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r l'	 ABSTRACT

Alternative methods, for the rotor—dynamic and sensitivity analysis of

large rotor systems are examined. The methods are assessed for their

ability to utilize accurate models of reduced size along with effective
t

procedures for describing the dynamic behavior of the systems.

Frequency response-based techniques are developed for determining the

steady state response to imbalance of the SSME turbopumps and the related

Vii !	 eigenvalue problem.	 In these techniques, the rotor and housing are

represented by reduced receptances associated with their coupling points.

s
The housing may be described by all of its normal modes within a frequency

range of interest. The effects of truncated higher and lower modes are

accounted for in an approximate manner. A reduced model for the rotor can

be formed through an exact dynamic reduction to the degrees of freedom at

the connection points to the housing. Alternatively, the reduction can be

accomplished using modal representation of the nonspinning rotor. The

reduced impedences (or receptances) of the rotor and housing are assembled

r!	 through the impedances of the coupling elements to form the turbopump

system, The size of the resulting system impedance (or receptance) is that

of the number of the degrees of freedom (or forces) at the coupling points.
E

A procedure is described for determining the sensitivity of the

f	
coupling forces to changes in the coupling elements and rotor speed of the

i

turbopump systems. In addition, an eigenvalue sensitivity analysis
R

technique is adopted for application to the systems.

Computer programs were developed for the numerical implementation of

the impedance and eigenvalue sensitivity formulated in this study.
t

Finally, recommendations are made concerning further developments and

requirements for other types of analysis.
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NOMENCLATURE

List of the main symbols
ak	 ^

SUPERSCRIPTS

* the conjugate of a complex quantity

indicates modified from a given variable t'

a bar over a quantity indicates complex quantity

belongs to seals

a dot over a quantity indicates differentiation with respect to time

T the transponse of a matrix
i

SUBSCRIPTS'.;
4

b combined effects at bearings

B refers to bearings u

P I

c refers to turbopump case ('sousing)

R refers to turbopump rotor:

I refers to intermediate (coupling) components, 	 such as seals, q 6
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j particular element of a vector

Imb imbalance locations on rotor

k kept ;. y

s for seals

r reduced out

a
A

t
X,Y components in the X and Y directions of the inertial coordinate system j

XYZ

x,y components of a vector in the x and y directions of the rotor-fixed x,
y axes

XZ, YZ	 elements in the XZ and YZ planes
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Brackets

[	 ] square or rectangular matrix

diagonal matrix

},	 (	 ) column matrix

- 1
[	 ] inverse of a matrix

[	 ]T transpose of a matrix

VARIABLES, PARAMETERS AND CONSTANTS

(a} position vectors of imbalance masses on rotor

[A] matrix of undamped normal modes

[C] damping matrix

[-Cc,] damping ratios of free housing

rDR^ matrix of velocity dependent coefficients for the rotor model

[- ER"] damping ratios of free-free rotor

{F} force vector

[G] flexibility matrix

i imaginary number 3-1

[K] stiffness matrix

[M] mass matrix

{q} vector of generalized coordinates

{PR} vector of imbalance forces

{R} physical displacements vector

[T] transformation matrix to reduce coupling forces on housing and
rotor in terms of those on the rotor

[Y] receptance (dynamic flexibility) or generalized receptance matrix

[,Z] impedance (dynamic stiffness) matrix

complex eigenvalue of coupled system

V
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matrix of frequencies of undamped housing or nonspinning rotor
4

rotor spin speed about Z axis, rad/see.

Af

oomp3ex eigenveator of turbopump system
s ,^

displacement vector of the coupling points on the rotor 	 f'
R'

displacement vector of the coupling points, and of the points 	
?11

of application of the imbalance forces on the rotor
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1.	 INTRODUCTION	 ;;t

d
1.1 Background

The dynamic analysis of models of l;,rge rotor systems, such as the

turbopumps of the SSME (Space Shuttle Main Engine), may involve excessive 	 4
computations and large round-off errors. Use of reduced size models for

the systems is,	 therefore,	 highly desireable. 	 To that end,	 the more

4 frequently used methods include modal representation C1 J, substructure

techniques [2a and static reduction techniques 133.

For large complex rotor systems, 	 various modeling and analysis tech-r
e

niques vary in their ability co accurately describe 	 the systems' behavior.

This ability depends mainly on the configuration of the systems analyzed

and the forcing conditions as well as the particular results sought.	 For

the analysis of the turbopumps of the SSME, certain distinct character-

istics should be considered. 	 Accurate modeling of the housings requires

!.i
representation by relatively large number of degrees of freedom. 	 Also, the

x

housing is unsymmetrical about the spin axis of the rotor. 	 In addition,
F

[€ engine test results have tended to show the presence of significant coupled
r

rotor/housing modes. 	 The coupling occurs through nonconset ,vative velocity w

dependent gyroscopic and viscous forces and couples. 	 Finally,	 experience

has shown that predicted onset speeds of instability tend to be remarkably

sensitive to small changes in the modal representation of the housing.
i

Clearly, a strong need exists for a more thorough and careful con-

sideration of the representation of the housing structural dynamics model

and of the rotor /housing coupling procedure.	 For stability analysis the d,

ability to predict how changes in the coupling parameters effect the com-

plex eigenvalues of the assembled rotor/housing turbopump is equally

1

v
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important. An understanding of the nature of changes in the system elgen-

'	 values due to changes in the model parameters can be helpful in quiding an

experimental/analytical effort toward resolving any discrepancies between

test and analysis results. Calculated parameter sensitivities would also

 be useful in evaluating design alternatives and in handling uncertainties

in the input data.

1.2	 Objectives and Scope

This study was mainly initiated for the purpose of developing improved
f

dynamic analysis and modeling of large rotor systems. 	 Specifioally,	 the

main objectives of the study were to;

(1)	 address the problem of star+aural dynamic modeling of the large }

housing of Lhe SSME turbopumps and its coupling to the rotor.

(2)	 develop accurately reduced models and efficient procedures for =t
t	 -.

determining the response and stability of the turbopumps of the
u

a>

SSME.
i

(3)	 develop and/or apply selected sensitivity analysis techniques to

determine the effect of variations in coupling parameters on the .<Y-.
k	 +r

stability and forced response of the turbopumps.

The main results of the study are outlined in this report. 	 Following
i

a comprehensive assessment of modeling and analysis methods for large rotor
A	 )

systems, alternative techniques were developed for the study of the steady

state response and stability as well as parameter sensitivity of the SSME
s

turbopump systems.	 The analysis	 is , limited to being linear and the

P
response considered only concerns steady state conditions under rotor

imbalance.

^
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2. REVIEW OF ROTORUYNAMIC ANALYSIS OF LARGE SYSTEMS

2.1 Modeling and Analysis

Various Analysts have proposed and utilized different procedures in

obtaining the response and stability of large order rotor systems. The

motion of the systems was described by physical coordinates, generalized

coordinates or combinations of both.

Analysis strategic^ may be recognized as falling under one of two

basic classes, Those using the complete system and those using the

individual components of the system, together with appropriate coupling

procedures. For large systems, both strategies call for reduction of the

size of the models involved. An assessment of existing modeling and

coupling techniques as related to analysis procedures used is presented in

what follows. Also, a brief account is made of the associated eigenvalue

and response sensitivity to changes in system parameters. The review is

restricted to linear rotor systems.

2.1a Complete system-based methods

Starting with a full scale model of the total system, several methods

have been devised for reducing the model's size for analysis purposes. A

static reduction technique was introduced by Guyan [43 in which a given

system is described by a selected subset of "master" degrees of freedom.

The remaining degrees of freedom, called "slaves" are eliminated. The

elimination is achieved through a transformation matrix formed from the

associated static problem. The masters are capable of accurate representa-

tion of the lower modes of the system. However, the master coordinates

must be carefully selected otherwise some of the lower eigenvalues of the

3
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system will be lost. Henshell and Ong [5] proposed ail automatic technique

for choosing the master coordinates. The criterion for the choice is based

upon the corresponding ratios of the diagonal elements of the stiffness and

mass matrices. A slave degree of freedom corresponds to a large stiffneas

to mass ratio. This is so since in a Guyan reduction it is implicitly

assumed that the mass 'terms corresponding to slave degrees of freedom have

negligible effect on the mode shapes. This leads to the conclusion that

either the corresponding masses are small or, that the stiffnesses are

large.

Rouch and Kao [3] extended the Guyan static condensation technique to

the analysis of simple rotor-bearing systems by accounting for gyr-laropic

matrices. The selection of master degrees of freedom was made taking

advantage of the knowledge of characteristic beam bending modes of the

rotor. I J , Y: ears, as concluded by the authors, that the rotor-bearing

sysZema	 a amenable to this type of reduction because of their 'nominally

one-dimensional configuration. No assessment of the resulting accuracy

with various types of analysis was given. Nordmann [6] attempted to mini-

mize the uncertainties in the selection of the master degrees of freedom in

the static condensation technique. This was achieved by applying the

reduction technique to an arbitrarily divided rotor system and then

assemble the reduced substructures to form a reduced system. The procedure

is very laborious and no guarantee of accuracy is apparent.

Downs [7] proposed a reduction method which produces frequency depen-

dent mass matrices. Strategies for selection of master coordinates were

given which allow for progressive improvement in the selection. The method

4
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was used to obtain the eigenvalues of a given system up to an upper t

frequency limit.

A different approach for the reduction was recently advanced by

several investigators. The main characteristic of the approach is to

^w

perform an exact reduction by replacing the stiffness matrices in the

statric approach by that of the dynamic stiffness, 	 or	 impedance	 matrices.	 a

In an eigenvalue analysis (or steady state response analysis), 	 the reduced

system will be dependent on the eigenvalue (or the forcing frequency) under
i`

consideration.	 Iterative procedures are then used with this "dynamic

r condensation" method in order to calculate the eigenvalue of the system.

E No approximations are made in arriving at the reduced model. 	 This reduc-

tion however is achieved at the expense of requiring of more involved
9

oomputation.	 Several authors [8,9 11 proposed calculation procedures for

. l determining the eigenvalues of undamped, conservatives structural systems.

t,''
,r In an attempt to alleviate the problem of frequency dependence, of the

dynamically reduced models, Fricker [101 devised a method in which the

frequency-dependent	 terms	 are	 retained	 implicitly	 by using dynamic

stiffness matrices defined at a number of fixed frequencies. 	 The dynamic

f

stiffness matrices may be condensed efficiently to a relatively small

number of "master" coordinates using a front solution algorithm.	 The

method appears of promise, although it is not apparent how to utilize it in

conjunction with nonconservative gyroscopic systems.

A different approach for the anals- sis of mechanical structures is to

describe the structures by their modal coordinates. A significant advant-

age of representing a structure by modal coordinates is that the repre-

sentation forms the basis for size reduction of the structure's model.

