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Classical free-streamline flow over a polygonal obstacle

Alan R. Eicrat

Department of Mathematics
Wichita State University

Lloyd AT.Trefelhen*

Department of Mathematics
Massachusetts Institute of Technology

Abstract

In classical.Kirchhoff flow, an ideal incompressible fluid flows past an obstacle and

around a motionicss wake bounded by frcc streamlines. Since 1869 it has bccn known

that in principle, the two-dimensional Kirehhoff flow over a polygonal obstacle can bc

determined by constructing a conformal map onto a polygon in the log-hodograph phnc.

In practice, however, this idea has rarely been put to use except for very simple obstacles,

because the conformal mapping problem has been too difficult. This paper presents a

practical method for computing flows over arbitrary polygonal obstacles to high accuracy

in a few scx._nds of computer time. Wc achiovc this high speed and flexibility by working

with a modified Schwarz-Christoffel integral that maps onto the flow region directly

rather than onto the Iog-hodograph polygon. This integral and its associated parameter

problem are treated numerically by methods developed earlier by Trefethcn for standard

Schwarz-Christoffcl maps.

A_S (M3S)SubjectClassification:prlmary76BI0;secondary30C30,6_05

Key phrases: free estimate,Kirchhoff flow, hodograph, Sch_rz-(hrlstoffel,conformal
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Notation

z: physicalspacecoordinate(regionboundedby obstacleand free streamlines)

w: velocity potential(slit plane)

x =_+x. (upperhalf plane)

="_"aw"hodographor conjugate-velocity(gearlikeregionor Riemannsurface)

12= -log[ (polygonalregionor Riemannsurface)

1. Introduction

Figure 1 shows the geometry we are concerned with. An ideal incompressible fluid

in the complex z plane undergoes irrotational flow rightward past a solid obstacle F.

Figure 1. Geometry of the Kirchhoff flow problem.

The complex velocity is denoted by v(z) and is normalized by v(m)= 1. The obstacle

consists of n solid line segments Fi= (zk_l,zk), l_k<n, bounded by vertices zk, O_k<-n,

and _ttcrdenotes the angle of rk counterclockwise from the horizontal. At an unspecified

stagnation point z. along F, the flow divides between an upper part passing over z, and a

lower part passing under z0. At z0 and z,, the fluid does not undergo inf'mite acceleration

and turn 180° back on itself; rather, it continues smoothly towards z= +o_ by flowing
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around a wake in which v=0. The curves of discontinuity separating the wake from the

moving flow are two free streamlines with stream function equal to zero, which we label

F_ and F+. The shapes of F_ and F+ are unknown a priori, but are determined implicitly

by the condition that all along both of them, Iv(z)] must be constant and equal to I. The

physical origin of this condition is the requirement that the pressure should have the

constant value p= throughout the wake, and be continuousacross F_ and F+; ]vl= I then

follows from Berno.uUi'sequation.

Here then is our Kirchhoffflow problem: given an obstacle F, calaflate the free

streamlines F_., stagnation point z., and velocity field v(z) for a flow of the type described,

together with associated numerical quantities such as lift and drag.

Free-streamline flows of this kind have a long history. They were introduced by

Helmholtz and Kirehhoff [8] in 1868-9 in an attempt to resolve D'Alemberfs paradox: in

ideal potential flow (with no wake), the pressure forces around an object balance exactly

and so the drag is zero [13]. Similar ideas apply also in the study of jets and cavities,

where the free streamlines typically separate a liquid from a gas. We will say very little

about the physical aspects of our problem, which is obviously idealized; for surveys of the

large mathematical and physical literature of wakes, jets, and cavities, see

[2_5,7,9,10,13,19]. For some recent computational work in this area, see [l_3,1q].

