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ABSTRACT

Alternative methods,for the rotor—dynamic and sensitivity analysis of
large rotor systems are examined. The methods are assessed for their
ability to utilize accurate models of reduced size along with effective
procedures for describing the dynamic behavior of the systems.

Frequency response~based techniques are developed for determining the
steady state response to imbalance of the SSME turbopumps and the related
elgenvalue problem. In these techniques, the rotor and housing are
represented by reduced receptances associated with their coupling points.

The housing may be described by all of its normal modes within a frequency

- range of interest, The effects of truncated higher and lower modes are

accounted for in an approximate manner. A reduced model for the rotor can
be formed through an exact dynamie recduction to the degrees of freedom at
the connection points to the housing. Alternatively, the reductipn can be
accomplished using modal representation of the nonspinning rotor. The
reduced impedences (or receptances) of the rotor and housing are assembled
through the impedances of the coupling elements to form the turbopump
system, The size of the resulting system impedance (or receptance) is that
of the number of the degrees of freedom (or forces) at the coupling points.

A procedure is described for determining the sensitivity of the
coupling forces to changes in the coupling elements and rotor speed of the
turbopump systems. In addition, an eigenvalue sensitivity analysis
technique is adopted for application to the systems.

'Computer programs were developed for the numerical implementation of
the impedance and eigenvalue sensitivity formulated in this study.
Finally, recommendations are made concerning further developments and

requirements for other types of analyais.
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1. INTRODUCTION

1.1 Background

The dynamic analysis of models of large rotor systems, such as the
turbopumps of the SSME (Space Shuttle Main Engine), may involve excessive
computations and large round~off errors, Use of reduced size models for
the systems 1s, therefore, highly desireable. To that end, the more
frequently used methods include modal representation [1], substructure
techniques [2)] and static reduction techniques [3].

For large complex rotor systems, various modeling and analysis tech~-
niques vary in their ability co accurately describe the systems' behavior.
This ability depends mainly on the configuration of the systems analyzed
and the forcing conditions as well as the particular results sought. For
the analysis of the turbopumps of the SSME, certain distinct character-
isties should be considered, Accurate modeling of the housings‘requires
representation by relatively large number of degrees of freedom. Also, the
housing is unsymmetrical about the spin axis of the rotor, In addition,
engine test results have tended to show the presence of significant coupled
rotor/housing modes. The coupling occurs through nonconservative vyelocity
dependent gyroscopic and viscous forces and couples. Finally, experience
has shown that predicted onset speeds of instability tend to be remarkably
sensitive to small changes in the modal representation of the housing.

Clearly, a strong need exists for a more thorough and careful con~
sideration of the representation of the housing structural dynamics model
and of the rotor/housing coupling procedure., For stability analysis the
ability to predict how changes in the coupling parameters effect the com~

plex eigenvalues of the assembled rotor/housing turbopump is equally



important. An understanding of the nature of changes in ths system eigen-
values due to changes in the model parameters can be helpful in quiding an
experimental/analytical effort toward resolving any discrepancies between
test and analysis results. Calculated parameter sensitivities would also
be useful in evaluating design alternatives and in handling uncertainties

in the input data,

1.2 Objectives and Scope

This study was mainly initiated for the purpose of developing improved
dynamic analysis and modeling of large rotor systems. Specifically, the
main objectives of the study were to:

(1) address the problem of structural dynamic modeling of the large

housing of the SSME turbopumps and its coupling to the rotor.

(2) develop accurately reduced models and efficient procedures for
determining the response and stability of the turbopumps of the
SSME.

(3) develop and/or apply selected sensitivity analysis techniques to
determine the effect of variations in coupling parameters on the
stability and forced response of the turbopumps.

The main results of the study are outlined in this report. Following

a comprehensive assessment of modeling and analysis methods for large rotor
systems, alternative techniques were developed for the study of the steady
state response and stability as well as parameter sensitivity of the SSME
turbopump systems. The analysis is-limited to being linear and the
response considered only concerns steady state conditions under rotor

imbalance.



2., REVIEW OF ROTORDYNAMIC ANALYSIS OF LARGE SYSTEMS

2.1 Modeling and Analysis

Various Analysts have proposed and utilized different procedures in
obtaining the response and stabllity of large order rotor systems, The
motion of the systems was described by physical coordinates, generalized
coordinates or combinations of both,

Analysis strategie~ may be recognized as falling under one of two
basic classes, Those using the complete system and those using the
individual components of the system, together with appropriate coupling
procedures, For large systems, both strategices call for reduction of the
size of the models involved, An assessment of existing modeling and
coupling techniques as related to analysis procedures used is presented in
what follows., Also, a brief account is made of the associated eigenvalue
and response sensitivity to changes in system parameters., The review is

restricted to linear rotor systems,

2.1a Complete system~based methods

Starting with a full scale model of the total system, several methods
have been devised for reducing the model's size for analysis purposes, A
static reduction technique was introduced by Guyan [4] in which a given
system is described by a selecterd subset of "master" degrees of freedom.
The remaining degrees of freedom, called "slaves" are eliminated. The
elimination is achieved through a transformation matrix formed from the
associated static problem. The masters are capable of accurate representa-
tion of the lower modes of the system, However, the master coordinates

must be carefully selected okherwise some of the lower eigenvalues of the



system will be lost, Henshell and Ong [5] proposed an automatic technique
for choosing the master coordinates, The oriterion for the choice is based
upon the corresponding ratios of the diagonal elements of the stiffness and
mass matrices. A slave degree of freedom corresponds to a large stiffness
to mass ratio., This 1ls so since in a Guyan reduction it is impliecitly
assumed that the mass terms corresponding to slave degrees of freedom have
negligible effect on the mode shapes. This leads to the conclusicn that
either the corresponding masses are small or that the stiffnesses are
large.

Rouch and Kao [3] extended the Guyan static condensation technique to
the analysis of simple rotor~bearing systems by accounting for gyrnsecopic
matrices. The selection of master degrees of freedom was made taking
advantage of the knowledge of characteristic beam bending modes of the
rotor. If wx:ears, as concluded by the authors, that the rotor-bearing
systams ire amenable to this type of reduction because of their nominally
one~dimensional configuration. No assessment of the resulting accuracy
with various types of analysis was given. Nordmann [6] attempted to mini-
mize the uncertainties in the selection of the master degrees of freedom in
the static condensation technique., This was achieved by applying the
reduction technique to an arbitrarily divided rotor system and then
asgsemble the reduced substructures to form a reduced system, The procedure
is very laborious and no guarantee of accuracy is apparent.

Downs [7] proposed a reduction method which produces frequency depen-
dent mass matrices, Strategies for selection of master coordinates were

given which allow for progressive improvement in the selection, The method



was used to obtain the eigenvalues of a given system up to an upper
frequency limit.

A different approach for the reduction was recently advanced by
several investigators, The main characteristic of the approach is to
perform an exact reduction by replacing the stiffness matrices in the
stat.ic approach by that of the dynamic stiffness, or impedance matrices,
In an eigenvalue analysis (or steady state response analysis), the reduced
system will be dependent on the eigenvalue (or the forcing frequency) under
consideration., Iterative procedures are then used with this "dynamic
condensation!” method in order to calculate the eigenvalue of the system.
No approximations are made in arriving at the reduced model. This reduc~
tion however is achieved at the expense of requiring of more involved
computation, Several authors (8,91 proposed calculation procedures for
determining tﬁe eigenvalues of undamped, conservatives structural systems.

In an attempt to alieviate the problem of frequency dependence of the
dynamically reduced models, Fricker [10] devised a method in which the
frequency~-dependent terms are retained implicitly by using dynamic
stiffness matrices defined at a number of fixed frequencies. The dynamic
stiffness matrices may be condensed efficiently to a relatively small
number of "master" coordinates using a front solution algorithm. The
method appears of promise, although it is not apparent how to utilize it in
conjunction with nonconservative gyroscopic systems.