5
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This may be achieved by retaining only a small number of modes in c speci-

fied frequency range, usually selected from among the lower modes. However,

the particular modes which would influence the behavior of a given system

depend on the type and location of the external loads. No general quide-

linas are available in that connection.

Childs [11 1 used undamped normal modes of a given rotor to perform

transient rotordynamic analysis. The modes selected are those of the lower,

modes of the complete system involved. No allowance was made for the

truncated modes. Choy et al. [12] used complex modal analysis to determine

the unbalance response of damped rotor systems.. For simplified cases

considered, the complex modes of the system were obtained from those of the

undamped normal modes of the system.

2.1b Subsystem-based methods

A reduced size model can be obtained for a given system by first

performing the reduction on the subsystems and then assemble them to form a

reduced system.

Hou 1131 devised a scheme in which the subsystems involved are repre-

sented by truncated sets of their free-interface modes. A transformation,

derived from the displacement compatibility at the connection points of the

substructures, is then applied to their modal equations of motion to arrive

at a description of the motion of the assembled system. This and similar

procedures are labelled modal synthesis techniques. Li and Gunter [141

utilized Hou type approach to calculate the vibrations of large multi-

component rotor systems. They also conducted an evaluation of the number

of modes required to yield acceptable accuracy for the unbalance response

of a two-spool gas turb',ne engine [15]. In general, depending on the type

6
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of structure, a significant number of modes might be necessary to yield

4

	

	
response information of acceptable aaeuracy at specified locations of

interest on the structure. These locations could be those where coupling

or interface to other structural components occurs.

f	
Several methods exist in the literature which offer procedures for the

improvement of analysis accuracy for a given number of retained modes.

Some of these techniques utilize modal coordinates obtained with points of

interest on the structure free (free-interface methods), and provide means

for accomodating the effects of truncated higher modes in approximate

manners. MacNeal [161 suggested a method in which the static contribution

of the truncated modes is incorporated. This accounts for the missing

flexibility effects (residual flexibility) due to truncation. The method

can lead to significant improvement in the convergence in the solution for

Y

	

	 the dynamical problem. Childs and Bates [17] applied this technique in

determining the transient response of a rotor and reported significant

increase in solution accuracy for a given number of modes.

r	 A method, analogous to that of MacNeal, is also outlined in the

literature to account for the truncated lower modes of frequencies below

the frequency range of interest. The technique is described by Klosterman

and McClelland [181, in which an approximate representation of the lower

mode contribution to the structure response is proposed and labelled

"inertia restraint". Further improvement of Hov's technique was introduced

by Rubin [19]. Rubin proposed a method in which the first order approxima-

tion of MacNeal is utilized to construct a pseudo otatie response of a

substructure, acting within a structure, which includes inertial and dissi-

pative contributions. Noah [201 has shown that inclusion of these second-

7
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order effects may drastically improve:	 (i' the modal representation of a

substructure for the modal synthesis of a structure,	 and (ii) the damping

synthesis for the assembled system.

A further reduction of a modal description of a subsystem, in addition

1
to that achieved by imposing lower and upper cut-off frequencies, can still

4	 i^

be accomplished by selecting certain modes from among those within the
1

specified frequency range. 	 Tolani	 [21] proposed a criterion based on the
,^	 r

strain energy of a subsystem, whereby an upper limit on strain energy is
t
S

set and only the modes having strain energy below this value are con-
.

f
sidered.	 An approach for selecting the modes of a subsystem that are

1	 t,>

important with respect to the motion of another given subsystem is due to

{ Morosow and Abbott [221. 	 Unfortunately,	 the method is onlyy	 y 	 to
i

_ weakly coupled systems.

An alternative to using free-interface modal coordinates is that using

tF

t	 I "fixed-interface" methods.	 In this method,	 the structure is represented by

a truncated set of lower modes obtained with points of interest (usually

tX",

those of the coupling points to other subsystems) on the structure com-

pletely fixed.	 The retained modes are complemented by static "constraint,

modes" obtained as influence coefficients corresponding to the points of

interest on the structure. 	 Glasgow and Nelson [23] extended this technique

(introduced in [241 and [251) to nonconservative systems and applied it to

the dynamic substructure coupling of various rotordynamic systems. 	 A dis-

advantage of this type of approach is that for systems with large number of

coupling points among the components, 	 the approach suffers the problem of

introducing higher frequencies resulting from excessive number of con-

straints imposed at the coupling (or boundary) points. 	 In a transient

8
0
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analysis, this will necessarily result in much smaller time increments and

consequently will lead to excessive computational time and larger round-off

errors.

Complete treatment for a generalization of free-interface methods to

nonconservative systems, analogeous to that of the fixed-interface method,

[23], i s still lacking. Craig and Chung [26] utilized first order state

space formulation of the equations of motion to represent a given component

C
by a truncated set of its complex modes. Wu and Greif [27], in a novel

approach, utilized two successive transformations based upon consecutive

use of free interface modes in the existing physical coordinates. The seti
of modes for the first transformation are those of the undamped, free

interface subsystems. The second transformation is based on the damped

fixed-interface subsystem in generalized co-ordinates which freezes the

generalized interfaces. The second set of generalized coordinates is

truncated and is supplemented by the fixed-interface coupled coordinates.

The system eigenvalue problem is solved, after physical interface compati-

€'
bility is invoked in coupling the various subsystems. Further investiga-

tion of this technique is warranted.

Other methods applied to nonconservative systems include those using

+I.`YF

receptances of the subsystems. Palazzolo at al. [28,29] used hybrid

representation of the receptances in terms of a truncated set of complex

modes supplemented by correction matrices involving mass, stiffness and

damping properties of the subsystems. The method was used to determine the

steady state response of rotor-system components as well as in efficient

eigenvalue reanalyses for the components. Applications to the synthesis of

certain type of rotating machinery train was also made. The general

q



applicability of the method as a component mode synthesis technique was not	 E
i^

demonstrated, however.

The Dynamic reduction method discussed earlier [g] was also utilized

by several analysts to reduce the size of the components of .i system, prior

to their coupling, to form a reduced system. 	 Berman [30] presented a

substructure coupling method that make use of frequency dependent response

of the substructures	 (represented by reduced impedances) to interface and

excitation forces. 	 Leung [31] further developed his dynamic condensation

technique for use with substructures. 	 His method uses physical coordinates

of the subsystems to satisfy compatibility conditions.	 The subsystems are
s

described by a few lowest fixed-interface modes in conjunction with the

static constraint modes of Hurty [24]. 	 The size of the system matrices

involved is equal to the number of degrees of freedom, or masters, for each

subsy3tem.	 A similar approach to that of Berman [30] was presented by
a

Geering [32].	 Geering applied his method, based on what he termdd dynamic

elasticity transfer	 matrix,	 to obtain the	 transient response to	 periodic
kG	 ,

loads and the response spectra to stationary random loads. 	 The eigenvalue

problem was eluded to in his paper.

A totally fresh subsystem analysis technique was	 introduced by Hale E
w

and Meirovitch [33,34]•	 Admissible functions were employed for the repre-

sentation of the substructures involved. 	 The approach results in low order a

polynomial representation that simplifies computation. 	 The admissible
r

P
^	 E

functions are not necessarily those of the substructures' eigenvectors.

The geometric compatibility conditions are approximately enforced by the

method of weighted residuals. In the author's opinion this method is a

powerful and general technique for conducting dynamic substructure

10



analysis. However, the method would not allow use of experimental data at

x
the substructure level. Also, no apparent means exists for applying the

technique to damped nonconservative systems.

2.2 Sensitivity Analysis

An important aspect of the modal representation of a linear dynamic

system is the inclusion of accurate estimation of those system parameters

to which the system behavior is most sensitive. The literature offers

several studies and suggested procedures concerning such sensitivity

analyses.

Fox and Kapoor 135] obtained expressions for the first derivatives of

the eigenvalues and eigenvectors with respect to design parameters of the 	 G

original self-adjoint systems.	 Plaut and Huseyin ,1361 derived general

expressions for the derivatives of eigenvalues and eigenvectors in non°-

self-adjoint	 systems.	 Their	 results	 can be	 useful	 in	 examining	 the	 h,F'

stability behavior of nonconservative systems.	 Other sensitivity analysis	 r^N

techniques have also been reported which differ in their computational, •`

efficiency, type of dynamic system considered, and order of the derivatives 	 ,>

of the eigenparameters involved. 	 In reference	 1361,	 the determination of
t

any one of the derivatives of the eigenvectors of a nonself-adjoint system
K

requires use of all of the left-hand and right-hand eigenvectors.	 This was

avoided in a formulation given by Garg 1371, in which the calculation of	 a

derivatives is reduced to solving two sets of simultaneous linear algebraic

equations for each eigensolution of interest. Rudisill 138] developed an

alternative procedure to that of Garg which could be extended to find any

order of derivative of the eigenvalues and eigenvectors, provided they

exit.	 j

i

t
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Nelson 1397 discussed the computational requirements for obtaining the
t

derivatives of the eigenveetors using the two approaches of 1367 and [377•
a

He pointed out that the first approach, in which the eigenveetor derivative

is expressed as a sum of all the eigenvectors, although analytically simple

becomes prohibitively expensive for large systems, on the other hand, the

second approach requires only the specified eigenvalue and ei,genvector but

calls for the premultipli cation of an (n+1) x n matrix by its transpose to

form an nth order system of linear equations. Nelson presented an alterna-

tive simplified procedure for the sensitivity analysis, based on the second

k	 approach.

An interesting paper, in a series of publications by Simpson [407,

i
discusses means for readily obtaining eigenvalue and response sensitivities

using simple modification of the basic eigenvalue method of Kron [411. The 	 i

method employs a subsystem approach and provides for means of studying

transmissibility of vibration between the system components. ' A recent

study by Xoshimura [42] also addresses the need of developing efficient

sensitivity analysis of frequency response. A method was presented for	 q

determining design sensitivity coefficients of receptance-frequency

response evaluative functions. The method was applied to machine-tool

structures.

