NASA Conference Publication 2335

Research in

Structures and
Dynamics—1984

Research-in-progress papers
presented at a symposium
held at Washington, D.C.
October 22-25, 1984




v i =t o o

NASA Conference Publication 2335

Research In

Structures and
Dynamics—1984

Compiled by
Robert J. Hayduk
NASA Langley Research Center

Ahmed K. Noor

The George Washington University
Joint Institute for Advancement of
Flight Sciences

Hampton, Virginia

Research-in-progress papers presented at

a symposium sponsored by NASA Langley
Research Center, Hampton, Virginia, and The
George Washington University, Washington, D.C,,
in cooperation with the National Science
Foundation, ¢ Air Force Office of Scientific
Research, the American institute of Aeronautics
and Astronautics, the American Society of
Mechanical Engineers, and i American
Society of Civil Engineers, and held at
Washington, D.C.

October 22-25, :984

NASAN

National Aeronautics
and Spa.z2 Administration

Scientific and Technical
information Branch

1984



‘l

"d [

)

FOREWORD

Notable advancements have becu made in the structures and dynamics disciplines
in recent years. These advances ucve been, and continue to be, strongly impacted
both by the new developments in computer technology and by the growing interaction
with other disciplines such as applied wathematics, applied mechanics, numerical
analysis, computer science, and controls technology.

The growing importance of discipline interaction and computational technology
recently led the Directorate for Structures at NASA Langley Research Center to insti-
tute the new Interdisciplinary Research Office (IRO) and to start a new initiative on
Computational Structural Mechaniecs (CSM). The Interdisciplinary Research Office will
cnable multidisciplinary and cross-disciplinary research on the most advanced com-
puter systems available in a research laboratory environment. The Computational
Structural Mechanics initiative will encourage collaboration by individuals across
organizational lines of management and from government laboratories, universities,
and industry. Other organizations besides NASA are encouraging collaboration between
researchers of interacting disciplines. For example, the National Science Foundation
has initiated a new program to support engineering research centers to meet a need
for providing cross-disciplinary research opportunities for facuity and students at
academic institutions. Tne anpual operating cost for each center is expected to
range between $2.5 million and $5.0 million.

As a step toward stronger interaction among experts in the fields that are
likely to impact developments in the structures and dynamics disciplines, a symposium
entitled "Advances and Trends in Structures and Dynamics” was held in Washington,
D.C., on October 22-25, 1984. The sywposium was jointly sponsored by NASA Langley
Research Center and George Washington University. Cooperating nrganizations were the
National Science Fourdation, Air Force Office of Scientific Research, American Insti-
tute of Aerona.t.c~ and Astroaautics, American Society of Mechanical Engineers, and
American Society of Civil Engineers.

The symposium brought together the researchers and their peers from industry,
academia, and government laboratories who are advanciig the state-of-the-art in
structures and dynamics and setting the trends for the future.

This NASA Conference Publication contains 19 research-in-progress papers plus
8 full-length papers presented at the symposium. The present publication is a
companion to the Pergamon Press conference proceedings,* which contains 68 full-
length papers presented at the symposium.

The papers in this document are divided into the following seven topics:

1. Multiprocessors, parallel computation, and database management systems

Advances in finite element technology

L]

3. 1Interactive computing and optimization

4. Mechanics of materials

*Noor, A. K.; and Hayduk, R. J. (eds.): Advances and Tre~ds in Structures
and Dynamics. Pergamon Press, Ltd., 1985.
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5. Structural stability
6. Dynamic response of structures
7. Advanced computer applications

The fields covered by the symposium are rapidly changing, and if new results and
anticipated future directions are to have maximum impact and use, it 1s imperative
that they reach workers in the field as soon as possible. This consideration led to
the decision to publish these proceedings prior to the symposium. Special thanks go
to the Research Information and Applications Division at NASA Langley Research Center
for their cooperation in publishing this volume.

The usze of trademarks or manufacturers' names does not constitute endorsement,
either expressed or implied, by the National Aeronautics and Space Administration.

R. J. Hayduk
A. K. Noor
Compilers
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THE FLEX/32 MULTICOMPUTING ENVIRONMENT

Nicholas liatelan
Flexible Comput~r Corporation
Dallas, TX

SUMMARY

The FLEX/32 MultiComputer is a generic environment for
cooperating multiple processors. The FLEX/32 can support a number of
different processors, making it heterogeneous in terms of the instruc-
tion sets it can support, and homogeneous in its ability to provide
consistent storage and input/output facilities to its differing pro-
cessors., These facilities are accessed through standard 32-bit VMEbus
connections.

The FLEX/32 supports the full UNIX* System V Operating System and
languages associated with it, plus the extended ConCurrent CT and
ConCurrent FORTRAN' 77 languages that allow programming of concurrent
software at a high level. Direct programming support at all levels is
provided by the environment hardware for concurrent software execution
and optimization, including hardware support for shared-resource access
arbitration, conditional critical-region arbitration, and interpro-
cessor messages.

INTRODUCTION

The past thirty years have seen dramatic improvements in the per-
formance of computers, In general, these improvements have been due
to improvements in components. Today, as we approach physical limits
in the performance cf components, the architectures of computers
become more and more important. While we still see a great deal of
improvement to be made in the application of faster componeat tech-
nologies, the effects of these components on conventional architec-
tures using a single central processing unit begin to show diminishing
returns. Architectures based on multiple central processing units
show promise of providing not only increased uvower, but also increased
flexibility in meeting the varying demands of future computation. The
FT.EX/32 is such a system.

*UNIX is a trademark of AT&T Bell Laboratories

fConCurrent C and ConCurrent FORTRAN are trademarks
of Flexible Computer Corporation
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The FLEX/32 is a MultiComputing Environment, that is, it ig an
environment that supports multiple computers working on one or more
tasks together or independently under coordinated software. These
computers need not be the same. Therefore, the environment is hetero-
geneous in nature. The computers supported in this environment can
differ in power, in the amount of memory supported, and in their basic
orientations. Some of these computers could contair processors dedi-
cated to control, while others might be used for array processing and
floating-point operations, for example.

The addition of a new computer, with its new processor and
instruction set, requires only adaptation to the environment, This
means that once the adaptation has been made, the generic software and
input/output capabilities of the environment are full:; =vailable to
the n=w processor. Such software includes the UNIX Sysi<w V Operating
System, and other special tools needed for developing concurrent
programs.

Input/output is performed via a set of standard VMEbuses. These
buses support interfaces to peripheral equipment that may be purchased
from any of the 860 to 100 current providers of VMEbus interfaces or
from Flexible Computer Corporation, giving a truly open architecture.

A final, but no less significant, feature of the environment is
its SelfTest System. Built into the enwironment and distributed
throughout its modules (computers, memory and peripheral interfaces)
are test circuits dedicated to determining the health and performance
of the environment as a whole. This system allows not only such
features as automatic shutdown and restart Jin response to power
failures, but also fault isolation and repair verification, and per-
formance analysis based on information collected during the run-time
execution of programs.

LEVELS OF DESCRIPTION

In describing a computer, it is important to distinguish between
its architecture and its implementatior. An architecture 1is a
description of the fundamental attributes and functinnality of a
device or program without regard to its detail. An implementation 1is
a description of the collection of details needed to construct a pro-
duct. It is the product that provides certain levels of performance
and power. It is the architecture that provides product line con-
sistency throughout its history.

Both hardware and software have an architecture. A ma,or thrust
cf the FLEX/32, in addition to its great flexibility of configuration,
is to provide an environment for programmers to produce software more
cost effectively. The dichotomy of the architecture and implemen-
tation is maintained primarily to guarantee that software interfaces
to the FLEX/32 MultiComputing Environment will not change throuahout
the life of the product line. We all know that as time passes theve
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will be better ways to produce hardware that is faster, more reliable,
and cheaper, However, it is the intention of the Flexible Computer
Corporation that changes in FLEX/»2 hardware, as they must come, will
not involve changes in existing application software. The architec-
ture defines a set of invariant interfaces for the users and builders
of software intended for the FLEX/32 product line, even as its hard-
ware is adapted over the years to the use of newer and better *+«ch-
nigques. Its software, at every level, can remain invariant r . -2
its interface to the hardware remains invariant.

THE FLEX ARCHITECTURE

The FLEX/32 is a MIMD (Multiple Instruction Stream/Multiple Data
Stream) Multiprocessor System. Its architecture (generically repre-
sented in figure 1) is composed of devices, buses, processes, and
topologies.,

Devices are either computational or peripheral. Computational
devices include processors, memories, bus interfaces, interprocessor
signaling mechanisms, and common locks. Peripheral devices are those
devices that control and sense the outside environment. These include
tapes, disks, printers, terminals, and their controllers.

Devices are connected one to another by buses. There are four
separate buses defined in the FLEX/32 architecture. These are the
Common Bus, the Local Bus, the Peripheral Bus, and the SelfTest Bus.
Common buses are those that are intended to allow the sharing of
resources, such as shared memory or shared devices. Local buses are
intended to provide paths between a processor and its attached local
devices, such as local memory. Since each local bus is defined as
multi-master, more than one processor can be attached to it.

Peripheral buses are those buses that allow attachment between
devices on local buses to the controllers of peripheral devices and
actuators in the outside environment. The SelfTest Bus runs
throughout the MultiComputing Environment and is that transfer path
that allows information about the state of the machine to be received
and control of the machine to be sent.

0f course, all this hardware would be useless without a method
for applying algorithms to control and direct operations toward a use-
ful result. The FLEX/32 supports multiple, truly concurrant pro-
cesses., True concurrency is the execution of processes on different
processors at exactly the same time, This is often called multipro-
cessing. Apparent concurrency is the execution of processes in a
shared fashion on a single processor at a rate fast enough to lead an
observer to believe that they execute at the same time. This is

\Y,
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usually called multitasking or multiprogramming. The FLEX/32 is a
parallel processing system and, therefore, allows both true con-
currency and apparent concurrency depending on the needs of the
programmer.

Each of the devices, processes, and buses outlined above may be
connected in a number of possible configurations. Figure 1 shows the
physical topology of the FLEX/32 MultiComputing Environment, Any
number of local buses may be attached through ports to several common
buses. Common buses are fully arbitrated and will alinw only one
access at a time from each local bus in a fair arbitration scheme.
Each local bus is attached to its own common lock device. This device
can be programmed to allow the processes mutually exclus ve access
to shared resources for an arbitrarily complex use of shared data. 1In
general, interprocessor communication is maintained through shared
memories residing on the common bus. Notice that this topology does
not allow processors to reside on the common bus, only resources.
Processors are always attached to local buses. Peripheral device:z are
attached to local buses through bus interfaces.

There is no limit to the number of local buses or the number of
processors that may be attached to local buses in the architecture.
Implementations, howevexr, must put a bound on the number of buses and
processors that can be contained in any particular urit, such as a
cabinet. The architecture, however, fully allows multiple cabinets;
therefore, even in the implementation there is no inherent bound on
the number of processecrs that can placed together in a FLEX/32 con-
figuraticn.

The SelfTest Bus connects all devices in the architecture
together. Processes that actually perform selftest functions reside
within one of the processors in the system.

THE FLEX/32 HARDWARE IMPLEMENTATION

The FLEX architecture 1is an abstract representation of the
allowable interconnections of devices. As such it makes no demands
for ervecution speed, word sizes, and sc forth. The FLEX/32 product
line is a 32-bit impleiwentation of the FLEX architecture. It speci-
fies the technology from which the FLEX/32 is built, its packaging,
and physical parameters. The FLEX/32 hardware implementation is the
environment used to carry out the commands of the FLEX software
descriked below.

The philosophy of the FLEX/32 implementation is the provisica of
a flexible, universal hardware and software environment for a number
of different instruction sets, Just as software environments have
become a wa’ of supporting programs written in different languages,
the FLEX/32 hardware is an environment for different processors.
These processors are supplied with generic memory, input/output sup-

roxm



et

o Mg

port, and multicomputer and network interprocess communication mecha-
nisms. This environment is the same for each processor type, but the
instruction sets supported are different. This allows not only soft-
ware written in different langquages, but also different machine
instruction sets, to execute together.

The components of the FLEX/32 hardware are divided into the Card
Level, the Backplane ILevel, and the Unit Level. Circuit cards definc
the replaceable module level of the FLEX/32. There are three classes
of cards in a FLEX/32 Systen. These arn Universal Cards, Common
Communication Cards, and Peripheral Cards.

Universal Cards support local bus activities such as computation,
memory storage, array processing, and other such activities. Commen
Communication Cards allow ac-ess to, arbitration of, and control over
the common buses and their shared resources, such as the common
memory. Peripheral Interface Cards are standard single, dual, or
triple Eurocard interfaces available from commercial manufacturers,
There are currently 80 to 100 commercial manufacturers producing caras
to control standard peripheral equipment based on the VMEbus Eurocard
format. These cards are interconnected via a backplane supporting the
Local) Bus, Common Bus, and SelfTest Buses.

The Local Bus is a standard, asynchronous 160 meaahit per second
VMEbus with extensions for control internal *z cne FLEX/32 cabir-.t,.
The Common Bus is a synchronous vereiiu of the Local Bvs. The Common
Communication Cards house 2 nigh-speed shared memory. The SelfTest
Bus is a RS422 bus supporting the HLDLC protocol. All external com-
munications are tnrough bus interfaces on Universal Cards to standard
VMEbuses (no extensions). Peripheral buses are attached to standaii
VMEbus Interface Cards.

The cards connected to the backplanes are supported by card

cages, and divided into two types of  units. One unit is the
MultiComputer Unit, or MU. It is the MU that houses both Universal
Cards and Common Communication Cards. All Interface Cards to

peripheral equipment are housed in a second type of unit called a
Peripheral Control Unit or PCU. <Cables between the two units allow
computers attached to local buses to control their various I/0 devices

The MultiComputer Unit can house up to tan local buses and two
common buses. There can be twenty universal cards in a MultiComputew
Unit, two per local bus. Tne MultiComputer Unit supports up to ten
communication cards, one for each lccal bus, allcwing any processor
attached to any local bus to communicate with any other processor,
either through a shared m:mory associated with a common communication
card or through the direct interprocessor messaging capability.
Furthermore, a common Jlock capability a2llows a processor to definc a
critical region in the shared memory and to own that regiosn for opera-
tions without affecting traffic on the Common bus,

The initial Universal Cards offered by Flexible Computer
Corporation are the Computer{ Card and the Mass Memory Card., The

£
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Computert Card includes a 1 MIP (million - structions per second) pro-
cessor with attached floating-point coprocessor and 128K bytes of ROM,
a full megabyte of memory protected by error correction and detection
logic, and a VMEbus port that can be configured to either 32 or
l6-bits of data. The processor can access its bus interfaces and its
memory on this card withcut affecting the operation of its local bus.
This is important wher both slots associated with local buses are used
for computer cards.

The Mass Memory Card supports from 1 to 8 megabytes of random
access memory protected by ecror correction and detection logic. It
also contains a VMEbus interface.

The MultiComputer Tnit can be configured in a number of ways.
For example, a unit can be configured with twenty computer cards
giving a machine with twenty 1-MIP processors, twenty megabytes of
memory, and twenty VMEbus interfaces. This system coi1ld also be con-
figured to support up to 2 megabytes of fast common memory. Another
systeam could be configured with one computer card, and the remainder
of the MU filled with memory. This would give a system with one pro-
cessor and twenty VMEbus interfaces plus 153 megabytes of memory. A
more usual card complement would be four or five computer cards with
an extra mass memory card giving processors with 9 megabvtes of memory
each, and perhaps a few single processing cards without extra memoxiy.
Future computer card types will include floating-point capability in
the 4 to 6 megaflops (millions of floating- point operations per
second) range. It should be ncted that all FLEX/32 processor types
can be mixed and matched in each FLEX/32 MultiComputer Unit.

VMEbus interfaces can be simply jumpered together giving extra
shared paths than those associated with the common buses.
Interprocess communications over these paths can be made using
read/modify/write interprocess communication instructions Dbetween
Local Memories, Tle same Jjumpers can be used to connect multiple
MultiComputer Units together forming much larger systems. Four of
these VMEbuses, for example, could be used to connect to neighbors
rorth and south, and east and westi. Such a method could be used to
define a plane of MultiCompster Unite, Similarly, six interconnec-
tions could be used to define bnypercubes of MultiComputer Units
yielding a large number of cowmputers (dozens to hundreds) that could
be applied %o the same tasks. The possibility of sucnh large multiple
processor systems makes the selection of the algorithas very irmportant
in determining the usefulness of any configuration. As iz the case
with any cecnpuver, infinitely expandable may not mean infiritely use-
ful, except for a narrow range of algorithms. It is fortunate,
hcwever, that some of these algorithms are very useful indeed.

FLEX/32 SOFTWARE IMPLEMENTATION

For system development, Flexible Computer provides the full UNIX
System V Operating System supported on each computer within tne
MultiComputing Environment.



A,
(O 4

1

.:'Zh»r#: .:

Flexible Computer has also extended the C and YORTRAN languages
0 produce the new languages ConCurrent C and ConCurrent FORTRAN.
lhese languages are standard C and FORTRAN with an extra set of state-
aents that 2llows direct specification of concurrent programs for
:xecution in the FLEX/32 environment.

The FLEX/32 can execute programs directly under ConCurrent C or
ORTRAN program control instead of under UNIX. Flexible supplies a
set of MultiComputing Multitasking Support Utilities to facilitate
such dedicated operation.

JNIX SYSTEM V

UNIX System V is a true industry standard for software develop-
nent. It includes support software such as SCCS (Source Code Control
System) and its associated editors and language processors, such as
FORTRAN 77, which Flexible has extended with the ISA real-time exten-
sions (S¢l.1), RATFOR, SNOBOL, and Assembly Language. It provides
developmer.t and debugging tools and file management capabilities
within the most portable operating system presently available. In
add“tion, concurrent execution of processes can be simulated using the
"shared memory" software capability of UNIX System V, or truly exe-
cuted simultaneously.

THE CONCURRENT C PROGRAMMING LANGUAGE

The C Programming Language has proven to be an excellent tool for
programming in a sequential processing environrent., The ConCurrent C
Language {(ref. 1) is designed to further increase the capabilities of
the C language by facilitating direct concurrent and real-time pro-
cessing for advanced parallel multiprocessor systems, while main-
taining the original C style and philosophy. The C is upward compatible
to ConCurrent C which preserves all of C's definitions and features.

The design objectives of the ConCurrent C Programming Language
were

- to extend C Language capabilities to support, directly and as
language constructs, real-time event supervision and concurrent
processing on parallel multiprocessor systems, as well as in
the usual sequential environments

- to provide simple, structured, and C-like syntax with a minimal
number of new key words. Additional features are obtained by
combining explicitly provided features with programming tech-
niques and styles

- to supply generic capabilities that can be used to implement
variods programming concepts. This makes the language more
adaptable to different hardware structures ard applications;
ConCurrent C provides mechanisms without dictat:ing technigques

(+)
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- to provide constructs to allow procedural! and non-procedural
event supervision. Consequently, machine-level operations
{interrupts, timers, traps, etc.) <can be specified and
controlled by a high-level language

- to avoid redefining, extending, or modifying any C Language
features or definitions. This objective was included to make
the ConCurrent C and C languages compatible

- to directly support multiprocessor configurations reflected in
new statement types

These objectives were realized by including in ConCur:ent C capa-
bilities to directly support

- protected shared data access, to prevent a process from using
data that is still being operated on by another process

- interprocess communications and synchronization, regardless of
the process physical location

- creation and concurrent execution of processes

- event detinition and event supervision at a level that allows
events to be used as efficient inter- and intraprocess synchro-
nization tools, as well as response to real-time incidents
{universally required in real-time applications)

ConCurrent C constructs are categorized in two classes: new
variable definitions (event variables and shared variables) and new
control-flow statements (process interaction, process control, con-
current execution, and event supervision). The following discussion
is an informal description of some of the constructs supported by
ConCurrent C. Note that a variety of techniques can be implemented
using ConCurrent C capabilities, and that only some of those are shown
in the examples of figure 2.

ConCurrent C intrcduces a new type, event variables, to support
real-time event handling. All real-time events are either timers or
exceptions. The key words timer and exception are used to declare and
d=fire event variables. An exception zan cause incidents that affect
either its defining process (internal exceptions or traps), or a
separate process (external exceptions or interrupts).

The WHEN statement is used to suspend its enclosing process until
a specified event is satisfied, at which time its associated statement
list is executed. The WHEN-ELSE, however, evaluates the condition; if
the condit.ion is satisfied, it also execules the statement(s) imme-
diately following the when; otherwise the else statement list is exe-
cuted. The syntax of the WHEN-ELSE is similar to IF-ELSE statement.
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The WHENEVER statement 1is provided to support non-procedural
event supervision. This statement, for a specific scope of the
program, specifies an event to be observed as a parallel task while
the program is being executed. It alsou Jdefines an event handler to be
executed whenever the event occurs, If the specified event occurs,
normal execution will be interrupted and the event handler executed.
Upon completion of the event handler, control will return to the point
at which the program was interrupted.

The WHEN statement is also used, in addition to procedural event
response, to synchronize access to shared data between processes. The
WHEN statement synchronizes shared access based on conditions that are
evaluated at the time the access is to be made. A condition is an
expression that always evaluates to true or false; it is this result
that controls whether the statement block associated with the WHEN is
executed. The WHEN statement can thus be used to directly implement
the Conditional Critical Region techniqgue of sharing data. Note that
any comoination of condition testing and synchronization by event is
allowed.

The process concept is the basis of true concurrent execution. A
process in ConCurrent C is defined and started by a process statement.
Each process statement includes

- a unique identifier for subsequent control of process
instantiations

- the code that it uses for execution
- the processor that executes it (optional)

- and the system dependent attributes that define its environment,
such as priority, stack size, and so forth (optional)

System dependent attributes, if required, are placed in a predefined
structure and passed to the system support environment. This struc-
ture can bhe customized for different implementations, or totally
omitted.

Proper combinations of these statements and other existing C
Language statements can define and cause to be executed every known
multiple process intercommunication technique, including semaphores,
monitors and messages.

Each of the capabilities of ConCurrent C listed here are also
available in ConCurrent FORTRAN 77.
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MULTICOMPUTING MULTITASKING SUPPORT UTILITIES

The FLEX/32's MultiComputing Multitasking Support (MMS) Utilities
provide support for real-time, run-time embedded applications.

The MMS Utilities are resident in the System Library and are
included by the loader to resolve all external calls generated by the
CenCurrent ( preprocessor. The capabilities of the MMS Utilities
include the following:

a. Priority-Oriented Task Management and Multiprogramming

b. MultiComputing, by providing interprocessor communication, synchro-
nization, and data vprotection for concurrent or sequential pro-
cessing

c. Interprocess Communication and Signaling

d. Event Management to supervise conventional intevrupts, interpro-
cessor messages, user -defined exceptions, system-defined excep-
tions, and timers

e. Memory Pool Management

A METHODOLOGY FOR CONCURRENT PROGRAM DEVELOPMENT

Of major importance in producing commercial gquality (that is,
useful) concv:rent programs is the availability of a development
methodology fully supported by software tools.

Figure 3 provides a block diagram of the flo* of program com-
pilation, loading, and execution within the FLEX/32 MultiComputing
Environment. The steps from sequential code developmen* through final
concurrent program integration constitute the FLEX/ = development
methodology.

At the topr of figure 3, a ConCurrent C program source file is
shown. It is first processed via the ConCurrent C Preprocessor,
resulting i1 the output of a C Language Source File containing unre-
solved MMS system calls. The Preprocessed ConCurrent C Source is next
compiled under UNIX System V by the C compiler, resulting in an object
code f1ile. The object code file can then run through the system
loader Fraving all system calls resolved by the MMS Utilities contained
in .he 5ystem Library, resulting in an executable image file.

The right side of figure 3 depicts the several execution options
proviied by the FLEX/32 MultiComputing Environment. Three different
environr.en.s are provided with the FLEX/32 MultiComputer. The first
allows execution under a Concurrent Executive and provides for a true
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p2rallel computer, concurrent operating environment. The second is
execution in a simulation of a concurrent environment under the UNIX
System V environment. This program is called the FLEX/32 Concurrency
Simulator. The third environment is UNIX System V which allows either
non-concurrent (sequential) operation, or distributed operation.

The FLEX/32 methodology for concurrent program development is a
phased migration of processes from one environment to another.
Separate compilation and test of sequential programs under UNIX and
its tools alluw a number of programmers to contribute to the develop-
ment of large software systems. As these programs are developed and
known to be functionally correct, they can be collected under a
ConCurrent C program as processes. This concurrent program can be
fully debugged using the Concurrency Simulator, still under UNIYX and
its many support tools. If appropriate, this program can be forever
executed in multiple processors under UNIX. If, however, the program
was intended to execute directly on the MultiComputer, processes can
be moved one at a time, or all at once, into the intended processors
under MMS. This allows incremental use of true concurrency from the
shelter of apparent concurrency and UNIX support afforded by the
Concurrency Simulator,

The diagram also depicts a number of source processes written in
some of the 1languayes that can be compiled via their individual
language compilers and combined by the system loader. Again, their
system calls are resolved and images are produced thatallow them to exe-
cate together in different computers under any of the concurrent,
simulated concurrent, and non-concurrent environments provided.

CONCLUSION

Concurrent processing utilizing multiple processors is an
advanced technique for achieving more processing power, faster com-
putation and flexible application of computing hardware to changing
requirements.

ConCurrent C and FORTRAN were developed to provide high-level
software development tools for the concurrent programming of true
Multiple Instruction Stream/Multiple Data Stream (MIMD) computing
environments such as the FLEX/32 MultiComputer.
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Synchronization Using "Exceptions”, “Khen"
And “whenever® :

exception msqg_ready sender --) receiver ;
exception msg_rcved receiver --)> sender H
--) receiver ;

exception meg_end sender

sender process : receiver procese 1

I whenever (msqg_end) recv_exiti! ;
do { for (;:)

put_megi) 4 when (msg_ready) get_mag() ;

activate (msg_r=ady}) ; activate ‘msg_rcved) ;

when (mag_rcved) ;
} while (more_msag) ;
activate (msg_end) ;

Conditional Critical-Region Implementation
Using “When” i

In process pl :

when (buffer_status =» EMPTY) {
write_buffer() ;
buffer_status = FULL ;

)

and in process p2Z : oa Ty

when (buffer_status == FULL) (
read_buffer() ;
buffer_status = EMPTY :

}

“Process” Statements :

/% atar® proucesses pl and p2 1 */

process (pl, funcl(), processorl) ;
process (p2, func2(argl). processor?)

/4 suliiprogramming 1 */

process (p3, funcd(), processor?) ;

/4 default processor. wvhen not specified 4/
g Process {ps, funcl()) ;

Figure 2.- ConCurrent C examples.
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FINITE ELEMENT COMPUTATION ON NEAREST NEIGHBOR CONNECTED MACHINES

Alastair D. McAulay
Texas Instruments, Central Research Laboratories
Dallas, Texas

SUMMARY

We deicribe research aimed at faster, more cost effective
parallel machines and algoritims for improving designer productivity
with finite element computations. A set of 8 boards, containing 4
nearest neighbor connected arrays of commercially available floating
point chips and substantial memory, are inserted into a commercially
available machine. One-tenth Mflop (64 bit operation) processors provide
an 89% efficiency when solving the equations arising in a finite element
problem for a single-variable regqgular grid of size 40 by 40 by 40.
This is approximately 15 to 20 times faster than a much more expensive
machine such as a VAX 11/780 used 1in double precision. The
efficiency falls off as faster or more processors are envisaged
because communication times become dominant. Consequen*ly, we
propose, for the first time, a novel SOR algorithm which uses cyclic
reduction in order to permit data transfer and computation to ov:rlap
in time., For a future 0.63 Mflop single chip processor, this new
algorithm raises the efficiency from 56% to 98% for a 40 by 40 by 40
3-D mesh, and from 92% to 99% for a 285 by 285 2-D mesh.

INTRODUCT.ON

We discuss research aimed at cost effective finite element
machines which are expandable to utilize high levels of parallelism.
Our approach is to hypothesize a group of arrays of nearest neighbor
connected parallel processors with substantial distributed memory
operating in a commercially available machine, the NuMachine, as shown
in Figqure 1. 'The distributed memory overcomes the memory bandwidth
problem of most machines and the NuMachine provides us with economic
computing amenities, such as a parallel Unix operating system, a high
speed bus, high quality graphics, an interactive mouse, ethernet
interconnections, a diagnostic processor, a multibus for peripheral
interconnections and a symbolic processor.

We plan to reduce the overall design time and cost for finite
elenent computations by three means. First, we make extensive and
efficient use of parallelism to reduce computation time and cost. We
plan to determine the etficiency of many alternative finite element
algorithms and will modify the algorithms and processor board
configuration so as to be most efficient for the mcst widely used
algorithms. We show in this paper, for the first time, the use of
cyclic reduction with an SOR algorithm in order to overlap data
transfers and computations. This provides impressive gains in
efficiency for our machine. Second, an expert system is used to
provide an improved probability of achieving the desired results in
order to substantially reduce the number of repeat runs. The symbolic
processor may also be useful for computing derivatives used in
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reanalysis (ref. 1,2) and nonlinear computations. Thirdly, we are
engaged in parameter optimization research which will reduce the
guesswork and hence the number of repeat runs involved in design
optimization (ref. 3).

Finite element computations have been performed on many existing
and prototype parallel machines (ref. 4). The research finite
element machine at NASA Langley Research Center (ref. 5), is unique
in that it was configured specifically with this type of computation
in mind. Results of parallel computations cn this machine have been
published (ref. 6,7). A general discussion of finite element
algorithms on marallel machines 1is c¢ontained 1in reference 8. A
parallel microprocessor system used for finite element experiments is
discussed in ref. 9 and an idea for optical implementation in ref.
10. Other researchers at NASA and in academia are addressing the
more difficult task of determining an optimum overall software and

hardware design for finite element machines from the grouand up (ref,.
11).

ARCHITECTURE

Details of the NuMachine are available (ref. 12,13), and will
not be discussed here, except to mention that the bus speed of 37.5
Mbytes/sec is unusually high for a machine in its price range. The
NuMachine rack wunit version hLas 21 slots and we plan to have
approximately 8 multiprocessor beards. Each board has 4 or more
processing units connected in a nearest neighbor manner, figure 2.

We plan to use commercial arithmetic units such as the National
Semiconductor 32081 or the Motorola 68881 Coprocessor. We expect such
devices to multiply a 64 bit word in double precision in approximately
10 microseconds (6.1 Mflop rate). Higher »jerformance pipelined
multiple chip processors from Weitek, AMD and TPA are at 1least an
order of magnitude faster, but are not desirable because of complexity
and because they require more boa.d space and thus limit the number of
processors on a bhoard. Single chip higher performance processors are
planned; for example, the AMD 29325 will be approximately 30 times
faster than the NS 32801 but dissipates several times more power and
is several times more costly. The power dissipation will require
special attention if several processors like this are used on a board.
The arithmetic un.t does not require all the capability of a general
purpose microprocessor and we expect to eventually place many more
than 4 processors on a single board, as well as having much faster
processors. We anticipate the eventual use of special VLSI designs to
take advantage of small size, high speed, low cost and minimal power.
The repetitive nature of the arrays considered simplifies the VLSI
design process. Consequently, in evaluating performance we restrict
ourselves to processors between the 0.1 Mflopr and 10 Mflop range for a
64 bit multiply. The 1lower end of the performance range is
available in convenient form today.

16

@



ir -,

¢ ooped-emmivnewma b
'

RN

"4

“db‘

Easeh processing unit is assumed to " a2 32,000 words of 64 bit

mamorv. ™he nearest neighbor connec~...mn on the board uitilises the
least - of pin connections, thas - .ximising reliability and
minimiz:ny power and space requiremsn- . An arithmetic rait wth
asscciater control and miscellineous c¢iv ~: 1is estimated to occupy
approxima'¢ly three times the «(res - the 32,000 words of memory.
Later stufies will optimize the trade i between more prccessors,
speed of ~rccessors and more memo:ry ...S while satisfying the real

estate consuis-int and the requiremncevn’. *.- achieve high performance with
commonly used a"gorithms.

FINITE ELEMEN' COMPUTATION STAGES

The problem formulation st~ v4e is assisted by an expert system in
the symbolic processor. This advises the user whether variational,
Galerkins, 1least square or ~ther approaches are preferred. It
provides consulting regarding the input information he must supply and
the results he may exp-°ct.

The modeling stage involves partitioning or mapping the selected
formulation on to the specific machine configuration. At this stage,
the user may direct the partitioning or allow the machine to handle
it. Substructuring 1is a commonly used technique for subdividing the
problem into reasonable parts, generally with minimum interconnections
or to maximize the number of similar sub-parts, (ref. 7,14). Much
computation and design time is saved by intelligent partitioning. For
example, we need to reduce the number of degrees of freedom only once
for a part which is used several times in a <ccaled form. If the
original problem had not been partitioned in this manner, this
computation would have bheen repeated for each of those similar parts.
Subdivision into parts with few interconnections permits high
computation efficiency on a parallel machine because the computation
assocjated with connecting the regions is small relative to that for
each region, which may be computed in parallel. The expert system
contains a numerical model of the computation process similar to that
used in evaluating performance in order to predict the efficiency of
computation for alternative partitioning selections.

The mesh generation stage utilises the mouse and high resolution
graphics. ft must be possible to interactively add or remove points
and to specify regions in which grids must be more or less dense. The
user must he informed of the computational impact of selecting more or
less points. He must also be advised when denser or less dense points
would be desirable. For example, in field@ scattering problems, high
resolution is required at sharp ccvners. The numbering of the nodes
is a critical factcr affecting computation and is addressed
extensively in reference 15. It would appear chat existing schemes,
used with sequential machines, could be modified to provide good
partitioning for a paralletil machine.

The element integrations for matrix element formulation can be a

computationally demanding phase. However, considerable reduction in
computation fer tkis stage results if, during problem mordeling, we
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make use of similar or similar shaped elements. The mach.ine must
allocate the element computations to the processors in some balanced
manner. ITn some cascs, scheduling the next element to the next
ava.lable processor may be adequate. The matrix must then be set up
for all elements. In other cases, where every element has a differen®
value, the mesh might best be subdivided evenly among pProcessors.
In this case, it may be preferable to compute thc matrix eieanents in
the processors where they will be required for equation solution.
Flement formulation 1is expected ¢to run fairly efficiently on a
parallel machine (ref. 6)., especially when the grid is regular or a
distortion of a regular grid.

fhe equation solution stage is normallv the most computationally
demanding. This is addressed in more detail in the remainder of this
paper. Several basic algorithms are listed, together with some of
their principal differences.

1. Successive overrelaxation is a simple iterative techrique which
avoids explicitly forming matrices. Consequently, little and
distributed storage is used, which makes large reqular or
distorted from regular grids easy to partition. Fast
convergence redquires good selection of the overrelaxation
parameter, which is accomplished readily uwnly for matrices having
certain optimal properties such as property A and consistent
ordering. These properties apply to a 5 point finite Jdifference
method but dc not generally apply to finite elements. Iterative
technigues may be superior to direct methods when an approximate
initial solution is %nown (ref. 16).

2. Gauss Flimination and LU Decomposition are widely used for finite
elements because .rreqular grids are frequently used and solutions
are obtained in a fixed number of operations for well conditioned
matrices, Computation cf displacement for many loads 1is
frequently required 1in structures, and the LU decomposition
enables the most computationally demanding part to be performed
nnly once for many loads. The computation 1is specded by
renumbering for bandwidth reduction or to maintain sparsity in the
decomposition (ref. 15).

3. Preconditiorned conjugate gradients is a popular iterative
technique involving systematic error reduction using the finite
element matrices. 1t 1is preferred to SOR because it avoids
determination of optimum convergence parametcis and requires fewer
restrictions on the ..atrix A for good behavior. Tor example, it
will handle ill conditiorned matrices. BApproximate knowledge of
the solution erables even faster comgutation. ‘any people are
working on efficient parallel imprementations (ref. 6).

4. Alternating Direction Irplicit Method enhances speed by
partitioning the finite rlement matrix into a sum of matrices.
The methed lends itself to parallel computation because nuch of
th* computation is performed on these partitioned parts. However,
in our preliminary exper.iments it bhecame clear that nmore theory
was required in order to maintain nice properties in the
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submatrices while balancing load for a parallei machine.

5. Q—R algorithm is A popular method for selving for eigenvalues. It
is used widely to determine iesonances 1in finite elements.
Parallel versions havc bLeen investigated (ref.17,1%)

After solving the equations, it is frequently necesszaiy to
compute other parameters on each mesh point. The same computation is
performed independently acress the grid 3o that high parallel
efficiency 1is readily achievable. Sophisticated graphics software is
required to display sections thircugh mutiparameter 3-D displays and
for contour and interpolated imaae views of the structure and the
field.

PERFORMANCE PRTDICTIONS FCR SOR EQUATION SOLVING

Three color SOR algorithm

The successive overrelaxation aigorithm, SOR, is selected for
evaluation first because of 1its simplicitv, having only one
computation step repeated many times. The SOR algorithm applied to a
regular 2--D grid of triangular elements requires repeated solution at
each node or mesh point of

A A (i+1) (i+1) (i+1)
(it1) _ I (341) 1 Wyt
R R LV AT T IS E L PR TS L Ay B
(i+1) (1+1) EERE A Ly (1)
toogUy iyl T %Ye-1,m-1 T %0%e,m ] = (e=Dlug o

The mesh is subdivided evenly among the processors and the matrix
coeificients () and overrelaxation <factors w, (w-1) are loaded
into the apprcpriate processor memories. Colors ace assigned to the
nodes in the sequence Red, Black and Green from left to right.
Succesive rows are shifted one place to the right and wrapped around,
to vorrespond with triangular elements arranged such that nodes are
connected to the NE and SW (ref. 16). All processors compute their
assigned color first and then cycle synchronously through the other
colors in the order Red, Black and Green, After a prcdetermined
rnumber of iterations; checks are made to determine whether adeguate
convergence has occcurcd. This involves computing +he sum of the
squares of the node values at a processor and the sum of the sqnares
of the nodz value changes since thz last iteratior. This information
is assembled by the host in order to compute whether convergence is
adequate and may be computed vhile the avray boards centinue with the
next iteration. A 3-D S0OR algorithm may be developed similarly for an
C.2ment shape selectzad.
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SOR performance equations without overliapping transfer and computation

We assume triangular elcments in the 2-D case and tetrahedral
elements in the 3-D case. An approximate performance estimate (on the
worst case side) is derived using the definitions:

N, = 8 the number of boards

Np = 4 the number of processors per board
Mp 28,000 the rnumber of storage words/processor (/000 extra words
are reserved for control and buffers)

Sb=4.69>:10b the bus speed in words/second (64 bit words)

S¢ the time in seconds for the processor to perform a 64 bit
floating point multiply
S]n=0.4><10'6 the time in saconds for a 64 bit word to travel between

neighborinj processors

A the number of multiplications (with additions) per iteration
of equation (1), including 2 convergence related multiplications not
shown in equation (1), A =11 for the 2-D case and A = 17 f£for the
3-D case

Mg the number of words stored for each node, including 2
convergence related check words which are not shown in equation (1).
Note that in the 2-D czse, Mja=11, because 6 coefficients are shared

with their neighbors and need be stored only once. 1In the 3-D case
there are 12 such coefficients and Ma=14.

The number of nodes handled directly is the total merory divided
by the storage per node
= N A
Nn Np.vbN'p/Ma (2)

One iteration of equation (1), for these nodes, may be computed in
parallel with the NF’ processors in time

= \
TC NnASc/ (Npr) (3)

For a 2-D mesh, *he amount of data that must be transferred from
one board to arnother for one of the 3 colors during computation of
one iteration of equation (1) 1is the perimeter of the data stored on
the board for that color. Consequently, the time taken for
communicating from every board to every other for one iteration of
equation (1) and 3 colors is

_ 1/2
T, = 12 Ny (MN /3) 7 7/s) (4)
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Fci a 3-D mesh, the number of colors ~equired also depends orn the
element shape; 6 colors are required for tetrahedral elements because
6 lines pass through every point and 13 colors are required for cubic
elements. We will use 6 colors as this is more efficient for our
machine. However, we assume the mesh of elements is fitted incside a
cube for simplicity of calculations. The approximate time required
fcr bis communication between boards in a 3-D problem is

= ap o 2/3
Tt(3-D) = 3t .b(Mpr/G) /sb (5)
Fo+r a 2-L triangular mesh and a 2-D configuration of processors
on a bcard, the only dzta transfer required on a board is between
neighbors and occurs ccucurrently for all processors. The time for on
voard transfers for 3 colors is
_ 1/2
Tn = 3(Mp/3) Sn (R)
For a 3-D mesh and a 2-D configuration of processors we consider
a simple though not necessarily efficient arrangement in which the
board handles a part of one horizontal plane of the 3-D mesh. 1In this
case, information involving the upper and lower faces of a cube is
transferred to the board edge from every processor via others during
one iteration. A third cube face is included for the nearest neighbor
horizontal path. The average number of processor outputs is
(Ny,-1)1/2/2, as Adata accumulates on the path to the board egge. The
distance from the array center to the board edge is (N 1) The
resulting time for 6 colors is approximately

_ 1/2 o _ ,
T (3-p) = 18(M/6)/Cm -1)/2 s (7)

The efficiency of computation relative to a sequential machine,
assuming no overlap between data transfer and computation, is then

= /
n Tc,(Tc + T, + Tn) (8)

t
The overall computation time includes the time to check for
convergence (the last term in the brackets) and the loading and
unloading time (lasf term)

(9)

T +T +2NS/(NN))+2N

m = Np(T_ + T N M /5

t bt p’ b

where, based on a colored SOR alggrlthm, the number of iterations to
reduce the error to 1/(N /2 4 1) is

1/2 1/2
= 2 N
N, = 0.72 N log,q N (10)
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SOR performance equations with data transfer and computation overlap

We propose a new algorithm which improves performance by
permitting overlap between data transfer and computation. This can be
used to reduce the effect of bus and nearest neighbor coimunications.
We describe the method in terms of a 2-D mesh and in terms of reducing
bus effects because these are more significant in our configuration.

Six color labeling is introduced by odd-even cyclic reduction of
the three color grid. The red nodes are renumbered sequentially; odd
nodes are called Ry and even nodes R;. Black and green nodes are
similarly labeled (figure 5). At each of the 6 time steps shown in the
figure, the boxed nodes are updated according to equation (1).
Updating a node requires the use of values from North, South, East,
West, NE and SW for a triangular finite element grid. Six steps are
required to update all nodes in a six color system.

The line shown at each step in figure 5 marks the interface
separating those mesh values in one processor from those stored in a
processor on another board. Only nodes immediately adjacent to this
interface are shown in figure 5. At each time step, in addition to
updating node values, the values updated on the previous step are
transmitted across the bus to be available at the new processor when
desired. The transfers are marked with arrows in figure 5.
Examination of nodes below the line in figure 5 show that when they
are updated, the North and NE values required from the upper board
will have been transmitted on the immediate two previous steps.
Similarly, for nodes above the line, the South and SW values required
will have been transmitted on two previous stages. This arrangement
permits all data transfers across the interface between boards, that
take 1less time than the time spent in computation for that step, to
ozcur overlapped in time with the computations.

In the 2-D case, the data transfer time between boards T
modified for the 6 color algorithm in place of the 3 color one
becomes

'

= 1/2
Tt = 24 Nb(Mpr/6) /Sb (11)
A similar cyclic reduction for a 3-D mesh increases the 6 colors to 12
colors, producing

- 273

. = " .

Tt(B-D) 72 Nb(Mpr/IZ) /sb (12)
The data transfer time on a board 1is also modified for the new
approacn for the 2-D and 3-D cases,

v 1/2
T, = 6(Mp/6) S (13)

n
and

= 1/2 -
Th(3-D) = 36(Mp/12) (Np 1)/2 s (14)

]
Consequently, for Tt < Tc, the efficiency in equation (§) is modified
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to

- / 1
Ny = Tc,(Tc + qn) (15)

and the total computation time, equation (9) is modified to

- N )
TT = NI(TC + Tn + zﬂnsc/(Npr)) + 2NprMp/sb (1¢)
For Tt > TC, the zfficiency is
ny < Tc/(Tc+ Tn + (Tt - Tc)) (17)
and the computation time
TT = NI(TC + (Tt - TC) + Tn + 2NnSc/(Npr)) + 2NprMp/Sb (18)

We observe that the above approach is equally appiicable to a
finite difference algorithm. In this case the red-black algorithm
would be extended to a four color algorithm in order to overlap data
transfer and computation.

SOR performance results

Figure 3 shows the performance for solving the equations for a
285 bv 285 2-D mesh problem as a function of log processor speed. The
slowest processor, 0.1 Mflops, is available today. The fastest 1is
slightly faster than single chip prcressors anticipated by 1986. The
efficiency is shown in figure 3(a) for the conventional 3 color
algorithm (equation (8)) and the new 6 color algorithm (equation (17)).
The dashed curve (equation 15) shows the efficiency if the bus |is
assumed perfect, requiring zero delay to communicate data. For the 3
color algorithm, the efficiency for a 0.1 Mflop processor is 98% and
falls oft for hypothesized future processors because the bus
communication time increases relative to the computation time. The
introduction of the new algorithm permits overlap of bus communication
and computation. Processors of speed less than 5 Mflops now no longer
have to wait for the bhus. We observe that for a 0.63 Mflop processor,
the efficiency is improved from 92% to 99% by the new algorithm.

Figure 3(b) shows the estimated time to solve the equations for
the 2-D mesh for the conventional algorithm (equation (9)) and the new
algorithm (equatior (18)). The time decreases even when the
efficiency 1is falling off. For a 5 Mflop processor the new algorithm
is approximatley 40% faster.

Figure 4 (a) shows the estimated performance for solving the
equations for a 40 by 40 by 40 3-D mesh as a function of processor
speed for a conventional 6 color algorithm and a new 12 color
algorithm. The efficiency of 89% for the conventional algorithm and a
0.1 Mflop processor is lower than for the 2-D mesh because more data
has to be transferred on the bus relative to computation. The
efficiency drops off rapidly. The use of the new algorithm provides
an 1impressive improvement up to 0.63 Mflops. Above this, the bus is
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essentially saturated for the algorithm chosen.

The dashed curve shows the situation with no bus delays. This
shows that with the small number of processors per board, the
communication delays on the board, although worse than for the 2-D
case, are not significant until closer to 10 Mflops. This suggests
that the halance between bus and board communication delay could be
improved by having more processors on a board and fewer boards. This
is entirely feasible with future VLSI. The 1impact on board
cormunication may he further reduced by applying cyclic reduction in a
similar manner as was used to permit computation and bus transfer.
The interfaces in figure 5 are now considered to be between processors
on a board rather than between boards.

Figure 4 (b) shows the computation time for the conventional 3-D 6
color algorithm and the new 12 color algorithm. There is a 40%
reduction in computation time for a 0.63 Mflop processor. At this
point bus transfsr equals computation time. Consequently, the use of
faster processors will not improve speed with the algorithm selected.

Significantly faster performance may also be achieved by wusing
the more complex multigrid method, which on a serial machine can
reduce the number of operations from O(N, Ni) to O(Np) » (ref.
19,20). Multigrid loses some of its efficiency on a parallel machine
(ref. 21), but for the michine discussed, there are many nodes
relative to the number of processors and multigrid techniques should
still be efficient. Multigrid is not inc”uded in the evaluation here
as it may also be used with a sequential machine.

CONCLUSION

We discussed improvements to the design time involving finite
element computations by using parallelism, expert systems and
ovtimization techniques. We considered a commercially available
computer into which we inserted 8 identical processor boards. Each
board has 4 processing units and each unit consists of 4 commercially
available vprocessors and 32000 words of memory. We showed that this
configuration is highly efficient for solving the equations for
single-variable reqular grids up to 285 by 285 for 2-D and up to 40 by
40 by 40 for 3-D. Efficiency with a 0.1 Mflop processor is estimated
to be 89%, providing an improvement of 15 to 20 times relative to a more
costly VAX 11/780 used in double precision. The next mest demanding
part of the computaticn, setting up the equations, is also expected to
be similarly efficient for reqular grids. At least an order of
magnitude faster prccessors are anticipated within a couple of years.
For these processors the efficiency would fall off dramatically. We
proposed a new SOR algorithm which enables overlapping in time for
data transfer and computation. For a 0.63 Mflop processor, this
algorithm improves efficiency from 56% to 98% for a 40 by 40 by 40 3-D
mesh and from 92% to 99% for a 285 by 285 2-D mesh. Non-regular grids
are common in structural finite element computations. Consequently,
we plan to investigate the efficiency of our machine for direct
decompesition methods such as Gauss Elimination and Nested Dissection.
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APPLICATION OF ZUNCURRENT PROCESSING TO STRUCTURAL DYNAMIC RESPONSE COMPUTATIONS

Jonathan Ransom, 9Olaf Storaasli and Robert Fulton
NASA Langley Research Center
Hampton VA 23665

SUMMARY

Equations of large order structural problems are often difficult to solve on current
sequential computers due to memory and time constraints. The introduction of a new
generation of computers based on concurrent processing offers an alternative that
promises to aileviate these constraints. The trend of future computers (based on new
products under developement) is toward new generation computers referred to as
multinle instruction multiple data (MIMD) computers. These MIMD computers provide an
opsortunity for significant gains in computing speed which makes the solution of
targe-scale structural problems tractable. This paper describes the experiences
gained from solving for the dynamic response of two simpla structures on an
experimentai MIMD computer called the Finite tlement Machine. The paper introduces
MIMD computing concepts, describes how the concurrent algorithmic techniques were
implemented and gives results for the two example problems. The results show
computational speedups of up to 7.83 wusing eight of the Finite Element Machine
processors and indicate that significant computational speedups are possible for
lirge order structural computations,

INTRODUCTION

A typical method of solving stiuctural dynamic response probliems is to discretize the
structure using finite element or finite difference techniques and to solve the
resulting system of equations (often a large number of equations) on a sequential
computer. The solution cf the resulting equations on sequential computers for
large-crder  problems is often very demandirg on both memory and time, The
introduction of a new generation of compu*ers ba.esa on concurrent processing offers
an alternative that promises tc alleviate these c.nstraints. A concurrent processing
comput2r contains many processors which may operate simultaneously to share the
computational load, thereby reducing the conputation time for applications where
concurrent algorithms can be developed.

A crude model used to analyze the crash dynamics of a typical transport aircraft is
shown in figure 1. The model contains a relatively small number of elements and
equations, but, even so, it takes more than an hour of computer time to calculate
displacements for only a fraction of « second of real (crash) time. Analysts would
prefer using a more complex (more accurate) model in order to predict the failure
modes of the structure, However, the analysis of such a complex model would b2 so
demanding on a sequential computer that it is currently not done.
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The chronological growth in spred of scientific computers as measured in MFLOPS
(millions of floating point cperaticns per secend) is shown in figure 2. Current
estimates are that the peak performance achievabie for a single- -processor computer 1s
approximately 1000 MFLOPS (shewn by the horizontal hatched marks) in the figure. Also
shown in the figure is the estimated speed of up to a mitlion MFLOPS requirea for
routine large-order nonlinedar dynamic response calculations. The figure shows that
the nzar-term introduction of a new series of multiprocassor computers (termed
multiple instruction multiple data or MIMD) promises tu provide a significant advance
in high-speed scientific cumputing capability. The development of suitable algeriinms
on concurrent computers in the future mey lead to breikthroughs in the solution of
large-order nonlinear dynamic response problems, The key to wutilizing this
opportunity is the effective selection and implementation of appropriate algorithms
which exploit zoncurrent processing concepts.

This paper describes results for several applications on a research concurrent
processor machine (Finite Eiement Machine, FEM) at NASA Langley Research Center and
updates results shown in previous work of the authors (ref. 1).

DESCRIPTION OF APPLICATIONS

This study describes the :olution or two dynamic response groblems: (1) the Tinite
difference analysis of a simply supported arch under & uniform step load; z2nd (2) the
finite element analysis of a two-dimersional beam grillage under a vnitorm step load
at its nodal points. The objective ir both problems s to solve for the displacements
as functions of the time and the loading.

The simply supported arch shown in figure 3 contains both displacesment, w, and time,
t, as variables. Finite difference approximations were used to discretize the
structure. The response of the center point for 5 milliseccnds after application of
the uniform step load is also shown.

The beam grillage shown in figure 4 is also simply supported and discretized using a

finite element method. The respunse at ncdes 1, 2, and 3 in terws of transverse.

dispiacement as a function of time is also shown in the figure,

CONCURRENT SOLUTION ALGORITHM

In general, for a lumpud mass formulation, the acceleration for each degree of
freedom for each node of a structural model is a function of all the displacemen*s,
the velocities, and time. In this concurrent approach, m equations of motion can be
distributed over n processors. A typical distribution of m equations of motion is as
follows

(WI,WZ..OQ,wm’WI’ngcn-’wm’t)

1" Processor 1
W2= {Wl,wz,...,Wm,Wl,W ’.OO’Wm’t)

(1)
(wl ,wz g0 ,Wm.wl ,wz seee ,wm’t/
(wl ’w2,ooo’Wm,w1 ’wz ;-oo,w.n’t) prOCeSSOP 2

ﬂ u
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where w; is the displacement of the ith degree of freedom and a dot denotes
differentiation with respect tu time. If m is a multiple of n, there is an aqual
distribution of the computational lcad. Otnerwise, the work load should be
judiciously balanced to minimize processor idle time and increased cverhead.

A common procedure for integrating dynamic equations is the Newmark-Beta method (ref.
2). The original formuiatior dces not wuse matrix inversion but calculates new
accelerations iteratively. This formulation was chosen for this study to maximize
raralielism of the algorithm. Tne m equations of motion are distributed ad solved on
n processors (i.e., m=n) as indicated in figure 5. Al! proczssors perform identical
functions (same sot*ware) and act as “integration &ngines". Moving from t to t+At,
each processor begins vith an assumed acceleration for each assigned degree of
freedom. Tne corresponding first derivatives and displacements are calcuiated using
the tollowing equations

WﬂtMt)==ﬁtH%%tPthtn t/2 (2)
wi (LAt = w’,(t)+AtWi(t)+Atz(iii(t+At)b+W1_(t)(0.5—b)) (3)

where b=)/4 (trapezoidal integration).

Tne computation is then interrupted so that each processor can communicate results
for its assigned degrees of treedom to its neighboring processors. The accelerations
are then computed and comparcd with the assumed accelerations. If a given convergencn
criterion for the assigned degrees of freedom is met, then "local convergence" is
achieved, The computations are interrupted again to chack for convergence of all
processors {1.e., global convergence) by using a fiag network that sets a flag on
each converged processor and sends its status to other precessors. If either the
iocal or the global convergence test faile, each processor uses the current
calculated value as the assumed acceleratiun and repeats the computations. When
global convergence is met, all processors simultaneously proceed to the next time
step.

CONCURRENT PROCESSING SOLUTION METHOD

On conventional sequential computers, a sequential time-consuming process of
repeatedly iterating over both time steps and spacial variables is required to
determine the response. However, on a parallel computer (refs, 3-5), one may
distribute specific geometric locations (nodes) or masses to be solved over different
processors. Iteration then occurs simultaneously over all processors. Communicaiion
between the processors is accomplished by the interprocessor communications
capability of the parallel computer. The user can invoke either direct
nearest-neighbor  communications or {for distant processors) global  bus
communications.

In eddition, on cuncurrent processors (refs. 3-6), one must take into account such
gnings as  which computations can be performed concurrently, how many processors can
be used, how to distribute the computations, and the amount of communicetion required
between processors. At some point communication between processors may become too
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time censuming. Then a trade-off must be made between sequential ard concurrent
processing.

Software

The user interface to the Finite Element Machine 1s accomplished by using a typical
minicomputer referred to as the “controller”. The software on the controller for the
Finite Element Machine 1is an extended version of the menu~driven minicomputer
operating system. In addition, software (termed PASLIB) was written to support a set
of companion comrands residing on ee.h processor in the array. Thus, a user
constructs a concurrent algorithm using the text editor and other features of the
controller., When the algorithm and data have been prepared, a command is given to
transfer the program and associated data from the controller to each element in the
array. Next, the processor connectivity is transferred to each processor to store the
location of its neighbors. This neighbor assignment process is currently automated,
requiring no user input for most cases. However, the wuser must include in the
concurrent aigorithm the appropriate code (SENDs and RECTIVEs) to communicate with
neighboring processors. For concurrent pirocessing, bpreocesssr connectivity permits
greater flexibility 1in the creation of algorithms to solve structures problems than
is possible by conventional sequential computing.

Concurrent Processing Hardware

The concurrent processing research hardware used in this study is the NASA Langley
Finite Element Machine shown schematically in figure 6. It consists of an array of
nrocessors (figure 7&) with three boards per processor, such as the typical board
shown in figure 7b. The processors can communicate with each other over two paths
(Tocal or global} and with the controller using one path (global bus) as indicated in
figure 6. For a broad class of structures problems the finite element matrix is
sparse, Consequently, the design of the hardware took this sparcity into account by
proviuing up to twelve nearest-neighbor links of which eight are shown ir figure 6.
A giobal communications bus aliows comaunications from one processor to any or all
other processors. The hardware contains a global flag network that can be wused to
signal wnen a processor has completed its computations.

SPEEDUP AND EFFICIENCY OF METHOD

The concurrent solution algorithm described in the previous section was applied to
two example dynamic response problems., The typical responses are shown on the
lower right of figures 3 and 4. The primary computational results of interest are the
times to calculate the structural response on a varied number of processors. The
computational speedup derived from the concurrent processing approach compared to the
sequential approach can then be computed. The computational speedup is defined as the
computation time to calculate results on one processor divided by the computation
time to calculate the same results on n processors.

The computational speedups versus the number of processors for the shallow arch
problem and the beam grillage problem are shown in figures 8 and 9, respectively. The
theoretic>1 maximum speedups would be the speedups if there were no cverhead for
concurrent processing., Thus, the theoretical computational speedups are equal to the
number of processors used. The computational speedups for solving the arch problem
using 64 -and 128 equations are shown in figure 8, There is a speedup of up to 7.83
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for 128 eaquztions using eight processors. The computational speedups for solving the
beam grillage problem using 24 and 48 equations are shown in figure 9. For this
exanple, there is a speedup of up to 7.36 using eight processors., The computational
speedups using eight processers approaches the theoretical maximum with fewer
equaticns because the matrix multipiication wused in the finite element method
requires more computational effort,

The efficiency of concurrent computations for an increasing number of processors for
the beam grillage prohlem using 48 equations is shown in figure 10. The efficiency is
defined as the compu-.ational speedup divided by the number of processors. The figure
shows a typical comp.sition of the overhead using eight processors. Since the
transferral and receipt of data are not instantaneous, communication is one of the
factors that contributes to the overhead. For iterative methods, it is necessary to
synchronize the pracessors before making convergence checks, which creates another
source of overheal, In addition, there ic overhead from establishing 1looping
parameters and incices identifying processors uniquely and from nonparallel coding.

ESTIMATION OF COMPUTATIONAL SPEEDUP

The computation or execution time of an algorithm for a concurrent processing
computer is measured from the first processor initiation to the last processor
completion. For predicting the computational speedup, the execution time E can be
thought of as a composition of arithmetic time A, communication time C,
synchronization time S and idle time or wait Lime D as given by the equation

E=A+C+S+D (4)

Tne value for A 1is the time taken for all floating point operations. The integer
arithmetic, loop overhead and array indexing have been neglected for simplicity. The
value for C 1is the time to communicate velues from one processor to another. For
tne Finite Element Machine, the orocessors communicate directly with each other over
the comrunication links instead of shared mewory. Therefore, this time is the time to
send and receive information to and from processors. The value for S is the time
the processor spends synchronizing with other processors and participating in global
decision making., The value for D 1is the idle time the processor spends waiting on
other processors to finish computations (ref, 7).

Equation (4) can be used to estimate the potential computational speedup by using a
concurrent processing technique for the shallow arch problem. Because the solution
procedure for this problem makes use of an “‘erative method and the equations are
evenly distributed over the processors, the same amourt of floating point operations,
communication, and synchronization occurs during each iteration, Because there is no
wait time (D = 0), equation (4)can be written as

E=(a+c+s)l (5)
where a, ¢, and s represent the arithmetic, communication, and synchronization time

per iteration and I is the number of iterations. For this example problem, the
computational speedup for p processors may be expressed as
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SPEEDUP(p) = E(1)/E(p) = (a(1)+c(1)+s(1))/(a(p)+cip)+s(p))  (6)
This equation is independent of the number of iterations.

For the shallow arch problem, the solution algorithm required the following number of
fioating point operations per iteration:
(7)

nultiply : 24n/p
divide : 9/p
add,subtract : 18n/p

where n is the number of degrees of freedom and p is the number of processors.

Since the standard central difference approximation for the fcurth derivative is used
in the solution procedure, the ith degree of freedom computation must use the i-2,
i-1, i+l, 142 values of the displacement. The maximum number of communications, c, to
compute the fourth derivative for all the degrees of freedom assigned to a processor
is either four, two, or one for the assumed even distribution. If the number of the
degrees of freedom is equal to the number of processors, data is comaunicated to the
ith processor from four neighboring processors (i.e., the i-2, i-1, i+l, and i+2
processors). If the number of degrees of freedom is greater than the number of
processors, data is communicated to the ith processor twice, once from each of its
immediate neighboring processors. With two processors, data is communicated once to
the ith processor from its neighbor.

The processors must be synchronized and a globai convergence test must be made once
for each iteration,

The estimation parameters used for the Finite Eiement Machine speedup calculations
are listed in Table 1. The times in the table were obtained by one of two techniques:
either by adding the instruction times required for the operation, or by performing
timiny experiments on the actual hardware., Because equation (4) for the execution
time neglects some operations (e.g., decision time, indexing, etc), the resulting
estimates are not absolute. However, the estimation does predict the execution time
ratio (speedup) very accurately because the neglected execution time factor cancels
in the ratio., The observed and predicted :omputational speedups as the number of
processors increases for 128 equations are shown in figure 11. The figure shows that
the computational speedup continues to increase as the number of processors is
increased because the maximum amount of communication remains constant for this
problem, The maximum communication time is for the case of one equation per
processor (128 processors). However, the prediction shows that the speedup of 92.8
(72.6% efficiency) is still near the theoretical limit.