The Kirehhoff flow problem can be cast as a problem in complex analysis. Let

denote the hodograph variable, which is simply the complex conjugate of velocity:

 Cz)= (i)

Let G_ denote the region of moving flow bounded by the solid boundary F and the

unknown free streamlines F±. Since the fluid is incompressible and irrotational, v (if

interpreted as a .real vector) is the gradient of a real velocity potential ¢(z) satisfying

Laplace's equation. Equivalently, [ is the complex derivative of a complex velocity

potential w(z) = _(z)+i_b(z),

dw
= (2)

where the stream function O(z) is conjugate to €. The function w(z) is analytic in G_, and

maps G_ conformally onto a slit plane Gw= w(G_), shown in Figure 2a, where the slit

begins at the point w, =w(z,) at which the flowdivides to go around the obstacle.

Without loss of generality we can take w,=O, so that Gwis the slit plane C-R +.
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Figure 2. w andx domains.

To simplify subsequentmanipulations,it is desirableto reduceGwto a half-plane.

I_t x be a new complexvariablerelatedto w by

., = _(_-x.)2, , = _+x., (3)

as indicated in Figure2b, and writexk=x(wk). _ WER and x. E(-1,1) are constants

that will be chosen so that x0=-I and x, = 1. Now G_=x(G,,) is the upperhalf plane,

with [-1,1] correspondingto F and with (-oo,-1) and (1,_) correspondingto r_ and F+,

respectively. We writeXt =x(rt), X± =xCF:0.

The classicalhodographmethod of solution for Kirchhoff flowsbegins by calculating

aconformalmapofG_ontothehodographdomainG_=_(G,).Whatmakesthispossible

isthefactthatalthough6;,isunknownbecauseofthefre¢streamlines,G_,is(moreor

less)known.On thesolidboundary,t;hasknownargument,sincetheflowmustbe

tangential.Thisargun_ntis=--_/k_ror-_hJr,dependingon whetherthepointon the

•boundarylies downstreamof z, in the _on of z0or z.,respectively:

_-_t,_ for z EFt, x<xo,argO(z)= -'u= forz_rk, =>_.. (4a)

On the fre_s_, {;has known modulus:

l_:(0l= I forzEr_. (4b)

Thus U_isa "gearlike"regionboundedby circulararcsand subs_:tsofrayspassing

throughtheorigin.Ifwe introduo¢theIog-hodographvariable

n(O= -los_Cz), (s)
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then the correspondingdomainGa is boundedby verticaland horizontallinesegments.
Therefore a conformal map of Gx onto Ga can be written explicitly in the form of a

Schwarz-C_'istoffel integral. The classical solution method f_t calculates this map,

thereby obtaining the analytic relationship between _ and w, and then integrates (2) to get

w and _ as functions of z.

In practice, the only flows that have ever been obtained in this way involve very

simple obstacles F, such as the flate plate considered by Kirehhoff and certain wedges

[2,7,13]. As the number of sides increases the conformal mapping problem rapidly

becomestoo difficultfor analyticalsolutions. The followingarc the prindpal reasonswhy

this is true, and why even numericalsolutionshave not beencarriedvery far.

The first difficulty is that although the conformalmap onto any polygon can be

expressed by the Schwar'z-Christoffelformula, this formula depends on accessory

parameters or prevertices whose values must be determined numerically. This is the

Schwar'z-Christoffelparameter prablem. In the past, researchersconcerned with free-

streamline flows have not had methods available for solving the parameter problem

reliably. Our own interest in this project was motivated in part by the fact that the

second author has recently developed a numerical method that does this, computing the

map onto an arbitrary polygon typically in just a few seconds of computer time. This

method has been implemented in a Fortran package calledSCPACK [15,16].

A second difficulty is that even if the prevertices for the map fl(x) are known, the

further integration of (2) must be performed to recover quantities of physicalinterest. As

a result, Kirehhoff flow calculations based in the traditional way on the log-hodograph

domain may be time-consuming,requiring on the order of minutes of computer time.