A different approach for the analysis of mechanical structures is to
describe the structures by their modal coordinates. A significant advant~
age of representing a structure by modal coordinates is that the repre~

sentation forms the basis for size reduction of the structure's model.



This may be achieved by retaining only a small number of modes in & speci-
fied frequency range, usually selected from among the lower modes, However,
the particular modes which would influence the behavior of a given system
depend on the type and location of the external loads. No general quide-
lines are available in that connection,

Childs [11] used undamped normal modes of a given rotor to perform
transient rotordynamic analysis. The modes selected are those of the lower
modes of the complete system involved. No allowance was made for the
truncated modes., Choy et al. [12] used complex modal analysis to determine
the unbalance response of damped rotor systems. For simplified‘cases
considered, the complex modes of the system were obtained from those of the

undamped normal modés of the system.

2.19 Subsystem=based methods

A reduced size model can be obtained for a given system‘by first
performing the reduction on the subsystems and then assemble them to form a
reduced system.

Hou [13] devised a scheme in which the subsystems involved are repre=~
sented by truncated sets of their free-interface modes. A transformation,
derived from the displacement compatibility at the connection points of the
substructures, is then applied to their modal equations of motion to arrive
at a description of the motion of the assembled system. This and similar
procedures are labelied modal synthesis techniques. Li and Cunter [114]
utilized Hou type approach to calculate the vibrations of large multi-
component rotor systems. They also conducted an evaluation of the number
of modes required to yield acceptable accuracy for the unbalance response

of a two-spool gas turb’'ne engine [15]. In general, depending on the type
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of structure, a significant number of modes might be necessary to yield
response information of acceptablie aceuracy at specified locations of
interest on the structure. These locations could be those where coupling
or interface to other structural components occurs,

Several methods exist in the literature which offer procedures for the
improvement of analysis accuracy for a given number of retained modes.
Some of these techniques utilize modal coordinates obtained with points of
interest on the structure free (free~interface methods), and provide means
for accomodating the effects of truncated higher modes in approximate
manners. MacNeal [16] suggested a method in which the static contribution
of the truncated modes is incorporated. This accounts for the missing
flexibility effects (residual flexibility) due to truncation. The method
can lead to significant improvement in the convergence in the solution for
the dynamical problem. Childs and Bates [17] applied this technique in
determining the transient response of a rotor and reported significant
increase in solution accuracy for a gilvern number of modes.

A method, analogous to that of MacNeal, is also outlined in the
literature to account for the truncated lower modes of frequencies below
the frequency range of interest. The technique is described by Klosterman
and McClelland [18], in which an approximate representation of the lower
mode contribution to the structure response is proposed and labelled
"inertia restraint", Further improvement of How's technique was introduced
by Rubin [19]. Rubin proposed a method in which the first order approxima-
tion of MacNeal is utilized to construct a pseudc¢-ctatic response of a
substructure, acting within a structure, which includes inertial and dissi-

pative contributions. Noah [20] has shown that inclusian of these second-
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order effects may drastically improve: (i} the modal representation of a
substructure for the modal synthesis of a structure, and (ii) the damping
synthesis for the assembled system,

A further reduction of a modal description of a subsystem, in addition
to that achieved by imposing lower and upper cut~off frequencies, can still
be accomplished by selecting certain modes from among those within the
specified frequency range. Tolani [21] proposed a criterion based on the
strain energy of a subsystem, whereby an upper limit on strain energy is
set and only the modes having strain energy below this value are con~
sidered, An approach for selecting the modes of a subsystem that are
important with respect to the motion of another given subsystem is due to
Morosow and Abbott [22]. Unfortunately, the method is only applicable to
waakly coupled systems.

An alternative to using free~interface modal coordinates is that using
"fixed-interface! methods. In this method, the structure is represented by
a truncated set of lower modes obtained with points of interest (usually
those of the coupling points to other subsystems) on the structure com-
pletely fixeé. The retained modes are complemented by static "constraint
modes" obtained as influence coefficients corresponding to the points of
interest on the structure. Glasgow and Nelson [23] extended this technique
(introduced in [24] and [25]) to nonconservative systems and applied it to
the dynamic substructure coupling of various rotordynamic systems, A dis-
advantage of this type of approach is that for systems with large number of
coupling points among the components, the approach suffers the problem of
introducing higher frequencies resulting from excessive number of con-

straints imposed at the coupling (or boundary) points. In a transient



analysis, this will necessarily result in much smaller time increments and
consequently will lead to excessive computational time and larger round-off
errors,

Complete treatment for a generalization of free-interface methods to
nonconservative systems, analogeous to that of the fixed-interface method,
[23], is still lacking. Craig and Chung [26] utilized first order state
space formulation of the equations of motion to represent a given component
by a truncated set of its complex modes. Wu and Greif [27], in a novel
approach, utilized two successive transformations based upon consecutive
use of free interface modes in the existing physical coordinates. The set
of modes for the first transformation are those of the undamped, free
interface subsystems. The second transformation is based on the damped

fixed-interface subsystem in generalized co-ordinates which freezes the

generalized interfaces. The second set of generalized coordinates is
truncated and is supplemented by the fixed~interface coupled coordinates.
The system elgenvalue problem is solved, after physical interface compati-
bility is invoked in coupling the various subsystems. Further investiga-
tion of this technique is warranted.

Other methods applied to nonconservative systems include those using
receptances of the subsystems. Palazzolo gt al. [28,29] used hybrid
representation of the receptances in terms of a truncated set of complex
modes supplemented by correction matrices involving mass, stiffness and
damping properties of the subsystems. The method was used to determine the
steady state response of rotor-~system components as well as in efficient
eigenvalue reanalyses for the components, Applications to the synthesis of

certain type of rotating machinery train was also made. The general



applicability of the method as a component mode synthesis technique was not
demonstrated, however,

The Dynamic reduction method discussed earlier [9] was also utilized
by several analysts to reduce the size of the compenents of 4 system, prior
to their coupling, to form a reduced system. Berman [30] presented a
substructure coupling method that make use of frequency dependent response
of the substructures (represented by reduced impedances) to interface and
excitation forces. Leung [31] further developed his dynamic condensation
technique for use with substructures. His method uses physical coordinates
of the subsystems to satisfy compatibility conditions. The subsystems are
described by a few lowest fixed~interface modes in conjunction with the

static constraint modes of Hurty [24]. The size of the system matrices

involved 1is equal to the number of degrees of freedom, or masters, for each

subsyatem. A similar approach to that of Berman [30] was presented by
Geering [32]. Geering applied his method, based on what he termed dynamic
elasticity transfer matrix, to obtain the transient response to periodic
loads and the response spectra to stationary random loads. The eigenvalue
problem was eluded to in his paper.

A totally fresh subsystem analysis technique was introduced by Hale
and Meiroviteh [33,34]. Admissible functions were employed for the repre-
sentation of the substructures involved. The approach results in low order
polynomial representation that simplifies computation., The admissible
functions are not necessarily those of the substructures' eigenvectors.
The geometric compatibility conditions are approximately enforced by the
method of weighted residuals. In the author's opinion this method is a

powerful and general technique for conducting dynamic substructure
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analysis. However, the method would not allow use of experimental data at
the substructure level. Also, no apparent means exists for applying the

technique to damped nonconservative systems,

2.2 Sensitivity Analysis

An important aspect of the modal representation of a linear dynamic
system is the inclusion of accurate estimation of those system parameters
to which the system behavior is most sensitive. The literature offers
several studies and suggested procedures concerning such sensitivity
analyses.