CONCLUDING RFMARKS

Two transient response problems {a one-dimensional problem and a two-dimensional
problem) have been solved on buth single and multiprocessor computer systems and the
performance compared. A description of the method to achieve concurrent solutions of
these structural probiems is discussed, and results for computation time are given.
The results shon computational speedups of up to 7.83 using eight processors (98%
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efficiency). These results are encouraging and they hold the promise for signirizant
reductions in computation time for both linear and nonlinear statics and dynamics
problems. An equation that estimates the computational speedup has been formulated
and tested on the research hardware for a varied number of processors. Results from
this computational speedup estimation are encouraging and indicate that speedups for
large order dynamic analysis can be achieved by continuously increasing the number of
processors. It 1is expected that computers for future large-scale engineering
computations will be multiple instruction multiple data (MIMD) systems. It is evident
from the algorithm used in this study that much algorithm research is required by
engineers to make such computers function efficiently in the solution of structural
problems, The significant performance gains possible will make such algorithm
research worthwhile,
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TABLE 1 - ESTIMAT.ON PARAMETERS

Cost Parameters
Multiplication
Division
Addition, Subtraction
Send
Receive
Synchronize
Global Flag Check

Time(milliseconds)
0.518
0.533
0.475
1.870
1.870
0.129
0.278
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INIT1AL ZXPERIENCES WITH DISTRIBUTING STRUCTURAL CALCULATIONS

AMONG COMPUTERS OPERATING IN PARALLEL

James L. kogers, Jr. and Jaroslaw Sobileszczanski-Sobieski
NASA Langley Research Center
Hampton, Virginia

INTRODUCTTZ”

As the speed of 2 single-processor computer approaches a physical limit, com-
puter technology is beginning to advance toward parallel processing to provide even
faster speeds. Network computing and multiprccessor computers are two discernible
trends in this advancement. Given the two extremes, a few powerful prccessors or
many relatively simple processors, it is not yet clear how engineering applications
can best take advantage of parallel arch.tecture. Neither is it clear at this time
the extent to which engineering analysis programs will have to be recoded to take
advantage of these new hardware opportunities. It is cledr, however, that these
questions can be examined immediately by exploiting the physical parallelism of
selected problems and the modular organization of existing programs to solve these
problems.

Tu gain experience in exploiting parallel. computcy architecture, an existing
program is currently being adapced to perform finite-elecment analysis by distribu-
ting substrucctures over a r-twork of four Apple Ile microcomputers connected co a
shared disk. This network of microcc._puters is regarded merely as a simulator of a
parallel computer because it shculd be obvious that substructure analysis of a
practical problem of significant size should be performed on a computer with much
more power than this particular microcomputer. In this network, one microcomputer
coutrols the entire process while the others perform the analysis on each subsiruc-
cure in parallel. This substructure analysis 1is used in an iterative,
fully stressed, =tructural resizing procedure. Thia procedure allows experimenta-
tion with resizing in which all anulyses are not completed during a single
it ation, Mechcds to handle the resulting mixture of old and new analysis data,
relerred to 18 isynchronous parallelism, need to be developed for parallel comput-
iag applicetions. Although tha present work involves only structural analysis,6 it
is hoped that this research will give some insight on how to configure multidis-
ciplinary analysis and optimization proccdures for decomposable engineering systems
using either high-performanc~ engineer’ng workstations or a parallel processcr
supercomputer. In addition, the operational experience gainea will facilitate the
implementation of analysis programs on these new computers when they become avail-
able in an engincering environment.

BACKGROUND

In 1975 a feasibility study (ref. 1) was performed to determ.-.e the effort ’
required to convert NASTRAN (ref. 2) to execute on the ILLIAC IV computer, and to :
assess the advantages that would be gained from such a couversion. The projected
sdvantages in speed ‘mprovement were significant. For example, the decomposition
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of a 10,000 degree-of-freedom mairix on the ILLIAC IV was estimated to be 40-100%
faster than on a CDC 6600 computer when the matirix could not be contained in cen-
tral memory. The problem that the study pointed out was that the code conversion
effort would require 110-140 man months over a pericd of 36-50 months. If funds
had been supplied and the project begun in 1976, it would probably not have heen
completed until 1980. About 2 years later, in 1982, the ILLIAC IV was takern

off line. This historical example illustrates the difficulties that could ke
encountered in future wholesale conversions of engineering analysis codes to paral-
lel processor computers which appear to be the wave of the future {refs. 3, 4).

While such whclesale conversicn efforts will eventusily be pursued, it is
obviously important to find ways to henefit from the speed improvements offered by
parallel computing without the cost, manpower., and time involved in the conversior
of wn~jor analysis codes. One purpose of this research is to demonstrate this for
structural analysis and to show that the curreut investment in sequential, modular
structural analysis programs csn be salvaged in the process.

APPROACH

The appro.ch taken for this project was to establish reference results using
the Engineering Analysis Language (EAL, ref. 5) to analyze a finite-element model
that was not substructured. An existing small finite-element analysis code was
then modified to handle substructures and applied to the same model on a CYBER
mainframe compucer. Next, this program was implemented on a microcomputer to test
the sudstrucivce method sequentially. The program was then distributed over a net-
work of these microcomputers with little change to the analysis code to test the
substructure method in parallel. A Fully Stressed Design (FSD) capability was '
added to test the behavior of substructure analysis in an iterative process in
which some of the analyses were ccapleted befeore others.

The Model

The finita-element model used for testing ig¢ snown in figure 1. This model
contains lo joints, "1 beam elements, and 42 degrees of freedom (the size of the
model wae Llimited by the memory of the microcomputer). The framework has three
substcuctures with each substructure composed of seven beams. The croes sections
and material properties are identical for all beams. A load is applied at one of
the boundary ncdes as shown in figure 1.

The Small Finite-Element Frogram

Input for the mocel was written for a small, undocumented finite~element
program developed in the past for a CYBER computer without any intent to ever use
ir. for parallel processing. It did not even have an explicit substructuring
capability. In this study, this program represented an "investment in existing
software” that was to be salvsged. The results from the unchanged program were
verified against the reference run. New code for substructuring based on equations
from reference 6 was then added to the program. The mod~1 was divided into ;hree
substructures with the new code used to compute the boundary stiffness matrix for
each substructure using equation 1:
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Each of the three 18 x 18 substructure stiffness matrices was reduced to 6 x 6
equivalent beam stiffness matrices (figure 2). These three stiffness matrices were
input to the program, assembled to represent a stiffness-equivalent framework
composed of three beams, each beam representing one substructure. The forces and
displacements at the boundary nodes were computed for each such beam. Modifications
were made to the program for reading these forces from a file and applying them to
the corresponding subztructures. By applying support conditions to the substruc-
tures, solutions were obtained for the interior ncde displacements, internal forces,
and elemental stressegs. These resilts were also verified against the reference

run. It should be noted that the substructure analysis was simplified because the
external locads were applied only to the boundary nodes. Should any loads be applied
to the interior substructure nodes, it would have been necessary to add code to
transfer these loads to the boundary nodes.

Conversion to the Microcomputer

At this point, the program for sequentially performing substructure analysis
existed ou a CYBER mainframe computer. The next step was to convert the program to
the microcomputer. Since the entire program was writtenm in FORTRAN-77, the move
was quite simple and the program was contained in the microcomputer's 64K-byte
memory without overlay. Although the program itself was entirely core resident,
the test case shown in figure 1 was too large for analysis without substructuring.
Therefore, the first step on the microcomputer was to run the substructuring
sequentially. The problem took 57 minutes to execute. The results checked out
against the reference run with little loss in precision (less than 1%).

Distributing the System

The approach selected for distributing the system was to use one microcomputer
to execute a controller program and three microcomputers to analyze each of the
substructures. All of the microcomputers were connected to a 20-MB Corvus hard disk
which was used for data communication between the computers. The operations
assigned to each computer are shown in figure 3. The controller program started
the system (operation 0), assembled the substructure stiffness matrices and solved
for the forces on each substructure at the boundary nodes (operation 2), and output
the data (operation 4)., The substructure programs computed the substructure
stiffness matrices (operation 1), and used the forces from the controller program
to solve for internal forces, node displacements, and elemental stresses for each
substructure (operation 3). Note that parallelism only exists in operations | and
3. The output of the data (oreration 4) also could have been distributed, but it
was found to be easier to keep it centrally located.

When distributing the system to four microccumputers, the purpose was to
minimize changing the original analyuis code. Only procedures involved in
operations 0, 2, and 4 were retained in the controller program while only those
procedures involved in operations 1 and 3 were retained in the substructure
progranm.
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A subroutine was added to both the controller program and the substructure
program to schedule their execution. This scheduling was accomplished by using
three files on the shared disk, one file for each substructure program. When it
vas time for the controller program to execute, each-of the three files contained a
zero, and when it was time for a substructure program to execute, its respective
file contained a nonzero number. Each program queried its file and if it was not
its turn for execution it was put in a "holding pat:ern” by performing a simple
multiplication loop before querying again. The system could have been implemented
on only three processors with one processor doubling for executing the controller
and substructure programs.

The ideal is to reduce the time required to solve the same problem sequen-
tially on a single processor to (time/n) where n 1s the number of processors used
to solve the problem. However, it is seen in figure 3 that not all of the calcula-
tions can be executed ir. parallel. 1In addition, some time was lost in an inevit-
able overhead such as checking and looping while waiting for a substructure or con-
troller program to finist. executing. Thus, the parallel system with substructures
took about 27 minutes to complete execution, which is short of the ideal but still
more than twice as fast as the sequential system.

The particular division of the structure from figure 1 into substructures is,
of course, not the only one possible, If a larger number of smaller substructures
were used, larger numbers of parallel computers could have been employed. However,
the larger the number of substructures the larger the dimensionality of the assem-
bled structure stiffness matrix (ultimately, if each substructure represents a
single-beam component, the assembled stiffness matrix would return to the size 1t
would have had if no substructuring was used). Consequently, to minimize the over-
all computer time, an attempt should be made to balance the size ~f thLe¢ assembled
structure stiifness mat-ix against the size and number of the substructure stiff-
negs matrices. The - _ree of the time reduction depends also on the number of sub-
structuring levels (ref. 7). Thus, tailoring the analysis process for a particular
application to tare advantage of multiprocessor efficiency is an important issue
that faces an analyst using a mulriprocessor system.

Resizing

An FSD algorithm waz added to examine the behavior of parallel substructure
analysis ln an 1iterative process. A loop counter was added to the controller and
substructure programs to make sure certain actions, such as initializations, were
only dore on the first pass through the system,

The FSD was performed by resizing all the heams in a given substructure
according to the ratio of the maximum absolute normal stress occurring in the
substructure to a specified allowable stress. The stress ratio was used as a scale
factor to modify the beam cross-sectional moment of inertia. Consistently, the
crogss-sectional area was multiplied by the square root of the scale factor, and the
cross-section linear dimensions were all multiplied by the scale factor to power
1/4. An iteration history of the changes in the design variable (plotted as the
factor on cross-section linear dimension) for each substructure is shovwa in
figure 4.
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Asynchronous Resizing

Since most of the engineering calculations performed in support of design are
iterative in nature, the computational behavior of an iterative distributed process
in which some subtasks are completed later than others because of unequal computa-
tional requirements for various subtasks is of significant interest (refs. 8, 9).
If such an imbalance of computational requirements occurs, a choice can be made to
let the iterative process continue, temporarily using old data for those processes
which are late. The process then becomes asynchronous as it mixes new and old data
(a synchronous process, in contrast, would always wait for new data before
proceeding). The effect of this mixing on the convergence and efficiency can easi-
ly be tested in a parallel system such as described above. The tests are conducted
by bypassing analysis of selected substructures in some iterations. Obviously dur-
ing the first loop through the system, all of the substructures will be analyzed to
provide a starting point.

There are a large number of different ways in which an asyuchronous iterative
process can proceed. Using the framework structure from figure 1 as an example, it
is conceivable to have at least these variants.

1. Referring to figure 3, consider being at the outset of iteration "i.”
Operations 1.1, i.2, and 1.3 are expected to yleld the boundary stiffness matrices
focr substructures 1, 2, and 3, all of which having been resized as a result of an
FSD operation at the end of the previous iteration "i-1." Assume that operation
l.1 is late but the process moves on anyway using the old boundary stiffness matrix
from iteration "i-1," that does not reflect the “"i-1" resizing. That means that
operation 2 combines the updated matrices for substructures 2 and 3 with an out-
dated matrix for substructure 1. In operations 3.1, 3.2, and 3.3, consistently, an
old stiffness matrix that does not reflect the "i-1" resizing is used, while the
updated stiffness matrices are used in operations 3,2 and 3.3.

After this analysis based on the partially incorrect data, all substructures,
including substructure 1, are subject to the FSD resizing.

2. Proceed as above, but do not resize that particular substructure for which
the old stiffness matrix was used in the analysis (substructure 1 in this
example).

3. Complicate variants 1 and 2 by changing: the number of substructures that
are assumed to be "late,” the number of iterations over which the old data are
being used for each substructure, etc. Obviously, a very large number of possibil-
ities can be considered.

To make a beginning, variants 1 and 2 have been tested. The results shown in
figures 5 and 6, respectively, indicate that the asyanchronous operation, shown as
connected lines, had only a slight influence on the convergence as manifested in
small discrepe~cies that cza be seen between the lines and symbols from the
synchronous sizing. For instance, asynchronous results for substructures 2 and 3
(figure 6) are above the synchronous ones but both results converge after about
eight iterations. This behavior is to be expected because the FSD process is known
to converge to the same result (for a nonpathological structure) regardless of the
starting poiat, and, in fact, the asynchronous operation in this case may be
regardcd as a coniinuation of the FSD process from an artificially injected new
starting point. One may speculate that a different behavior will be observed in
cases where nonlinear programming is used instead of FSD for nonconvex cases. Then,
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there will be a potential for such an asynchronous operation to trigger a switch to
another path through the design space that could end up at a different local
minimum.

PLANS

Following initial experiments with the FSD synchronous and asynchroncus
iteration, it is planned to make the iterative computation more complex by repla._-
ing the FSD method with aonlinear mathematical programming including applications to
nonconvex cases. One possibility includes reducing CONMIN (ref. 10) to a size that
will fit on a microcomputer. CONMIN contains nine subroutines and a driver
program. Some of the subroutines would be deleted and the code may have to be
overlayed to fit onto the microcomputer. With this capability, distributed analy-
sis with centralized optimization can be performed. Another possibility includes
adding an optimization feature to each of the substructure programs. Although this
feature probably will not be as general purpose as CONMIN, it will allow the inves-
tigation of distributed analysis and distributed optimizaton.

At this point, research on the microcomputers for this experiment will
conclude. Plans call for having several large engineering workstations installed
by that time. When a network of these computers is available, this Investigation
will continue on a much greater scale using large, general-purpose, state-of-the-
art analysis and optimization programs and building on the experience gained from
the microcomputer network. The plan is to use these workstations to investigate
analysis and optimization in a multidisciplinary environment where three worksta-
tions would be used for the analysis of different disciplines and a fourth worksta-
tion for the optimization. The process could be controlled by a network-wide
operating system — a novel feature which is interesting from a computer science
viewpoint. Compared to the currently prevailing mode of operation in which most
analysis and optimization operations are being done in a sequential mode, a work-
station environment will allow each discipline to process in parallel, feed all of
the constraints to the optimizer at one time, and then iterate through the
process. This should result in a more optimum design in less time.

CONCLUDING REMARKS

An experiment is currently underway to see if advantage can be taken of

parallel processing without making major changes to an analysis code. This

zperiment uses a network of four microcomputers to simulate a parallel processing
computer. A small finite-element analysis c.mputer program with a substructuring
capability is applied to a framework of beams. One microcomputer controls the
system while the other three analyze the substructures. The results verified that
the computer time when compared to a single computer was iladeed reduced, as
expected, by a factor proportional to the uumber of cruputers minus corrections for
data communication and incomplete parallelism of the problem. The reduction was
achieved with almost no change to the analysis portion of the code. The experiment
also includes resizing of the design variabies using a Fully Stressed Design
algorithm to simulate an iterative optimization to obtain an indication of the
effect of asynchronous parallel computing on the convergence of an iterative
process. The preliminary result showed only a very minor effect., Further testing
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will be done with asynchronous resizing procedures, subsequently implementing them
using large state-of-the-art analysis and optimization programs on engineering
workstations.
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TEQUEL : THE QUERY LANGUAGE OF SADDLE

S. D. Rajan
Depai‘tinent of Civil kEngineering
Arizona Statz University
Tempe, Arizona 85287

SUMMARY

An relational database management system is presented that is tailored for
engineering applications. A wide variety of engineering data types is supported and
the data definition language (DDL) and data manipulation language (DML) are extended
to handle matrices. The system can be used either in the standalone mode or through
a FORTRAN or PASCAL application program. The query language is of the relational
calculus type and allows the user to store, retrieve, update and delete tuples from
relations. The relational operations including union, intersect anc differ
facilitate 2reation of temporary relations that can be used for manipulating
information 1n a powerful manner. Sample applications are shown to illustrate the
creation of data through a FORTRAN program and data manipulation using the TEQUEL
DML .

INTRODUCTORY REMARKS

The use of database management technigues for engineering applications is quite
widespread (refs. 1-3). Design of structurai, mechanical and other systems through
the use of computer graphics, finite element and optimizations techniques requires a
sophisticated software system whose needs tax both -he computer system and the
software developer. The design system must be user-oriented, catering to the neads of
users of different proficiencies. 1t also must be efficient, providing reasonabile
throughput; must be amenable to controlled future growih, able to incorporate changes
in all multi-disciplines that constitute the design system: and must be intelligent
enough to detect some forms of syntax and semantic errors. The system should give
the designe~ freedom to specify the requirements peculiar to current needs and in
essence conrrol the flow of computations toward the final design,

While data base management systems (DBMS) have provided techniques to satisfy
most of the needs of such general-purpose software development, the user perception
of dat1 bases is =till an area of intense research, The usar is expected to specify
the requirements and carry out the data manipulations within the scope and in the
language of the DBMS. TEQUEL is the first step in enhancing the capabilities of the
SADDLE system (ref, 4) that has been used for the optima)l design of various
structures,

The topic of relational databases is discussed in this paper. The relative
merits and demerits of this data model versus the other well-knhown data models are
not. presented and it is assumed that the relational model is appropriate for the task
at hand. The first part of the paper reviews two relational, engineering DBMS. "nis
review 1s followed by an outline of the procedural steps required to use a DBMS. The
first step i8 the formulation of the database scheme which is discussed Ln some
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detail. The second part of thc paper presents “he subsequent steps involving the
implementation ¢f the databisa scneme through the data definition language and the
use of the database “hrough the data manipulation language. Details of TEQUEL DDL
and DML are presented, Later a few applications of the query language are shown with
emphasis on the usage in g computer-2ided design (CAD) environment. The paper
concludes with some thougrt on future developments.

ENGINEERING DBMS

Commercial (business-oriented) DBMS cannot be used for engineering applications
for a variety of reasors. First, they do not support engineering data types, which
precludes their interaction with almost all technical programs. Second, engineering
dats exist in several forms ond are used by technical and non-technical personnel for
both administrative and technical purposes, Such a situation implies integration
problems, access and control conflicts and multiple views of the database that would
tax most business-oriented DBMS. Last, mosi engineering application programs work on
local databases that are small in comparison to buciness databases but an enormous
amount of computations take place involving the entire database.

Some Engineering DBMS

One of the most widely used engineering DEMS is the RIM subsystem of the IPAD
design software system (ref. 5)., The University of Washington Relational Information
Minagement System (UWRIM) (ref. 6) is the result of substantial enhancemen:s and
improvements to the RIM program. It is based upon the relational algebra model for
data management and has been used for a wide variety of applications ranging from
engineering to accounting. The UWRIM user can use the system one of several ways -
through the menu mode, through tr~ command mode or through a high-level language pro-
gram that car. =11 FORTRAN subroutines contained in the UWRIM library. The standalone
mode makes it possible for a user with little or no programming experience to define
the database, enter data and manipulate the information with a set of relational
commands. The database can also be protected using passwords and access lists. In
defining the database, c¢nnstraints on relations between attributes may be specified
using boolean operators. The relational operations that are supported include
intersect, union, project, subtract and join operators, and database modifications
can be carrjed out using rename, remove, change, delete and reload commands. These
same features are available through a high-level language program. While the
standalone mode is suitable for a terhnical information system, the interaction
through an applicatlon rrogram mekes possible the development of a wide variety of
technicsl and non-technical programs. Using the standalone mode, relevant data can
be extracted from the technical database snd reformatted for use by administrative/
non-technical personnel, allowing for data dissemination.

The SPIRE (Space Payload Integration and Rocket Experiment) DBM (ref, 7) is also
based on a relational model nf database. It provides a query language called Query-
by-ELxample (QBE) to the user through which the user is able to define the model,
retrieve and munipulate data. Through the QBE language, the user {-teracts with the
SPIRE "°MS as though examining and manipulating a set of tables, QBE allows each and
every user to have a different view of a commen set of data. This facility makes it
possitle for users of different proficiencies to interact with the same globa’
database. The next section discusses in some generality the procedural steps for
using any DBMS,

56

(4



i .

Procedural Steps in the Use of a DBMS

There are essentially two steps in the use of a relational DBMS. bLuring the
first step, entity sets and their attributes are identified and the
interrelationships between these attributes are established. Formally, the
relationships are expressed in terms of data dependency; that is, a constraint on the
possibie relations that can be the current value for a re.ation scneme (ref., 8). 1In
fig. 1, several lines are shown. The entity set, LINES, can be described by the
attributes (line_identifier (LID), line_ type (LTYP), number_of internal_points (NIP),
list_of_point_identifiers (LIP)). The entity set, POINTS, can be described by the
attributes (point identifier (PID), x-coordinate (X), y-cocrdinate {(Y), sz-coordinate
(Z)). 1In the set POINTS, the attribute PID uniquely determines X. In other words,
there is a functional dependency of X on PID and is denoted PID ->X (in fact, PID ->
XYZ). Similarly, in LINES, LID -> LTYP, LTYP -> NIP, (LID, NIP) -> LIP. While these
dependencies cannot be proved mathematically, the user must ensure ° it these
functional depcndencies (FDs) represent the real world,

The study of functional dependencies leads to identification of relation
schemes., The number of relation schemes and the key for each scheme, glven a set of
FDs, are determined by following a set of guidelines that .ry to achieve some
desirable properties which ensure that update, insertion and deletion anomalies do
not arise and that redundancy of data is as minimal as possible. The relation
schemes that have these properties are in the normal form. With FD3, the obj- tive
Is to cast the relation scheme in the third normal form (3NF). The concept of 31is
restricted by the fact that X -> Y implies that X determines Y uniquely. There are
instances where, given a value of attributes of X, there is = set ol zero or more
associated values for the attributes of Y, This situation is denoted by X ->-> Y,
that is, there is a multivalued dependency (MVD) of Y ¢ X. With MVDs, the objective
is to cast the relation scheme into the fourti: normal form (UNF). Tne database
theory that is used to decompose a scheme inLo better relation schemes is by no means
complete. Perhaps the biggest problem !5 to represent the real world through FDs and
MVDs, 2nd hence caution should hc excercised not only in specifying the dependencies
but also in interpreting the rcsults derivec fre~i decomposition algorithms,

As a part of the next step, the relation schemes forming the databacse can now be
specified to the DBMS as a data model using the D°L. Using the DDL, the user
3recifies the relation schemes, the attributes and their data types, the keys for the
relation and the constraints between the attributes, The DBMS prepares for its book-
keeping chores based on the supplied informaticn. The DBMS is now ready to accept
DM'. commands that would allow transactions such aec 2reation, insertion, deletion or
updating of information.

The query language forms the most important subset of the DML (nonquery aspects
deal with the transacticns mentioned before). Query languages for the relational
model break down into two broad classes (ref. 9):

(a) Algebraic languages, where queries are evpressed by applying specialized
operators to relations

(b) Precdicate calculus languages, «here queries describe a desired set of
tuples by specifying a predicatc the tuples must satisfy

These relational operations provide an elegant approac.a to manipulation of
information. Using a non-rrocedural language, it is possible for the user to express
queries without knowing anything about the physical datahase. In a relational
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calculus language, the result of a query is a relation cbtained by the general
formula

New relation = {tuple definition | conditions}

This formula is quite simple and complicated queries involving several relations can
be easily formulated. The following sectiors show how tne TEQUEL system can be used
in an engireering database environment,

TEQUEL DATA DEFINITION LANGUAGE

The data model is created using three terminologies - domain, attribute and
relation, A TEQUCL domain is the set of values that an attribut2 may assume. The
domain is defined in terms of a variable and its data type. There are 9 data types
that are supported - character, fixed pcint (integer), floating point (real)
involving single and douhie precision, logical, packed logical, and floating and
fixed point submatriczes, An attribute is defined in terms of an already defined
domain, Finally, relation schemes are refined in terms of attributes (domains), one

or more of which is identified as keys of the relation. The keys ensure that each
tuple is unique.

An example of a relation describing material properties is given below.

DOMAIN : aame*1s char;
Y modulus double;
density real:

ATTRIBUTE : R_modulus, B_modulus Y modulus;
Poissonratio, cost density;

RELATION : Mat_Table (name*, Y _modulus, R_modulus, B_mouulus, density,
Poissonratio, cost);

Note that the elastic modulus attributes are of double precisiun type, and the
density, Poisson ratio ~:d cost are single precision. The attribu‘e name (character
of length 15) is the key to the relation scheme implying that no two material tvpes
have the same name. 7o the user, the relaticn scheme will appe.r as a table, Mat

Tatle (Table 1). 1In addition the user can open the data base directory containinE

one or more relation schemes with the command
OPEN databasename password;
The user automatically becomes the database administrator (DBA) when this command is

1ssued for a particular database the first time. The DBi can assign user
identification, password ard level of access to different users uf the datatase.
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TEQUEL DATA MANTPULATION [.ANCUAGE

Once the data model is created using the DDL, the user can use the DML commands
to store, retrieve, update and delete datza. The commands operate on one or more
relaticns and create a set of tuples invriving the specified attributes that satisfy

the given cundition,
DML in a Standalone Mode

In this node, the user is able to carry out tlie database transactions without
having to write an application program.

Store: Information is loaded into the database by using the STORE command.
Example: The relation MAT TABLE is stored as -

STORE MAT-TABLE:

Aluminum 7.1 2.5 7.7 2.7 0.343 0.45;
Copper 11.7 4.5 13.5 8.96 0.35 0.63;
Lead 1.8 0.76 4.3 11.34 0.45 0.50;
Zinc 8.0 3.5 6.0 7.14 0.33 0.80;

%

Tne rest of the transactions are carried out using the Select-From-Where (SFW) command -

SELECT attribute name(s)
FROM relation name(s)
WHERE condition(s);

A temporary 'relation' is created as a result of this command. This relaticn may
then be used to carry out other database operations,

Retrieve: Information is retrieved for viewing, deletion or wmodification of
information using tkr SFW command. The attribute names in the SELECT
clause can be differentiated from one another if more than one relation is
used in the FROM clause. This is done by qualifying the attributes with
their relation name - relation name.attribute name. In the WHERE clause,
one or several ~onditlons can be specified nvolving attributes, arithmetic
operations and boolean cperations.

Examnple: If from the relation MAT_TABLE. it is necessary to identify all
materials whose square root of the sum of Young's modulus and Rigidity
modulus is greater than 3.0 and the cost is less than or equal to
0.70, the following gquery can be used -

SELECT ?

FROM mat_table

WHERE (sart (y_modulus+r_modulus) > 3.0) & (cost <= 0.70);
The ? in the SELECT clause specifies that all attribute values are to
be selected,

Delete: To delete certain tuples, the SFW clause may be used to identify the tuples
and then the DELETE command can be issued.



[

Py

"

Example: Delete all material having Poisscn ratio less thar 0.34.
SELECT ?
FROM mat_table
WHERE Poisson ratio < 0.34;
DELETE;

Update: To update specific attributes, the SFW command may be used to identify the
tuples and then the UPDATE ccinmand can be issued with new values.

Example: Inflation has caused the cost of all materials to increase by 19
percent.
SELECT cost
FROM mat_table;
UPDATE 1.1%cost;

DML Through an Application Program

These same functions can be carried out from either 2 FORTRAN or a PASCAL
program. The application program calls routines/prscedures in the TEQUEL library
through the TQL interface much the same as commands are issued in the standalone mode.
Appendix A illustrates a graphics pre-prcressor program developed using the  TEQUEL

DBMS. Routines in the TQL interface are recognized by the prefix TQL that precedes
all routine names.

The program generates a hexahedron as specified by the user who inputs the
minimum amount of information to specify the so0lid and the program automatically
genecrates the rest of the nodal and solid information. The key to the information
transfer between the application program and the TQ. interface is the COMMON blocks
(TRNODE, TRBCK, and TRSLD8). They contain the attributes in the relation ordered by
decreasing lengths (as determined by their data types). In order to store, update or
retrieve information, the application program specifies the values of the keys and
then calls are made to TQL_PUTJAT (to store) and TQL GETDAT (to retrieve). The TQL
interface determines the locat’on of the specified tuﬁie by converting the values of

the keys to a unique address. This task is handled by the File Management System
(FMS) of the TEQUEL DBMS.

The program looks somewhat different from conventional programs that are often
bogged down by the tasks that the DBMS performs. The programmer is freed from such

mundane tasks and is allowed to concentrate on the intricacles of application
development .

DDL/DML EXTENSIONS TO OPERATE ON MATRICES

Studies of dynamic behavior of programs operating in paged memories have
indicated clearly the poor performance exhibited by programs designed originally for
conventional systems (ref. 10). Two importaat results were obtained from the study.

(i) Order of magn‘tude improvement can be made in the number of page faults

and page residence times for several common matrix operations by suitably
sequencing the individual computations.
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(ii) Storage by submatrices is superior to storage by rows with the possible
exception of forward elimination involved in equation solving in which
partial pivoting is required. However the difference becomes significant
only for large matrices, and therefore whether the savings obtained by
submatrix storage are worth the price paid in increase in addressing
complexity is a question that is best answered for specific cases.

There are two questions that are unanswered in ref. 10. First, how easy is it
to develop general purpose programs with general size matrices if external ster2sc is
not used? Second, if external storage is used, should 'complex' addressing be
carried out by the application program or is it possible for a DBMS to handle the
data transfer efficiently and easilv? Experience has shown that the use¢ of
submatrices (r2fs3. 11,12) is most efficient for general-purpose program develovment
whenever such use is possible under a DBMS. The matrix support under TEQUEL is
intended for applications where submatrix storage is likely to be superior to
convertional storage.

TEQUDL DDL allows the user to define matrices of three data types -

DOMAIN: X(5) realarray (10);
Y (20, 20) doublearrcy (5,15);
CODE (8,2) intlarray (10,9);

where X is a vector of single precision numbers partioned into 10 subvectors each
having 5 elements; Y is a matrix of double precision numbers partioned into 75
submatrices of 5 superrows and 15 supercolumns with each submatrix having 20 rows and
20 coiumns. Similarly, CODE is a matrix of integer numbers. Typical relations
involving submatrices are defined as-

RELATION: XVECTOR (XROW*, X);
YARRAY (YROW*, YCOL*, Y);
CODE_MAT (CROW*, CCOL*, CODE);

where XROW, YROW, YCOL, CROW and CCOL denote the superrow and supercolumn numbers and
hence act as the keys for the relations. It is also possible to store sparse
matrices under this scheme by indicating that the number of superrows and
supercolumns is zero. The TEQUEL DBMS automatically creates a sparse matrix direct-
ory for the relation in question.

EXAMPLES IN A CAD ENVIRONMENT

Avpendix A shows a program that generates nodal and solid information for a
hexahedron with parallel and identical front and back sides (fig. 2). The user
specifies the dimensions of the hexahedron and the number of subdivisions that the
hexahedron must be divided into. The rest of the information is automatically
calculated by the program,

The relation schemes are defined using the TEQUEL DDL as follows -

DOMAIN: NODENO, POINT(8) intl;
X, LENGIH real;
BRICK_NAME*10 char;
NAME*15 char;
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ATTRIBUTE: SOLIDNO NODENO:
Y,Z X
WIDTH,HETCGHT LEWGTH;

RELATION: NODES  (NODENO*, X, Y, Z);
SLD8 (SOLIDNO*, POINT);

BRICKS (BRICK NAME*, FIRSTNODE, LASTNODE, FIRSTSLD, LASTSLD, NAME,
LENGTH, WIDTH, HEIGHT);

Each hexahedron is created in a local coordinate system and is identified in the
relation BRICKS by BRICK _NAME. The nodes and the 8-node bricks are created with
consecutive node numbers (NODENO) and soiid numbers (SOLIDNO) and of material NAME.
The solids are identified by the key, SOLIDNO, ind described by the 8 nodes contained
in the vector, POINT. The nodes in turn are identified by the key, NODENO, and
described by their location in space, X,Y and Z coordinates,

Example 1: Creation of the solid model in Fig. 3.
The FLANCE and RIB are created using the program with dimensions 100 x 20 x 10. The

local coordinate system (LCS) of FLANGE coincides with the global coordinate system
(GCS). 1In order to position RIB in the GCS, the TEQUEL DML is used as follows -

(a) Translation of the origin from (0,0,0) to (60,20,0).
SELECT nodes.x nodes.y
FROM nodes bricks
WHERE (bricks.brickname = 'RIB') & (nodes.nodeno »>=
bricks.firstnode) & (nodes.nodeno <= bricks.lastnode);
UPDATE (x+60); (y+20);
(b) Rotation about z-axis hy 90 degrees (ccunterclockwise).
UPDATE (x*cos(90) + y*sin(90));
(~x*3in(90) + y*cos(90));
Example 2: Statistics on the solid model.
(a) Model limits in the X, Y, Z directions.
Two macros could be created as MINIMUM.TQL -

MIN { SELECT %1%
FROM NODES; };

and MAXIMUM.TQL -

MAX { SLLECT %1%
FROM NODES; };

These macros can be invoked as -

MINIMUM x;
MAXIMUM x;

to find the minimum and maximum coordinates in the x-direction (and
similarly for y and z directions).
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(b) Cost of aluminum used in the model.
The query can be posed as follows to generate a temporary relation

SELECT ?
FROM bricks
WHEERE name = ‘Aluminum’:

and the cost evaluated as volume times the unit cost -
SUM { EVALUATE length*width*height*0.45 };

(c) Nodel coordinates of nodes that belong to both FLANGE and RIB.
A set operation is involved ir formulating the query. First two sets must
be created that contain the nodal coordinates of the nodes that form FLANGE
and RIB. Then the intersection of the two sets would yield the required
information.

Define a macro COMMON.TQL -

SELECT nodes.x nodes.y nodes.z

FROM nodes bricks

WHERE (bricks.brick_name = %£1%) & (nodes.nodeno >=
bricks.firstnode) & ‘nodes.nodeno <= bricks.lastnode);

The query can be then posed as -
INTER { COMMON FLANGE; COMMON RIB };

These examples illustrate some of the different types of queries that can be used in
order to accomplish a wide varie*y of engineering tasks. There are three clear
advantages to this approach.
(i) The user need not write an application program for small and new queries,
(ii) The application program does not contain any elaborate bookkeeping logic
pertaining to information manipulation. The DBMS handles these chores in
a transparent manner.
(i11) The relational operations again are handled by the DBMS in a manner that
is transparent to the application program.

CONCLUDING REMARKS

An engineering DBMS is presented that has been used for a limited number of
applications. However, its usage {s likely to increase in the future. The DMBS
supports several data types that have widespread engineering use including special
storage and retrieval schemes for matrices stored as sutmatrices. The DML is easy
yet powerful to use either in the standalone mode or through an application program.
Currently research is being conducted in the follcocwing areas to improve the
efficiency and enhance the features of the system.

(1) Key-to-Address (KAT) rransformations: The efficiency of a DBMS depends
largely on the FMS, 1In order to locate a tuple, the FMS must use a
scheme to convert the information contained in the kcys to an address,
In the example discussed in the appendix, the keys for NODES and SLD8 are
integers, perhaps the simplest form of a relation key. With character
keys or multi-attribute keys, in general, it is not possible to locate
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the tupie with one acceas. Several 'hashing' algorithms are available
each having its merits and demerits. In addition, the FMS must also be
capable of memory management since the information is likely to exist on
primary and secondary storages. The Memory Management Scheme (MMS)
should be able to achieve maximum efficiency on a particular computer
system, a tall order.

Automated Database Design: Quite often, the database administrator is
face with a dilemma - How many relation schemes are required to describe
the database scheme and what attributes should be the keys for the
relations? The study of automated database design is necessary in order
to preserve the relations in the normal forms especially as the
interrelationships become complex between attributes. It will be
desirable to have the user specify the FDs and MVDs and have the DBMS
formulate the relation schemes and other required information.

Multiple-User Environment: Engineering DBMS are inherently complex since
any project is manned by several groups and multi-disciplines. In
addition, the information in the database is required at several
locations in several forms. This form of distributea database in a
multi-user environment will make the DBMS more complex and consequently
less responsive.

It is hoped that the issues will be resolved without sacrificing integrity of
the database, turnaround time, security and other similar requirements,
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Table I. - A Sample Material Table

MAT TABLE

Name Y modulus R_modulus B_modulus Density Poisson ratio Cost
Aluminum 7.1 2.5 7.7 2.7 0.343 0.45
Copper 1.7 4.5 13.5 8.96 0.35 0.63
Lead 1.8 0.76 .3 11.34 0.45 0.50
Zinc 8.0 3.5 6.0 7.14 0.23 0.80
€6
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APPENDIX A
#&#% PROGRAM TO GENERATE A SOLID MODEL USING 'TEQUEL' DBMS

THE PROGRAM DEVELOPES A HEXAHEDRON AS DEFINED BY THE USER.
PROGRAM RESTRICTIONS -
(1) THE HEX IS A BRICK
(2) ALL NODAL INFORMATION 1S GENERATED IN A LOCAL
COORDINATE SYSTEM

##% TYPE DECLARATION BLNCK
INTEGER NODENO, SOL1ONC, POINT, ERRCODE, PANEL
INTEGER XDIV, ¥YDIV, ZDIV, PANEL, BOTLEFT, BOTRIGHT, BASENO
REAL LENGTH, WIDTH, HEIGHT, X, Y, 2
CHARACTER®*15 DBNAME, DBPASS, USE~".ME, USERPASS
CHARACTER®15 NODES, SLD8, BRICKS -CESS

INTEGER FIRSTNODE, LASTNODE, FIRSTSLD, LASTSLD
CHARACTER®*15 NAME, BRICK_NAME, BLANK

#4% ARRAY DEFINITION BLOCK
DIMENSION POINT(8)

#%% GLOBAL VARIABLES BLOCK
COMMON /UNITS / LUIN, LUOUT
COMMON /TRNODE/ X, Y, Z, NODENO
COMMON /TRPANL/ SOLIDNO, POINT
COMMON /TRBCK / BRICK NAME, NAME, LENGTH, WIDTH, HEIGHT,
$ FIRSTNODE, LASTNODE, FIRSTSLD, LASTSLD

##2 DATA INITIALIZATION BLOCK
DATA X, Y, Z /3%0.0/

DATA DBNAME /'HEX '/, DBPASS /'GRAPHMAN
$ USERNAME/' SYSTEM '/, USERPASS/'TEQUEL

$ NODES  /'NODES '/, SLD8 /'SLD8

$ BRICKS /'BRICKS '/, ACCESS /'RS

$ BLANK /' v/

--- INITIALIZE EXECUTION
CALL TQL_INIT

~=~« SET USER IDENTIFICATION
CALL TQL USERID (USERNAME, USERPASS, ERRCODE)
IF (ERRCODE .NE. 0) CALL TQL_MESSAGE (ERRCODE)

~-=- OPEN THE DATABASE
CALL TQL DBOPEN (DBNAME, DBPASS, ERRCODE)
IF (ERRCUDE .NE. 0) CALL TQL_MESSACT (ERRCODE)

~=- SET SCOPE FOR RELATIONS 'NODES', 'BRICKS' & 'SLD8'
CALL TQL SETSCOPE (NODES, ACCESS, ERRCODE)
IF (ERRCODE .NE. 0) CALL TQL_MESSAGE (ERRCODE)
CALL TQL SETSCOPE (BRICKS, ATCESS, ERRCODE)
IF (ERRCODE .NE. 0) CALL TQL_MESSAGE (ERRCODE)
CALL TQL SE" _COPE (SLD8, ACCESS, ERRCODE)
IF (ERRCUDE .NE. 0) CALL TQL_MESSAGE (ERRCODE)

e U —————_
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C ~== INITIALIZE VARIABLES
LASTNODE=0O
LASTSLD=0

c

C === GET INFORMATION ON USER-DESCRIBED BRICK

1 WRITE (LuouT, 2)

2 FORMAT (1X,'Name of solid : ',$)
RFEAD (LUIN, ®) BRY.K NAME
IF, (BRICK NAME .EQ. BLANK) GO T) 999
WRYTE (LUDUT, 20)

20 FQRMAT (1X,'Material name : ',$)
READ (LUIN, *) NAME
WRITE (LuOUT, 2t)

21 FORMAT (1Xx,'Length, width and height ? ',$)
READ (LUIN, *) LENGTH, WIDTH, REIGHT

C === GET NUMBER OF SUBDIVISIONS IN THE X, Y & Z DIRECTIONS
101 WRITE (LUOUT, 100)
100 FORMAT (1X,'Subdivisions along the x-direction : ',$)
READ (LUIN, #, ERR=101) XDIV
102 WRITE (LUOUT, 103)
103 FORMAT (1X,'Subdivisions along the y-direction : ',$)
: READ (LUIN, ®, ERR=102) YDIV
N 104 WRITE (LUOUT, 105)
105 FORMAT (1X,'Suddivisions along the z-direction : ',$)
REAL (LUIN, %, ERR=2104) ZDIV

- c
) C -~~~ CALCULATE INCREMENTS IN X, Y, Z-DIRECTIONS
] XINC=LENGTH/FLOAT(XDIV)
YINC=WIDTH/FLOAT(YDIV)
ZINC=HEIGHT/FLOAT(2ZDIV)
c
C --~ GENERATE NODES IN PLANES PARALLEL TO X-Z PLANE
NODENO=LASTNODE+1
FIRSTNODE=NODENO

) DO 106 I=1,YDIV+1
Y=FLOAT(I-1)#YINC
DO 107 J=1,XDIV+)
X=FLOAT(J-1)#XINC
DO 108 K=1,ZDIVe1
2=FLOAT(K-1)%ZINC
NODENOaNODENO+1
CALL TQL PUTDAT (NODES, X, ERRCODE)
IF (ERRCODE .NE. 0) CALL TQL_MESSAGE (ERRCODE)
108 CONTINUE
107 CONTINUE
106 CONTINUE

LASTNODE=NODENO

c

C ~-- STORE THE SOLID INFORMATION
SOLIDNO=LASTSLD+1
FIRSTSLD=SOLIDNO

DO 400 I=1,YDIV
DO 401 J=1,XDIV
DO 402 K«1,2ZDIV
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FRONT AND BACK PANEL INFORMATION
DO 403 PANEL=1,2
BASENO=z(I-1+PANEL-1)#(ZDIV+1)}#(XDIV+1)+1
BOTLEFT=BASENO+(J-1)#{ZDIV+1)+(K-1)
BOTRIGHT=BASENO+J#*(ZDIV+1)+(K~1)
INC=(PANEL-1)%4
POINT(1+INC)sBOTLEFT
POINT(2+INC)=BOTRIGHT
PQINT(3+INC)=BOTRIGHT+1
POINT(4+INC)=BOTLEFT+1

GONTINUE

OUTPUT THE INFORMATION

SOLIDNOzSOLIDNO+1

CALL TQL_PUTDAT (SLDB, SOLIDNO, ERRCODE)

IF (ERRCODE .NE. 0) CALL TQL_MESSAGE (ERRCODE)

CONTINUE

CONTINUE

CONTINUE

UPDATE RELATION ‘'BRICKS'

LASTSLD=SOLIDNO

CALL TQL_PUTDAT (BRICKS, BRICK NAME, ERRCODE)
IF (ERRCODE .NE. 0) CALL TQL_MESSAGE (ERRCODE)
GO TO 1

CANCEL THE SCOPES IN EFFECT

CALL TQL_CANCELSCOPE (NODES, ERRCODE)

IF (ERRCUODE .NE. 0) CALL TQL_MESSAGE (ERRCODE)
CALL TQL_CANCELSCOPE (SLD8, ERRCODE)
IF (ERRCODE .NE. 0) CALL TQL_MESSAGE (ERRCODE)

CLOSE THE DATABASE
CALL TQL DBCLOSE (DBNAME, DBPASS, ERRCODE)
IF (ERRCODE .NE. 0) CALL TQL_MESSAGE (ERRCODE)

TERMINATE EXECUTION
CALL EXIT
END
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(a) Straight line.

(b) Circular arc. {¢) Parzbolic arc.

Figure 1. Componenis of entity set LINES.

Figure 2.

'Brick’ in the local coordinate system.
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Figure 3.

Solid model in exampl:s 1 and 2.
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PERFORMANCE OF THE h, p and h-p VERSIONS
OF THE FINITE ELEMENT METHOD

I. Babuska! and W. Gui?
Institute for Physical Science and Technology
University of Maryland _
College Park, MD L4

R. Szabo®
Woching-on University
St. Lowis, MO

I. INTRORPUCTLON

There are three basic versions of the finite element method, called the h, p
and h-p versions. They are essentir_.ly cucractcrized by the wa in which the finite
element meshes and polynomial degree of element. are chosen. They differ in computer
implementation (program architecture) and mathematic~l analysis. This paper ¢
concerned mainly with the question of how the meshes aud polynomial degree of the
elements affect the accuracy of finite element solutions, Our approach is to fix
certain parameters o- their relatica and increase the number ~f degrees of freedom so
that the finite elemeat solutioas converge to the exact solution. Such a systematic
increase of the number of degrees of freedom ic called extension lecause it can be
interpreted as a systematic extension of finite element spaces.

When emphasis is on analysis of accuracy and not aspects of implementation, then
we speak about the h, p and h-p exteasions rather than versions. Understanding
the various extension processes and their numerical performance is essential for
resolving certain bas' - questions of implementation.

The h-extension » the most commonly used approach to error reduccion., The .
polynomir- deg_»: (p) of the elements is iixed and the errors of approximation are ‘
reduceu . ugh a-sh refinement. The size of the elements 1s usually denoted by

h, henc2 . 2 name: h-extension. Typically, the polynomial degree of elements 1is

low, usually p=1 or p= 2. -

In the p-extensicn the mesh is fixed and convergence is achieved by increasing
the polynomi:l degree of elements either uniformly or selectively.

The h-p extension combines th¢ h- and p-versions, i.e., reduction of error is
achicved by mesh refinement aad concurrent choices in the polynomial degree of
elements.

The parameters that characterize extension pricessee can be chosen either a
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priori, on tne basis of certain characteristics of the exact solution, known a
priori, or a postecriori, through utilization of some feedback procedure, in which case
the parameters of the extension process depend on previously computed data.

lhe analysis and especially optimization or extension processes (selection of
optimal meshes, polynomial degree distributions, ets.,) presented herein indicate the
potential of alternative approaches and provide a basis for decisions concerning
implementation,

In order to keep the essential poircs in focus, we consider only two simple
model problems based on the displacemznt formulation and two measures of error, the
error measured in ene .y norm and the error of stress components computed at specific
points.

Specifically, we dencte the exact and finite element solutions respectively by
uy and d. The error is then e = ug - . The energy norm of e 1is denoted by
iei . and is defiuned as the square root of the energy of the error:

1

fer, = (W(e))’2

E
The relative error in energy norm is denoted by ueuER and is defined as:

Lol _ IleﬂE

eR HuOﬂE
The error in stress components at some point X is defined as
e..(x,) = |oO (x) = 3,.(x)]
ijit"o *C13°70 ij*70

where o?.(xo) and Gij(xo) respectively denote the exact and computed components
of the stress tensor at point x;. The relative error in st esses is defined by:

|eij(xo)|
0
Ioij(x0)|
The one ‘imensional problem can be analyzed theoretically and experimentally in great
detail, One dimensional preoblems can also serve as models for higher dimensional

problems which are vastly more complicated and less well understood. Presentation of

details and derivation of formulas quoted herein is beyond the scope of this pir
For application in two dimensions we refer to references 1 to 4.

2. MODEL PROBLEMS

2.1. Model Problems

We consider tne foliowing simple model problenms:
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-u'"(x) = f(x), x €I = (0,1) (2.1)

u(0) = u(l) = 0 (2.2)
and exact solutions of the form:
u () = (x#)® - % - x[ (1+6)% - £%) (2.3)

with a > Vz and £ » 0. The solutions minimize the potenttial c¢nergy defined as:

I
a{u) = W(u) - 2 f fu dx
0

1
where W(u) = f (u’)2 dx.
0

The finite element solutions are characterized by the mesh and p-
distributions. Specifically we denote the mesh by (he partitirn:

= = A A LN N ] A -
A = 0 xO < Xy < < xM(A) 1

where xé,x?,-°-,xﬁ(A) are the mesh (or nodal) points. The jth finite element is
denoted by Ij+l = (x?,x?+1). The size of the jth eiement 1s defined by hj
= xb - xé_l. The size of the largest element is denoted h(A). The set of all
functions w defined on I that satisfy the following conditions:

(a) W(w) < =,

(b) the boundary conditions (2.2),

(c) on I? w 1s a polynomial of degree p?,
2(8) A b A
is denoted by S (o) wheze p(8) = (P 4Posecesp ) is the vector of p-
p(4) = 1'72 M(A)
distribution. dere, S (A) is nalled the finite element space. The number of
degrees of freedom is denoted by N(A,.
p(8) MCA)
N(A) = dim S () = ) p, -1
ot 3
j=1
p(a)
The finite element method consists of finding G € § which minimizes n(u) over
B(A)
S (A). The extensior , .ocesses are characterized by the selection of sequences

of A and p(A4).
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2.2. The Two-Dimensional Model Problem

We shall consider the model problem of Fig. 1 assuming plane strain conditions
and using the elastic parameters E =1, v = 0,3. The tractions on the boundary are
chosen so that the exact Solution is known and the singularity at the crack tip is
characterized by the stress intensity factors K; = Kyp = 1.

The solution of Model Problem ! hLas certain similarities with the solution of
Model Problem 2 from the poiat of view of numerical performance when £ =0 and 0.5
<a<l.

3. THE PERFORMANCE OF THE FINITE ELEMENT METHOD IN ONE
DIMENSION WITH RESPECT TO THE ENERGY NORM MEASURE

We now domonstrate how the performance of the various extension processes
depends on the mesh and the polynomial degree of elements. The principal mathematical
tool is asymptotic analysis which provides information on how the error depends on
the number of degress of freedom when only one parameter is being varied, and on
certain essential characteristlcs of the exact solution provided that the number of
degrees of freedom is large. We shall consider Model Problem 1 and choose the
parameters & ard a so as to represent problems with solutions of various
smoothness (£ = 0, a >lh) and £ > 0.

3.1. H-Extensions Based on Uniform Mesh Refinement (& = 0)

In this case M(a) = 'E%ZS’ p 1is fixed. The number of elements fully charac~

terizes the mesh and the error in energy norm for £ = 0 is estimated as follows:

et . = Sgiz (3.1
where the symbol = means "asymptotically equal', C(a) 1s a constaint independent
of the mesh and the polynomial degree of elements:

;= mn(a- Y ,p) (3.2)

o = 2a -1 (3.3)

and the number of degrees ot freedom is given by:

N = Mp-Il (3.4)

Ailthough (3.1) is an asymptotic estimate, it holds even for reasonably low values
of N, In crder to demonstrate this, we have computed the value

D = ek, MH¥pP (3.5)

Here D 1is called the numerical value of C(a). The results for o = 0.7 (and

therefore p = 0.2, p = 0.4) are shown in Table 1. Here |tel gr 1s shown as
"percent relative error". It is seem that (3.1) holds well also when M(A) 1is small
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and the error is large. 1In view of the fact that p 1is twice the value of 1y, for
the same nurber of degrees of freedom the higher order elements perform better.
3.2. h-Extensions Based on Nearlv Optims? Mesh Refinement (£ = Q)

We once again consider the case £ = 0. In this case the optimal mesh (for
fixed p) 1is asymptotically:

8
A _ iy O
where
p+1p
B T ——— (3.7)
0 a -1

The estimate of error measured in energy norm is given by:

v [(2e-1)B=-2p] -
78 (8 )P ,/1 1 - TP (3.8a)

C(“)';Z 4M (2a-1)8-2p

™
-
n

ER

provided that

B8>8 = —B (5.8b)
a -1@

When B < B then the rate of convergence with respect to M decreases. The
reliability of estimate (3.8) for B = 80 is shown in Tables 2a ard 2b.

With reference to Tables 2a and 2b, we note the following observations:

(a) The asymptotic estimate (3.8) 1s of good quality when M > 2p. For M <
2p the formula is pessimistic. The reason for this is that (3.8) is based on the
assumption that M + =, Thererore it cannot be expected to give close estimates for
low values of M. In the case M < 2p, analysis based on p-extension rather than
h-extension should be used.

Table 3 shows the error for optimal distribution of the nodal points for M =
2 and a = 1l,1. 1t is seen that for small valves of p (p = 1,2) the
asymptotically optimal mesh performs very nearly as well as the optimal mesh.

b) When o 1is small (strong stress singularity occurs) the optimal refinement
1s so strong that roundoff limitations are encountered even when_the computations are
pertormed in double precision. Table 4 shows the values of 80, B, the

coordinate of the first nodal point for the optimal mesh, x? (opt), and for the mesh

at which the rate of convergence begins to decrease, x? (min), for a = 0.7, M =37,

(c) Overrefinement is more advantageous than underrefinement. If a 1s not
knovm precisely, then the refinement should be designed for lower bound estimates of
a. Overrefinement increases the value of C 1in (3.8a) but does not alter the rate
of ccnvergence (N"P). The penalty, in terms of increased values of C and
increased values of N for achieving comparable levels of accuracy, is shown in
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Table 5. The mesh refinement is optimal for a = 0.7, and the penalty values are
shown for a = 1.1, 1.6, 2.1,

It is seen that the penalty for overrefinement is not small., Underrefinement
also reduces the rate of convergence. Thercfore the penalty for underrefinement is
srill larger. This shows the importance of correct selection of mesh refinement.

3.3, P-Extensions Based on Uniferm Meshes (£ = 0)

In this case M(A) < p and the estimate (3.1) holds. The results of
computational experiments are shown in Table 6.

On comparing the results on the basis of the number of degrees of freedom (N =
Mp-1), it is seen that the best choice is M = ], Comparing Tables 6 and 2a it
is evident that h-rxtensions based on optimal meshes vield better results than p-
extensions based on uniform meshes. The performance of p-extensions cannot be
improved substantially through optimizing the p-distribution. Table 7 shows the
effect of optimal p-distributions for M =2 and o = 0.7 and 1.1.

3.4, !-p Extensions (£ = 0)
In this case the meshes and p distributions are optimized concurrently. The

asymptotically optimal mesh is characterized by the following geometric progression
of nodal poiats:

x? - Kg(ﬁ)‘J § o= 1,2, 0..,M(8) (3.9)

where

K = (/Z-1)% (3.10)

The polynomial degrees of elements are assigned as follows: .

[s(a)j] (3.11)

o
]

where

s(a)

2(a = 14y) (3.12)

and [¢] means the integral part.

The error estimate is:

-/ (a- 1/
Cla)[(/Z + N2]7 (e /2N
'YDJ(a- Vz)N

C(u)e [}

leﬂER

Y, = 1.574 (3.13)
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The numerical performance of h-p extensions is illustrated in Table 8. On
comparing the results with those in Table 2a, it is seen that the rate of
convergence of the h-p extension 1s much greater than the rate of convergence of
the h-extension based on asymptotically optimal mestes.

3.5, The h-p Extension with Uniform p and Optimal Mesh (£ = Q)

The mesh is the same as in Section 3.4, i.e., with thc nodal points defined by
(3.9), (3.10),1and we assume that the p-distributior iz uniform. 1In this case the

estimate fior 3 <Ca<l is
'YO T
— Y(a-15)N
_ 1 V2
IelER = C(Q)—‘z'a-_-fe (3.14)
p
where, as in (3.13), vy, = 1.574 and
0 ORIGH e v
OF POOR QUALITY
p = [s(a)IM(8) (3.15)
s(a) = 20a-1l4) (3.16)

The numerical performance of the h-p extension witn uniform p 1is shown in Table

9. On comparing Table 9 with Table 8, it is seen that the performance of the

h-p extension with uniform p 1s not substantiaily di{fereat from that of the h-p
extension with optimal p-distribution. The performance can be analyzed also for p-
distributions other than that given in (3,15). When p 1increases more rapidly than
(3.15), then the rate of convergence diminishes until it reaches the algebraic rate
characteristic of p-extensions., When p 1increases less than (3.15), then the rate
of convergencc diminishes because h(A) does not change.

it

3.6, H-Extens‘ons that Utilize Feedback (£ 0)

in Section 3.2 it was pointed out that the quality of performance of h-
extensions cepends on the mesh design. Proper mesh desig. depends on the exacct
solution which generally is noc known. It is possible to devise feedback procedures,
however, that construct meshes which asymptotically perform as well as the optimal
meshes, Such feedback procedures are called adaptive (refs. 5 to 8).

Tables 10a and 10b show the results of numerical exreriments. The numerical
value D 1is based on » formula for optimal meshes that utilize only nodal points
which can be constructed by successiv bisection of elements, not all meshes, as
consldered before, because the feedback procedure uses only such meshes.

3.7. H-p Extensions that Utflize Feedback

Tt 1s possible to devise f.edback proceduces that perform nearly as well as the
optimal h-p extension., Results obtained with such a procedure are shown in Table
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11 (a = 0.7). The meshes were generated by bisection; therefore, D is based on
an estimate developed for such meshes only,

3.8, p-Ertension Based on Properly Designed Meshes and Feedback (& = 0)

In this case the mesh is strongly graded toward singular points, on the basis of

(3.9), with k_ = /2 - 1)2 = 0.1715 or slightly smaller (say, x, = 0.15) and M(A)
is fixed., The polynomial degree of elements is uniformly increased. The error
decreases first exponentially and then, if p is too large, algebraically, as
explained in Section 3.5. Feedback is utilized to ensure (through proper selection
of M(A)) that the desired accuracy is reached in the range where the convergence is
exponential,

3.9. Smooth Solutions (& > 0)

We have considered various extension processes when the soiat. » has singular
character, When the solution {s smooth, then p-extensions perform especially well
for small M., The errsor estimates for & » 0 in (2.3) are as follows:

(a) for € =0

telpg = ngzl (3.17)
P
(b) for £ >0

I = 1=q’ 9
el = Cla) % ) - (3.18)

p

where
¥ - V8 (3.19)
Y1+ + VE

In Table 12 results arz presented for a = 0.7 and £ = 0, & = 0.01, and £ =
O0.1. These results demonstrate that the performance nf p-extensions very rapidly
improves with increasing smoothness of the solution,

4. ACCURACY OF STRESS APPROXIMATIONS IN ONE DIMENSION

In one dimension the stress is simply u”(x3). 1In contrast to the two
dimensional case, the behavior of the finite element solution in our example is
entirely local; therefore, we need to consider only the case with one element. The
results «f numerical experiments for a = 0.7 and various & values are shown in
Table 13. It 1s seen that the element that contains the singularity (& = 0) vyields
very poor stress approximations,

When quantitiec cther than the energy are of interest (for example, stresses),
then the mesh and p-uistribution should be optimal or nearly cptimal with respect to
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the purpose of computation, Optimal meshes and p-distributions depend not only on
tue purpose of computation but also on the method used for computing the quantities
of interest. See, for example, references 6 and 9.

5. PERFGRMANCE OF THE FINITE ELEMENT METHOD IN TWO
DIMENSIONS WITH RESPECT TO THE ENERGY NORM

The theory of two dimensional problems presents more difficulties and is
therefore less well understood than the theory of one dimensional problems,
Nevertheless there are important similarities which rake it possible to gain valuable
insight from the analysis of one dimensional picoblems. There are important
differences also; for example, error. in stresses in two dimensions behave quite
differently from the errors in stresses in one dimension. Stress computations are
discussed ia the next section. Here we discuss the properties of various versions
and present numerical results for our two dimensional model problem. The results
were obtained by means of the h-version program FEARS with feedback capabilities
(ref. 10) and the p-version program FIESTA-2D (ref. 11). FEARS has elements of
polynomial degree 1 only. The polynomial degree of elements in FIESTA-2D ranges

from 1 to 8.
5.1. H-Extension Based on Uniform Meshes
The estimate for our model oroblem, defined in Section 2.2, is:

_1
tef ., = C(pN z (%5,1)

Detailed theoretical analysis, comparable to the one dimensional case, is not
available. The results of computations are shown in Table 14, where D represents
the numerical value of C(p). The results indicate that the asymptotic estimate

(5.1) is of good quality.
5.2. H-Extension with Feedback

As in the one dimensional case, the sequence of optimally desigucd meshes leads

to a rate of convergence independent of the singularity. The estimate for optimally
designed meshes is:

lelge = ctp)nP/2 (5.2)

R
Note that the exponent of N 1is p/2, not p as in the one dimensional case.

H-extension with properly utilized feedback (adaptive approach) should lead to
the same asymptotic rate of convergence as the optimally designed sequence of
meshes, Table 15 shows the results ohtained with FEARS.

5.3. P-Extension on Uniform Mesh

In this case the estimate is (refs. 1 and 2):
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uenER C(e)N (5.3)

where € > 0 arbitrarily. It is not known whether the term € can be renoved.

Table 16 shows the results obtained with FIESTA-2D using four square elements.

5.4 H-p Extension

The estimate for h-p extensions based optimal mesh and on either optimally or
uniformly distributed p 1is

3
nenER < C e"Y'/N , Yy >0 IGh)

T

In the two dimensional case the optimal value of Yy 1s not %nown nuo- is it known

3
whether the term VYN can be improved. The value of Yy depends on the distribution
of p.

5.5. p-Extension Based on Properly Designed Mesh and Feedback Information

As in the one dimensional case, the p-extension performs in much the same
way as the h-p extension when p in not too large and the mesh is properly designed.
For large p the p-version performs as if the mesh were uniform. An example is
presented in Table 17. The fact that the rate of convergence slows for high p
is an indication that the mesh should be refined. Slowing of the rate of convergernce
can be detected. This is the feedback information needed for increasing the runber
of finite elements.

5.6, Smooth Solutions

When the solution is smooth, the p-version is very effective and, as in the one
dimensional case, the convergence is exponential.

6. STRESS COMPUTATIONS IN TWO DIMENSIONS

Stress approximations behave quite differently in two diwensions than in one
dimension, In one dimension in our example the error depended only on the behavior
of the solution in the particular element in question, i.e., the error was completely
localized. 1In two dimensions :n the other hand, the error is comprised of two
iarts: rhe local error and the crror assoclated with all other elements. This
second part is called pollution error.

The error in stresses depends to a large extent on how the stresses are
computed. Indirect techuinues are avallable which substantially reduce both the
local and pollution error, as compared with the conventional (direct) methods of
stress computations (refs. 6, 9, and 12).
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6.1. Performance of h-Extensions Based on Nearly Optimal Meshes

Let us examine the stresses at point Xy = X9 = 0,25 1in the model problem.
Soluticns were obtained by means of the computer program FEARS. The point under
consideration is the vertex of four elements, Therefore, four different values can
be computed, using the derivatives of the four elements and the appropriate strecs-
strain low. The rela‘ive errors are shown in Table 18 for the three stress
components %9117 %00 94y for the four adjacent elemr its. The error of the

average value (A) is also shown. It 1Is seen that the errcr of the average value 1is
smaller than the error in most elements., This is a well known fact which is
generally utilized in str~3s computations.,

The relative error in the same stress components computed by means of an in-
direct (postprocessing) technique (ref. 9) is shown in Table 19.