The final and most serious difficulty is that except in the case of a very simple

obstacle, Ga is generally a polygonal Riemann surface rather than just a polygon, and

contains slits and/or branch points of unknown dimensions and even of unknown

topology. The occurrenceof a Riemann surfaceis in itself not a seriousproblem,for the

Schwarz-Christoffelformula can readilybe modifiedto handlesuch domains[4]. But the

presence of unknown dimensions and topology is more serious. To overcome this

problem,one can formulateand solve a generalizedSchwarz-Christoffelparameterproblem

[17] in whichsome of the conditionsthat determine_(z) involve dimensionsin G, rather

than Ga. We have successfully performed such calculations for certain geometriesand

hope to describethese results in a later paper. But it seems that this kind of calculation

always requires careful attention to the details of the gcon_try of the hodograph domain.
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As a result the constru_on of a single computer program to handle a wide range of

obstacles by the hodograph method seems to Ix:a difficult matter.

In this paper we combine the numerical ideas of SCPACK with an analytical trick

that appears in §4.1 of the book by Monakhov [10] (see also [18]) to calculate Kirchhoff

flows over arbitrary polygonal obstacles much more efficiontly than the classical

hodograph method l_rmits. The key idea is that since our flow problem has only a single

pair of free st_.amlincs mcctin,g at infinity, z(w) can Ix: writ_n in the form of a modified

Schwarz-Chdstoffd integral By working with this integral directly, we dispense with all

explidt consideration of hodograph domains, hence of Ricmann surfaces and unknown

slits and branch points, and we also avoid the need for a second integration. The result is

a computer program that solves the problem of Figure I for an arbitrary obstacle to high

accuracy typically in a matter of seconds, that is, at an expense comparable to that of

finding the conformal map onto a dosed polygon with the same number of vertices.

Section 2 describes our modified Schwarz-Christoffel map for z(w), adapted from

Monakhov. Section 3 outlines an efficient _ for computing it numerically.

Section 4 gives numerical results for some idealized problems. In later papers we will

consider in greater detail certain particularconfigurations of physical interest, and we will

also investigate models featuring a wake pressure pwake<p=, which is essential if one

wants quantitative agreement with laboratory data.

Our Fortran package for Kirchhoff flows is a modification of SCPACK called

KIRCH1. Machine-readablecopies of SCPACKand KIRCH1 can be obtained by

contacting the second author.
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2. The modifiedSchwan-ChristoffdIntegral

To put the modified Schwaxz-Ch_toffd formula in context, we begin with a

descriptionof the standardSdxwarz-Christoffdproblem. SupposeP is a polygonalregion

inthecomplexz-planewithverticeszk,l<k<n,and_xdesrk=(zk_1,zk)oricnWxlatangles

_k_rcounterclockwisefrom the realaxis, and define the externalangle paran_tcrs13kby

[31,= _/k+X--_/k, l<k<n-1 ' (6)

and I_.= _-.t.+2. (For conveniencewe write Zo=Z., z.+l=zl, etc.) Let z=z(x) be a

conformalmap of the upper half complex x plane onto P, with z(x==)E F1, and let

Xk=x(Ft,) be the interval (xk_l,xk)bounded by the prm,erticesxk_1=x(zk_l) and xk=x(zk),
dz

where xl<x2< "" <x,. Then argo(x) is a known function on all of R which has

constantvalue _k_ron each Xk, and jumpsby [3_rat xk:

arg _ = _ll_r for x E(x,,, _), (7a)

aarg_ = _k= at_=xk, l<k<.. (to)

The basis of the Schwarz-Christoffelformula is the fact that it is easy to write down the

function_- determinedby theseconditions, let gkbe ckfinedby

g,(x)= (x-x,)-_,, (s)

with the branch chosen Sothat gk(x)is positivefor x> xk. "rheagkhas constantargument

on R except for a jump by [3k_rat xk. To be _ecise, it maps Imx>0 onto the wedge
a.

boundedby the rays e-t_"R + and R+, as shownin Figure3a. It follows that -_-can be

writtenas a productof thesewedge maps,

_(x) = " '_'_ ""A e l_Sl_tx) = Ae'_'=H (x-x_)-', (9)
k-I k-1

• forsomeA>O.TheSchwa=-Christoffdformulaistheintegralofthis,
n

=c ', O0)
k-1

whereC isacomplexconstant.