Fox and Kapoor [35] obtained expressions for the first derivatives of
the eigenvalues and eigenvectors with respect to design parameters of the
original self~adjoint systems. Plaut and Huseyin [36] derived general
expressions for the derivatives of eigenvalues and eigenvec!ors in non~
self~adjoint systems. Their results can be useful in exam%ning the
stability behavior of nonconservative systems, Other sensitivity analysis
techniques have also been reported which differ in thelr computational
efficiency, type of dynamic system considered, and order of the derivatives
of the eigenparameters involved, In reference [36], the determination of
any one of the derivatives of the eigenvectors of a nonself-adjoint system
requires use of gli of the left~hand and right-hand eigenvectors. This was
avoided in a formulation given by Garg [37], in which the calculation of
derivatives is reduced to solving two sets of simultaneous linear algehralic
equations for each eigensolution of interest., Rudisill [38)] developed an
alternative procedure to that of Garg which could be extended to find any
order of derivative of the eigenvalues and eigenvectors, provided they

exit.
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Nelson [39] discussed the computational requirements for obtaining the
derivatives of the eigenvectors using the two approaches of [36] and [37].
He pointed out that the first approach, in which the elgenvector derivative
is expressed as a sum of all the eigenvectors, although analytically simple
becomes prohibitively expensive for large systems. On the other hand, the
second approach requires only the specified eigenvalue and eigenvector but
calls for the premultiplication of an (n+1) x n matrix by its transpose to
form an nth order system of 1ibear equations. Nelson presented an alterna-
tive simplified procedure for the gensitivity analysis, based on the second
approach.

An interesting paper, in a series of publications by Simpson [40],
discusses means for readily obtaining eigenvalue and response sensitivities
using simple modification of the basic eigenvalue method of Kron [41]., The
method employs a subsystem approach and provides for means of studying
transmissibility of vibration between the system components. * A recent
study by Yoshimura [42] also addresses the need of developing efficlent
sensitivity analysis of frequency response. A method was presented for
determining design sensitivity coefficients of receptance~frequency
response evaluative functions. The method was applied to machine~tool
structures.

Several sensitivity studies related to rotordynamic applications have
been reported recently. Lund [U43] presented a method to calculate
sensitivities of the critical speeds of a conservative rotor system to
changes in the design. Fritzen and Nordmann [44], on the other hand,
reported on a sensitivity method applicable to nonconservative rotor system

(involving representation of seals, oilfilm bearing, etec.). The method is
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based on Taylor's expansion for complex eigenvalues in terms of system
parameters in which linear, quadrati¢, or higher~order formulas are
obtained, depending on the order of «ue derivatives retained in the
expansion. The method was demonstrated using several rotordynamic

applications,
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3. DEVELOPMENT OF ANALYSIS METHODS

An SSME turbopump is a large nonconservative mechanical structure
consisting of a large component (housing) which is connected to a gyro-
scopic damped subsystem (rotor) through nonconservative coupling elements
(bearing, seals, ete.). The motion of the main components of housing and
rotor is highly coupled. Simulation of the system's dynamic behavior is
sensitive to the cholce of the model, its size and to the parameters of the
coupling elements.

For this study, it is desired to develop.significantly reduced size
models for the housing which are sufficiently accurate, along with
effective coupling and analysis procedures. The developed procedures would
allow determining steady state response stability and sensitivity type of
analysis. Based on a careful examination of exlisting techniques (of which
an account is included in the previous section 2), alternative modeling and
coupling techniques suitable for application to the SSME turbopumps are
developed and are presented in this section.

In these methods the steady state complex response of a given turbo-
pump to the coupling forces is determined for cases of forced response to
imbalance. The coupling forces are those at a given constant rotor spin.
For stability analysis, the system will be moving in one of the modes of
the system with a given complex eigenvalue. The coupling of the subsystem
is accomplished using one of two approaches. The first approach uses
superposition of the complex impedances of the individual components to
obtain the impedance of the complete system. The system's impedance can
then be used to determine the dynamic behavior of the system. The other

approach uses the receptances of the housing and rotor together with the

14
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impedances of the coupling elements to couple the system., This method is
termed generalized receptance method since the final system's equations are
iIn terms of the coupling forces,

The impedance, or alternatively the receptance technique, is used to
develop a procedure for determining the response sensitivity to changes in

the coupling parameters.,

3.1 The Models

3.1a The rotor reduced model

The equations of motion for the spinning rotor of a given turbopump,
while coupled to the housing, can be written as [45], (see Figures 1 and 2

as applied to the HPOTP)

NN Rxn fea]  [fxn
. + KXZR L = l +
~
Magdl g 4 1Byg Myr
0 0 Ryp) ” (max) ) (may]
+ t ¢ + ¢ (1a)
o [éapdl (B | Ixz Jyz
- o .
NN RyR Ryr F YR

-1 + 9 t ¢ (1b)
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Figure 1. The SSME Engine System for the Analysis of the HPOTP.
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" Figure 2. The HPOTP rotor under coupling and imbalance forces.
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A dot in equations (1a) and (i1b) denotes differentiation with respect

to time, t. Also
X, ¥, 2

X, ¥ 2
(gl {Ryp)
(ogp) 18yp)

[Kxan)s [Kyzp]

{tynbs {eyphy Myghs {Myg)

gzt 19y,
0y by &
{ay

{ay}

la,h {2y}
{m}

NN

Inertial coordinates system

Rotating coordinates system, x and y are
fixed to the rotor

Displacement vectors of rigld bodies on
rotor

Small rotation vectors of rigid bodies
about X and Y axis, respectively
Stiffness matrices corresponding to
motions in the X~Z and Y-Z planes,
respectively

External forces and moments, including
ec.i: ling forces

Products of inertia

Rotor's spin angle, veloelity and
acceleration

{a,} cosét ~{ay} singt

{ax} singt + {ay] cosHt

Vectors of coordinates of the imbalance
masses measured in the rotor fixed axes
%X, and y at the respective rigid bodies
imbalance masses

diametral moments of inertia for rigid

bodies on rotor
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f‘Jp\] = polar moments of inertia for rigid body
about the Z-axis
BMpl] = mass matrix of rotor associated with
displacement degrees of freedom
A reduced size model for the rotor, appropriate for steady state and
stability analyses, can be obtained by representing the rotor by its dis-
placements at the coupling and imbalance Jocations, To that end, two
procedure can be used, (i) Modal representation, or, (il) Dynamic reduction
of the equations of motion in physical coordinates.

(1) Modal representation of reduced rotor impedance:

The following modal transformations are employed in conjunction with

the equations of motion (1a) and (1b) °

Rg)

- [AXZR] {qXR} (2a)
lB!Rl '
Pyg)

it [AYZR] {qYR} (2b)
Pn )

where the matrices [AXZR] and [Ay,.] are those of the planar modes in the
X~Z and Y~-Z planes, respectively. The modal matrices are obtained by
solving the eigenvalue problem associated with equations (1a) and (1b) with
their right hand sides equated to zero. The equations in this case would
represent the free vibration of the undamped, nonspinning rotor. fhe
vectors {qXR} and {qYR} are the generalized (modal coordinates) in the X~Z
and Y-Z planes, respectively, The eigenvectors of equations (2a) and (2b)

are normalized with respect to the inertia matrix of the rotor, or

18
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N M)

Moy o)
(3)

in whieh [‘*I\] 1s the unit matrix. Assuming symmetry about the axls of

rotatiop, Z, one can write

T i
[ - 1" Aype]

(4)

xa~) = Dxzpd” [Kyzp] [Aygg) - [yge]" [Kygp] [Aygp]

where PAXR\] and PAYR\]are equal diagonal matrices whose elements are
the square of the natural frequencies of the free undamped, nonspinning
rotor.

