
suitable reference system moving along the axial direction, is
approximately planar, and unstable as shown for the Rayleigh case.
It may, also, be assumed that this condition is sufficient, since
for all perturbations involving a vortex of small radial extension,
the flow is stable when it is satisfied.

For perturbation due to vortices of large radial width, there /138
is a displacement in each of the small cylinders. This, in turn,
releases restoring forces as seen for the Rayleigh case, so that it
may be assumed that the complete flow is stable with respect to
these vortices. Formally stated, it implies that the flow is
stable, if and only if, the condition

VAN EAY
oo LWL

dr vV, _dVgp r (7

1 dr Vg

is valid for every radius r.

ORIGiHAL T 170 FY

5. POSSIBLE EXPERIMENTAL VERIFICATION OF POOR ¢ Aufi¥

In order to verify the stability criterion experimentally,
it can be so arranged that stable and unstable flows are
generated in an apparatus of Figure 1 and then the development of
flow profile along z-direction is measured. For a stable flow,
the velocity profile must remain stationary until disturbed by a
growth of the boundary layer on the walls. On the other hand,
a quick immediate change in velocity profile occurs over the
entire annulus for an unstable flow. Eventually, a stable final
position, as shown in Figure 3, is also determined from the fact
that after reaching this distribution, there is no change or only
a slow change in flow profile.



We could now think of directly observing the appearance of
helical vortices, and thereby, verify the stability criterion. This
would, however, fail for the apparatus shown in Figure 1, because
after the desired flow is generated through the fixture V, a number
of unstable disturbances occur immediately. These perturbations
grow concurrently and, therefore, do not lead to the development of
a distinct helical vortex.

The stability criterion can yet be tested in a completely
different way. We can use two sufficiently long coaxial cylinders
which rotate independently of each other, and can, in addition,
move relative to each other alony the axial direction. 1In the
middle part of the aperture, a fluid of suitable viscosity is intro-
duced such that no turbulence occurs. The desired flow pattern

having several values of ¢4 ¢ is obtained by a suitable choice of
L [
— =)  ORIGNAL PAGE 18
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Figure 4. Proposed apparatus for generating helically
shaped ring vortices

tangential and displacement velocities. The Reynolds number is
chosen higr enough that it has very little influence on the flow
properties. The remaining effect of the viscosity on the flow
profile between rotating cylinders can be easily estimated by
Taylor computation [4) because these results can be carried over
in our case in the same manner as for the Rayleigh case. For the
flow shown in Figure 4, the vortices should be observable just
like the Taylor vortices between two rotating cylinders. By
calculating the slope of the helical vortices and their displace-
ment velocity U, we can confirm the validity of our considerations.
Furtheraore, the appearance of unstable fluid flow should also
be reccgnizable by a quick change in velocity profile.

10



6. APPENDIX
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The Euler differential equations for the flow in cylindrical

coordinates are given by

dw, + dow, + ow,  w,’ w 0w,
T %0 o ' 3z
Owg dw, owy,  w,w, dwg

a T o +w"r0¢p+ s 5,

ow, ow, dw, ow,  1dp’
ot Ty, +w°’r0q7+wz dz ooz’
ow, w, 0w, OJw,

+ 04729,

a T, rog 0z

Superposition of the basic flow given by Equation (1) with a

perturbation having velocity componentsv,v, v, yields

w, =v,(r,@,2,t),

0p = Vo (r) + v, (r,p 2z,t),
w, =V, (r)+ o, (r,q,21),
p'=P(rV+plr.e.zt).

1 dp’
o o'
1 dp'
ere:

By inserting these components in the above differential equations
and taking into account that the basic fluid flow satisfies these

differential egnuations, and ignoring all quadratic terms in

v, v,. 0, We obtaian

We now make a trial solution for the pertubation velocities,

':;" + vw:);; - Z‘r’! v,,+v,?;;' - ; ‘3}:'
a';',+0¢;/r""+v°’?;;+ v"’v,-'rv,‘;";t=_ 19
LA S
RN

o riy’

(8)

11
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Here a and Yy ave real whereas 8 can be complex.

- ifez - »p—3n
v, = D,(r)e ®—3n

- { & -
Dp = Dy(r)e' =t F7P BN

v, = Dy(r)e'®: 7o A0

p=pr)ener e,

(9)

Thus, we apply

a vortex of the type given by Taylor vortices as perturbation;

however, it moves with a constant velocity and is helically shaped.