Several sensitivity studies related to rotordynamic applications have
b

been reported recently.	 Lund [43] presented a method to calculate
,

sensitivities of the critical speeds of a conservative rotor system to

changes in the design. Fritzen and Nordmann [441, on the other hand,

reported on a sensitivity method applicable to nonconservative rotor system

	

^^ 	 1(involving representation of seals, oilfilm bearing, etc.). The method is 	 t
	a 	 Ei
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based on Taylors expansion for complex eigenvalues in terms of system

parameters in which linear, quadratic, or higher-order formulas are

?E 
obtained, depending on the order of r.%e derivatives retained in th e

expansion. The method was demonstrated using several rotordynamic

applications.
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3.	 DEVELOPMENT OF ANALYSIS METHODS

^F

An SSME turbopump is a large noneonservative mechanical structure

consisting of a large component (housing) which is connected to a gyro-
,

seopic damped subsystem	 (rotor) through nonoonservative coupling elements

(bearing, seals, etc.).	 The motion of the main components of housing and
r.

rotor is highly coupled. 	 Simulation of the system's dynamic behavior is

sensitive to the choice of the model,	 its size and to the parar!eters of the

coupling elements.
^	 1

For this study, it is desired to develop significantly reduced size
a

}

models	 for	 the housing	 which are	 sufficiently accurate,	 along with
N	 i

t

effective coupling and analysis procedures. 	 The developed procedures would

allow determining steady state response stability and sensitivity type of
g

analysis.	 Based on a careful examination of existing techniques (of which ='1

an account is included in the previous section 2), alternative modeling and

coupling techniques suitable for application to the SSME turbopumps are
y

developed and are presented in this section.'`

In these methods the steady state complex response of a given turbo- [prp[

pump to the coupling forces is determined for cases of forced response to b

imbalance.	 The coupling forces are those at a given constant rotor spin.
a

For stability analysis, the system will be moving in one of the modes of

the system with a given complex eigenvalue.	 The coupling of the subsystem]

^ is accomplished using one of two approaches. 	 The first approach uses y.

superposition of the complex impedances of the individual components to
i

obtain the impedance of the complete system.	 The system's	 impedance can

© then be used to determine the dynamic behavior of the system. 	 The other

approach uses. the receptances of the housing and rotor together with the

14
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impedances of the coupling elements to couple the system. This method is

6
termed generalized receptanee method since the final system's equations are

in terms of the coupling forces.

The impedance, or alternatively the receptanee technique, is used to

develop a procedure for determining the response sensitivity to changes in

the coupling parameters.

3.1 The Models

3.1a The rotor reduced model

The equations of motion for the spinning rotor of a given turbopump,

while coupled to the housing, can be written as [451, (see figures 1 and 2

as applied to the HPOTP)

	

(~ MR•,	 RXR	 RXR	 rfXR

+ KXZR+

	

d	 YR	 YR	 YR

	

Q	 0	 ftYR'(maX)	 (maYY

	

+	 ^ ^2	 * 	 (1a)
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Figure 1. The SSME Engine System for the Analysis 0, the HPOTP.
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•^bearings gmbalance bearings seal a,
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Figure 2. The HPOTP rotor under coupling and imbalance forces.
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A dot in equations (1a) and (Sb) denotes differentiation with respect

to time, t. Also

X,	 Y, Z . Inertial coordinates system

X,	 Y, z a Rotating coordinates system, x and y are

fixed to the rotor

{RXR } IRYRI
- Displacement vectors of rigid bodies on

rotor

16XR 1 10YR}
- Small rotation vectors of rigid bodies

about X and Y axis, respectively

[KXZR ] ► [KYZR)
Stiffness matrices corresponding to

motions in the X- Z and Y-Z planes,

respectively

ifXR 1 ► ifYR } '	1M XR ) ► Wy R } -
External forces and moments, including

co-:Ling forces

{JXZ}
{JYz} - Products of inertia

0 ► - Rotor's spin angle,	 velocity and

acceleration

{aX } • {ax }	 oos;t -{ay I	 siil^t

Jay } - {ax } sin^t +	 {ay } cot

{ax }, {ay } - Vectors of coordinates of the imbalance

masses measured in the rotor fixed axes

x, and y at the respective rigid bodies

{m} - imbalance masses

JdJ - diametral moments of inertia for rigid

bodies on rotor

17
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C

polar moments of inertia for rigid body
p`

about the Z-axis

mass matrix of rotor associated with

displacement degrees of freedom

A reduced size model for the rotor, appropriate for steady state and

stability analyses, can be obtained by representing the rotor by its dis-

placements at the coupling and imbalance locations. To that end, two

procedure can be used, (i) Modal representation, or, (ii) Dynamic reduction

of the equations of motion in physical coordinates.

W Modal representation of reduced rotor impedance:

The following modal transformations are employed in conjunction with

the equations of motion (1a) and (1b) '

RXR

[ AX Zft ] [ q
XR }	 (2a)

SYR

't	 RYR

[AYZRI {qYR }	 (2b)
sxR

where the matrices [AXZR] 
and [AYZRI are those of the planar modes in the

X-2 and Y-Z planes, respectively. The modal matrices are obtained by

solving the eigenvalue problem associated with equations (1a) and (1b) with

their right hand sides equated to zero. The equations in this case would

represent the free vibration of' the undamped, nonspinning rotor. The

vectors {qXR } and {gYRI are the generalized (modal coordinates) in the X-Z

and Y-Z planes, respectively. The eigenvectors of equations (2a) and (2b)

are normalized with respect to the inertia matrix of the rotor, or

18
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[A	 ^. "	 [^ r ^^X^R	 XZR	 Y2F	 Y2R

r

[, Jd`][1Jd`]

(3)

in which ['I.,) is the unit matrix.	 Assuming symmotry about the axis of

rotation, Z, one can write

v [` AXR- I - [AXZR IT [KXZR ] [AXZR I . [AYZR IT [KYZR I [ A y ZR	l' AYR ,I

(4)

where [`A xR` ] and ("AY.-.1 are equal diagonal matrices whose elements are E..
C

the square of the natural frequencies of the free undamped, nonspinning

rotor.

-

i

t

For	 steady state motion	 with	 constant	 spinning speed	 $,	 the
1

acceleration ^ vanishes, hence the last term in both of equations (?a) and

(1b) will also vanish, leading to the following equations

V

fXR,

[`z `^ 	{qXR } * [`AxRJ	 {qXR} R [ A
	

,r

XZR^	
,11 YR

+ [AXZR ^T	 0	 0	 [AYZR I	 { qYR }
a

0	 [,fp s, z

{max} r*	 +2

[AXZRIT
	

(5a)

`lX Z

{

ORif NAL PACT L
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and

fYR

	

Z,] }qYR } + L, AYR,] {qYR }	 [AYZR ]T
VXR

0	 0

[AYZR ]T 
0 [ ^j	

^AXZR ] { 4XR }
P

(ma Y )

+ ^2 [AYZR ]T	 (5b)
_JYZ

Let

qXR	 fXR	 fYR
{ qR } 	

{FXR }
	

M
	 {FYR } a

q YR	 AYR	 MXR

' 
(max)	 (ma

1P{PXR } 	 ^^ 	 {P YR } C ^2
JXZ	 -JYZ

0	 0

[Jp] 	 0 ^^^ ]	
(6)

P^

Equations (5a) and (5b) may then be put in a block matrix form which

includes modal damping; the modal damping is taken as in reference E451

OXR^^	 0	 }\AXRJ 	 OXR^]
{qR } +	 {qR} +	 {q R}

0C 	 ^`^C~OYR^] L^AYR`]

20
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f

I
W^i'ISr^

l!kJ1^ ^^W^^^^ ^ a

^ AXZR ]T 	PXR	 0	 [AXZR]T {Jp [AYZR
{ qR }

^ AYZR ,T 	PYR	
-[A	

]T
 ]T [ Jp

 
[AX

ZR	 0

	

[AXZR]

T
 

0	
PXR

+	 (7)

	

0
[A	

T

	

YZR , 	PYR

in which due to rotor symmetry

C CXR-1 - }--CYRJ _ } CRJ - {- 2 ERAR1 /2`i

(8)

also 	 AXR -,) - [*- AM,] = [ A R J

and	 [DER\] is the matrix of modal damping ratios

If the case under consideration is that of a steady state response to

imbalance at a rotor speed of $ , the imbalance forces can be written in

terms of forward and backward whirling as

	

{ P R (t) } = 17 } e i;t +	 R	 -';t;

where { p R } is the conjugate of the vector of complex amplitudes { p R }. This

is so since { P R } is a vector of real variables. As an example, the

imbalance forces, associated with the HPOTP of the SSME [46] are given by

( PXR } _ 2 {ma x } cos ^t , since {may } = {0}

1? $2 ma ,x J ei;t + 
{2 

^2 maxl e -i $t

t	 J

{ PXR } el ;t + {PX R } eit	 (10)
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e written as coefficients of ei¢t and e-i;t , or

i$ [D R ] + [ RR ] {qR } = [A R  ]T {E'R + PR }

(14a)

i cp [D
1
 ] + [ S2R ]] { qR } _ [ AR 

IT 
{F R + PR }

(14b)

Equation (7) can then b

e i;t ;
 [;2 [` I Ra +

i;ei"; [;2 ^IR`] +

I

i
tt

fR

^ Ay

i

a

S
M

_qk

v.

w	 4
4... 

1

Similarly	
0E Poo^'

{PYR} 	
;2 

{max } sin $t

{^2 
;2 

max ei;t + ti2 ;2 max} e-i^t

• { PYR } e' ;t + {P
YR } 

e-i 
;t	

(11 >

It follows that the coupling forces and generalized coordinates in equation

(7) can be put in the form

{ F R } _ { FR } ei ;t + {FR } 
e-i ;t	 (12)

{ qR } _ {qR} ei;t +	
R

e-
	

(13)

where

[AXZR ]

[AR ] -	 Y

AYZR I-

['- 
CR`]

[D R ] _

[A	
I T
]T LJp ] LAXZR]

22

-[A	
IT
]T L`i p ] [AYZR ]

L C  ,l



41

23

V

w	

V,	 !f

AIX,

h

I

ORIC3MAL PAGE M

A R ,]	 ^[` ^R,]	
of Paoli QUALITY

i

R [^

CR. ]

	 [1' AR `] p

But	 {RR} _	 [ AR ]	 {q R }	 (15)

where {RR} are the displacements of the coupling points and of the locations
at which the imbalance forces are applied

4tr
{R^} e i

^t +	 {R*1 } ei
^t a [A	 ]	 (^R j  ei;t +	 { q R} eri ^t

R	 R 	 )R

hence

RR	
I

R
	

R
1 #.

C)

{RR^} 	 [ A R ]	 {qR}	 (16b)

f- Equations (14a) and (16a) yield the reduced model

^1
{ R R } =	 [AR ]

	 [	
2 C 

IR^ + i	 [ D R ] + [ RR ] J [A R ]T	 {F R + PR } ff	 w

or

R	 R	 R	 R k

Similarly,	 equations (14b) and (16b) lead to the conjugate representation

{RR }	 _	 [yR ]	 {FR + P R }	 (18)

6

01
However,	 only the reduced model of equation (17) need be determined. 	 The

C
t

conjugate representation given by equation 	 (18)	 can than be obtained F

directly.
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In equation (17), the reduced impedance matrix of the rotor associated

with the forward whirl speed (+;) is given by

[ZR ] a [ yR ] ~1	 I'[A R ] 
[_$2 [^I R.] + i$[DR ] + ["R]J	 [AR ]'T	 (19)

in which [y .] is the reduced receptance matrix of the rotor.