For steady state motion with constant spinning speed ¢, the
acceleration ¢ vanishes, hence the last term in both of equations (ia) and

(1b) will also vanish, leading to the following equations

£

. | ¥R
[xd {dgat + Dagg d lagpl = [aggg)
) ’ M YR
. [0 0 .
* [Aygg] [y ] layg]
o [N,
ma.,, |
X
+ a2 T
" [ayg,p) {J (52)
XZ |

ORIGINAL PAGE (9
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and
3 . fyg
XR
o 0
[Ay, I’ [ay,n] {ayp)
R . xzr’ 19xR
o [Fes,d
2 T (nay )
+ 4" [ag,p] y (5b)
Yz
Let

o] xR e | fXR' e | fyn
gt = » 1Fyp v \Fypl =

9yR MYR Myr
- '2, (max) N (may)
P = ¢ y P = ¢ ’

XR YR
Ixz “Jyy
T A )
J =
o D]

Equations (5a) and (5b) may then be put in a block matrix form which

includes modal damping; the modal damping is taken as in reference [45]

Med O Mg d o0 Cxpl]
lap} + g} + {ag}
o Doy “ol 0y J Dy |

20
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T T 1 '
[Axzg] FXR 0 aygpl” Top) gl ]
- . + . {ap}
1]
(Aysn '] |Fun ~[Ayz5) [9,] [Ayzq] 0
T
[Agzg] © PyR
+ , (7)
T
0 v b I L
in which due to rotor symmetry
- 172
[\CXR\] = [\CYR\] = [ CR\] = [ 2 ERA ]
(8)

also P\AXR\] = F\AYR\] = f‘AR\J

and DE, ] is the matrix of modal damping ratios

N

If the case under consideration is that of a steady state response to
imbalance at a rotor speed of ¢, the imbalance forces can be written in

terms of forward and backward whirling as

-1 ¢t

) A e N I (9)

~-% —~
where {PR} is the conjugate of the vector of complex amplitudes {PR}. This
is so since {PR} is a vector of real variables. As an example, the

imbalance forces, associated with the HPOTP of the SSME [46] are given by

{PXR} - 3 {max} cos &t , since {may} = {o}

LI}
——
nY

(10)

[

- —
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(11)

It follows that the coupling forces and generalized coordinates in equation

(7) can be put in the form

= 16t . (=% ~iét
{FR} = {FR} € + {FR} € (12)
~ 0 et | =¥ ~1ét
{ag} = {agh e™®" + {qp} e (13)
Equation (7) can then be written as coefficients of ei¢t and e~i¢t, or
14t E;z ’ . ] _— T = =
el -2 D v h [ng] + (0] {5y} = [ag)" (Fy + 7y |
(14a)

(14b)
where

F[AXZR]
[AR] = ¥

L [Ayzg]

e, [y ]t [0)] [nyge]

[Dg] =

| [ayg] 951 [aygg] N

22
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But {Rg} = [AR] {ag} (15)

where {R%} are the displacements of the coupling points and of the locations

at which the imbélance forces are applied

b o8+ R 197 = [ag] (1) %+ g1 o)
hence

(Fpl = (8] (3] (162)

Ry} = [ag] {a;] (16b)

{) - [xy] {F, + Byl am

Similarly, equations (14b) and (16b) lead to the conjugate representation

Fy} = [xn] (Fy + Pyl (18)

However, only the reduced model of equation (17) need be determined. The
conjugate representation given by equation (18) can then be obtained

directly.

23
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In equation (17), the reduced impedance matrix of the rotor associated

with the forward whirl speed (+¢) is given by

R

-1 -1

(2] = D170 [ing] [0 50+ wdlog] + [a]] D" ] 90

in which [YR] is the reduced receptance matrix of the rotor.

(1i) Direct dynamic reduction:

An alternative approach

impedance matrix for the roto

can be utilized to construet the reduced

r. This ¢can be achieved by applying Gau: -

elimination only to the upper partition of the complete impedance matrix of

the rctor corresponding to the

unwanted degrees of freedom. The '"kept".

coordinates will be those of the coupling points and those at which

imbalance forces are applied.

arranged as

N

RRP
] ve ]
Mg | Bpet (03]
N
Rk
0 0
= + 0 =
Fr)  (Pr

To that end, equations (1a) and (1b) are

Rep Rep

. 1]

Bert * [Kgl {8Rs

ol '

Rrk Rrk
0
0 (20)
F

where the subscripts "r" and "k" denote reduced out and kept coordinates,

respectively.

At a given rotor spin speed &, the steady state variables may be

written, as before, in the form

(F} - F} et¥ 4 (7%

g Lot (21)
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and
Y . - - 3 —-*
(RRr RRr [Rﬁrl
- 16t | =% | -igt
Brpt =1 B © *18p(® (22)
' -t =
EMEEN Rak |

The coefficients of the rorward whirl e™1%t 1ead to

_2 '
kp ar * Kl L8 M e tde kg THRR ) ([ F
(23)
where
_ RRr
S b=1
BRr ,
For convenience, equation (23) is written as
Zpp Zrk SRP 0
= (24)
' ——
Zkr i Bry ¥

applying Gauss elimination procedure only to the upper partition of the

impedance matrix, one gets [47]

3\
(@]

Zpp rk Rr ‘
= (25)

o
N
=]

4 Rk
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The rotor can now be expressed in terms of the reduced impedance aatrix

(reduced to the kept coordinates) as follows
[ p | —
(2 ] {Rpp } = (F) (26)

]
where [Zkk] is the reduced impedance of the rotor at a given rotor speed

associated with the coordinates and forces of coupling to the housing and
of imbalance. Equation (26) can be used for coupling the rotor to the
housing model.

3.1b The casing (housing) reduced model

The equations of motion of the SSME housing while connected to the
rotor, in terms of the displacements {RSS} of selected points, can be

written as

Mg ] Rggh + [oge] fRggh + [Kgg) {Rggd = frgg(0)] (2m)

where the subscripts "SS" refer to the space shuttle main engine model in
absence of the rotor of the turbopump under consideration but involving the
nenspinning rotor of the other turbopump (see Figure 1). The forces {FSS}
are those of the unknown interaction or coupling forces with the excluded
rotor. In other words, the missing rotor is represented by the coupling
forces yet to be determined.

A modal matrix of selected eigenvectors of the undamped, free
vibration of the SSME (with [css} = {FSS} set to zero in equation (27)) is
used to represent the displacements in terms of the associated truncated

set of generalized coordinates {q_}

{Reg(t)} = [age] {a ()} (28)

26



where

T ~ 5
[agg]" [ige ] Tagg] = D1g.] (29)
use of the relations (28) and (29) with equation (27) yields

br, g+ D, a2 {a )+ Bagd fa,)

- [agg 1" frgg) = [a 07 {F,) (30)

where [Ac] are sub~eigenvectors corresponding to the coupling pointsrto the
rotor, and {FC} are the coupling forces.

In equation (30), E‘Ac\j is a diagonal matrix whose elements are the
squares of the undamped natural frequencies of the 3SME associated with the
retained modes. The matrix f‘cc\] is the diagonal matrix of meodal damping
ratios.,

To obtain a reduced representation of a turbopump casing, only the
coordinates {Rc} at the coupling locations to the rotor are considered. In
addition, if the retained generalized coordinates correspond to a range of
excitation frequencies, the truncated higher and lower modes can be
approximated using the associated residual flexibility [16] and inertia
restraint [18] terms, respectively. The motion of the casing may now be

described as

(R (e} =[Gy 0n 1 IF (0] + [a,] fa (02} + [Gggiy 1 IF (8]

-y -’

[ ——
inertia modal residual
restraint representation flexibility

(31)

and is associated with equation (30).

ORIGINAL PAGE 8
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It can be shown that the residual flexibility matrix [G . .. ] can be

expressed by [20]

-1 T
[Gresid.] = [Ac]du r\Ao‘Jdu [Ao] du (32)

in which "du" stands for '"deleted upper'" modes., Also, the inertia

restraint matrix can be shown to take the form

[a ]° (33)

6, ..1=1s0[a]
inert 2 o] C dL,

A dL

where "dL" denotes "deleted lower'" modes, and )\ is the unknown eigenvalues
of the turbopump system (coupled housing/rotor) or, in case of forceéd
(imbalance) response, A2 = =9,

For steady state under imbalance forces on the rotor at the constant

speed ¢, the motion and coupling forces take the form
= 1ét | =%y ~idt,
[R (t)} = {Rc} e ¥+ {Rc} e ; (34a)
. = 1¢t . =%, -igt
{Fc(t)} = {Fc} e ™+ {F le (34b)
- %
in which the complex amplitudes {Rc} and {Rc} are conjugates. Similarly
- it | =%, ~1dt
lag(e)} = {q,} &% + (g } e™*? (35)
This leads, using equation (30), to

), fag) = [-# Dred s sz oy a V20« bag] - 1 TP ( 15,1, 185)

(36)
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Similarly, using equation (34), equation (31) yields

!