ReturningtotheKirchhoffflowproblem,considernowthefunctionz(w)thatmaps
the.slit plane G_ of Hgu_ 2a onto the flow domain G, of Figure 1. Instead of knowing

dz
arg£ for all x_R, by (2)-(4) we now know arg-_ for x_[-1,1] and o_r_.
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g_k (-)
gk

(a) /._ "8k_

x*k > >gk(Xk)

hk(-i)

hk hk(eo)

(b)

' "_ _k _ ) hk(Xk) hk(1)

Flgnre 3, Mapping propertiesof the individual factors gt and ht in the
Schwarz-Christoffeland modifzd Schwa_r-z-Christoffelint_grands,respectively.

Def'ming [3t again by (6) and setting 13.= I, we can write

= . - (ha)arg--_ _._ for x x.,

Aarg£ = 13t_r at x=x k, lsk<n-1 and k="*", (11b)

I£1=1 xx=.i.e. Ix[>l, (11c)

Thus tim Kirc.hhoff flow problem is a modification of the Schwarz-Christoffel problem (7)

in which a ctmstant-modulus conditionrather than a constant-argument condition is

applied over part of the boundary. As soon as one formulates the problem in these t_rms-
d:

it becomes evident that here again, _ can be writtgn as a product. Let ht be ckfinexl by

1-_+V(1-rO(1-_bJ '
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and h, similarly, where the branch is taken so that hk(x) is positivefor x_ (xk,1).

Obviouslyhk has a singularitylike that of gkat xk, plus additionalsingularitiesat x = --.1.

In fact, hk maps Imx>0 onto the pie-dice-shapedregionboundedby the ray e-03'_R+,the

ray R+, and the circle ]z[= 1, as shown in Figure3b. (If [3k> 0, the regionbecomesan

inverted pie. slice with sides meeting at _.) Because every hi has modulus 1 outside
&

[-1,1], we can write_ as

_ 1 i_..rv, ..
dw { = e Il nktx).. (13)

Here and below, 1-I denotes the productover k=l,2 ..... n-1 and k="*", and _'. is

the analogoussum.

By construction,the functionon the right in (13) satisfiesall of the conditions(11)
except possibly(lld). We must choose x. so that (11d) is satisf'w,dtoo. To do this, note

that by an easy computation

arght(oo ) = -I_tcos-l(-xt),

with the analogousformulafor h,, and therefore

arg [e"_'_ _I,ht(Q°)] = _/n_ -- _-d_tv°s-x(--xt) ",

Condition .(11o) thereforeamountsto

_.=- _'._cos-_(-xD = 0,
e

that is,

x. = - ,._ - _13t,cos-l(-x_.) • (14)

The Kirchhoffflow can now be writtenas the integralof (13),

z(w)= C+ f wIIhAx')d'. (15)I

Forthisformulato beusablewewantto integratewithrespecttox ratherthanw. By
0), dw' can be replacedby W(x'-x.)dx', and we get

z(x) = C+ wf_ T(_ "dxx'-x*, "-"C+ We"_"J_.(x'-x,) IIht,(x')dx'. (16)
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TI_ factor(x'-x,)in(16)cancelsano_ fac_r(x'-xo)-_hiddentl_ inh..