Substituting Equation (9)

in Equation (8) yields,

(-8i+v, "r'.'+v,ai)z‘;,—

2Vy, _ _1dp
r *  oa’
(—ﬂi+V¢}r’i+V,¢i)6,+
dVy Vo\. 1y..
+(,, *+ Q)v,=—- »Y—zp,
dr r or
(—[3|+V.,, i+V,ax)5,+
+dV,6 _ lai‘
dr O 0 P.

dv i" Y .- , &
dr'+ .+ , ito+aiv,=0.

Let us first consider the Rayleigh case, i.e., a fluid

(10)

flow without

the z-component and a stationary ring-shaped vortex as perturba-~

tion., We can then set
V.=

0,

dVv,

== == =0
PR R(d) =pPx

y =0,

Further we can, under the assumption that the ring aperture is

small (tr/r,€1), ignore o/r relative to other terms in the continuiily

equation and approximate

Vo ==Vgg, 1~

12

dv,

av,
for dr

R o - C
L X4 dr z

/139




Thus, we obtain

. 2V, 1dp
ﬂb"'—z,: Vo= T g dr’
. ORIGINA ,
- V‘H‘ H = L FA!'?- .
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. 1 ..
ﬂé”:""‘" eu'p’

do,
r

+ain,=0.

By eliminating other quantities, the following differential
equation is obtained for o,

&5, . 2V, Vi) -
drt’ "% [1+{3.jf To (c,,+ Ta )]v,:o. (1)

This differential equation yields the well-known sinusoidal
solutions which vanish at the inner and outer cylinder, only
when the second term in the angular bracket is negative. It
follows, then, that the stability condition is given by

v v,
""(c, + ‘") .0,
r 7

o

which is identical with the Rayleigh stability criterion.

We now consider the general case with non-zero Vz. By

using
Vo=V, Feplr—r,),
V, = V:n +cz (r — '“)

the expression -8i+V,(s/f)i+V,a; appearing in (10) can be rewritten
as )

—ﬂi+V¢’:i+V,¢i=(~ﬁ, +v,o2’ +v,,,a)i+
o

Y. Voo ) ‘ ,
+('oc, " ro+ac, (r —rodi + B3.

Setting

‘—ﬂy +Vw:' +Vpa=0,
[

(12)

V,
Yo=Y tac, =0,

Ty Ta To

13
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corresponds to defining the displacement velocity pfx/a and the
slope of the helical vortex and leads to the same results as in
Equations (4a) and (4b). Thus, we obtain

-ﬂii—V,ti-&-Vg’i:ﬂa- (13)

By eliminating from (10) the quantities p.v,.?: and again, omitting
small higher order terms, and using (12) and (13), we obtain the
differential equation for Vv

r
&0, Ll ! }
—a ). 14 , +
dr® x |L T (Cy — Vﬂd'«)’
ﬂbz ‘e T an)/'n"- U Ta | dr

The stability criterion follows from (14) in a manner analogous
to the Rayleigh case

t ot

1 1 [a, 2 (Yoo
, ViaiToCo -V.m/rol.c: teo ( To ) J=
R P N
| —E.,—l‘rx + ¢y 1) >0, (15)

which is identical to the stability condition (6).
7.SUMMARY

Stability of an inviscid, helically shaped fluid flow in a
cylindrical annulus is studied with respect to the formation of
helically shaped vortices using the well-known method of Taylor
ring vortices. Under the assumption of a small annular space, and
tangential and axial components V and v, varying linear}ly with
r, stability condition for the helically shaped flow is derived
from the corresponding Rayleigh case for the flow along the
tangential direction only. Denoting the average velocity along
the tangential direction by V¢ , the average radius of curvature
of the annular space by Loe and the dimensionless velocity gradients
by ¢, =dv,dr and =dVedr  yith ¢, and ¢- , the stability condi-
tion may be expressed as

14
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The stable and unstable regions given by this relation are
drawn in a 8¢, 82 plane in Figure 2. The Rayleigh stability
limit ¢¢=-1holds for ¢.=0 and corresponds to a tangential velocity

component V, . .oportional to 1/r (potential vortex). A finite

value for ¢. always degrades the stability. For ¢ >, , the
stability limit is given by “»=1 which corresponds to the tan-
gential velocity component V¢ being proportional to r (rigid
rotation).

The stability criterion is also given for a wide annulus.
The validity of this criterion is, however, only made plausible,
and has not been strictly derived.
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