(R} - [[Giner‘t.] gt [Gr'esid.]] (Fo) (372)
and

foh = [[Ogmens. 1+ [10°] + [000,0.1] 1L, (370)

in which [Yé*] is the conjugate of [Yé].
For the purpose of determining the steady state response to imbalance

of the rotor/housing system, equation (37a) is written as

7} = [v,] F,} (382)
[Yc]"[cinert.]+[Ac] [_iar.lc‘J+i¢f\2 Cc Ao1/g“J+r\Ao‘J]*1[Ac]T+[Gresid.]

(38b)

where [Y ] is the reduced receptance of the housing (case) assosiated with

c
the coupling points to the rotor. The vectors {R_}and {Ec} are the complex
amplitudes of the physical coordinates and forces at the coupling points,

+1¢t

respectively, assoclated with the e part of the solution. No computa-

tion involving equation (37b) is necessary since it would lead to conjugate
amplitudes associated with e~i¢t. This amplitudes can be constructed from
the first part, equation (37a) without resorting to extra calculations.

The reduced impedance of the housing is given by

] = [y ] (39)
80 that

F,} = [z,] R} (40)
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3.1¢ The coupling elements:

The rotor and housing are interacting through bearings, seals and
impeller reaction forces. These coupling forces can be related to the
displacements and velocities at the connection points to the rotor and
housing as follows (see Figure 3),

Bearing and local stiffness at the housing:

In the X~Z plane:

- - [Kb] + [cb] (41)

Similar eéequation may be written for the Y~Z plane, so that the

combined relations for the X-Z and Y~Z planes are

(Fype ] (Rye) Ry ]
Fch ' Ryo 0 Rye
- - [Kb] * [Cb] . (42)
R R }
XbR XR XR
L FypR ) [ Ryr) iy

Seal and impeller Forces:

The motion and resulting forces in the X~-Z, Y-7 planes are coupled.

For a given seal or impeller, j, the forces due to displacements of the

housing and rotor can be expressed as
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Housing

‘ l
c F
1 Cb Xsc
KB seal
F
FXbR 1 XsR
* Rotor
|
bearing
W u | Zr
X~-Z plane ii i

Figure 3. Coupling elements and forces in the HPOTP.
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FJXso

FJYsc

or

FJXse

Fije

Ky Ky [Ryxe = Ryxn
%y Ky I {Bjye ™ Byyg!
¢l1B5%e ~ Ryxn
1 (Pixe ™ Rywm
(RJXC‘ (ﬁJXcl
: Rsvo e ] Rive
= K,.] + |C
Js Js .
Ryxm Rixr
[Fovm )
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(43)

(44)

Similar relations as those of equation (44) can be written for the forces

at the rotor.

Combining the forces on the case and housing due to all

seals and impeller forces, one can express the resulting relations in a

matrix form as follows,

FysR)

RXc

RYo

1]
i + [Cs]
'XR

| Ryp)

(R )
Xe

RYc

s |
RyR

\Ryg)

(45)

Combining the relatiuns for the bearings and seals, yields

32
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where [KI] and [CI] are the stiffness and damping matrices for the coupling
o intermediate components, i.e. the bearings and seals.
For the steady state response to imbalance, at the spinning speed ¢,

the solution can be written as

Rlo Rl . M|
- oot o "hot (47)
Rrg R 7
. IR IR

A similar form can be wriften for the coupling forces, leading to the

following relations for the coefficients of e1¢t

FIc . RIc
-1 - (k. 1+ 14 [c ] ) (58)
1R RIR
RIc
= [ZT]
g

where [ZI] is the impedance of the intermediate components for a given 6.

—i *
The impedance matrix corresponding to e i¢t, [ZI], is the conjugate of

[ZI]'

3.2 The Analysis:

The system model may now be assembled from the individual representa-~
tion of its components. The assembled model can be used for a given ¢ to
determ®ne the steady state response to imbalance or the eigen-parameters of

the turbopump systems.

b Ay e SLaanm L
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Two alternative procedures may be used to form the system's equations.
The first approach is to (1) assemble the systen impedance matrix from the
individual impedances of the components. This can be identified as an
impedance (dynamic stiffness) method. Another approach is to (ii) utilize
the receptances (dynamic flexibilities) of the rotor and case together with
the impedance of the coupling components to construct a reduced generalized
receptance matrix for the coupled system. These two variations are out-
lined in what follows.

(1) Impedance method:

For coupling the system components, equations (17), (40) and (48) are

used to form the system equations as

[z, 1+1[z] z; 1 ] [q 0
In ¢ L1z c
= (49)

[z, ] [z, ]+ [z ]| |F+ R P
21 I, R RY Rimb R

where the submatrices[ziij]are partitions of the impedance matrix [Zi] of

T -
the coupling components, [Zi ] = [Z; ] and {%J are the imbalance forces

21 12
'
acting on the rotor. The Submatrioes[%ij]would be inflated with columns

and rows of zero elements 1if necessary to make them consistent with {ﬁ +

Rl
{RImb} which include displacements at imbalance forces, {RImb}' Equation
(49) relates the complex amplitudes of the displacements at the coupling
it

points of the base and rotor, associated with e part of the solution, to

those of the imbalance forces. The conjugate associated with eﬁi¢t does

not need to be computed, rather can be immediately deduced from that of

34
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equation (49). The system of Equations (49) can now be solved to yield the
steady state response,
The resultant maximum bearing reaction at a given bearing j can be

determined as follows., Express

&y sxe " Ryxg

- — 4 " ¥ -
“ [Fixe = Ryxn) R ] 71t

- 4 ¥ —-id
= ij ei¢t + AX\j e Lot

- - o — —% N
(ij + ij) cos ¢t + i(ij - ij) sin ¢t (50)

since the R,'s are physical displacements, the coefficients of cos & t and

J
sin ¢ t must be real.

Let Ay = (%, + a%;), B, = (a%, - aX}) (51)
Similarly,
AYj = CJ cos ¢t + Dj sin ¢t (52)
in whieh
c. = (AY, + AY*) , D, = (AY, - AT ) (53)
J J J J J J

The magnitude, AU of the relative displacement between the casing

J!

and rotor at the jth bearing location can be shown to be

(AUJ.)2 = AX? + AY? =Ly * Vy cos 2 ot + Hy sin 2 ot (54)
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1 2 2 ? 2
Ly =5 (ay + By + CJ + DY)

1,2 _ 2 _ 2
vy =g f - 8f + cf - 0f)
HJ = AJBJ + CJDJ

in which the maximum magnitude of the relative displacement is

1/2
2 . ..2y1/2
(Auj)max = <L,J * (Vj + HJ.) ) (55)

/

The maximum bearing reaction force of the jth bearing follows directly as

(F (Kb ) (AJJ )max (56)

) =
B, ‘max 3

where Kb 1s the combined stiffness at the jth bearing.
J

(ii) Generalized receptance method:

The case and rotor are represented by their receptances associated

with the forward whirl e+i¢t, and reduced to their degrees of freedom at

the coupling points.