The improveunent is very substantial. The postprocessing technique yields stress

values which are not sersitive to the meshes and the error is of the magnitude
lIeH

I3

5+2. Performance of the p~Version

When the solution is smouth, the p-version performs well. When the solution is
not smooth and the elements are large, then th: pollution error is generally large.
Satisfactory theoretical analysis is not ava‘lable. It is known, however, that the
pollution error can be reduced very substantially by surrounding points of stress
singularity with one or more layers of elements.

The relative errors at point xp = 0.1, = 0.2 (which is located at alement
boundaries) are shown in Tables 20a and 20b. T%e results presented in Table 20a

are strongly affected by pollution hecause the vertex of the neighboring element was
on the singular point. The results presented ia Table 20b are much less affected bv
pollution because an extra layer of e¢lements was added so that tlie neighboring
element no longer had a vertex on the sirgular point, The local error is, of course,
the same in both cases. Tables 20a and 20b illustrate the importance of proper mesh
design when the stresses are computed from the finite element solution directly. The
postprocessing method removes sensitivity to mesh design.
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TABLE 1.- H-EXTENSION WITH UNIFORM MESH REFINEMENT, o = .7
p=1 p=2 p =3 p =4
M T
leIERA D IeIER% D ueuERZ D ueHER% D
2 87.31 1.00 66.57 1.01 56,70 1.01 50.58 1.01
4 76,11 1.00 57.96 1.01 49,37 1.01 1 44,03 1.01
8 66.26 1.00 50,44 1.01 42,98 1.01 | 38.33 1.01
16 "7.70 1.00 43,91 1.01 37.40 1.01 33,36 1.01
32 50,23 1.60 38.24 1.01 32.57 1.00 26,05 1.01
54 43,72 1.00 33,29 1.04 28.35 1.00 25,29 1.01
128 38.08 1.00 28.98 1.00 24,68 1.01 22,01 1.01
256 33,13 1.01 25.22 1.01 21,48 1.00 19,16 1.01
TABLY 2a.- H-EXTENSION WITH ASYMPTOTICALLY OPTIMAL MESH, a = 0.7
p=1 (B=7.50) | p=2 (B =12.50)
M —
ﬂeIERA D HeHERA D
2 80,71 314 70.65 .133
4 f .59 <402 39,94 . 300
8 29,14 454 14,77 45
16 15.46 L482 4,365 .526
32 7.966 496 1.168 562
TABLE 2b.~ H-EXTENSION WITH ASYMPTOTICALLY OPTIMAL MESH, o = 1.1
p =1 (B =2.50) p = 2 (B=3.17) p = 3 (B=5.83) p = 4 (B=7.50)
M . —_—
leIER% D leIERA D HeHERA D neHERA b]
2 58.91 1.1¢ 21.99 851 15.10 « 540 12,66 275
4 31,85 1.29 7.128 1.20 3.162 .905 1.982 .688%
8 16.55 1.34 2.042 1.23 4953 1.13 .1812 1.01
16 8.434 1.37 5387 1.33 .A88(-1) 1.26 L134(-1) 1.19
64 2.138 .39 «345(-1) 1.36 «115(=2) 1.35 . 586(-4) i.33
128 1.071 1.38 .868(-2) | 1.38 L145(=3) | 1,38 376(-5) | 1,37
2506 « 5264 1.38 «217(=2) 1.38 i L184(=4) | ".78 .240(-5) 1.38
) N . AL
85
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TABLE 3.- PERFORMANCE OF AN OPTIMAL MESH (M = 2, o = 1.1
p = 1 P = p = 2 p = 4
lelERa !eiERZ leIERZ 'e'ER”
57.42 17.3 A‘J 8.213 4,762
TABLE 4.- MESH PARAMETERS (a = 0.7)
P By B xf(Opt) x?(min)
1 7.5 5 S.14(-12; 2.99(~8)
2 12,50 10 1.53(-19) 8.38(- 16)
3 17.50 15 4,56(-~27) 2.64(-23)
4 22,50 20 1.20(-36) 7.8 (=31)
5 27.50 25 4,05(-42) 2.35(-138)
TABLE 5.- PENALTY FOR USING OVERREFINED MESH IN TERMS OF INCREASED VALUES
a OF C (FIRST ROW) AND N (SECOND ROW)
) a -— ,
o7 l.1 1.6 2.1
P
1 1.00 1.97 3,40 4,81
1.00 1.97 3.40 he0l
—_— o
2 1,00 4,69 14.73 20,97
) 1.00 2.17 3.84 .47
: T
3 .00 12,08 69.09 212,90 41
1,00 2.29 6,10 5,88 |
4 1.9¢ 32.19 337.15 1430,90
1,10 2.30 4,29 6.15
-
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TABLE 6.- P-EXTENSIONS ON UNIFORM MESHES (a = .7)
h
M =1 M =2 M=3 M =4
p , [
:elERz D leIERZ D lelERA D ﬂfﬂe'ERz D
| 87.31 1.00 80.59 1.00 76.11 1.00
2 76,47 1.01 66,57 1.01 61,30 1.01 57.96 1.01
3 65.14 1.01 55.70 1.01 52.29 1,01 49,37 1.01
4 58,10 1.01 50,58 1.01 46,64 1.01 44,03 1.01
5 53.15 1.01 46.27 1,01 42 .67 1.01 40,27 1.01
6 49,42 1.01 43,02 1.01 39.66 1.01 37.45 1.01
7 46.48 1.01 40.46 1.01 37.31 1.01 35.21 1.01
8 44,05 1,01 38.36 1.01 35.37 1.01 33.39 1.01
9 42,07 1.01 16.58 1.01 33.74 1,01 31.85 1.01
10 40,2y 1.01 25.09 1.01 32,34 1,01 30,54 1.01
11 38,80 1.01 33.76 1.01 31.15 1.01 29,40 1.01
TABLE 7.- PERFORMANCE OF p-EXTENSION BASED ON
OPTIMAL p-DISTRIBUTION AND UNIFORM MESH
M= 2)
!
a Py P tel ERZ |
.7 41 1 5.05
1.1 3 1 23.79
l.1 26 2 1.834
TABLE 8.- PERFORMANCE OF h~p EXTENSION (a= 0.7, s = 0.4),
ASYMPTOTICALLY OPTIMAL MESH AND p-DISTRIBUTION
- —
M N lel ERZ D M N fel ERZ D
2 3 54.18 2.62 8 21 7.031 2.82
3 5 3C.68 2,66 9 25 4,998 2.77
4 7 28.02 2.61 10 30 3.523 2,82
5 10 19.82 2.70 11 35 2.492 2.80
6 13 14.10 2,69 12 41 1.754 2.89
7 17 9,942 2.82 20 100 .1071 2,94
/- L
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TABLE 9.- PERFORMANCE OF THE h-p EXTENSION, ASYMPTOTICALLY
OPTIMAL MESH AND UNIFORM p (a= .7)

M N p bel % D
2 1 1 74.36 1.50
3 5 2 38.68 1.70
4 7 2 28,02 1.50
5 14 3 16.17 1.57
8 31 4 5.037 1.46
| 10 49 5 2.262 1.43
15 104 7 .3376 1.25
|
TABLE 10a.- H-EXTENSION UTILIZING FEEDBACK, a = 0.7
p =1 p =
N bel % D N hel g% D
4 58. 54 570 9 43,93 .516
9 31.66 617 19 22,01 1.03
20 14,48 .592 29 11.09 1.17
39 7.326 .571 39 5,719 1.07
85 3.327 .557 81 1.121 .886
101 2.788 .553 101 .3689 .802
TABLE 10b.- H-EXTENSION UTILIZING FEEDBACK, a = 1.1
P = p=2 p=3
N led % D N lel % D N Tel % D
4 28,21 1,44 9 | 8.295 2.01 14 4,979 2,78
11 12,06 1.46 21 1.567 1.83 29 «6506 2.91
19 7.255 1.46 41 4123 1.76 44 1736 2.62
28 5,011 1,47 51 .2710 1.77 62 05706 2.36
37 3.837 1.47 79 111 1.72 77 02979 2.34
63 2.266 1,45 99 .07155 1.73 95 01617 2,37
137 1,052 1.46 125 04411 1.69 137 005006 | 2.17
255 .5673 1,46 251 .01093 1.68 227 .001095 | 2.15
88
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TABLE 11.- H~-p EXTENSION UTILIZING

FEEDBACK, a = 0.7
N Nel % D
4 58.54 2.795
9 31.66 2.88
25 10.47 3.69
39 4,235 3.52
60 1.548 3.64
120 .2933 3.51

m
.
ot

Sy o

TABLE 12.- PERFORMANCE OF THE p-EXTENSION WITH M = 1, a = 0,7 and
£ =0, 0.1, 0.1

- §=0 £ = ,01 £E=.l
P
IeIERZ D leIER% D leIERZ D
2 76.47 1.01 57.75 391 36.61 443
. 3 65,14 1.01 37.90 416 15,42 462
' 4 58.10 1.01 26,37 o432 6.922 473
5 53,15 1.01 18.57 443 3,224 .481
6 49,42 1.01 13,91 «451 1.541 .486
7 46,47 1.01 10.38 458 7578 .490
8 44,05 1.01 7.831 463 3677 494
9 42,01 1.01 5.961 .468 .1825 495
10 40,29 1.01 4,571 471 .09136 496
11 38.80 1.01 3,525 475 .04603 .498
P
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TABLE 14.- H-EXTENSION BASED ON
UMIFORM MESHES (p = 1)
N lel % D
51 36.02 .96
167 27.07 .97
591 19.81 .97

TABLE 15.- H-EXTENSION WITH
FEEDBACK (p = )

N IeIERZ D
»

67 32,91 2.03
101 26.38 2.66
143 21.35 2.56
221 16.79 2.50
301 13.61 2.36
617 9.63 2.40

TABLE 16.- PERFORMANCE OF THE p-EXTENSION

(UNIFORM MESH, 4 ELEMENTS)

P lelERZ D

1 32.61 2.01
2 18.35 1.82
3 15.89 1.99
4 13.24 2.06
5 11.06 2.06
6 9,47 2.07
7 8.27 2.08
8 7.37 2.08
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TABLE 18.- RELATIVE ERROR IN STRESS COMPONENTS AT POINT

TABLE 17.- P-EXTENSION BASED ON PROPERLY
DESIGNED MESH

nelERZ

W N D W N e

31.96

12.36
6.197
3.277
2,131
1.436
1.128

.8839

DIRECT COMPUTATION

(0.25, 0,25)

N ef % R, ef,x
A 10.99 7.57 11.16
1 4,79 2,32 35.86

221 2 12,21 2.01 .093
3 17.27 17,42 106,43
4 9.71 13.01 71.49
A .09 5,47 13,42
1 1.46 2.68 22,96

617 2 b bl .099 55.69
3 44l 13,43 3.88
4 6.07 11,74 28.85

TABLE 19.- RELATIVE ERROR IN THE STRESS COMPONENTS AT POINT
(0.25, 0,25) INDIRECT COMPUTATION

R R
N e“% eZZZ elfzz
221 1.69 2.63 1.94
617 56 +866 .81
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- B i e IR SR P P




TABLE 20a.- RELATIVE ERROR IN STRESSES,
ELEMENT LIES ON THE CRACK TIF

A VERTEX OF THE ADJACENT

P ehix e3o els*
1 7.903 36,17 18.18

; 2 6,222 14.09 11.20
3 1.014 10.53 3.254
4 5,249 9.652 4844
5 2,864 5,411 L1114
6 .6259 3.848 .8387
7 .6893 3.119 .9926
8 1.438 2,233 1.316

TABLE 20b.- RELATIVE ERROR IN STRESSES.
SEPARATED FROM THE CRACK TIP BY ONE LAYER OF ELEMENTS

THE ADJACENT ELEMENT IS

Figure 1.

P ey e5y% ely?
1 13.57 33.108 17.39
2 2,124 6.976 .6688
3 1.091 3.843 3,620
3 .9997 1.923 1.852
5 .2653 .7836 7166
6 .1702 .3928 .3503
7 .0784 .2123 1529
8 .04005 .1256 07431
Xz
+
# xl_...
|
: \—]

Scheme of the cracked panel.
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AUGMENTED WEAK FORMS AND
ELEMENT-BY-ELEMENT PRECONDITIONERS:
EFFICIENT ITERATIVE STRATEGIES FOR

STRUCTURAL FINITE ELEMENTS -

A PRELIMINARY STUDY!

Arthur Muller
Graduate Research Assistant, Stanford University

Thomas J. R. Hughes
Professor of Mechanical Engineering, Stanford University

SUMMARY

This paper presents a weax formulation in structural analysis
that provides well-conditioned matrices suitable for iterative solu-
tions. A mixed formulation ensures the proper representation of the
problem and, for the sake of good conditioning, the comstitutive rela-
tions are added in a penalized form. The problem is then solved by
means of a double conjugate gradient algorithm combined with an ele-
ment-by-element approximate factorization procedure. .

The double conjugate gradient strategy resembles Uzawa’s vari-
; able-length type algorithms (ref. 1), the main difference being the
‘E presence of quadratic terms in the mixed variables. In the case of
shear-deformable beams these terms ensure that “he proper finite thick-
ness solution is obtained.
INTRODUCTION

Element-by-element approximate factorizations have been suc-
cessfully employed as a preconditioner for various problems (ref. 2 i
and 3). In the structural field, however, little progress has been ;
made heretofore, mainly due to the highly ill-conditioned matrices
resulting from finite element discretizations. The presence of defor-
mation modes whose stiffnesses are orders of magnitude apart -- bend-
ing and shear are a good example -- requires an excessive number of
iterations. The need to present the preconditioned conjugate gradient
driver with a "better® problem was evidert. For the thin limits, Uzawa’s
algorithm (ref. 1) appears to be an excellent approach. However, when

. Mvi& ot

vy e

! Work supported by NASA Lewis Research Center under Grant No. NAG 3-
2 319
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dealing with Timoshenko beams where the solution accounts for shear
deformation as well as bending, Uzawa's algorithm is no longer ap-
plicable.

Just as in Uzawa’s aigorithm, & *mixed® formulation is presented,
and the problem is then solved for the mixed variables. At the sams
time, the displacements are updated and convergence in the mixed vari-
ables can be checked as the algorithm progresses. A conjugate gradient
accelerated version of Uzawa's algorithm is used.

CONJUGATE GRADIENT(CG) METHODS

The CG method is an iterative procedure used to solve the sys-
tem of linesr equations Ax = b resulting frcm the finite element
discretization of the problem under consideration. in its precondi-
tioned version, the method can be best summarized by the flowchart
that follows.

Step 1. Initialization:

m=0 (1)
Xo = 0 (2)
Po = b (3)
Po =30 =B7'ry (4)

Step 2. Update of Solution and Residual:

rm * .m
Oy = ———~ 5
" Pm - Apm (%)
Xm+1 = Xm + OmPm (8)
Ym41 =Py — OmAPm (7’

Step 3. Convergence check:

If ||rmsr|l < 6||roli . return. (8)

Step 4. Update conjugate direction:

96
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EImy1 = B—lrm-H (9)

r -8
B = el (10)

Pm+1 = Zm41 + fmPm (11)
m=m+1 (12)
Go to Step 2 (13)

In the above, a dot between two vec.ors indicates the dot product,
Il is the usual Euclidean norm, and § is a pre-specificed tolerance.

In the bagsic CG algorithm, B is replaced by the identity and conse-
quently z, =r,.

As will be seen below, we will simultaneously employ two con-
jugate gradient drivers. While the outer loop is concerned with the
mixed variables, the inner loop involves a standard finite element
solution. Preconditioning will only be applied to the innmer loop, where
an element-by-element preconditioner will be used.

A Crout approximate facturization is preferred for the precon-
ditioner; its expression is specified below and a more thorougk dis-
cussion can be found in reference 2. We have

Ny Na 1
B=W/x [j L,,[K‘] x Ii D,,[X‘] x 1] U,[I‘] X W2 (14)

el emm] esu Ny

where

Ac=1I+ w—llzlAe - we]w-l/z (15)
W = diag(A), (16)
W* = diag(A®), (17)

and A* is the ¢‘” element matrix, I is the identity matrix and L[],

Dy[] and Up|] are the lower, diagonal and upper factors in the Crout
factorizatiom.
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AUGMENTED WEAK FORMS

Weak formulations of boundary value problems have been used as

the main tool in deriving finite element methods for quite a long time.
- Most formulations used so far in structural analysis may be derived

from the Hu-Washizu principle (ref. 4), either in its most general

form or, as is more common, in a displacement variaticnal form. In

its general form, the weak formulations are widely known as mixed for-

mulations, since stresses and/or strains are primary variables aloag

with displacements. However, in these cases, the resulting matrix is

indefinite and iterative drivers such as conjugate gradients cannot

be directly applied.

The displacement formulation, on the other hand, results in a
positive-definite matrix. However, for thin beams and plates the con-
dition number is very large and even with sophisticated precondition-
ing the number of iterations for convergence if excessive.

Uzawa’s algorithm for constrained minimization presents the itera-
tive driver with a series of well conditioned problems, the solution
of each being done in a relatively small number of iterations. The
. basic idea behind the algorithm is the introduction of Lagrange mul-
- tipliers and penalization terms. Satisfaction of the constraints is
- then guarantced even with a small penalty parameter due to the presence
= of the Lagrange multipliers. An iterative scheme is then devised to
: update the multipliers. Given the multipliers, the solution is also
updated and the process is repeated until convergence.

We consider the strorg form of a boundary value problem for the
Timoshenko beam: Given the vertical force f:!0,L] — R, and the dis-
tributed moment c:[0,L] — R, find the vertical displacement w, the
rotation #, the moment M and the shear force ¢ satisfying

M,;p‘—q+c =0

( equilibrium ) 18
q’z+f=0} q ( )

M = —(EB/12)8,,
( constitution ) (19)
q = Gi(w,; —0)

where E, G and t svand for the Young’s modulus, shear modulus and thick-
ness, respectively, subject to the following bouadary conditions
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M(0) = M, (20)
w(0) = wp (21)
6(L) = 6y, (22)
oL)=q (23)

Although particularized, the boundary conditions for the above
problem possess the main ingredients that make them easily extend-
able to more general situations.

For the construction of the augmented weak form, we introduce
the spaces

Sw ={w€H" (0, L]|w(0) =wo } (24)
Se ={ 0 €H"[0,L)|6(L) =0.} (25)
Vo ={w€H'[0, Lj|w(0) =0 } (26)
Vo ={0 €H'|0, L}j6(L) = 0 } (27)
v, = H%, L) (28)

where H°[0 L] is the set of square integrable functions defined over

0.1) nd 00, 1) = {s fEHI . € H).
Let wE€ Sy, WEVy, 0E Sy, 0E Vy and ¢,7€ V,. Araume that
the moment constitutive equation holds. Then, the foiloving veak form

is equivalent to the equilibrium Jquationi, shesar consvitutive equa-
tion, and moment and shear boundary conditions:
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o= [ [ B2 0,0 +6GUT, ~B)(w,s ——0)]dx+

+/ (l-e.)[?i(wz—0)+q E,., 3)}:!:: /(1 e.)qqdz+

+ /OL (ﬁc - Uf)dz —w(L)qL - 0(0)Mo

=/ - [E(M,, —q+¢)- D¢,z +f)]dz + /o - q(w,, —6- E,-i)dz +

+ /oL e.G’t(TD’,, —0- g;)(w -0— —C_ﬁ)dz +

+8(0)[M(0) — Mo] + W(L)[q{L) — q.] (29)

The second line followc after an integration-by-parts and use
of .he moment constitutive relation. The non-dimensional scalar ¢, is
introducesd ir order to ensure that a certain sub-matrix resulting from
the partition of the discrete system into displacement and trarsverse
shear variables is positive definite. This is described xore fully
below. It should be emphasized that the moment constitutive equation
is exactly satisfied whereas the mixed treatment is only applied to
the shear.

The finite element discretization of the above weak form is stan-
dard and leads to a matrix system of the form

(6 0~ »

where A = A; + A,, in which A; is a bending contribution, A, is a
shear contribution, the vector u contains nodal values of displace-
ments ahd u contains transverse sbhear forces.

In our calculations, we employ piecewise linear interpolations

for w, 6, @ and ¢, and piecewise constant interpolations for ¢ aud
7. Shear locking is avoided by using & one-poiant reduced integration

rule for the shear contribution fol‘ &Glw,, —0)(!17,== —F)dz.

The element counterparts of the above arrays are given as fol-
lows:

1.0
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0 0 0 0]
E3i0 1 0 -1
Al = — (31)
12hlp o0 o o
0 -1 0 1,

1 h/2 -1 A2

h/2 h3/4 —h/2 h%/4
At = €, Gt / / (32)
h{-1 —n/2 1 —h/2

h/2 h2/4  hj2  K2/4)

Ct=(1—¢){-1 —h/2 1 —h/?] (33)

AS — (1 —¢,)

A = (34)

b = [fh/2 —ch/2 fh/2 —ch/2|T

+ boundary condition terms (35)

b = boundary condition terms (36)

where h stands for the element length and all functions (e.g. E, G,
t etc.) are evaluated at the element center.

In the above exprsssion the matrices A and A are positive definite,
the former due to the nir-vanishing positive scalar ¢,. We can then
solve the above system for u and substitute the result in the equa-
tion for u, getting

(CA'CT+A)i=CA 'b-b (37)

We propose to solve (37) by a basic (i.e. unpreconditioned) con-
jugate gradient scheme We shall refer to the iterations for the above
system as the guter iterations while those associated with *inverting*®
the matrix A will be denoted as inner iterations.
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We now particularize the basic conjugate gradient algorithm to

the above problem, getting
Step 1. Initialization:

m=0

uo =20
bo=Db

uo = A~ !bo
ro = Cug — b
Po =To

Step 2. Update of solution and residual

Em = Ai’ n
b1 ==(3T§n:

Xm = A" b1

Em — 8m + Cxm

~ im'im

Qm = = -
Em ‘Pm

ﬁm+l = Uy + 6mf’m
Umps = Uy — GmXm

im+1 = im - &mim

Step 3. Convergence check:

If ||Fm41]l < 6||Fo]| . return.

Step 4. Update conjugate direction

102

(38)
(39)
(40)
(41)
(42)

(43)

(44)
(45)
(46)
(47)

(48)

(49)
(50)
(51)

(52)
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p: i'm+l * i'm-i-l
=—u 53
B = TR (53)
f’m+l = i'm.-H. + Bmﬁm (54)
m=m+1 (55)
Go to Step 2 (56)

The variation of the scalar parameter ¢, from 0 to 1 gives us
a family of weak forms that range between the classical mixed for-
mulation and the displacement formulation. As will be seen later, the
optimal choice for ¢, minimizes the condition number of the precon-

ditioned matrix B—'A.

In the present paper, the inner loop solution, A~!b,,, is ob-
tained with a preconditioned conjugate gradient algorithm. Since the
matrix A is constructed from a standard finite element assemblage,
the element-by-element precorditioner described is used.

In order to distinguish the values of 6 associated with the in-
ner and outer loops, we will use the motation &' and 6°, respectively.

Accounting for axial effects is straightforward. For this pur-
pose, one needs to add the equations

T +8=0 (57)
T = Etu,,, (58)

where s: [0,L] — R is the prescribed axial body force and T is the
azial stress resultant. Cuitable boundary conditions need also to be
added in the usual way.

We now append to the weak form above the additional terms
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=.. ',/(;L(l - ea)(Tu,, +Tu,, )dz - /OL Uadz

L TT L
_../o (l -— (a)'Et-dz + /o eaEm,z u,z dZ

+ boundary condition terms

_ /OL [ﬂ(T,,,- +38) -7'("" ’E‘I:i) dz

+ /01, e,,Et(iI,, -g?)(u,, —%)dz

+ boundary condition terms (59)

The introduction of axial stresses has a much wider implica-
tion: gther structural elements with entirely differcat stiffnesses
can also be combined. We dc so by imputting their stifinesses in aug-
mented mixed form and choosing eppropriate ¢~parameters. 1usm, although
their stiffnesses may vary substantially, the ¢-parameters cam present
the inner conjugate gradient driver with a reasonably conditioned sys-
tem.

RESULTS

Beam with Bending and Shear

The results to be presented all refer to an end-loaded cantilever
beam discretized with 64 elements, with geometric and material parameters
given by

E=1 (60)
G=05 (61)
L=1 (62)

The bending contribution to the stiffness matrix is O(E3/12L)
while the shear anc axial contridutions are O(G!L) and O(Etl)., respec-
tively. The pa-ameters
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Telb = EB/12L 12(5)(?) (63)
EtL L\?

T/t = E@12L — 12(7) (84)

are the ratios of shear to bending and axial to bending, respectively.
The larger of these parameters is a measure of the condition number
of Al,—=;, which is but the stiffness matrix resulting from the dis-
placement formulation. We now see that when the ¢’s are close to one

the condition number of A depends upon the ratio (L/t)*, usually a large
runber. The introduction of smaller values of ¢ brings the condition
number of 2 co reasonable values, independent of this ratio.

Table 1 presents the total number of inmer loop iterations(n;)
required for convergence. This number is taken to be a measure of the
total amount of work expended in obtaining the solution. The quan-~

tity €,7,/5 is also presented. The tolerances 6' and 6° varied from problem

to problem such that the tip displacement was correct to 1%. As may
be seer, the total number of outer iterations (i.e., n,) is two in
all cases.

The most striking observation is that the number of iterations
for convergence does not depend on the beam thickness. Rather, it is
the parameter ¢,7,/» that seems to determine the number of iterations. It
is interesting to note that the associated ¢,’s are indeed very small,
showing that the augmented stiffness tends more towards a mixed than
a displacement formulation.

For the sake of comparison, the same problems were run with the
displacement formulation and solved by an element-by-element precon-
ditioned conjugate gradient driver. Table 2 presents the number of
iterations for the various thicknesses analyzed. The number of itera-
tions required for thin beams reveals the great advantage one can take
of the formulation presented in this paper.

From Tables 1 and 2 we note that, for thin beams, the present
formulation shows a great improvement as compared to the element-by-
element solution with the displacement formulation. It should be pointed
out that for the thick beam (! = 0.1) the number of iterations for
the present formulation involves tmo solutions(i.e. A~'by, and A~'b,),
the minimum required.

Beam with Bending, Shear and Axial Effects

The same cantilever beam was used for the introduction of axial
stresses. It should be pointed out that for a straight beam, the axial
problem is uncoupled from the bending and shear problem. Despite the
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fact that the problems are uncoupled, the present strategy cannot take
advantage of this fact because the scalars a and / combine informa-
tion from the entire solution vector.

The same geometric and material properties were used. A unit
axial load was applied at the free end. Tables 3 and 4 show the to-
tal number of inner iterations for convergence as well as the num-
ber of iterations required in the displacement formulation. The dif-
ferences are seen to be considerable.

Due to the enormous difference in the magnitude of displace-
ments resulting from axial and bending solutions, a convergence criterion
ag specified in the conjugate gradient algorithm would not ensure con-

vergence of the former unless &' was gset to a very small value. In or-
der to avoid this, the residual vector was divided into three indepen-
dent vectors: one associated with the vertical displacements, one with
the axial displacements and one with the rotations. The smallest non-

zero of these initial residual norms was then used as ry; 6' was then
set to 0.01.

The outer convergence criterion is more subtle. It should be
observed that the initial residual is proportional to the displace-
ment solution of the "soft® problem(i.e. ¢ < 1). A8 can be seen in
equation (30) the soft problem stiffness becomes singular as the ¢’s
g0 to zero. This creates the problem that the initial residual grows
indefinitely and the proper solution of the problem requires a large
reduction in the residual. That is, the outer convergence tolerance
6° is highly dependent on the ¢’s chosen. This still seems to be a problematic
area since no explicit expression is available that allows us to precisely
delineate the outer convergence tolerance. A posgsible solution be-
ing investigated is the utilization of a preconditioner for the outer
loop. Since the number of outer loop iterations is already very small
(<7 in all cases) it seems that a preconditioner would allow us to
establish convergence by limiting the number of outer iterations, ir-
respective of the initial residual.

Another important fact is that the proper evaluation of the ¢’s
is still not precise. However, it seems that a preconditioner as men-
tioned above would ensure that a low condition number in the imner
loop stiffness would be a good way of obtaining the ¢’s. With the num-
ber of outer loops reduced to an almost constant small number, the
solution cost would depend solely on the inner loop cost.

CONCLUSIONS

The iterative solution of thin structural finite element models

is not yet a viable alternative to direct solution. The combination

nf augmented mixed weak forms and iterative strategies such as ele-
ment~by-element preconditioned conjugate gradients enables a desen-
sitiz’ng of the matrix equations. A significant reduction of itera-
tions is achieved thereby when the structure is very thin. Further
develcpment of this concept should enhance the performance of itera-
tive strategies for thin structural elements. The one-dimensional models
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used in this paper to demonstrate ideas can of course be solved more
effectively with direct solution methods. However, in the future it
may be possible to solve large-gcale three dimensional shell models
more efficiently by employing iterative techniques. An indication of
possibilities has been shown herein. Much research clearly remains
to be done.
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Table 1. Bending and shear effects: present formulation

S

t €sVa/b €q n;

0
0.1 1.0 1.67 x 1073 80 2
0.1 10.0 1.67 X 10-2 69 2
0.1 100.0 1.67 X 10~} 87 2
0.01 1.0 1.67 X 10~% 80 2
0.01 10.0 1.67 X 10~* 69 2
0.01 100.0 1.67 X 1073 87 2
0.001 1.0 1.67 x 10~7 80 2
0.001 10.0 1.67 X 10~° 71 2
0.001 100.0 1.67 X 10~ 87 2
0.000! 1.0 1.67 X 10~° 80 2
0.0001 10.0 1.67 X 10~8 71 2
0.0001 100.0 1.67 X 107 88 2

ORIGINAL PQC:-E }*3
OF POOR QUALI Y

Table 2. Bending and shear effects: displacement formulation

Thickness ns
0.1 47

0.01 146
0.001 473
0.0001 830

*This number should be compared with n; in Table 1
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Table 3. Bending, shear and axial effectis: present formulation

t €s7s/b €s €aYa/b €q n; | n,
0.1 10167 X 1073 40(333x10°3| 1913
0.1 10.0 | 1.67 X 10~2 40.0 (333 x 102 | 176 (3
0.1 100.0 | 1.67 X 10! 400.0 | 333 x 1071 | 204 |3
0.01 1.0 | 1.67 X 10~5 40]3233x 1075 23314
0.01 10.0 | 1.67 x 10—* 400333 x 10~4| 176 |3
0.01 100.0 | 1.67 X 103 400.0 { 3.33 X 10~3 | 204 |3
0.001 100.0 | 1.67 X 10~° 400.0 [ 3.33 X 10~%| 301 |5
(0.001 | 1000.0 | 1.67 X 10-*| 4000.0 | 3.33 x 10-%| 216 |3
0.001 |100C0.0 | 1.67 X 103 | 40000.0 13.33 X 10~3 | 4813
0.0601 100.0 | 1.67 X 10~7 400.0 [ 3.33 X 10~7 | 406 |6
0.0001 | 1060.0 | 1.67 X 10| 4000.0|3.33x 10~8| 270 4
0.0001 | 10000.0 | 1.67 X 10~° | 40000.0 | 3.33 X 10~5| 387 |4

Table 4. Bending, shear

Thickness n*
0.1 69

0.01 179
0.001 863
0.0001 2431

*This number should be compared with n; in Table 3

- , —

and axial effects: displacement formulation

JE SRy

109



Y

~a

A

O N il oo s SRR

" N85 10885

STRESS-DERIVATIVE CONTROL OF
KEYSTONING DEFORMATION IN FINITE ELEMENT CODES

J. C. Schulz and 0. E. R. Heimdahl

Naval Weapons Center
China Lake, California 93555

SUMMARY

The stress-derivative technique for contrci of keystoning deformation in under-
integrated finite elements is based on exparsion of the stress in a Taylor series
about the element center and retentinn of additional terms beyond the constant
stress term. It has the advantage over other control techniqucs that keystcning
resistance is provided by actucl rathe: than artificial material »roperties.
Application of this technique to the quadrilateral ring elemeiits used for modelling
solids of revolution subjected to axisymmetric loads is described. 1In a cylindrical
coordinate system additional terms appear in the formulation which must be dealt
with in arriving at a workable keystoning control scheme.

INTRODUCTION

Isoparametric quadrilateral or hexahedral elements employed in finite element
codes for analysis of nonlinear, dynamic structural response are usually under-
integrated. One-point Gaussian quadrature (which is essentially the same as the
assumption of constant stress throughout the element] is used for evaluation of
element area Hr volume integrals., Compared to full iategration (which can be
obtained using four- or eight-point quadrature for quadrilateral or hexahedral
elements, respectively), one-point quadrature significantly reduces the amount of
time required for element calculations.

There is, however, a price associated with the use of underintegrated elements.
Due to the assumption of constant stress within an element, some modes of deformation
are not sensed and, hence, are not resisted in the underintegrs*.d formulation.
These are the well-known keystoning modes (also referred to as hourglassing, zero-
energy or kinematic modes in the literature). Under certain conditions these modes
can grow without limit, thus obscuring the actual solution. A method for adequzte
control of keystoning deformation is essential if meaningful solutions are to be
obtained.

Early attempts at keysi~ning control involved the use of artificial viscosity
(References 1 and 2). In this approach nodal forces proportional to and opposing
a measure of the keystoning deformation rate are introduced. No additional storage
and only a relatively small increase in computational effort are required. However,
because the keystoning rate rather than the keystoning itself is opposed, therc is
no attempt to remove any keystoning deformation that might creep in. Consequently,
artificial viscosity control is often ineffective unless a large viscous constant
is used, which can result in reduction of the stable timec step and distortion o
the solution.
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PREC: JING PAGE BLANK NOT FILMED

D

™
.

1}

AN Do G A Bk R vats WSae 3 ¥ e o a . g _g + nﬁ- LRS- - - oy B S0 SLEIL SINP VAN R S .

. )



v

More recuntly, a procedure utilizing artificial - ““ness for keystoninp
control has bee- veloped (References 3 and 4). In tl .. case forces proportional
to and oppos: ' . keystoning deformation are intrcuau-.. Some additional storage
and about the <awe increase in computational effort a: ' v artificial viscosity
are required. Becauce *the keystoning itself is oppos -*. artificial stiffness is
much more effectise than artificial viscosity. Wi*. .i5 increased effectiveness,

however, comes ai: inicreased risk of solution distc.>:. -,

A different techniaue for keystoning con-...' -ervmed "stress-derivative"
control, ic¢ described in Refcrence 5. This - (‘- - .« is based on expansion of the
stress in a Taylor series aioai. the element .v.*.,, Additional terms beyond the
constant stress term ai. retzined to provide .y -toning control. 1In its complete

form stress-derivative control is intermedic*z btetween higher-order quadrature

and artificial viscosity and stiffness in tarms of storage and computatior require-
ments. Through the introduction of additicna! approximations simplified stress-
derivative procedures are obtained which are competitive with artificial stiffness
procedures.

Derivation of stress-derivative control procedures for quadrilateral and
hexahedral elements is given in Refercnce 5. In the present paper the application
of this technique to quadrilateral ring elements used for modelling solids of
revolution subjected to axisymmetric loads is considered. This is a situation of
considerable practical interest. In the cylindrical coordinate system employed,
additional terms appear in the governing equations which are not present for ;
cartesian systems. Both a complete control procedure and a simplified procedure ‘
with reduced storage and computation requirements are described. These procedures
are applied to a test problem.

COMPLETE CONTROL

Cylindrical coordinates r, 6, z are useu. A ring element ir generated by
inscribing a quadrilateral in a radial plane and rotating this plane about the
axis., This ring element is specified by the nodal coordinates ry, zy of the
quadrilateral in the generating plane. Element geometry is shown in Figure 1.

Local material coordinates £;, £, are defined by the transformation
r=ry Ny (B, 8)) 5 2=z, N (€, 8)) (1a,b)

where N are the usual bilinear isoparametric shape functions.

NOTE: Indicial notation with ‘mplied summation of repeated indices is
used. Lower case subscripts refer to the material coordinates and

range from 1 to 2. Upper case subscripts refer to the nodes and range
from i to 4. Subscripts r, 6, z are exempt from the above conventions.

;. Although a more compact notation could have been adopted, it is hoped

the ore used will make the derivations clearer,

|
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Displacements u, v in the r, z directions, respectively, are approximated as

u=4 N ; v=v_N (2a,b)

where up, vy are the displacerents at the nodes.

Application of the principle of virtual displacements yields

[ ( 3NI ENI)
frI = r 3t ' %23z rdA + ./A- T Ny dA

<A

aNI aNI
f = e} —— + 0  ——]) rdA
zl A TZ 9T zz 92z

where f..;, f,; are the nodal forces per radian in the r, z directions, respectively,
and A is the area of the gererating quadrilateral.

(3a,b)

The stress can be expanded in a Taylo> series as

rr rY aak E:k

90
[o] =q._+ ZZE +
22 22 ng k o
(4a,b,c,d)
_ i
¢ =g +—t% + ...

rz Tz agk Ek

]
Q
+

%6 = %o

where the bars denote evaluation at the elemeat center. It would appear that the
contribution of the circumferential component ogq to keystoning control in this
axisymmetric situation is secondary to that cof tge other components. Consequently,
this component was not expanded beyond the constant term.
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Substitution of Equation 4 into Equation 3 yields

f Ar Ar
rl] — k - k

= " n (BrI t = Brkl) Y 92 <FZI = szI)
r r r

06 AArArI + AA:AZI acrr ArkBrI + AArBrk'I
+ — A + + BrkI+

ar 6 3y 127

. aorz R . ArszI + AArsz,I
Bsk zkI

12r
(5a,b)

——— — Ar. B + AATB
+ ]
aorz ArkBrI AArBrk,I aozz B . Kzl zk'1I
+ B + — + zk I -
kI 12r
12r

where k' = k(mod 2) + 1 and expressions for the geometric quantities ;, Aty, AAT,
AAz, Bpy, Byp, Brkps BzkI» As Apps A1 are given as runctions of the nodal coordinates

in the appendix.

Equation 5 contains a number of additional terms compared to the corresponding
equations for planar quadrilaterals given in Refevence 5. However, for elements
very far from the axis (where the radius at the eiement center r is large and plane
strain conditions are approached) the ring equations simplify to the planar
ecquations.

Hypoelastic material behavior will be assumed (although other material
representations are possible)}. The hypoelastic stress rate can be written as

orr N *dv * zudrr * 2wrzorz
922 © *dv * Zudzz - 2wrzcrz
ORIGINAL PAGE IS ) (6a,b,c,d)
L OOR QUALITY '
9rz ~ 2udrz ML (ozz - orr) OF P Q
. Uge = My + 2udgg
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where d;., d;;, dy;, dgy, Wy, are the deformation rate components and spin,
A and u are the Lame parameters and dy = dyp + dg, + dgg.

The Lame parameters are taken as constant within an element (but not necessarily
throughout the entire body). The derivatives of the stress rate with respect tu
the local coordinates then become

30 ad ad ow 3o
T _ A ' + 2 Y 26 rz 2w rz
ng ng agk Tz agk rz agk
90 ad ad ow 30
22 _ V 2z rz _ T2
e, *agk + 2“35k 20., 3, M2 3, (7a,b,c)
a&rz ad oW 30 80,
.a—.—_ - zu_a__r_ + .5__1‘_2. (0 -0 ) + W a_EE. - a_.r_
Ek Ek Ek 22 ITr TZ gk Ek

Expressions for the deformation rate components, spin and derivatives of these
quantities all evaluated at the element center are given as functions of the nodal
coordinates and velocities in the appendix.

A complete finite element procedure including stress-derivative keystoning
control has thus been formulated. At any given time the geometric quantities in
Equation 5 and the deformation rate and spin quantities in Equations 6 and 7 can
be determined. The stress and its derivatives can then be updated and used to
calculate the nodai forces. The nodal velocities and displacements can then be
updated by means of an appropriate explicit integration scheme, and the whole
process repeated.

Compared to the usual constant stress procedure, this complete stress-
derivative procedure requires six additional storage locations per element (for
the stress derivatives) and a sizeable increase in computation time. Additional
approximations can be made to obtain a simplified procedure competitive with
artifical viscosity and stiffness procedures.

PARALLELOGRAMMATIC CONTROL

In many practical finite element meshes the generating quadrilaterals for
ring elements are very close to being parallelograms. Moreover, mesh refinement
usually makes these quadrilaterals more parallelogrammatic. For a parallelogram

AAT = 0 Adz = 0 (8a,b)

Ot ol 0
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As shown in Reference 3 the vector quantities AryBy; and AryB,; in Equation 5
are orthogonal to the keystoning modes for parallelogrammatic elements. Hence,
the stress-derivative terms associated with these quantities do not oppose the
keystoning deformation. It is reasonable, therefore, to neglect them. The nodal

forces then become

£ AT, D At, D oA
rl — k rk — k zk 66
- crr (%rl * rI) * 0rz <gzI * I‘I) * 4; * QrFI

T
(9a,b)
f Ar, D Ar, D
zl _ k'rk . __k7zk
-  rz (BrI * - rI) * %%z (BZI = rI) QzFI
T T
where I'y = (1, -1, 1, -1) and the generalized forces are given by
5?;r acrz 5;;z 5522
Q = D + —=—1D R Q = D + D (loa!b)
T agk rk agk zk z agk rk agk zk
(Expressions for the geometric quantities Dy, D, are given in the appendix.)
If the deformation rate is assumed to be small compared to the spin, the
generalized force rates are
3d 3d 3d.
* V rr TZ
Q = <A3£ ¥ 2”35 Drx * 2“85 Dok * QYy,
k k k
(11a,b)
ad. 3d, ad_
o TZ \ ZZ
Q, = 2ha€k Dk * (Aaak * zpaek > Dok = Q¥y,

A simplified stress-derivative procedure has thus been obtained. The general-
ized forces are updated using Equation 11 and substituted into Equation 9 to
determine the nodal forces. Only two additional storage locations are required
(for the generalized forces) and the computation time is considerably less than
for the complete procedure.

It should be noted that the additional assumptions introduced for parallelo-
grammatic control apply primarily to the stress-derivative terms in Equation S.
These terms are in the nature of relatively small modifications to the constant
stress terms for keystoning control. Hence, some inaccuracy in these terms due to
violation of the assumptions can be tolerated without deterioration of the physical

solution.
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TEST PROBLEM

The stress-derivative keystoning control techniques presented here were applied
to the problem of a simply supported circular plate subjected to a uniform step
pressure loading. This test problem is analogous to the beam problem suggested in
Reference 3 and provides a severe test of element behavior since no deflection is
possible without excitation of keystoning modes. Geometry of the circular plate
is shown in Figure 2. Dimensions and property values are:

Radius, 0.4

Thickness, 0.1

Young's modulus, 1 x 109
Poisson's ratio, 0.3

Density, 1,000

Pressure, 2.5 x 106

Deformed shapes of the beam with increasing time for no control and complete
stress-derivative control are compared in Figure 3., It is obvious that with no
control the solution deteriorates rapidly, while with complete stress-derivative
control keystoning is eliminated entirely. Parallelogrammatic control likewise
eliminates keystoning and leads to deformed shapes almost indistinguishable from
those for ccmplete control. The peak deflections of the plate are 0.0719 and 0.0711
for complete and parallelogrammatic control, respectively.

CONCLUSION

Application of the stress-derivative keystoning control technique to quadri-
lateral ring elements has been described. Both a complete procedure and a simplified
procedure for elements that are nearly parallelograms in the generating plane were
presented. The simplified procedure has roughly the same storage and computation
requirements as artificial viscosity or stiffness methods and has the advantage that
keystoaing resistance is provided by actual rather than artificial properties.

A second form of simplified stress-derivative control, termed "pressure"
control, is described in Reference 5. Pressure control can also be applied to ring
elemeits. In this technique the stress is separated into hydrostatic and deviatoric
parts and only the hydr tatic part is erpanded in a Taylc:s series. Pressure control
is not limited to parallelogrammatic elements. Because only a portion of the anti-
keystoning term is applied, pressure control cannot be expected to provide adequate
resistance in ail cases. However, it appears to do a satisfactory job in most
situations.

As shown in Reference 4, elements with parallelogrammatic control do not
satisfy the patch test unless they are exactly parallelograms. However, as long as
the departure from "parallelogramness' is not grzat, these elements will come close
to satisfying the patch test and should not exhibit convergence difficulties.
Elements with either complete or pressure control will always meet the patch test.
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APPENDIX

In this appendix expressions for the various geometric quantities and also the
deformation rate components, spin and their derivatives are given as functions of
the nodal positions and velocities.

T = (r1 *T, b T4 r4)/4

Ar, = (-r, + T, + T, - r4)/2

1 1 2 3
Ar2 = (-r1 STyt r4)/2 %
Azl = (-z1 + z, + zZg - 24)/2 ;
A22 = (-z1 -2y ¥ Zg z4)/2 ;
Adr = Ty =T, +Ty-T,
Apz = 2y -2yt 23 -2,
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Figure 1. Ring element geometry,

Figure 2.
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Circular plate test problem geometry.
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Figure 3. Deformed shapes of circular plate.
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A TRIANGULAR FINITE :

ELEMENT FOR THIN PLATES AND SHELLS

S. W. Lee* and C. C. Dai**
Department of Aerospace Engineering
University of Maryland
College Park, Maryland

SUMMARY

A finite-element modeling technique which utilizes a triangular element called
TSHEL with 45 degrees of freedom and seven-point integration “as been tested for
analysis of thin-plate and shell structures. The element formulation is based on
the degenerate solid-shell concept and the mixed formulation with assumed indepen-
dent inplane and transverse shear strains. Numerical results indicate effectiveness
of the present modeling technique which features combined use of elements with kine-
matic modes and those without kinematic modes in order to eliminate both locking and
spurious kinematic modes at the global structural level.

INTRODUCTION

The concept of the degenerate solid shell is very attractive because it can
easily describe curved geometry and kinematics of deformation of arbitrary shell
structures without invoking complicated shell theories [1]. However, the unde-
sirable locking effect associate with zero inplane strain and zero transve.se
shear strain has been the major obstacle to a successful application of the dege-
nerate solid-shell concept for finite-element modeling of thin-shell structures.

The most popular scheme to alleviate locking effect has been either reduced or
selective integration. However, an alternative and perhaps more general approach is
to use mixed formulation based on either the Hellinger-Reissner principle or a modi-
fied Hellinger-Reissner principle [2]. Following this approach, studies have been
mace on various plate-bending elements [3,4]. In particular, in reference 4, Lee
and Zhang studied a six-node mixed formulation plate-bending element in which ele-
ments with spurious kinematic modes were used to eliminate locking and then these
nodes were suppressed by adjacent elements without kinematic modes, thus resulting
in a finite-element model which is less sensitive to locking and also kinematically
stable at the global structural level.

The work presented in this paper represents a logical extension of the concept
in reference 4 to finite-element modeling of thin-shell structures. A ten-node
shell element, designated as TSHEL, is developed by following the degenerate solid- '
shell concept and the mixed formulation based on a modified Hellinger-Reissner prin- :
ciple with independent inplane strain and transverse shear strain.

A description of formulation for the triangular-shell element is given in the
next section. In the subsequent section, effectiveness of the present modeling
technique is demonstrated by solving several simple example problems.

*Associate Professor
**Graduate Research Assistant
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FINITE-ELEMENT FORMULATION  CRIGINAL PLoZ 'S
OF POOR QUi
The ten-node triangular shell element, designated as TSHEL, follows the concept
of degenerate solid shell for the description of shell geometry and the kinematics
of deformation, and finite-element formulation is based on a modified ]
Hellinger-Reissner principle with independent inplane and transverse shear strains
in addition to inplane displacement variables and rotational angles.

The concept of degenerate solid shell was introdiuced by Ahmad et al [1], and a
good description if also found in references 5 and 6. Here we will describe this
concept in a very concise manner for the sake of completeness and also to help facil-
itate subsequent discussion.

(a) Degenerate Sclid Shell

rigure 1 shows the midsurface of a ten-node degenerate solid-shell element
which is capable of modeling curved geometry. A degenerate solid-shell element
requires both global aiid local coordinate systems for the description of shell
geometry and the kinematics of deformation. A giobal coordinate system has
Cartesian coordinates X,Y,Z while local orthogonal coordinate systems are given at
each node and integration point on the shell midsurface. At a node, a triad of unit
vectors, a,, a, and a, in x,y,z coordinate directions, respectively, is supplied as
an input E3 tﬁg elemégt subroutine such that a,, a, are tangent to tl.e shell midsur-
face. On the other hand, a, is normal to the"midsurface. At integration points,
local orthogonal coordinatég are defined and the unit vector a, (cr x) is parallel f
to local coordinate & and a, (or z) is normal to the shell mid;urface. The a, (or '
y) as well as a, vectcrs aFg tangent to the shell midsurface. Using global Eﬁd
local coordinaf; systems, the global coordinate of a material point in shell element
can be expressed as

() () ( \
i i .
X X a3 )
10 j $ . 10 i
{ Y >= ifl N (E.n)< Yoo * 3 131 Ny (&n) t1.< 2332 ) (1)
i i
kz Zo 33
where N
N; = ten-node shape function .
E.n,} = parent coordinates (z=0 on the midsurface)
Xg,Yg,Zg = global coordinates of node i on the shell midsurface
t, =

3 shell thickness at node i
i

The displacement component in the global coordinate system can be assumed in terms of
nodal inplane displacements and rotational angles as following

j=th component of the unit vector a; at node i
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where
U,V,W = displacement components in X, Y and Z directions respectively
Ujs Vis Wy = inplane displacement components with re,pect to local
coordinate system at node i
¢ , ¥ = rotational angles around a, and ay vectors respectively at
i i node i ~ "
aij = j-th component of 2 at -ode i
a;j = j-th component of a, at node i

Symbolically Eq. (2) can be written in matrix form as

U=2gq, (3)

where U is the displacement vector in global coordinate, and % is the element
ncdal disnlacement vector.

With the dgscription of geometry and assumed displacement given above, the
strain vector EY in the global coordinate system can be expressed in terms of nodal
degrees of freedom as

G

E (4)

L= B1 G * ¢ ?? %
neglecting higher order terms in z. The B, and B2 matrices are independect of z.
For a degenerated soiid shell, it is necé%!ary to express strain vector E- with

respect to 1oce1 coordinate system in terms of g through strain transformation.
Symbolically g can be written as -

T+ X
T I (5)
y
where _
€xx
Eé = ;&y =B, q, (6)
eX_Y

is the inplane strain vector and

AT Gt~ AN KA o W > A S 2 for e
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is the transverse shear strain vector and
[«
XX
v =4z L.
- ﬁ Yy %K Qe
4 xy;

(7)

(8)

is a vector proportion-.1 to curvature strain vector. For want of a name, we will

will call x "curvature strain® vector.

(b) Mixed Formulation

The present TSHEL ‘ement is based on the modified Hellinger-Reissner principle

with the functional ex). »ssed as

) 1T (13 -
nmR'[A (eece e"2' e e*:e)dA+ A’Zf Cc xdA

= )
+ (v C Cy)dA—w
fA~~ 7 S~

(9)

In £q. {9), all vector and matrix quantities are defined with respect tc the local
coordinate system. The strain vectors e, x and Y are functions of inplane displa-

cemerts and rotations. And also e -

'exxT
€y = < 5xy > = independent inplane strain vector
[ Exy J
N
Y = Yxz } = independent transverse shear strain vector
I A%
W = applied load term

A = arza of the shell midsurface

The elastic constant matrices C_, C_, C_ are defined as

e’ Ix* ly
1
C. = C, d
- ), <l7¢
1
c"i[ e? ¢y de
-~ -1 -~
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(12)

and (o are elastic constant matrices relating five components of stress to

where §
strain ss follows
/ 4
OXX exx
) =C £
1 oy (1 T yy
g €
and - Xy y Xy
0 Y
| IR A Cz 1 X2
°yz sz

For finite-element approximation,
degrees of freoedom as in Eqs. (6)-(8).
Y are assumed

where P

column ¥

“ -

[ 4
e al
y=P

TSHEL, the assumed strains €

Further discussion on assuméﬂ

Substituting Eqs. (6)-(8), (10), and (16) into Eq. (9), g Can be written

symbolically as

A

_ T 1
IlmR-E[? (-;.ag-e-?..

T

1
-7 8 HB B -4

where the summation notation implies assembly of elements and

_ T
e, e

_ T
Hf Pl Cy P, OA
A
T
'S.B =,[A Q.n:(.:.uc E.K dA

T
7 [, taty
N
’ie'fA Ps Cy P A

b e A S e st 4 PR

%

1
Hoy et 3

, < and y are assumed in terms of noda)
n ddditidn, the independent strains €
in terms of unknown ccefficients such that

I
e KB

G * 8

-~

(13)

(14)

-~

(15)
(16)

and P, are shape function matrices of assumed strains and a and B are
ector§ cf unknown parameters which are eliminated at elemenf levei.

(17)

(18)

EN I s &t

In
and y have either linear or quadratic distribution.
strains will be given in the next section.

and
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Taking 6 "hR = 0 with rescect to a,

Sade Mo 27 0 (19)
and similarly taking & ]%R = 0 with respect to B,
fgde ~Hg 80 (20)
From Eqs. (19) and (20)
and ? ) ﬂ“ ﬁa ﬂe (21)
_y-1
8 = ﬂB 98 % (22)
Now substituting Eqs. (21) and {22) into Eq. (17)
T T
T = 2 (%'?e Ee e - 9 Q) (23)
where
Tl T -1
Ke = G Hy Go* GpHg Gat Ky (24)

is the element stiffness matrix. For TSHEL, uniform 7 point rule is used for
numerical integration of element stiffness matrix. In addition, the five degrees of
freedom associated with tne interior node are statically condensed out, resulting in
an element with 45 degrees of freedom. After assembly of all elements, TR can be
written as

T =79 K a-a' 0 (25)
where
g = global nodal displacement vector
K = global stiffness matrix
Q = global load vector
Taking én o = 0 with respect to q leads to
Kq=10Q (26) ‘

which can be solved for g. With g and thus g, determined, inplane forces and
moments-per-unit length for isotropic shells Sre determined as follows

NXX
N e t
el MYtz lete=7Cl P (27)
Ny
and
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where t is the shell thickness,
ASSUMED STRAINS

The choice of assumed strains is of paramount importance in mixed formulation.
Atter all, proper choice of assumed strain distributions makes the mixed formulation
element different from the usual assumed displacement formulation based on the prin-
ciple of virtual work, Especially for the purpose of alleviating locking, it is
desirable to choose assumed strain distribution as simple as possible [2]. However,
an excessively simple form of assumed strain will trigger kinematic modes or
spurious zero strain energy modes other than rigid-body modes. These modes are also
found in other finite-element models such as hybrid stress formulation reduced
and selective integration schemes. Of course reduced and selective integra-
tion is equivalent to mixed formulation in certain cases. Existence of spurious
kinematic modes at the element level is not a serious problem as Igpgeas_they are
suppressed at the global structural level. On the contrary, it has been observed
that an element with kinematic mode is less sensitive to the locking effect even for
very thin plates under clamped boundary conditions [3]. In fact, reference 4 de-
scribes a modeling technique for plate bending where six-node mixed formulation ele-
ments with kinematic modes are combined with the other six-node elements without
kinematic modes. These elements with kinematic modes are introduced to alleviate
locking while those without kinematic modes are used to suppress kinematic modes.

In the present paper, we apply the same concept to the TSHEL element. Depending
upon the type of assumed strains, the TSHEL element may be divided into type A and
type B. In type A, the independent strains are assumed to be linear within each
element with unknown coefficients as follows:

a) Inplane Strains (linear 9a)
exx=°l+°‘25+°‘3"
eyy a, + o E+ ag n
Tttt g
b) Transverse Shear Strains (linear 68)

sz=8~|+82€+83n

€

Yy2=84+65€+86n
The assumed strains for type B are

a) Inplane Strains (quadratic 18a)
- 2 2
€x Nt Eranta Enta £+ an

€

2 2

yy Tttt gntagbnte; btopn
= 2 2
fxy T3 T o bt ogntoglntay it tagn
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b) Transverse Shear Strains (quadratic 128)

2
sz

Note that one element subroutine is d2signed to handle both types of assumed

strains. The linear strains in type A trigger spurious kinematic modes in the TSHEL
element. If we consider, for simplicity, an element with flat geometry, in which
shell behavior is decoupled into plane stress and plate bending, then for the plane
stress case, linearly assumed inplane strains will result in eight spurious kinematic
modes associated with inplane deformation. In addition, for the plate-bending case,
linearly assumed transverse shear strains will result in four kinematic modes asso-
ciated with normal deflection. These modes are compatible, hence an assembly of

type A elements will exhibit unstable spurious kinematic modes. On the other hand,
the type B element with quadratic inplane and transverse shear strains is free of
kinematic modes and thus stable. As in reference 4, type A and B elemenis can be
combined as shown in Fig. 2 in an attempt to eliminate both locking and kinematic
modes simultaneously. Note that the kinematic modes in type A elements are
suppressed by type B elements.

= 2

NUMERICAL TEST

In order to test the effectiveness of the present TSHEL element, simple example
problems involving thin plates and shells were solved. Of particular interest was
the performance of the finite-element model with type A and type B elements combined
as explained in the previous section. An example of finite-element mesh patterns
employed is shown in Fig. 3a. In this figure, each rectangle consists of four
triangular elements. Note that, for the model with combination of type A and type
B elements, finite-element mesh is arranged such that a type A element does not
share a common side with another type A element. All computations were carried out in
double precision on the UNIVAC 1100/82 machine at the University of Maryland.

(a) Square Plate Supported at Four Corners

A square plate supported at four corners is under uniformly distributed load p
psi. This problem was chosen to illustrate the detrimental effect of spurious kine-
matic modes. Due to symmetry in geometry and loading, only a quarter of the plate
was modeled by 2 x 2 regular mesh as shown in Fig. 3a. In the figure, symbol c
represents the plate centroid. Elastic properties of the plate are E = 107 psi and
v = 1/6, and side lengths are a = b = 2 inches.

Table 1 lists nondimensional deflection w = 10 DH/PL“ along y = 0 line for a/t
= 100, Symbols D and t represent bending rigidity and thickness respectively. The
finite-element model with type A elements only shows excessively large values of w,
clearly indicating existence of unstable kinematic modes. On the other hand, as
expected, the finite-element model with a combination of type A and type B elements
is free of kinematic modes and gives reliable solutions. In fact computed_maximum
w = 0.2633 at the plate centroid is very close to the analytical solution w = 0.263
for the Kirchhoff thin-plate theory.

(b) Simply Supported and Clamped Plates

A quarter of the square (a/b = 1) and rectangular plates (a/b = 2) under uni-
formly distributed load were modeled by 1 x 1 regular mesh, 2 x 2 regular mesh and
2 x 2 irregular mesh. Figures 3a and 3b show 2 x 2 regular mesh and 2 x 2 irregular
mesh respectively. E‘astic property and geometry are as follows:
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E =107 psi
v = 0,3
a = 2 inches

Table 2 lists maximum nondimensional deflection for simply supported boundary,
These values were normalized with respect to analytical thin-plate theory solution.
The numbers in parentheses under 2 x 2 mesh are those for 2 x 2 irregular mesh.

Others are solutions obtained with 1 x 1 and 2 x 2 reqular meshes. It is observed
that the finite-element model with combinations of type A and type B elements does not
exhibit locking effect for a wide range of a/t ratios considered here. In addition,
even the model with type B elements only is surprisingly free of locking and gives
very accurate solutions., Table 3 shows maximum moment M__ computed at the integration
point nearest to the centroid of the simply supported p]éfe. These values are nor-
malized with respect to analytical thin-plate theory solution. Again, for both regu-
lar and irregular meshes, the model with combinations of type A and type B elements
gives numerial results almost insensitive to a/t ratios. The model with type B ele-
ments only also gives_reliable solutions except for a/b = 1 modeled with irregular
mesh, Here, quite surprisingly, solutions for a/t = 100 and 1000 are not as accurate
as those for thinner plates. At the moment there is no good explanation to this beha-
vior.

Table 4 1ists nondime.isional maximum deflection for the clamped boundary con-
dition, Again, computed solutions were normalized with respect to analytical solu-
tions for thin-plate theory. Here the model with combinations of type A and type B
elements gives reliable solution for both regular and irregular meshes. The model
with type B elements only also gives good solutions for 2 x 2 mesh. However, in
general, the model with type A and type B 2lements combined is slightly better than
the model with type B elements only, especially for 1 x 1 regular mesh.

(c) Pinched Cylinderical Shell

A cylindrical shell is loaded at two symmetric points as shown in Fig. 4.
Elastic property and geometry are given as follows [7]:

£ = 1.05 x 107 psi
v=203

R = 4.953"

L = 2R

R/t = 100

Circular boundaries are either diaphragmed or fixed. Due to symmetry in geometry and
loading, only the octant of the shell was modeled by 2 x 2 and 3 x 3 mesh shown in Fig. 5.

Table 5 1ists nondimensional maximum deflection w_ = -w Ei/p at the load point
for both diaphragmed and fixed ends. Symbol w represeﬁts nofmal deflection and the
subscript ¢ stands for load point c. Here numerical results for the model with com-
binations of type A and type B elements are much better than those for_the mode)
with type B elements only. For diaphragmed ends, 3 x 3 mesh solution w_ = 163,88
for the model with combination of type A and type B elements is close t§ W = 164,24
reported in ref. 7. For fixed ends, 3 x 3 mesh solution w. = 136.85 for the model
with type A and type B combined is close to w_. = 136,81 obtained in ref. 8. On the
other hand, solutions for the model with type B elements only are very poor compared
with the model with type A and type B elements combined. This result is quite
contrary to the plate-bending case where differences between two model types were
quite small. As a check, an additional model called type E was also tested. In the
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type E model, all elements employ assumed transverse shear strain with quadratic
distribution while for inplane strain, elements with linear and quadratic distribu-
tions are combined as the model with type A and type B elements combined. As ex-
pected, numerical results for type E model are better than the model with type B
elements only. However they are still far worse than the results from the model
with type A and type B elements combined. This test shows tnat, although quadratic
assumed transverse shear strain gives good solution for the flat plate, it is no
longer true for curved shells.

Figures 6 and 7 show nondimensional normal deflection w = Etw/p along lines BC
and DC respectively for both diaphragmed and fixed ends. Again these results agree
with those given in refs. 7 and 8. More resuits obtained with the present TSHEL
elements are reported in ref. 9.

(d) Pinched Spherical Shell

Figure 8 shows a spherical shell under concentrated force p at two opposite
points, Elastic property and geometry of the shell [10] are:
1. x 104 psi
0.3
]ll
= 50, 500 and 1000

c M

LU .

~
(a4

Two finite-element models were considered: model 1 with eight segments and model 2
with ten segments. Model 1 is shown in Fig. 8 with segment numbers as indicated.
Here segment 1 consists of a single TSHEL element with type B assumed strains. On
the other hand, other individual segments consist of four triangular elements. The
segment angles in model 1 are 2°, 6°, 8°, 12°, 17°, 22.5°, and 22.5° starting from ti
first segment. Model 2 is obtained by equally dividing segments 1 and 2 of model 1.