(ii) Direct dynamic reduction:

An alternative approach can be utilized to construct the reduced

impedance matrix for the rotor. This can be achieved by applying Gaus

elimination only to the upper partition of the complete impedance matrix of

the rotor corresponding to the unwanted degrees of freedom. The "kept".

coordinates will be those of the coupling points and those at which

imbalance forces are applied. To that end, equations (1a) and (1b) are

arranged as

RRr	 RRr	 RRr

[\ MR S ] sRr + [ OR ] SRr + [ KR ] RRr

RRkj	 RRk	 RRk

0	 0	 0

0	 + 0	 = 0	 (20)

FR	
PR	 I F

where the subscripts "r" and Il k" denote reduc ed out and kept coordinates,

respectively.

At a given rotor spin speed ;, the steady state variables may be

written, as before, in the form

{ F }	 {F } ei ;t + {F* } e- ' ;t
	

(21)
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RRr RRr RRr

RRr ^ SRr
i 0t

e	 + sRr
-i ¢,t

e (22)

RRk. RRk RRk

The coefficients of the forward whirl e+i;t lead to

;2 Mrr + i;Orr + Krr ]	 ;2 Mrk + i ^crk + Krk ]	 SRr	 0

[_;2
Mkr + i^ckr + Kkr]	

^'^2 Mkk + i;Okk +
Kkk ]

a

RRk	 F

(23)

where

RRr
I5r }

SRr.

For convenience, equation (23) is written as

Zrr Zrk	 SRr 0

IF,

(24)

Z kr Zkk	 RRk

applying Gauss elimination procedure only to the upper partition of the

impedance matrix, one gets [47]

Zrr Zrk	 SRr

- (25)

0 Zkk R 
Rk.

F
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The rotor can now be expressed in terms of the reduced impedance ,natrix

(reduced to the kept coordinates) as follows

x

where[Zkk] is the reduced impedance of the rotor at a given rotor speed

associated with the coordinates and forces of coupling to the housing and

f.
of imbalance. Equation (26) can be used for coupling the rotor to the

housing model.

8.1b The casing (housing) reduced model

The equations of motion of the SSME housing while connected to the

rotor, in terms of the displacements 
{R 
SS} of selected points, can be

written as

t	
[\M SS. ] {RSS} + 

[CSS ] {RSS} + 
[ KSS ] { RSS } _ IFSS (t)} (27)

where the subscripts ' ISS" refer to the space shuttle main engine model in

absence of the rotor of the turbopump under consideration but involving the

nonspinning rotor of the other turbopump (see Figure 1). The forces IF SS )

are those of the unknown interaction or coupling forces with the excluded

0	 rotor. In other words, the missing rotor is represented by the coupling

forces yet to be determined.

A modal matrix of selected eigenvectors of the undamped, free

vibration of the SSME (with [C 
SS]^ 

{F SS} set to zero in equation (27)) is

used to represent the displacements in terms of the associated truncated

set of generalized coordinates {qc}

{RSS (t)}	 [ASS ] {q0 (t)}	 (28)
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E* t

4
where

[ASS ]T [-MSS,]
 [ ASS ]	 [1 ICS]	 (29)

use of the relations (28) and (29) with equation (27) yields

Ic` ]	 {qc} +	 [`2 Cc Ac 1/2 	 {qc} +	 L^ Ac\]	 {qc}

[ ASS ]T	 {FSS } .	 [Ac ]T 	{F c }	 (30)

t

where [Ac ] are sub-eigenvectors corresponding to the coupling points to the s

rotor,	 and	 {Fc } are the coupling forces.

in equation (30), ^A c j is a diagonal matrix whose elements are the

squares of the undamped natural frequencies of the SSM E associated with the

retained modes.	 The matrix [L Cc 	is the diagonal matrix of modal damping\]

ratios.

ti

a	
1

To obtain a reduced representation of a turbopump casing, only the ^b

coordinates	 {Rc } at the coupling locations to the rotor are considered. 	 In

` addition,	 if the retained generalized coordinates correspond to a range of

excitation frequencies,	 the	 truncated higher and lower modes	 can be

approximated using the associated residual flexibility E16] and inertia

Cmm. restraint Lr 1 d] terms, respectively. 	 The motion of the casing may now be

described as }

{R	 (t)}	 =	 [G	 ]	 {F	 (t)}	 +	 [A	 ]	 {q	 (t)}	 +	 [G	 ]	 IF	 (t)}c	 inert.	 c	 o	 c	 resid,	 c i3

inertia	 modal	 residual
restraint	 representation	 flexibility

(31)

t ^#
and is associated with equation (30).

ORIGINAL PACE Mj '
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it can be shown that the residual flexibility matrix [Gresid.] can be

` expressed by [20]

[Gresid.	 [Ae I	 I-Ac 
1-1	

[Ae 
iT

(32)
du	 du	 du

t

in	 which	 "du"	 stands	 for	 "deleted	 upper If 	modes.	 Also, the	 inertia

restraint matrix can be shown to take the form

[GinertI 
a 1
2 [Ac

]
	 [AciT (33)
dL	 dL

where "dL" denotes "deleted lower" modes, and a is the unknown eigenvalues
fJ

of the turbopump system (coupled housing/rotor) or, 	 in case of forced

(imbalance) response, X2 . -;2.

For steady state under imbalance forces on the rotor at the constant

speed,	 the motion and coupling forces take the form

{ Rc (t)}	 -	 {Rc } e' ;t +	 {R^}	 e-' ;t ; (34 a)

C

'	 IFc (t) }	 Q	 {Tc } e i;t +	 {F* }	 eri;t (34b)

in which the complex amplitudes{R c } and	 c
are conjugates. Similarly

{qc (t) } _	 {qc}	 ei;t +	 {q^} e-i;t (35)

k

C

I

}
f

i

1

i

1

i
I

0
This leads, using equation (30), to

{ } I-* } = C_12 f-I 1 + 11 0 C A 1/2 
1 ,. 

N A 11 -1 
. 

[A I
T
 \ 

{F } {F*}
4  v qC	 Cam` -	 C C N,	 C`	 C	 C	 c)

(36)
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Similarly, using equation (34), equation (31) yields

IN} " 11 Ginert. ] + 
[Yc] + [Gresid. 1] {F e }	 (37a)

and

{ c} °
	 Ginert, l + [xa* ) + [Gresid. 11 IF*},	 (37b)

in, which [YQ * ^ is the conjugate of [YC',J.

For the purpose of determining the steady state response to imbalance

of the rotor/housing system, equation (37a) is written as

1R0  = [Yc } 170
1 ,	 (38a)

[YcJo[Ginert.]+[Ac]	 ;2 ^ zc ] +i^[_2 Cc A0t/2 *[^ Ac^^ +1
[AO ]T

+[Gresid.]

(38b)

where [YJ Is the reduced receptance of the housing (case) also-,fated with

the coupling points to the rotor. The vectors {R o land {Fc } are the complex

amplitudes of the physical coordinates and forces at the coupling points,

respectively, associated with the 
e+iot 

part of the solution. No computa-

tion involving equation (37b) is necessary since it would lead to conjugate

amplitudes associated with e-iot . This amplitudes can be constructed from

the first part, equation (37a) without resorting to extra calculations.

The reduced impedance of the housing is given by

[2c] A [Yc 1 -1	 (39)

so that

IF  } [Zc I ITC}
	

(40)
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r	 3.1a The coupling elements:

l	 The rotor and housing are interacting through bearings, seals and

impeller reaction forces. These coupling forces can be related to the

displacements and velocities at the connection points to the rotor and
,Lx

Y
housing as follows (see Figure 3).

Bearing and local stiffness at the housing;

In the X-Z plane:

FXbc	 RXc	 RXc

^ 	 FXbR	 R XR.	 RXR

Similar equation may be written for the Y°Z plane, so that the

t	 combined relations for the X-Z and Y-Z planes are

FXbc	 RXc 	 R Xc '

F Yb,c	 ^	 RYe	 RYc

Xb-R	 XR	 XR

FYb, R J	 RYR	 RYR

Seal and impeller Forces:

The motion and resulting forces in the X-Z, Y-Z planes are coupled.

For a given seal or impeller, J, the forces due to displacements of the

housing and rotor can be expressed as

Q

30
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hXbc Xsc

	

C	
C	

F Xsc,

	

IC8	

seal

F 
XbR	

F 
XsR

FXbR	 XsR	 Rotor

bearing

Z

X-Z plane

Figure 3. Coupling elements and forces in the HPOTP.
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Ps

Fj Ysc 	 ^	
K,	 Rj Ye M Rj 

YR

t
C	 a	 RjXc	 RJXR (43)

^c	 RJ 
Yo	

RJ YR

or

.t
RJ 

Xc
Rj Xe

F,j Xsc	 R, j Ya R, j Yo

i
Y`

.,	 +	
[C,js]

[Kjs1 (411)
F	 RYsc	 J XR,j J XRa

R,) YR Ri YR
i

Similar relations as those of equation 	 (44) can be written for the forces

at the rotor.	 Combining the forces on the case and housing due to all ta:	 M

seals and impeller forces, one can express the resulting relations in a F	 F	 rs

matrix form as follows.

FXsc	 RXc	 RXc i

F
Yse	 RYc	 RYc

[Ks]	 +	 [Cs ] (45) I.

FX9R	 RXR	 RXR

FYsR	 RYR	 RYR

f

k	
{

` Combining the relations for the bearings and seals, yields

^
1

FIc	 RIc	 RIc

f

{t

{

!

[KI ]	 +	 [CI ] ( 4 6)
F	 R
IR	 IR	

RIR

i
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where [KI ] and [C l ] are the stiffness and damping matrices for the coupling
r

or,	 intermediate components, 	 i.e. the bearings and seals.

For the steady state response to imbalance, at the spinning speed,

the solution can be written as
a

R 1 RIo RIe

M

e 14 +
e•-i$t (47)

r.	 RIR RIR IRIR

A similar form can be written for the coupling forces,	 leading to the

;t
of eifollowing relations for the coefficients

FIc RIe
[ Kl ] + i; [ CI ] (48)

F IR RIR

RIc
[Zr]

RIR

where [ Zl ] is the impedance of the intermediate components for a given ¢.

The impedance matrix corresponding to e_'^ t , [ Z I ], is the conjugate of

[ Zi l .

3.2 The Analysis:

The system model may now be assembled from the individual representa-

tion of its components. The assembled model can be used for a given ; to

determ',ne the steady state response to imbalance or the eigen-parameters of

the turbopump systems.

is

k;x .

,t

4

3II

{
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i

y
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3.2a steady state response 	 OF Poorj QUALITY

Two alternative procedures may be used to fora the system's equations.

The first approach is to (i) assemble the systen, impedance matrix from the

individual impedances of the components. This can be identified as an

impedance (dynamic stiffness) method. Another approach is to (ii) utilize

the receptances (dynamic flexibilities) of the rotor and case together with

the impedance of the coupling components to construct a reduced generalized

receptance matrix for the coupled system. These two variations are out-

lined in what follows.