Using equations (17) and (38), the reduced models are

ﬁlmb} = [yR] {FR } {RR} (57)
and

1 (7, (58)
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Equations (58) and (57) can be put in a block matrix form as

R, [yo] 0 F
- (58)
R * By 0 [vp] | [ Fg *+ P

On the other hand, the displacement-force relations for the coupling
components may be written in terms of their impedances, at a given rotor

speed ¢ , as
- = [z,] | (59)

-t
in which {FR} is inflated with null values in locations corresponding to
{ﬁg, and [zi] is inflated for compatibility with the mobility matrix in

equation (58). Substitution from (58) into (59) yields

F, [¥,] F,
-1 - [2,] B
R [tg] FR
[YC] 0 0
* [ZI] 0o Ir,] Py (60)
[Yc] 0 F,
SR

= - [zi] (61)
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This may be expressed as

[ ] Fc = [: ] °
Y , —_ - |E (62)
P — P —

FR PR

— !
The coupling forces{Fc}and;FR}may be obtained from the above equation
(62). However, since these forces are related, a more efficient procedure
can be adopted by which the problem is stated only in terms of, say,@fﬂ}

To that end, introduce the following transformation

[Fe
l" - 1] (63)

Fa

substituting in equation (62) and premultiplying by [T]T, yield

(11" [t dlr] {Fg) = = [T [e,] (64)

[v] {F } = Pyl (65)

The above generalized receptance relations (65) may now be solved to
obtain the coupling forces at the rotor. The bearing reactions can then be
obtained by calculating {Ec} from (63), {§O} from equation (38) and {ﬁR}
from equation (57). The maximum resultant bearing forces follows as

before, using equation (56).

3.2b Stability analysis-system eigenvalues

The dynamic stability of the turbopump non~conservative system can be

determined using either the impedance or the generalized receptance
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formulations. For a given rotor speed &, it Is desired to determine the
eigenvalues, A's, of the coupled rotor/housing system. The forms of dis-
placements and internal coupling forces become (replacing equations (15),

(34), (12) and (34b))

(Ry(e)} = R} e, (R (62} = (R} ** (662)

At At

frp(0)} = {Fle (Fo(0)} = {F }e (66b)

where "=" above any of the variables represents complex amplitude and ) is
the complex eigenvalue whose real part determines the stability of the
turbopump system.

Equation(65) is best suited for the eigenvalue analysis since the
matrices involved are of small size. To that end, with the right hand side
of the equation equals to zero, the coefficient matrix on the left hand
side becomes the A-matrix whose determinant vanishes for values of ) equal
to the eigenvalues of the system. The A~matrix can be written, using

equation (65), as

det [Y_(A)] =0 (67)
in which
[y(m] = [r]F [y, (0] [r]
where
Y. (W] o
(£, 0] = [D1d + [2;(0)] (68)
0 [YR(A)]

:“,r(
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In expression (68), the matrices of the right hand side are obtained from
equations (48), (37a) and (19), with A replacing (i4).

Conceptually, equation (67) can be solved possibly by using iterative
procedures or other techniques,

Another approach applicable specifically to the analysis of the SSME
turbopumps can be formulated as follows. The number of retained free~free
planar normal modes of the nonspinning rotor are selected so that it is
equal to the number of degrees of freedom in the plane of the modes at the
coupling points. This will result in square modal matrices [AR] in
equation (19). The impedance matrix of the rotor corresponding to a given
eigenvalue, A, of the rotor/housing system takes the form

(2] = g I e [AE[\IR]H[DRM [nR]] o ame (69)

~T
square

1

square need be caleulated only once for a

The inverses [AR] and [AR]~
given rotor.

Now, equation (49) is written, in absence of imbalance forces, in the

form
? [zc] 0 R, 0
[ZIJ + = (70)
0 [zR] Ry 0
[x,] o
premultiply both sides by one obtains
o [rpl
[yc] 0 [\Ic\] 0 R, 0
[ZI] * = (71)
0 [\IR\] 0 [zR] Ry 0



Equation (71) is now more amenable to manipulation for determining the
eigenvalues, This is the case since the eigenvalues, A, appear in the
submatrices {Yo], [zI] and [z.] in an explicit fashion. In addition, this
formulation makes solution methods, including those of lterative procedure,
computationally efficient., Methods such as those of reference [48] can be
used in this case,

It should be noted that similar formulation to that just described can

be utilized for determining the steady state imbalance response. This

would be advantageous as long as a square modal matrix, [AR]square’ is
employed., In case of forced response, equation (71) would take the form
« -
[Yc] 0 , [ Ic\] o |I{&, [t,] © 0 0
~N ~
o | Ip. ] 0 [zR] Re + Ry o [ I.J] Px
(72)

3.2¢ Sensitivity analysis

The sensitivity analysis in this study concerns predicting the
variations in the turbopumps' eigenvalues and steady state imbalance
response due to changes in the rotor/housing coupling parameters,

The eigenvalue sensitivity analysis was developed at an earlier stage
of this study and is based on the formulations of the equations of motion
of Childs [45]. In his approach, Childs utilized the modal parameters of
the rotor/housing system coupled only through the stiffness ét the bearing
to form the full dynamic models of the turbopump involved. A computer

program was developed by Childs based on formulations of [45] for

e
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determining the stability and forced response of the HTOTP and HTFTP of the
SSME,

This computer program was modified to incorporate a procedure for
determining the eigenvalue sensitivity of turbopump systems. On the other
hand, a response sensitivity method was developed based on the impedance
and generalized receptance techniques described in previous sections of
this report. An eigenvalue sensitivity analysis method can also be
developed based on the receptance techniques but was not attempted in this
study.

(i) Eigenvalue sensitivity:

Formulations of reference [45] for the equations of motion of the
turbopump are used for the following development of eigenvalue analysis
procedure, In this development, the notations used in conjunction with
formulations of [45] are basically retained for ease of reference,

The equations desecribing the motion of the coupled housing/ﬁotor of a
given turbopump in terms of theilr respective free, undamped modes and the

stiffness at the bearings can be shown to take the form
. T

d | D] + [eae IOk, J(BaE, ] ~[mae, 1" DryJlBaz, ]| (ag

h\] + =0
. T T

qo)  |-[Bam, "Dk, Bag; ] [ agJe[mae, Dk lBag 1] {ag

C C

(73)

As' an approximation, two uncoupled equations of the form of equation (73)
were assumed for the X-Z and Y-Z planes,
f‘AR\j = eigenvalues of the undamped, free-free nonspinning rotor as
in equation (8), and

ORIGINAL Fed 1T
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= eigenvalues of the undamped free housing of the turbopump
considered in presence of the nonspinning rotor of the other

turbopump, as defined previously in connection with equation

(30)

—
w
>
=1

b=

-
R

modal sub~matrix of the fyee-free rotor corresponding to the
coupling degrees of freedom in either the X~Z or the ¥~-2
plane
[BAE,] = equivalent to [BAE, ] but for the housing in either the X-Z
or the Y-7 plane
= total stiffness at bearings due to bearing and local
stiffness at housing.
Equation (73) for the coupled rotor/housing motion is solved for the eigen~
values f‘Ax\] and modal matrix [wxz] and from a similar equation in the ¥Y-Z
plane for PAY\]and [¥y, ]
Utilizing the above modal parameters, the coupled equations of free
motion of the complete turbopump system including damping, seals and

impeller forces can be shown to take the form [45].

-dX [CX] + [SCX] f{)[CM] * [Sc] (iX
[\I\] A
dy ) |-Glen]" + [s,07)  [ox] + [sex] ] (4
foﬂ + [skx] s[c] + [Sk] 9y
\ = {o}., (1)

-(3(31" + [8,17)  [ay] « [sxx]f {ay

where the various submatrices are defined in [45] and reflect the coupling

parameters, structural damping, spin rotor speed and gyroscopic terms.
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It is deaired to determine the sensitivity of the cigenvalues An
associated with equation (74) to the various parameters of the coupling
elements such as the bearing stiffness, To that end, the eigenvalue

problem associated with equation (T4) is expressed as

pernd « ate) + [&]]tal = fo (15)

Following the method described in reference [44], the sensitivity of a
particular eigenvalue An to a parameter p is determined to a first order

approximation by the eigenvalue derivative,

A, om o (76)
The derivative was shown in raference [U44] to be

- T r,2 .
hnp == Bl DM e e Kop] ) (77)

where {zn} and {h | are the nth left and right eigenvectors for the complex

eigenvalue problem normalized such that

fg,1" [a, M+ c] (n} = 1 (78)

To a first order approximation in a Taylor series, a new eigenvalue An

corresponding to a change of Ap in the parameter p 1s

A= A+ A + Ap (79)

or

Moo= A+ AX (80)