Table 6 lists nondimensional maximum deflection w = Etw/p at the load point.
Numerical solutions are compared with Koiter's solution [10]. For R/t = 500 and
1000, agreement is very good. For R/t = 50, the difference is slightly larger. The
di fference between the present solution and Koiter's solution might be due to dif-
ferences in shell modeling. Especially for R/t = 50, the shell is relatively thick.
Note that Koiter's solution is based on thin-shell theory which neglects the effect
of transverse shear deformation.

Figures 9, 10, and 11 show nondimensional normal deflection, bending-moment, an
inplane force distributions along ¢ obtained with mesh 2. For R/t = 50, they are in
good agreement with those reported in ref. 10. The R/t = 500 and 1000 cases were
not considered in ref. 10.

DISCUSSION AND CONCLUSION

Results of the numerical test show that for plate-bending problems, performance
of finite-element models with type B elements only seems as good as that of the mode
with type A and type B combined., However, for shells, only the model with type A
and type B combined performs well.

In order to facilitate the use of the present modeling technique, it will be
much more convenient to design a preprocessor which can identify type A and type B
elements in the finite-element model.
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Table 1 —— Nondimensional deflection along y = 0 line for a square plate supported at
four corners (2 x 2 regular mesh)

2x/a A+B B only A only

0. 0.2633 0.2624 0.3262 x 10"
0.125 0.2615 0.2606 0.6243 x 100
0.25 0.2561 0.2552 -0.2890 x 100
0.375 0.2474 0.2465 0.1043 x 10"
0.5 0.2359 0.2349 0.2843 x 10"
0.625 0.2220 0.2210 0.1048 x 10"
0.75 0.2065 0.2054 -0.3017 x 10'°
0.875 0.1901 0.1890 0.6070 x 10'°
1. 0.1738 0.1726 0.3322 x 10"

Table 2 -- Maximum nondimensional deflection for simply supported plate

a/b 1 2
Type A+8B B A+B B
Mesh 1T x 1 2 x 2 1 x 1 2 x 2 . 1 2 x 2 1T x1 2 x 2
% = 102 0.9985 1.0000 0.9995 0.9999 0.9974 0.9999 1.0084 1.0000
(0.9993) (0.9970) (0.9999) (0.9979)
% = 103 0.9983 0.9999 0.9992 10,9998 (.9970 0.9998 1.0089 1.0001
(0.9992) (0.9966) (0.9999) (0.9976)
% = 104 0.9983 0.9999 0.9992 0.9998 0.9970 0.9998 1.0089 1.0001
(0.9992) (0.9967) (0.9999) (0.9978)
L 105 0.9983 0.9998 0.9992 10,9998 0.9970 0.9998 1.0M89 '.0001
t {0.9992) (0.9967) (0.9999) (0.9978)
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ible 3 -- Maximum nondimensional

wsssirbwind

moment M, for simply supported plate (2 x 2 mesh)

a/b ] 2
Type A+B B A+B B
2. 108 0.9994 0.9923 0.9999 1.0000
(1.0077) (0.9741) (0.9999) (0.9979)
3. 103 1.0031 0.9935 0.9998 1.0001
(1.0090) (0.9885) (.0.9999) (0.9976)
2. 10 1.0031 0.9937 0.9998 1.0001
(1.0090) (0.9923) (0.9999) (0.9978)
2. 10° 1.0031 0.9937 0.9998 1.0001
(1.0090) (0.9923) (0.9999) (0.9978)
‘able 4 -- Maximum nondimensional deflection for clamped plate
a/b 2
Type A+B A+8B
Mesh 1x1 2x2 1x1 2x2 1x1 2x2 1x1 2x2
2. 102 0.9968 0.9995 1.0328 0.9968 0.9763 0.9961 1.1118  0.9961
(0.9992) (¢.9909) (0.9960) (1.0004)
2. 103 0.9966 0.9990 1.0351 0.9974 0.9764 0.9957 1.1157  1.0001
(0.9986) (0.9898) (0.9961) (1.0063)
3. 10 0.9966 0.9990 1.0351 0.9974 0.9764 0.9957 1.1157  1.0001
(0.9986) (0.9898) (0.9961) (1.0065)
2. 10°  0.9966 0.9990 1.0351 0.9974 0.9764 0.9957 1.115,  1.0001
(0.9986) (0.9892) (0.9961) (1.0062)
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Table 5 —- Maximum deflection WC for cylindrical shell (% = 100)

Mesh Diaphragmed Ends Fixed Ends

A+B B E A+B B E
2 x 2 154.14 89.04 102.15 130.86 33.57 59.54
Ix3 163.88 120.46 149.44 136.85 98. 46 117.69

Table 6 —- Maximum deflection w at the pole for pinched sphere

% 1 2 Koiter [10]

50 23.39 23.72 21.20
500 211,98 210.32 207.32
1000 419,89 419,76 13.92
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Figure 1. Triangular-shell element TSHEL.

Figure 2. A stable combination of type A and type B.
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A pinched cylindrical shell.
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CONSTRAINED OPTIMIZATION*

Victor E. Saouma
Assistant Professor

Efthimios S. Sikiotis
Graduate Student

Dept. of Civil Engineering
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SUMMARY

An interactive computer graphics environment is used to perform
non linear constrained optimization analysis. It is found that by
combining the power of a digital computer with the subtlety of
Engineering judgment during program execution, final results can be
substantially better than the ones achieved by the numerical
algorithm by itself,

INTRODUCTION

During its early development stage, great expectation was placed
on structural optimization techniques. However, after almost twenty
years of development [1], most engineers would agree that only
limited success has been achieved. This can only be partly explained
by the inherent <complexity of the optimization formulation arising
in practical structural design., Another important reason has been
our approach to the problem and the working environment in which
our numerical algorithms have been put to work. As such, one could
hardly expect any substantial or quantum improvement in our
optimization techniques, unless a vradically new approach is
followed.

A very promising new "“discipline" is Artificial Intelligence
(A1) [2]. It is anticipated that ultimately Al could produce robust
and reliable expert systems which would blend mathematical
formulation witn Engineering Judgment and Experience 1in a single
numerical code. Unfortunately, and despite some initial success,
much work is yet to be performed before AI and structural
optimization can be i-tegrated into a comprehensive program for the
analysis/design of engineering structures,

*This research has oeen supported by NSF Grant No: CEE-8405621 to the
University of Colorado, Boulder,
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Short of using AI, and as an alternative to the "black box"
environment 1in which most, 1if not all, numerical alogorithms have
been confined (during execution), it is proposed to take advantage of
the rapidly developing techniques and hardware of computer graphics
to enable the user to interact with the program, In this working
environment, powerful optimization techniques can be "guided" by and
combined with engineering judgment which shall always remain an
integral part of structural design.

ADVANTAGES OF INTERACTIVE OPTIMIZATION

The interior penalty function, or SUMT (Sequential Unconstrained
Minimization Technique) is based on the transformation of an
objective function U(x) into an “"augmented" objective function
F({x}) such that:

m
F({x},r) = U({x}) + r S G(g({x}))
Jj=1 J

where g({x}) are the inequality constraints, The function G is
selected such that, if minimization is performed for a sequence of
values of r, the solution will be forced to converge to that of the
constrained problem. The factor r performs the weighting between the
(real) objective function and the penalty term; it is called the
response factor [3]. From this brief description of SUMT, it is
apparent that its success would greatly depend on the judicious
choice of: 1) the penalty function; 2) the initial response factor
value; 3) the subsequent reduction of the response factor; and 4) the
initial design point, Despite numerous attempts, there has not yet
been any conclusive and general recommendation for the selection of
these four parameters. As such the SUMT would greatly benefit from a
working environment 1in which parametric studies <could easily be
performed, tested and evaluated and the best combination of parameters
for a given problem easily identified,

Typically an optimization algorithm would scan a very large
design space., It is expected that a good part of this search s
spent in that portion of the design space which is mathematically
feasible but practically unrealistic, By providing the design
engineer with the <capability to continuously monitor the program
execution (through real time graphical displays of variables,
cons raint equations, and cost versus iterations), we would enable
him to instantaneously use his Engineering Judgment, Experience, and
why not intuition, to interrupt execution, “"pull back" the design
variables to a feasible and realistic region, and finally resume
execution, As such computational time and efficiency might very well
be enhanced,
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PROGRAM ALGORITHM

IGNOP -Interactive Graphics Nonlinear Optimization Program- has
been written with the above considerations in mind. In using the well
known and proven interior penalty method [3,4,5] it certainly does
not pretend to be an innovative optimization code per se, However it
differs drastically from most, if not all, previous codes because it
"liberates" the penalty method from the "black box" in which it has
been confined, and enables it to communicate directly with the
user,

The algorithm and execution mode of IGNOP are best described in
conjunction with its detailed flow chart, Figure 1.

1. The program initially reads data from a disk file which 1includes
the design variables and complete problem definition. Default values
will be assigned 1if needed, and subsequently the user could
overwrite any of these variables.

2. Initialize the graphical device and set default values to the
attributes of the graphical displays (segments). The initial ranges
of the x and y variables in the graphs are also defined here. There

will be one arithmetic plot for each variable and one
semi-logarithmic plot for each constraint inequality. Those plots are
all with respect to number of iterations within a given

unconstrained minimization process.

3. Set the wupper and lower 1limits for each of the constraints in
terms of wuser defined input data, and 1in accordance with the
appropriate design code,

4, Check the 1initial design to make sure that it is a feasible one
(as required by the interior penalty mathod).

5. If initial design is unfeasible, enable the user to modify it,
6. Through subroutine UREAL, evaluate the real objective function.
7. Through subroutine CONST, evaluate the inequality constraints,

8. Compute the initial .,alue of the response factor by forcing the
augmented objective function to be twice the initial real objective
one,

9. Display the initial control page, Figure 2, It consists of 26
menus, 19 of them being detectable with a light pen, This control
page is the one displayed during the numerical optimization, It
would not only indicate the various graphs (discussed in 2), but also
the iteration number, the wunconstrained minimization number, the
objective function values (both real and augmented), their variation
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with respect to the previous iteration, the 1initial and current
reduction factor, and the penalty function used. Also displayed are
menu entries which would enable the user to interrupt, resume, or
scan previous analyses,

10. At this stage IGNOP waits fcr a menu item to be picked up. When
this is done, execution will then be transferred to any one of steps
11 to 23 and return subsequently to this one,

11. Problem definition, Figure 3. The "global" structure (as opposed
to the structural element whose design 1is to be optimized) to be
analysed 1is plotted, 1in this case a partially prestressed concrete
beam. Also displayed are the material properties, costs, and design
requirements., Any one of these values can be altered at any time.

12. Constraint inequalities 1imits, Figure 4. The upper and lower
limits of each one of the behavior inequality constraints are
displayed. These 1limits have been computed in step 3, By giving the
user the possibility to overwrite those values, we are providing him
with the capability to artificially "release" some of the constraints
for a particular parametric study. This could easily be achieved by
setting very large upper limits for a constraint, thus making sure
that it will not be active or will not be the controlling one in the
final design.

13, Design Geometry, Figure 5. The structure, the design of which is
to be optimized, 1is graphically displayed along with all  its
dimensions (which constitute the variables) and some cross sectional
properties. This would enable the user to inspect at any time the
current design attempted by IGNOP, and if need be, directly alter it,
Subsequent analysis resumption would then use the altered design.
This 1is certainly one of the most interesting features of the
program,

14, Design Evaluation, Figure 6. For each of the constraints, this
would 1indicate their current value (such as stress, deflection, or
others), their upper or lower allowable limit (as set by 12), and
their PHI(x) ratio. This 1is an indication of the extend to which
this constraint controls the design, A very small positive ratio
indicates that the design 1is very <close to this oparticular
constraint, and a negative one implies that the constraint 1i{s being
violatea,

15, The user can select any of the three available penalty functions
G(g({x})). These functions are :
1

1
a) b) c) -log [g((x})]
g{{x}) 2
g({x})

16, INTERRUPT, This menu item provides the capability to interrupt
the program during the wunconstrained minimization portion of IGNOP
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and modify or simply inspect some of the optimization parameters and
the design variables.

17. REVIEW. Any of the previous designs can be reviewed since all
the intermediary data are saved 1in a disk file, This makes it
possible to retrieve, examine and restart from any previous design,

18. RESET would reset the charts to their initial range.

19. A hard copy of the screen's contents may be obtained, if
appropriate hardware is available.

20. We can zoom in a particular part of the display if more detailed
information is needed.

21. Help can be obtained at any stage of the execution.

22. Again wusing the 1light pen we can modify the penalty function
variables; i.e., maximum number of <iterations, maximum number of
penalty function evaluations, reduction factor, response factor, and
others.

23. RESUME. Resume will start the optimization procedure or restart
it should it have been previously interrupted,

24. Subroutine ZXMIN is a routine of the IMSL library [6] which
performs the unconstrained minimization of the augmented objective
function, 1[It 1internally calls FUNCT which defines the augmented
objective function in terms of the nine design variables.

25. Subroutine FUNCT evaluates the augmented objective 1in terms of
the m constraint functions and controls the display of the data and
the charts., This subroutine provides the critical 1link between
IGNOP and a specific application., Thus the program is not
written specifically for one particular problem, but rather to any
one which can he mathematically formulated as a nonlinear constrained
optimization design,

26, Subroutines UREAL and EQUAL evaluate the objective function and
the equality constraints,

27. The augmented objective function is then evaluated.

28, The next step 1is to update some of the values displayed on the
screen, such as current cost, current penalty term, number of
iterations performed so far, current value of the augmented objective
functiun, and their percentage change from the previous iteration,

29, The program makes a call to subroutine CHARTS which will wupdate
the graphs already on display using the data obtained from the last
optimization iteration,
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30, At this point the program will transfer the execution back to
step 24 (ZXMIN) or if interrupt has been previously specified it will
go on to the next step,

31, This step is the same as step 10 where the wuser is prompted to
decide about the direction of the execution.

32. Any of the functions 11-23 that were mentioned previously can be
accessed at this point, RESUME will restart the optimization
procedure; otherwise, the program will wait for further instructions.

EXAMPLE PROBLEM

The general program that is described above has been applied to
a particular problem, the optimization of partially prestressed,
simply supported, uniformly loaded concrete beams, Figure 7. The
problem has been formulated in terms of nine design variables and
nineteen constraints, The <cross section of the beam <can have a
general I shape with six geometrical variables and three areas of
reinforcement, prestressed and non prestressed (top and bottom)., It
is assumed that for maximum efficiency the tendon eccentricity takes
its largest allowable value at mid-span and that the initial
prestressing force (after prestress transfer) is also at its maximum
allowable value of 0.70 fpu (ACI 318-77 [7]).

The nineteen <constraints are divided into two categories, ten
behavior constraints and nine practical or geometrical constraints,
The Dbehavior constraints are the maximum compressive and tensile
stresses in concrete at the initial and service stage (a total of 4
constraints, the 1initial camber, the dead and live load deflection,
the ultimate and cracking moment capacity and the shear sStress). The
other nine constraints impose a lowar limit on t-e values of the nine
design variables. The objective function to bc minimized 1is the
total cost of the beam, which 1includes cost of concrete, cost of
prestressed and non prestressed reinforcement and cost of forming,
Both the objective function and the constraints are highly nonlinear
functions, A detailed discussion and a derivation of the constraint
equations can be found 1in reference [8] which was a batch
implementation of this particular problem,

To assess the advantages of interactive optimization, an example
design problem [9] was analysed through both batch and interactive
method, Table 1 gives a complete description of the beam shown in
Figure 7, Table 2 has the original design taken from reference [9],
and shows the results obtained by the two approaches. It should be
noted that the 1indicated batch solution was selected among numerous
trials in which various combinations of parameters were tried, and
this particular one gave the lowest cost, In this case, the initial
response factor was such that the objective function was twice the
penalty term, the reduction factor was 0,05, and the penalty function
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used was 1/g(x). The interactive optimization was performed by
primarily:
a) Moving desizns from what appeared to be "unpractical" portions
of the design space.

b) Accelerating the convergence by ncting trends in the
optimization solution., In many instances it was clear that through
numerous succesive iterations, one particular variable was
monolithically converging by very small increments., This prompted
the user to accelerate this trend by direcly assigning a
larger/smaller value f°r this variable.

¢) Trying and modifying various SUMT parameters. Two penalty
functions were used along with a variety of response factors.

It should be noted that through numerous analyses, the user :ended
up having a "feeling" or intuition for the optimization process and
trends, Though it seldom had any physical or engineering
justification, it played a non-negligible role in the final design
process.

By inspecting table 2 and the accompanying final designs in Figure
8, one can conclude that:

1) Interactive optimization yielded better results than batch
($4,034 versus $4,509) in designing a beam which would have cost
$5,109 according to [9]

2) The design obtained interactively 1is ‘“superior" to the one
obtained by batch optimization (note the unpractical and
inneficient bottom flange size in Figure 8.b)

PROGRAM IMPLEMENTATION

IGNOP is a highly modular program written in 18 subroutines and
approximately 6,000 FORTRAN 77 executable statements, Through
subroutine FUNCT and UREAL it can be linked to virtually any design
problem which can be formulated wmathematically as a nonlinear
optimization minimization. (However, 1inor adjustments to some of the
graphical displays would have to be made.) The graphics 1is supported
by a device 1independent, Core based, graphical package (DI 3000)
[10]. Thus IGNOP could be transportable to virtually any graphical
device and system, Currently this program is running on an Apollo DN
300 workstation,

FUTURE EXTENSION

This research program shall be extended to include other
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applications and to further take advantage of interactive graphics
optimization,

Programs like IGNOP should have great potential in automotive and
aerospace structural designs. The authors would greatiy appreciate
if, through this-conference, such nractical applications are brought
to their attention,

Another feature of IGNOP and of most optimization programs is that
literally hundreds of analyses are performed, and tneir results are
only temporarily used and never saved, In practice, we know that
numerous attempts are made before a final design is finally selected.
This should prompt us to take further advantage of those analyses by
keeping their results in an extensive data base which should be
continuously updated. At the very end, and only as a complement to
our previous analyses, one could attempt to use interactive graphics
to selectively and intelligently plot those data and attempt to find
a dbetter design,

CONCLUSION

An interactive graphics program for the constrained optimization
of nonlinear structural problems has been developed. It is found that
such an approach will yield not only more economical designs, but
also better ones.
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SPAN LENGTHeeeooeveoesevesscsscsccancns
SUPERIMPOSED LEAD LOADeescveeessconnas
SUPERIMPOSED LIVE LOAD:evevanscnnsnnne
DENSITY OF CONCRETE«eeecsecacesncvacss
CONCRETE STRENGTH (FC')eeecnoesscocess
TRANSFER CONCRETE STRENGTH (Fci).e....
CREEP COEFFICIENT ooses-vossocsonccnss
PRESTRESS Loss.........l.........l....
ALLOW. COMP, INITIAL STRESS.eeceveccss
ALLOW. TENS. INITIAL STRESS:cceccvccss
ALLOW. COMP, SERVICE STRESS.cescccosee
ALLOW. TENS, SERVICE STRESS.ceeccesass
YIELD STRo OF NON’PRESo REINF.....QQ..
TYPE OF PRESTRESSING STEEL.ceevccoocss
PRES. TENDON CONFIGURATION ..coveeesss
MIN. CONC. COVER OF PRES. STEEL..vvsss
MIN. CONC. COVER OF NON-PRES. STL.....
MAXIMUM ALLOWABLE CAMBER.ceeessecscses
MAXIMUM D.L DEFLECTION:cescovscoocscss
MAXIMUM L.L DEFLECTIONscecoocececnnses
COST OF CONCRETEcoooouooonoooaoao-o.oo
COST OF FORMING...........'..I..l.'...
COST OF PRESTRESS ST ELevecscececcanas
COST OF NON-PRESST. STEELeoeceeczesaes

Comp stl area

DESIGN
VARIABLES

INITIAL

Top fl. width{177.8 cm (/0.0 in) .

Bot f1 width
Bot f1 depth
Web width

Total depth |1

Tens st area

Top fl. depth{ 15.2 ¢cm (6.0 in) 10.3

5.6 cm (14,0 in)| 25.9

21.9 cm (48.0 in)| 146,1

Pres stl areal 31.6 cm2 (4.9 1n2 22.9
12,9 cm2 (2.0 in2 4,1

3.2 cm2 (0.5 1n2) 6.0

[ T L Ll L L L T T e T P P L e L L P Y LY L L T Ty

24.4 n (80.0 ft)

595,3 Kg/m (0.4 K/ft)
1785.8 Kg/m (1.2 K/ft)
2322.7 Xg/m3 (145 PCF)

34,5 MPa (5000 PSI)
27.6 MPa (4000 PSI)
2.32
15,9 %
0.0041 Fci (0.6 Fci)
0.25 sqrt(Fci) (3.0 sqrt(Fci))
0,0031 Fci (0.45 Fei)
1.0 sqrt(Fc') (12,0 sqrt(Fc'))

413,7 MPa (6C KSI)
1723.7 MPa STRAND (250 KSI)

PARABOLIC

20.3 cm (8.0 IN)
7.6 ¢m (3.0 IN)

-12,7 cm (-5.0 IN)
15.2 cm (6.0 IN)
7.6 cm (3.0 IN)

104.6 $/m3 (80.0 $/CU.YD)
21.5 $/m2 (2.0 $/FTSQ)
2.8 $/Kg (1.28 $/LB)
0.8 $/Kg (0.37 $/LB)

GPTIMIZ

cm (73.09 in){ 1
cm (4.07 in)
cri (11.63 in)

ED
INTERACTIVE

01.6 cm (40,0

-------------------------------------------------------------------------------

Example Problem

R, tecemccecenannannan- e mccccc s s Nt dn st SN e AN SR e +

in)

12,7 ecm (5.0 in)

s e e

em (7,52 in) | = ececccca-a-

cm (10,18 in); ¢5.4 cm (10.0 in)
em (57.52 in){ 134,65 cm (53.0 in)
c2 (3.55 in2){ 20.8 cm2 /3,23 in2)
cm2 (0,64 in2)! 11.3 cm2 (1.75 1n2)
cm2 (0.93 in2) in2)

3.2 cm (9.5

Povsressseaase rccenenecscusaneaa e " ---------------------- }' ---------------------
Aciive Compressive Ultimate Ultimate
Constraint stress, initial Moment Moment

LTTETLR LT Y] Poccnvrenannssnswrcens T L L L L L L LT PR Penvwccwnnoecsavevacacaa

Total cost $ 1 5109 1 4509 1 4034

Table 2, Comparison of Design Resulis
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INTERACTIVE GRAPHICS
MOMLINEAR OPTIRIZATION
29-0EC-88 10:40:14
"n’v o"lnlnﬂz‘o'

[ProBLEN ocrmmon
CONSTRAINT VALUES
e e SRR S L T T E e [DESIGN VARTABLES
DESIGN ANALYSIS

1
T

tyv et

INITIAL COST $4.745c<82

- - - .
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- - el . 0. jevAwation MM »
- ‘e L - - SPONCE 1M1 28238
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Figure 2. Control Page
IGNOP

INTERACTIVE GRAPMICS
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1-MOV-84 16.68:6)
] |
; X Jr
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T MARPING SeTHIRD  HARP "’M‘?é’

cuy 'l

COSt OF FORMING ..... ..
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Figure 3. Problem Definition
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(Al
ALLOW. COMP INITIAL STRESS................ ® 38 3fci
ALLOM. TENS. INITIAL STRESS. .. ............ 3.80 3SART (fci>
ALLOW. COMP. SERVICE STRESS................ 0.48 3fc
ALLOW. TENS SERVICE STRESS................ 6.00 ISQRT(FO)
MAXIMUM ALLOWABLE CAMBER. ................. ~1.33 in
MAXIMUM D.L DEFLECTION. . ................. 1.33 in
MAXIMUM L.L DEFLECTION. ... ... .. ... ... 9.67 in

Figure 4. Constraint Inequalities Limits
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SENSITIVITY ANALYSIS OF LIMIT STATE FUNCTIONS FOR PROBABILITY-BASED PLASTIC DESIGN
Dan M. Frangopol

Department of Civil Engineering
University of Colorado, Boulder, Colorado 80309

SUMMARY

The evaluation of the total probability of a plastic collapse failure Ps

for a highly redundant structure of random interdependent plastic moments acted on
by random interdependent loads is a difficult and computationally very costly pro-
cess. The evaluation of reasonable bounds to this probability requires the use of
second moment algebra involving many statistical parameters. A computer program
which selects the best strategy for minimizing the interval between upper and low-
er bounds of P¢ is now in its final stage of development at the Universitv of

Colorado. For the purpose of investigating the relative importance of variou: un-
certainties involved in the computational process on the resulting bounds of P¢,

sensitivity analysis is used. Numerical examples are provided to illustrate
response sensitivities for both mode ard system reliability of an ideal-plastic

portal frame.
BACKGROUND

As stated recently by Ellingwood and Galambos (ref. 1) "The development of
probability-based 1imit states design has been motivated by a desire to qu~—tify
performance of structures and to treat uncertainties in loads, resistances and
analysis in a more rational way". In probability-based limit states design
probabilistic methods are used to guide the selection of statistical parameters
which account for the different uncertaintie; underlying the various loads and
strengths and give the desired level of risk against occurrence of each limit
state of interest. The probability of failure (unfavorable performance) is used
as 2 consistent measure of the level of risk. This probability has an absolute
meaning (ref. 2) - "the 1ikelihood of occurrence of some predefined 1imit state";
it may be a serviceability 1imit state (e.g., excessive deflection or rotation,
initial yielding) or an ultimate 1imit state (e.g., partial or total collapse,
instability). Since there is less danger of loss of life, a higher probability of
occurrence may be tolerated for serviceability 1imit states than in the case of
ultimate 1imit states (ref. 3).

The conceptual framework for probavility-based 1imit states design is
provided by the classical theory of structural reliability which {s based on
full-distribution procedures (refs. 4-7). In this context, the loads and
resistances are assumed to be random variables and the probability of failure for
the 1imit state of interest can be computed on the basis of assumed distribution
functions.

Consider first a 1imit state which contains only two random variables R and
Q. If R is the resistance of a structural member in this 1imit state, Q is the
load effect (dimensionally consistent with R), and if R and Q are statistically
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independent, then the probability that the 1imit state will be rezched
(probability of faflure) P is computed as

Pe=P(R<Q) = £ FR(q)fQ(q)dq (1)
in which P (R < Q) = probability of the failure event (R < Q), FR(-) = the

cumulative probability distribution function of the resistance, and fg(.) = the
probability density function of the load effect.

If both the resistance and the load effect are assumed to be normally
(Gaussian) or lognormally districuted, Pf can be readily determined from

standard tables. For other distributions a numerical integration is required to
determine Pf.

In general, a 1imit state expression contains more than two random
variables. As examples, consider the superposition of stresses in the beams or
columns of a building due to gravity and wind loads, the total yield force of bars
in a section of a concrete beam, and the ultimate capacity of a high-strength
bolted connection. Therefore, R and Q are usually functions of other basic random
variables

R = R(Ry, Ry, =oe, R} (2.)

Q-= Q(Qla 029 ey Qn) (2.b)

Then, the 1imit state equation, which represents the boundary between the safe and
failure regions, can be described in terms of a finite set of basic variables

9(X) = g(Ry, Ry, see, Ry Qyy Qpy <00 Q) =0 (3)

where Ri and Qj indicate a basic resistance and load variable, respectively, and

the vector X relates all these variables. The expression (3) is called the limit

state surface, functior or equation. By convention failure is said to occur when
g(Xx) <0 (4)

The probability of failure Pf is the probability content of the failure
domain D = [g(X) < 0],

Pe = ID fy(ris Pas coey v, Q1 Qg eoe g )dx (5)

in which fx(-) is the joint density function of R,, R,, «.., Rys Qs Qz0 020, Q
and dx = drl drz "’dr'm dq‘dq2 see dQn-

If the m+n basic variables are statistically independent, the probability of
failure (5) can be written as the product of all the individual density functions
fR1 (r1) and fQJ(qJ). Thus, the failure probability (equation 5), becomes

n
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= Ip fRI(rl)fRZ(rZ) ooe me (ry) le(q,)foz(qz) oo f01(qn)dx (6)

Notice that the assumption of independence is not restrictive since any set
of dependent variables can be transformed into a vector with independent
components (ref. 8).

As is well known (refs. 9 and 10), because of scarcity of statistical data it
1s usually impossible to construct the joint density function fx(-) associated

with equation (5) and/or to determine each of the individual density functions as-
sociated with equation (6). Even in the case where statistical information may be
sufficient to determine these functions, it is . ften impractical 1f not impossible
to perform numerically the multidimensional integration over the failure domain D
in order to evaluate P (refs. 3 and 11).

The difficulties outlined above have motivated the development of various
approximate reliability methods. The present approaches take their origin in
three papers published in 1969 by Cornell (refs. 12 to 14). The two central ideas
underlying the theoretical basis of the method proposed by Cornell are: (a) the
use of only first and second moments to characterize the entire set of random
variables (R;, R,, +++, Ry, Q;, Q;, ++- Qq), and (b) the linearization by

means of a Taylor series expansion (truncated at the linear terms only) of the
limit state function g(X) at some appropriate checking point (also called design

point) x° (rl, r2, ceey Tms ql, qz, «es qp) yielding a linear function 9q(X)

to be used in place of g(X) for purposes of performing the reliability
anastis. The measure of reliability associated with a particular Timit state i
is given by the reliability (safety) index 51, which is the reciprocal of ti

coefficient of variation of the linear function g,:

By = Gp/olgy) = 1/V(gy) (7

in which g, = mean value of g,(X), olgy) = standard deviation of go(X), V(g,) =
coefficient of variation of go(X).

By linearizing the function g(X) at the mean values of the variables, as
suggested in earlier first-order second-moment (FOSM) methods, in truncating the
Taylor series expansion of the 1imit state expression (3) at the first-order

(1inear) terms, g, and a(g,) then are obtained as:

T = 9(R], R3, «oo, R;, T1» gy ooe, Q;) .3 (8)

m 2 ) n 2 1/2
olgg) = [121 (3g/3Ry)g o*(Ry) + kzl (3g/3Q, )¢ oz(Qk)] = o(g) (9)

in which (3g/3Ry), and (ag/an)o indicate that the derivatives are evaluated
at the checking point x° of coordinates (R}, 25 vee, Ri U:, 2y 000, U') Note

that equation (9) is valid for statistically uncorrelated Ry and Q. More
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generally, correlation among resistances variables Rj and load-effect
variables Qy, and independence among resistances and load-effect variables will
lead to:

m 2 m m
(go) = [ § (ag/aR,), o2(R,) + 2 (39g/aR;)o (3g/3R;), cov (R, R,)
7o) = L1 (20/3Ry)g o2k, E1 3t P9/ReD0 GoalaRy), 7
+ f (39/30, g 2(Q, ) + 2 E f (3g/20, )9 (29/30,) cov (Q,, 00112 = o(g)
g ’ = g
T LI KE1 gebal k'o 2’0 k> g (10)
in which cov(Ri, RJ) = Riﬁj - R}R& = °‘R1) o(Rj) p(Ri, RJ) (11.a)
covl{G, 0,) = Q0, - 37, = olq,) o0, o(Q,, Q,) (11.b)

are the covariances among resistances variables and among load-effect variables,
respectively, and p(Xi, Xj) is the correlation ccefficient between X1 and xj.

This approximate technique sometimes yields excellent agreement with the
exact solution B; = g/0(g). Notice that if g(X) is Tinear, equation (8) is

exact, g = g,, and equations (9) and (10) are also exact, o(g) = olg,), for

independent and correlated variables, respectively. |

A serious drawback of the earlier FOSM methods is that the checking point
represented by the mean values of the variables may not be informative for
reliability evaluation of nonlinear 1imit state functions since significant errors
may be introduced in approximating g(X) by the linearized form go(X) (refs. 3, 8,
11 and 15). Furthermore, the use of mean-value point as 1inearization point fails
to be invariant with respect to the reliability index for equivalent formulations
of the same 1imit state failure event (i.e., R-Q <0, gn (R/Q) < 0, R/Q < 1),
(ref. 16). These two inconveniences 'lack of accuracy for nonlinear limit state
functions and lack of Tnvariance) may be circumvented by selecting an appropriate
checking point x° and by obtaining a better approximation to the limit state
surface at the design point. The selection procedure, which is one of the key
considerations for improving the FOSM results, can be made by using one of the ,
so-called advanced first-order second-moment (AFOSM) methods (e.g., Rackwitz !
iterative procedure (ref. 17)). Improved estimates of the probabilities of ‘
failure have been suggested for highly nonlinear 1imit states by approximating the '
1imit state surface by a quadratic (instead of 11near) surface at the design point ;
(refs. 18 and 19). The approximation is such that the two surfaces have the same
tangent hyperplane and second order derivatives at the design point. More
accurate approximations are available if higher order terms are retained (ref.
20). However, these approximations are not computationally simple.

A review of the AFOSM methou. was recently presented by Shinozuka (ref. 9),
who also proposed a Lagrange multiplier formulation for evaluating the reliability
index g and locating the checking point on the limit state surface. According to
this formulation, the point on the limit state surface defined in the space of
reduced (standardized) variables
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with the minimum distance to the origin is the most probable failure point (point
of maximum 1ikelihood) if Gaussian variabilities are assumed. As a practical
alternative to other methods, Shinozuka recommended the use of the most probable
failure point as checking point even in the case of non-Gaussian variabilities.

The FOSM and AFOSM methods mentioned above give values of the reliability
index 8 which sometimes may be directly related to the probability of failure
Pf. For example, if R and Q are normal and statistically independent

variates, then the probability ¢/ failure is

Pe=ol- —2 -0 74, (13)
7a?(R) + o2(Q)

in which ¢[<] = the standardized norma1 distribution function. Similarly, if R
and Q are lognormal variates, then P

(iK1 * V2(Q)
]
Pe =@ {f = ¢ [-8] (14)

| {enf(2 + vz(o))(a + v2(R)) 1)1/

In such cases, the reliabiiity index 8 (denoted above by B, for normal variates,
and g, for lognorma1 variates) is related to P¢ through

g = -¢-1 vl (15)

in which ¢~1[+] = the inverse standardized normal distribution function.

In the absence of information as to the type of probability distribution of R
and Q, the reliability index 8 is a useful measure of safety; the larger the 8 the
smaller the probability of unsatisfactory performance Pf. In such cases, the

failure probability in the 1-th failure mode is usually approximated by

in which By is the shortest distance between the origin and the limit state

surface defined in the standard space of the reduced variables (12). In this
manner, some guidance from equation (16) is available to relate the probability of
failure to 8 when the probability laws of R and Q cannot be determined exactly.

LIMIT STATE PROBABILITIES OF STRUCTURAL SYSTEMS

Few structural problems of practical interest can be reduced to one failure
mode problems. The individual failure modes are almost always possible faflure
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paths of a structural system so that additional probability analysis is required
for an overall system reliability assessment. The general formulation of the
overall system reliability of an m mode-of-failure structure is well known (refs.
5 to 7, 21 and 22} for both series and parallel systems.

A structure which belongs to the class of series (or ‘'weakest-1ink') systems
will fail if any failure mode occurs. Then, the probability of fajlure of the
system, Pf, can be written as

a
P = Plogyceon <0) = PLU (g < 0)] (17)

1

where ggystem 1S the system failure expression (or system safety margin) for an
ideal series system, gy is the i-th failure mode expression (mode safety
margin), the event ggystem < O represents the failure of the s'stem, the event
gi £ 0 means that the i-th failure mode has been realized, and U is the symbol
of union of failure mode evants. The equation gsystem = 0 1s denoted by the
1imit state function (or failure surface) of the system, and gi = 0 is denoted
by the 1imit state function of the i-th failure mode.

In contrast, an ideal ductile parallel (or 'fail-safe') system fails if all

of its ailure modes occur. Consequently, the probability of failure of the
system, Pf, is

m
p 0) = PLA (9 <O)] (18)

£ = PlOgycem <

where N1 is the symbol of intersection of failure mode events (g, < 0).

Many structures exhibit characteristics that are a combination of the series
and parallel systems (refs. 23, 24, 25). For example, consider the steei ductile
frame with its seven critical sections (1, 2, ++., 7) and ten possible collapse
modes (a, b, +«¢, J) shown in Figure 1 (ref. 26). By considering rigid-plastic
theory, assuming unlimited ductility for the rritical sections of the structure
and neglecting the influence of the axial load on the value of the plastic moment,
the general 1inear expression for the safety margin of a coliapse mode (failure
mode expression) is

in which A1J and B12 are constant coefficients, depending on frame geometry, MJ =

random plastic moment at section j, and L, = random 1oad that is active in

producing failure mode 1. Assuming tnat the plastic moments in positive and
negative bending are the same at any of the seven critical sections (one plastic
moment is associated with one critical section), then the safety margin
expressions for the collapse modes of the frame shown in Fig. 1 are:
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gh = My + 2M, + Mg - 5P beam modes
(20.a)
gc =My +2M, + M, - 5P (3 ringes)
Ge =M + My + M, + M, - 4H
gfF =M + M, + M, + M, - 4H panel modes
(20.b)
9g = M, + M, + Mg + M, - 4H (4 ninges)
gy =M, + 2M, + 2M, + M, - 5P - 4H } combined modes
(20.c)
g =M, +2M, +2M; + M, - 5P - 44 ) (4 hinges)

Each beam wode involves four active random variables at collapse (3 plastic
moments and the gravity load), each panel model involves five active random
variables (4 plastic moments and the lateral load), and each combined mode
involves six active random variablec !4 plastic moments and both the gravity and
the lateral loads).

A failure mode can be modelled as a parallel system of plastic hinges, since
failure via an individual mode is condicioned by the occurrence of all plastic
hinges related to this mode. Therefore, if the event 9ij < 0 means that the

J-th plastic hinge has been formed in the i-th failure wode, then the probability
of plastic collapse of the frame shown in Figure 1 may be obtained hy considering
the probability that at 1:2ast one of the ten possible collapse modes will occur:

lu

. p(gsystem <0)=p [121 (a; <0)] (21.a)

or, equivalently, the probability that enough plastic hinges will occur to turn
the structure or part of it into a collapse mode:

[10 g ( )] ( )
P.=P[U <0 21.b
f j=1 gm M=

The equation (21.b) is the probability of failure of a system of parallel
subsystems (plastic hinges) in series (failure modes).

For ductile systems the probability of failure in a given mode is independent
of the sequence of plastic hinges occurrence (ref. 23, 25, and 27). In the case
of brittle systems the failure sequences are path-dependent. Consequently, the
probability that a brittle mode occurs is
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Pf1 = P(gi <0)=0p [kgl (gik < 0)] (22)

where 94k is the safety margin expression for the k-th component in the

failure sequence comprising mode i, and s is the total number of possible failure
events associated with this failure sequence.

For example, if the first mode in equation (17) involves brittle component
failures, this equation should be modified to a:count for the presence of the
brittle failure sequence associated with this mode, as follows

s
Pe = P(gsystem <0)=°P [kgl (9, £0) U (g, <C} U .« Ulg <0)] (23)

Consider the general case of a structural system consisting of structural
subsystems modeled as a network of intercorinected components. Employing the
concepts of system reliability introduced above, it is possible now to write the
general expression of the probability of failure of such a system.

The probability of failure of a system composed of m parallel subsystems
connected in series is the probability of a union of intersections

i
P 20ygtan <O 7P LU L0 Loy <O (24)

where 9 1s the safety margin expression (or 'performance function') of link
ij, »nich is the j-th component in the i-th parallel connection.

For m series subsystems connected in parallel Pf can be written as the
probability of an intersection of unions

m o omy
Pe = P(gsystem L0 =" {153 [321 (gij <ol .

where g1j is the safety margin expression of the j-th component in the i-th
series connection.

APPROXIMATE RELIABILITY ANALYSIS OF SERIES SYSTEMS

The exact evaluation cf 1imit state probabilities of various structural
systems presented above (equations 17, 18, 23-25) is a very difficult process for
non-trivial cases because the experimental data are often too poor to establish a
Joint probability distribution of the failure modes. The presence of statistical
correlation between failure modes through loading and resistances complicates this
process. Even if the joint probability distribution is available an exact
calculation of P¢ requires evaluation of multiple integrals which implies an

enormous computational effort. For this reason methods for approximate
reliability analysis have been developed. Some of these methods are briefly
mentioned below for the particular class of series systems; with dependent failure
modes. This type of system may be used to compute the overall probability of

166



collapse of a plastic structure, as well as the overall probability of failure of
structures in which system failure is deemed to occur if any one e’ement reaches
its crivical capacity (e.g., statically determinate structures).

As an alternative to the exact evaluation of the total limit state
probability of a series system, Pe (see equation 17), several approximate

methods are available.
A first estimate of Pf in terms of lower and upper bounds was proposed by
Cornell (ref. 6):

Pe > max Ps (26.a)
i=1 i
m m
Pe <l - E (1 - Pfi) x 121 Pfi (26.b)

in which P, = Plgy < 0).
The Tower bounu (26.a) is obtained by assuming *he mode failure expressions
perfectly dependent:

Pyj = p(gi, gj) =1 for all i and j (27.a)

in which Pij is the correlation coefficient between the 1-th and the j-th

failure mode, while the upper bound (26.b) is derived by assuming stat.stical
independence betwern mode failure expressions

The Cornell bounds i .72 i+, 26) can be impreved by taking into account the
correlation between a pair or “ailure mocas. In this context. Kounias (ret. 28)
and Ditlevsen {refs. 29-31) propased better bounds involving the intersections
of any two failure mode events. These narrow bounds are as follows:

m i-1

Pe>P. + § max{ip, - | P, , 0) i28.a)
F="fi g2 f a1 Ty

m m (28.)
Pe< § Pe - 1 max P 28.b

Foia B 422 ja Ty

in wiich Pfl = P(g, < 0), and P, is the joint probability
13
PfU = Plgy <0, g4 < 0) (29)

that both failure modes i and j will simu)taneously occur.
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Note that the bounds given by equations (28) depend on the ordering of
failure modes. The closest bounds are obtained by ordering the failure modes
according to decreasing values of their probabilities of occurrence (i.e., Pg >

3_Pf2, > +s 2 Pe ). Therefore, in equation (28.a) it is convenient to define
m

m
P, =max P
fo 4 By

The bounds (28) involve the evaluation of the probability of occurrence of
{ntersection of events Pf1J for each pair of failure modes. This probability

is difficult to obtain, since in general the joint distribution function of a pair
of failure modes is not available. The basis of the evaluation of Pfij is an

advanced first-order second-moment system reliability analysis (ref. 31). This is
accomplished by transforming the initial formulation space of the basic variables
into a space of reduced normal variates. In this last space, the m 1imit state
equations (or "the failure set") represent m intersecting hypersurfaces which are
bounded by the respective tangent hyperplanes at the design points for the
individual modes. The distance from the origin of the reduced variates to the
i-th design point represents the i-th mode reliability index s,. The joint

failure probability Pfi‘1 is then calculated as follows:

Pe =¢ (-B., -B,; pys) (30)
fij . WA B

where & ('Bi’ -Bj; pij) is the distributicn function for a bivariate normal vector

with zero mean values, unit variances and correlation coefficient p-5¢ The
rumbers s1 and Bj are the reliability indices of the i-th and j-th failure

modes; therefore, the limit state probabilities for these modes are determined .
using equation (16). The correlation coefficient between the i-th and j-th s
f-ilure mode, CIET is the ¢ 'ne of the arqle % 5 between the normal

vectors to the hyperplanes . .ch represent the approximations of the Timit state
equations of the i-_h 3.0 j-th failure mode

Pyj = €OS oy (31)

Therefore, using the bivariate normei integral (30) the exact second-order bounds
(28) are as follows:

m i-1
Pe > 0{-gy) + g max [o(-8;) - j;l o(-8;, ~By 043)s 0] (32.a)
T el - T ( )] (32.b)
P, < ol-g,;) - max Lél-B;, ~Bs; 32.b
f—1§1 1 122 j<i i "Fgr Pij

An efficient mcthod for computing the bivariate normal integral (30) has been
presented by Owen (ref. 32). Howevei, if needed, curther approximation of this
integral may be obtained when Bys By» and pyj are given, by using the conditional
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bounding method of the bivariate normal probability (ref. 30). For example, the
f?llowing bounds may be derived for positively correlated failure modes (pjj >
0): -

’(’81, ‘Bj; Dij) Z_max [°('81) 0(-Bj/i)’ O(-Bj) 0(‘Bi/j)] (33.3)
0(‘31, ‘Bj; pij) 5_0 ('81) 0('BJ/1) + ’('SJ) O(-Bi/:) (33.b)
where
= 172
Bi/j = (Bi - R: Dij)/(l - pzij) (34.3)

- 1/2
Bj/i = (Bj - Ei pij)/(l - pzij) (34.b)

The bounds (33) on the bivariate normal probability (30) are then used in
equations (32} as follows: for the iower bound of Pf (32.a) it is necessary to
use the approximation of °('Bi"8j; pij) given by the upper bound (33.b), and for
the upper bound of P, (32.b) it is necessary to approximate o(-Bi,—Bj; pij)

by its lower bound (33.a). The advantage of using bounds on the bivariate proba-
bility (30) is their convenient computation solely by use of second moment algebra.

A different method for approxim2iing the total failure probability (equation
17) of a series system with dependent failure modes was introduced by Vanmarcke
(ref. 21). This method is based on the earlier work of Moses and Kinser (ref.
33), which has shown that equation (17) can be expressed as follows:

m
Pe=P. + 7 a,P (35)
RS PR s S
where
a; = PL(g; >0)n(g, > 0)N..cn(g, , >0) '(g1 < 0}] (36)

is the conditional probability tnat the first i-1 modes survive given that mode i
occurs. Note that the failure modes are arranged so that Po > P > oo > Pg

- m
because the value of the conditional probability (36) dependé on tﬁe ordering of
failure modes.

The method introduced by Vanmarcke (ref. 21) by (upper) bounding the
conditional probability a; reduces in equation (36) the number of i-1 survival

events, for which a joint probability distribution and a lengthy multiple
integration are necessary, to only one:

i-1
a, < min P[(g, > 0)|(g; < 0)] = a for all j = 1,2,000,i-1 (37)
i< 5 i i £ 1

where a} = 1 and a, = 2,. Therefore, an upper bound of the system failure
probability P is
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m m
P, <P, + a* P, =P, +a,P. + a* p (38)
FEPe v L APy =P v Py v a7 P
Further, using a first-order approach, Vanmarcke introduced a useful approximaj
tion of the conditional probability P[(gj > 0)|(gi < 0)] in terms of the coeffi-

cient of correlation between the failure modes i and j, and of the safety indices
By and aj associated with these modes, as follows (ref. 21):

P[(g‘j > O)I(g1 <0)] =1 - 6[Max ( ) » 8;)1/6(8,) (39)
,pijl
in which it is assumed that the probability of occurrence of the i-th mode, Pfi
= G(g,), depends on g, only.

A different method which avoids calculating conditional probabilities
resulting from conditions leading to failure via pair of failure modes is the
probabilistic network evaluation technique (PNET) of Ang and Ma (ref. 34). This
method is based on the notion cf demarcating correlation coefficient Py

assuming those failure modes with high correlation (pij 3_po) to be perfectly
correlated, and those with Tow correlation (pij < po) to be statistically

independent. As might be expected, one of the key considerations is the selection
of an appropriate value for Py The failure modes must be arranged in

decreasing order of their probabilities of occurrence, and in each group the mode
with the highest probability of occurrence is chosen as the "representative"
failure mode. That is, the failure probability of the entire grour is assumed to
be the probability of the "representative" event of the group. Since the
different groups are considered statistically independent, the overall probability
of failure of the system is approximated by

all ( all (
P.<1- TT 1-7P ) = P 40)
F="" groups fagroup” = o bups f-9roup

References 35 and 36 discuss the PNET method in detail. Other methods for
approximating P are reviewed in a ~ecent benchmarck study (ref. 37). Although

this study was intended only to assess and compare the computational accuracy and
efficiency of different methods to determine collapse failure probabilities of
simple plastic frames, it did demonstrate the nced for a criterion for discerning
the importance of approximations used in the evaluation of the 1imit state
probabilities of series systems.

Coupled with the problems related to appropriate approximations used in the
methods for reliability evaluation of series systems are problems related to the
accuracy needed in describing the statistical information required for computa-
tion, This information is associated with (1) basic design variables (i.e.,
loads, strengths) such as mean values, dispersions, coefficients of correlation,
and (2) other parameters such ar the overall relfability level (given by the value
of the global probability of féi.ure). The main reason for needing this informa-
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tion is to establish a measure of the way the limit state function associated with
a prescribed reliability level varies with changes in the statistical parameters
that define each problem. To obtain this information sensitivity analysis is
required.

COMPUTER-AUTOMATED PLASTIC SENSITIVITY ANALYSIS

A reliability-based computer program based on the second moment reliability
concept and using a matrix formulation of reliability analysis due to Vanmarcke
(ref. 21) was prepared for evaluating the global probahility of collapse of
plastic frames. Failure of a frame structure is defined as a formaticn of at
least one coilapse mode due to transformation of a certain number of critical
sections in plastic hinges. The program has the following essential features:
(a) the engineering modeling which means identification, description and
enumeration of the m possible collapse modes of a structure is generated by the
computer; (b) probabilistic calculations to determine correlation coefficients
between any two failure modes Pij and individual collapse mode probabilities

Pi = @(-31) are then automatically computed; (c) upper and lower bounds on
the true probability of system failure Pf are evaluated and, if necessary,

improved in an iterative manner until the bounds are sufficiently narrow for
practical purposes (e.g., + 1% error); and (d) sensitivity of the response
quantities to change in problem parameters is evaluated.

The detailed description of this program is beyond the scope of this paper. ‘
Its conception was strongly influenced by the program for interactive ’
reliability-based structural optimization of plastic structures described in ref.
(38). The present program extends the reliability-based evaluation phase of the
program presented in ref. (38) to other probabilistic methods, including Cornell's
bounds (equation. 26), Ditlevsen's bounds (equations 32 using the approximations
33 for the bivariate normal integral), exact second-order bounds (equation 32), i
Vanmarcke's upper bound (equation 38 using the approximation given in equation
39), and Ang and Ma's upper bound (equation 40). The basic idea of the evaluation
technique is to compute lower and upper bounds on P, sufficiently narrow for
practical purposes. In reaching these bounds the e6a1uat10n technique begins with

Cornell's bounds and proceeds from one bound to a better bound. It is noted that
for some particular examples even the Cornell hounds are sufficiently narrow if
the level of the admissible error is sufficiently high (e.g., 5%).

Sensitivity evaiuation is valuable f.- estimating the effect that changes in
the input parameters will have on the safety index of an individual failure mode,
and on the probability-based 1imit state function of the overall structure. The
V1imit state function for a plastic structure with uncertain interdependent plastic
moments and acted on by random interdependent loads is defined here as an iso-
safety surface in the space of the mean values of the loads. Two different points
on the 1imit state surface represent two different combinations of the mean values
of the loads leading to the same value of the overall probability of plastic

collapse Pg.
The information provided by sensitivity analysis of the 1imit state furction
is of vital importance for specitfying the required exactness of statistical data

used as input in the computaticn, so that a reasonable level of confidence in the
resulting reliability level against plastic collapse can be achieved.
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NUMERICAL EXAMPLE

Many sensitivity examples of 1imit state functions for rrobability-based
plastic design of various framed structures have beer studied. One of them is
considered here. The example deals with the rectangular portal frame shown in
Fig. 1. All random variables, including the loads P, H and the seven plastic
moments M, M,, ««-, M, of the critical sections, are assumed to be modelled by
second moment algebra (mean values, coeficients of variation, coefficients of cor-
relation). The statistical dependence between loads and between plastic moments
is accounted for through the coefficients of correlation p(P,H) and p(Mj, Mj),

respectively. All plastic moments are assumed to have the same mean value

M = 178.5kNm and coefficient of variation V(M), and to be equicorrelated p(Mi,
Mj) = p(M). The safety margin expressions for the ten failure modes (a, b, <.,

j) shown in Fig. 1 are defined in equations (20).

Some sensitivity results concerning the individual collapse mode reliability,
the correlation coefficiert between pair of collapse modes and the 1imit state
isosafety curves corresponding to plastic collapse of the frame shown in Figure 1
are plotted in Figures 2 to 11.

Figures ? to 5 illustrate the influence of different statistical parameters
that define .ne random structure and the random loading on the safety index g
(equation 7) associated with each of the ten [ ssible collapse modes shown in
Figure 1. It is interesting to note that: (1) the combined failure modes i and j
are the only ones influenced by the correlation coefficient between loads p(P,H),
since both P and H are active only for these modes; (2) the panel and the
beam failure modes are insensitive to the coefficient of variation of the vertical
and horizontal load, respectively (see Figs. 4 and 5); (3) the assumption of
perfect positive correlation of plastic moments, p(M;, Mj) =1, leads to

smaller mode reliabilities as compared to non-correlation; (4) the assumption of
perfect negative correlation of the loads, p(P,H) = -1, leads to larger mode reli-
abilities as compared to non-corr2lation p(P,H) = 0, and/or to perfect positive
loading correlation, p(P,H) = 1; (5) the reduction in the safety index of indivi-
dual coilapse modes with increasing plastic moment coefficient of variation

V(M) (see Fig. 3) is more sensitive to the correlation bctween plastic moments

in the high rany= of V(M); and (6) in some cases, the influence of the coefficient
of correlation betw2en loads p(P,H) on the safety index g can be much more signi-
ficant than the influence of the coefficient of variation of an individual load.
(This is the case in Figure 5 where the assumption of a perfect negative loading
correlation leads to an increase in the safety index of the combined failure modes
with increasing coefficient of variation of the lateral load.)

Figures 6 to 8 show the influence of the coefficient of correlation among
plastic moments p (Mg, Mj) on the coefficient of correlation among a pair of
failure modes p(gj, gj}, under the assumption that the loads are independent:
p(P,H) = 0. The following remarks may be made regarding the sensitivity of p(g¢,
gj) top(My, Mj) and to the type of failure modes: (1) even if all loads
and plaztic moments are statistically independent, collapse modes may be highly
correlated through common loads and/or plastic moments; (2) the correlation
coefficient between any pair of collapse modes increases with increasing values of
p(Mj, Mj); (3} the correlation coefficient between any two coliapse modes of
the same type (i.e., beam-beam, panel-panel, combined-combined) is always larger,

for the same value of (Mg, MJ), than the coefficient of correlation between
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different types of failure modes (i.e., beam-panel, panel-combined,
beam-combined), and (4) the influence of p(Mj, Mj) on p(g4, ¢j) decreases
with the increasing values of p(Mj, M;).

The influence of different parameters on the plastic limit state isosafety
curves {P¢ = 10~°) evaluated according to three different methods ircluding

Cornell's upper bound method, Ditievsen's upper bound method and Vanmarcke's meth-
od is presented in Figures 9, 10, and 11, respectively. Figure 9 gives plots of
the limit state curve for four combinations of cases of correlation among plastic
moments and among loads. It is important to observe that the safe loading space
increases as the statistical dependence between plastic moments and/or between
loads decreases. For a given correlation among plastic moments the sensitivity of
the 1imit state curve to the correlation among loads is present only when the
combined failure modes, i and/or j, are dominant. This sensitivity increases with
decreasing values of the correlation coefficient between plastic moments. Figure
10 shows the influence of the coefficients of variation of loads on the plastic
1imit state isosafety curves corresponding to statistical independence among

all variables. As expected, the safe loading space increases with decreasing
values of the load coefficients of variation. The 1imit state curves become less

sensitive to V(P) (or V(H)) for larger H (or P). The reason for this is that

increasing H (or P) leads to a higher probability of occurrence of the panel (or
beam) failure modes, for which the random load P (or H) is inactive. Limit state
curves corresponding to three reliability levels against plastic collapse of the
portal frame example with statistically independent loads and piastic moments are
plotted in Figure 11. As expected, the safe loading space decreases with
increasing values of the reliability level (or, equivalently, with decreasing
values of P¢).

CONCLUSION

A sensitivity analysis capability for probability-based 1imit states design
of plastic structures has been presented. It combires a probabilistic representa-
tion of the strengths and the loading acting on the structure, an approximate
(first-order second-moment) reliability analysis formulation inciuding the corre-
lation between mode failure events, and a rigorous sensitivity analysis formula-
tion. Sensitivity studies of the type shown in the numerical example are useful
in assessing the parameter perturbation effects on the resulting 1imit state
reliability. This sensitivity information is of coilsiderable importance, since it
can illustrate the accuracy needed in describing the statistical data required in
probabilistic computations, which is a major goal in 1imit states design.
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SUMMARY

“he design of a composite panel requires soume way of firding the winimuam
thickness laminate which will withstand the load requirements without failurc. The
ma‘thematical compiexity of this problem dictates the use of nonlinear optimizetion
techniques. Although there are sophisticated optimization programs availa.le
capable of solving fer the ply ratics, these programs are not often used in preli-
minary design because they renuire a large computer and some knowledge of the
program's operation. As an alternative, specialized laminate optimization programs
were dev<ioped which are compact and efficient enough to run on microcomputers.
Only stresses at a point and inplane loads and deflections are considered. The
programs are simple to use 21d require nc knowledge of optimization. Techniques
are developed in this paper that find minimum thickness laminates with either ply
ratios or ply angles as design variables. 1In addition, a method is presented for
finding the optimimum orientation for the axis of symmetry of an orthotropic lami-
nate. The orthotropic laminate program uses an approximaie failure theory, as
suggested by Tsai and Hahn (ref. 1), which has been found to speed computations
dramatically.

INTRODUCTION

Optimization techniques are needesd for even the simplest design problems when
a minimum weight composite structure is desired. The designer needs to know
desirable fiber orientations and ine percentage of the total fiber volume to be
aligned aleng each orientation (referred tu as the "ply ratio"). For a single
required loading condition, the propz., piy ratios can be tabulated for comm.: com-
binations of ply orientations, but ther. a~e no avaiiable guiaelines when the
design n.st meet multiple independent load requirements. To encourage the usc of
composites in situations inv:lving complex and charging load conditions, easy
access to an optimization program by designors was felt to be desirable. The
program presented in this paper is made aczessible by being wiitten in an easy to
use format and by being available on microconputers. Since the program requires
only about 15 kilo-bytes of memory, it can run on some of the least axpensive oor-
table and hand-held computers. Furthermore, the Ligorithm has been made efficient
enough that run times are reasonable (1-i0 minutes) even when using interpretive
BASIC.
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DISCUSSION

The program developed herein is used to design a2 laminate subject to strength
constraints under multiple independent loading conditions at a point. Only in-
plane loads and deflections are considered. A first-ply failure criterion is used,
specifically the Tsai and Wu (ref. 2) quadratic interaction criterion. Design
variables are the ply ratios and orientations that result in a minimum thickness
design. The two design variables are handled separately. The user has .. : gption
of choosing which variable is to be optimized, or both can be optimized sequentially.
The user only needs tc select a material system from the material library and enter
loaus and initial ply angles.

Ply ratio optimizati‘on is by a modification cf the method of feasible
directions. The total naickness of a laminate with constant ply ratios can be
calculated analytically so that one constraint is exactly satisfied as an equality.
The modification of the method of feasible directions uses this analytic result to
speed the algoarithm, making operation on a microcomputer more practical. The
p.>ram also lows for a percentage of fibers at some particuiar angle to reach
ze-v. When tnis happens, the constraints associated with that orientation are
dr3+p.ed so that the failure of a zero thickness ply group cannot control the final
'awi.nate thickness.

Selection of angles by optimization methods is a more difficult problem
because the objective function (total thickness) is not a direct function of the
design variables. Also, the trigonometric functions form many local minima. The
approach presented in this paper is to form an unconstrained functicn which when
minimized as a function of the ply angles will also decrease the total laminate
thickness (while holding ply ratios constant). The best function was found to be
the variance of all the failure constraints. As the variance approaches its mini-
mur of zern, ‘he laminate approaches a simultaneous failure condition. The assump-
ticn is made that laminate thickness will approach a minimum at the simultaneous
failure condition. The approach has been found that after the angle optimization
process, the ply ratio optimization often cannot make any further changes.
Similar-ly, after ply ratio optimization, the angle routine will often not make any
changes. Thus, the designer has a choice of design variables which for many
biaxial loading conditions will give equally efficient laminates.

CONCLUSIONS

A series of effective laminate optimization programs have been developed and
theroughly tested. The programs have been designed to be compact and efficient
encugh tc operate on some of the smallest microcomputers. Although not as general
or sophisticated as some of the optimization code currently available, these
programs offer good performance and are very easy to use even for those unversed in
optimization. No program in the literature has been found that can perform angle
optimization or the orthotropic axis cptimization. Thus, much greater flexibility
is now available tuv the designer.

The gains due to optimization have been found to be substantial, with typi-
cally a 30% weight savings as compared to quasi-isotropic laminates. Surprisingly,
these large gains can be made with either of a ccuple of design parameters. The
designer can either optimize the ply ratios, or the angles and usually efficient
laminates; or, he may choose to constrain the laminate to be orthotrcpic after
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optimization. If the orthotropic axis is free to change, efficient laminates can
be designed.

By trying many example cases, it has been found that »/4 laminate is a gocd
starting laminate. By starting with quasi-isotropic laminates, no knowledge of
desired starting orientations for the particular loads is necded. Increasing the
number of initial orientations does not seem to improve tne final laminates.

An approximate failure criteria has been found to give good results while
substantially decreasing the computation times needed. The approximate criteria
could be particularly important when the optimization procedure is tied into a
finite-element code on an iterative basis, where the repeated optimizations could

become excessively time consuming.
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FRACTURE, FAILURE, AND FRAGMENTATION

John K. Dienes
Theoretical Division, Group T-3
Los Alamos National Laboratory

Los Alamos, New Mexico 87545

SUMMARY

Though continuum des:riptions of material behavior are useful for many kinds of
problems, particularly those involving plastic flow, a more general approach is re-
quired when the failure is likely to involve growth and coalescence of a large number
of fractures, as in fragmentation. Failures of this kind appear frequently in rapid
dynamic processes such as those resulting from impacts and explosions, particularly in
the formation of spall fragments. 1In the first part of this paper an approach to for-
nulating consticutive relations that accounts for the opening, shear and growth of an
ensemble of cracks is discussed. The approach also accounts for plastic flow accompa-
nying fragmentation. The resulting constitutive relations have been incorporated into
a Lagrangian conmputer program.

In the second part of this paper a theoretical approach to coalescence is de-
scribed. The simplest formulation makes use of a linear Liouville equation, with
crack growth limited by the mean frce path of cracks, assumed constant. This approach
allows for an anisotropic distribution of cracks. An altern-tive approach is also de-
scribed in which the decrease of the mean free , ath with increasing crack size is ac-
counted for, but the crack distribution is assumed isotropic. A reduction of the gov-~
erning Liouville equation to an ordinary differential equation of third order ls pos-
sible, and the result can be used to determine how mean free path decreases with in-
creasing crack size.