Conse.._itmntlyz(x)hassingularitiesatxk,Osksn, butnotatx,. Wc canwritethe

integraloutinfullasfollows:

_-_._,.,,::__,.v(__ac___._/5_.f_ _.._,)
"_-_1-_:+V(1-_(1-_

TI_ is e_ent_y exI. (5) of p. 185 of [ 10 ], except that __ un_stff'uablyassumes

x,=0andhencewo=wn.
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3. Numerical solution procedure

The last section reduced the Kirehhoff flow Froblemof Figure 1 to the modified

Schwarz-Chfistoffclintegral (16). As always in Schwarz-Christoffelmapping,before one

can make use of this integralone must solve a parameterproblemin order that not only

theanglesbutalsothelengthsofsidesinG,comeoutright.Inthiscasetheparameter

probleminvolvesn-Iunknownprevertic_s{xk}:

n-1 unknowns: xi, x2..... Xn_1 satisfying -l<xl< • • • <x._l<l. (18)

The correzztvalues for {xk}will be determinedby an iterativc process. Supposethat at

•some step of this iterationa set of cstimates{xk}is available. Then wc first calculate a

correspondingvaluex. from (14), and a value W from the side-lengthcondition

x I

= I l-z0f
% *

derivodfrom (16'). This leavesn-1 furtherside-lengthconditionsto be satisfied:

xt.l

n-1 equ,ns: Iwf = Izk+l-zl, l_k<n-1. (19)
xl *

Thus the count is fight, and under suitable additional hypotheses, the existence of a

unique solution to (18)-(19) can presumablybe proved.. For general{xk}these equalities

will not hold, and the errors in themwill be used to devise a new guess {x_}for the next
iterate.

We now sketch how we carry out this processnumericallyin the Fortranpackage

KIRCH1. Most of the ideas arc adapted from SCPACKand arc discussedmore fully in

Solutionof nonlinear systemof equations. There is little reasonto writeone's own

programto solve (18)-(19);excellentrobustprogramsfor thispurposealreadyexist in the

publicdomain. Several of these arc basod on the "hybrid" methods developedby M. J.

D. Powcll, which combine a steepest descent algorithm in early stages with a quasi-

Newton algorithm as the solution is approached. One well-knownprogramof this kind is

the HYBRD1 code in tim MINPACKlibraryfrom Argonne NationalLaboratory,U.S.A.

All of cur own work has used insteadPowell'scode NS01A [11], which can also be found

in the HarwellSubroutineLibrary. Although one couldin prindple compute the Jacobian

matrix for (18)-(19) exactly, NS01A achieves supcrlincarconvergencewhile requiring

functionvaluesonly.Beginningwiththetrivialinitialguessof equallyspacedpreverticcs,
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KIRCH1 typically converges to machine accuracy in around 4n iterations.

Change of variables to eliminate constraints. The parameter problem as written is

constrainedby the prevcrtexorderingconditions(18). If these constraintsare ignored,

meaningless iterates will be generated and the correct solution will generally not be found.

However, it is a simple matter to eliminate the constraints by adapting the change of

variables introduced in SCPACK and also proposed by Rcppc [12]. Define

Yk = log xk-x_-_.._......_l,1_ k< n- 1. (20)
Xk+l--xk

Then there is a one-to-one correspondence between sets of unconstrained parameters

{yk}ER"-1 and sets of constrained parameters {xk} satisfying (18). To work in these

variables, one can simply write the function evaluation subroutine called by NSOIA so

that it takes as input {Yk}instead of {xk}. The effect of this is that in our experience so

far, KIRCH1 has converged to the correct solution for every obstacle F attemp_d.

Compound Oams-Jacobl integration. Obviously (16) must be evaluated

numerically except in the most trivial cases. Like the standard Schwarz-Christoffel

integrand of (10), the integrand in (16) has the form h(x)(x-x_) -_' for some analytic

function h near each prcvertex xk, l<k_n-1, and the numerical integration procedure

must take this singularity into account or it will be hopelessly inefficient. In KIRCH1 we

apply tim appropriate Gauss-Jacobi quadrature formula, whose nodes and Weights am

determined by calUng the program GAUSS(} by Golub and Welsch [6], a version of which

is also available in the NAG Subroutine Library. However, in the development of

SCPACK it was observed that Gauss-Jacobi quadrature alone is not enough to ensure

accurate integrals, because the exponentially large crowding factors common in conformal

mapping often lead to one prevertex x/being so near another one xk that the associated

singularity strongly affects intervals of integration ending at xk (see also [12]). The