(i) Impedance method:

For coupling the system components, equations (17), (40) and (48) are

used to form the system equations as

[ ZI ] + [Z C][Zx ]	 R^	 0
11	 12

(49)

[Zr 	 [ZZ ] + [ ZR]	
RR+ R

lmb	 pR21	 22

where the submatrices [ll ij ]are partitions of the impedance matrix [ZI ] of

,	 ,	 T
the coupling components, [ ZI ] = [ZI ] and IFI are the imbalance forces

21	 12

acting on the rotor. The Sub matrices 14 ij I would be inflated with columns

and rows of zero elements if necessary to make them consistent with { RR } +

{RImbI which include displacements at imbalance forces, {Rlmb1. Equation

(49) relates the complex amplitudes of the displacements at the coupling

points oP the base and rotor, associated with ei$t part of the solution, to

those of the imbalance forces. The conjugate associated with e-Ot does

not need to be computed, rather can be immediately deduced from that of

Y,

A

}

{

t

3

V
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equation (49).	 The system of Equations (49) can now b e solved to yield the

steady state response.

The resultant maximum bearing reaction at a given bearing j can be

determined as follows.	 Express

AX j	 ° R jXo	 RjXR

. 
1RjXe	 RjXRI ei;t + IRjXe _ RjXR^ e-i;t

AXj e i ;t + AXj e-i ;t

m	 (AXj + AX
i
^ cos ^t + i(AXj - AX*) sin ^t (50)

since	 the Rj ► s are physical displacements, 	 the coefficients of cos t and

sin ; t must be real.

Let Aj	(ARj	 + AR * ), B
j = (ARj _ AR*) (51)

Similarly,

AY
j
	C j cos ¢t + D

j
 sin ^t (52)

in which

0
j
	(AY	 + AY

j
)	 , D j	 °	 (AT. - AY*) (53)j

The	 magnitude,	 AUj ,	 of the relative displacement between the casing

and rotor at the jth bearing location can be shown to be

(AUj ) 2 = AXJ + AY^ = L+ Vcos 2 ^t + Hsin 2 ^t (54)
i	 i
	

i
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where

P

I.

t

^J

G

dF on-An
iJ-	 1	 (A2B 2+	 + C2 + D2j

V
1 	(A2

_ B^ + C2 - D2 )j

H 
	 AjBj + CjDj

in which the maximum magnitude of the relative displacement is

(AU
1/2

-
	 (Lj +
	 (V

2 + Hj)1/2
(55)

max

The maximum bearing reaction force of the jth bearing follows directly as

(FB	
w

J
.)max (Kb 	 )	 (AUj)max (56)

j

where Kb 	is the combined stiffness at the jth bearing.
j •

(ii)	 Generalized receptance method:

The case and rotor are represented by their receptances associated

with the forward whirl e+i^t, and reduced to their degrees of freedom at

the coupling points.

Using equations (17) and (38),	 the reduced models are

{H R + RSmb
} =
	 (yR )	 {F R + PR } 	 {-R } (57)

and

{KC} = [Yc ] {F c }

36

•	 ^`	 .^	 r"r« i:^ ^^ :,iii

r

(58)



,t	

iii'•

^	 '  1

^•--.'."^",v„'—... 	 e';

tC

♦ 	 ^.

`

' F	 1	 ''

i	 e

f	 r

VF j cGrN11 ^y; kYl-42.w	 NJ

Equations (58) and	 (57) can be put in a block matrix form as
m:

R [Yc ]	 0	 F 
(5$)

RR + Rlmb
0 [YR] FR + PRs.

On the other hand,	 the displacement-force relations for the coupling

components may be written in terms of their impedances, at a given rotor

speed $ , as

Fc
[ZZ ]

R c
(59)

_r
FR

RR	 +	 RImb

in	 which	 {FR} is inflated with null values in locations corresponding	 to

{ pR 	 and	 [Z,' ] is inflated for compatibility	 with the mobility matrix	 in

equation (58).	 Substitution from (58) into	 (59) yields

Fc (Y 	
]	 Fcr

1 z I  ]
_r
FR

[YR ]

r

FR

CJ [yc]	 ° °

+	 [Z r ] (60),
I

0	 [YR ] PR

or

[yc ]	 0
F 

R R

[Y	
° 	 °

c]
I

0	 [YR ]	 PR
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This may be expressed as

Pc

[ 1`P 1
YR.

The coupling forces ^E c 1 and ^FR Imay be obtained from the above equation

(62). However, since these forces are related, a more efficient procedure

can be adopted by which the problem is stated only in terms of, say, ^ R
11111

To that end, introduce the following transformation

Fe 	 _
[ T ]	 {FR}

FR

substituting in equation (62) and premultiplying by (T 
]T' yield

[T ]T [ Y P ][T] IF, R } 	 [T1T [ E P ] 0	 (64)
PR

or

[y] {F R } 
= "FR"

	
(65)

The above generalized receptance relations (65) may now be solved to

obtain the coupling forces at the rotor. The bearing reactions can then be

obtained by calculating {F c } from (63), {Re} from equation (38) and {ft R }

from equation (57). The maximum resultant bearing forces follows as

before, using equation (56).

3.2b Stability analysis-system eigen val.ues

The dynamic stability of the turbopump non-conservative system can be

determined using either, the impedance or the generalized receptance

38
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formulations. For a given rotor speed $ , it is desired to determine the

eigenvalues, A's, of the coupled rotor/housing system. The forms of dis-

placements and internal coupling forces become (replacing equations (15),

(34), (12) and (34b))

{RR (t)}	 ¢ {RR} eat , [Rc (W a {Rc} 
eat	

(66a)

IFR (t)I	 - {FR} 
eat

, IF 
o wl _ {Fc} eat	 (66b)

where "=" above any of the variables represents complex amplitude and a is

the complex eigenvalue whose real part determines the stability of the

turbopump system.

Equation(65) is best suited for the eigenvalue analysis since the

matrices involved are of small size. To that end, with the right hand side

of the equation equals to zero, the coefficient matrix on the left hand

side becomes the a-matrix whose determinant vanishes for values of X equal

to the eigenvalues of the system. The X-matrix can be written, using

equation (65), as

det [Y(a)] = 0	 (67)

in which

[Y())] = [T ]T [ Y p (a)] [T]

where

[Y (A)] = [̀ I.] + [Z' (A)I 

Yc{ a )l	 0	

(68)

0	
CYR 

(A )^

r^

R I
r

a

•	 1

1

z

e	

i

F

4
1
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k

3
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In expression (68),	 the matrices of the right hand side are obtained from

equations	 (48),	 (37a) and	 (19),	 with A replacing (i;).
i

Conceptually,	 equation (67) can be solved possibly by using iterative
i

procedures or other techniques.

Another approach applicable specifically to the analysis of the SSME
?i

turbopumps can be formulated as follows. 	 The number of retained free-free

planar normal modes of the nonspinning rotor are selected so that it is

equal to the number of degrees of freedom in the plane of the modes at the

coupling points.	 This	 will	 result	 in square modal matrices	 [A R ]	 in N	 ^!

equation (19).	 The impedance matrix of the rotor corresponding to a given

eigenvalue, A, of the rotor/housing system takes the form
b	 ii

[ZR I	 [AR]square	
[X'[
	
I	

] +
	

X [OR ]	 [ ^R ] 	 [AR ]square	 (69)
:F

.a

The inverses	 A T 	and	 A	
1

y

R ]^square	 [ R I 	need be calculated only once for a.{{square

given rotor. f.	 R

Now,	 equation (49) is written,	 in absence of imbalance forces,	 in the

form 4	

N

l'

[ Zc ]	 0	
Rc	
0,

t" +
[ZI ] +	 (70)

0	 [ZR]	
H 11
	 0 s`

x	 ^

y

[ Y c ]	 0 y

premultiply both sides by	 one obtains

0	 [`IR\]

[ Yc ]	 0	 [^ Lc^]	 0	 Rc

[ZI ] +-
	 (71)

17RI 
y 

1 0 1

"

0	 [-I	 0	 [ZR ]
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Equation (71) is now more amenable to manipulation for determining the

eigenvalues. This is the case since the eigenvalues, a, appear in the

submatrices [Ye ], [ ZI ] and [ ZR ] in an explicit fashion. In addition, this

formulation makes solution methods, including those of iterative procedure,

computationally efficient. Methods such as those of reference [48] can be

used in this case.

It should be noted that similar formulation to that ,just described can

be utilized for determining the steady state imbalance response. This

would be advantageous as long as a square modal matrix, 
[AR]square' 

is

employed. In case of forced response, equation (71) would take the form

[ Yc ]	 0	 Icy]	 Rc	 [Yc ]	 0	 0	 0

[ zz ] *	 -	 ^ PR
0	 [\I R , ]	 0	 [Z R ]	 RR + R lmb	 0	 [\ I R ^]	 R

(72)

3.2a Sensitivity analysis

The sensitivity analysis in this study concerns predicting the

variations in the turbopumps' eigenvalues and steady state imbalance

response due to changes in the rotor/housing coupling parameters.

The eigenvalue sensitivity analysis was developed at an earlier stage

of this study and is based on the formulations of the equations of motion

of Childs [ 145]. In his approach, Childs utilized the modal parameters of

the rotor/housing system coupled only through the stiffness at the bearing

to form the full dynamic models of the turbopump involved. A computer

program was developed by Childs based on formulations of [451 for

NC"Ce4i 71Y	 ui::t r
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determining the stability and forced response of the HTOTP and HTFTP of the

SSME.

This computer program was modified to incorporate a procedure for

determining the eigenvalue sensitivity of turbopump systems. On the other

hand, a response sensitivity method was developed based on the impedance

and generalized receptance techniques described in previous sections of

this report. An eigenvalue sensitivity analysis method can also be
I

developed based on the receptance techniques but was not attempted in this

study.

(i) Eigenvalue sensitivity:

Formulations of reference [45] for the equations of motion of the

turbopump are used for the following development of eigenvalue analysis

procedure. In this development, the notations used in conjunction with
f	 -

formulations of [45] are basically retained for ease of reference.

The equations describing the motion of the coupled housing/rotor of a

given turbopump in terms of their respective free, undamped modes and the
i

stiffness at the bearings can be shown to take the form

qR 	 [B AR.] + [BAER ]T [NKb1 ][BAER ]	 - [ BAER IT [ Kb,][BAEc I	 q 1j '

 [li^	 +	 0

qc	 -[BAEc 
IT [N Kb

-, ][BAER ]	 [^ Ac' ]+[BAE c ]T [` Kb ` ][BAE 0 ]	 qc

(73)

As , an approximation, two uncoupled equations of the form of equation (73)

were assumed for the X-Z and Y-Z planes.