INTRODUCTION

As used here, fracture refers to the mechanical fnstability of a single flaw,
failure describes the last stages of plastic flow before ductile rupture, and fragmen-
tat{on {nvolves breakage into small pieces following an impact or explosion. In this
paper an approach to characterizing naterial response that incorporates all of these
processes is outlineds The underlying idea is to generalize the elastic-plastic re-
latiors described by Reuss in reference | by coasidering the stretching (the symnetric
part of the velocity gradient) as the sum not only of elastic and plastic parts, but
also of contributions resulting from crack opening, shear, and growth. The crack
sizes are assumed to be randonmly distributed with a sinmple distribution function, so
that a sample can have random behaviour with a theoretically predictable mean and var-
iance.

CONSTITUTIVE RELATIONS

The velocity gradient u can always be represented as the sun of a symmetric

i,J

part, the stretching dij’ and an antisymnetric part, the vorticity w so that

1)
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or, in matrix notation,
C=D+ W (2)

whore we enploy Truesdell'e notation in reference 2. Contributions to the stretching

can arise from small changes in the lattice structure of a solid, De; from motion of
slip planes and dislocations whose macroscropic contribution can be considered as the

plastic stretching Dp; from shearing of closed cracks denoted as DS; from opening of
cracks, denoted as D°; from the unstable growth of either open or closed cracks, Dg;

and from nonlinear interatomic and thermal effects renresented by D", These mechan-
isms can be considered approximately independent, and each one has to be represented
by an appropriate constitutuve law. In particular, we can consider the average
stretching ¢ ‘e to changes in the crystalline lattice to be unaffected by plastic
flowe Thus we may write

D=0%4+0P +D°+ 0%+ D%+ D" (3)

It 1s shown by Dienes in reference 3 that the stretching D in spatial coordinates is

related to the stretching in material coordinates D by

D = RIDR (4)

where R is the matrix characterizing material rotation, and that the strain rate in

material coordinates E is related to the stretching by

= YDV (5)

il e

where V is the stretching in material axes (Truesdell's U). The strain is related to
the Cauchy=-Green tensor B (Truesdell's C) by

l -
E"z'(B"I) (6)

These relations are appropriate for a coordinate system rotating with the material.
Care must be taken to use suitable rates when the matrices refer to tensors specified
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41 wpuriai aacd, as iiiUSLLALEd Dy Wienes 1n reterences 3 and 4. Throughout this
paper material and spatial representations will be related by the transformation indi=-
cated in equation (4),

The energy of deformation e can be separated into a sum of terms since
. - . . [
e =tr (D) = e® +eP +e% + % + e8 + " ~ . (7

where o represents the stress in material axes and each term represents the rate of
work associated with a particular deformation mechanism. For each crack the stress o
is the approximate far-field stress. It {s not {mplied that the stresses in the

neighborhood of a crack are constant. Since the strain rate E and D are related by

(5), we can also separate E into a sum of terms
E=E®+EP +EC+E° + EB +E" (8)
The condition that e® represents an elastic strain energy is that

e€ = tr ad°/p = tr aD%/p (9)

be an exact differential, where p denotes material density. In view of equation 5 it
is straightforward to show that for an elastic process the constitutive relation nust
have the form

g = 20VTV

where

e () -(-f—f—> (11)
asij

is an exact differential. This relation i3 equivalent to that discussed by Rivlin in
reference 5. In that paper advantage is taken of material isotropy, and the deriva-
tives are taken with respect to strain invariants. In this more general formulation,
materials do not remain isotropic, and nothing is g.ined by choosing the strain in-
variants as independent variables. Because of possible anisotropy, the formulation is
best left in terms of material axes for simplicity. It 1is possible to carry out the
analysis in spatial axes, but care must be taken about material rotaticn. Discussion
of that subject, primarily of a mathemnatical character, i{s eschewed In this brief
paper.
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In previous work on statistical crack mechanics (SCM) it was tacitly assumed that
deformation is associated only with elastic and fracture mechanisms, essentially a
brittle behaviour. In many calculations this appears to make the material stiffer
than is observed in experiments, and it now appears probable that this is because duc-
tile aspects of deformation are ignored. In principle a micromechanical treatment of
slip planes analogous to that for shear cracks could be developed, but it !s not en-
tirely clear how the details of slip plane behaviour should be characterized. An ex-
cellent review of the current status of this approach is provided by Asaro ia
reference 6. An alternative is to represent plastic flow with a suitable phenowono-
logical law. The simplest such iaw, ideally plastic flow, requires a constant va.ue
of the second stress invariant, a constraint incompatible with the assumptions made in
connzction with the general SCM fracture model, which assumes arbitrary stress lev-
els. Thus, a hardening plasticity rule is required. The simrlest such theory 1is iso-
tropic hardening, but an alternative, kinemati: hardening, appears to be more realis-
tic. It permits the yield surface to translate in stress space, while constrained to
remain cylindrical in shape. I have outlined a theory in which the yield surface de-
pends on mean stress in reference 7, but it seems premature to incorporate those com-
plications into the fracture process, so only a simple version of that theory is sum-
marized here.

The stress is considered to lie on a cylindrical yield surface whose generator is

given by the back stress a. Its history is governed by

a = bdP (12)
with b a (constant) hardening modulus. As in equation (4), bars denote variables in

material axes. The deviator stress S is then the sum of the back stress a and a rela-

tive deviator §, so that

§=8+a (13)

The total stress is the sum of the deviator and a mean whose negative is usually taken
as a pressure, that is

c=S§ - pl (14)

where I denotes the unit matrix. If the relative deviator lies within the yield sur-
face,

er 82 ¢ 2 (15)

the flow is treated as elastic, the plastic strain rate is set to zero, and the back
stress remains constant. Otherwise, the plastic flow is governed by the above cqua-
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tion, with DY obtained by subtracting ﬁe. 58, 50, 58, and D" from the total strain

rate, as indicated by equation (3). 1In addition to the kineamatic hardening postulates
outlined above, we have the usual kinematic hardening relation

P = 3/2y (16)
By combining these relations it is possible to show that

2 e = ORIC. "~ ¢. .. i
o tr S(De + Dp) - g -
e SRR Y T OF PGUR Q,kud.f (17)

It is shown in references 8 and 9 that the average strain rate due to opening of
an ensemble of cracks, assuming no change in material density, is

=0 oo -

di5 " B2 k1% (18)
where

® = 8(1 - v)/3u (19)

here v represents Poisson's ratio, u is the shear modulus, and the open-crack
compliance is

-ijkl ./

dftn i ymy 0 lf dc-a—N—c3 (20)
1
The integral over fi represents integration over all crack orientations here n, 1is the

crack normal, and N°(9,c) reyresents the number of open cracks with radius larger than
¢ as a function of orientation. Cracks are considered open when the normal component
of traction is tensile. Similarly, the strain rate due to crack shear is

=8 838 =
Ay = B2 1% (21)

where
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78 --[ 42 S(1 - a)b fw ge 29 (22)

1 jk1 A Lik1 ) 3¢

s 8§ 1 -wv

g = 3; 7=y (23)
oF .

and

2

a= u/BI/VA - B (24)

In reference 8 it is shown that the quantity a appears when the effect of crack
friction is accounted for. S(x) is x for x positive and zero otherwise. The function

o2, 2
A-B o, qiokj K (oijninj) (25)

represents the square of the tangential traction on a shear crack, 1 - a is the factor
by which shear deformation is reduced when the frictional stress 1s accounted

for, and 1 denotes the coefficient of friction. The crack orientation is accounted
for by

bijkl =0, k i +n nkG Zninjnkn1 (26)

FLAW STATISTICS

Though a few cracks in a highly stressed solid can grow independently, if the
number density is large, intersections will develop and the statistics and crack ef-
fects will be strongly modified as a result. A detailed theory would present enornous
complications since materials are neither homogeneous nor isotropic on a small scale,
and cracks tend to bend and bifurcate as they grow. Still, it 1is possible to formu-
late a limited theory by making simplifying assumptions about growth and intersec-
tion. In the current approach we consider two kinds of flaws, those that are isolated
and can grow unstably, and those that have intersected a number of others and are no
longer capable of unstable growth. The density of the former i{s denoted by L(c,f,t),
the latter by M(c,Q,t), and the sum by N(c,f,t), with ¢ the tadius of an equivalent
penny-shaped crack, @ a symbolic representation of crack orientation, and t the dura-
tion of crack growth.

The number L of isolated (active) cracks at time t + At whose radii exceed ¢ + Ac

is equal to the number at time t whose radii exceed c, less the number that have been
converted from active to inactive (stable) status, i.e.
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L(c + Ac, t + At) = L{c,t) - M(c,t)At

The dependence on @ 1is dropped here since crack orientation is considered fi<ed in the
course of crack growth. In the liuit of small At this becomnes

*
Lt + cLC = - Ht (27)

where the subscripts denote differentiation and ¢ the speed of crack growth. For high
stresses ¢ is typically about a third of scund speed, but for lower stresses c depends
on stress level. In propellant calculations ¢ is made to vary a- T:/'O)n, with n=10,

following data provided in reference 10. By making the change of variable

t
vef ¢a (28)
[o]
the governing equation is simplified to
+ = -
LC LY MY (29)

We have been able to proceed in two ways. In the first, the cracks in each ori-
entation are allowed to bechave independently, while the mean free path is assumed con-

stant. The cracks intersect at a rate EN/X, where XA is the mean free path, assumed
constant at {ts initial value. Then

1=kL /a , k= x hj.zc' (30)

where a is the number of intersections requived to make a crack inactive, a number
generally taken as 4. This representation is important where anisotropic effects are
sought. For example, in cavity formation in oil shale by explosives, an initially
spherical cavity becomes pil)-shaped at later times because of the weakness (i.e.
large cracks) i1 the bedding planes, as discussed in reference 11. Even in the
absence of any initial anisotropy, however, cracks tend to develop radially near

an explosive charge and circumferentially far f-om the charge, inducing a strong
local anisotrcpy.

In the first method the governing equation is linear and has a particularly
simple integral vhen the initial distribution is assume. exponential:

191

)



L(c,0) = Loe'°/° 3

an assumption that has been fairly well justified in reference 12 by observation.
Then

-c/c+ Ry

L(c,t,) = Loe (.

where OF FClr i sm i

R=1/c - k/Ca (3
The anisotropy due to crack growth arises because its extent, y, depends strongly on

orientation. The parameters may also depend on @ if the material is anisotropic.

In the second approach in which crack isotropy is assurmed L and M are independe
of 2, but the rate of formation of inactive cracks is not assumed linear in L. A pr
liminary description of the theory is given in reference 8. In this approach the
rate of innactive crack formation is given by

M = ten/a (3

where 2(c,t) is the edge length of all active cracks with radius exceeding c per uni
volume and n(t) is the number of cracks per unit area. Then, if we put

z = Zch y J = %/2a (3

the governing equation, (29), reduces to

z, + z, + 4jen(y)z = 0 (3
This equation can be integrated with the following result:

L= e-aJ(J-YJ.)'/. du h(u)e“JuJ'(Y) (3
c=Y
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where J is related to n by

<t

JYY =-n , J(O) =J'(0) =C (38)

An additional relation is required to complete the solution. This can be obtain-
ed by geometrical conuiderations in the following way. Let ny denote the number of

isolated crack intercepts per unit area sand . the number of connected crack Iinter-

cepts per unit area. Then, following the approach of reference 13,
o o0
n L
n, = —f de L(¢) , n =3 de M(c) (39)
i 2 y c 2J

With these results, it follows after a lengthy calculation that n = n + " is given
by

"=z [[ de L(o,0) + [ de L(e,0) - vL(m)] (40)
o o

Differentinting this result with respect to y and combining with equaticns (37) and
(38) results in the cvdinary differential equation

+ vy - bicyJ’ e~43(3-v3") (41)

- 12
(1 4ij )

vy o ME
J wijoJ

assuming the initfally exponential distribution of equation (31).
RESULTS

Tte theory described herein has been incorporated into SCRAM, a computer program
developed for analysis of fragmentation. Results o. a propellant impact calculation
without plastic flow are illustrated in figure 1 and with plastic flow are illustrated
in figure 2. Incorporating a plastic flow comporient into the strain rate wakes the
deformation appear significantly more like that observed in erperiments such as those
{llustrated in reference 14.
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Fig. 1. Impact of a propellant cylinder onto a rigid target accounting for crack
opening, shear, growth and intersection.
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Fig. 2. Impact of the same propellant cylinder as in Fig. | onto a rigid target, al-

lowing for plastic deformation in addition to the crack mechanisms described
above.
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SHEAR DEFORMATiON PLATE CONTINUA
OF
*
LARGE DOUBLE-LAYERED SPACE STRUCTURES

Mohamed Samir Hefzy
Grand Valley State College
Allendale, Michigan 49401

Adnan H. Nayfeh
University of Cincinnati
Cincinnati, Ohio 45221

1. INTRODUCTION

The last decade has witnessed a dramatic increase in the research activities
dealing with the possibility of utilizing space for various commercial and
scientific needs. Large lattice-type structures are analyzed as candidates to meet
such applications. 1In order to assess the utility of such structures, complete
unders tanding of their mechanical and themmal behavior is needed. Continuum
approximations provide practical means for achieving this understanding.

In three recent papers (ref. 1-3) we derived the stiffness coefficients of
equivalent continua by using a building block approach consisting of obtaining the
effective properties of the smallest unit cell of the repeating structure and then
using orthogonal transformation teachniques to obtain the overall properties. In
(ref. 1-2) e constructed the equ.valent continuum for discrete pinjointed
repetitive structures using the rod”s unidirectional property as our building block
unit. In a more recent paper (ref. 3) we derived the effective properties of rigid
jointed (frame type) repetitive structures. This differed substantially from the
truss-like structures in that the influence of in-plane bending rigidities to the
structure are included. The fact that the individual rod in a rigid-jointed array
«an resist in-plane bending dictated that the smallest sub-cell of the structure
which was used as the building block unit was no longer unidirectional and thus had
to be uro-dimensional substructure. The most degenerate basic two dimensional
frame structures were found to be the (0°, 90°) and the (0°, i§0°) layups.
Effective properties for these sub-cells were constructed using simple strength of
materials spproaches such as the matrix structural analysis methods (ref. 4-6).
This resulted {n two-dimezsional generalization of the one-dimensional area
veighted propezties needed in the analysis of pinned-jointed structures (ref. 1-2).
The analysis of (ref. 1-3) gave exact results for the constitutive relations of
ons-dimengiongl (ungdlrcctional) layurl, "strictly"” two-dimensional (in the forms
of 0, 907, 0, +60”) layups and the “strictly” three-dimensional layups as we
defined in (ref. 2).

By invoking the classical plate theory assumptions the results of the strictly
three-dimensionsl structures were successfully reduced to those of the
quasi-three-dimensional problem (ref. 2) only for the case of pin-jointed

* This work was supported Ly NASA grant NSG1185,
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structures. Here, a quasi-three-dimensional model consists of two surface sheets
separated by a thickness h and are connected by diagonals to form a plate. In
attempting to obtain the equivalent plate continuum for discrete frame-like
structure, expressions for its general bending rigidities were not possible to
obtain by the techniques described in (ref. 1-3). Therefore, we need to use
another approach to develop these requirements. The energy equivalence technique
presents a way of developing such properties. As a by-product of using the energy
equivalence approach, we obtain, besides the bending rigidities, the infcrmation
for the stiffness coefficients. The results obtained by the energy method will
also help in assessing the accuracy of the building block approach described in
(ref. 3).

In this papet we use the energy equivalence to construct equivalent continua
for the actual lattice structure. An energy equivalent continuum is defined as
that which has the samc amount of strain and kinetic energies stored in it as
the original lattice structure when both are subjected to the same loading
conditions. The equivalent continuum is characterized by its strain and kinetic
energies from which the constitutive relations and the equations of motion can be
derived.

The basic concept in the energy approach is the existence of kinematic
variables which are functions of continuous spatial coordinates as opposed to those
in the lattice theory which are defined at discrete points or members. To relate
both the discrete and continuum models, Taylor series expansion has been commonly
used in constructing the equivalent continuum,

Previous studies which utilize the energy equivalence approach, such as those
carried out by Sun and Yang in (ref. 7); Noor, Greene and Anderson in (ref. 8-9);
Dazant and Christensen in (ref. 10, 11); and Nemeth in (ref. 12) are available in
the literature, Bazant and Christensen derived an equivalent micro-polar continuum
for large grid frameworks in order to solve the extensional buckling of a
mulii-story, multi-bay rectangular frame. Sun and Yang in (ref. 7) estabéiahed a
two-dimensional in-plane continuum model with couple-stress for a (0°, 90°) layup.
Noor et al. constructed in (ref. 5) the equivalent continuum of a double layer grid
assuming all joints to be pinned. Also, in (ref. 13) Noor developed micropolar
models for large repetitive beam-like planar lattices with rigid joints. Nemeth in
(ref. 12) derived the strain energy of the single layer grids with rigid joints in
terms of its beam member strains and curvatures. These are then expressed in
terms of the strains and curvatures of the continuum,

The present study takes a somewhat different energy approach and presents a
simple method to model large rigid-jointed lattices as continuous media with
couple-stresses. In our analysis the transition from the discrete system to the
continuous medium is achieved by expanding the displacements and the rotations of
the nodal points in a Taylor serieas about a suitable chosen origin. Here basic
kinematic assumptions are introduced to insure that the assumptions used in
deriving the governing equations of the modeled continuum are satisfied.
Accordiangly, the number of terms retained in the Taylor series expansion will
depend upon the properties to be evaluated. This jmplies that one has first to
determine what kind of continium {s needed to model from the discrete
lattice, before the actual properties are derived.
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In Section 2 we present our analysis followed in Section 3 by a comparison
between our approach and those reported in the literature. Finally, in Section &
we present a variety of applications,

2. ANALYSIS

2.1 Linearized Constitutive Equations for Elastic “aterials with Couple-Stresses

The internal energy of an elastic material without couple-stresses may be
expressed as a function of the material strain temsor. Toupin, in (ref. 14), has
shown that when couple-stresses are tuken into consideration, the emergy function
will be a homogeneous quadratic function of the material strain tensor Eij and the
curva ture twist tensor ‘ij which are defined as

du du
1%
e”.i(a_xj.:,;}) (1)
1
“19 " 7 ®jak Y%, 4 (2)

where u; are the comporents of the displacement vector and eJzk is the pemmutation
symbol,

The strain energy function describing the generai constitutive equations for a
linear elastic material with couple-stresses can be obtained, as per (ref. 15), as:

H 1
W 'E'Cijkgilj %y * Bigks 99 Ku+7E“H K1y ¥y (3)

where W {s the strain energy function. This strain energy expression would

descrive an elastic materfal without couple-stresses when all the Bijkl and Eijkz
coefficient' vanish.

2.2 Determination of the Characteristics of the Equivalent Continuum Models

The steps used in the construction of the ejuivalent continuum are as folliows:

i. Isolate the smallest repeating element from the lattice.

11, Write tie stiffness matrix of this repeating element and calculate its strain
energy in terms of its nodal displacements and rotations.

111, The ¢'splacements and the rotations of the nodal points are then expanded in a
Ta-.or series about a suitable chosen origin. Basic kinematic assumptions are
then introduced to insure thrt the assumptions used in deriving the governing
equations of the modeled continuum are satisfied.

iv. The displacement expansions obtained in (11i) are substituted in the energy
expression of the repeating element to obtain the energy expression of the
equivalent continuum, from which we can determine the characteristics of the
equivalerit continuum model,




(¢

The strain energy of the repeating element of a lattice with rigid joints is
given by (ref. 16 ):

ve 3 L Trr® gt ™y r@ g (4)

members

wh?re {A} s the vector of nodal displacements and rotations of a typical member,
K(m) is the elemental stiffness matrix of the typical beam in local coordinates,
T

m) is the member transformation matrix in local coordinates, the superscripts
m and T denote the mth member in the repeating element and transposition,
respectively. As mentioned earlier, the transition from the discrete lattice to
the equivalent continuous medium is done by expanding the nodal displacements and
rotations about the origin of the repeaiing element by Taylor series. The number
of the terms retained in the Taylor series expansion and the kinematic assumptions
used on the continuous displacement and rotation variables will depend upon the
properties to be evaluated.

This implies that we have first to determine what kind of continuum we need to
model from the discrete lattice: a linear elastic material without couple-stresses
where the motion is treated ¢s a three-dimensional problem of stress analysis or an
equivalent plate continuum where the fundamental equations of plate are used.

2.3 Kinematic Assumptions Used to Model a Linear Elastic Material Without
Couple-Stresses

Here we evaluate the stiffness coefficients, Cijkz’ for the equivalen. elastic
linear continuum whose strain energy is

1

W= 7‘Cij I TERY) 1,j,k,2 = 1,2,3 (5)

This will be constructed from a sirgle layer grid or multi layer grids. For this
case, the nodal displacements of the repeating element are expanded up to the
second order Taylor series expansion, whereas the nodal rotations follow a
one-term expansion. This implies that the rotations are considered to be constant
for all the nodal points of the repeating element. Hence for a typical node (xi,
Yy z;) these expansions are affected as follows:

du du du

uy = u + xq 3;'+ Yy 3; + z, ETY (6a)
v dv v
Vi VvHx - +y, Iy + 2z, Sz (6b)
ow oW ow
"1'"+K£T§+y17y'+213? (6¢c)
06 =0 © =0 0 =0
X; X, ¥y Y, 2, oz (7)

vhere u, v, w, 0x, ©, and O, are the displacement and the rota‘*ion continuous
functions which aasu‘e the values of the displacements and the rotations at the
origin of the repeating element. Furthermore, the rotation functions 6 , 6. and @
are the component rotations defining the rotation of the rigid equivalent y z
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continuum; therefore, they are expressed in terms of the displacement functions u,
v, W as:

[-%

1 (3w _ 3v -l (Bu 9w =1 (av _ 3u
ezl 3 St LTl (8)

The strain energy of the equivalent continuum is obtained by substituting the

expressions for the displacement and rotation given by equations (6-8) into the
expression for the strain energy of the repeating elemeut given in equation (4).
By differentiating according to equation (5), we obtain the three-dimensional

stiffness coefficients of the continuum.

2.4 Kinematic Assumptions Used to Model a Shear Deformation Plate Continuum

The strain energy function for a repeating element governed by the shear
deformation rlate theoiry is given in appendix A, equation (A.1) (ref. 9). Notice
that the plate curvature, Fo , are components of the general curvature-twist
tensor, Kij’ defined in equation (2); specifically, we have:

“127 K N T Kape o 2Ky - X)) T Ky 9
Therefore, and by examining the governing equations of the shear deformetion

plate continuum, we establish the following procedure, using the superposition

principle, to evaluate the different characteristic coefficients for that
continuum,

i) Evaluate all the Aq kg stiffness coefficients as if the equivalent continuum
ware a three-dimensional linear elastic media with couple-stresses; the
stiffness coefficients A of the reduced model are determined in terms of
Ai as per equation (A.2§Yfa Appendix A. The stiffness coefficients A

ik& fined : 1kt

at® defined to be:

Aggis = P Copee (10)
where h is the plate thickness.
[Notice that 1i,j,k,% = 1,2,3 and o,B8,y,p= 1,2]

i1) Evaluate the bending stif‘ness coefficients Dijkl and the coupling
coefficients FaB of the equivalent continuumas if it were governed by the
classical plate Zﬁ;ory contitutive equations. The stiffness coefficients
Aa383 and 2A03 which represent the shear deformation contribution to the

governing equa%lons of the plate continuum are determined from the first step.

The coupling and bending coefficients of the reduced model are then evaluated
using equations (A.5) and (A.6) in Appendix A.

Specifically, we determine the strain cnergy expression for the equivalent
continuum as if 1t is a linear elastic material with couple-stresses, as required
by Toupin®s constitutive equations. This is followed by specializing this strain

energy expression to obtain the corresponding one for an equivalent plate continuum

using the same assumptions used ivn obtain the governing equations for the plate
continuum from the governing equations for the linear elastic continuum with
couple-stresses. This is done by retaining the following expansion forms:
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2 2 2
By u E! 2 Ju 2 3u 3%
TR ~R -~ oy Yt P iaoy
2
+ 2y,z + 2x,z, 4%)
1°1 1“1 odxoz (11a)
v, = v+x, X+ LA £+l(x2—-—32v+223—2l+2x ¥
1 tox Y1y T T T 152 1Y1 3xay
9x dz
2%y 2%y
v v b
ML v PRI - (11)
V. =W+ x 8w+ 3w+z 3w+l(x212_y_+2_£3+2x Pw
R R M R T T e B LA
azw I w
+ 2yizi m + inzi m) (1lc)
26 20 39
ex -ex+xirx_{+yi.5y_x+zi-52—x (12a)
i
28 26 28 ORIGINAL P~Aua e
5 . 0, , 39 30,
2, " et w Yy Yy (12¢)

where u, v, w, ex’ 6 and O  are the displacement and rotation continuous
functions which assuhe the values of the displacements and the rotations at the
origin of the repeating element. The rotation functions 6 , 6 , and 6 are
expressed in terms of the displacement variables u, v and w asyper equgtion (8).

The strain energy of the equivalent linear elastic continuum with
couple-stresses is obtained by substituting the above expressions for the
displacements and rotation expansions into the expression of the strain energy of
the repeating element givea in equation (4). In order to obtain the equivalent
classical continuum plate from the linear elastic media with couple-stresses, one
has to impose the following two assumptions on the expression of the strain energy
of that media. Firstly, by assuming bending to occur in the x-y plane only, some
terms in the curvature-twist tensor of the elastic media do not contribute in the
strain energy of that model and will be nonexistant. These terms are:

T s R
G,yz’ oy 2 xd '  dydz’ oxoz
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du ow oy ow

%z T’ %2 Jy

The expressions for the rotation functions thus become

e-_a! e--a_w.

x dy y ox

The plate curvatures are expressed as (ref. 16):

2 .2 2
Ryp = - 2%, K ¥, K 22 ¥
— - - 'y - -
11 ) 22 ay? 12 axdy

And secondly, following the classical plate theory assumption, the transverse shear
These lead to the following constraints:

(13)

(14)

(15)

Using the relations (13) and (14) in the expression of the strain energy of the
linear elastic media with couple-stresses we end with the strain energy of the
classical plate continuum,

1.

2.

3. COMPARISON WITH OTHER ENERGY METHODS

At this point, we would like to compare our energy equivalence approach for
continuum modeling of the large discrete structures with those reported in the
literature.
Nemeth in (ref. 12) derived the strain energy of the single layer grid in
texms of its beam member”s strains and curvatures, and consequently expressed

in terms of the strains and curvatures of the continuum.

Noor et al. in (vef. 9) derived the equivalent continuum for double layer
grids with pinned joints. The strain energy of the plate continuum was
obtained by replacing the axial strain in each member of the repeating element
by its expression in terms of the strain components in the coordinate
directions evaluated at the center of each member, and then expanding these

strain components in Taylor series about a suitably chosen origin.

Noor et al. in (ref. 8) derived the equivalent continuum for double layer
grids with pinned joints using an approach similar to the one proposed here.
In their theory, a linear variation in the ncrmal coordinate z was assumed for
the displacement components; the nodal displacements were then expanded in a
two term Taylor series expansion. Therefore, at a typical node (xi, Yi» zi)
of the repeating element they obtained, as an example, the following

expression for the nodal displacement wy in the z direction:

- w ow o'W oW I W
vpm (vt oz Fz-) *xy (¥ 2y 8x5z) +yy 3_y+ * 8)'8:)

and rearranging terms they obtained

= i ea L - - - - e e .. . e

e

(16a)
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2 2
- dw ow oW w 3w
R R RCTE AR TR RUCIR ~ L = (16b)

The difference between both approaches can be seen by comparing equation (16i) with
equation (1llc).

Here we would like to add that it is easier to write the strain energy of the
repeating element in terms of its nodal displacements than to write it in terms of
its beam members strains and curvatures; furthermore, the modeling of linear
elastic media with couple-stresses for large lattice structures with rigid joints
has not been presented before.

4. APPLICATIONS

4.1 Single Layer Grids

In this section an application of the energy method to determine the
characteristics of the equivalent plate continuum of single layer grids is
presented. The grids are considered to be rigidly connected and to have both
bending and torsional rigidities. We notice here that the terms containing (5;)

2
and (j-f) in the expansion of the nodal displacements and rotations do not appear
oz

since all the grid joints lie in the same plane.

The repeating element for the (0°, 90°) grid, the triangular mesh grid, the
diagonally braced mesh grid and the hexagonal mesh grid (Figure 1) at any
arbitrary point are shown in Figure 2, The areas gf the repeating element for
these mesh grids are 1.2, (/3 12)/2, 212 and (3/3 L%)/2, respectively.

The stiffness coefficients and the bendins rigidities of the equivalent plate
continuum for the (0°, 90°), (0°, +60°) and (0°, 90°, +45°) lattices are given in
Table 1. The stiffness coefficients and the bending rigidities characterizing the
equivalent plate continuum for the hexagonal planar lattice are found to be one
third of those corresponding to the (0°, +60°) layup. This result, obtained using
the energy equivalence, confirms the results obtained in (ref. 17) using the
“building block” approach.

4,2 Three Dimensional Structures and Double Layered Structures

In our analysis we shall differentiate between the three dimensional
structures and the double layered structures. The representetive candidate in our
study is the octetruss structure (ref. 18). We shall first obtain the properties of
its equivalent linear elastic continuum without couple-stresses. After that, we
shall model the plate continuum of the double layered tetrahedral 3rid (which is
the quasi-three-dimensional model of the octetruss structure).
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(i) Three Dimensional Octetruss Structure

This structure is shown in Fig. 3. We shall assume that al] the beams have
the same geometric properties. In view of the periodic nature of the structuring,
we shall Zocus attention on joint (xi. Yy zi). A typical beam assembly element at
this point is displayed in Fig. 4.

In order to derive the effective stiffness properties of this repeating
element, we have to determine the directions of the principal axes of the cross
section of its beam elements, oy and oz, with respect to the fixed directions X, ,
X, and X3. The member transformation matrix in local coordinates, [I] , (of orber
15 x 12)"1is given in (ref. 16) as

M =] 1 (17)

where [T] represents the matrix of direction cosines of the ox, oy and oz
directions, respectively. It is measured in the global system Xl, xz, and X;, and

is given by
L m n
[rla [F n2X o2 (18)
©F o oy
0z oz oz :

For the repeating element of Figure 3, the octetruss is considered to be
constructed from three single 3quared layers having different orientations in space.
The local oz principal axis of each beam is defined to be the one which is
perpendicular to the single layer grid containing that particular beam, Therefore,
and with reference to Figure 3, the coordinates of the seven nodes of the repeating
element are given by:

Joint X, X, X,
1 0 0 0 |
2 L 0 0 -
3 L/2 Lv3/2 0
4 L/2 -1Y3/2 0
5 0 -1Y3/3 L/2//3
6 L/2 LY3/6 LY2//3
7 -L/2 L/3/6 LY2/v3
205
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The matrices of the direction cosines, [T ], for the different beam members in this
element are give by:

1 0 0 1/2 /3/2 0
M, , = o -1//3 /2//3 (1), 4~ ! -1/2 /3/6 /2,73
o -/2//3 -1/V3 1/72 -1,/ 1/
/2 -Y3/2 0 0 -1//3  2//3
t),_, = -1/2  -f3/6  -V2//3 [, & -1 0 0
1//2 /6 113 0 -2//3 -1//3
1/2 Y31/6 2//3 -1/2 /3/6 V2173
[T],_¢ = /2. -¥3/2 0 (7, -1/2 -/3/2 0
/72 1//6 -1//3 /2 -1¥6 1/

The analysis described in section 2 is carried out. The strain energy of the
repeating element is evaluated; the nodal displacements and rotations are expanded
according to the two-term and to the one-term expansion, respectively, with respect
to the nodal joint (x » Yo zi) as the suitable chosen origin; the continuous
rotation functions ere expressed according to equation (8); and finally the
effective properties of the equivalent elastic linear continuum without
couple-stresses are evaluated. These are found identical to those reported in
(ref. 3 and 17).

We have confirmed in (ref. 17) that for the repeeting element of Figure 4, the

structure can be considered to be constructed from four (0°, +60 ) layups with the
restricticn of using circular cross-azectional beams. This was actually done and
the results wore found to be identical to those reported in (ref. 17).

(11) Double-Layered Grids

The double-layered grids are also known to be the quasi-three-dimensional
structures (ref. 2). Here, the double-leyered tetrahedral grid is studied. 1t
consists of two parallel layers of (o ’ +60 ) beams connected by diagona) members
which form three-sided pyramids as shown in Figure 5. In this double-l., ered grid,

all the members have the same length L. In order to differentiate between the role
of the upper and lower chords and the diagonals, we shali assume that the two
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layers aud the diagonals huve different gecrv¢v'z and material properties from each
other. 1f the wrrer and lower layers and t.. ~'.:gonals are designated by the
subser’ 1, 2 and d, respectively, theii gau:+ c¢ic properties will be designated
by (2 1 J.), (A,, I 1 J,) ard 1+ , I 1 J,), respe-tivel

yi ’ ’ ’ ’ LX) ’ ’ ’ ’ y
while their ma%gtia prop%rti‘g are des gna%:’ ,§ (E{? Glf? (Eg, Gz) and (Ed, Gd),
respectivaely.

Since we intend to derive the charac:-+? =i.s of the equivalent plate
continuum ..~ tals quasi-three-dimenr sr+! tiucture, we must have the origin of
its repeatinz e lement a2t the middle ~t - Jiscance separating its upper and lowex
la,ers.

In what forlows, we shall derive .he equivalent plate continuum for this
strusture as if it were constructed {ron three different (00,900) single layers.

The area of ezrepeating elerert of the double-layered tetrahedral grid shown
in Figure 6 is (v3 L“)/2.

The strain energy of the repeating element is evaluated. The nodai
displacements and rotations are expanded according to the three-term and to the

two-term expansions, respectively; the continuous rotation functions are expressed

according to equation (8); the assumptions of the classical plate theory are
introduced; and finally, the effective properties of the equivalent plate continuum

are evaluated.

The characteristics describing the equivalent plate continuum for the :
double-layered tetrahedral grids are listed in Table II. Notice that Table II
constitutes a modification of our previously reported results in (ref. 2) which are
reflected in the appearance of the bending and torsional rigidities of the members.
Examinationn of the results in Table II indicates thet C 212 (C1111 - cllzz)/z .
Fi212 = (Fy3qq = Fip2 )/2 and D2 ™ (D1111 - D1122)/ and hence the octetruss :
is transverseiy isotropic, as is expected,

The algebraic expressions in this analysis were obtuined using the algebraic
programming system Reduce 2 written by Hearn (ref. 19).
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The strain energy for a repeating element governed by the shear deformaton
plate theory 1is:

1
Us 7 a [AGBYO EaB syp-!- 2‘&833 EaB 94 + ZFGBYp eaB Kyp

+ 2A

aBy3 a8 (2 EY3) +2F

a3 93 Kag ¥ Dogyo Xag Kyo (A.1)

2
\]
+ Aa383(2 €a.3) (2 %) + A”” e”]

where & is the platform area of the reoeating element. If the transverse normal
stress resultant is neglected, then the transverse normal strain &3 is given by:

A
c oo Mve | Bave,

e (A.2)

33 Ay333 VP Aggz3 ve
The strain energy for the repeating element of the reduced model becomes

1 - )

U= E sl IGBYOCGB EYp E~-¢saaional strain energy
+ baByp Kag Kyp 32nding strain energy (A.3)
+ Ag3gs (2 €a3) (2::83) Transverse shear strain energy
+ 2 Aa3BY(2 sa3) CBY Transverse shear-extensional coupling
+ 2 ?GBYD CaB KYD] Bending extensional coupling

(the underlined terms represent the shear deformation contribution in the
governing equations) where

(A33487(A 33 y‘a?]

Aagyo ™ “aBYp - N )z (A.4)
3332
(Ag3qap)(F 33y2)
¢ 33aB 33y
Fagyp™ Fapyo~ 7 ] (A.5)
(A3333)
(P )}(r )
D, = - 33a8 33
aBy p [DaByp Ye) (A.6)
(A )2
3333

213



-~

(b) Triangular mesh grid.

(a) (0°,90°%) grid.

Di 11y b d h grid.
(c) Diagonally braced mesh gr (d) Hexagonal mesh grid.

Figure 1. Four different single layer lattice grids.
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Figure 2. Repeating elements for (0°,90°), (0°,t60°), (00,900,1650) and
hexagonal grids.
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INTERACTIVE BUCKLING OF THIN-WALLED STRUCTURAL COMPONENTS
UNDER STATIC AND DYNAMIC LOADS*

Srinivasan Sridharan
Washington University, St. Louis, MO

Rafael Benito
Nutech International, Madrid, Spain

SUMMARY

The paper summarizes the recent advances in the study of interactive buckling
of thin-walled structural components achieved with the aid of finite-strip tech-
nique used in conjunction with the iheory of mode interaction. The interaction of
the primary local mode with Euler buckling (in columns) and flexural-torsional buck-
ling (in columns and beams) is of primary interest in the present study. The inter-
action of two companion local modes with the overall mode is also considered briefly
for the columns with doubly symmetric cross-sections. The effect of dynamic loads
in the form of suddenly applied end compression is also investigated.

INTRODUCTION

In recent years the subject of interactive buckling of thin-walled structures
has received consideravle attention. While some valuable insight has been gained
(ref., 1-6), only limited progress has been achieved towards a unified treatment of
the variety of both the interactive buckling phenomena that can occur and the
cross-sectional shapes that are currently employed in various forms of engineering
construction. Further, in the context of interactive buckling, thin-walled members
are imperfection-sensitive so that the sudden application of axial load cannot but
reduce their load carrying capacity. This aspect "as not received much attention so
far. In this paper a summary of the progress achieved in Washington University in
the last two years towards filling these voids in the literature is presented.

The objectives of this research effort have been:

1. To develop an analytical approach that will b. applicable to prismatic
thin-walled members of arbitrary cross-sectional configurations for an investigation
of nonlinear interaction of local and overall buckling '

2. To investigate the imperfection sensitivity, especially under coincident
buckling of members with typical cross-sections

3. To study the effect of dynamic application of axial loads

1ly a summary of the salient features of this study is presented here and the
interested reader is referred to publications listed under ref. 7-12.

* The work reported in the paper was supported by a grant from NSF (Grant No.
CEE-8204673).
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THEORY

The basic strategy of the present study has been to employ the finite-stiip to
determine the participating modes of buckling as well as the relevant higher order
fields and then generate a single potential energy expression in terms of the scaling
factors of the participating modes of buckliang and the load parameter. Thus the
number of degrees of freedom are condensed to only as many as there are modes of
buckling.

In the course of the study, several versions of this basic approach were devel-
oped and these will be described briefly in the sequel.

Version I

This verrion is designed for a study of local and Euler buckling interactions
in columns which fall in either of the following categories.

1. The column is simply supported at its ends and has a doubly symmetric cross-
section and is compressed by prescribing the axial displacement of the centroid of
the end section of thke column.

2. The column has at least one axis of symmetry and is compressed uniform'y at
its ends.

The description of the first order terms is taken in the form (ref. Fig. 1):

u, = Gi(Y) cos(minx/R)

v, = ;i(Y) sin(miﬂx/z)

vy = wi(y) sin(m mx/2) (no sum on '{') (1 = 1 or 3) 1(2-c)

in which 'i' takes on values of 1 and 3 and thus identifies a buckling mode (the
subscript 'l' refers to the primary local mode and '3' refers to the overall mode),
my gives the number of half-waves of the buckling mode, dj..., etc. are appropriate
functions of 'y'. The overall buckling of a clamped column is modelled by taking
m3=2 and a suitable shift of the origin - a valid procedure when the cross-section
suffers little or no distortions,

The second order displacement field for each mode can be extracted from the
governing differential equations in the form (ref. 13):

u, - Gii(y) sin(Zmiﬂx/l)

v (y) cos(Zmiwxll)

11 " Vig,00 * iy 0

- - 14 - -
vy wii,O(y) + wii,Z(y) cos(Zmiwxll) (no sum on 'i', 1i=1 or 3) 2(a=c)
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Similarly the mixed second order displacement field may be obtained in the form:

u u;3(y) sin{(ml—m3)wx/2} + 613(y) sin{(ml+m3)nx/2}

13

vig = VI3(y) cos{(ml-m3)nx/2} + ;13(y) cos{(m1+m3)nx/2}

Wiy = WIJ(Y) cos{(ml-m3)nx/£} + 513(y) cos{(ml+m3)nx/£} 3(a-c)

in which the barred and starred functions of 'y' are determined from a finite strip
analysis (reft. 13).

The displacement functions in eqn. 2(b-c) and 3(b-c) do not satisfy the kinemat-
ic boundary conditions for 'v' and 'w' but can be shown to be justifiable approxima-
tions. Note that mj>>1, and m3 is either 1 or 2. Thus, for the second order, local
and mixed second order fields are made up of so many half waves that the influence
of kinematic boundary conditions is localized near the ends. Again, for th. case of
overall buckling, the cross-sections remain sufficiently undistorted so that v33=0
and w33x0. It is now possible to set up a potential energy function in the form:

I = a £2{1-3/A} + a to(l-a/2.) + b, 2 + b 262 + b g2
151 17t 338, 3 1151 * Py38183 + bagly

(0) (0)
- 22, (A/A))E7 g - 2a,00/A D858, §

where £; and €3 are scaling factors, a;.....b are constants which can be evaluated
once the displacement fields are available, and A is the load parameter, which in
this case is the end shortening. Note that the eqn. 4 contains linear terms which
contain the lowest order effect of initial imperfections. Equilibrium equations are
produced invoking the principle of stationary potential energy and solving the re-
sulting equations by prescribing any one of (£;,£3,A) and computing the other two by
a standard numerical procedure sich as the Newton-Raphson method.

n the case of columns of category 1, it can be shown (ref. 12) that the mixed
second order fieid takes the character of a local mode (henceforth calied 'second-
ary') whose wavelength tends t. be the same as the primary local mode for sufficient-
ly large values of m). In other words, the overall bending of the column triggers
the secondary mode by its interaction with the primary mode. The secondary mode is
antisymmetric (symmetric) with respecc to the axis of overall buchling if the primary
mocde is symmetric (antisymmetric). Thus it aggravates the displacements on the com-
- pression side of the axis of bending and alleviates the same on the tensinn side.
Examples of the two companion modes are shown for an I- and square box cross-sections
in Fig. 2(a-b). The existence of a secondary local mode poses a singularity problem
in the evaluation of the mixed second order field if it eigenvalue is close to that
of the primary one. In this version of our approach, this problem is simply bypassed
by seeking an upperbound solution (for the stiffness of the structure) by deleting
the geometric stiffness terms associated with X in the evaluation of the mixed
second order field.
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While this version has the advantage of simplicity, the procedure wo.i. lead in
general to an overestimate of the stiffness of the structure for values of X in the
vicinity of Az » the critical value of X corresponding to the secondary local mode.

Version I1

This is an extension of Versions I for columns of category 1 to account pre-
cisely for the destabilizing influence of the secondary local mode. The singularity
problem arises in Version I because the secoundary local mode appears as a higher
order field. This problem is eliminated in this version by treating the secondary
mode as an additional participating mode with the full romplement of higher order
terms taken into account. (The scaling factor of the secondary mode (&j) is
assumed to L' of the same order of magnitude as that of the primsry.) 1In che
analysis, it is not u-=cessary to compute the nixed se .. order field arising from
an interaction of each lccal mode with overall buckling, as this is given by the
other local mode. However the mixed second order field arising from the interaction
of the two local modes is taken inio account and in this respect this vercion of the
analysis is m e accurate than any available in the literature so far. The potential
energy for th. perfect structure takes the form:

) 2 2 2 4
n = al(l—x/xl) gl + az(l-x/xz) &5 + a3(1-A/x3) 53 + c:,1£2£3 + bllgl
4 2.2 4 2.2 2 2
+bygly ¥ BypEg 8y + (bagly F bayEaby by E5E) 5

The most significant feature of this function is the presence of a non-vanishing
cubic (or trilinear) term underlined in eqn. 5 which usurps the role of the bj3 term
of eqn. 4. The last three terms enclosed inside the parentheses in eqr. 5, though
retained in the analysis, are only of minor significance.

Version III

This ve.sion is designed to be up~licable to prismatic members of arbitrary
cross-section simply supported at their ends in a study of interaction of a local
mode with an overall mode which may either be purely flexural (Euler) or flexural-
torsional. The mode of loading is one of prescribed stress which can be uniform or
linearly varying across the section.

The displacement functions for the eigenvalue problem are taken in the came
form as in eqn. l(a-c).

The second order local field is represented in the form:

Uy - ﬁll(y)sin(Zmlnx/L) + 2llx9£z)(%'-X)

s s s

v (y) cos (2m;nx/2) + y*x(z—x)

1 " V11,0 YV

S

[ :
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The underlined terms are familiar expressions in the post-local-buckling analysis
under prescribed end compression [eqn. 2(a~b)]. The additional terms have now been
included to allow for:

1. The additional longitudinal compression for a given level of compressive
stress which occurs due to local buckling

2. The inplane rotation of each constituent plate and thus of the entire
crocs-section which would occur in members whose cross-sections are not dcubly sym-
metric, as a result of the shift of the ' effect1ve centroid" which is a consequence
of local buckling. The degrees o/ freedom v* number as many as there are constituent
plates in the structure. The second order contribution to normal displacements have
been neglected for simplicity because of the smallness of flexural rigidity in com-
parison to their extensional rigidity.

The second order overall field is represented by Fourier series supplemente?! by
corrective functions so as not to violate the natural boundary condition of the pre-~
scribed axial stresses at the ends:

Uy = (p)(y) cos(pmx/L) + u33(; ~x)

Vi3 T ‘p)(y) sin(pmx/1)

W, = (p)(y) sin(prx/%) (p=...,m=-2,m_,m +2 ) 7
33 e Bk L Mt R

where U;B is a known function given by

22,2 -
- 3w i+ % 3]+vu§’y}

*
33

u

Similarly the mixed second order field is given by:

ujg = (q)(y) cos(qnx/8) + u (Z/Z-x)
vi3 = v V() sinqre/a)
13
Vi3 = (Q)(y) sin(qnx/L)
q = ...,(m -m, =2), (m -m ) (m m3+2) (m 2),(ml+m3),(ml+m3+2),...
8(a-¢)
22
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Again u is a known function given by:

2,2
uI3 = (m1m37' /8 )wl(y)wz(y)

(m1 and m3 are assumed to be both even or both odd)

A simplifying factor in the analysis is the uncoupling of harmonics which occurs
in the determination of the second order overall and mixed second order fields. The
orthogonality conditions berween each of the second order fields with both of the
eigenmodes are euforced by the use of a Lagrangian muitiplier technique in the com-
putations. In the evaluation of the second order fields, the value of the load para
meter was set equal to 1,, a constant equal to smaller of the two values, viz.

(1) Amax (the maximum value of A, attainable in the presence of imperfections) and
(11) Min |A1,23]. The energy function in this versicz includes a full complement of
cubic and quartic terms in the two degrees of freedom.

Dynamic Interaction

Dynamic behavior under suddenly applied loads 18 investigated neglecting the axial
modes of vibration. A kinetic energy expression is written in the form of a homogeneous
quailratic of the scaling factors (T=mj£j). Langrangian equations of motion are
set up in terms of £f for any given level of axial load. These equations are then
solved using an implicit method (Newmark's '8' method) in conjunction with Newton-
Raphson iteration to obtain the dymamic response. Dvnamic buckling is signaled when
the deflections grow indefinitely with time.

EXAMPLES

In what follows, examples are presented to illustrate the type of results that
can be produced using the different versions of the method and some salient features
of interactive buckling of thin-walled structural components.

Interaction in Clamped Stiffened Panels

A wide plate carrying equispaced narrow rectangular stiffeners is considered.
Because of the symmetry with respect to the longitudinal center lines of each panel,
only the action of a typical panel included between any two successive center lines
is considered. Table 1 summarizes the details of the panels under study. Of these
Panel A has a considerably slender stiffener (dg/t=25) which therefore initiates the
buckling process. Panel B has a more realistic stiffener with dg/t=15, tvpically
used in offs..ore construction. The panels exemplify the case of near coincident
buckling. Twenty-four strips are employea in tle finite strip analysis to represent
the panel and these appear to be certainly adequate as judged from earlier conver-
gence studies (ref. 7).

Fig. 3(a-b) shows the imperfection-sensitivity surfaces of the panels. These

surfaces give the maximum load carried by the structure as a fraction of o.., the
local critical stress of the structure. A common feature of the behavior o} the
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paucls is that there exists a limit on the end shortening on the natural loading path
in the presence of imperfeciions. Very often thisc limit is reached before the struc-
ture begins to shed the load and there follows a catastrophic form of failure under
controlled end shortening.

The more acute imperfection-sensitivity of Panel A in comparison to Panel B is
in conformity with the general view (ref. 1) that the greater the slenderness of the web
the greater the imperfection sensitivity. The other factor which controls the imper-
fection sensitivity is of course oc3/ocx the ratio of overall to the local critical
stress. Panel C has the same cross-section as A but with its length reduced so that
uc3/ccl=l.52. The imperfection sensitivity continues to be severe, but there occurs
an increase in the maximum load of 117 over the local critical load for the perfect
panel (not shown).

Interaction in I-Section and Box Section Columns: Version II

Fig. 4 shows the cross-sectional Jimensions of the I-section columns investi-
gated. Fig. 2(a) illustrates the primary local mode. The interaction of overall
bending about the xx-axis aggravates the dcflections on the compression side and al-
leviates the same on the tension side ieading to the triggering of the secondary
15cal node also illustrated in Fig. 2(a). Columns having two different lengths are
considered:

(a) 1 = 2000t, °c3/0c1 = 1.06, OCZ/UC: = 1.21

(b) <& 1.21

1200t, ac3/oCl = 2.90, oczlcc1

Fig. 5(a) shows the variation of the maximum load that can be carried by the column
(a) expressed in the form ou/oc with overall imperfection amplitudes. The effect of
introducing a given imperfection in the local mode equal to 0.2t is also illustrated
jn the same figure. These results are compared with the upperbound solution produced
by Version I. The latter values are consistently higher because of the destabilizing
influence of the secondary local mode duly considered in Version {I. 1In Fig. 5(b)
the same results are plotted for the column (b). Here the differences between the
two sets of results are more pronounced. Because of the considerably higher value of
the overall critical stress, A can now approach closer to A than in case (a) and so
the secondary local mode causes an increased destabilization.

Comparison with Koiter's Results on Square Box Columns

Square box columns with various values of oc,/0c, and different levels of ini-
tial imperfections have been studied using Version II. Fig. 6a shows th: variation
of ay/oe, withaog /oc, for two different levels of local imperfection (£7/t), viz.
t/80 and t/20 as obtained by the present theory und as obtained by Koiter (ref. 14).
In Fig. 6b similar results are presented for columns having a fixed value of local
imperfection equal to t/40 and two different values of overall imperfections, viz. 1%
and 8% . the radius of gyration (r) of the cross-section. In the range of o¢ /oc1
considered, Koiter's theory gives results which exceed those of the present theory by
a maximum of 7%. Koiter used a mechanical model to which he built in the degrees of
freedom corresponding to local buckling and postbuckling deformation in an approxi-
mate manner. A major approximation in his approach is the complete neglect of the
mixed second order field arising out of interaction of the two local modes - an
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approximation which overestimates the coefficient by in the energy function (ref.

eqn. 5) which in tren overestimates the stiffrne+s of the structure. This field, if
taken into account, gives additional freedom to the plate elements to 'pull in' (in
the compression zone) or tr 'relax' (in the tension zone) in their own plane. The

results of the present theory must be deemed more accurate.

Interaction of Local and Lateral-Torsional Buckling

In order to illustrate the scope of the analysis in Version 111, we consider
a problem not so far studied in a rational manner: the interaction of local and
lateral-torsional buckling in a beam subjected to end moments. We consider a set
of three T-section beams having near coincident critical stresses. The details are
shown in Fig. 7(a). The load-displac t chara?teristics are shown in Fig. 7(b) for
the imperfection magnitudes given by E? =0.1, &4 -1/2000 2/t. For shorter d/b
(=1.0) the interaction does not produce any catastrophic effects; the local buckling
displacements decrease after having increased initially and there occurs a
gradual increase in the overall buckling amplitudes as we approach the combined crit-
ical load. The behavior of the section with d/b=2.0 is, on the other hand, quite the
opposite. There occurs a rapid increase in both the local and overall buckling am-
plitudes around 80% of the critical load, followed closely by a limit point type of
failure. It is evident that the structure is now imperfection sensitive. As d/b
increases, the torsional component in the overall buckling deformation diminishes and
the flexural component increases. It appears that the torsional buckling and local
buckling modes merely 'interfere' with each other (as would do two local modes) lead-
ing to imperfection insensitivity. When flexural component is dominant in the over-
all buckling deformation, then there results an imperfection-sensitive behavior.
This finding is of considerable practical importance as some proposed design
approaches have assumed that the interactions of both types of overall buckling, viz.
lateral torsional and purely flexural buckling, with local buckling are equally seri-
ous problems (15).

Interaction Under Dvnamic Loading

An I-section column with B/t=80 and D/t=80, %/t=2000 (Fig. 4) was chosen to
study the effect of suddenly applied end compression. Table 2 gives the static and
dynamic buckling values of A (viz. Ag and Ap) as a fraction of A} for various imper-
fection amplitudes. Figure 8(a) shows the variation of local and overall (spatial)
amplitudes with nondimensional time t(=w}Tx103) for a value of i<lp. It is found that
the colunn vibrates essentially about the static equilibrium position in both the modes.
The local amplitude varies in the form of a slowly varying function which itself is
periodic, its maxima synchronizing with the maxima of vibration in the overall mode.
Figure 8(b) shows the variation of &) and £3 with respect to time, again for a value
of A greater than Ap by 1%. In this case, the amplitudes continue to increase with
time signalling dynamic instability. It is evident from a study of Table 2 that the
additional loss of capacity to carry loads resulting from their sudden application is
primarily influenced by overall imr~rfections, which makes their consideration in
design and fabrication especially important. For an overall imperfection of magni-
tude of L/1000, the drop in the limit end compression is about 8% from the static
case. In many practical cases, plastic yielding would be triggered due to huge
osciliations that build up for end compressions significantly smaller than ).
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CONCLUSION

Significant progress has been made in the prediction of behavior under interac-
tive buckling of prismatic thin-walled column <+nd beams using the finite-strip tec!
nique and the theory of mode interaction. ihe approaches developed can deal with a
variety of problems of practical int:rest. The effect of sudden application of the
axial lcad has been investigate: and 1t is shown that the dynamic buckling load can
be significantly smaller than the static buckling load in the presence of imperfec-

tions.
NOTATION

B width of flange at I-section
D depth of web of I-section
T kinetic energv; also time
b width of flange of T-section: width of panel
d depth of web of T-section
d_ depth of stiffener
ml,m3 the number of half waves of buckling in the local and overall modes
t thickness of a4 certain plate element (tq = thickness of stiffener)
U,v,w the displacement components in the x,y,z directions
Xy¥s2 the coordinate axes in the longitudinal, transverse and normal

directions of a plate strip
1 potential energy
) load yparameter
A value of ) corresponding to -
max max k
Al’lz’)B critical value orf > corresponding to buckling in the primary local, ‘

secondary local and over: 11 modes respectively '
AS’AD maximum value of * corresponding to buckling under static and dy-

namic application of load
51,52,g3 scaling factors for the primary local, secondary local and overall

modes respectively

r
0 . . ; .

g{o),ggo),gg ) initial imperfections in the buckling modes .
JFI'GCZ'GL3 critical stresses In axial compresszion
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dimensionless time (wlTxlO3)

natural frequency in the primary local mode
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TAZLE 1.-GEOMETRY AND INITIAL BUCKLING DATA OF STIFFENED PANELS

BUCKLING MODES AND
GEOMETRY p
Identification CRITICAL STRESSES
|
of Panel 9¢ ) Oc¢
= “eq) 3 ( 3) 3
b t{ ts) ds L o, (E x10 3 x10
A 50 1 25 1320 22 1.157 1.190
50 1 15 600 12 1.526 1.513
C 50 1 25 1030 18 1.157 1.762

* The subscripts 1 and 3 refer to the local and Euler modes; m3-2 for all cases.

>
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TABLE 2.-DYNAMIC BUCKLING COMPRFSSION VALUES OF THE I-SECTION COLUMN

230

L

Initial Imperfections
(0) (0) Ag/r Ap/Ag AD/Al
11 13
3 1
0.0 0.1 0.92 1.0 0.92
0.2 0.85 1.0 0.85
0.5 0.75 1.0 0.75
1.0 0.1 0 30 0.96 0.77
0.2 0.75 0.96 0.72 :
2.0 0.1 0.74 0.92 .68 I
0.2 0.70 0.92 0.64
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Figure l.- Finite strip configuration and the local
coordinate system.
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Figure 2.- The primary and secondary local modes of buckling
for an I-section (a) and a square box (b) column.
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(a) S:iffened panel A. (b) Panel B.

Figure 3.- lmperfecticn-sensitivity surface of panels A and B. (See Table 1.)
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Figure 4.~ The dimensions of the I-section column
studied (B=D=80t, #=2000t and 1200t).
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Figure 5.- The variation of maximum load supported by I-section column with
overall imperfections for a specified local imperfection for
columns A and B.
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(a) The details of the T-section beum carrying end moments of M. Eio) = local
imperfection amplitude at the tip of the tip of the flanre divided by

t=0.1; ¢ = overall imperfection 2mplitude at the junction of the
flange and web divided by t, = 1/2000( ¢/t).
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(b) The load deflection characteristics of the T-section beams.

Figure 7.- Details and load displacement characteristics of T-gsection beam.
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INITIAL POSTBUCKLING ANALYSIS OF
ELASTOPLASTIC THIN~-SHELL STRUCTURES

E. G. CARNOY and G. PANOSYAN

Novatome, la Boursidiere RN.186
92357 Le Plessis Robinson Cedex

ABSTRACT

The design of thin-shell structures with respect to elastoplastic buckling
requires an extended analysis of the influence of initial imperfections. For
conservative design, the most critical defect should be assumed with the maximum
allowable magnitude. This defect 18 closely related to the initial postbuckling
behavior. The paper presents an algorithm for the quasi-static analysis of the
postbuckling behavior of structures that exhibit multiple buckling points. The
algoritha based upon an energy criterion allows the computation of the critical
perturbation which will be employed for the definition of the critical defect.
For computational efficlency, the algorithm uses the reduced basis technique with
automatic update of the modal basis. The method 1s applied to the axisymmetric
buckling of cylindrical shells under axial compression, and conclusions are given
for future research.

INTRODUCTION

The design of LMFBR slender vessels involves complex and possibly stiffened
shell structures that are submitted to pressure loads and large temperature
gradients. The design requires an extended buckling ana.ysis which takes into
account geometrical and material non-linearities as well as the influence of initial
imperfections.

In most cases, however, initial imperfections are not known except for theilr
global order of magnitude which can be obtained from fabrication tolerances. For
congservative design, the most critical imperfection should be assumed with the
maximum allowable magnitude. Then, the difficulty consists of defining the most
critical imperfection pattern.

For small fmperfections, asymptotic theories (1 to 3) describe the critical
fmperfection as parallel to the initial postbuckling behavior of the actual
structure. In the elastoplastic ronge, determination of the initial postbuckling
behavior is a quite difficult task since the buckling point is generally multimodal;
namely, a relatively large number of deformation modes exhibit null or small stiff-
nesses, and depending upon the initial perturbation, several postbuckling paths can
be obtained.
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Moreover, the elastic criterion of the minimum of the total potential energy
should be extended to non~conservative systems, such as elastoplastic materials.

Although a quasi-static approach is employed, the mass matrix 1s the only
physical norm that can be used for defining the perturbation amplitude (4). Then,
considering a small but finite perturdation, the crirzical postbucklinrg path is
defined by the perturbation that minimizes the work of internal forces.

The purpose of this paper is the description of methods that allow approximate
solution of this complex minimum problem. The first issue consists of defining a
suitable reduced modal basis for the descriptior of the structural behavior around
the buckling point. The use of a reduced subspace, while not necessary for the
solution of the minimization problem, allows saving of computer time and improves
the understanding of the structural behavior.

Much work has been done on the reduced basis technique, especially for conser-
vative systems (5 to 9). Some of these works concern the elastic hbuckling and
iaperfection sensitivity of thin shell siructures (6, 7). The mixed finite element
approach also improves the reduced basis technique for elastic behaviors (10, 11).
The initroduction of plasticity requires special care for the definition of a suit-
able subspace, since possible unloading in the early postbuckling path may
drastically change the structural behavior with respect to the initial modal bases.
The propoged approach thst involves a continuous update of the reduced subspace 1is
presented in the next gection.

The next issue consists of defining the critical perturbation for a given
amplitude by applying the ainimum criterion to the reduced subspace. Employing
Crisfield's method (12), we sesrch for the equilibrium path In the reduced basis
that coriespcnds t a given {initisl directioa. The internal work is also evaluated
along this post' «kling path. The tiilrd section presents the algoritum for defining
the suitable initial direction in the reduced subspace.

Simple numerical examples corresponding to the axisymmetric buckling of
cylindrical shell under axial compresgion are givesn in the fourth section and
conclusions for future research are presented in the last section.

REDUCED BASIS TECHNIQUE
Fundazental path

before analysing the postbuckling behavior, the fundamental path has to be
computed up to the buckling point. An efficient procedure consists of employing the
arc-length method of Riks-Wcmpner (13) im conjunction with an incremental bifurca-
tion analysis (14). The stability matrix of the bifurcation problem is the sum of
the geometrical stiffness matrix, the load stiffness matrix and the material stiff-
ness matrix that accounts for the change of tangent modulus along the linear approx-
imation of the fundamental path (15).
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By giving an estimate of the buckling load, the incremental bifurcation
analysis allows adaptive step~size increments so that the buckling point is attained
within a few steps. Indeed, in the prebuckling range, large increments can be
employed with good accuracy with respect to the integration of the constitutive
equatione, since the condition of radial loading is usually locally satisfied.

Buckling modes

When a state of equilibrium has been obtained in the neighbourhood of the
buckling point, the buckling modes are computed by solving the following eigenvalue
problem:

~°91 = "’i-gi 09
with

K; tangent stiffness matrix at the reference state

M mass matrix, possibly diagonalised

9 eigenmode

wy pulsation

An efficient algorithm for solving (1) is given by the Lanczos method (16), or
even better, the block Lanczos method (17). The choise of (1) for defining the
buckling modes is related to the choice of the mass matrix as a norm of the pertur-
bation amplitude. The lowest frequency eigenmode is also the solution of the
minimum criterion tor an infinitessimal amplitude.