4y



In order to assess the degree nf change in A , the variables involved may

be normalized, so that comparison can be made between the following

Ap

Relative change is p = 5 (81)
Ak,
Relative change in A = — (82)
n "R,

By way of example, suppose that it is desired to determine the
sensitivity of the eigenvalue (or stability) of the complete rotor system
to the magnitude of the equivalent stiffness at the ith bearings. Equation

(77) in this case yields for the nth eigenvalie

M + A C + K (h.} (83)
n _'K n __’K ’K n
B

The derivatives of the matrices in equation (83) may be determined taking

into consideration equation (74). The result is

M"KB = 0 (8“)

'O,C’
—-'K
B

J J

and

[ 4]

[y
&
! ‘]

In equations {84), the indicated derivatives of fAX\]and PAY\]can

be determined from equation (73) using ‘he method developed by Fox and
Kapoor [35] in which the eigenvalue problem involves symmetric matrices K

and M, or

n T
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The derivative of the nth eigenvalue, My is
woow v ST R, - f, ] (v ) (86)
n,p n 'p n 'p n

In the case considered here. Using equation (73), this leads to

(], =0
B
[ Loneg 1 Dy g, Doneg] = [ong I Iy Loy (e )
3 3
[R]'K -
By
“lenz, I I D [mas] (on, ) My J (348 ]
| J 3 A
(87)
Hence
[\AX\]’K‘B = {‘y}gz [K]’KB {\P}XZ (88)
j 3 .
and
Mayd o = lelg, [RL, el (89)
By By

in which the {W}’s are the eigenvectors associated with equation (73).

Therefore
r -

[\ AX\],K
J [H] (90)

3 q
0 [ AY\],KB
J
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where [L] and [H] are the matrices of left and right hand eigenvectors of

the original problem (74). This yields the desired new eigenvalues A\,'s as

M ™ Aot Mkt AK (91)

n no Ry

J

B,

(ii) Response sensitivity:

The sensitivity of steady state imbalance response to the various
coupling parameters can best be determined using the impedance or the
geaeralized receptance methods outlined earlier.

Suppose that the sensitivity of the coupling forces exerted on the
rotor is to be determined. To that end, equation (64) is rewritten in the

form

[
(217 |1 + (2] [ (7] {F,} = {Fy) (92)

' .

where [ZI] is the influted impedance matrix of the coupling components and
1

is desceribed in conjunction with equation (49). Since [ZI] is a function

of the coupling parameters (bearings, seals and impellers force coeffi-~

cients), one expresses equation (92) as
[0(k;)] 5} = 1Py (93)

in which U(kj) denotes the functional dependence of [U] on the coupling
parameters of magnitude kj. These constants, kj’ can be the stiffness of a
bear;ng, the cross-couplsd damping of a seal, ete.

the derivatives of the coupling forces {ﬁR} with respect to a given
parameter of magnitude kJ is calculated as fellows

CRIRINAL THGS
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Rl = {1977 {'ﬁ;}),kj (o)
- (-533- [u]“>w;}
Pl i, = - [b]™ (W, [T (7] (95)

The derivatives of the coupling forces for a given é and coupling
parameters, as glven by equation (95), indicate their sensitivity to
changes in the magnitude of the coupling parameter kd'

Similarly, sensitivity of the steady state imbalance response as given
by the impedance approach, equation (49), may be determined in the same
_ fashion. Sensitivity of the acceleration response at the imipling points

or the reaction forces at these points could be derived directly from those

of the corresponding displacement responses.
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Y, NUMERICAL IMPLEMENTATION AND EXAMPLE ANALYSIS

4,1 Computer Programs

Two Computer Programs were developed based on the analysis methods
presented in section 3 of this report, These two programs, written in
fortran 77, are as follows:

(1) A modified version was developed of the computer program (ESTAB2),
1283 update, which was developéd by D. Childs of Texas A&M University. The
modified program, (EIGNSENS) was developes by U.J. Fan also of Texas A&M.
The program uses the equations of motion developed in [45] together with
the sensitivity analysis of reference [4U4] to determine the complex eigen-
value derivatives for the complete SSME Turbopump system, The theoretical
background was described in section 3.2c.

(1i) A new computer program (ESTABIMP) was written, mainly by U.J. Fan,to
calculate the maximum resultant bearing forces of the SSME turbopumps in a
steady state response to rotor imbalance. The program can also yield the
maximum acceleration levels at selected locations on the housing. The
program, which is highly efficient, is based on the impedance and gener-

alized receptance methods presented in section 3.2 of this report.

4,2 Example Analysis

Iy, 2a Imbalance resporise of the HPOTP

Test runs using the newly developed (ESTABIMP) were made to obtain the
steady state response to rotor imbalance of the HPOTP, at various rotor
speeds, & . The HPOTP model used is based on data given in reference [U46].
In the turbopump configuration used, the rotor is that termed current rotor

in Appendix A of [46] and is based on a model by B. Rowan. The housingis

b9
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baged on a 1982 Rocketdyne model. For both rotor and housing, a 0.5% of
eritical damping was assumed. This value replaces the diagonal elements of
the matrices C\ER\J and E‘Cc\] of equations (8) and (30), respectively.
The damping at the bearings was taken as 3.0 lb. sec/in. The stiffness of
all the bearings were the same and of the constant value of 5x105 lbs/in.
The values used for the local stiffnesses of the housing at the bearing
locations are given by equation (1) of [46]. the seals and impeller force
- coefficients and imbalance distribution were also as given in reference
[46]. The housing free-free modes are used in an approximate fashion as in
program (ESTAB2). Both the impendance and the generalized receptance
approaches were used in the computational procedure as follows.

The impedance matrices for the rotor and housing are formed using
equations (19) and (39), respectively. However, no account was made of the
residual flexibility and inertia restraint terms for the housing as in
equation (38b). The assembled turbopump model as given by equation (49)
was used, in conjunction with a modified Gauss elimination technique, to
determine the response amplitudes of the connection points on the rotor and
housing. These amplitudes were used with equations (50) through (56) to
determine the resgultant maximum bearing reactions at various values of the
rotor speeds, é. Table 1 shows a comparison of the results obtained for
two selected values of &between the impedance method using (ESTABIMP)
program and the method of reference [45], using the (ESTAB2) program. The
slight differences noted in the results of the two methods can be attri-
buted to the difference in the numerical implementation of two different

procedures. The difference may also be due to the approximations involved
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Table 1.

Comparison of the maximum bearing reaction forces

calculated by the impedance and reference [45] methods

Reaction forces, lbs at
13,250 rpm

Rection forces, 1lbs at
24,000 rpm

Bearing Impedance Ref. [45] Impedance Ref. [45]
Number

1 257. 251.7 98.9 100.3

2 280,7 283. 114.5 117.3

3 490.1 471.2 hy, 47.5

4 833.5 808.4 3.8 2.8
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in handling the housing modes which influence the representation of the two
models in different ways.

Experience with the programs showed that the impedance approach is
more efficient than that of the approach of [45] for a given rotor speed.
However, when the steady state response at various rotor speeds are re-
quired, the approach of [45] appears more beneficial to use, On the other
hand, the generalized receptance method, although not fully tested, appears
to be more efficient than both of the impedance method and the method of
reference [45]. The receptance method requires only one inversion (see
equation (17)) for assembling the system's generalized receptance matrix.
In addition, the size of the assembled matrix 1is considerably smaller than
that of the impedacne, as can be deduced from examination of equation (65).