ARC]

	

	 eigenvalues of the undamped, free-free nonspinning rotor as

in equation (8), and

ORIGINAL
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[` Ac%] - eigenvalues of the undamped free housing of the turbopump

considered in presence of the nonspinning rotor of the other

turbopump, as defined previously in connection with equation

(30)

[BAER ] - modal sub-matrix of the free-free rotor corresponding to the

coupling degrees of freedom in either the X-Z or the Y-Z

plane

[BAEo] m equivalent to [BAE R ] but for the housing in either the X-Z

or the Y-Z plane

[ Kb,^] - total stiffness at bearings due to bearing and local

stiffness at housing.

Equation (73) for the coupled rotor/housing motion is solved for the eigen-

values [ Axe] and modal matrix [`YXZ ] and from a similar equation in the Y-Z

plane for [`Aye] and NZ].

Utilizing the above modal parameters, the coupled equations of free

motion of the complete turbopump system including damping, seals and

impeller forces can be shown to take the form [451.

qX	 [cx] + [scx]	 ;[CM] + [S ClqX

qy 	 -[fi[CM]T + [Sc]T)	 [Cy] + [SCY]	 qy

MAXI + [SKX]	 ;[c] + [Sk ]	 qX

+	 = 101,	 (74)

[^[ c
]T

 + [Sk ]T)	 [Ay] + [
SKY ] I qy l

where the various submatrices are defined in [451 and reflect the coupling
e

parameters, structural damping, spin rotor speed and gyroscopic terms.
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It is desired to determine the sensitivity of the eigenvalues An

asaociated with equation (74) to the various parameters of the coupling

elements such as the bearing stiffness. To that end, the eigenvalue

problem associated with equation (711) is expressed as

IX 2[^M'] + X[C] + [K]] W a {o}	 (75)

Following the method described in reference [44], the sensitivity of a

particular eigenvalue a n to a parameter p is determined to a first order

approximation by the eigenvalue derivative.

A	
an	

(76)
ri , p	 ap

The derivative was shown in reference [4 11] to be

An,p	
Itn IT 

[hnM ► p + an ^ p + K ► p ] { h n 1 	 (77)

where It n } and {hn I are the nth left and right eigenveetors for the complex

eigenvalue problem normalized such that

ftn }T [2Xn M + C] {h n } - 1	 (78)

t

`	 V1.

t

To a first order approximation in a Taylor series, a new eigenvalue an

corresponding to a change of Ap in the parameter, p is

A  ° Ano 
+ Xnop) Q

 • Ap	 (79)

or
	

I

An = Ano + QXn
	 (80)

44



r,

In order to assess the jUree of change in X n , the variables involved may

be normalized, so that comparison can be made between the following

Relative change is p « pp
	

(81)

Relative change in Xn • n	 (82)
n

By way of example, suppose that it is desired to determine the

sensitivity of the eigenvalue (or stability) of the complete rotor system

to the magnitude of the equivalent stiffness at the ith bearings. Equation

(77) in this case yields for the nth eigenvalue

^n,^	
.—jZn }T XnM ,	 + an C ► 	 + K,	 {hn}	 (83)

n31	
K B i
	 KB3	

KBD

F

The derivatives of the matrices in equation (83) may be determined taking

into consideration equation (74). The result is

C
M,K	 n , C, K 	0	 (84)

B^	 B^

and

r AX ,^ ^KB

K, K
B1

o	
[•AYJ,K

in equations (811), the indicated derivatives of f A X j and [ A Y J can

be determined from equation (73) using the method developed by Fox and

Kapoor 1353 in which the eigenvalue problem involves symmetric matrices K

and M, or
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(85)

The derivative of the nth eigenvalue, V 
n

,	 is

"n,p R
	 IYnIT	

[R' p 
_ un 11'P] {ynf (86)

in the case considered here. Using equation (73),	 this leads to

[ M ^, Y 	` 0
B^

[ BAE R ]T [^ Kt `],KB [BAGB ] [ BAC R ]T ['-.Kb,],KB [BAE c ]

B

-[BAEc ]f [^Kb.,] ,KB [BAE R ] [BACc ]T ['^ KbJ PKS [BAEc ]

J
(87)

Hence

4
k

i

r

r

Y

t
x

r
f

}

4

•

	

[\ AX^] ,K.	 { '^ } xZ [ ] 'K..	IT }XZ
B^	 s^

and

	

C` AY—, K 
B	

{^'fYZ [K] 'K 	 ITI YZ 	 (89)
^	 B^

in which the W's are the eigenveetors associated with equation (73).

Therefore

	

KB`	 [biT	
s 	

[H]	 (90)

J

(88)

a
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where [L] and [H] are the matrices of left and right hand eigenvectors of

the original problem (74). This yields the desired new eigenvalues a n I s as

X  = Ano + 
An,KAKS ^
	

(91)

B^ 

(ii) Response sensitivity:

The sensitivity of steady state imbalance response to the various

coupling parameters can best be determined using the impedance or the

generalized reoeptance methods outlined earlier.

Suppose that the sensitivity of the coupling forces exerted on the

rotor is to be determined. To that end, equation (64) is rewritten in the

form

<<r ]	 o
e

trn
[T 

]T 
[^ ice] + [ Z z ?	 o	 [x

	

[T] { R }	 {pR }	 (92)
R

where [ZI] is the influted impedance matrix of the coupling components and

is desoribed in conjunction with equation (49). Since [ZI] is a function

of the coupling parameters (bearings, seals and impellers force coeffi-

cients), one expresses equation (92) as

[U(k^]] {F R } = {PR}	 (93)

in which U(k
i
 ) denotes the functional dependence of [U] on the coupling

parameters of magnitude kJ . These constants, k i p can be the stiffness of a

bearing, the cross-couplod damping of a seal, etc.

the derivatives of the coupling forces { F R } with respect to a given

parameter of magnitude k  is calculated as follows

47
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C=

1F J

(

C

A
i

^h {

}4	 y

(I	 t-P	 (94)

J

.

(7k—j 
[U ]-^ }PR }	 }

R } k	 [UJr^ [IJ] ► k 	 [u]-^ 
	 (95)	 4

The derivatives of the coupling forces for a given and coupling

parameters, as given by equation (95), indicate their sensitivity to

changes in the magnitude of the coupling parameter kJ.

Similarly, sensitivity of the steady state imbalance response as given
t	 i

by the impedance approach, equation (49), may be determined in the same
A

f

fashion. Sensitivity of the acceleration response at the ,.-=rpling points
j

or the reaction forces at these points could be derived directly from those 	 i
}

of the corresponding displacement responses.
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4.	 NUMERICAL IMPLEMENTATION AND EXAMPLE ANALYSIS

4.1 Computer Programs

Two Computer Programs were developed based on the analysis methods

presented in section 3 of this report. These two programs, written in

Fortran 77, are as follows:

(i) A modified version was developed of the computer program (ESTAB2),

1983 update, which was developed by D. Childs of Texas A&M University. The

modified program, (EIGNSENS) was developed by U.J. Fan also of Texas A&M.

The program uses the equations of motion developed in [45] together with

the sensitivity analysis of reference [44] to determine the complex eigen-

value derivatives for the complete SSME Turbopump system. The theoretical

background was described in section 3.2c.

(ii) A new computer program (ESTABIMP) was written, mainly by U.J. Fan,to

calculate the maximum resultant bearing forces of the SSME turbopumps in a

steady state response to rotor imbalance. The program can also yield the

maximum acceleration levels at selected locations on the housing. The

program, which is highly efficient, is based on the impedance and gener-

alized receptance methods presented in section 3.2 of this report.

4.2 Example Analysis

4.2a Imbalance response of the HPOTP

Test runs using the ,newly developed (ESTABIMP) were made to obtain the

steady state response to rotor imbalance of the HPOTP, at various rotor

speeds, gip. The HPOTP model used is based on data given in reference [46].

In the turbopump configuration used, the rotor is that termed current rotor

in Appendix A of [46] and is based on a model by B. Rowan. The housing is

49
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based on a 1982 Roeketdyne model. For both rotor and housing, a 0.5% of

critical damping was assumed. This value replaces the diagonal elements of

the matrices [--E RA] and [IC 0 ] of equations (8) and (30), respectively.

The damping at the bearings was taken as 3.0 lb. sec/in. The stiffness of

all the bearings were the same and of the constant value of 5x10 5 lbs/in.

The values used for the local stiffnesses of the housing at the bearing

locations are given by equation (1) of [46]. the seals and impeller force

- coefficients and imbalance distribution were also as given in reference

[46]. The housing free-free modes are used in an approximate fashion as in

program (ESTAB2). Both the impendance and the generalized receptance

approaches were used in the computational procedure as follows.

The impedance matrices for the,rotor and housing are formed using

equations (19) and (39), respectively. Rowever, no account was made of the

residual flexibility and inertia restraint terms for the housing as in

equation (38b). The assembled turbopump model as given by equation (49)

was used, in conjunction with a modified Gauss elimination technique, to

determine the response amplitudes of the connection. points on the rotor and

housing. These amplitudes were used with equations (50) through (56) to

determine the resultant maximum bearing reactions at various values of the

rotor speeds, c . Table 1 shows a comparison of the results obtained for

two selected values of ; between the impedance method using (ESTABIMP)

program and the method of reference {45], using the (ESTAB2) program. The

slight differences noted in the results of the two methods can be attri-

buted to the difference in the numerical- implementation of two different

procedures. The difference may also be due to the approximations involved
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Table 1. Comparison of the maximum bearing reaction forces

calculated by the impedance and reference [457 methods

Reaction forces,
13,250 rpm

lbs at Rection forces,
24,000 rpm

lbs at

Bearing Impedance	 Ref. [457 Impedance	 Ref. [457

Number

1 257. 251.7 98.9 100.3

2 280.7 283. 114.5 117.3

3 490.1 471.2 44. 47.5

4 833.5 808.4 3.8 2.8

C'

0

51'

f ,,.	 ... 7'^i+'s ^.r^ ,^Isc.r/^- .-ec :.•'^.	 mr:—•t..s^_^Rr,_
raw,, . _,-. 

K-^ – .v _



Ii
	 '`	 fit"/'	 _	 . rJL,

^l

r ^' fl

I

Y
a.

i

e.

i

s

"t
fi

i	 tl

a

i

i^

If

C,

in handling the housing modes which influence the representation of the two

models in different ways.

Experience with the programs showed that the impedance approach is

more efficient than that of the approach of [45] for a given rotor speed.

However, when the steady state response at various rotor speeds are re-

quired, the approach of [457 appears more beneficial to use. On the other

hand, the generalized receptance method, although not fully tested, appears

to be more efficient than both of the impedance method and the method of

reference [45]. The receptance method requires only one inversion (see

equation (17)) for assembling the system's generalized receptance matrix.

In addition, the size of the assembled matrix is considerably smaller than

that of the impedacne,, as can be deduced from examination of equation (65).