The initiel modal basis corresponds to the lowest frequency eigenmodes along
with the deformation mode tangent to the fundamental path, 9,

Krg, = 6 (2)

where ) denotes the load factor and G the unit external load. In the following,
the modal basis, denoted by T, is assumed to be orthonormalised with respect to the
mass matrix:

Ie {'10' 9.1""’%} 3
with
?ilfg oy for 1,4 = 0,1,...,n (%)
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Jij (Kronecker symbol)

so that a finite perturbation is defined by the relation

qMg=aa=a (6)

Crigfield's method in the reduced subspace

For a given perturbation, a, of the reference equilibrium, we seek convergence
in the reduced subspace, at first. The iterative grocedure employs Crisfield's
method (12) and the correction of displacements, a, is computed as follows:

ki =r+ g o)
a-= 9.1 + X..az @
(a+3)(a+a)=d @

where the tangent stiffness matrix, k, the resilual load vector, r, and the unit
external load, g, are restricted fnto the modal basis:

k= Pk 10)
r= IR Chuws - (i)

OF POUR (.- - !
g = re @

This projection can be performed at the finite element level so that no triangular-
isation of the cnmplete stiffness macrix is required. During the {terations, the
total inertia is kept constant by the relation (9), which allows computation of

the correction, X, to the load factor by solving a second order algebraic equa-
tion (12). The relation (5) with the corrected reduced displacement gives the
displacement vector in the complete system which is employed to compute the stress
correction by integration of the constitutive equations.
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Update of the r=2duced basis

When convergence is attained in the reduced subspace, the convergence criterion
in the complete system may not be satisfied and modification to the modal basis has
to be performed.

Congidering, for example, a simply supported plate under axial compression, the
lowest frequency eigenmodes correspond to bending deformations, but the initial
postbuckling behavior also involves membrane contribution that makes the structure
stiffer (1, 18). These membrane deformations are associated with much higher eigen-
frequencies than the allowable cut-off frequency employed for choosing the initial
modal basis with problem (1). This membrane contribution could be recovered in the
elastic case by a perturbation process such as the one employed by Koiter (1) or
Noor (9). However, since the occurrence of plasticity and possible unloading may
drastically change this contribution, a more efficient procedure has to be employed.

A simple way for updatine the initial reduced basis consists of defining an
additional deformation mode associated with the residual ve:tor of the complete
system by the relation

Kog, + 1= R (13)

The solution of (13) is orthonormalised to the previous modal basis following
relation (4) with incrementation of the reduced subspace.

nen+1l (_!._IL)

It is worth noting that the soluiion of (13) does not require the triangulari-
sation of a new tangent stiffness matrix, but only employs the triangularisation of
the reference tangent stiffness matrix used in (l1). The incrementation of the modal
basis is performed up to convergence in the complete system.

CRITICAL POSTBUCKLING PATH
Energy criterion

The critical perturbation is assumed to be the solution of the minimisation
problem

(15)
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under the consiraint (6). The integration of the work of the internal forces, Fints

is performed along an equilibrium path. The quotient in (15) has the dimension of a

pulsation and its minimum value can be positive or negative. The criterion (15)

does not allow verification of the stability of the postbuckling path but this check -
can be deduced from the sign of the load factor increment. Assuning that the

applied load remains constant at the buckling point, the perturbation defined by

(15) makes the kinematic energy maximum for an unstable postbuckling behavior. The

minimum value of (15) may be considered as a measure of the degree of instability of

the structure, which depends on the perturbation amplitude.

Within the framework of the reduced basis technique, the criterion is also
given by

a
T
[ £ined do
o

mz = min ——— (16)
a o~ —
d a
with
€ =
~int frgint (11)
and tle current tangent direction to the postbuckling path
da
¢ =13 (18)

Algorithm initialization

When the cut-off frequency has been defined, the initial direction, d , in the
reduced subspace is chosen as the tangent to the fundamental path with the
equation (7):

d, = s as
which ylelds with (9) ORICIMAL 7. . .
OF POOR Qu.«-t:v f
f==—; a=14Xd (20)
T -0 —
dd
~0-0

The load factor increment is taken positive since the reduced stiffness matrix
is positive definite by the choice of the reference equilibrium state on the funda-
mental path. The initial amplitude, @, is chosen small enough in order to keep
good accuracy in the integration of the constitutive equations. Indeed, in this
integration, the strain rate is assumed to be constant during the increment so that
plastic loading followed by elastic unloading is precluded within the same increment
(19). Such a behavior may occur when a bifurcation appears within the increment.
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From the first guecss (20), iterations are performed up to convergence in the
complete system with possible updating of the modal basis. The smallness of the
increment size allows conputation of the work of internal forces in (16) by applying
the simple trapezoidal integration rule. -—-

Check of the initial direction

Before proceeding to the next increment, we have to check if the energy
criterion {s satisfied with the current perturbation. It is assumed that the
criterion is satisfied provided that the number of negative or null pivots in the
triangularisation of the reduced tangent stiffness matrix is less than or equal to
one. Otherwise, the eigenmodes agsociated with negative or null eigenvalues are
computed in the reduced basis:

2 2
kd, = wd ~ for w <O (21)

The new direction is chosen as the one that makes the maximum angle with the
current initial direction. After normalisation with respect to the euclidian norm

T T
450 1541 = minld g, | (22)
the new direction is defined by the relation

- (d2d.)d } stafdld,) (23)

) %o%

and the current increment is reinitialised with

a=vyd; X=0 (24)
2 2
- JB + AaA-B (25)
A el
T . = 47
B = go?’ A 9090 (.2_6)

where Aaz is the current increment size. This procedure is employed up to satis-
faction of the energy criterion. Then, we can proceed to the next 1ncrem§nt, the
direction of which is given by the equation (lg). The increment size Ao~ 1is
updated by taking into account the number of iterations required to get convergence.

- 243

W o besias Fenn oA

3



Remarks about the cut-off €requency

The choice of the cut-off frequency for the definitfon of the initial modal
basis 18 the main issue for the convergence of the algorithm and its accuracy. This
frequency should not be too large in order to keep a suitable number of modes for
algorithm efficiency with respect to computer time. On the other hand, too small a
frequency could yield convergence difficulties in the complete system or give a bad
approximation of the lowest eigenvalues of the complete tangent stiffness matrix far
away from the reference state. Indeed, the algorithm is bagsed on the solution of
the eigenvalue problem (21) and the reduced modal basis has to contain the current
eligenmodes of lowest efgenvalues of the complete system, at best.

The cut-off frequency depends on the proximity of the reference state with
respect to the buckling point and also on the total magnitude of the considered
perturbation. This amplitude is not very large since the definition of the critical
defect is only based on the initial postbuckling behavior. The cut-off frequency
should be defined with respect to the lowest eigenfrequency of the structure in its
unsicessed configuration. Preliminary results indicate that these frequencles
should be of the same order of magnitude.

AXISYMMETRIC BUCKLING OF CYLINDRICAL SHELLS UNDER AXIAL COMPRESSION

The proposed method has been applied to the axisymmetric buckling of two
circular cylindrical shells under axial compression. The cylinders are clamped at
both ends and the material is elastic - perfectly plastic (table 1). Both shells
have the same value for the Euler buckling load and the linear limit load. The
structure is modeled by 50 2-node thin-shell elements with one integration point on
the lamina and 5 Gauss points over the thickness (20).

Both shells exhibit about the same postbuck’ing behavior; namely, an asymmetric
bifurcation ‘s nearly coincident with a symmetri: limit point type of buckling. The
bifurcation path yields the largest energy releas. while elastic unloading takes
place at one end of the cylinder. The shell 2 is slightly more unstable than the
shell 1 since the instability occurs even with controlled displacement in this case.
The deformation patterns of both shells are represented in the figures 1 and 2.

The reference equilibrium state is chosen on the fundamental path slightly
below the buckling point. By taking the cut-off frequency of the same order as the
eigenfrequency of the unstressed configuration, we choose for the initial modal
basis the first 6 or 8 eigenmodes, respectively, for the two shells in addition to
the tangent to the fundamental path (table 2). 1In the step 1, convergence is
attained on the gsymmetric postbuckling path at first, and the definition of a new
initial direction then yields convergence on the agymmetric bifurcation path with a
decrease of the energy criterion. The results are summarized in tables 3 and 4.
The final number of modes in the reduced subspace is also indicated for each step.

ORIGINAL |
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CONCLU3IONS

In ttis paper we have presented an algorithm for the definition of the critical
perturbation in the postbucki. ng behavior of elastoplastic thin-shell structures.
The algorithm is based upon an automatic reduced basis technique to improve its
efficiency with respect to computer time. This approach also allows better under-
standing of the postbuckling behavior. Simple numerical examples illustrate the
method and the energy criterion gives some insight iato the degree of structural

instability.

Further rese: ch is aneceszary to clarify some important issues; namely, a good
criterion for the iefinition of the cut-off frequency in the selection of the
initial modal basis; and application of the critical perturbation to the definition
of the critical defect, especially with respect to the relation between the pertur-
bation amplitude to be considered and the maximum allowable magnitude of the initial
defect. In this work, the usual J2 flow theory has been employed to model the
plastic behavior, but other theories are more suitable for buckling analysis (21).
Finally, the present approach should be applied to more complex postbuckling
behaviors than the ones coneidered up to nnw.
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TABLE I : GEOMETRIC AND MATERIAL DAT/.
Shell 1 Shell 2
Young Modulus (MPa) 210 000 210 000
Poissun ratio 0.3 0.2
Yield stress (MPa) 210. 420.
Radius (mm) 150. 150.
Length (mm) 40. 100.
Thickness (mm) 0.25 0.50
Mass density (kg/ma) 7 800. 7 800.
TABLE 2 : CHOICE OF THE INITIAL MODAL BASIS
© A : antisymmetric mode S + symmetric mode
| sta1e Shell 1
Initial eigenfrequency (Hz) 146 158
Load level (daN) 16 690, 4 093.
Eigenfrequencies (Hz) 1 6.3 A 6.7 S
2 38.4 S 62.3 A
3 67.3 S 89.5 A
4 81.3 A 123. S
5 | 89.1 A 152, 5
. 6 106. s 169. A
F 7 l 121, S 210.
f 8 | 133. A
“ o | 150
- 248
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TABLE 3 : RESULTS FOR SHELL 1

Gl v
OF .. . -
Reference state Step 1 Step 1
Load level (daN) 4093. 4006 . 3994.
Axial end-shortening (mm) 0.0335 0.0348 0.0346
. . -6 -6

Perturbation amplitude (kg) - 3.65 .0 3.65 10

Number of modes - .3 16

Number of negative pivots 0 2 1

6 3
Criterion - 2.2 10 1.9 10
TABLE 4 : RESULTS FOR SHELL 2
Reference
state Step 1 Step 1 Step 2 Step 3 Step 4 Step S
Load level (dai) 16690 16680 16580 16440 16200 15850 15320
Axia' end-shortening (lO-me) 17.01 17.26 17.09 17.0% 16.99 16.93 16,91
-5 -5 5 -5 -4 -4

Perturbation amplitude (kg} - 1.15 1077 1.15 10 2.43 10 5.15 10 9.08 10 2.31 10
Number of modes - 11 13 14 15 17 19
Number of negative pivots 0 2 1 1 1 1 1
Criterion - 5.8 10° 1.810° |a.4105 |-s.8.0% | -1.910% -1.110°
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NONLINEAR DYNAMIC ANALYSIS OF SANDWICH PANELS

Allen M. Lush
Kaman AviDyne, Burlington, MA

SUMMARY

This paper demonstrates two analytical techn!ques applicable to large
deflection dynamic response calculations for pressure-loaded composite sandwich
panels. One technique utilizes finite element modeling with a single equivalent
layer representing-the face sheets and core. The other technique utilizes the
modal analysis computer code DEPROP (Refererice 1), which has recently been
modified to include transverse shear deformation in a core layer. The example
problem consists of a simply-supported rectangular sandwich panel. Included in
the paper are comparisons of linear and nonlinear static response calculations,
in addition to dynamic response calculationms.

INTRODUCTION

Sandwich panels can be designed to withstand large dynamic pressure loads.
For example, the latest generation of Command, Control, and Communication
military shelters employs sandwich panel walls designed to survive severe blast
loading (References 2, 3, 4). An important step in the design process is to
predict accurately the response (stresses and deflections) for the expected
loads, thus ensuring design adequacy and efficiency. One approach is to test
either full size or scaled models, but this can be time consuming and expensive,
especially if many configurations are being considered. Alternatively, an
analytical model of the sandwich panel can be constructed. This paper
demonstrates tvo different analytical techniques applicable to geometrically
nonlinear (large deflection) dynamic response calculations for composite
sandwich panels with honeycomb cores. Of primary concern are the in-plane face
stresses and the transverse shear stresses in the core. This information
permits a survivability determination to be made by the designer.

The first analytical technique presented utilizes finite element modeling,
with an equivalent layer representing the stiffness properties of the sandwich
cross section. The equivalent layer modeling theory has been developed recently
(Reference 5), and is summarized in the paper. It is considered to have wide
applicability and to offer optimal efficiency for many sandwich panel analyses.
For sandwich panels having thin face sheets and possessing a neutral surface
decoupling bending and stretching, the equivalent layer representation is
essentially exact, except for the effects of rotary inertia. For this paper,
the equivalent layer calculations were done with computer code ADINA
(Reference 6). It was intended to use the transverse shear deformable thick
shell element (type 7) for the dynamic response calculations, out this was not
possible due to difficulties wich the 1981 version of the code. Consequently,
the 3D solid isoparametric elements (type 3) were used. Geometrically nonlinear
dynamic analysis with the ADINA code was done using a total Lagrangian motion
description and the Newmark-Beta implicit method of time integration.

251




&l

e,

-y

A second analytical technique presented for comparison uses a modified
version of the modal analysis computer code DEPROP (Reference 1) (Qynamic
Elastic Plastic Response Of Panels). It is formulated to model multilayer
panels. ‘This code uses orthogonal spatial functions with time-dependent
coefficients to describe the deformation of the panel. Governing equations oi
motion are obtained from the principle of virtual work, with the volume and
surface integrations for energy terms performed numerically. In its documented
form, the DEPROP analysis is based on the Novozhilov nonlinear
strain-displacement relations for large displacement response of thin panels,
based on the assumption of undeformable normals. Recently, this code was
modified to incorporate transverse shear deformation in the core layer. Time
integration .s done using the central difference explicit method.

The example problem was chosen to demonstrate the important features of
large deflection dynamic sandwich panel response. Figure 1 describes the panel,
which has orthotropic face sheets and a honeycomb core. The panel boundaries
are simply supported. With the chosen panel dimensions, transverse shear
deformation in the core is an important contributor to the dynamic response.

The first comparison is for linear static respcnse with uniform pressure
loading, for which an accurate analytical solution adapted from Chapter 7 of
Allen (Reference 7) is avai.able. Both modeling techniques are shown to
approach the reference solution. The second comparison is for large deflection
static response. No accurate reference solution is available for this problem,
but the two analytical results are shown to be 11 good agreement. Finally,
dynamic response predictions are compared for the two techniques, and reasonable
agreement is again shown,

EQUIVALENT LAYER SANDWICH PANE!. MODEL

Reference 5 presented an equivalent layer theory for sandwich panels with
thin laminated composite facings and honeycomb cores. The fundamental approach
to equivalenco consists of three basic steps. First, a kinematic
correspondence is established between equivalent layer and sandwich panel such
that the work of the external forces is reproduced exactly. This dictates, for
example, that the transverse displacement he the same for bott idditionally,
the face sheet midsurface displacements should be matched, res ‘ng in matching
of the work done by in-plane external forces applied to the fa. An added
advantage of matching the face sheet midsurface displacements is that it becomes
much easier to calculate the face sheet stresses and strains in the output. The
second step consists of equating the strain energies in the equivalent layer and
sandwich panel, which leads to equivalent layer elastic moduli determination.
Exact equivalence of stiffnesces is possible if the sandwich panel possesses a
neutral surface decoupling bending and stretching. Finally, the density of the
equivalent layer is calculated tc match the mass per unit area of the panel.
Thus, the primary contribution to the kinetic energy is represented.

Thin composite face sheet laminates can be modeled using laminated plate
theory (Reference 8), which neglects transverase shear strains and uses a plane
stress model for each layer. As a result, the moments and membrane forces in
the face sheet are related to its midsurface stretches and curvatures via tte
membrane, coupling, and bending stiffnesses A. B, and g. respectively, In :he
following derivation only the membrane stiffnesses are incorporated for the thin
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facings, introducing a small error that depends on the relative thicknesses of
the core and face sheets. For example, the error in ignoring face sheet bending
stiffnesses is less than 1% if they are homogeneous and less than 21% of the
core thickness.

For the honeycomb core, the "antiplane" mcdel (Reference 7) is adopted
here. This means that the in-plane core stresses are neglected. Consequently,
the transverse shear stresses and strains can be modeled as constant through the
core thickness. It is also reasonable to ignore transverse normal strains in
the core (Reference 9), although this precludes modeling of face wrinkling
instability.

The equivalent layer is assumed to behave like a Mindlin plate composed of
an orthotropic or monoclinic elastic material. Thus, a straight line drawn
through the undeformed equivalent layer remains <traight during the response,
i.e., the transverse shear stresses and strains do not vary through the
thickness. Three dimensional solid isoparametric elements can meet this
requirement. Alternatively, “thick shell" elements such as the one in ADINA
(Reference 10) can be used.

Figure 2 illustrates that the equivalent laver matches displacements at the
face sheet midsurfaces and at an additional surface in the core, designated the
"reference surface". In the following derivation, superscripts 1, 2, ¢, r, n,
and e refer to the inner face sheet, outer face sheet, core, reference surface,
neutral surface, and equivalent layer, respectively. The thickness of layer k

(k)

(k = 1,2,c,e) is denoted h . With respect to the reference surface, the face
sheet midsurfaces are located at (see Figure 2):

@ (O @@

ms T (D, @

h
2

() RO ) B

ms (D, @) 2

This information aliows the reference surface location to be calculated. Note
that the transverse shear strains in the equivalent layer are smaller than those
in the core by the factor:

(1) (2)
R = 1/ { 1+ h—~—-%—%~—— }
2h° €
Three reference surface displacements (u(r) uér). ugr)) plus two core

() _(c L

transverse shear strains (y s Y )) are sufficient to describe the deformed
31 23

sandwich panel geometry completely. In terms of these quantities, the sum of
the strain energies in the two faces can be written:

e @O @ 0hm @, 6@ (@)
faces ~ = ~ ~ ~ ~ ~ a ~
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X 31,1 7 Y3,11
(c) (r)
RY23,2 = Y3,22
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The sandwich panel membrame, coupling, and bending stiffnesses are

A0 L, @
x = =
(B . DM@,
= ms = ‘.'!1::

L2 2
p(r) _ 07T, () (@, (2)
= ms = ms =

A sufficient and necessary condition for a neutral surface decoupling
bending and stretching tc exist is that the ratios cij given by

(l) (2)
c = /A
13 ij
be equali for all ij terms of impoctance. The neutral surface 1s then located at
. L), (z)
Zns (c ij ms A Cij)

If the ¢,, values differ sligntly, it is best to use a weighted average c

13
emphasizing the most important terms. If the ¢

1]

then an equivalent layer representation is not advisable.
special neuiral surface. the bending stiffnesses are

pM . p(®)
=

- 2z B(r) + 22 A(r)
ns= ns=

o

The membrane stiffnesses ﬁ(“) are the same as é
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The transverse shear strains and stresses do not vary through the thickness
of the core. Consequently, the core s*rain energy can be written:

T
(e) .(c)_(c)
core = W ETY
OH () ()
where ) ¢ = Y3T ng
and EfC) - h(C) Qgg) Q(C)
(c) (C)
Qs Q,

The strain energy in the equivalent layer can be written in exactly the
same form as the strain energy in the sandwich panel, with the following

stiffnesses:
ii) = Qii) r(®) (1, = 1,2,6)
gi) - (e) i;) (1,1 = 1,2,6)
ol - { h::)2+ z;:)z} e (1,3 = 1,2,6)
U S (1,3 = 4,5)
where zgz) is the location of the midsurface. For exact equivalence, these

twencty-one stiffnesses must all equal their counterparts for the sandwich panel,
which is possible provided a neutral surface exists in the sandwich panel.

The midsurface (which is the neutral surface) of the equivalent layer is
always placed at the same x, location as the neutral surface of the sandwich

panel, i.e., 3
(&) .
ms ns

The thickness h(e) is given by

nle) . (h(c)/x)llzc NI <y
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(e) ,(e) ,(e) ,(e) _(e) (e)

In-plane € ;uivalen: layer moduli Qll , sz ’ le R Q66 R Q16 , and Q26

are equal to

(e} _ ,(n), (e) -
Qij Aij /h (i:j = 1’2’6)
If only approximate equivalence is possible, the optimal choice for these
in-plane moduli may depend on the problem being solved because it will not be
possible to match both the bending and stretching stiffnesses. Therefore,
weighting factors aij shoyuld be chosen to reflect the relative importance of

matching bending versus stretching stiffnesses, as follows:

) p(e) (4,5 = 1,2,6)

3
(e) 12D(n)/h(e) ) + (1“0 1j

Q4" = og4(12Dy A

ij
(e) (e) (e)

Equivalent layer transverce shear moduli Q44 R Q55 , and Q45 are equal to

(e) _ L(c), 2 (e) -
Q§ Fyg /R'h (1,3 = 4,5)

For dynamic analysis, the equivalent layer density is determined by
matching the mass per unit area of the sandwich panel. Consequently, the
rotational inertias of the sandwich panel can not be matched. I% can be shown
that with a symmetrical cross section, the -otational inertia ¢« -ibutions from
the face sheets are matched exactly, and the roi tional inertia contribution
from the core is off by a factor of three (too high in the equivalent layer).
With an unsymmetrical cross section, the results are not so simple. For most
sandwich panel problems, the rotational inertia is very small, and the error in
the equivalent layer representation is negligible.

Care should be taken in modeling the edge conditions for an equivalent
layer because the outer and inner surfaces do not coincide with the sandwich
panel face sheets. For example, if the sandwich panel edge support consists of
restricted motion in one face only, then it is necessary to constrain the motion
of the equivalent layer outer and inner surfaces such that the correct point
within the equivalent layer remains fixed. The more conventional
simply supported boundary condition shown in Figure 9.3c of Reference 7 can be
implemented with the equivalent layer by restraining the neutral surface
(midsurface) displacements and leaving the rotations free. For the clamped
boundary condition shown in Figure 9.3d of Reference 7, the face sheet
midsurface displacements are both restrained. The panel midsurface becomes
sloped when transverse shear strains occur in the core, causing the thin face
sheets to appear kirked at the edge. In reality, the face sheets experience a
localized region of bending and shearing strains, which are not modeled in the
equivalent layer analysis.
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For the example problem specified in Figure 1, the equivalent layer
properties are:

R = .941176

n® - 0.0934874 m (3.68061 in.)

Eie) = E;e) = 2.10742 x 10° N/m? (3.05656 x 105 psi)
vgg) = vgi) = 0.1

cfg) = 1.40495 x 10° N/u? (2.03771 x 10* pst)

cg‘;) - 8.03602 x 10’ N/m® (1.16553 x 10% psi)

cg‘f) = 3.80653 x 10’ N/u? (5.52091 x 103 psi)

p(e) = 1.23322 x 102 kg/m3 (1 195 x 10“5 1bmsec2/in4)

DEPROP SANDWICH PANEL MODEL

DEPROP was described in detail in Reference 1. Some features of this code
have already been described in the introduction. Additional details are as
follows. For elastic analysis, DEPROP performs integration through the panel
thickness in closed form for the volume integrals appearing in the principle of
virtual worx. Therefore, the problem is reduced to a distribution of five
parameters over a reference surface fixed in the core. The five parameters are
the three reference surface displacements plus two core shear angles. The
distributions of these parameters are modeled in DEPROP using combinations of
two-dimensional spatial modes, chosen to meet the boundary conditions. Each
mode 1is the product of two shape functions: one for each direction. The choice
of modal contributions to be included in a calculation is part of the DEPROP
input. DEPROP includes the bending stiftnesses of the faces. It does not model
rotary inertia effects associated with slcve of the reference surface. Finally,
deformation dependent pressure loading (nonconservative) is accounted for in
this code.

EXAMPLE 1: LINEAR STATIC RESPONSE

For simply supported sandwich panels, an accurate analy-ical solution
for linear static response to uniform pressure loading was prosented in
Chapter 7 of Reference 7. This solution used assumed modes for the transverse
deflaction and core she~~ strains. The rasulting equations were programmed on
the VAX 11/750 computer at Kaman AviDyne. It was found that a tremendous number
of modal contributions could be incorporated in a reasonable amount of computer
time. This was fortunate because slow consergence was found for the transverse
shear strains. Approximately 0.1% accuracy was obtained for these strains by
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including all modes up to number 801 (only odd modes contribute) in each
direction, for a total of 160,000 modes for each quantity. The following maxima
were obtained for unit pressure loading (1.0 psi) on the panel specified in
Figure 1:

Center Displ. = 1.3681 x i0 > m (0.053862 in.)

Face Sheet Strains: e, = +.0079490%
e2 = *,020929%
Yip * +,035629%
Core Strains: Y3 = .0572747%
Y3y = .076241%

The maximum strains e, and e, occurred at the panel center, whereas the maximum
strain Y19 occurred in the corner. The maximum core shear strains occurred at

the panel mid-edges. It is worth noting that core shear flexibility contributed
11.4% of the total deflection for this example.

Equivalent layer results for comparison were generated with ADINA using the
isoparametric thick shell element (Reference 10). This isotropic element was
modified to accommodate an anisotropic material law for plate problems by
redefining matrix C in subroutine MATl. Two versions of the element were
investigated. Elements with 16 midsurface nodes (cubic interpolation functions)
were studied first because they describe transverse shear well, without the need
for special integration schemes. Elements with 9 midsurface nodes (quadratic
interpolation functions) were also studied because they require less computer
time for a given number of nodes in the model. It was necessary to use a
2 x 2 x 2 Gaussian quadraturz2s integration schene with these elements, which is
"underintegration”. Comparison of the cubic and quadratic elements was done to
determine which one gives the best balance of accuracy and cost. Table [ gives
the relevant data for the ADINA equivalent layer calculations. For all cases,
the element mesh was uniform., The specified number of DOF includes in-plane
displacements of the midsurface, which were zero for this linear response
problem but became important for the subsequent nonlinear response calculations.

Referring to Table I, it is seen that both versions (cubic and quadratic)
of the shell element converge very closely to the analytical Allen solution for
center displacement and all strains. It is also seen that for. a given number of
DOF in the model, the quadratic shell element 1s cheaper and generally less
accurate. It is worth noting, though, that the core shear strains were
generally more accurate with the quadratic shell element. Tre element meshes
with 2832 DOF were included primarily to demonstrate convergence. For the
dynamic calculations, ithe 6 x 6 mesh of 9 node shells was chosen as representing
a good balance of accuracy and cost. Of particular interest were the accurate
core shear strain results with this mesh.
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Case LUl6 in Table 1 had the same element mesh as Case LUb6, except that
underintegrated 16 node 3D solid isoparametric elements were used instead of the
9 node shell elements. The 3D solid elements had 8 nodes each on the inner and
outer surfaces. Constraint equations in ADINA were used to relate the inner and
outer surface displacements at the edge such that a simply supported boundary
condition was represeunted exactly. Case LUl6 was done after attempts at running
the ADINA shell element dynamically were unsuccessful. 1t demonstrates that 3D
solid elements can give essentially the same results as the shell elements.

With the 3D solid elements, though, it is necessary for the two Poisson's ratios
governing thickness change for in-plane stresses to be zero. The elastic
modulus in the thickness direction was arbitrarily set equal to the in-plane
modulus because it has little effect on the results. All other elastic
constants were the same as for the shell element cases.

The DEPROP result in Table I was produced us ‘ng 32 total spatial modes for
each of the 5 parameters (3 displacements and two sh. .rs). It is seen that this
calculation agrees quite well with the finite element and Allen solutions. The
observed slight inaccuracy in the core shear strain results can be attributed to
the same sort of slow convergence as was noted in the Allen solution.

EXAMPLE 2: NONLINEAR STATIC RESPONSE

The panel specified in Figure 1 was designed to withstand a step pressure

load of 1.2411 x 105 N/m2 (18 psi). Therefore, in keeping with the apprcx.uate
concept of a dynamic overshoot doubling the deflection and strains, the panel

was analyzed for a static pressure load of 2.4821 x 105 N/m2 (36 psi). The
response was found to contain appreciable geometrical nonlinearity. Every case
in Table I except for LU4 was rerun nonlinearly for the 26 psi pressure load.
Table Il presents the results.

A total Lagrangian formulation was used for the ADINA results in Table It.
The pressure load was applied incrementally in 9 stens. ADINA handles
rotational increments additively, so the load step size hould be limited to
preserve accuracy in nonlinear analysis. With the 9 .teps used, the maximum
angular increment was less than one degree, ensuring accuracy. For each load
step, equilibrium iterations were performed using the BFGS method, and the
stiffness matrix was reformed to accoun:t for nonli-earities.

An accurate geometrically nonlinear aralytical solution was not avallable
for evaluating the results in Table II. The ADINA equivalent layer solutions
appear to converge fairly rapidly, but they do not converge exactly to the
DEPROP result, although they are pretty close. The most severe disagreement is

for Y(C). which differs by around 10% from the DEPROP solution. Much of the
discrépancy between ADINA and DEPROP can be attributed to the pressure load not
adjusting to the surface deformation in the 1981 version of ADINA, An
additional factor is the relatively small number of modes in the DEPROP
solution. This solution has not fullv converged.
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Table II includes an accurate linear solution based on the Allen solution
in Exampie 1. Comparing with case LUl4, it is seen that goemetrical
nonlinearity has reduced the center deflection by 287%, the maximum face sheet
compregssive strain by 56%, and the core shear stresses by 24% and 15%,
respectively. It may be concluded that for this problem, the design would be
too conservative without the inciusion of nonlinearity in the analysis.
Accurate prediction of the face sheet compressive stresses and the core shear
stresses is important because compressive laminate failure and core shear
failure tend to be the most severe limitations on the survivability of a
light-weight composite sandwich panel subjected to large transverse loads.

EXAMPLE 3: NONLINEAR DYNAMIC RESPONSE

The two analytical techniques were used to calculate the dynamic response
of the sandwich panel specified in Figure 1 fcr a step pressure load of

1.2411 x 105 N/m2 (18 psi). For the ADINA equivalent layer calculation, a

6 x 6 mesh of underintegrated 16 node brick elements was used. This model was
identical to the one used in case LUl7 of Table II, where it was shown to be in
good agreement with .he more accurate case LUl4. As stated earlier, it was
necessary to use 3D solid elements instead of thick shell elements because the
thick chell element did nct work dynamically in the 1381 version of ADINA. For
time integration, the New .rk beta scheme available in ADINA was used.

Although this scheme is unconditionally stable, the accuracy deteriorates as
the timestep becomes too large. Therefore, two dynamic response calculations
were done with differing timrsteps (0.1 and 0.02 msec) to check the numerical
accuracy. These calculations were carried out to 8 msec and 4 msec,
respectively. Equilibrium iterations were done for each timestep, and the
gstiffness matrix (used in restoring equilibrium) was reforaed every 0.2 and
0.04 msec, respectively. Total solution time for 200 timesteps was 750 seconds
on a Cyber 176 computer running NOS 2.1 with MTOT=29800 in ADINA. The most
important results are shown in Figures 3, 4, and 5 for the calculation with a
timestep of 0.02 msec. The results with a 0.1 msec timestep differed by less
than 1% for the curves in Figures 3, 4, and 5.

DEPROP resnlts for comparison were obtained using a central difference
scheme with a 5.0 microsecond timestep to integrate the equations of motion.

Two calculations were done. In the first, the same modal combinations were used
as for the static results in Tables I and II. It was felt that the inclusion of

more modes in the solution would be advantageous, so a second calculation was
done with the number of modes per parareter increased from 32 to 36. This
caused less than 1% change in all of th¢ strain and displacement results.
Figures 3, 4, and 5 contain the more accurate DEPROP results. Very good
agreement with ADINA is seen.

Comparing the DEPROP and ADINA dynamic results, the peak deflection was
0.04189 m at 3.0 msec for DEPROP, and 0.04052 m at 3.1 msec for ADINA. These

deflections differ by only 3.4%. The peak face sheet strains e, for ADINA were

+.905% at 3.0 msec and -.383% at 2.8 msec. The DEPROP results were very close
(about 0.5% less). The peak ADINA core shear strair 723 was 1.689% at 3.2 msec,
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whereas DEPROP predicted a peak value of 1.894% at the same time. These values
differ by 12.2%, although the time histories in Figure 5 are in good agreement
except for the peaks. An explanation for the difference between ADINA and
DEPROP was offered following example 2., Basirally, ADINA (1981 version) does
not accountc for surface deformation affecting tne load, whereas DEPROP does.
Some effect can also be attributed to limited convergence in both calculations.

Comparing the peak dynamic results to the nonlinear static results in
Table II, it is seen that the dynamic calculation predicts higher strains and
displacements than the static calculatior. In other words, the dynamic
overshoot is greater than two for tuis problem. To be safe, a designer is well
advised to perform dynamic analyses of a structure unless the true dynamic
overshoot is reliably known.

Direct comparison of solution times for DEPROP and ADINA for this example
problem was not possible because limited core size prevented running DEPROP cn
the CYBER 175 with the number of modes used. The DEPROP calculations were done
on the VAX 11/750 at Kaman AviDyne. Past experience at Kaman AviDyne with
slightly smaller DEPROP calculations done on 2 CYBER 176 corputer has shown that
DEPROP and ADINA consume comparable amounts of computer time for a given
accuracy.

FURTHER DISCUSSION

To design a sandwich panel for large transverse loads, it is necessary to
select a face sheet laminate, core material and thickness, and face-to-core bond
mechanism. The two analytical techniques demonsirated in this paper are
applicable to calculating face sheet and core stresses, permitting a
survivability evaluation to be made by the designer. Neither technique is
without limit~tions, though. For example, the equivalent layer method cannot
be used for materially nonlinear analysis. In addition, the equivalent layer
inner and outer surfaces are displaced from the actual face sheet surfaces.
Consequently, it is difficult to model additional components attacning directly
to the face sheets. The DEPROP code can model only single panels. 1f it is
desired to model a box-like structure such as a communication shelter, it is
necessary to make crude assumptions about '"representative' boundary supports.
Two other approaches to sandwich panel modeling are mentioned hcre.

Reference 11 outlines a firite element method whereby separate elements are
used for the face sheets and core. This approach may not achieve the most
efficient model in terms of degrees of freedom or minimum number of elements,
but t.e above-mentioned difficulties with the equivalent layer and DEPROP models
are avoided.

A second approach is to formulate a special sandwich panel element for a
finite element code. An example of such an element is given in Reference 2.
Tnis element is kinematically similar to the thick shell element in ADINA
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Mindlin plate), except that the internal integrations have been modified to
allow for separate face sheet and core material regions within the element. A
new sandwich panel element is currently being developed at Kaman AviDyne that
differs somewhat from the Reference 12 element by positioning all nodes within
the face sheers. Instead of having midsurfaces nodes with rotational DOF, this
element has only translational DOF at the faces. It will thus be well suited
for modeling face sheet attachments. This element and the Reference 12 element
are both formulated for materially nonlinear analysis.
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Figure l.- Properties for sandwich panel cxample problem.
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NON-GAUSSIAN APPROACH FOR PARAMETRIC RANDOM
VIBRATION OF NON-LINEAR STRUCTURES*

R. A. Ibrahim and A. Soundararajan
Texas Tech Urniversity
Department of Mechanical Engineering
Lubbock, Texas 79409

SUMMARY

The dynamic r sponse of a non-linear, single-degree-of-freedom structural
system subjected to a "physically” white nois.~ parametric excitaticn 1is 1investi-
gated. The Ito stochastic calculus is employed to derive ~ general differential
equation for the moments of the response coordinates. The - .. ferential equations
of moments of any order are found to be coupled with higher rder moments. A
non~Gaussian closure scheme is developed to truncate the moment equations up to
‘ourth order. The statistics of the stationary response are computed numerically
and compared with analytical solutioans predicted by a Gaussian closure scheme and
the stochastic averaging method. It is found that the computed results exhibit
the jump phenomenon which is typical of the characteristics of deterministic non-
linear systems. In addition, the numerical algorithm leads to multiple solutions
all of which give positive mean squares. However, two of these solutions are
found to violate the properties of high order moments. One solution preserves
the moments properties and demonstrates that the system achieves a stationary
response.

INTRODUCTION

The flutter of aervelastic structural components and their response to
various types of aerodynamic loading are of main concern Lo aerospace engineers.
The dynamic analysis of such systems in the transunic flight regime is often the
most critical and difficult task (reference 1). The flutter problem of two- and
three-dimensional plates undergoing limit cycle oscillations in a high supersoanic
flow has been investigated by Dowell (reference 2). The plate amplitude is
limited by the ncn-linear membrane forces induced by the plate motion. 1In a
series of investigations (references 3-7) Dzygadlo analyzed the coupled para-
metric and self-excited (flutter) vibrations of plates subjected to periodic
varying in-plane forces. It was found that plate flutter may occur as a result
of pressure difference acting on the plate. In supersonic gas flow the Mach
number for which self-excited vibration occurs 1s referred to as the critical
Mach number M... Th2 influence of the Mach number on the size and location of
the parametric ins.ability regions has been considered. The general trend is
that the instability region of the harmonic resonance shrinks and moves towards

*This research is supported by a grant from the National Science Foundation under
grant No. MEA-8313572.
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higher excitation frequencies and amplitudes as the Mach number M increases. On
the other hand, the first resfun of parametric instability expands and moves
towards a lower excitation fiequency as M increases, provided M{M.r. For MM,
these regions shrink and reverse location towards larger frequency and amplitude
of the parametric excitation.

Eastep and McIntosh (reference 8) investigated panel flutter under random
excitation and 1linear aerodynamic loading. The limit cyecle oscillation was
determined by representing the modal amplitudes by a Fourler series and applying
the Ga.erkin averaging for the temporal soluticn. The existence of a limit cycle
wag predicted by investigating the stability of small perturbations about the
limit cycle solution. The excitation was represented by a random field
(reference 9) which 1is described by a process which depends upon space and time.
The panel motion was described by a coupled set of linear non-homogeneous dif-
ferential equations w/th harmonic coefficients. They extended the study to
determine the response of the panel under non-linear aerodynamic loading in the
absence of any random excitation. Two non-linear mechaunisms were considered.
The first 1s the non-linear interaction between in-plane panel stresses and
transverse transformation. This interaction provides a stabiiizing iafluence on
the panel motion in that it acts to restrain further deformation. The second -
the non-linear aerodynamic loading, which has a destabllizing effect.

Recently Lee (reference 10) obtained the response of an elastic wing to rru-
dom 1loads using rigid model wind tunnel pressure fluctuation measurements. The
coupling between the structural dynamics and aerodynamics of a vibrating winz was
taken into account by using the doublet lattice method for computing the unsteady
aerodynamic force. The linear modeling showed that the acceleration and dis-
placement response gpectra, which were computed for the F-4E aircraft, were most
affected by changes in dynamic pressure and Mach number.

To the authors' knowledge the random response of aeroelastic systems
possessing structural and other types of non-linearities has not been ewamined
properly. According to Bolotin (reference 1l1) and Barr (reference 12) non-
linearity can enter the dynamic model through the elastic restoring forces,
through the inertial tecms, and through other internal or external agencies such
as friction. In mnst cases the in-plane turbulent flow component acts as a
source of random parametric excitatioa to the system. Thus the dynamic response
of structural elements such as beams, columns, and plates may be described by a
partial differential equation usuallv in one spatial dimension and time. This in
turn ¢/ 6 be reduced, by using the assumed mode method for example, to a finite
set of ordinary differential equations (in *the time) for the various modes of
interest. Considering the fundamental mode as a first step to study the
stochastic behaviour of thege systems, the non-linzar differential equation 1is
obtained in the general form:

Y + 2wt + wY = y{W(e), Y,Y,Y) (1)

where Y represents the generalized displacement nf the system mode in question, ¢
and w are the linear damping ratio and natural frequency of the system, raspec-—
tively. The function y( ) includes the relevant non-linear terms and the random
parametric excitation W(t). It may be noted that equation (1) 1is identical 1in
form to the equation of motion of the 1liquid propellant sloshing under random
longitudinal excitations (references 13, 14).
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The response analysis of system (1) i8 not a simple task mainly because of the
limited capability of the available techniques (references 15,16). For example,
if the random excitation is assumed to be a "physically” white noir2 process, the
response coordinates constitute a Markov process for which the Fokker-Planck
equation, or the Ito stochastic calculus, can be employed. In most cases it is
not possible to derive an analytical solution for the stationary probability den-
sity. Instead one can generate a system of differential equations for the joint
moments of the response. However, these equations form an infinite coupled set
in the sense that the moment equations of a certain order are coupled with
higher order moments. It is obvious that in order to determine the response sta-
tistics the moment equations must be closed. In view of the non-linear nature of
system (1) the response process will not be Gaussian distributed even if the
excitation 13 Gaussian white noise. 1In this case all Gaussian closure schemes
(reference 16) are not applicable. A non-Gaussian closure scheme must be devel-
oped to truncate the moment equations.

In this paper a non-Gaussian closure scheme bascd on higher order cumulants
(semi-invariants) will be developed. The first and second order cumulants repre-
sent the mean and the variance of the process, respectively. Higher order cumu-
lants are statistical functions and, if they do not vanish, givs a measure of the
deviation of the random processes from being Gaussian distributed. A
non-Gaussian probability density can then be represented by the Edgeworth expan-
sion (reference 17). The first term of the series is the Gaussian probability
density, while the rest of the expansion consists of functicns of Hermite polyno-
mials and higher order cumulants (of order greater than 2). These terme repre-
sent the deviation of the process from being non-Gaussian distributed. As a
first order approximation, the fifth and sixth order cumulants will be set to
zero and the fifth c¢nd sixth order joint moments can then be expressed in terms
of lower order momenis. Thus the dynamic moment equations up to fourth order
will be closed and solved numerically for the stationary response statistics.
The numerical solution will be compared with analytical solutions obtained pre-
viously by the authors. One remarkable feature of the non-Gaussian solution is
that the response statistics experience the jump phenomenon known in deter-
ministic vibration theory of non-linear systems. It will be noticed that the
jump occurs at an excitation level below the threshold level of the condition of
almost sure stability, and abov: the excitation leve. of the mean square stabi-
lity of the linearized system.

. SYMBOLS
B(t) Brownian motion (Wiener) process

C1 Coefficients of equations (24)

2D Spectral density of the white noise
Ef ] Expectation of the argument [ ]

F_(98) The characteristic function

Hn(x) Chebytchev-Hermite polyaomial
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K Coefficients of the system equation (23)
M Mach number
Joint moment of order K + &
')
p*(X,t) Gaussian probability density

p(X,t) Non-Gaussian probability density

9y Coefficients of the Edgeworth expansion
R(AL) Autoc. .relation function, At = correlation time
W(t) White noise process

xl,xz Coordinates of the response Markov process
Y Structure spatial coordinate

§() The Dirac delta function

g The structure damping factor

) Arbitrary real valued vector (91,62)

$ Scalar function of the response coordinates
V() Non-linear function of equation (1)

p Correlation coefficient

T Non-dimensional time parameter = wt

o Standard deviation

XK the K-th order cumulant of the response

w Natural frequency of the system

STATISTICS OF THE NON-GAUSSIAN RESPONSE

Structural systems described by non-linear stochastic Jifferential equations
of the type (1) can be wr “ten in a state Markov vector if the non-linear terms
invoiving ¥ are eliminated by expanding the terms of w{W(t),Y,Y,?} into an asymp-
totic serieg approximation. Introducing the response cuvordinate transformation
Y = X} and X; = X3, equation (1) can be written in terms of the two first order
differential equation of the vector form:

X = £(%,0) 4 G(X,E)H(L) (2)

~ A
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where £(X,t) is a vector whose elements are non-linear functions of the state
coordinates X) and X3, G(X,t) is a 2x2 matrix "ose elements are also non-linear
and W(t) i3 a white noise vector. The elements of W(t) have the following sta-
tistical properties:

E[W ()] =0
(3)
Rwiwj(At) = E[wi(t)wj(t+At)] = 2, §(a¢)

It is customary to write Wi(t) as the "formal"” derivative of the Brownian morifon
process as:

dBi(t)
i dt

W (0) = )

where ¢, is the spectral density such that 02 = 2D,
Equatinn (2) may be written as a stochastic élfferential equation of Stratonovich

type:
2
dX, = f,(X,t)dt + jgl Gy 4(X,t)dB ((€) (5)

Alternatively equation (2) may in turn be transformed into the Ito type equation:

{ L EE g B
dx, = {f (X,t)dt + > G, . = dt + G,,dB (t) (%)
i 1~ 2 21 gm1 k3K ) a1 1

where the double summation expression in (6) 1is referred to as the Wong-Zakai
correction term (referen-zc 18).

The dynamic response siatistical functions can be expressed in terms of
moments, semi-invariants (cumulants) or quasi-moments. Information about one of
these functions can be used to determi. - the other functions. However, for a
highly non-Gaussian response it is conve. {ent to deal with statistic functions
whose values diminish faster as their order increases. 1If the process is
Gaussian the Edgeworth expansion is reduced to the fundamental term since all
higher order terms vanish identically. It will be shown later that the higher
order cumulants (which appear as coefticients in the expansion) do not vanish for
non-Gaussian response. In the present aralysis we will deal with the response
joint moments and joint cumulants. Applying the Ito rule for the stochastic dif-
ferential (reference 19)

20 (X) T ) 220 (x)
dd(X) = {5g— {dX} + 5 Truce G QG (5 at (7)
i £y
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where ¢(X) 1s a general scalar function of the response coordinates.

Taking the expectation of both sides of (7) 2 :d dividiag by dt gives

& Ele) = E[{S%I}T{f(z.:)}] + 7 E[Trace 6 g ¢ (g’?(—i%fg)]dt (8)

The choice of ¢(X) depends mainly upon the type of the statistical function to be
evaluated. If the joint moments of response are required, the following
expression may be used:

1,2
®(X) = (X, X,°) (9

The joint moments of (9) are relnted to the cumulants through the che "a. -
teristic function:

F}(Q) = E[ exp( 16,X, + 16,X,) ]

(10)

= L” L»exp (16,%, + 16,%,) p(X, ,X,) X, dX,

where 87 and 69 arc arbitrary real valued parameter and i = /=I. The moments and

joint moments can be generated by taking derivatives of Fx(g) with respect to
61 and 6y: ~

K
ok k0 @)
361 362

b3 )
[}
o

Expanding the characteristic functi n in a Maclaurin series gilves

F (8) =1+ |

E[(16,%) + 16,%,)"] (12)
n=1

1 2

3|~

This expansion suggests that Fr(g) can be written as an expounential fuuction
~ k, k

whose argum..t ir a series of the joint cumulants XK(Xll,xzz]:

JH"‘\J":‘.:"‘\L, H
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‘ln_;

2 2 2
\ 1 \
F(8) =exp { ) (16 a(x)) 45 1 ¥ (18.)(16,)r,(Xx.X,)
x P i e L e A
(13)
22 % J(15.) (16 | }
+ = 1 I (16 ){18, )18 _JA X X X ) + ...
3! =1 21 r=1 j L r’"3 i

The join. cumulants of order K are generated by taking the K-th derivative cf the
principal logarithm of FX(Q):

. 3%¢n Fx(g)l
1,2 _ (LiK %
%% = (9

kt%y %, 1 (14)

k k
1 2
861 392

lo
u
o

Definition (14) and relatfons (11) and (12) reveal that the joir crumulant of
order K is related to the K-th and lower order joint moments.

In order to clavify the influence of higher order cumulants on the probabi-
lity density, consider the case of one-dimensional random process. The Gaussian
probability deasity of the random variable X is

2
a*(X) .-_-___1__exp {- Q(_;.)__} {15)
Y21 ¢ 20

Y \ *
where m = E{X], and o~ = EL(X-m)Z].

The characteristic function of a Gaussian process X c.a be established by
taking the inverse Fourier transform of (..3) (reference 20):

Fx(e) = exp {1imd - %-0262} (lo)

The logarithm of (16) f{s

2,2

&n Fx(e) = {m0 - =080 an

N —

Comparisun of (l7) with the logarithm of the characteristic function (13) of an
arbitrary random process.
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tn ?X(O) - 19)1 - ﬁe Xz - ﬂ-e A3+ T + e (18)

reveals that for Gaussfan processes sll cumulants of order greater than 2 must
vanish identically. If the process is not Gaussian it will possess higher orde:
cumulants. Thus, for non-Gaussian processes one must express the probebility
density !‘n terms of the Edg.sorth asympiotic expansion. For a one-dimensional case
p(X) takes the form (reference 17)

p(X) = qP*(X, + 1'!' 1 a—";ﬂ-)- 3T 9 3_2’:{39-', 19)

vhere q; are conr. .at coefficients and p*(X) is the normal Gaussian density func-
tion given by (15). ihen qo = 1 and all other coefficients vanish the process {s
purely - cmal distributed. The coefficients q; are related to the Chebytchev-
Hyrmite polynoaials H,(X) defined by the relation

n 2, &° x2
B (X) = (-1)" exp (T) E(ﬂl’(' r))’ #y(x) = 1 (20)

For two—dizensional problems the Edgeworth expansion can be written in terms of
the Hermite polynomials and the joint cumulants in the fora (reference 21)

(X, .X,) = p(xl.x{z—rnk( b

A - K y y
T 3 LB (G5
+ —
1+3=3 0,0, k=0 T et 9, ktio,
(21)
A - y
1 1] P 1 2
+ 1 1T ) (= (=
s 1130 o263 1m0 BT Bert! 7Py
Ay, A A y y
1 1 _11_ Lm [ 2
+ L -1 ] & (==}
2 y4jey TTITRI o:og a;.q; so K L “k+j+u s,
Lin=b
1 1 N2 o N2
wh # X ,X) = - —) -
ere p¥( X 2) Troye, exp{ 3 (01) 3 (a—z-) } (22)
u“!hl \I'AL F .H_. lq
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yg = X - E[X;]

It is seen from expansion (21) that higher order cumulaats (of order greater
than 2) give a measure for the deviation of the response distribution from being
Gaussian. It is expected that the expansion converges as the cusulaant order
increase: up to a degree where their contribution hecomes negligible.

NON-LIRTAR SINGLE FREEDOM STRUCTURE

Equation of Motion and Its Markov Vector

The equation of wmotion of structural elements such as beams (reference 22)
and plates (reference 23) and liquid free surface motion (reference 14), sub-
jected tc random parametric excitation may be written in the non-dimensional form:

Y+ 28+ (191K ¥k, 7F) + KPP+ R
(23)

+xsﬁ2+x6vz'?=0

vhere Y, Y, and ¥ represent a characteristic displacemsent, velocity and accelera-
tion of the systea response, respectively, { is the viscous damping, Ky are
constants and the dot denotes differentiation with respect to the dimensionless
time parameter T = uwr, w {is the structure natural frequency, and W\ 1) is the random
parametric loading which is assumed to bc stationary, Gaussian white noise and
possesses the statistical properties given by (3). Thus it is possible to treat the
response a3 a Markov process. To generate the Markov vector the double deriva-
tive ¥ must be succeseively eliminated from the non-linear terms K,;YY and KgY 2%,
Keeping terms up to cubic order and introjucing the transformation Y = X,

X3 = X2, equation (23) may be written in the state vector form:

)
X, = = 2X, + CX.X2 + C.X2 + C.CX2K, + C. (24)
2 Xy + CiX Xy + CyXy + CoTX Xy + CXX, X,
3
- [1=wn](x,- c6x§ - C.X;)

vhere C; depend on K.
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Dynamic Moments Equation

Using equation (8) and letting ¢ = CK:x;). the following general differential
equation of the moments of order n = k + 2 is

b gtk g PR PO Y O et G

+ Oty 0 * Comagon ¥ CMuz g1 T %kep 01l (25)

+ ‘(”'l)n{‘uz,z-z - zc(,-k‘\:,,.',__2 + c,m,g-z}
where
RV AL LU @

and = c2 - ch. For a typical dynamic systeuw the following constants are
c“tained:

¢ =~ 203.060 Cy =~ 14.189 Cy =~ 174.380

C, = - 14.419 Cg = 16.364 C. = 9.909

L} b

It is seen that the moment equation of order n = kil contains momente of
higher order (n+l,n+2,...), and the system of dynamic woment equations generated
from (26) forms an "infinite hierarchy” coupled equations. Since the system (23)
is non-linear and includes random paramerric coefficieats, then all cumulants of
order higher than two will not vanish and the joint probability deasity, p{X,t),
of the response will not be Gaussian.

Considering dynamic moment equations up to the fourth order, the following
coupled equations are obtained.

The first order moment equations are:
do""n
g = 7 %mgy ¥ Oy + Comgy + Cyimyy + Cplmy) 2n

+ Cymgg + Comyg = ™y
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The second order moment equations are: oRgi~ - -

] OF POUX C.
By = 23,

Bog = ~ 4@y, + 2C,m 4 + 2C,m,, + 2042y, + 20, Ly, + 2Cqmy,
+ 266'21 - 2‘11 + 20-20 - 4DC6u3o + ZDC7||40 (28)
h)) =8y, - &m, +Cimyy + Cymy, + Colmy, + Cim,y, + Comy,

+ Cgmyp = B0

The third order moment equations are:

dyo = 3y,

fy3 = = 6Cmyy + 3C,my, + 3Comy, + Igtm,yg + 3C,Tm,
+ 3csl32 + 3C6.22 - 3m12 + 60121 - 12DC6'31 + GDC7n,.1

) = 2myp = Ay * Cyngy + Comyp + Cgtmyy + Cplny, (29
+ Csmso * Ce™0 ~ P30

By = Wy T Kmpy + 20 myy + 20;m g + 20y, + 2C02my,
+ ch'.lol + 2C 6™1 - ™ + 20130 4DC 6240 + 2DC7 50

The fourth order moments are:

@0 = 4m

n
Wy, = - &amp, + 4C @ + 4C,myg + 4Cylmy, + 4CIm,,
+ “5“33 + 466“23 - 4!13 + IZDnzz - 26DC6||32 + 12D(‘.‘7ll,’2

By, = 3m,, - 2my, + Cim,, + Cyay, + Cylmg, + Cyim,,
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By = my, = 6Cm,y + 3Cim), + 3Cm, + 30 Emy, + 3 Lm,,

+

305"'42 + 3C6n32 - 3“22 + 6Dnn - lZDm“ + oDC7m51

By = 283 = &y, + 2C my, + 2C,my; + 200w, + 20, L0y,

+

NON~GAUSSIAN CUMULANT CLOSURE

(30)

A fir.- order non-Gaussian closure can be established by setting the fifth

and sixth order cumulants obtained by using definitfon (14) to zero.
results in a set of relations between fifth and sixth order joint moments, in

equations (30) and (31), and lower order moments. Thus the fifth and sixth joint

moments in (30) and (31) are replaced by the following expressions:

2 2 3
B5o " oo ~ 20850030 ~ 30m 4@y, + 60w my, + 10m,y 50, -
a. = 5a - 20n’.a.. - 30n..m2. + 60m.m . + 10m
05 0104 01%03 01%02 01™02 0203 "

= Gmygmyy g m, - 4o 2mg )y + 3wy gy, ) - bmyo(mg, m,,

+

By " Al g+ gy, - bmg, (28 gmy; + 3uy,m))) - bag)(m)gmy,

+

-;m - 1 2
B3y = Imglyy = 6w glmygm, + 2my m,y, + myomy, + 200,
a2 2 2 ) )
Img B0 = Bg®hg * 4y 01) 2my, (myymgy + 6my ;20

+

BogByp * 6y my; + Imygmy,
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42

24

+

N ' . 2
Smgy 8y ~ bmy (mg my + 2“'10“'12 “oz 20 ¥ 28;; - 6mym0m

2

3m + 6m,.m

2 2
10%2 ~ Bp1%0 * "“01“10) 2m; o( @) g8y + 6my m, - m),)

%0%3 * 6my 1y, + 3mg,my,

2

2
15my0(myp = gy = 2wy, + 6"‘10"20) + 10y, 2"“10

5mgy(mgy, = 4ag 85 = 2m, + 6w m,) + 1083, - 24nd)
Sm 1m0 * 10mp(ny) - mpymyn = 3 jmy - dmygm) + 3w e ey

2 _ C0hlS
6m1g%yy) + 10ny0(ay) - 2 jm ) - 26w 08

Sm) (g4 *+ 10mpy(ay5 - mgmys - Jmy i@, - 3mom 4 dmg e m,
6n2.m, ) + 10m (m,, - 20 m ) - 24m> (31)
01%11 03' *12 T M1y ®01™0

2
Toa®io * 8my 0y * 6mygmy, - buy (2w my 4 Jmygm,) - 1.Smg

4
120, gmymyy + 6my m)0) = 4wy o(dmygm ) + ag ey + 6mpm,

2 2 2 .2
3my080Tg; = 6myguyy) + mpjugy + 60y, - 6mjia, - 24m) i,

2
Tyotgs * BBy + 6mgmy, - duyo(20) my, + Jmysm;, - 15w, gug,
4
12m), mypmy) - Omyglgy) - gy (Imgmy, + mygmgy + 6w my,
2 2 2 2
Im51%02%0 = 3 01y) * 4myymgy + 6my, - 6mp,myy - 26y, mg,

Imggmyy + 3agyuy; + 9y myy - dm(mygmy, + 6my .y, + 3,0,
2 2 3
62)0%11% ~ 12mgym), + 8m)my,) = dmy,(my,may + 3myqa,
- | - Y - 2
6m11%21 = Omgy 811090 = 6m)gBgatag) = 6myy(3myymyy + 2a)))

B3B3 * Iy,
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It 1is obvious that the first order non-Gaussian closure scheme presented by
relations (31) 1increases the degree of non-linearity of the dJdynamic moment
equations (27-30). Therefore, the stationary solution, obtained by setting the
left-hand side of equations (27-30) to zero, will have more than one solution.
The resulting fourteen non-linear, algebraic equations are solved numerically by
using the IMSL (International Mathematical and Statistical Library) Subroutine
ZSPOW. This subroutine is based on the MINPACK subroutine HYBRDl, which uses a
modification of the M.J.D. Powell's hybrid algorithm described in reference (24).
This algorithm is a variation of Newton's method which uses a finite difference
approximation to the Jacobian and takes precautions to avoid large step sizes or
increasing residuals.

The numerical algorithm gives five solutions. Each solution is obtained as
a result of a set of initial guessing values. All solutionc give positive mean
squares for the response displacement and velocity. However, two of these sclu-
tions are rejected because the associated higher even moments (such as m,g or
mo4) are found to be negative for the whole range of excitation level D/2;. A
third solution exhibits positive mean squares and higher even moments over a
limited range of excitation level 1.2 { D/2¢ < 27. This solution is associated
with numerical instability in the higher order moments and the algoritham indica-
tes thet the iteration has not made good progress. The fourth solution
demonstr.tes successful numerical iteration with a very high degree of accuracy.
In addition, the response preserves most of the moment properties for which all
even order moments (up to fourth order) are positive over an excitation level range
D/2z > 1.86. However,zthis solution does not satisfy the Schwartz 1inequality
and it is found that mn > mpg. The results of this solution are shown in fig.
(1). The fifth solution is believed to be the most realistic as it satisfies all
moments properties and Schwartz's inequality over the excitation level range
D/2z > 1.5 as shown in fig. (2).

Figure (3) provides a comparison between the mean square values of the
response displacement as computed by the non-Gaussian closure schemes (the last
three solutions are plotted) and as predicted analytically by the Gaussian clo-
sure method (reference 14) and the stochastic averging (reference 14). Unlike
the predicted solutions of veference (l4), the non-Gaussian closure scheme exhi-
bits the jump characterstic which is common in deterministic non-linear vibration
theory. Furthermore, it is seen tha® the computed results are stationary and
begin at excitation levels varying between D/2; = 1.2 and 1.86. The mean square
a9 of the fifth solution is almost over 802 of the predicted solutions of
reference (l4). This difference is not surprising since the non-Gaussian closure
scheme increases the degiree of non-linearity of the dynamic moment equations. 1In
deterministic theory of non-linear vibration it {s known that the non-linearity
stabilizes the original unstable linear system.

CONCLUDING REMARKS

A non-Gaussjan closure scheme has been developed and worked successfully for
non-linear structural systems subjected to wide-band random parametric excita-
tion. Multiple solutions have been obtained and examined for their validity
based on the behavior of kurtosis and higher even joint moments. The method
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predicted the jump phenomenon, for all mean squares, at an excitation level very
close to the threshold level of the condition of almost-sure stability. 1In view
of the additional degree of non-linearity resulting from the non-Gaussian clo-
sure scheme, the mean square of the response displacement has been found to be
less than those values obtained by other methods such as the Gaussian closure or
the stochastic averaging.
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RESPONSE AND CHARACTERISTICS OF STRUCTURES
SUBJECTED TO S-H WAVES

Spencer T. Wu
National Bureau of Standards
Washington, D.C.

SUMMARY

This paper presents a study of the dynamic characteristics of a coupled trans-
lational-rotational system. The formulation of the problem considers the soil-
structure interaction effects by utilizing the impedance functions at the fouadation
of a structure. Due to the fact that the coefficient matrix in the characteristic
equation is frequency dependent in nature, iterations have to be performed to find
the nature frequencies of the system. Examples and discussions are presentea in
this paper. Comparisous of the analytical results from various approaches are also
given.

INTRODUCTION

The coupling effects in translational-rotational structures subjected to seismic
waves have been investigated extensively, e.g., references 1-3. However, the inter-
actions between the foundations and the surrounding medium were not included in these
studies. In an earlier paper (4), a simple approach was proposed for computing the
responses of structures by utilizing the impedance functions for the foundations.
There have been many analytical models developed for evaluating the impedance func-
tions, e.g., references 5-7. The impedance functions used in reference 4 were based
on the solutions in reference 8 developed for rigid foundations subjected to non-
vertically propagated szismic waves. In this paper, approximate solutions of the
natural frequencies of such structural systems are evaluated. Due to the fact that
impedance functions are frequency dependent in nature, the frecuency solutions have
to be computed based on iterative procedures. Comparisons between the results of
this approach against the others arc shown with a numerical example. The formulation
of the problem is also briefly described.