• solution devised there was to divide the interval into subintervals on which Gauss-Jacobi

or pure Gauss (-Legendre) rules am applied, with the lengths of these subintervals chosen

dynamically in such a way that none is ever longer than the distance to the nearest

singularity [15]. This is what is meant by compound Gaussdacobi quadrature. We

rexonm_nd the same procedure forKirchhoff flow computations. It has proved highly

effective in KIRCH1, where we consistently obtain integrals accurate to around d digits

when2d is takenas thestandardnumberof quadraturepointsperinterval.
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Numerical integration near the separation points. At tl_ separationpointsx0 and

xn, the integrandof (16) has a singularitythat is not "simplyof Gauss-Jacohitype, for

althoughthe boundaryof G, does not turn a cornerat these points, it changes abruptly

from a straight scgn_nt to a smooth curve. Again the singularity must be treated

properlyif the-integrationis to be efficient. To determineits form, note thatat x0, say,

the boundaryof the log-hodographdomainGn defined by (5) consistsof an intersectionof

a vertical and a horizontal straight line segment. Tberefore l_(x) has the form

n(x)=a(xo)+h(x)xV_'_-x0nearx0withh analytic.It followsthat th_intcgrandof (16),
say H(x), has a singularityof the same type as en(x)at x0, i.e. H(x) = h_o) for some

new analytic function h. To integrate this, introduo_a new variabley = _v_"x'-x0.Then

J'H(x')d_= J"2yZZ(f+x0)dy, (21)
xo 0

and the integrandon the.fight is analytic at y = 0, so it can be treatedby Gauss-Legendre

quadrature.We apply_ rule in the usualcompoundway.

Evaluationef the Inverse map. Equation (16) gives z as a function of x, which is

what is necdcd for solving the parameterproblem or producing plots of streamlinesand

¢quipotontial lines as in the next section. To determine the potentialor wlocity at a given

point in space, however, one needs to cvaluat_ the inverse map x(z). The obvious

approach to this is to solve the equation z(x)= z itcratively for x by Newton's method.
dz

Since _- is knownexactly as the intcgrandof (16), this iterationcan be carriedout very

efficiently. In practiceany reasonableinitialguess for x typicallyleads to convergencyin
3 or 4 iterations.

Computationof drag and lift. By BcrnouUi'sequation,the pressureat a point z EF

acts in the normaldiw_on pointinginto the fluid and is equal to to _-[v(z)[2= -_, if we

assun_ the fluid has density 1 and take the pressurefor v=0 as zero. Thereforethe total

force on a segmentof r boundedby z_and z_is

tb % xb %

= = = (x-_,)_C_)dx " -_,_ Cx-_,)_C_d_.(22)

Now aspointedout in sightlydiffc_nt formulationsby I_cvi-Civitaandby __ (s_

[5], p. 370 and p. 350), this r_t hasa _mnr_ble interims'elation._dn_ T(x) mal_

(-=,-1) onto anarcof theunitcircle,it €_mbeanalyticallycontintwAby rcfl_tion to a
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f_m_io__inth_low_rh_ _-p_ d_f_ byth_form__(_)=_/_(_for_<0.

Thus (22) is equivalentto

xb

o,b 2 _. _(x) " (23)

i
By (16),if_were_,thiswouldbea formulafor_(z_-z_).Inotherwordstodetermine
flow

F_,b , we have reflected r acrossth_ frec streamline F_ into a new obstaclel_, and each

force along F correspondsto a distancealong l_:

FflO_v,_,_,= i(_b-_o). (24)

This interpretationof the forms on F suggests immediately-howto compute them

numerically:one calculates th_ dimensionsof l_ by the usual compound GaussJacobi

quadrature procedure, making usc of th_ branch _ instead of _ and of Gauss-Jacobi

formulasbasedon exponents 13k= -f3_.