4.2b Eigenvalue sensitivity of the HPOTP

Few test cases were run using the newly developed program (EIGNSENS).

A case considered is that of determining the effect of changing the

stiffness of the first bearing on the eigenvalues of the HPOTP. The

configuration and data for the HPOTP are those discussed in section 4.2a.

The rotor speed is taken as ; = 30,000 rpm and the assumed change in the

stiffness of the first bearing was 20%, or

	

K$ 	0.80 x (K B ) = 0.8 x (5 x 105)

	

1	 1 o

0

4 x 105 lbs/in	 (95)

The bearings , stiffnesses are assumed to be in series with the local

stiffnesses, K c ► s at the housing. The equivalent stiffness at the first

bearing location is therefore

5 2

V

vhf



,--r	 r	 ^+
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01

KKB1	
Kc1

	

b1	 KB + KC i	 (96)

	

1	 1

and

K 2
c1

t	 (Kb	 2	 (97)
	1 ,K

B 1	 B1	 c1
(K	 + K	 )

so that in equation (87) for one of the planes

C'

(Kb )	 0	 0
1 ,KB

1

C Kb ] ^ K	 0	 0	 0	 0	 (98)
$'Y	 1	 B 1

0	 0	 0	 0

0	 0	 0	 0

The derivatives of the eigenvalues for the HPOTP System considered

were then calculated using, (EZGNSENS). Examination of the results can best

be achieved by using the sensitivity measures proposed by Fritzen and

Nordmann [44]. The eigenvalues of the complete turbopump system is

expressed as

Xn = an + iwn	(99)

A relative measure of the sensitivity can be constructed by defining the

following nondimensional ratios, using the relations given by equations

(91), so

0a /a	 8a	 KB

AK	 AKB1/KB1 = Re (8KB )
	 ano	

(1OOa)

	

1	 1	 1
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As discussed in reference [441, the designation of relations (100x) 4

and (100b) would enable comparison of the extent by which modifications of

several parameters may have on different eigenvalues.	 Large ratios of

"• equations	 (100a) and (100b) indicate that changes in K B will have a	 large
1

effect on both the damping and frequencies of a given complex mode.
^

i

The results of the sensitivity analysis of the HPOTP eigenvalues for

the case considered is presented in Table 2. 	 The results were also checked

by calculating directly the new eigenvalues using (ESTAB2),	 with the first

bearing stiffness as given by :>";aation (95). 	 Close agreement was observed

between the results of the direct calculation and those using sensitivity .°
i

derivatives. 3F,

In Table 2, the relative change of stiffness is negative, or
t

r	 }

AKB /KB 	- 0.2 .
1	 1

The reversed sign in the last column, of Table 2, therefore, 	 indicates

that the decrease in stiffness at the first bearing results in an increase

in the damped frequency of the system.	 That increase is highest at the

k

13th and 14th conjugate modes as well as in the higher complex modes.

The relative change in a no is of particular significance since it

indicates the effect of stiffness change on a possible change from stable

to unstable condition for the system.	 The results of Table 2 shows the

highest sensitivity in this regard to be associated with modes number !̂!^
i

T
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TABLE 2. Relative ehanges in eigenvalues due to	
r

"	 variation in bearing stiffness

Qa /a	 4w /w
Eigenvalues	 a	 w	 n no	 n no

	

o	 °
	 AKB /KB	AK8 /K$	 d

1	 1	 1	 1

1,2 -1.3467 +275.81 +1.86 x 10-4 0

3,4 -1.4204 +284.07 0 0

n 5,6 -2.8753 +530.76 +0.94 x 10
-2

+2.78 x 10-4 i

7,8 -2.6884 +537.60 0 0

r' {
1

9,10 -4.6546 +690.71 +1.91 x 10
-2

+2.12 x 10-4
t

11,12 -3.4907
_
+700.08 -1.43 x 10-4 0

13,14 -146.73 +1323.7 +2.39 x 10
-3

+0.57 x 10-2

15,16 -6.6063 +1865.8 -1.18 x 10-1 +2.41 x 10-3

17,18 -9.4490 +1888.0 +1.59 x 10 -4 0
1

19,20 -5.5610 +1904.7 +0.67 x 10	 1 71.32 x 10-3 T

21,22 ~9.7791 +1948.4 -1.54 x 10-4 0

23,24 -8.6708 +1961.3 +2.68 x 10 2 +0.51 x 10-3

r 25,26 -11.093 +2207.3 +1.81 x 10
-3

0

27,28 ~11.167 +2209.4 +0.58 x 10_
2

-2
0

-3
t 29,30 -21.747 +2681.5 +2.09 x 10 +0.56 x 10

31,32 -13.863 +2715.1 +0.61 x 10
-2

+1.84 x 10-4

33,34 -26.206 +2878.8 +0.89 x 10-1 +4.52 x 10-3

(t; 35,36 -14.735 +2943.5 +1.02 x 10 -4 0

37,38 -16.792 +3058.5 +1.79 x 10
-2

-

+4.91 x 10-4i

39,40 -15.648 +3068.0 +1.12 x 10
-2

0

41,42 -60.200 +3170.3 +1.94 x 10 -1 +1.44 x 10-2

-143,44 -2.1325 +3375.0 +0.63 x 10 0

r 45,46 -17.354 ±3408.2 -6.15 -+0.57 x 10-1

47,48 -32.047 +3463.5 +1.11 +2.17 x 10-2
'
r 49,50 -384.47 +4395.3 -1.51 x 10	 2 -+1.66 x 10-1

51,52 -184.90 +5069.9 -1.8 x 10
-1

+1.14 x 10-1
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a.	 x^	 a."	 fit

1
15, 16, 19, 20, 33, 3 11 and the last eight modes, 	 A negative sign

associated with the relative change in an ano indicates that the effective
,t

damping of the corresponding mode is reduced. It might be concluded that
a

modes 15 and 16 could first become unstable.
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5. CONCLUSIONS AND RECOMMENDATIONS

Based on the assessment of existing analysis procedures and on results

obtained in the course of this study, the following conclusions can be made

in relation to the SSME turbopumps.

5.1 Conclusions

(i) The frequency response methods developed in this study appear to

constitute a highly effective tool for determining the steady state linear

response of the SSME turbopumps. The methods, as formulated with a sub-

system approach, demonstrate the following advantages:

(a) the dynamic model of the housing is reduced to the degrees of

freedom of the connections points to the rotor. Since the number

of these point is relati vely small; the size of a housing model

is drastically reduced.

(b) in cases where the housing is represented by a truncated set of

its free eigenvalues, the methods will facilitate incorporating

approximate representation of the truncated lower and higher

modes of the housing. This is accomplished without affecting the

size of the reduced model of the housing.

(c) a reduced model of the rotor may be obtained directly from its

representation by physical coordinates. In that case, no approx-

imations are made. The rotor may also be represented by all (if

desired) of its real modes. The resulting reduced model will

still be of the same size corresponding to the number, of degrees

of freedom at the connection points. This representation also

has the advantage of being based on the real free-free undamped

M

f

z

i

E

e
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modes of the nonspinning rotor, avoiding the use of complex
	

rr

modes.

(d) the formulation adopted in this study, which uses individual

models of the free components to form coupled systems, allows

performing efficient re-analyses to determine effect of changes

in the coupling elements.

(e) frequency response information for the rotor at its coupling

a,	 points may be obtained directly from experimental test data.

(ii) The generalized receptance formulations can yield accurate, re-

duced Lamda matrices for determining all of the eigenvalues of the coupled

rotor-housing systems. The accuracy of the eigenvalues will depend, how-
j

ever, on the accuracy of representation of the individual subsystems. If
	

i

the modal coordinates were used in constructing the receptance matrices,

+	 the number of the system eigenvalues which can be determined will be equal

to the total number of retained modes for rotor and housing less tine number

of degrees of freedom at the connection points. Procedures are yet to be

i	 further developed to render the method practically efficient.

(iii) The response and eigenvalue sensitivity relations developed here

can be used effectively in guiding directions of design changes and in

r	 determining effects of estimated data errors on the analysis.

5.2 Recommendations
	

r
e

Further developments can be made based on some aspects of the proce-
	

{

dures adopted for this study and on other representations of the

components. In particular, it is recommended to

(i) Develop analogous procedures for transient and other analysis
IN,

requirements. The procedures would utilize reductions of subsystems to
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their coordinates at the connection points and allow mixed representations

of the subsystems.

(ii) Further develop and optimize the generalized receptance method.

Actual test analyses using this method should be made using corrected modal

housing model.

(iii) Pursue use of the dynamic reduction approach in developing

accurate methods of determining eigenvalues and eigenvectors of coupled

subsystems,

(iv) Develop an alternative procedure to the dynamic reduction

approach as applied to all components of a rotor system. With the SSME

turbopumps, the procedure could utilize static reduction method for the

rotors and dynamic reduction of the housings. The relative merits of the

two procedures can then be tested: The latter procedure can highly facili-

tate computation of the coupled rotor/housing eigenvalues.

(v) Extend the free-interface modal synthesis methods for application

to nonconservative systems. These methods can be used in reducing the

rotor's models for use in performing transient analyses.

(vi) To explore using Fourier and Laplace transformations in the

analysis of reduced rotor systems. The impedance or receptance formula-

tions might prove useful in this connection.

ACKNOWLEDGEMENTS

Discussions with D. Childs concerning the characteristics of the SSME

Turbopumps and their analysis were quite helpful throughout this study.

Frequent feedback from T. Fox of NASA, MSFC concerning the direction of the

study is arrpreciated,

59

-:..4
Fp

r,

a

f.

P

f	 }

h	 :.	 t

R	 .-
t

A

k	 fr	 _



s 4r

a
REFERENCES,

1. Childs, D. W., "Two Jeffoott-Based Modal Simulation Models for
{ Flexible Rotatir;, *^=quipment,	 ►►ASME J. Engineering for Industry,	 Vol.r

97, No. 3, (1975), pp. 1000-1014, ia

2. Nelson, H. D. and Meacham, W. L., "Transient Analysis of Rotor-Bearing
Systems Using Component Mode Synthesis," ASME paper 81-GT-110,	 1981.

4

3. Rouoh, K. E. and Kao, J. S., "Dynamic Reduction in Rotor Dynamics by
the Finite Element Methods," ASME J. of Mechanical Design, 	 Vol.	 102,
No. 2,	 (1980),	 pp. 360 -368.

m 4. Guyan,	 R.,	 "Reduction of Stiffness and Mass Matrices," AIAA J., 	 Vol.

3,	 (1965),	 P.	 380.
t

5. Henshell, R. D. and Ong, J. H., 	 "Automatic Masters for Eigenvalue
Economization," Earthquake Engineering and Structural Dynamics, 	 Vol.

3,	 (1975), pp 375-383.