APPROACH

Formulation of the Problem

Assuming a one-story structural system with geometric eccentricity equal to e
between the center of rigidity (C. R.) and the center of mass (C. M.) at the rirst
floor as shown in figure 1, the governing equations of the system for coupled lateral-
torsional motions under consideration may be written as:
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n u!t +emn .l.,“ + kyUyq + c,ﬁ,d 0 (1)
l;e.v,t + l’f Ugt + kg Ugg + c4 6’4 =0 (2)
o U!b +m U,E + mnee ;’E = fy(t) 3)
mee Uye + Iye Upe + Igp Ugp = £4(t) («)

wvhere m, ¢, k, and U = the mass damping, stiffness and displacement, respectively.
Subscript t or b denotes that the term is related to the top or the base floor; sub-
script y or ¢ denotes that the term is related to the tramslational or rotational
movements; subscript d denotes that the term is equal to the difference between the
related terms of first floor and the base floor, e.g., U 4= U ¢ U,; 1 < and I‘b
are the rotational mass moments of inertia taken with regpect 43 Z—a*?s pgssing C. R.
as shown in figure 1 for the top and bottom floors, respectively; and f_ and f, are
the earthquake excitation forces at the foundation. If U and f are transformed into
the frequency domain, and f is expressed in terms of the impedance function, i.e.,

{£(e)} = [kg) [{ug) - {vEh (5)

where (K.) represents the impedance matrix; (Uf) represents the foundation motion;
and (UE) represents the input motion; the subscript f denotes terms related to foun-
dation mat; equations 1-4 can be rearranged and written in matrix form for eacb‘.,S
as:

. 1 3 1 - ¥
- - - 2 )
ntwﬁ em, w§ mb“s*kfy 0 Uyt kfyufy
- 2 - 2 - 2
em, wy I@twh 0 Iob“s UQt kf U:
-n wz - ewz - k,-c wz 0 U =
ey - ky=Cy1g bt Y
- em, wl - 1, ¥4 0 -k U 0
t's ot ¢ ¢ b¢
+ Cawg = coivg
- J ha o L p

The response of the structure may be computed for each wg, based ca equation 6.

Characteristics of the System
To have a more clear depiction of the system characteristics, eigenvalues as
well as the eigenvectors are needed to be evaluated. The effects on structural re-
sponse due to the input motions are not considered here.

For simplicity, the frequency equation of the system under consideration is ex-
pressed as:
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[A-xB]=o (7

where A represents the eigenvalues of the system {w; in equation 6); B is the complex
matrix relating w terms in equation 6 and A is the rest of the complex matrix in
equation 6. To avoid the possibility that B may be nearly singular, a stable algo-
rithm (9, 10) was selected in the evaluation of the eigenvalues. The procedures are
as follows: (1) to reduce A to upper Hessenberg form and B to upper triangular fomm,
(2) to reduce A to quasi-triangular form, and (3) to readuce the quasi-triangular form
into a triangular form and compute the eigenvalues and eigenvectors. Due to the fre-
quency~devendent nature of the matrix A, the eigenvalues cannot be found directly.
Iterative process is taken here in this paper for determining the approximate solu-~
tions of the system, i.e., based on the assumed frequencies of the systea initially,
the terms related to the impedance functioas are determined. The procedures are re~-
peated if the eigenvalues are different frou the assumed ones,

EXAMPLES AND DISCUSSIONS

A structure is assumed to have a rigid foundation subjected to horizontal inci-
dent shear waves (S-H waves).

general properties of the system are assumed as: = 3.63 x 107 kg, my =
1 85 x 108 kg, Loy = 3.03 x 109 kg-w?, I = 1.52 x 1010 kg—mZ Ky = 1.44 x 109 N/m,
=2.70 x 1011 N-m/rad. The soil in a uniform elastic half-space is assumed to
have the Poisson's ratio equal to 0.33, the hysteretic damping ratio equal to 0.05
and the shear modulus of the mecium equal to 2.15 x 108 N/m. 1In this example, it is
assumed that the g.ometric eccentricity is 2.70 m. The structure is assumed to have
a square foundation mat of 25.9 m x 25.9 m. The real and imaginary parts of the im-
pedance functions and the input motions used in this study are shown in figures 2
and 3 based on the solutions in reference 8. By assuming the input Fourier spectra
to be constant, dynamic eccentricity, E(t), of the first floor system can be ob-
tained as shown in figure 4 by solving equation 6 and transformed into the time do-
main. The E(t) 1is defined as the torsional moment divided by the transverse shear.
This variable could be the best single parameter to represent the coupling behavior
of the systen.

To find the eigenvalue of the system, equation 7 has to be solved. The initial
values of the impedance functions are estiaated based on the uncoupled translational
and rotational frequencies as if the structure were fixed at the foundaiica mat.

The uncoupled frequencies are approximately equal to 1.0 Hz and 1.5 Hz for the trans-
lationa) and the rotational modes, respectively. Following the procedures described
above, the frequencies of the system are found only after a few iterations. It may
be worthy pointing out that the impedance functions are quite smooth in the fre-
quency range of interest. This could be the reason that the true solutions converged
very rapidly in this analysis. Four frequencies are obtained. The lower frequen-
cies for the corresponling lateral and rotational modes are 0.92 Hz and 1.45 Hz,
respectively. If the atruc’ure is considered to be fixed at the foundation level,
the corresponding frequencies can be computed as 1.i/ Hz and 1.36 Hz, respectively,
based on references 2 and 3. These results are tabulated in table 1.
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CONCLUDING REMARKS

Dynamic characteristics of a coupled lateral-torsioral system subjected to seis-
mic shear waves are investigated. The formulation of the problem is based on the
simple approach presented in reference 4 that made use of the impedance functions de-
veloped in reference 8. Due to the frequency-dependent nature of the coefficient
matrix, iterative procedures are needed in the evaluation of eigenvalues of the sys-
tem or the frequencies of the structures. An illustrative example is given to show
how the frequencies of the structure are shifted based on this approach in compari-
son with the analytical results from the previous scudies.
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Table 1. Frequencies ot the Translational-Rotational

System Selected in the Case Study

Case 1 Case 2 Cage 3
Based on the presented Based on the models Baaded on the uncoupled
xodel in refs. 2 and 3 systems by assuming base as
fixed

0.92 1.17 1.00

1.45 1.36 1.50
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Figure 1.~ A sketch of a one-story building system subjected
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Figure 3.- The input motions for the selected example
(computed based on ref. 8).
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NUMERICAL ANALYSIS OF SOME PROBLEMS RELATED
TO THE MECHANiCS OF PNEUMATIC TIRES:
FINITE DEFORMATION/ROLLING CONTACT OF A VISCOELASTIC
CYLINDER AND FINITE DEFORMATION OF CORD-REINFORCED

*
RUBBER COMPOSITES

J. Tinsley Oden and Eric B. Becker
and
T.L. Lin and K.T. Hsieh
The University of Texas at Austin
Austin, Texas

SUMMARY

The formulation and numerical analysis of several probiems related to the be-
havior of pneumatic tires are considered. These problems include the general
rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite
deformations and the finite deformation of cord-reinforced rubber composites. New
finite element models are developed for these problems. Numerical results obtained
for several representative cases are presented.

INTRODUCTION

The study ot the behavior of pneumatic tires under various loading conditions
constitutes one of the most challenging and difficult collections of nonlinear
problems in the mechanics of solids. It 1is our aim in this paper to investigate
two subclasses of problems related to tire mechanics which encompass some signifi-
cant and complex features of tire behavior:

1) The general rolling contact problem of finite deformation of a flexible,
viscoelastic cylinder in steady-state motion on a rough foundation (roadway)

2) The finite deformation of cord-reinforced rubber composites

* The work reported here was supported by the NASA Langley Research Center under
Contract NAS1-17359 as a part of the National Tire Modelling Program, with the
Computational Mechanics Co., Inc. The encouragement and support of this work by
Mr. John Tanner of NASA is gratefully acknowledged.
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In all of the formulations considered here, we place no limitations c¢n the
order of magnitude of deformations; if strzins are "small or moclerate”, as is some-
times the case in cord-reinforced tires, then the prediction of small or moderate
strains should be a natural outcome of our analysis. Moreover, we also incorporate
the effects of non-conservative loads such as those sncountered in the pressuriza-
tion of flexible surfaces.

For problem class 1, .he rolling concact problem, we present a new and general
variational principle governing cteady~state rolling of a cylindrical body, with
finite deformations, unilateral contact, friction, viscoelastic response, and
possibly standing waves at certain critical angular velocities. This principle
involves a highly nonlinear variational inequality with the motion of the cylinder
relative to a natnral ceference configuraticn as the unknown. This variational
principle represe s a generalization of our earlier work (ref. 1) to viscoelastic
materials, viscoeiastic effects being included to provide a model of rolling
resistance in tires. We use this variational principle, or rvather a regularized
form of 1it, as a basis for the development of two-dimensional finite element
models. We discuss algorithms for solving the resulting systems of nonlinear equa-
tions, locating bifurcations and limit points, and following solution paths which
are based on continu'tion methods of the Riks, Wempner, Keller type. Numerical
solutions of several representative problems are presented.

For problem class 2, the finite deformation of cord-reinforced cubber
composites, new finite element models are developed which employ anisotropic
membrane elements to model the cord layer and quadratic isoparametric elements to
model the rubber matrix. The rubber can be modelled as an incompressible or
compressible material and Halpin-Tsai or Gough-Tangorra-type representations (see,
e.g., ref. 2) can be used as a basis for the model of the cord layers. An
interesting feature of such composite models is that they can predict the change in
"optimum” ply angles with finite uniaxial stretching, a phenomenon well outside the
scope of linear models of composite materials. Some representative numerical
solutions are presented.

MECHANICS OF FINITE ROLLING CONTACT
OF A VISCOELASTIC CYLINDER

Our first objective is to formulate the equations and inequalities governing
the deformation of a cylindrical body rolling at a constant angular velocity w on
a rough rigid roadway, as indicated in figure 1. A key consideration is the
kinematics: we compare the geometry of the deformed cylinder in 1its current
configuration € with that of a rigid cylinder spinning at the same angular
velocity w , the latter characterizing the reference configuration C, . Polar

cylindrical coordinates (r,0 , z) of a particle with labels (R, (E)O , 2) at
some arbitrary reference time T -= 0 are defined by

r=R,O=® twt,z=2 (t>0) (1)
or, alternatively, we can employ the cartesian re.erence coordinates

X, = r cos 6 ,X,=rsin", Xy =2 (2)
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The reference coordinates (r, 6, z) or (X, , X,, X;) are thus time dependent,
but *his dependence is only formal since the shape of "the deformed cylinder is the
same at all times t to any observer fixed to the axle of the cylinder The
geometry is illustrated in Figure 1.

The motion u of the cylinder 1s defined by an {invertible, wwice

differentiable map %1 that takes the configuration C, into the configuratjon C.

In particular, the cartesian components of u reQative to the fixed spatial
frame of reference are given by -

ni = Xi(r’ 0, Z) = Yi(xl, xz’ x3) (3)

Thus, time enters our description of motion only implicitly as 6 = H + wt.
Henceforth, we shall not distinguish between the values u (or “1) of the map
X and the map itself, unless confusion is likely. -

With this kinematical convention, we can easily write down expressious for the
deformation gradient F , the right (left) Cauchy-Green deformation temsor C (B) ,
the displacement field d , the velocity v, and the acceleration a : -

F= Vuj; F-j = {Builaxj }
C=FF,B=FF® (4)
d=u-~-r

aui .
Vl = ‘a-t_ = ui = waui/ae

av.

i v 2 .2 2

al-—a-'?-'-u1 -y 3 ui/ae

Here 1s the position vector of the particle with reference coordinstes (r,0 ,
z), 1 <1,J <3 . The time rate of change of F s

ou. aui Ju.

) 9 i b1
Fewa }
~ 339 ar’ae’azlii£3
-ws-e—f (5)
or, since
3X~ 3X3
—a-t--weeaxe.'gz"'oaaos'l-2 (6)
Clee ,
OF PLug C M:;
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where ¢ ] is the iwo-dimensional permutatior sym.nl (gll " €9y = 0, €12 = €1
=-1), we Have

Fro Xy Syp g, 1S B0 £ 2

ﬂ:j ;\ -

F,j=\j,3='0,j=l,4,3 (7)
vhere u = ?2u : X 9X, , and

Q,DB i p B
CQS = W XYEYQ (Uu,ﬁluLgB+ ”‘,CG (8)
éj3 =0, 123 53,1 <0,8,%.0,u <2

Thus, time derivatives of such aeformat:io: measures are characterized by functions

of second derivatives of the motion with respect to the referential coor nates Xi.

The cylinder {s assumed to be composed of a viscoelastic material
characterized by a constitutive equation for the Cauchy stress g of the form

g = E()E; E’ ) (9)

1 e

where the response functional F(°*) 1is of a generalized Kelvin-Voight type; e.g.,

] x, ¢) (10)

(X,€) + 6, (X

Sj_ = Gi

3

where § = det F ¢ E-T is the Plola-Kirchhoff stress temsor and F' and G2
are response functionals of the deformation and defurmation rate, respectively. In
certain applications, we may also impose the incompressibility constraint

det F =1 (11)

VARIATIONAL FORMULATION

Space limitations prevent & full discussion of the derivation of our
variational formulation of th: rolling contact problem; see reference 1 for more
details. It can be demonstrated that the steady-state motion u of the rolling
viscoelastic cylinder satisfies the following nonlinear variational inequality:

Ay, v = u) * 3y, v) = 3(u, u) > W’ B(u, v = u) + £(v - v) (12)

for every v in k
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where
ORiGiry, |
A(u, v) = virtual power OF POOR QL\4 o
~ ~ Al 'f
f 1j(x Vu, w) v, 4 av
Q
j{u, v) = the virtual pover of the frictional forces

[o oIS mawy e ng e ] utnong

B(u, v) = the power developed by inertial forces

f Po dgu * 3gvdV,

Q
f(v) = the virtual power of external fources
=f P, bevdyv +f t*vdA (13)
Q 0~ "~ 0 l'! ~ ~ 0

F

Here £ is the reference domain in the rigid spinning cylinder, r is 1its
exterior (contact) boundary with unit exterior normai n is a portion of
the boundary on which tractions t are applied (c.g. pressurf;ation loads), and
Sy (x Vu, w) 1s the Piola-Xirchhoff stress which is given as a function of x Vu,
and W by constitutive laws of the type (10). For example,

X, Yu, w) = (X, u u )

5 kg pk

2
+ X, 14)
g% 0X e et s ) (

545

Note that, again, time t does not appear explicitly in this formulation, but
the presence of dcformation-rate terms in the constitutive equations leads to
second derivatives of the motion in the virtual power. In (12), K 1is the set of
admissible motions

K:{Xs(maevl, vz,waev3),\1 vV, vi <H} (15)

-~

where H 1is the distance from the axle of the deforuied cylinder to the roadwayzand
V 1is a space of functions on whic.. the energy is well defined (e g. V=¥
(Q)). In (13), v 1is the coefficient of friciiom, Vo - is the slip
velocity, v being the speed with which the cylinder movels‘ alog'é the roadway,
P is the reference mass density, and b is the body force density.
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We reduce (12) to a nonlinear variational equality by regularization: the
friction tern is regularizad by the smoothing scheme discribed in reference 3 (see
also ref. 1) and the unilateral contact condition is rel-xed by the use of an
exterior penalty approximation, as described in reference 1. If the material is
incompressible, we also include the incompressibility constraint (11) by the
introduction of an appropriate penalty approximation.

SOLUTION OF THE DISCRETE PROBLEM

We now consider finite element approximations of a class of two-dimensional
(plane strain) rolling contact problems in which the motion u is approximated
over a mesh of Q (biquadratic) elements. When the regularized version of the
variational principle (12) is approximated by finite elements, we obtain a system
of nonlinear equations of the form

F(x, p) =0 (16)
where F is an N-vector o& nonlinear momentum equations governing the discrete

model, 'g = (x], Xoyaeey Xy) is a vector of N degrees of freedom representing
the nodal values of the mogion, and p 1is a parameter representing, for example,

the indentation distance H .

We solve (16) using variants of the Riks Keller continuacion methods. For
example, we regard (E") ) as functions of a real arc-lenmgth parameter s, s «
[0,1] , and derive from (10) the system of differential equatiuns,

F,(x(s), o(s)) =0 s « [0,1] (17)
. e )
Jij(f,p)xj +g1(f’ D=0 -
18
R . - i
W BCT. e
where h
oF . (x, p) }
- 1 -~
Jii(i’ P) X.
gi(ni, o) = , (19)
-
xj = Tds
PR )

Equations (17) and (18) hold on the path T = {(x,_ )| x = x(s), 0=0(s), 0< s
L 1} in  N+1-dimensional space. Repeated indices are summed from 1 to N. The
second member of (18) is, of course, tne definition of arc length of T .

The system of nonlinear ordinary differential equations (18) is equivalent to
the system
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Jgy(xe vy = gy(x, o)

5 ! ORIG!-»1. e r
0l = —— OF PCCR GuALITY (20)
14v v
11
x.j = -:6 vj

Equations (20) are sufficient to determine directions (i ’ 5 ) which define a
hyperplane tangent to I' . These can be used to define a fineat extrapolation of
the solution into this plane. It then makes sense to correct this approximate
solution so that a point on the solution path I is obtained. One algorithm for
such a procedure is given as follows:

Step 1 (tangent Hyperplane)

With initial data Xy 2 P (Ap)0 , compute

1) _
Jiylxgr 2dvy = 8y(x5004)
. (1)_ (1)
Di =1/ 1 : :j vj
[ ] _ _ [] l
xlj = Dl vj

Step 2 (Extrapolation)

Compute

(As)1 = (Ap)olé1

X) = Xo + x,(8s))
P = P + Ol(és)l

Step 3 (Correction)
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with
(r) _ r «r (r) _ r r
Jij = Jij(f ' 0 ) Fi Fi(:‘ . P7)
r _ r (k)
X T x4 gy x)
r A Y
r (k)
o = ot L (o) CRLW. et -
OF PN C -
+ k +
I e P T L S
lthﬁNgljtjk
Set
R
, - 4 = R
X" X + ril AE X
R
- 7 (r) R
= L Y =
pp =0, + o (o) o
Step 4

Return to Step 1 and continue the process with (xo, %0

. ) replaced by (x{,
Q) . -

In Step 1, it is, in general, inappropriate to set (x., eo,) = (0, 0) since
this is not a point on the solution path. The starting point (37 DO) is
compuied by specifying a small initial value of 00 and computing Xy (Ly Neéwton's

method.

The procedure in Step 2 was advocated by Keller (reference 4) and has the
attractive feature of preserving the symmetry and bandwidth of J1 (vhen symmetry
exists) as opposed to treating the full system (16) at once. J

The algorithm given in Step 3 1is also a Keller-type scheme, similar in

structure to that of Step 2, and is equivalent to the constrained Newton-Raphson
scheme,

r r r r r r
3G PPy T 4 g (xF, oyl

= - F(x5, 05) (21)

;1 -« x4 ol(Ao)(”) =0

~

The second equation is a constraint on the Newton-Raphson process which forces
the scheme to progress toward the solution path ' 1in a direction normal to the
tangent plane. Some acceleration of this {iterative process can be realized by
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using alternative constraints which make the ‘terative scheme follow a spherical
path (Crisfield (reference 5)), or an elliptical path (Padovan (reference 6)), and
such variants are easily implemented.

Algerithms such as that above can be ured to determine 1limit points and
bifurcations in solution paths. Multiplz branches can also be determined and
followed. While our working program ccn handle these features, space limitation
prevents a discussion of details.

SAMPLE CALCULATION OF A VISCOELASTIC CYLINDER

As a representative example of some of our numerical results, we consider the
finite deformation of a viscoelastic cylinder for which the Piola-Kirchhoff stress
is given by

S j* HPyy

where

W= CI(II -3)+ C2(12 - 3)
Dyy = 3lvy,g * ¥y,0)

We choose for the Mooney-Rivlin constants C1 and the viscosity u ,

C, =80 psi , C, = 20 psi , b= 0.0016 1b sec?/ind

2

The coefficient of friction is taken to be v = 0.3 and the density p, =1 . We
consider a solid cylinder of initial (undeformed) radius of 2.0 units spinning at
an angular velocity w = 5 rad/sec . The axle load is gradually increased so that
contact is made and H 1is, successively, H = 1.75, 1.694, 1.649, 1.600, 1.579,
1.545, and 1.532.

For these choices of parameters, the rolling contact problem was solved using
the formulation and methods discussed earlier on a rather coarse mesh of
Q,-biquadratic elements. Computed deformed shapes together with principal stress
contours are shown in Figures 2-5 for various values of H and w . Flgure 3
contains the computed variations in maximum stress components with angular velocity
w for a fixed contact length H = 1.75 and Figure 4 indicates the variation in
axle load with w for H = 1.75, The computed variation of uxle load with vertical
displacement d = 2 - H 1is shown in Figure 5. We have also computed contact
pressure profiles as a function of H (or F) and w but do not include these
results here.

CORD=-REINFORCED RUBBER COMPOSITES
We shall now direct our attention to the construction of a finite element
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model of cord-reinforced rubber composites of a t pe representative of those found
in modern pneumatic tires. Two special propecties of such composites that
influences features of our model are:

i) the ratio of cord to matrix modulus is high (or, in other words, the
matrix (rubber) is very soft in comparison with the cord)

ii) the ratio of cord to rubber volume is small

These properties are reflected in a model in which the composite is represented by
an anisotropic, Hookean membrane of vanishing thickness attached to a thick layer
of isotropic, hyperelasctic, rubber matrix (figure 6). The membrane is in a state
of plane stress and has no transverse stiffness. Both the membrane and the rubber
matrix can withstand finite deforrations.

In the models Giscussed here, the cord membrane element is modelled, using the
Gough-Tangorra theory, as an orthotropic sheet with cords oriented at an angle 8,
indicated i1 Figure 6 (see reference 2) and the rubber matrix is assumed to be a
Mooney-Rilin material.

As a sample calculation, consider the reinforced thin cylindrical shell, shown
in Figure 7, constructed of two polyester cord layers and a rubber matrix. The end
z = 0 of the shell element is fixed and the end at z = H {is stretched uniformly
an amount U in the z-direction. 1In calc"lating elasticities of the cord layer
using the Gough-Tangorra theory, we take 4 = numker of cord ends/cm = 102 and E
= Young's modulus = 3,97 GPa while the metrix is a 60NR/40 SBR rubber with 5

Young's modulus Cl + C2 = 5.5 MPa. Other dimernsions are given in Figure 7.
Since this composite element can undergo finite extensions, the "optimum” cord
angle  (the ply angle corresponding to a minimum axial force F for a given

stretch U/H ) may vary with deformations. To study this behé%ior, we have
calculaéed sglutigns to figite element approximations of this problem for values of
& = 0,10, 20°,..., 90 and U/H of 1% to 20%.

It is first noted that stretching of the sheet changes the cord angle
orientation throughout the specimen. The amouiit oi angle change VO deyends upon
the initial orientation O and the amount of stretch, and for U/H = .10 and the
magerial properties assumed, the maximum change occured for an orientation of § =
707 , as indicated in Figure 7b.

One problem of practical interest is to determine 6 for given U/H, the
value of © at which the inter-laminar shear stress T 1is minimized. For the
example computed here, T was found to be zero for U/H = .10 at a ply angle of
around 35° (see Figure 8). The results of other calculations are illustrated in
Figures 9 and 1C. The total cord force versus cord angle for various stretches is
fllustrated in Figure 9 while the net axial force F_ for various cord angles and
stretches is given in Figure 10. It is interesting to note that the minimum F
is roughly independent of the amount of stretch and occurs for a ply angle o
around 0 % 35° |

We have performed similar calculations for reinforced shell elements subjected
to internal radial pressures, simulating pressurization of a tire. Because of
space limitations, these results are not given here.
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Figure 1. Finite deformation of a rolling viscoelastic cylinder.
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Figure 2. Computed generated deformed shapes and stress
contours for viscoelastic cylinder.
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Figure 3. Maximum stress variation with angular velocity (rad/sec).
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SIMULATION OF CONTACT SURFACE EROSION
FOR TIMPACT PROBLEMS

K. D, Kimsey and J. A, Zukas
US Army Ballistic Research Laboratory
Aberdeen Proving Ground, KD
AL PAGE 1S
ALITY

This paper outlines an algorithm for the simulation of contact
surface erosion for impact problems., The algorithm dynamically
relocates the contact surface asz projectile and target materials
exceed their f: lure criterion. Example computations of axisymmet.ic
and oblique impacts are compared with experimenta’ ata.

INTRODUCTION

The mechanic of penetration and perforation cf solids has long
been of interes: for military applications and is currently being
applied to a numcver of industrial applicaiions such as the integrity
of nuclear reactor pressure vessels, crashworthiness of vehicles,
ptotection of spacecraft from metecroid impact, and explosive forming
and welding of metals.

Impacts at velocities in excess of | km/s excite the high
frequency modes of the colliding solids. The response is confined to
a localized region (typically Z to 3 projectile diameters) and 1is
characterized by the presence or shock waves and high hydrodynamic
pressures which, on contact, can exceed the marerial strength by an
urder of magnitude., For ordnance velocity impacts (1-3 km/s) the
pressures decay rapidly due to the presence of free surfaces and the
effects of material strength and, except at the interface, crclillate
at values comparable to the material streugth, Under hypervelocity
conditions (4-12 km/s), hydrodynamic pressure dominates the behavior
nf the solids for the bulk of the peactration process. Material
strength effects become significant only in the very late stages of
the process. Superimposed on these are extensive plastic deformation,
large lo~alired heating and material Ffailure duz to a number of
mechanisms (i.e., petalling, spall, adiabatic shear)., The failure
mechanism(s) activated depend on geometry,slgfding history and
material cogstituiigf. Strain reates of 10°s at the impact inter-
face and 10" ~ 10°7s elscwhere are not uncommon, Penetration and
perforation are formidable physical problems and ft is not surprising
that the bhuik of the re.earch in this arca has been c¢xperimental {n
nature,
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A complete mathematical description of the dynamics of impacting
solids must account for the geometry of the interacting bodfes;
elastic, plastic, and shock wave propagation; hydrodynamic flow,
finite strains and deformations; thermal and frictional effects, and
the initfation and propagation of failure in the colliding solids.
During the past decade, rapid progress has been achieved in
computational penetration mechanics (ref. 1). Today, two- and three-
dimensional simulations of high velocity impact ghenomena are
routinely performed in conjunction with experimental studies in
terminal ballistics.

Numerical simulation of penetration phenomena can be performed
with both Lagrangizn (mass relerence) and Eulerian (laboratory
reference) descriptions. In the laboratory reference scheme, th=
computational mesh remains stationary with material being transported
through it based on velo:ity gradients present in the flow ffeld.
Such a description is ideaily suited for modeling severe material
deformations that occur in hypervelocity impacts, explosive-metal
interactions and the penetration of thick targets (i.e., situations
wherein the ratio of target thickness to penetrator diameter, t/d,
exceeds 3). In the mass reference description the computational mesh
is fixed in the material and distorts with it in accordance with
applied Joads. The Lagrangian approach offers the advantages of
teing conceptually straightforward (due to the lack of convective
terms to represent mass flow) and permitting material boundaries to
be delineated without ambiguity. However, frreguiar mesh shapes
arising from severe material deformations lead to inaccuracies in the
numerical approximation which can grow to unacceptavle levels. In
addition, since almost all Lagrangian wave propagation codes use
explicit temporal integration schemes (in which the maximum time step
1s limited to satisfy a stability conditfon), violent distortion of
the computational mesh leads to a reduction of the time step to such
a low value that continuing the calculation becomes economically
prohibitive. These problems can be overcome through the use of
rezoning, coupled Lagrangian~-Eulerian descriptions, and contact
surface erosion algorithms.

In rezoning, a new Lagrange computational mesh {s overlaid on the
old one and a rezone algorithm mups mesh quantitites of the severely
distorted mesh onto the new mesh such that conservation of mass,
momentum, total energy and the constitutive relationship are
satisfied. Rezoning can be a costly and nontrivial process. For
very thick target pcnetration studies (plate thickness to projectile
diameter ratios greater than 10) 30 to 50 rezones are naot uncommon.
Frequent rezoning renders the computational mesh semi-Eulerian in
that large distortions are realized but material history and location
of material boundaries are diffused.

Many impact sitvations are not simulated very well with
Lagrangian or Eulerfan descriptions alone (i.e., fluid-structure
interaction problems). Coupling methodologies for combining
Lagrangian and Eulerian descriptions exploit the respective
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advantages of each. 1In general, the Eulerian por ion of the
computational mesh behaves as a pressure boundary acting on the
Lagrangfan regions, while the Lagrangian regions represent obstacles
in the Eulerian flow field. This technique dres not circumvent the
possibility of excessive diffusion of materfial history. While
cumbersome and time-consuming logfc for 2bating diffusion of material
interfaces and histories has been demouastrated, the computational
penalties for such logic are high.

A most promising technique to extend the capability of Lagrangian
codes to deep penetration and spaced plate perforation problems {s
the concept of contact surface erosion, The Lagrangian codes
developed in the seventies required that the contact surface or
sliding interface specified at the beginning of the problem remain
unchanged throughout. TihLis requirement was imposed not from physical
considerations but to simplify the interface logic. 1Its effect was
to prohibit total failure of material dictated by the physical
problem, resulting either in unrealistic distortions of the
computational mesh leading to large truncation errors or in temporal
integration increments which render further computation uneconomical.

The eroding contact surface concept has been under active invest~
igation at a number of conters since 1978 and is now finding its way
fnto production codes. The most comprehensive treatment i{s fro be
found in the DYSMAS/L code developed by Massmann, Pcth and thelir
associates ar [ndustrieanlagen-Betriebsgesellschaft mbH (Ottobrun, W,
Germany). The contact processor in DYSMAS/L (ref, 2-4) is basad on a
generalized master-slave concept., Structural surfaca2s which are to
be controlled by the contact processnar are defined as master planes
and slave points. Both master surface erosion and internal cracking
can be treated., 1In the case of element separation (crack opening)
the separated nodal masses of the affected elements are designated as
slave points to permit calculation of momentum exchange in case of
further contact. Redefinftion of the contact surface in case of
erosion or cracking is treated automatically, requiring no user
intervention,

Methods for dynamic redefinition of sliding interfaces in the
presence of total element failure have also been developed by Johnson
(ref. 5-6), The earlier approach, implemented in the EPiC-3 (ref. 5)
code, had several limitations and restrictions (i.e., only
obliquities of 45° or less could be treated and users had to specify
a priori the extent of target damage) and has not been used
extensively. Many of these have been removed from the techniques now
used in current versions of FPIC-2 and EPIC-1., Snow (ref. 7)
implemented logic to dynamically redefine the master surface as
element fatlur- occurs in the FEPIC~2 code. The approach retafined the
requirement in the original version of the rnde that the master
surface remain continuous and employed an asymmetric Iinterface treat-
ment. Most recently Belytschko and Lin~ have introduced eroding
contact surface concepts into the EPIC-3 code, making use of eignt~-
node hexahedral elements and hourpglass viscosity to stabilize
spurious deformation modes caused by one point integration.

IWOrk done under contract to Ballistic Research Labs.
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CONTACT SURFACE EROSION FOR
LAGRANGIAN COMPUTATIONS

Contact surfaces or sliding interfaces are appropriate in
situations where large relative motions can be expected at materfal
boundaries. Situations finvolving the interactions of gases and
fluids with solid walls, the penetration of targets by projectiles,
and contact between colliding bodies require the use of sliding
interfaces. They prove useful also in regions where iarge shears or
fractures develop. Most sliding interface methods are based on the
decomposition of acceleration and velocity into components normal and
tangential to the interface. Motions in the normal direction are
continuous when materials are in contact but independent when they
are separated. Tangentlal motions are independent when materials are
separated or the interface 18 trictionless but are modi.ied 1f there
is contact and a frictional force is present. Materials on either
side of an interfare may separate if a user-specified criterion is
exceeded or if masterials are in tension, and may collide again {f
previously separated., A comprehensive discuseion of sliding inter-
face treatmerts is given by Hallquist (ref, 8-9).

The sliding interface algorithm in the EPIC-2 code (ref. 7) has
been restructured to simulate contact surface erosion during impact.
Initially, a series of nodes lying on the interface are identified
and labelled as either master or slave nodes. Designation of master
and slave is arbitrary since a symmetric treatment at the interface
is used. In the method employed here, a set of nodal points that
define element edges or segments which have both nodes declared to be
master nodes define unique master segments of the master surface on
vhich slave nodes are not permitted to intrude. These master
segments are not required to define the master surface in a con-
tinuous manner. When penetration of a slave node through the master
surface occurs, the velocities of the master and slave nodes are
ad justed to conserve angular and linear momentum as described in
reference 10. Once the intrusions are removed, the designatfion of
master and slave is interchanged and the procedure is repeated. Fach
temporal integration increment is comprised of the following steps.

1., Determine master segments on one side of the interface
that circumscribe elements which have not exceeded the user-
specified failure criterion,

2. For each slave node find the master segment whose search
radius, R’, in Figure 1 <contains the slave node.

3. etermine the sign of the cross product of the vectors
M. M, and M,S" defined in Figure 1. A requirement of the interface
1$gzc ou.llned here is that slave nodes must remain to the left of
the master segment. A negative sign of the cross product indicates
penctration of the master segment by a slave node and requires
corrective action,
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4. 1If there is intrusion, positicn the slave node on the
master segment in a direction normal to the segment.

S. Update master and slave node velocities to conserve
linear and angular momentunm.

6. Update nodal forces to account for change in nodal
velocities.

7. Interchange master and slave designations and repeat
steps 1-6.

Figure 2 shows results obtained with this method for the
penetration of a steel plate by a 65 gram, hemispherically nosed
steel rod with a striking velocity of 1103 m/s. Figure 3 shows
similar results for a plane strain simulation at an obliquity of 60°
and striking velocity of 1647 m/s. Table I shows a comparison of
computed residual masses and velocities with those obtained
experimentally by Lambert (ref. 11) from radiographic data. The
agreement is quite good for the normal impact case. The higher
residual mass and velocity computed for the oblique impact 1is
characteristic of plane strain analyses of high velocity {impacts.
The utility of plane strain analyses of high velocity impacts has
been examined by Zukas et al, (ref 12) who concluded that the
fundamental difference in the formulation of the computational
elements between the plane strain approximation and the exact
(axisymmetric) computation of penetration is sufficient reason to
expect different energy displacement relationships for the two
formulations.

CONCLUSIONS

The simulation of contact surface ercsion in Lagrangian analyses
of high velocity impacts appears to be a most promising refinement
which extends the capabilities of Lagrangian codes for problems
involving perforation of solids. The methodology permits simulation
of deep penetration which previously was limited to Eulerian codes.,
Furthermore, the methodology has been demonstrated to yield residual
parameters that are in good agreement with experimental data at a
considerable reduction in cpu time and memory requirements for a
comparable Eulerian analysis.
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TABLE I. - COMPARISON OF CALCULATED AND MEASURED RESIDUAL PARAMETERS

Striking

Obliquity Velocicy
(degrees) (m/s8)
0 1103
60 1647

- Reference 11

FIGURE 1. - TEST FOR SLAVE NODE INTRUSION OF MASTER SEGMENT MjMj:

Residual Velocity (m/s) Residual Mass (g)

Calculated Measured¥* Calculated Measured*
709 690 32.1 32.7
1202 1145 22.9 16.8
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CRASHWORTHINESS OF LIGHT AIRCRAFT FUSELAGE STRUCTURES:
A NUMERICAL AND EXPERIMENTAL INVESTIGATION

A.P, Nanyaro, R.C. Tennyson and J.S. Hansen
University of Tororto, Institute for Aerospace Studies

SUMMARY

A comprehensive program was undertaken (o investigate both analytically
and experimentally the dynamic behaviour of aircraft fuselage structures subject
to various impact conditions. An analytical model was developed based on a self-
consistent finite element (CFE) formulation utilizing shell, curved beam and stringer
type elements. Equations of motion were formulated and linearized (i.e. for small
displacements), although material nonlinearity was retained to treat local plastic
deformation. The equations were solved using the implicit Newmark-Beta method with
a 'frontal' solver routine. Free-flight testing of stiffened aluminum fuselage models
was also undertaken using the UTIAS pendulum crash test facility. Data were obtained
on dynamic strains, g-loads and transient deformations (using high speed photography
in the latter case) during the impact process. Correlations between tests and
predicted results are presented, together with computer graphics, based on the CFE
model. These results include level and oblique angle impacts as well as the free-
flight crash test,

Finally, comparisons are also made with a hybrid, lumped mass finite element
compute. model. It is demonstrated that the CFE formulation provides the best
overall agreement with impact test data for comparable computing costs.

INTRODUCTION

In evaluating the crashworthiness of aircraft structures, it is essential to
utilize computer analyses to aid the aircraft designer during the preliminary design
phase. Designing a crash-resistant structure and seat configuration necessitates an
understanding of the behaviour of a complex structure deforming under various impact
loads. Testing of full scale aircraft or scale models is extremely expensive and
difficult. Consequently, the experimental approach alone is undesirable. Computer
techniques are needed which adequately consider large deflections, elastic-plastic
material response, local buckling and post-buckling behaviour, as well as isolated
component fractures. From an economic view, it is desirable to develop the simplest
feasible mathematical model representation of the actual structure, while maintaining
an acceptable level of accuracy. The cost restrictions place constraints on the total
number of degrees of freedom that can be retained in the model, the number of elements
that may exhibit material and/or structural non-linearity, and the number of times the
system stiffness matrix can be re-assembled, inverted, and/or transformed in a dynamic
analysis. Consequently, two anaiytical approaches were considered. The first model
developed was based on a lumped mass finite element (LMFE) representation of the
structure using flat, straight elements. The intention was to approximate the struc-
ture in such a manner as to obtain a low cost, efficient and accurate analysis that
would be attractive as a preliminary design code. Results of this effort have been
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well documented elsewhere (refs. 1,2). At the same timc, a more accurate, more

cost effective and consistent finite element (CFE) formulation was recently devel-
oped to provide a basis fo: comparison, details of which are provided in the follow-
ing section.

Clearly, regardless of which model is utilized, the analysis must be capable
of providing accurate estimates of the g-loads, volume reduction, and associated
gross failure modes of the structure for certain crash conditions. Of particular
importance is the accurate prediction of g-loads transferred to the passenger seat
structure in order to improve seat dcsign and minimize occupant injury. Also of
vital concern is the prediction of structural g-loading of large masses which, in
the case of high wing aircraft, can crush the fuselage. Finally, in order to select
a reliable computer model, validation of its predictions is only possible via credi-
ble tests on realistic structural configurations subjected to simulated impact
loadings that reflect a range of likely aircraft crash conditions which are poten-
tially survivable,

This report presents a brief summary of the finite element formulation together
with a description of the experimental program anc¢ comparisons with test data. For
further details, the reader ‘s referred to ref.3.

DERIVATION AND SOLUTION OF
MOTION EQUATIONS FOR AN IMPACTING AIRCRAFT

The motion equations appropriate for the present problea have been developed
from the method of virtual work and are given by

92W T
u s + B0 =F (1)

ot

where 1 is the mass density, W is a column matrix of displacements, B is a matrix of
non-linear differential operators, o is the column stress matrix and F is a column
matrix of applied forces acting on the system. Equation (1) does not explicitly
contain the impact forces that result from ground contact.

However, this characteristic is obtained in the computer code by imparting
appropriate moments to various nodes when ground contact occurs. In addition,
dissipation resulting from contact is included through the use of an appropriate
coefficient of restitution.

Finite Element Motion Equations

In this section, the development of the consistent mass and stiffness matrices
that correspond to the finite element discretized motion equations is presented.
As the fuselage structure is complex, the differential equations the describe the
motion are not dealt with directly. Rather, the aircraft is idealized as an
assembly of flexible structural elements (figure 1) comprised of curved ribs,
stringers, (two nodes, 6 degrees of freedom (DOF) per node) and shell segments
(4 nodes, 6 DOF per node). All elements can exhibit plasticity if required.

In the following analysis, three basic reference frames are considered:
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1. I, an inertial frame
2. B, a fuselage centre of mass, body-fixed frame
3. Ej, an element centre of mass frame (i refers to the i-th element)

lhese reference frames are shown schematically in figure 2. Note that the fuselage
:entre of mass has been assumed to remain fixed even as the fuselage deforms. This
ts justified on the basis that the predcminant mass in the analysis is that of the
ving, which is assumed rigid, and therefore changes in shape of the fuselage cause
rery minor changes in the centre of mass locaticn.

The discretized motion equations that result from the application of the finite
:lement procedure take the general form,

Mx + Cx + Kx = F(t) (2)
shere M, C, K are the mass, damping and stiffness matrices, respectively, and x and
i(t) correspond to the response and forcing column matrices, respectively. The

following sections present the development of each of these quantities at the ele-
nental level; these are then assembled to form the matrix or vector of interest.

The basis functions used in the analysis are polynomials and the model deform-
itions are represented by d;, with i ranging over the nuuber of disp'acement degrees
of freedom. In the continuum representation, the displacemrznts arv Jefined by W:

W= [u, v, w]T (3)
with the discretized representation (trial function) taking the form

W= Ppl (4)

Here P, is the matrix of polynomial functions which for the cylindrical shell
elemeng is given by

1 £ n &n 00
Pb={0 00 01 2 mn & 00 ()
0 1 £ n &n E2 2 ..,

where £ and n are the axial and circumferential shell coordinates, respectively, and
I' is the vector of polynomial coefficients. The nodal variables d are related to T
by substituting the coordinates into the trial functions and equating to the nodal
degre_~ of freedom. This yields

“(51.... ni) = w.{ = pl(r’i’ ni)r (6)

for the nodal displacements while the nodal slope and twist degrees of Ireedom are
obtained from
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which can be expressed as
Bi = Pl (8)

thereby providing a relationship of the form

dy = 1= Yr=rr )
By P2

The inversion of P then provides the required rel..ionship

r= P'ldi = Cd, (10)

The elemental stiffness matrix is composed of two parts; the 2lastic component
given by

k¢ « J c'8'0BC dv (11)
s
S
and the non-linear, iiduced stress component resulting from plasticity,
kP = f cT8lo'av (12)
S
In these, D is the conctitutive matrix, given by
(13)

o= De

where 0 and € are the stress and strain column matrices, respectively, »nd B is a
matrix of differential operators which relates strains and displacement.,
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€ = BW (14)

Also, o represents the plastic incremert in stress. It should be noted that the
above matrices are evaluated with respect to the element reference frame.

The contribution to the element matrices that results from the mass properties
of an element requires evaluation with respect to an inertial reference frame. The
acceleration of an element in the inertial reference frame is written as

d2
dt2

(15)

Ap=—I[x+R +p+w]

where the vectors on the right are as follows (see figur: 3)

\ e RO

= 1. Equation (16) gives the position of the fuselage centre of mass with respect
' to the ineirtial frame:

x 8 {i}x (8)

2. Equation (17) gives the position of an element with respect to the fuselage
centre of mass:

R (17)

Pa fe}'p (18)

4. Equation (19) is the deformation of a point in an element:

wp {ctw = b} 1w, (19)

1

In the above, {i}, {b) {e}, and {c} are the matrices of unit vectors corresponding
to the inertial, fusela_ centre of mass, element centre of mass and position frames,
respectively, while x, R, p, W and W; are column matrices which are the components
of the corresponding vector in the indicated reference frame. Thus, the acceleration
in terms of the body-fired reference frame becomes

‘ A= fe} ec'% + c[uX(R, + cTp) + ws uy(R+ c'p)] + W 0
- C 20
‘ + c[Zw; cTu+ (o + w; w;)cTu}
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where ¢ is the transformation matrix given by

fe}’ = by'c (21)
and cT represents the transpose of c, while wp is the column matrix of angular
velocities of b with respect to 1. Further mg 1s defined by

0 -w w
. 3 2 (22)
w, = w3 Y -wy

-w2 w) 0

where w, is given by

“1 (23)
ap = | w2

w3

It should be noted that, in the above, the angular velocity of the element with

respect to the body reference frume is neglected. That is, in the relation we
= Wy + ceT, the effect of ¢ has been neglected. Thus, the inertia terms yield the

final result

{{Ja%mw+£ckug+uggu%+c%nmv+jﬁmma
S S

(24)
T X T T ox T
+ {;{ 2C Cyy C Cudv}d + { :{ C C(mb + w; m;)c Cucvld
where the coefficients of d, &, ;i‘may be identified by
T ex T
Ky & g C ey, ¢ Cudv
T xxT
Kc .} £ C CuywyC Cudv (25)
6 o2 CleuCudy
S
Mg [ CTcudy
S
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These relations define the matrix for the angular acceleration of the elements, the
acceleration matrix, the gyroscopic coupling matrix and the mass matrix, respectively.
Thus, the contribution to the motion equation from a single element is given by

Lo = M+ Gd + [k + Ko + Ky + K Jd+ [ uCTe(d + W) Tpdy
(26)

T T, 18 T /o
+ g uC'cc'dvlx + | g uC c(w§ + w;wg)dv}gc

The motion equations are coupled by suitably orienting each element contribution,
summing over all the elements and then adding external forces. Hence, the motion
equation takes the form

J (cglg - f) =0 (27)
S

where f; defines the column matrix for the consistent element force. With these
assembled equations, a number of observations can be made. First, the motion of

the centre of mass is unaffected by the motion of the fuselage relative to the centre
of mass. This implies that a solution for x corresponds to that of a free falling
mass with appropriate rebound conditions included. Similarly, the angular momentum
of the system is conserved during the free fall and rebound phases if suitable
account is taken of the impact duration with the ground. Inclusion of these effects
means that X, .; and <& can be directly solved and thus they appear as forcing
functions in equation (27). The final contribution to the motion equation from the
structural element is ¢€ the form

LS=MH+G&+Kd (28)

where the remaining terms in equations (26) and (27) can be determined from free fall
calculations for the centre of mass.

Solution by fimc Integration
The motion equations have been integrated in the time domain using the Newmark-
B method (ref.4) which relates dy + 1, vy + 1 and a; + 1 (i.e. the displacement,

velocity and acceleration, respectiveiy) at the (I +71)St time step by equations (29):

. L,

1 (29)
Ve 2Vt 7oatla ¢ a1+l)
where {3, the integration paramecter, has been taken as 1/4. Substitucing the
expressions for apt 1 and Vit 1 into the assembled motion equation yields
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= a1l -1
dyg = dp + [+ 2 t 23] (M aty, + }r at2a,]

1 a
+ g 0t2[F - K4}

(30)

where M? and K2 are the assembled mass and tangent stiffness matrices, respectively,

and Fp | 1 is the assembled force column matrix. This integration scheme has the
advan{age of unconditional stability and accuracy (ref.5) and also allows the use
of a 'Frontal Solver' technique (ref.6).

Fuselage Model Analysis

As noted earlier, the fuselage model shown in figure 1 consists of shell,
curved beam and stringer elements. The derivation of the cylindrical shell
element is described in detail in ref. 7. Of interest is that rigid body dis-
placements are considered while maintaining interelement compatibility. Conse-
quently, the free-body motion of the fuselage during free-flight does not result
in structural strains.

The model investigated in this report has 383 nodes and 1626 degrees of
freedom. This compares to 368 degrees of freedom provided by the LMFE computer
model utilizing 79 nodes, which are 'statically condensed' to provide 138 degrees
of frcedom before integration is performed. For the first time step, during the
integration, the matrices are found and inverted. The element mass and stiffness
matrices are stored on disks to be used in energy growth checks. Gaussian
elimination is performed and information necessary for back-substitution in the
first and subsequent time steps is stored on disks as well. For every time step,
the external forces, plastic and corrective forces are found and used to obtain
displacemerts, velocities and accelerations. The external forces include
gravitational weight whereas the corrective forces include errors after iteration
and the buckling forces. Subroutines are employed to evaluate the stiffness
and mass-'creating' subroutines for the different elements. This is done during
the first time step. The matrices are assembled into the body coordinate system
and transformations are then performed from curved coordinates to Cartesian body
coordinates. The displacement change is found in the inertial reference frame
with components in the body axis directions at each step. Integration to find
accelerations and velocities is done in the inertial reference frame. The
angular velocity is included in the model together with centripetal, angular
acceleration and gyroscopic forces about the fuselage centre of mass. These
forces at the element level are neglected. Thus the element centrifugal,
gyroscopic and angular acceleration matrices are assumed to have a negligible
contribution to the element displacements about its own centre of mass.

The time <*:p, (At), during the integration is chosen to maintain little
energy growth in time, thus ensurirg stability. In this study, At = 0.001 sec
was employed. For every time step, negative strain energy is checked. If the
energy is negative despite several iterations at the step, the integration is
abandoned. On contact with the ground, velocity components are imparted to the
appropriate ncdes, equal in magnitude but opposite to the initial impact values.
A rebound coefficient can be introduced at this point together with a coefficient
of friction which will change the velocities parallel to the ground at the point
of contact. These coefficients have not been used in this program, although they
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were used in the LMFE analysis.

EXPERIMENTAL PROGRAM

Fuselage Test Modcl

he experimental fuselage mcdel was chosen to characterize a large number
of typical general transport, light aircrz€t fuselages withir a weight range of 3,000
to 24,000 kg. The model has a geometric scale factor of about a third for this
category of aircraft. A high wing configuration was selected since it provided
the worst case situation for an impacting fuselage. The objective behind the
choice of the model was to perform credible experiments on realistic fuselage
structures to demonstrate the validity of the computer codes, which then could
be used to analyse an actual aircraft. The test models were fabricated from 0.305
mm thick 2024-T3 aluminum skin stiffened with twelve light rib frames and two
solid cross-section, heavy main frames (buikheads) to pick up the wing loads.
A floor support structure was also added for completeness together with longitudinal
stringers mounted on the exterior of the fuselage. The dimensions of the models
were nominally 0.914 m in diameter, 2.3! m long and with a mass of approximately
16.4 kg. Figures 4 and 5 show photographs of a test model.

Wing loading for the free-flight configuration consisted of two longitudinal
stiff beams (see fig.4) with end weights. This structure was attached to a
rigid mounting fixture which itself was bolted to both interior main frames.

This particular design was necessary to properly simulate the pitch moment of
inertia and lower the centre of gravity within the fuselage cross-section,

In a flight test simulation, it should be noted that in reality, the loading
on the aircraft fuselage will differ from the drop-test values due to aerodynamic
lift in a "controlled'" crash landing. The forces from the control surfaces will
also affect the torques on the fuselage. A simple correction factor should be
determined, by equating total energy at impact of the model and that of the fully
'lifted' aircraft using the appropriate nondimensional parameters. In this way,
model data can be related to an actual aircraft fuselage using these nondimensional
factors.

Crash Test Facility

Experimental tests were performed inside the geodetic dome (50 m diameter)
< the University of Toronto Institute for Aerospace Studies. The facility
consisted of a pendulum gantry constructed over a 12.2 m by 3.7 m reinforced
conc:rete runway, as shown in the schematic of figure 6. The gantry was about
7 m high and stood on four legs, with the fuselage suspended from the gantry top
'frictionless' pivot by a rigid swing arm. The fuselage was then drawn back
ahove the impact surface by a cable attached to the dome roof. Between this
cable and the fuselage was a manual release mechanism. The fuselage mounting
fixture was attached to the rigid swing arm by a pyrotechnic bolt tension
separator. A free-flight test sequence was initiated when the fuselage was
released from the pullback cable, permitting the model to swing ‘pendulum
style' above the impact surface. The fuselage was then separated from the swing
arm by the pyrotechnic device, when the swinging arm was perpendicular to the
ground or at the lowest point in its swinging path. This trigger mechanism was
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activated when the fuselage passed through a laser beam as shown in fig.6. An
electrical signal was then relayed to the pyrotechnic firing system, details of
which can be found in refs. 7 and 8.

Data Acquisitinn System

Data acquisition during the crash tests was accomplished with photographic
coverage using low and high speed cameras and with onboard strain gauges and
accelerometers. The strain gauges were bonded to the inner edges of the main load
carrying frames while strain gauge type miniature accelerometers were positioned
on the fuselage to measure normal and/or longitudinal acceleration on the wing
mass and on the floor structure. The accelerations on the wing mass result in
loads being applied to the main frames and the accelerations of the floor can
be used to assess the loads transmitted to the seat structure.

Both accelerometer and strain gauge signals were sent through a SE Bridge
conditioning unit and a SE G.ivo conditioning unit before being output on a
Honeywell Visicorder oscillograph (Model 1503). The accelerometer signals were
also filtered using a 200 Hz 1.w pass filter and taped on a Bruel and Kjaer 7003
FM-tape recorder. The analog data on the FM-tape were digitized using a PDP 1140
computer and GT44 graphic terminal. The Visicorder contained type M200-350
(electromagnetic damped) miniature galvanometers having a resistance of 350 ohms

and a flat frequency response from 0 to 180 Hz. Further details can be found in
ref.7.

Impact Tests

Prior to the free-flight test, a series of level and oblique angle vertical
drop tests were conducted. Some experimental g-load results are presented in
tables I-II.

Subsequently, a free-flight test was performed with a wing mass of 244 kg.
The initial release parameters at a height of 0.17 m were: angle of incidence,
3°; nose-up pitch rate (counter-clockwise) equal to 1.18 rad/sec; horizontal
velocity of 6.58 m s~1, At initial impact, the angle of incidence was about 9.6°
and the centre of mass sink rate was 0.88 m s™1. Selected high speed photographs
present: in figure 7 (™ 400 pps) show portions of the 'free-flight' impact
test. For further details, refer to ref.7. From post-crash pictures shown in
figures . and 9, one can see modest collapse of the aft end (due to the first
impact) and substa~tial collapse of the forward end. The floor failure is
symmetric and local fracture was observed together with interior rib failures.
No failure of the main rib occurred although some plastic deformation was cvident.

Table II1 summarizes the measured peak g-loads for this case.

COMPARISON OF COMPUTER MODEL
PREDICTIONS WITH TEST DATA

As noted earlier, two computer models were developed, one a hybrid based
on a lumped mass - finite element approach (LMFE) and the other, which forms
the basis of this report, a consistent finite element formulztion (CFE). Details
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on the former model can be found in refs 1 and 2, for example. Both model
predictions of peak g-loads and times of occurrence are presented in tables I, II,
and III for level, oblique and 'free-flight' impact tests, respectively. Although
the available experimental data are somewhat limited, in general the CFE model
provides better correlation than the LMFE analysis. Figure 10 provides a comparison
of the CFE predicted acceleration - time response with the recorded output for

the level impact case. Quite good correlation is observed.

Selected graphics depicting the initial 'free-flight' impact behaviour of the
fuselage are presented in fig.ll. These results can be compared with the high-
speed photographs in fig.7 where the same general dynamic response is evident in
the form of aft end transient collapse. For more complete photographic coverage
of the free-flight test together with computer graphics, refer to refs. 7 and 8.

CONCLUSIONS

A consistent finite element computer code has been developed to analyse
fuselage structures for a uvypical high wing passenger aircraft. The analysis
was carried out for various impact configurations and energy levels. Vertical
drop and 'free-flight' experimental tests were performed on scale model stiffened
aluminum fuseluge sections at the UTIAS Crashworthiness Facility. The test data
obtained from realistic structural configurations provided a basis of comparison
for two analytical models. It has been demonstrated in this report that the
consistent finite element formulation provides the best overall agreement in
terms cf peak g-load predictions.

In summary, the computer code has the following capabilities:

(1) determines dynamic response in terms of displacements, velocities and
accelerations for all the points on the fuselage model

(2) allows variation of initial conditions which consist of vertical znd
horizontal velocities, pitch rate, angular velocity, position and orientztion
relative to the surface of impact

(3) permits changes of coordinates and geometry, numbering of nodes, introduction
of new elements, internal and external forces and changes in materials f

(4) presents views of deformed fuselage structure in the form of computer
graphics ¢
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TABLE I: SUMMARY OF PEAK g-LOADS (AND TIME OF OCCURRENCE - SEC) FOR

LEVEL IMPACT V, = 1.33 m s™1, WING MASS = 244 kg. (VERTICAL ACCELERATION)

: LOCATION OF WING LOAD WING LOAD FLOOR FLOOR
ACCELEROMETERS (RIB 6) (RIB 9) (RIB 5) (RIB 10)
F1*[211]%%(27)*** ¥3[215](21) #4[61] (43) #6[137] (46)
EXPERIMENT 11(.02) 13.9(.02) 11.2(.02) 20(.00)
LMFE 7.(.02) 7.(.02) 9.(.06) 9.(.06)
CFE 14(.02)* 14(.02)* 14(.02)* 14.4(.02)*

FILTERED USING FIFTH~ORDER CHEBYSHEV LOWPASS FILTER WITH A PASSBAND
OF 62.5H72 AND STOPBAND EDGE OF 125H:z

. +  ACCELEROMETER NUMBER
*+  CFE MODEL NODE NUMBER

*#+ |MFE MODEL NODE NUMBER

TABLE II: SUMMARY OF PEAK g-LOADS (AND TIME OF OCCURRENCE - SEC) FOR

OBLIQUE IMPACT

-1 '
Vo = 0.88 m s N

ANGLE = 2.0° WINGMASS = 244 kg (VERTICAL UNLESS STATED)

LOCATION OF WING LOAD FLOOR WING FLOOR FLOOR
ACCELERCMETERS (MIDPOINT) RIB § (MIDPOIN1, RIB § RIB 10

HORIZONTAL ACC.  #2[61](12) #3(211)(27) HORIZONTAL  #6[136](46)

#1*[215]**(27) *** #5[62] (43)
EXPERIMENT 2.8(.037) 23.5(.016)  7.9(.049) 5.2(.04) 20.6(.028) ,
IMFE 0.4(.02) 5.(.11) 4.(.07) - - '
CrE 2.3(.01) 27¢.016)**  8.3(.03) 5.8(.035) 24(.027)**

¢ ACCELEROMETER NUMBER

; **  CFE MODEL NODE NUMBER

3 *#»  LMFE MODEL NODE NUMBER _
1 *+  FILTERED USING LOWPASS FIFTH ORDER CHEBYSHEV FILTER (A PASSBAND = 62.5 Hz _—
: STOPBAND = 125 Hz)
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TABLE II1: SI' ARY OF PEAK MEASURED g-LOADS (AND TIME OF OCCURRENCE - SEC)
FOR 'FREE-FLIGHT' CRASH TEST
LOCATION OF WING (HORIZONTAL) FLOOR WINGLOAD FLOOR FLOOR FLOOR
ACCELEROMETERS RIB 6 RIB 5 RIB 9 RIB 10 RIB § RIB 10
#1*[211]**(27)***  VERTICAL VERTICAL VERTICAL  HORIZONTAL  VERTICAL
#2[61](43)  #3[21](27) #4[181](43) #5[61](46) #6[136](46)
EXPLRIMENT 0.76(.056) 8.3(.07) 3.7(.057) 8.1(.08) 2.8(.017) 4.0(.02)
LMFE 1.0(.008) - 3.5(.06) - - 27.5(.17)
CFE 1.0(.04)*+ 10(.05)** 3.8(.05)** - 4.1(.02)** 3.9(.02)**

338

ACCELEROMETER POSITION
CFE MODEL NODE NUMBER
LMFE NODE NUMBER

FILTERED USING STH ORDER LOW PASS CHEBYSHEV FILTER (PASSBAND
(STOPBAND

62.5 Hz)
125 Hz)
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Figure g. Post-
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ANALYSIS OF A TRANSPORT FUSELAGE SECTION DROP TEST

E. L. Fasanella
Kentron International, Inc., Hampton, Va.

R. J. Hayduk and M. P. Robinson
NASA Langley Research Center, Hampton, Va.

E. Widmayer
Boeing Commercial Airplane Company, Seattle, Wa.

SUMMARY

Transport fuselage section drop tests have provided useful information
about the crash behavior of metal aircraft in preparation for a full-scale
Boeing airplane Controlled Impact Demonstration (CID). The fuselage sec-
tions have also provided ar. operational test environment for the data
acquisition system designed for the CID test, and data for analysis and
correlation with the DYCAST nonlinear finite-element program.

The correlation of the DYCAST section model predictions was quite good
for the total fuselage crushing deflectien (22 - 24 inches predicted versus
24 - 26 inches measured), floor deformation, and accelerations for the floor
and fuselage. The DYCAST seat and occupant model was adequate to ap-
proximate dynamic loading to the floor, but a more sophisticated model would
be required for good correlation with dummy accelerations. Although a full-
section model using only finite elements for the subfloor was desirable,
constraints of time and computer resources limited the finite-element sub-
floor model to a two-frame model. Results from the two-frame model indicate
that DYCAST can provide excellent correlation with experimental crash be-
havior of fuselage structure with a minimum of empirical force-deflection
data representing structure in the analytical model.

INTRODUCTION

The FAA and NASA will conduct a full-scale air-to-surface
impact-survivable Conirolled Impact Demonstration (CID) (see figure 1) with
a remotely piloted Boeing 720 aircraft at NASA's Dryden Flight Research
Facility. The principal purposes of the impact demonstration are

. to verify that antimisting fuel can preclude ignition of the airborne
fuel mist or suppress the ignited fireball growth rate and demonstrate an
operational fuel/propulsion system capability; and

. to acquire metal structural bascline data to better understand
transport crash behavior and to permit comparisons with any future composite
aircraft structure crash data

A series of three transport fuselage section drop tests vere performed
at the Impact Dynamics Research Facility of NASA Langley Research Center,
Hampton, Virginia, as part of the joint NASA/FAA Full-Scale Transport
Controlled Impact Demonstration program (Reference 1). The sections were

RN e, veooa arg- ' «
TS M AR Tt I'l.;.‘\.\l\ ‘h‘\)T I‘IL‘\’IED

- P g T -» —

347



&)

© b b o Ba

;e

348

from Boeing 707 aircraft fuselages (figure 2) and thus are representative of
modern, all-metal aircraft fuselage construction.

The fuselage section drop tests were performed to provide structural
crush data for the nonlinear subfloor springs of a finite-element beam and
nonlinear-spring model being used to predict the overall crash impact be-
havior of the Boeing 720 aircraft., The drop tests were also used for the
data acquisition system and the photographic system built by Langley
Research Center for the Controlled Impact Demonstration. Additionally. the
tests generated structural response data for comparison with the DYCAST
computer program predictions.

This paper describes the first fuselage section drop test, some
capabilities of the DYCAST computer program, the DYCAST finite-element
models, and comparisons of experimental and analytical results from the
research effort,

TEST SPECIMEN AND APPARATUS
Forward Fuselage Section

In figure 3 the forward fuselage section is shown suspended in the
Vertical Test Apparatus (VTA) of the Impact Dynamics Research Facility at
the NASA Langley Research Center. Because of the difficulty in locating a
Boeing 720, nearly identical (structurally) 707 fuselage sections were used
for test specimens. The 12-foot-long fuselage section, cut tei. inches
forward of Body Station (BS) 600 and ten inches aft of BS 600J, weighed 5051
pounds including the seats, anthropomorphic dummies, and instrumentation
(fig. 2) (Ref. 2). The structural beams and paneling of the lower bulkhead,
closing off the cargo bav =t BS 600J, were removed to make the subfloor
structural strength more uniform lengthwise in the section. As shc¢ . in
figure 3, the fuselage section is open on both ends. Since the interactions
of this fuselage section with the remainder of the airplane structure are
very difficult to predict and simuiate, a simple end restraint tension cable
system was used to provide cutward radial restraint only.