In the wake, the pressurehas the constant valtm correspondingto Iv=l= 1, so the

forces are given by

rb % Xb

F_ _.= _f _ = _wr(_-x.).
o,_= 2_,_(_) -_-g,_(_'-----7_ = _-(_-_o)' (_)

where we have assumed that the Wakelies to the left as F is traversed from z. to zb.

From (23)-(25) it follows that the total form on the.obstaclefrom both sides is

i .
F = _"__ = _(z.-_.), (26)" O,n _antO

sino_s0= _0- It is customary to resolvethisnumberinto its components,

F = F_+w_ = (c_+c,)r., (2_)

where the drag and l(ft coefficients CDand Or.are defined in terms of some reference

din_cnsionL of F, such as its total height or length.

Together, [ and _ define a single-valuedanalytic function [ on C\[-1,1], and the

force can equivalently be obtained by integrating (25) dockv,dsc around any contour

enclosing [-1,1] in this don_:

iw$ (x-x.).

Clearlythis number is equal to 2_i times an appropriateresidueat 0%but in practiceit is

just as convenient to obtainF from(26) by computingintegralsfor._, andz,.
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4. Computedresults

To test the accuracy of KIRCH1, we have compared lift and drag coefficients

computed by it with various values that are given in the literature. FLrstwe considered

three geometries whose exact solutions am known: the flat plate due to Kirchhoff in 1869

[5, p. 329], the inclined plate due to Rayleigh in 1876 [5, p. 330], and the symmetric

wedgedueto Bobyleffin 1881[9, p. 104]. In thesecasesKIRCH1reproducestheexact

values CD and Cr to many digits. Then we considered certain geometries for which

numerical solutions have been published: an inclined plate with separation from the back

face studied by Chaplygin and Lavrentiev in 1933 and by Sekerzh-Zenkovich in 1934 [7],

an asymmetrical wedge studied by C. C. Lin in 1960 [20], a symmetrical 4-pie__ wedge

studied by Wu and Wang in 1964 [20], and a plate with spoiler studied previously by the

first author [3]. (The values tablulated under the heading "LS" in [3] are in error, and

were replaced for this comparison by Elcrat's pmviousiy announced corrections.) We also

considered a circular arc of half-angle 55°, studied by Bredetsky in 1923 and Schmieden in

1929 [13], which we approximated by inscribed polygons. In all of these cases KIRCH1

reproduces the published values Co and CLup to small discrepancies which we attribute to

the published sources, except that the numbers of Sekerzh-Zenkovich reported in [7]

appear to be wrong.

On the basis of these tests and other evidence, we believe that KIRCH1 can reliably

compute flows to arbitrary aceumcy over arbitrary polygonal obstacles with up to one or

two dozen vertices. The number of correct digits obtained increases roughly linearly with

the number of Gauss-Jacobi quadrature points per interval, and therefore the accuracy can

be doubled by roughly doubling the computation time.

We will now present some new Kirchhoff flow calculations of our own, summarized

in Figures 4-9. Our purpose in presenting these examples is first, to demonstrate visually

that the ideas described above really work, and second, to record some further numbers

for comparison with future experiments. Examples of more direct physical interest will be

•considered in later papers.

Each figure shows the obstacle F together with a system of streamlines at invervals

A¢= .1 and equipotential lines at intervals A¢ = .2. These curves are obtained by

mapping a rectilinear grid in Gwconformally into G,. The first thing to notice in looking

at the figures is that evidently the Kirchhoff flow problem has indeed beensolved -- for

along the free streamlines, the equipotential lines am in each case evenly spaced,

signifying constant flow speed. Moreover, since the successive lines are separated by
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distances of .2, the speed has the correct value 1. By contrast, note that in the examples

withlargedragsespeciaUy,theseparationbetweenadjacentstreamlinesor equipotentiM
linesin theinflowendof theplotsisvisiblygreater.

Theadditionalshapeshowninsideeachwake(inFigs.6 and8, belowthe wake)is
thereflectedboundary1_ describedin thelastsection.Longsidesin 1_correspondm high
flowspeeds.Thesegmentsof 1_ that comeoutespeciaUysmallarethosealongwhichthe
fluidisnearlystagnant.