6. Nordmann,	 R.,	 "Eigenvalues and Resonance Frequency Forms of
'I Turborotors with Sleeve Bearings Crank Excitation, External and

Internal Damping," Machine dynamics Group, Technical University
Darmstadt, West Germany, June, 	 1975.

r 7. Downs, B., "Accurate Reduotion of Stiffness and Mass Matrices for
Vibration Analysis and a Rationale for Selecting Master Degrees of
Freedom," ASME J.	 nalMechanic	 Des ign, Vol. 102, No. 2, 	 (1980). ► pp. 412-
416.	

.,._	 ._..	 _

8. ""	 ""
Paz, M.,	 Dynamic Condensation,	 AIAA J., Vol. 22, No. 5, (1984), pp.

f

724 •-727 • a

9. Leung, A. Y.-T., "An Accurate Method of' Dynamic Condensation in
Structural Analysis," Int. J. Numerical Methods in Engineering, Vol.
12, (1978), pp. 1705-1715.

10. Fricker, A. J., "A New Approach to the Dynamic Analysis of
Structures Using Fixed Frequency Dynamic Stiffness Matrices," Int.
J. Numerical Methods of Engineering, Vol. 19, (1983), pp. 1 1 11-1 129.

11. Childs, D. W., "A Rotor-Fixed Modal Simulation Model for Flexible
Rotating Equipment," ASME J. Engineering for Industry, Vol. 96, No.

^ 11	 2, (1974), p p . 359-669.

12. Choy, K. C., Gunter, E. J. and Allaire, P. s., "Damped Critical Speeds
and Unbalance Response by Complex Modal Analysis," Report No. ME-543-
131-76, University of Virginia, Feb. 1976.

60

0

x



r r .-

13. Hou, S., "Review of Modal Synthesis Techniques and a New Approach,"
Shook Vibration Bull., U.S. Naval Res. Lab., Vol. 40, part 4,
(1969) ► pp. 25 -39. ...^

14. tai, D.	 and Gunter, E. J., "Component-Mode Synthesis of Large Rotor
Systems," ASME Paper No. 81-GT-147, 1981.

15. Li, D. F., and Gunter, E. J., "'A Study of the Modal Truncation Error
'>in the Component Movie An e lys l s of a Dual-Rotor System," ASME paper No.

81-GT-144, 1981.

16. MacNeal, R. H., "A Hvbrid Method of Component Mode Synthesis,"
Computers and Structures, Vol. 1, (1971), pp . 581-601.

t	 17. Childs, '1. W., and Bates III, J. B., "Residual Flexibility Corrections
for Transient Modal Rotordynamie Models," ASME, J. Mechanical Design, 	 ^ !
Vol. 100, (1978), pp. 251-256. 	

—

x
18. Klosterman, A. L., and McClelland, W. A. "Combining Experimental and

Analytical Techniques for Dynamic Syst6 ; Analysis," presented at the
" 1973 Tokyo Seminar on Finite Element Analysis, 1973•

j

19. Rubin S., "An Improved Component-Mode Representation," AIAA J., Vol.
13, (1975), pp. 995-1006., 9

20. Noah, S. T., "Development of Experimentally Compatible Subsystem
t	 Methods for the Analysis of Aircraft Structures," AFOSR-TR-82-0050,;;

1981.	 v'

21. Tolani, S. K. and Rocke, R. D., "Modal Truncation of Subtructures 	 p
used in Free Vibration Analysis," ASME J. Engineering for Industry,	 ?
Vol. 98, No. 3 ► (1976), pp. 827 -834.`,

22. Morosow, G. and Abbott, P., "Mode Selection," Proceeding of
Symposium on Synthesis of Vibrating Syjtems, ASME WAM, Wash. D.C. 	 z
(1971), pp. 72-77.

23. Glasgow, D. A. and Nelson, H. D., "Stability Analysis of Rotor- 	 }I
C'	 Bearing Systems Using Component Mode Synthesis," Paper No. 79-DET-

63, ASME, Design Eng. Tech. Conference, St. Louis, MQ, 1979.
f

24. Hurty, W. C., "Dynamic Analysis of Structural Systems Using Component,
Modes," A IAA J., Vol. 3, No. 4, (1965) ► pp. 678 - 685.

x

25. Craig, Jr., R. R., and Bampton, M. C., "Coupling of Substructures for
Dynamic Analyses," AIAA J., Vol. 6, No. 7, (1968), pp. 1313-1319.—

26. Craig, R. R. and Chung, Y.-T., "Generalized Substructure Coupling
Procedure for Damped Systems," AIAA J., Vol. 20, (1982) ► pp. 442-444•

27. Wu, L. and Greif, R., "Substructuring and Modal Synthesis for Damped
Systems." J. Sound and Vibration, Vol. 90, No. 3, (1983), pp. 407-422.

61



V

for General Second Degree Square Lambda Matrices," Int. J. Numerical
Methods	 in Engineering, Vol.	 18,	 (1982),	 pp.	 829 - 843.

30. Berman, A.,	 "Vibration Analysis of Structural Systems Using Virtual
Substructures," Shock and Vibration Bull., 	 U.S.	 Naval Re,,1.	 Lab,	 Vol.
43, part 2,	 (1973), PP.	 13-22•

31. Leung,	 Y.-K.,	 "An Accurate Method of Dynamic Substrueturing with
t` Simplifier! Computation," Int. J. Numerical Methods in Engineering,

Vol.	 1 4,	 ( 1 9 1(9),	 pp.	 1241-1256.

32. Geering,	 H. P.,	 "New Method in Substrueturing", 	 Proceedings of the
AIAA/ASME/ASCE/AHS 21st Structures, Structural Dynamics and
Materials	 Conf.,	 (1980),	 Seattle,	 Wash„	 pp.	 801-808.

C

33• Hale, A. L. and Meirovitch, L., 	 "A General Substructure Synthesis
Method for the Dynamic Simulation of Complex Structures," J.
Sound and Vibration, Vol. 69, No. 2, (1980), pp. 309- 326.

34. Hale, A. L. and Meirovitch, L., 	 "A Procedure for Improving Discrete
t„ Substructure Representation in Dynamic Synthesis," AIAA J., 	 Vol.	 20,

No.	 8,	 (1982),	 pp.	 1128-1136. 

35. Fox, R. L., and Kapoor, M. P., "Rates of Change of Eigenvalues and
Eigenvectors,' r AIAA J., Vol. 6, No. 12,	 (1968),	 pp. 21126-2429.

36. Plaut,	 R. H.,	 and Huseyin,	 K.,	 "Derivatives of Eigenvalues and
Eigenvector3 in Non-Self-Adjoint Systems," AIAA J.,	 Vol.	 11,	 No.	 2,

(1973), pp. 250-251.

37. Garg,	 S., "Derivatives of Eigensolutions for a General Matrix," AIAA

J.,	 Vol.	 11,	 No.	 8,	 (1973),	 pp.	 1191-1192.

38. Rudisill,	 C. S.,	 "Derivatives of Eigenvalues and Eigenvectors for a
General Matrix," AIA A J., Vol. 12, No. 5,	 (1974), pp. 721-722.

39. Nelson,	 R.	 B.,	 "S).inplified Calculation of Cigenvector Derivatives,"
AIAA J., Vol. 14, No. 9,	 (1976),	 pp.	 1201-1205.

40. Simpson, A., "The Kron Methodology and Practical Algorithms for
Eigenvalue, Sensitivity and Response Analyses of Large Struet'iral
Systems," aeronautical Journal.	 Paper No.	 754,	 (1980), pp.	 417-

433.

4

k

a
i
i
t}

28. Palazzolo, A. B., Wang, B. P. and Pilkey, W. D., "Component Synthesis
of Multicase, Rotating Machinery Trains by the Generalized Receptance
Approach, '"ASME, J. Engineering for Power, Vol. 105, (1983), pp. 941-
946.

29. Palazzolo, A. B., Wang B. P. and Pilkey, W. D., "A Receptance Formula

k^

62



A rf ^l

f-

is

C,

0

41. Simpson, A. and Tabarrok, B., "On Kron's Eigenvalue Procedure and
Related Methods of Frequency Analysis," Quarterly J. Mechanics and
Applied Mathematics, Vol. XXI, (1968), pp. 1-39.

42. Yoshimura, M., "Desigh Sensitivity Analysis of Frequent: ,, ;.1ponse in
Machine Structures," ASME J. Mechanisms, Transmissions, ano :automation
in Design, Vol. 106, (1984), pp. 119^-125.

43. Lund, J. W., "Sensitivity of the Critical Speeds of a Rotor to Changes
in the Design," ASME, J.^Mech. Design, Vol. 102, (1980), pp. 115-121.

44. Fritzen, C. P. and Nordmann, R., "Influence of Parameter Changes to the
Stability Behavior of Rotors," Second Workshop on Rctordynamie
Instability Problems in High Performance Turbomachinery, Texas A&M
University, College Station, Texas, May 10-12, 1982.

45. Childs, D. W., "The Space Shuttle Main Engine High-Pressure Fuel
Turbopump-Rotor Dynamic Instability Problem," ASME J. Enginoering for
Power, Vol. 100, No. 1 , 0 978), pp. 48-51 .

46. Childs, D. W., "Rotordynamic Characteristics of the HPOTP (High
Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine),"
Report for NASA's Marshall Space Flight Center for Contract NAS8-
34505, Texas A&M University, College Station, Texas, January 1984.

47. Nagamatsu, A., ,^,.td Ookuma, M., "Analysis of Forced Vibration with
Reduced Impedance Method," Bulletin of the JSME, Vol. 24, No. 189,
(1981), pp. 578-584.

48. Thurston, G. A., "Roots of Lambda Matrices," ASME J. Applied
Mechanics, Vol. 45, (1978), pp. 859-863.

63


	GeneralDisclaimer.pdf
	0002A02.pdf
	0002A03.pdf
	0002A03_.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002A14.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002B13.pdf
	0002B14.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf
	0002C08.pdf
	0002C09.pdf
	0002C10.pdf
	0002C11.pdf
	0002C12.pdf
	0002C13.pdf
	0002C14.pdf
	0002D01.pdf
	0002D02.pdf
	0002D03.pdf
	0002D04.pdf
	0002D05.pdf
	0002D06.pdf
	0002D07.pdf
	0002D08.pdf
	0002D09.pdf
	0002D10.pdf
	0002D11.pdf
	0002D12.pdf
	0002D13.pdf
	0002D14.pdf
	0002E01.pdf
	0002E02.pdf
	0002E03.pdf
	0002E04.pdf
	0002E05.pdf
	0002E06.pdf
	0002E07.pdf
	0002E08.pdf
	0002E09.pdf
	0002E10.pdf
	0002E11.pdf
	0002E12.pdf
	0002E13.pdf
	0002E14.pdf
	0002F01.pdf
	0002F02.pdf
	0002F03.pdf