4,2b Eigenvalue sensitivity of the HPOTP

Few test cases were run using the newly developed program (EIGNSENS).
A case considered is that of determining the effect of changing the
stiffness of the first bearing on the eigenvalues of the HPOTP. The
configuration and data for the HPOTP are those discussed in section 4.2a.
The rotor speed is taken as $= 30,000 rpm and the assumed change in the

stiffness of the first bearing was 20%, or

K, =0.80 % (Kz ) =0.8x (5x 10%)
1 1 0

5

= 4 x 10° 1lbs/in (95)

The bearings' stiffnesses are assumed to be in series with the loecal
stiffnesses, Kc's at the housing. The equivalent stiffness at the first

bearing location is therefore

(8]
n



Wby e

By ¢
K. = ——— (96)
b1 KB + Kc '
1 1
and
g 2
©
(K, ) e (97)
1 'KB (KB + Kc )

(Kb ) 0 0
1 ’KB
1
[ K ] =0 0 0 0 (98)
b, ,KB1
0 0 0 0
0 0 0 0

The derivatives of the eigenvalues for the HPOTP System considered
were then calculated using (EIGNSENS). Examination of the results can best
be achieved by using the sensitivity measures proposed by Fritzen and
Nordmann [44], The eigenvalues of the complete turbopump system is

expressed as

A o= o + iwn (99)

A relative measure of the sensitivity can be constructed by defining the

following nondimensional ratios, using the relations given by equations

(91), so
K
Ao /o 9 B
7 ”/K”° Re (axn ) E‘l (100a)
B B B no
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and

K
Awn/wno BAn B1
Ko™ Im ('Q-K-——) v (100b)
B, B B no

1M 1

As discussed in reference [44], the designation of relations (100a)
and (100b) would enable comparison of the extent by which modifications of
several parameters may have on different eigenvalues, Large ratios of
equations (100a) and (100b) indicate that changes in KB1WI11 have a large
effect on both the damping and frequencies of a given complex mode.

The results of the sensitivity analysis of the HPOTP eigenvalues for
the case considered is presented in Table 2. The results were also checked
by calculating directly the new eigenvalues using (ESTAB2), with the first
bearing stiffness as given by :vuation (95). Close agreement was observed
between the results of the direct calculation and those using sensitivity
derivatives,

In Table 2, the relative change of stiffness is negative, or

AKB1/KB1 == 0.2

The reversed sign in the last column, of Table 2, therefore, indicates
that the decrease in stiffness at the first bearing results in an increase
in the damped frequency of the system. That increase is highest at the
13th and 14th conjugate modes as well as in the higher complex modes.

The relative change in %6 is of particular significance since it
indicates the effect of stiffness change on a possible change from stable
to unstable condition for the system. The results of Table 2 shows the

highest sensitivity in this regard to be associated with modes number
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TABLE 2.

Relative changes in eigenvalues due to
variation in bearing stiffness

Eigenvalues o Wy 5?-’1{-?-'3-9— M&
. By /Ky, g /Kg,
1,2 ~1.3467 +275.81  +1.86 x 107" 0
3,4 ~1.4204 +284.07 0 0
5,6 ~2.8753 +530.76  +0.94 x 1072 72,78 x 107"
7,8 -2.6884 +537.60 0 0
9,10 ~1,6546 +690.71  +1.91 x 1072 ¥2.12 x 107"
11,12 ~3.4907 #700.08  ~1.43 x 107" 0
13,14 ~146.,73 +1323.7  +2.39 x 1073 70.57 x 1072
15,16 ~6.6063 +1865.8  ~1.18 x 107" T2.41 x 1073
17,18 ~9.141490 +1888.0  +1.59 x 107" 0
19,20 ~5.5610 +1904.7  +0.67 x 107 ¥1.32 x 103
21,22 ~9.7791 +1948.4  =1.54 x 107" 0
23,2} ~8.6708 +1961.3  +2.68 x 1072 70.51 x 1072
25,26 ~11.093 +2207.3  +1.81 x 1073 0
27,28 ~11.167 +2209.4  +0.58 x 1072 0
29,30 -21.747 +2681.5  +2.09 x 1072 %0.56 x 1071
31,32 ~13.863 +2715.1 +0.61 x 1072 ¥1.84 x 107
33,34 ~26.206 +2878.8  +0.89 x 10 7452 x 1073
35,36 ~14.735 +2943.5 +1.02 x 107" 0
37,38 ~16.792 +3058.5 +1.79 x 1072 ¥4.91 x 107"
39,40 ~15.648 +3068.0  +1.12 x 1072 0
41,42 ~60.200 £3170.3  +1.94 x 107 F1.44 x 1072
43, 4 ~2.1325 +3375.0  +0.63 x 107 0
45,46 -17.354 +3408.2  =6.15 %0.57 x 107
47,48 -32.,047 +3463.5  +1.11 2,17 x 10 2
49,50 ~384.47 +4395.3  -1.51 x 102 ¥1.66 x 107
51,52 ~184.90 +5069.9 -1.8 x 107 s x 10
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15, 16, 19, 20, 33, 34 and the last eight modes, A negative sign

associated with the relative change in an %
damping of the corresponding mode is reduced,

modes 15 and 16 could first become unstable,

56

Indicates that the effective

It might be concluded that



5. CONCLUSIONS AND RECOMMENDATIONS

Based on the assessment of existing analysis procedures and on results
obtained in the course of this study, the following conclusions can be made

in relation to the SSME turbopumps,

5.1 Conclusions

(1) The frequency response methods developed in this study appear to
constitute a highly effective tool for determining the steady state linear
response of the SSME turbopumps. The methods, as formulated with a sub~-
system approach, demonstrate the following advantages:

(a) the dynamic model of the housing is reduced to the degrees of
freedom of the connections points to the rotor, Since the number
of these point is relatively small,; the size of a housing model
is drastically reduced,

(b)Y in cases where the housing is represented by a truncated set of
its free elgenvalues, the methods will facilitate incorporating
approximate representation of the truncated lower and higher
modes of the housing. This is accomplished without affecting the
size of the reduced model of the housing.

(¢) a reduced model of the rotor may be obtained directly from its
representation by physical coordinates., In that case, no approx-
imations are made. The rotor may also be represented by all (if
desired) of its real modes. The resulting reduced model will
still be of the same size corresponding to the number of degrees
of freedom at the connection points. Thls representation also

has the advantage of being based on the real free-free undamped
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modes of the nonspinning rotor, avoiding the use of complex
modes,

(d) the formulation adopted in this study, which uses individual
models of the free components to form coupled systems,allows
performing efficient re~analyses to determine effect of changes
in the coupling elements.

(e) frequency response information for the rotor at its coupling
points may be obtained directly from experimental test data.

(11) The generalized receptance formulations can yield accurate, re-
duced Lamda matrices for determining all of the eigenvalues of the coupled
rotor~housing systems. The accuracy of the eigenvalues will depend, how-~
* ever, on the accuracy of representation of the individual subsystems. If
the modal coordinates were used in constructing the receptance matrices,
the number of the system eigenvalues which can be determined will be equal
to the total number of retained modes for rotor and housing less tile number
of degrees of freedom at the connection points. Procedures are yet to be
further developed to render the method practically efficient.

(1i1) The response and eigenvalue sensitivity relations developed here
can be used effectively in guiding directions of design changes and in

determining effects of estimated data errors on the analysis.

5.2 Recommendations

Further developments can be made based on some aspects of the proce-
dures adopted for this study and on other reﬁresentations of the
components, In particular, it is recommended to

(1) Develop analogous procedures for transient and other analysis

requirements. The procedures would utilize reductions of subsystems to
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their coordinates at the connection points and allow mixed representations
of the subsystems.

(11) Further develop and optimize the generalized receptance method.
Actual test analyses using this methcd should be made using corrascted modal
housing model,

(111) Pursue use of the dynamic reduction approach in developing
acourate methods of determining eigenvalues and eigenvectors of coupled
subsystems,

(iv) Develop an alternative procedure to the dynamic reduction
approach as applied to all components of a rotor system, With the SSME
turbopumps, the procedure could utilize static reduction method for the
rotors and dynamic reduction of the housings, The relative merits of the
two procedures can then be tested, The latter procedure can highly facili~-
tate computation of the coupled rotor/housing eigenvalues,

(v) Extend the free-interface modal synthesis methods for application
to nongconservative systems. These methods can be used in reducing the
rotor's models for use in performing transient analyses,

(vi) To explore using Fourier and Laplace transformations in the
analysis of reduced rotor systems. The impedance or receptance formula-

tions might prove useful in this connection.
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