Eachfigurelists the computeddragand lift coefficientsand parameterW, all of
themprobablyaccurateto the six digitsgiven. Thenumberof stepsin the iterative
solutionof the parameterproblembyNS01Ais alsolisted. Thetotalamountof workfor

solvingthe parameterproblemscalesroughlyas n2 timesthis numberof steps, and for

drawingthe plot, as n2 times a largeconstant[15]. A convenientand machine-
independent way to measure the computer times for these tasks is to count the total

number of complex logarithms calculated in all products (17) during the computation, for

these calculations turn out to dominate the total computer time. In each figure the f'_t

logarithm count listed corresponds to the solution of the parameter problem, and the

secondto theconstructionof the plot. Thecountsam approximate.

It remains to state the dimensions and reference lengths L of the various obstacles,

and to make a few comments on each.

Figure 4: fiat plate. This is the problem treated by Kirchhoff, whose solution can

be found in several of our references, e.g. [5]. The plate has length L = 1. The exact

values for Co and W am 2¢r/(4+cr) and 2/(4+¢r), respectively.

Figure $: wedge. Here the plate still has length L = 1 but has been bent at the

middle, with the lower half inclined at an angle 45° and the upper half at 30°. The

computed stagnation point lies on the lower face at a distance .017348 from the vertex.

• Even simple wedge problems of this kind cannot be solved analytically.

• Figure 6: plate with separation from rear face. This obstacle, motivated by the

model proposed by Chaplygin and Lavrentlev mentioned above [7], consists of a plate of

length L = 1 inclined at angle 30° that bends back 180° at the leading edge into another

plate of length 1/2. In other words, it is an inclined plate with separation prescribed at

the middle of the back face. Note that the sharp edge in F maps to a broad channel

extending to m in l_. The stagnation point lies at a distance .193308 from the leading

edge.
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Figure 7: plate with spoiler. Here a spoilerof length .2 at angle 45° has been added

tothelastobstacle,formingthege.oraetryconsideredpreviouslybythefirstauthor[3]

andalsobyBassanini[1].Thestagnationpointmovesuptoa distance.090124fromthe

leadingedge, and the singularitythere weakensconsiderably.

Figure 8: equilateral triangle. This obstacle is a symmetricalequilateral triangle

with sick:lengths L = I/2, having four vertices all told since the two separation points are

mathematicallydistinct. The flow crossesover itself, hence is nonphysical. We give this

example to emphasizethat nothing in our formluiationrequires that the Kirchhoffflow,

or even the obstacle itself, be embeddablein the plane. We have also computed some

extremelynonphysicalflows over variousmore exotic obstacles,but there is no space to
presentthemhere.

Figure9:charm bracelet.Finally,we includethis13-gon,whoseaerodynamic

importanceislimited,toemphasizethatthemethodsdescribedinthispaperworkfor

arbitrarypolygons. The threestraightlegs, inclinedat angles45°, 90°, and 30°, each have

length 1/2, and they meet each other at distances .15 and .1 above the square and the

triangle, respectively, both of which have have side lengths .15. The reference length is

L = 1. Note that the sections _1-_3and _-_10of 1_ are so small, since the fluid is nearly

stagnant there, that they are scarcely visiblein the plot.
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n = 1 # steps: 1 # logs: 1000/9000

CD = .879802 CL = 0 W = .280050

Figure 4

Figure 5
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n = 2 # steps: 9 # logs: 1100/18000
CD = .000575 CL = 2.266279 W = 1.459669

Figure 6

n = 3 # steps: 17 # logs: 2600/36000

CD = .162420 CL = .635514 W = 1.141775

Fiqure7
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n = 3 # steps: 13 # logs: 1500/29000

CD = .386738 CL = 0 W = 2.150311

Figure 8

n = 13 # steps: # logs: 319000/265000

CD = .428060 CL = -.044866 W = 1.159328

Fiqure 9
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