Figure 4 presents the floor layout of seats, instrumentation junction
box, simulated power distribution pallet (for proper ballast) and a battery
for camera power, Seats were located on the test section approximately as
anticipated on the Controlled Impact Demonstration. Eight 50th percentile,
165 1b, Part 572 anthropomorphic dummies (Ref, 3), restrained with standard
lap belts, were seated among the five triple seats as shown in figure 4. All
dummies had vertical (aligned with the spine) and longitudinal (fore-and-aft
perpendicular to the spine) accelerometers in their heads and pelvises. An
uninetrumented 95th percentile Aummy (195 1b), restrained with a standard lap
belt, occupied the inboard location of seat F, Ballast (see fig. 5) was
used to load the remaining six occupant locations. Tahle I gives the weight
and coordinates of all articles and ballast onboard the section. The origin
of the coordinate system (0,0,0) was arbitrarily chosen to be at BS 600F,
centered at floor level (see fig. 4).
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NASA Langley VTA Facility

The Vertical Test Apparatus (VIA) (fig. 3) was used to provide a stable
guide mechanism for the vertical impact test of the transport section. The
VTA, located at the northwest leg of the gantry structure at the Impact
Dynamics Research Facility (Ref. 4), is 70 ft high and consists of a 7 1/2
ton hoist platform on two support columns, Each column has rails to guide
the vertical motion of a lift frame to which a specimen can be attached for
drop testing. The specimen impacts a steel-reinforced concrete pad at the
bottom of the VTA, whereas, the support frame is decelerated by impacting
two shcck absorbers. An electrically activated quick-release hook is used
to lift the support frame and specimen to the desired drop height.

For the transport section test, the section was suspended by a series
of cables with turnbuckles to allow adjustment of the cable lengths and to
control the impact attitude. The vertical impact velocity was 20 ft/sec and
the impact attitude was 0 degree pitch, yaw, and roll,

INSTRUMENTATION AND DATA REDUCTION

Figures 6 and 7 show the locations and the positive axis directions of
the DC accelerometers used on the aircraft structure to obtain continuous
acceleration histories during the dynamic drop test. All data were trans-
mitted to a tape recorder through an umbilical cable that was hard-wired to
the data acquisition system. Reference 5 contains a complete set of the
experimental data traces from the drop test.

Both the experimental data and the analytical DYCAST results show a
large degree of high-frequency, high-amplitude acceleration data. In order
to determine the relevant low-frequency accelerations that contribute to
velocity change and large deflections, low pass filtering is necessary. To
make reascnable comparisons between the experimental data and analytical
calculations, the same digital filter program was used to filter both the
analytical and experimental results. The filter program uses an inverse
Fourier transform of the filter gain function in the frequency domain to
transform to a smoothing function in the time domain (Ref. 6). Figure 8
presents the actual and ideal filter response for the 20-Hz filter. The
finite transform distorts from the ideal as shown. -

The analog signals were filtered with a 600-Hz low pass filter during
recording and were subsequently digitized at 4000 samples per second., The
digitized accelerometer data for the dummy head, dummy pelvis, and airplane
structure were filtered at 600 Hz, 180 Hz, and 20 Hz, respectively, with a
low pass digital filter.

DYCAST ANALYTICAL PROGRAM

DYCAST Features

DYCAST is a nonlinear structural dynamic finite~element computer code
developed by Grumman Aerospace Corporation with principal support from NASA
and the FAA as part of the combined NASA/FAA program for aircraft
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crashvorthiness. The major DYCAST features are described briefly in the
following paragraphs (Ref. 7).

The basic element library consists of: (1) stringers with axial stiff-
ness only; (2) beaws with axial, two shear, torsional, and two bending
stiffnesses; (3) isotropic and orthotropic membrane skin triangles with in-
plane normal and shear stiffnesses; and, (4) isotropic plate-bending
triangles with membrane and out-of-plane bending stiffnesses.

The nonlinear spring element provides axial stiffness with a user-
specified force-displacement curve. It can be used as either elastic or
dissipative, and as a gap element such as a ground-contact spring. The
changing stiffnesses in the structure are accounted for by plasticity
(material nonlinearity) and very large deflections (geometric non-
lines,ities)., Material nonlinearities are accommodated by one of three-
options: (1) elastic-perfectly plastic, (2) elastic-linerr hardening plas-
tic, or (3) elastic-nonlinear hardening plastic of the xamberg-Osgood type.
The second option has been used exclusively for this modeling effort.
Geometric nonlinearities are handled in an updated Lagrangian formulation by
reforming the structure into its deformed shape after small time increments
while accumulating deformations, strains, and forces. The nonlinearities
due to combined loadings (such as beam-column effects) are maintained, and
the stiffness variations due to structural failures are computed., The
failure option is imposed automatically whenever a material failure strain
criterion is met, or manually by the user at a restart.

The problem size is only limited by the computer resources needed to
invert the stiffness matrix at least twice for each time step. A restart
feature permits a large problem, or one of long event duration, to be run as
a sequence of smaller time segments. This minimizes dedication of computer
facilities, allows the user to examine the respons~ as it progresses, & °
permits termination of the simulation if critical struc*ural damage occ..s,

The numerical time integrators available are iixed-step central dif-
ference, modified Adams, Newmark-beta, and Wilson-theta. The last three
have a variable time step capability, which is controlled internally by a
solution convergence error measure. Thus, the size of the time step is
increased and decreased as required during the simulation. The Newmark-beta
time integrator was used exclusively for the models presented in this paper.

Two postprocessors provide the user with output data graphics
capability. GRAFIX plots histories of displacement, velccity, and accelera-
tion at chosen nodes. SATLIT will generate time-iequenced drawings of the
deforming structure from any viewing angle.

Modeling Considerations

The fuselage section mass is distributed 37% to the fuselage shell, 52%
to the seat-occupant simulation, and 11%Z to equipment and ballast. Since
52% of the test specimen mass is located in seats, the anthropomorphic dummy
response should be closely approximated. Furthermore, plastic deformation
of the seat structures during the impact may alter the overall section
response and the damage to the floor system. However, to accurately simu-~
late the dynamic response of the anthropomorphic dummies and the effective
mass at the floor track requires capability not currently available in
DYCAST, As a first approach, the seat-occupant mass for each triple seat
was distributed between the floor and the seat pan with the masses assigned
to end rodes of the seat legs.
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The seat-occupant and equipment mass is asymrztrically distributed
throughout the section. This absence of symmetry requires a full seven-
frame model to accurately represent the complete test section,

Various structural failure mechanisms must be accommodated analytically
for accurate modeling of the structural behavior. For example, the lower
lobe of the fuselage section resists vertical loading through deformation of
the frames, whereas the longitudinal stringers and skin offer little resis-
tance to crush. The lower frames could be expected to fail in bending
and/or in shear and to develop points of inflection and "snap through" due
to the ground reaction forces. The ground reaction might also impose high
transverse shear loads on the frame cross sections. In additica, plastic
hinges might develop in the frames between the floor level and the fuselage
bottom. If the frames do not rupture while undergoing these types of defur-
mations, large impulsive moments would bt: applied to the floor and the upper
frame. Thus the analytical forrulation needs to provide for many basic
failure mechanisms.

Additionally, it often is desirable to include certain details in a
finite-element model that could influence e>- ‘cted permanent deformations.
For example, the fuselage floor consists cc  inch-deep built-up beams
having T-section caps and stiffener reinforced vebs. Where the seat tracks
(which resemble an I-section) cross a flcor beaw, the lower part of the "I"
has been beveled to the upper flange to straddle the floor beam. Some
detailed modeling of this region would be desirabie. However, for the
current level of crash analysis development and computer resources, it is
necessary to judiciously limit the number of degrees of freedom {nodes) and
the number of structural elements in the crash model. As the degrees of
freedom increase, model debugging, verification of the dynamic behavior, and
interpretation of the results become increasingly difficult. Consequently,
it is desire:ble to understand the behavior of less complicated components
prior to formulation of the complete structural model,

BOEING STUDIES

One such study which utilized the component analysis approach has been
undertaken by Boeing Commercial Airplane Company, Seattle, Washington.
Under NASA contract NAS1-16076, Boeing has developed DYCAST models to simu-
late the fuselage section drop tests. A typical fuselage frame subjected to
ground impact and a typical seat frame subjected to vertical loading were
modeled. The results of the component studies were incorporated into a more
general model of the fuselage section,

Single-Frame Model

The single-frame half mnodel took advantage of symmetry about the {uselage
center line, The frame was constrained to in-plane deflections with
boundary conditions applied at crown, floor, and keel, The half-frame model
had 62 nodes, 102 elements and 103 degrees of freedom. Efforts were made to
model the variations of the frame cross sections from crown to keel (figure
9). The DYCAST offset beam capability allowed proper behavior of multipie
beams connecting two nodes. Individual components could be monitored as
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they experienced plasticity and ruptured. The frame model gave an assess-
ment of the significant dynamic response of the floor and upper lobe, and
identified probleins and solutions with snap-through of the lower frame and
shear failure of the frame web in the vicinity of the lightening holes near
the fuselage bottom.

On the basis of frame solutions, an approximation of thc lower fuselage
crushing characteristics was obtained which permitted simplification of the
fuselage section model, Each half, lower frame below the floor level could
be represented as a vertical spring having known force-deflection charac-
teristics, thus replacing many finite elements with a single nonlinear
spring clement.

Seat Model

The transport seat structure illustrated in figure 10 was a reinforced
tubular aluminum frame consisting of three welded 1l:g trusses connected to
each floor track, two transverse tubes supporting four seat cross-bearers
that carry lcads intc the leg trusses, and three seat pans that load the
cross-bearers. As shown in figure 10, the triple seat is not centered on
the leg trusses., This results in unequal vertical loading of the inboard
and outboard leg trusses. Further, the inboard and outboard seats overhang
the leg trusses which introduce bending moments over thc leg vcke
attachments. Depending on the joint fixity at the le::g yokes, these bending
moments may ve introduced into the leg frames causing the frame to resist as
a beam-column or as a simple column element,

A seat model, developed for the static vertical load condition, con-
tained 36 nodes, 35 beain elements and 164 degrees of freedom. Using full
fixity resulted in a collapse load of 4922 pounds for the triple seat. The
aft legs in each truss developed plastic hinges at their mid points and
buckled out of plane. I contrast, in tests conducted at NASA Langley
Research Center, the seat trusses carried in excess of 12000 pounds applied
vertically at the leg yokes. The 2.4 factor on vertical loads suggests a
strong sensitivity to end fixity.

DYCAST Full-Section Model

Using the single frame and seat model results, a simplified DYCAST full~
section model (figure 11) of the seven frames, floor beam-seat track struc-
ture, and seat-occupant with asymmetric mass distribution was formulated.
The model had 106 nodes, 156 eiements and 422 degrees of freedom. Nonlinear
crush springs were used to represent the lower fuselage structure and the
seat with anthropomorphic dummies. A beam framework modeled the upper
fuselage, For simplic'ty, the seat springs and dummy masses were suspended
below the floor level, The seat and occupant model in the full-section
model used 4 springs and 4 masses that were uncoupled.

The full transport section model was used to develop transverse crush

- characteristics for the soft fuselage areas for the Coatrolled Impact
Demonstration model, These characteristics were adjusted to acccunt for
failure events observed in the frame analysis and to match the total dynamic
deflection of the test section.
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LANGLEY RESEARCH CENTER STUDIES
Two-Frame DYCAST Model

In addition to the analytical studies by Boeing under contract NAS1-16076,
a full two-frame model with sufficient detail to model the floor, two seats
with lumped mass occupants, and the fuselage structure without using non-
linear springs (except for the seat and ground properties) was formulated at
the Langley Research Center for research purposes. Although symmetry was
lacking for the full section, two forward frames h: 1 two seats located
symmetrically about the x-z plane. Thus a symmetric, two-frame, half model
(which executed in core on the computer) provided results comparable to the
full two-frame model and therefore was used for computations on the section.

The finite-element full two-frame model is shown schematically in

figure 12, Stiff ground springs simulated the concrete pad impact surface.
Each frame of the lower fuselage below the floor w:s modeled using eight
beam elements. The floor and seat rails were modeled using appropriate beam
elements. The vpper fuselage structure above the floor (not expected to
deform plastically) was modeled in much less detail to keep the model as
small as possible. The triple seat-occupant model consisted of 4 lumped
masses ccnnected by horizontal stringer elements supported by 4 nonlinear
springs representing the vertical legs. The force deflection curves were
based on an experimentally determined maximum vertical seat failure load of
12,000 pounds. The mass of the three occupants was distributed using a 2 to
1 ratio with the inboard legs supporting two occupants and the outboard seat
legs supporting only one occupant due to the asymmetry of the seat pan with
respect to the legs.

The smaller two-frame symmetric half model {right half side of section
in figure 12) consisted of 16 lumped masses, 32 beams, 4 stringers, 6 ground
springs, 4 seat-occupant springs, and a total of 105 degrees of freedom.

To simulate end constraints and strengthen the section, motion was not
allowed in the fore-and-aft (x-axis) direction. Initially, the time step
was allowed tc vary, but was later held constant to 250 microseconds tc
correspond to the sample rate (4000 per second) used to digitize the ex-
perimental accelerations. Consequently, the same digital low pass filter
used to filter the experimental data could be used to filter the DYCAST
calculated accelerations without requiring an interpolation algorithm before
filtering., The 250 microsecond time step was conservative for this problem
compared to a minimum time step of 500 microseconds when a variable time
step was allowed. To .n 901 constant time increments (.225 sec total)
required 1620 CPU seconds on a CDC Cyber 175 with a maximum field length of
3n3 K.

Nonliuear material properties used for the critical subfioor aluminum
frame beam elements were elastic-plastic with a small amount of linear
strain hardening. The yield stress initially chosen was 83,000 psi with a
failure strain level of 11 percent,

RESULTS AND DISCUSSION

Figures 13 through 14 present photographs which illustrate the siruc-
tural behavior/damage experienced by the fuselage section during the
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vertical impact test at 20 ft/s, Figures 15 and 16 present DYCAST predic-
tions of the fuselage behavior determined during the analytical studies and
figures 17 to 22 present a comparison of typical experimental and analytical
accelerations and displacement of the fuselage.

Gross Structural Damage

As shown in figure 13, gross structural damage to the fuselage was
primarily confined to the lower fuselage below the floor level. All seven
frames ruptured near the bottom contact point., The total post-test crushing
distance measured from the floor level to the impact surface varied from a
maximum of 22-23 inches for the forward end (frame 600) to 18-19 inches for
the rearward end (frame 600I). Motion picture aralysis of the forward frame
at body station 600 indicated a maximum deflection of approximately 26
inches occurred at 0.21 secouds after impact, Plastic hinges (see figure
14) formed in each frame along both sides of the fuselage. The vertical
acceleration histories showed two distinct peaks. The first peak cor-
responded to the deceleration at contact. When the bottom frames rugptured,
the load was relieved and¢ the acceleration decreased. The second peak
occurred at the time the frame hinge point impacted the concrete,

Floor Deformation

The floor was surveyed post-test to determine the extent of permanent
deformation. The right side (viewed from a passenger's reference) tracks,
which had 3 triple seats, showed the most permanent deformation. The maximum
downward plastic deformation, measured post-test, was slightly less than
1/32 inch, This occurred between seats D and F (see figure 23).

DYCAST Analytical Results

Analytical predictions from the DYCAST program for the fuselage section
mnodels are presented in figures 15 through 22, The initial two-frame model
(subfloor frames yield stress of 83,000 psi and 11 percent failure strain)
predicted crushing of the lower fuselage of approximately 16 inches as
compared to a measured 24 inches. Since these initial yield stress and
failure strain values gave less crushing than the nxperiment, the yield
stress was reduced to 50,000 ps. and the failure strain was varied to assess
the effect on responses. The effects of rarying the failure strains of the
frames for the two-frame model are shown in figures 15 and 16, For a
failure s-rain of 8%, good correlation with experiment was achieved (see
figure 15). When the failure strain was reduced to 5%, premature failure of
the frames at the contact point occurred and excessive de“ormation of over
35 inches was predicted (figure 16). Consequently, a yield stress of 50,000
psi and a failure strain of 8% were used in the two-frame model for all
comparisons with experimental data in figures 17 - 22,

Fuselage Crush.-The seven-frame full-section model (nonlinear springs
represented the lower frawes) and the two-frame model (beam elements with 8
% failure strain represented the lower frames) predicted similar total




crush for a common lower fuselage region. For both models figure 17 shows
the displacement of the floor (after impact) at body station 600. The full
model predicted approximately 24 inches of displacement (crush), whereas the
two-frame model predicted 22 inches of crush. An experimental vertical
acceleration trace was integrated once to obtain the velocity curve and the
resulting velocity curve waes then integrated to give the experimental dis-
placement curve shown in figure 17 for comparison with the predicted crush.

Floor/Fuselage Intersecticn Accelergtions.-Figure 18 compares the
predicted and measured vertical accelerations for node 31 located at the
intersection of the floor and fuselage wall, The acceleration for the two
DYCAST models is in good agreement with the experimental data. The full
section model gave reasonably good recults -xcept for times greater than .15
seconds where a high acceleration was predicted. Although no study was made
to identify the cause of the high peak acceleration, it is believed to be
the result produced by = combination of the subfloor spring and seat-
occupant spring characteristics.,

Inhoard Seat~Track Acceleration.-The vertical floor accelerations
located 3t the inhboard seat track at node 112 are shown in figure 19, The
two-frame model and the experimental data compare well; however, the full-
section model predictions again deviate dramatically frem the experimental
data starting at .12 seconds. Aithough the seat-occupant mode! is over-
simplified, a ccmparison of the dummy response in seat location A (front
left seat) is given in figure 20 which shows that the prediction for the
first neak is close to the magnitude of the experimental acceleration, but
the model overpredicts the amplitude of the second peak and also has a
higher irequency of oscillation. The occupant representation in the full-
section model underpredicted the occupant acceleration magnitude of both
peaks observed in the experimental data.

Roof and Ground Contact Accelerations.-The experimental and analytical
voof accelerations at node 231 are shown in figure 21, The predicted and
experimental magnitudes agree quite well, but the analytical frequeucy
response is incorrect probably due to the coarseness of the model for the
upper fuselage. Finally, in figure 22, there are comparisons of the ex-
perimental and wnalytical two -frame accelerations at node 451 which
correspond to the ccutact point with the concrete surface (bcttom of frame
600). Only two-frame model results are given since the full model repre-
sented the lower fuselage with crush springs. As shown in figure 22 the
predicted contact acceleration is higher than the experimental but overall
characteristics of the response are in good agreement,

Based upon the experience gained using the analytical research models
of this paper, implications are that for engineering applications. larger
more complete models are required that would necessitate using larger and
faster computers. [Lngineering mocels need to be detailed enough to repre-
sent the failure criteria a* the element level and should be able to handle
symmetric and asymmetric conditions.

CONCLUSIONS

Transporv fuselage secticn drop tests have provided useful information
about the crash behavior of metal aircraft in preparation for a full-scale
Boeing airplane Controlled Tmpact Demonstration {CID). The fuselage sec-
tions have also provided an operational test environment for the data
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acquisition system designed for the CID test, and data for analysis and
correlation with the DYCAST nonlinear finite-element program,

The correlation of the DYCAST section model predictions was quite good
for the total fuselage crushing deflection (22 - 24 inches predicted versus
24 -~ 26 inches measured), floor deformation, and accelerations for the floor
and fuselage. The DYCAST seat and occupant model was adequate to ap-
proximate dynamic loading to the floor, but a more sophisticated model would
be required for good correlation with dummy accelerations. Although a full-
section model using only finite elements for the subfloor was desirable,
constraints of time and computer resources limited the finite-element sub-
floor model to a two-frame model. kesults from the two-frame model
indicate that DYCAST can provide excellent correlation with experimental
crash behavior of fuselage structure with a minimum of empirical force-
deflection data representing structure in the analytical model.
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OF POOR QUALITY
TABLE 1.- TRANSPORT SECTION TEST WEIGHT DISTRIBUTION
) ]
Item Weight(1bs.) X{in) Y(in) 2{in)
Empty weight 1870 0 0 0
Seat A: inboard 146 42 -19 -24
centecr 188 42 -38 -24
outboard 154 42 -57 -24
Seat B: inboard 154 42 19 =24
center 188 42 38 -24
outboard 148 42 57 -24
Seat C: inboard 187 -18 -19 -24
center 188 -18 -38 -24
outboard 187 -18 -57 -24
Seat D: inboard 154 12 19 -24
center 188 12 38 -24
outboard 187 12 57 -24
Seat F: inboard 217 -47 19 -24
center 188 -47 38 -24
outooard 146 -47 57 -24
Junction box 60 21 -36 -4
Pallet 145 -48 -36 -5
’ Camera 1 & mount 30 50 -31 -78
h Light 1 6 54 -23 -84
: Camera 2 & moun: 30 50 47 -66
Liaght 2 6 54 38 -78
Camera 3 & mount 30 0 -42 -0
Light 3 6 14 -45 -/2
Camera 4 & mount 30 0 43 -60
Light 4 6 6 44 =72
Time code box & battery 8 30 -70 -12
Battery 18 28 -55 -3
. Camera timing pa' ~ 4 10 -70 -12
Ballast 20 -65 -54 43
Ballast 20 =50 -54 42
Ball- 40 -65 -48 50
: Bal.. 20 -50 -48 50
i Ballast 40 -65 -37 61
% Ballast 40 -65 0 72
l
i
Poies
- 1NN
i LN
) 150 knots <=

Figire 1.- Proposed contrylled impact demonstration cruash scenario for the
remote.y piloted Roeing 720.
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Figure 6.- Instrumentation locations for transport section test (side view).
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Figure 10.- Transport triple seat showing structural asymmetry (two seats removed
for clarity).
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Figure 11.- Full-section model showing nodes where responses are compared.
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Figure 12.- Two-frame model showing nodes where responses are compared.
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Figure 14.- Front view of fuselage section showing post-test damage.
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Figure 15.- Computer graphics of the two-frame model at time 0.236 seconds with a
subfloor beam failure of 8 percent.
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Figure 16.- Computer graphics of the two-frame model at time 0.225 seconds with a
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Figure 22.- Comparison of experimental and two-frame analytical vertical accelerations
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STRUCTURAI!. ANALYSIS OF THE
SPACE SHUTTLE ORBITER

Henry R. Grooms and James H. Johnson, Jr.
Rockwel! International
Downey, California

INTRODUCTION

The Space Shuttle (figure 1) consists of a reusable orbiter mountea on top of an expendable external tank (ET) and
two solid rocket boosters (SRB). The ET contains liquid hydrogen and liquid oxygen that are used as fuel f~- the Space
Shuttle main engines (SSME). The Shuttle is launc}:ed like a rocket and returns to earth like a glider (figure 2).

The structural analysis of the Space Shuttle orbiter was planned with two concepts in mind: use derivatives or subseis
of the same basic finite element model whenever feasible, and substantiate the model’s predictive capability by perform-
ing ground tests. The analysis cycle (mc . .1 modal loads stress [MMLS]) starts with the fi-it - element model conception
and ends with the detailed stress analysis ard margins of safety.

The structural analysis of the orbiter encompasses a variety of static and dynamic problems. Tl.:s paper will expiain
the salient features of the problems and their solutions.

OVERALL LOGIC

Che Space Shuttle structure was designed so that its structural iategrity would bhe estat:iisived by analysis and ihe
analytical methods would be verified by gr-wund tests. This is contrary to what is usually doac with aircraft, which is to
establish the structural integritv by analysis and ¢then verify it by flight tests.

The orbiter structure was designed to meet the following criteria:
¢ All of the primary structure should exkibit a factor of safety » 1 4 for limit loads.
¢ All of the primary structure should have a fatigue life 5 400 missions (00 missions *imes a scatter factor of 4).

e All structural parts should exhibit a safe life (from fracture mechanics considerations) £« 400 missions (100 x 4),
or those parts should be inspected or replaced at necessarv intervals (ref. 1),

Figures 3, 4, and 3 show how various ground tests and analyses fit into the structural certification scheme: figure 3,
the events that preceded the [irst captive flighc (FCF) and the first approach and landiug (FAL), figure 4, \'1e ground tests
and analyses leading to the first vertica. {light, and figure 5, the work that led to thy first operational (OPNL) flight.

MODEL MODAL LOADS STRESS (MM 5) CYCLE

The MMLS cycle (figure 6) .. a 'oose collection of computer programs that encompasses the work frem calculating
external loads to computing “narzins of safety. A Jnite clement model was made for each element of the Shuttle
transportation system: SRB's, ET, and orbiter. With -orapatible interfaces, these models were integrated and used to
compute external loads for liftoff and boost. No further mention of the SRB and ET models will be made since tiiis paper
deals with the orbiter.

A tinite element model, with approxitnately 40,000 degrees of frecdom, was created to s:mulate the Space Shutti - or-
biter. This model was used in its entirety for static analysis, and a reduced version was used for dynamic aralysi-. Ti:»
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basic orbiter finite element model was set up using a computer program called the Automatic System for Kinematic
Analysis (ASKA). [hree levels of substructuring were used (ref. 2). The lowest level substructures were assembled to
form sections such as the wing and tail (figure 7). These sections, which were second level substructures, were then joined
to form the ortizer (see figure 8). The assembled orbiter is shown as 301 in figure 8. (The numbers in rectangles in figure 8
correspond to the numbers in hexagons in figure 7.)

The models contain four types of elemonts:
1. Beams

2. Triangular membranes

(78]

. Quadrilateral membranes

o

. Quadriiateral sh~ar panels

Derivatives of the finite elemmt model we. used at various places in the MMLS cycle. The aero model, the outer
surface of the finite element mod.l, was used in :moothing the aerodynamic data obtained from wind tunnel tests. The
weights model, which consists of a weight ase. -1.2d to every 1 * % in the finite element model, was used to set up the iner-
tial loads.

Thermal data were obtained for certain d. ete locations on the orbiter and then interpolated and extrapolated to
create a temperature distribution all ¢ver the vehicle. Some of the automated routines used for smoothing wind tunnel
data were also used for thermal data.

The external loads were computed »-i.ug different methods for liftoff,boost, reentry, and landing. A dynamic model
was used for each of these phases of flight. This model consisted of a reduced stiffness matrix and a reduced mass matrix.

Figure 9 shows the relationship between the various models and figure 10 shows their uses.

The orbiter was modeled as a symmetric structure. Only one side was represented and appropriate boundary condi-
tions were used at the X-Z plane. . ‘i load cases, including thermal conditions, were decomposed into symmetric and an-
tisymmetric parts. Separate solutions were obtained for thermal loads, mechanical loads, and compartment pressures.
The ‘nternal loads for these solutions were combined using a series of programs called the post-processor.

The post-processed data were seazched and the most critical conditions were identified on an elsment by element
basis. These elemental data wers used to perform a cetailed stress analysis and compute a margin of safety. More MMLS
information can be found in ref. 2.

ACOUSTIC FATIGUE

Showing that the orbiter structure had adequate fatigue life was a formidable task. Most jet aircraft have a few local
areas where the acoustic environment is pronounced, but every area of the orbiter is exposed to a severe acoustic environ-
ment. The largest acoustic loa’", occur during main engine ignition, liftoff, and boost. The reentry acoustic loads are
negligible.

In lieu of a complete acoustic environment tesi on the orbiter, it was decicled to subject a batch of small test articles
to acoustic environments. These articles were selected to represent different regions of the orbiter and different types of
construction. The 16 test articles are listed in table I and shown in figure 11.

The certification logic was to conduct a complete modal survey on each test article before subjecting them to design
acoustic environments. Strain gages were used to measure the responses at critical locations. These data allowed test-
verified dynamic models to be generated. These models were used to combine acoustical and other flight environments
{or life certification of the spacecraft.

A NASTRAN finite element structural model was built for each of the test articles and mode shapes and frequencies
were computed. Boundary conditions were used to simulate the test support conditions. The analytical mode shapes and
frequencies were compared with test results. The analytical boundary conditions usually had to be altered to bring the
analytical results in line with the test results. This process will be referred to as tuning the model.
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After the model was tuned, a NASTRAN Solution 30 was run, This computes root mean square (RMS) stresses for a
given acoustic environment. The RMS stresses were then surveyed and the number of missions that a part could sustain
at this stress level was computed. The parts with the shortest lives were identified. Actual measured strains were
available from the first four flights. In any locations where the measurements indicated a higher stress level than the
analysis, the measured values were used for calculating the life.

A few structural failures occurred during the acoustic fatigue test program. Some of the failures were attributed to
test boundary conditions that were not representative of the flight hardware, while others indicated flaws in the stru.-
tural design that were subsequently changed. Table II gives some representative results. and ref. 3 gives additional details
of the Shuttle acoustic fatigue work. The analysis logic is given in figure 12,

STATIC STRUCTURAL TESTS

An orbiter structure (also called static test article [STA]) was used to perform an overall siatic test in 1979, It was
originally planned to dedicate one complete vehicle structure to a static test program to demcnstrate that the design could
sustain ultimate loads. As the program developed, it was concluded that significant cost savings could be achieved by
limiting this complete structure to loads below the elastic limit and then reusing the structure as a flight article. This was
done for the Space Shuttle Challenger (see table III). A series of structural component tests were defined and im-
plemented to demonstrate the ultimate strength capability. These tests, called the STA Supplemental Test Program,
totaled 36. Table 1V lists the more complex test articles.

Tke test of the complete airframe (figure 13) consisted of 37 limit plus conditions, which were chosen such that each
element of the structure was tested to its critical design loads for each phase of the mission. There were 25 ascent, 8 reen-
try, and 4 landing conditions. All conditions applied distributed airloads, inertial loads, discrete mass loads, and internal
delta pressures. Loads were applied such that the structure was ir a balanced state. Slight inbaiances occurred because
the load distributions were not perfect; these inbalances were reacted at the ET interface fittings. There were 32 real flight
conditions and § hybrid conditions. The hybrid conditions were formulated to subject two or more elements to a critical
condition with one tcst setup. No attempt was made to either apply temperatures or thermal strains during the reentry or
landing conditions, It was impractical to heat the entire structure and it was judged an over-test to mechanically simulate
thermal strains; however, a thermal stress test of the forward fuselage ~ection was performed in combination with a land-
ing condition to verify the ability of ASKA to predict thermal effects. This test has been reported elsewhere (ref. 4).

The test article was held in a horizontal position and supported at the three ET attach points. Around 4,000 strain
gages were used, which were distributed as follows:

® Axial — 60%
¢ Biaxial — 5%
¢ Shear — 10%
¢ Rosette — 25%

The test article was a regular orbiter with some exceptions. The following elements were simulated by loading fix-
tures to provide proper load paths and stiffnesses at their interfaces:

¢ Crew module

¢ Nose landing gear (NLG) assembly

¢ Main landing gear (MLG) assemblies

® Actuators for the elevons, body flap, and rudder/speed brake

¢ OMS pods (OMS pods were tesied to ultimate loads in separate tests off the vehicle)

o Left-han¢ :levons
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The test objectives were to show that the orbiter was capable of experiencing significant (approximately 120% of
limit) structural loads without damage occurring, and to show that the finite element model was a good predictor of
stresses.

A pretest analysis was performed for the STA and for each specimen in the STA supplemental test program. A finite
element model of the test article was created and subjected to boundary conditions that simulated the test support
system. The planned test loads were then applied i. the finite element model and stresses and deflections computed. If
the computed stresses were acceptable, the test was run as planned. If not, the proposed test loads were altered and the
process repeated.

DYNAMIC STRUCTURAL TESTS

Structural tests were performed to help determine vehicle mode shapes and frequencies and to verify the analytical
(dynamic model) results. A quarter-scale model of the orbiter was subjected to dynamic testing in Downey, California, in
the spring of 1977. In several areas (e.g. OMS pods and ET feedlines), the quarter-scale orbiter had more fidelity than the
full-scale orbiter (OV 101), which was used for the later dynamic tests (horizontal ground vibration test [HGVT] and
mated vertical ground vibration test [MVGT]).

The quarter-scale model replicated the stiffness and mass distribution of Orbiter 102. Its linear dimensions were one-
fourth of full-scale, while its weighi was 1/64th; therefore, the natural frequencies of the quarter-scale model were four
times as great as the regular structure.

The cuarter-scale orbiter was mounted horizontally in & test support structure. The vehicle was suspended on three
air springs to decouple it from the support structure. A total of 224 accelerometers and 9 shakers were used to acquire all
elastic modes up to 200 Hz. The usual data obtained for each mode were:

¢ Amplitude, phase, and co-quad raw data

¢ Kinetic energy distribution for certain components

Orthogonality matrix

Generalized mass

¢ Isometric vector plots

The posttest correlation was done using the Craig-Bampton method of component mode synthesis. Five components
with a total of 1,900 degrees of freedom were utilized. The correlation work was based on kinetic energy considerations
supplemented by a least-squared error modal displacement analysis. Table V compares the analytical and test results for
the quarter-scale ground vibration test (QSGVT). Additional details on the dynamic tests and the appiication of the
results are given in refs. 5 and 6.

The results for HGVT and MVGVT were very similar to those obtained for QSGVT. The HGVT used the same or-

biter (OV 101) that was usec. ior MVGVT. HGVT was an orbiter-only test while MVGVT included the orbiter, ET, and
SRB’s.

ABBREVIATED STRESS ASSESSMENTS

A complete MMLS cycle has taken two years or more to complete. As the Space Shuttle moved from late in the
development phase into the early operational phase, it became apparent that a much shorter analysis cycle was needed to
answer certain questions. Three types of abbreviated stress assessments evolved:

1. Day of launch

2. Flight by flight

3. Orbiter capability assessment (OCA)
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The day of launch assessment was a set of calculations that were performed at specified prelaunch time points to
predict the stress levels in the more responsive structural elements. A Monte Carlo analysis was performed on 150 wind
profiles when the trajectory was devised to determine this most critical list. At specified times during the prelaunch ac-
tivities, a weather balloon was used to measure the wind velocity components relative to the planned trajectory. These
data twere used to calculate external loads that were then used in the load indicator equations. The equations were
evaluated on a time history basis. The peak values were compared to the structural allowables. The ten most critical load
indicators were reviewed and used to help decide whether to launch or not. The typical time required to go from balloon
relzase to load indicator evaluation was three hours.

The flight-by-flight assessment was a set of simplified analyses that were required when the vehicle was going to be
flown outside the design envelope. The things that required the most evaluations were reentry thermal conditions and
special uses of the SSME’s. Once a reentry trajectory was established, thermal math models were run to determine the
structural temperature distributions at selected locations in the forward, mid, and aft fuselage. These temperature
distributions were then used to perform two-dimensional stress analyses at those locations. A typical temperature
distribution and the resulting stresses are shown in figures 14 and 15.

The OCA was conceived as a relatively quick way of determining whether or not the vehicle was capable of flying
outside the design envelope. The orbiter was designed, analyzed, and certified to fly within a particular set of loads,
which are referred to as the 5.4 loads. The OCA work was initiated to determine what conditions outside the 5.4 loads

envelope the orbiter could fly safely.

The idea behind the OCA work was to be more accurate than the load indicator equations or the flight-by-flight
analyses, but not as time consuming as the MMLS cycle. It was decided to do an internal loads analysis but compuie
margins of safety for approximately 10 percent of the structural elements. The 10 percent was selected because it is most
representative and includes a number of the most critica! elements.

The time involved in each type of abbreviated stress assessment is shown in table VI.

CONCLUSIONS

The structural analysis approach and philosophy for the Space Shuttle orbiter have been presented, and an overview
of ground tests and analytical procedures discussed. It has been shown how these tests and analyses fit together to
demonstrate that the orbiter is structurally sound.
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TABLE I. ACOUSTIC FATIGUE TEST ARTICLE

Number Test Description

1 FFAQ1 Nose cap system test

2 FFA03 Window area with s s

3 FFA04 Underbody panel (=~ 10 ft x 11 ft)
4 FFAOS Beany cap

5 FFA06 Forward RCS

6 PBAO? Payload bay doors with radiators
7 MFAO8 Mid fuselage sidewall with frames
8 AFAll Aft fuselage sidewall with frames
9 AFA 2 Base heat shield with seals
10 AFA26 Complete APS pod
11 AFAlS 1/2 body flap with seals
12 VSAIl6 Upper half of tail
13 VSAl7 Tail lower trailing edge
14 WAIS8 Outer wing tip
15 WAL9 Wing leading edge and skin stringer
16 AFA2S Aft RCS module

L




TABLE II. TYPICAL RESULTS FROM ACOUSTIC FATIGUE ANALYSIS

Test article Section Mininaum life* Part description
AFA26 OV 102 156 Frame, aft closure
OMS pod P/N 73A310069
AFA2S OV 102 aft 1244 Forward bulkhead frame
RCS pod P/N 73A320134
FFA04 OV 102 lower 152 Lateral stability strut
forward fuselage support end rivets
FFA04 OV 099 lower Infinite Mini frame X, 522 CTD
forward fuselage P/N V070-320765
FFA03 and FFAO0S OV 099, OV 103, OV 104 523 Frame Y, 28
forward fuselage window P/N VO 31104-005
FF beany cap
AFA!t OV 102 590 Frame Cap X, 1456 and
aft fuselage 1473
P/N V070-352279
*Any part with a life > 100 missions is satisfactory
TABLE III. USES OF EARLY ORBITERS
Orbiter Name Uses
oV 101 Enterprise HGVT, MVGVT, ALT
OV 099 Challenger STA, Flight article
OV 102 Columbia Flight article
TABLE IV. MAJOR STA SUPPLEMENTAL TESTS
Item Description
1 1/2 body flap
2 Segment of wing box
3 Segment of wing and elevon
4 Upper vertical tail and rudder/
speed brake
5 Wing/mid fuselage/aft fuselage
. interface
6 Vertical tail/aft fuselage
interface
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TABLE V. CORRELATION OF QUARTER-SCALE RESULTS

Test Analytical
Symmetric or frequency frequency
Mode antisymmetric (Hz) (H2)
1S Symmetric 19.2 17.8
28 Symmetric 21.6 19.8
3S Symmeiric 25.6 29.9
4S Symmetric 26.6 26.9
5S Symmetric 27.2 26.9
1A Antisymmetric 14.3 14.2
2A Antisymmetric 4.4 22.9
3A Antisymmetric 26.2 26.3
4A Antisymmetric 29.7 34.2
SA Antisymmetric 34.1 34.8
TABLE VI. ABBREVIATED STRESS ASSESSMENTS
Item Name Time required Description
1 Day of launch 2 hours Load indicator equations
used
2 Flight by flight 2 weeks 2D analyses at selected
locations
3 OCA 6 months 10% of complete internal

loads used
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SINGLE-DROP IMPACT DAMAGE PREDICTION FOR LOW DENSITY,
COATED CERAMIC MATERIALS

David Mustelier
Rockwell International
Downey, California

SUMMARY

A technique utilizing finite element analysis, liquid impact kinematics, and momentum theory is described and com-
pared to single-drop impact test data performed on various configurations of coated ceramic material. The method cor-
relates well with test data and is useful in predicting the single-drop impact damage velocity threshold for low-density,
coated ceramic materials.

INTRODUCTION

The state of the art in rain erosion analysis is essentially that rain impact damage cannot be accurately predicted
except by experimental evaluation. This method is extremely prohibitive when numerous combinations of materials and
test conditions are to be evaluated. The development of an analytical and/or empirical methodology for predicting rain
impact damage becomes an important means for minimizing testing by providing a means to prescreen materials p-ior to
a more costly test evaluation. In addition, analytical simulation aids in the understanding and optimization of material
properties for impact durability enhancement.

Single-drop ballistic impact tests were performed to evaluate the impact performance of various material configura-
tions and to identify damage threshold velocities as a function of drop diameter. While single-drop tests by themselves
are not necessarily indicative of the material performcnce in the multidrop environment, they do provide substantial in-
sight into the impact phenomena. These items are:

¢ Establish upper limits for damage threshold velocities

¢ Provide controlled method for evaluating the effect of individual material property changes on damage thresholds

¢ Identify damage mechanisms

¢ Determine quantitative and qualitative ranking of material performance '

Variations in incident angle, drop size, coating thickness, substrate density, and substrate sonic velocity were
evaluated.

SINGLE-DROP IMPACT TESTING

Specimens 19 mm in diameter were cored from several glass-coated ceramic materials at various incident angles and
mounted in sabots for testing. The sabot then was propelled through the test apparatus by a small charge of gunpowder
where the sample impacted a single drop dispensed by a hypodermic needle. Immediately prior to impact, the drop was
photographed for measurement and the specimen velocity measured. The sample was then recovered and inspected for
damage. A schematic of the water drop impact apparatus is shown in figure 1. Testing was performed by General
Research of Santa Barbara, Calif.

The maximum impact velocity without failure (Vmay) and the minimum velocity with failure (Vimin) bound the
damage threshold velocity for the material, as shown in figure 2. Inspection of the specimens showed cracks radiating
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from a central location as the initial mode of failure. As impact velocity increased above the initial failure velocity,
damage progressed in order of severity: (mode 2) radial and circumferential cracking; (mode 3) radial/circumferential
cracking with substrate penetration/removal. The progression of damage is illustrated in figures 3 and 4.

The initial failure mode is indicative of coating bending to failure; this type of failure has been previously observed
in solid impact testing (refs. 1, 2). In the case of angular impact, cracks distinctly inclined to the coating normal axis are
more evident. The damage indicated a more significant shear lcad contribution to coating failure not generally present in
normal impacts. In addition, it was noted that the damage threshold for angular impacts was not simply related to the
sine of the impact angle but was also dependent on the drop diameter. Overall, the coating damage appears to be primar:-

ly the result of direct pressure loading and iateral liquid movement. Stress wave effects within the solid appear to be of
secondary importance at the low damage velocities for these materials.

FINITE ELEMENT ANALYSIS FAILURE PREDICTION
Approach
A method was developed to predict inivial coating failure: the technique used liquid impact kinematics and momen-
tum theory to define loads and NASTRAN finite element analysis to define a characteristic coating stress at failure.
The finite element model approach to predicting failure was based on several assumptions and simplifications:
* Two-dimensional finite element model assumed
* Only loading prior to the initiation of lateral drop outflow considered
¢ Uniform loading over drop contact area assumed
¢ Static rather t.1an dynamic analysis used
* Predictions fixed relative to a single test data point

This approach was compatible with techniques used by other researchers (refs. 3, 4) and the correlation with test data
indicates that the methodology is useful for predicting material performance around the test drop size/velocity range.

Load Model

During drop impact, loading of the coating resulted from three major sources: normal pressure loading, stress
waves, and shear loads from lateral outflow. The single-drop tests indicated that initial coating failure was primarily the
result of coating bending (oblique impacts indicatea a more significant radial outflow induced shear contribution);
therefore, for this analysis, only normal pressure was accounted for.

The sequence of events in the water drop collision with a solid can be divided into two phases: an expanding contact
zone where pressure rises to a maximum within the droplet, followed by a pressure release phase characterized by high-
velocity lateral liquid jetting along the target surface. Identirying the point of onset of lateral flow becomes important for
distinguishing the material response from the two different phenomena.

The widely referenced equation for the vaset of lateral flow (ref. ) is:

Ac = VoR/Uy, Q)
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where
A, = critical contact radius at onset of jetting ORIGINAL PAGE iS
OF POOR QUALITY
Vo = impact velocity

R = droplet radius

Uy, = liquid compression wave velocity

Eq. 1 can be modified to account for the influence of impact velocity on the critical radius (ref. 6), yielding:

A = VoR/(Cy, + 2Vy) 2
where
Cw = liquid sonic velocity
Eq. 2 represents the radial location where the expanding drop/target contact radius is overtaken by the compression
wave traveling in the liquid. It also describes the radius cf the drop/solid contact area where compression within the li-
quid can be expected to generate maximum pressures prior to the pressure release phase associated with the lateral jetting
of the drop.

The water hammer pressure given by

Py = pwCyw VYo 3)

represents the interface pressure for the simplest case of the one-dimensional planar impact of the two semi-infinite
bodies: a liquid and a rigid solid. This equation can be generalized to account for liquid imipact on elastic surfaces (ref. 5)
where

where
pw = water density
ps = solid density
Ug = solid compression wave velocity

and P, = Pg because of continuity at the liquid-solid intert - - >. Again, accounting for the influence of impact velocity,
the interfacia: pressure equation becomes

with the solid compression wave velocity approximated by the solid acoustic velocity and the liquid compression wave
velocity approximated by the liquid ac. ustic velocity.

Eqgs. 2 and 5 were used to define the load model for input to the finite element analysis. This approach was selected
for simplicity and neglects the observed pressure spike at the periphery of the drop contact radius (ref. 3) and inertial ef-

fects in the material. The assumption in this apnrog<h was that these defined loads would be proportional to actual loads
and that the relative relationship between the predicted response of different materials will be maintained.
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Finite Element Model

A two-dimensional slice of the coated ceramic marerial adjacent to the axis formed by the drop center and the initial
point of impact (figure 5) was modeled in lieu of a more complex three-dimensional representation. For actual
NASTRAN analysis, the model possessed constant thickness, which was an approximation of a thin symmetric wedge
and eliminated the singularity along the drop impact axis (Y axis).

The finite element model detailed in figure 6 had overall dimensions of 12.5 x 12.5 mm2. The mesh siz~ varied from
1/3 along the outside edges to 1/500 at the substrate/coating interface and the loaded coating surface adjacent to the axis
of symmetry. The model consisted of 190 individual g: 1 points. It was constrained for out-of-plane translations and all
rotations. In addition, the axis of symmetry was constrained for all but Y-axis translation. The remaining model boun-
daries, exclusive of the coating surface, were rigidly fixed. The entire model was constructed of quadrilateral and
triangular membrane elements.

Load inputs to the model were derived from coating element thickness, coating/drop interface radius (eq. 2), and in-
terface pressure (eq. 5) derived from measured coating material properties and measured impact parameters. The con-
stant pressure load was reduced to discrete in-plane point loads for application to grid points along the coating surface.

Finite Element Analysis

A static stress analysis of the loaded model was performed to define a reference case, a single pair of test data points
for which the velocity range between failure and no damage was the least. From this analysis, the ‘‘characteristic’’ prin-
cipal tensile stress was determined for the coating element at the coating/substrate interface along the drop axis where
bending failure would initiate. This stress differed considerably from reported values for the coating 0yy. Sources for
this discrepancy were attributed to neglecting inertial effects, two dimensional n.odeling, and the generally observed
trend that dynamic loading often results in higher apparent failure stresses (refs. 2, 7). Finite element models were con-
structed based on test specimen material properties. A trial and error approach was used to bracket the velocity (within
+4 m/s) for a given drop size that resulted in generating the same “‘characteristic’’ stress observed in the reference case
previously described.

Results and Discussion

Damage threshold velocity predictions were generated for the norinal impact tests and are plotted in figure 7 relative
to their respective test cases. The predicted velocity ranges overlap the test result ranges in seven out of ten cases. The
three outstanding cases represent a variation in coating composition and two cases for which Vax (maximum velocity
without damage) was not determined. Nevertheless, the predictions for thesc two cases are in the right direction.

The correlation between test data and the semi-empirical finite element model approach indicates that this technique
is valid within the drop size and velocity range of existing results and could be expected to provide a first order approx-
imation of failure beyond these limits. Errors using this technique can be expected to be more significant for small drop
size, high-velocity impacts where inertial effects are expected to predominate. Expanding the methodology to account for
oblique impacts is currently being attempted as js statistical analysis of the significance of the correlation.
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FINITE EL<#...s» MODELLING OF BURIED STRUCTURES

David K. P'ayden and Sidney H. Simmonds
Department cf Civii ®agi~eering, The University of Al:«c - iy

SUMMARY

In many structuves the final stres- states are dependen: - ras sequence of
construction or the stress states st various stages of comstiuvcticn are of
interest. Such problems can be znalysed using finite element p:ograms that have the
capability of adding (birthing) elements to simulate the prozress of construction.
However the usual procedure o assembling elements may lead .« numerical
instabilities or stress states that are unrealistic. Both pioblems are demonstrated
in the analysis of a s*ructure using the program ADINA. A technique which combines
application of a preload with element birthing to overcome these problems is
described and illustrated.

. INTRODUCTION

Analyses obtained from the finite element method are only as good as the
. correspondence of the modelling to the physical problem being solved. This is
- particularly true for those structures where the final stress states are dependent on
: the construction sequence. Such a structure is the arch-beam culvert where loads are
carried by a complex soil-structure interacZion. Being able to model accurately each
step of the construction such as compactica of soil and placing of concrete is
essential.

A rumber of modelling techniques were developed to determine the structural
response of a prototype arch-beam culvert using the finite e'ement method. From
instrumentation placed and readings taken during comstruction it was possible tc
evaluate these techniques by compa.ing the results from analysis with field
measurements. This paper first dascribes the structure analysed to indicate the
nature of the problems encountered and then presents the techniques used to model
three of the construction steps.

ARCH-BEAM CULVERT

Arch-beam culverts are large span corrugated steel culverts that have only a '
shallow soil cover and so ere provided with a bonded concrete shell over the upper
portion to distribute the etfects of applied wheel loadings. The use of large span !
steel culverts in highway construction in regions that experience severe winter :
conditions has the advantage over traditional bridges in that t! » problems associated
with deck deterioration due to salt and frost action are eliminated. Normally the
depth of s0il abo e the culvert relative to the culvert dimensions is sufficient that
the strength and rigidity of the structure is provided through interaction with the
surrounding soil and the steel culvert resists load primarily by membrane action.

Highway loading is distributed by the soil and the effects of individual wheel loads
- acting on the culvert need not be considered. This is not the case when the soil
cover is small compared to the culvert span.

. For a stream crossing on a major highway in southern Alberta the peak flow
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requirements were met by using a culvert with an elliptical cross-section having a
span of 8.53 metres (28 fc) and a height of 4.27 metres (14 ft). The highway
alignment was sucn that the difference in elevation between the highway surface and
the top of the culvert varici from only 600 mm (2 ft) to 1500 mm (5 ft). To
distribute -'heel loadings, ¢ reinforced concrete slab was poured over the upper
portion of the culvert and extended beyond the culvert as shown in figure 1. This
slab was of constant thickness and was bonded to the corrugated steel pipe using stud
connectors to ensure composite behaviour.

At the time of the design, two possible structural actions for the concrete
cover were postulated. The first action is that the concrete would act as a
cylindrical she 1l with the horizontal wings acting to provide the horizontal
stiffness. With this behavii.' : only a relatively thir concrete section 1is
required. The second action considers the geometry to be sufficiently flat that the
primary action is that of a one-way slab with the wings acting as reactioa points.
This behaviour requires a thicker concrete section. Lue to the importance of the
structure and the time constraints imposed for construction the more conservative
behaviour of slab action was assumed during the design, resulting in a slab thickness
of 500 mm (20 in.). Since it 1is expected that several hundrea similar structures
will be built in the next few years it was decided to obtain a better understanding
of the structural behaviour by placing instrumentation, conducting load tests on the
completed structure and undertaking a comprehensive program of analysis.

During construction, control points were established to measure distortion of
the culvert cross-section using a tape extensometer. Pressure cells were placed ad-
jacent to the culvert both above and below the spring line to measure the pressure
between the culvert and soil. At zelected critical locations electric resistance
strain gages were applied to the rcinforcement. Readings of all instrumentation were
taken at various stages of construztion and during load tests on the completed

strncture.

METHOD OF ANALYSIS

Analyses were obtained using the program ADINA (ref. l1). Considerable time was
spent selecting a finite element mesh that truly modelled the concrete section and
steel culvert while giving realisti stresses in the surrounding soil. The mesh
used for the preliminary two-dimensional analysis of a cross-section through the
structure is given in figure 2 and contains 486 nodes and 226 elements.

The corrugated steel pipe with a true thickness of 5 mm is modelled as a
vaiform sheet with a thickness of 60 mm but with transformed material properties that
are equivalent to the corrugated material. An appropriate elastic-plastic stress-
strain curve is used. Reinforcing hars are modelled as truss elements and elastic-
plastic behaviour assumed using the Von Mises yield viteria. The constitutive
relationship for the concrete is based on an approximation of the tri-axial failure
surface and is obtained by entering values at discreet points with linear
interpolation between points. Cracking of the concrete is controlled by entering an
allowable uniaxial tensile stress. The soil is mudelled as a two-dimensional solid
using the Drucker-Prager yield criteria with tension cut-nff.

A typical analysis considers the following construciion steps
a) soll excaveted to recelve culvert

b) placing of culvert with erection cables in place
c) compaction and placing of soil prior to plreing concrete
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d) placing of wet concrete
e) placing of soil above hardened concrete
f) application of wheel loading

The construction steps described in detail in the following sections correspond
to steps ¢, d and e above.

COMPACTION AT SPRING LINE

During construction the in situ material is shaped to permit placing the steel
culvert on a prepared bedding. Due to the size and flexibility of the culvert
section horizontal erection cables are rejquired to prevant collapse under its self
weight. Soil is then pliaced ir the cavity on each side of the culvert. For circular
culverts of usual dimensions buried at significant depth the compaction of this
material is extremely important and constitutes a major source of the strength of the
completed structure. However due to the extreme flexibility of the culvert being
analysed, the overall stability of the culvert 1s extremely sensitive to the lateral
pressures applied near the spring lines. It was found that when the usual procedure
of birthing soil elements in the cavity was used the movement of the culvert was
sufificlent to cause the soil to fail In yielding thus preventing further analysis.
Hence a different modelling technique was required. This behaviour was also observed
in the field where the initial backfill in this region had to be placed very
carefully by hand and esseantially no compaction could be achieved without excessive
uplift of the crown.

To overcome the numerical problems caused by ylelding of the soil the compaction
at the spring line was modelled in the following manner. After the conmstruction had
proceeded to placing the culvert (see figure 3), a lateral linearly varying pressure,
referred to as the prelcad, was applied to the culvert in the region of the side cav-
ity. The magnitude of this preload was determined by trial and error but was suffi-
cient to lift the crown just slightly above its desired position. This preload was
approximately 80% of the at rest lateral pressure of the soii. The next step in the
analysis was to give tirth to the elements in the cavity and to remove the preload.
The resulting pressure between soil znd culvert was found to be distributed differ-
ently with depth but at the twc locations measured by the pressure cells in thc field
(see figure 3b) the pressure intensities agreed closely. To determine the sensitiv-
ity of the final pressure distributions to the initially assumed preload distribution
a further analysis was obtained with an initial preload distribution that was almost
uniformly distributed with deptin (figure 3c). The resulting pressure distribution
after giving birth to the cavity elements and removing the preload had a similar
shape (figure 3d) to that obtained using the linearly varying preload distribution.
Agreement of the pressure values at the two locations where field measurements were
obtained was excell:nt. It was concluded that the verticzl distribution of the
initial preload is not critical when using this technique to obtain final pressure.

PLACING OF CONCRETE
Using the ADINA program it is not possibl: to alter the stiffness properties of
an element once the: have been assigned for the initial run. For the concrete slab
the elements at the time of placing have essentially no stiffness but upon curing
achieve a stiffness greater than that of the surrounding soil.
Modelling of placement of the concrete was again done in two steps in the
analysis. The first step consisted of applying a preload to the elements below the
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concrete equal to the mass of the concrete (figure 4). This produced a state of
stress in the existing structure corresponding to the placing of the concrete. The
next step involved giving birth to the concrete (and reinforcement) elements with
their final stiffnesses and removal of the preload. Since the weight of the concrete
is then carried primarily in the steel culvert, concrete elements are essentially
unstressed at this construction stage.

It was noted that the crown deflections obtained from the analyses were less
than those observed in the field. This was attributed to the soil at the spring line
being too stiff compared to that achieved in the field due to the problems of placing
as noted earlier. Analyses were then rerun for the previous comstruction stage but
the soil elements placed in the cavity region at the spring line were given
orthotropic properties. The modulus of elasticity in the vertical direction was
maintained at the value of the surrounding soil but in the lateral direction was
reduced to only one-fifth of that in the vertical direction. If the same initial
preload for modelling compaction at the spring line was used the drop in the crown
deflection due to this decreased lateral stiffness was on the order of 1 mm and could
be ignored although naturally this difference could have been compensated for by
increasing slightly the initial preload. However the effect of using cavity elements
with orthotropic properties permitted obtaining much closer agreement with observed
crown displacements for the placing of the concrete and later construction stages.

It is felt that the problem of obtaining compaction in this region noted in the field
record is8 closely modelled using this orthotropic feature.

PLACING SOIL ABOVE HARDENED CONCRETE

Following an initial curing of the concrete, soil is then compacted in layers to
the road surface. The first attempt at modelling was to givc birth to all of the
elements for this construction step at one time. No numerical problems were
encountered but the final stresses in the soil included zones of tension and yielding
near the surface which again could not be in agreement with those in the field.

A second modelling technique was to give birth to the elements in each layer of
the mesh to simulate this phase of the construction. No problems were encountered in
congidering the first layer; that is, the layer immediately to the side of the
concrete wing. However, tensile stresses were indicated in the element adjacent to
the concrete. In attempting to consider the second layer it was not possible to
reformulate the stiffness matrix with the new elements indicating a failure in the
soil near the end of the concrete. Obviously no further analysis was possible.
Clearly, even if numerical problems had not been encountered, this form of modelling
does not give an indication of the stress in the soil that has just been compacted.

A technique similar to that used for the previous construction step was then
tried which proved to be successful. To explain this technique and to give an
indication of results a simpler patch test is discussed rather than the actual arch-
beam culvert analysis.

The problem encountered was attributed to the different compressibility
pruperties of the concrete and surrounding soil. When two elements are side by side,
one of concrete and the other of soil, the addition of other soil elements above
will, due to the forced compatibility of deformation at their common boundary, cause
large tensile stresses i, the soil which may lead ultimately to failure. The rate at
which this occurs is dependent on the depth of soil below the concrete layer. Thus
the problem will occur whenever one has a partial layer of elements that have a
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significantly greater stiffness than the surroundiag elements.

The patch test used 18 shown in figure 5. Soil elements between lines A and G
represent the soil in place prior to pouring the ccncrete. The first three elements
from the left between lines G and H represent the concrete wing and the soil elements
above line G represent the soll placed after the concrete hardens. The boundaries
for the patch test are fixed against deformation along line A and fixed against
lateral deformation along the two vertical sides (roller joints). The top surface is
free.

All runs for the patch test began by obtaining a gravity load solution for the
soil below line C in place followed by birthing of the three coucrete elements. The
analyses differ only in the way the soil above line G is modelled.

To duplicate the phenomena observed in the prototype structure the first
analysis consisted of birthing all soil elements above line G at one time. The
principal stresses above line F are shown in figure 6. Here zones of tension and
ylelding at the surface similar to those obtained for the prototype are observed.

The second modelling procedure was to place the soil in layers beginning with
the soil between lines G and H. The principal stresses for the region between lines
F and H are shown in figure 7 where ylelding was observed at three Gauss integration
points in the element adjacent to the concrete and tension failure was observed at
the other Gauss integration point. This was simlilar o that obtained in the proto-
type analysis. Elements between lines H and J were then birthed but although the
stiffness matrix was reformulated no convergence was obtained after 10 iterations
when normally only 1 or 2 interations are required. “This was again considered
indicative of the numerical problems encountered with the prototype analysis.

Having essentially reproduced the problems encountered with the prototype in the
patch test, two techniques were tried to overcome these difficulties. The first
involved applying a preload along line G under the soil elements only equal to the
weight of these elements between lines G and H. The next step involved giving birth
to these elements and at the same time removing the preload applied in the previous
step. Thus the soil elements are created with stresses due only to their self weight
since the deformations of all supporting elements due to this self weight beiung added
are not included when computing the induced stresses. The process was repeated for
the next layer of soil by again using two steps, the first preloading along liue H
equal to the weight of soil tetween lines H and I and then giving birth to the
elements in this layer but removing the preload. The process is then repeated for
all remaining layers. At no stage were tensile stresses or ylelding of the soil
obtained. The final principal stresses are shown in figure 8a. The stresses are
considered representative of those that would be obtained in the field for the
prototype.

Since the compression stresses in the upper layer being modelled at any
construction stage were small it was thought prudent to try another modelling
technique whereby when modelling the soil elements hetween Lines G and H a preload
was applied along line G under these soil elements and along line H above the
concrete elements equal in magnitude to the weight of all soil to be placed above
these lines. The s0il elements between lines G and H were then birthed and the
preload applied to line G reduced by the self weight of these elements and applied to
line H. This process was then repeated layer by layer to the surface. The final
stresses using this procedure are given in figure 8b and are seen to be essentially
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identical to those obtained using the previous technique of applying a preload equal
only to the weight of the next layer of elements. While the final stresses are
essentially identical the stresses at intermediate steps are much greater as
expected. Thus if the stresses at various stages of construction are of interest the

first technique is required.
CONCLUDING REMARKS

For finite element analyses, where nonlinear material behavior 1s used and where
elements are formed at later stages to simulate a construction sequence, the stress
state within the elements at the time of bivth can be very unrealistic. This 1s due
primarily to the deformation of the existing structure under the self weight of the
nevly formed elements. This deformation also occurs in the field, however at this
stage many materials are still being remolded by the construction procedure and no

permanent stresses are induced.

Within the finite element program the elementz have their stiffnesses formulate:
based upon the input geometry. For all elements, deflections of the nodes prior to
the time of their birth are subtracted in al' strain calculations. Applying the
preload to the interface nodes causes them to deflect to their equilibrium position
under the weight of the elements that will be birthed in the next stage. Giving
birth to these elements with self weight and removing the preload effectively causes
the deflections of the existing structure due to this self weight to be ignored.
Hence, stresses in the birthed elements are obtained only from their internal
displacements resulting in more realistic stress distributions and the elimination o
many of the associated numerical difficulties.

Solutions are presented for three very different problems involving modelling
stages of construction of an arch-beam culvert using the preload-birthing
technique. This technique can also be used for a wide range of similar problems in
other buried structures.

REFERENCE
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Cross section of arch-beam culvert prototype.

HENN

Mesh used tc analyse arch-beam culvert prototype.
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C. TRIAL LOAD
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Figure 3. Preload distribution for placing soil near spring line.
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Figure 4. Preload distribution for placement of concrete.
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Figure 5. Mesh used for patch test to evaluate modelling the placing of soil.
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OF STRUCTURES AND MECHANICAL SYSTEMS

Bruce E. Bennett
Bennett Computational Mechanics
Pleasant Hil1l, CA

Abstract

The governing equations for the analysis of open branch-chain mechanical
systems are developed in a form suitable for implementation in a general pur-
pose finite-element computer program. Lagrange's form of d'Alembert's prin-
ciple is used to derive the system mass matrix and force vector. The general-
ized coordinates are selected as the unconstrained relative degrees of freedom
giving the position and orientation of each '"slave'" link with respect to their
"master" link. Each slave link may have from zero to six degrees of freedom
relative to the reference frames of its master link. A strategy for automatic
generation of the system mass matrix and force vector is described.

1. INTRODUCTION

Many problems in mechanics involve the interaction between separate bodies
of matter. 1In general, individual material bodies deform under the action of
applied forces. 1In special cases, however, solid bodies may be sufficiently
unyielding that they may be considered rigid. Whether rigid or deformable, there
is a need to predict the response of individual material bodies and the response
and interaction between multiple bodies.

Pecently, in a historical sense, the finite-element method has become a major
extension of our ability to predict the response of a continuum of material,
whether solid or fluid. The popularization of the digital computer has made the
finite-element method readily available as a practical and useful tool. The
development and use of this method have, however, been primarily directed at the
analysis of individual material bodies. It is the intention of this paper to
address the extension of the finite-element method to enable the direct analysis
of general assemblies of rigid and deformable bodies.

The finite-element method can be thought of as a technique for approximating
a continuum of matter by discrete rigid particles connected by finite "elements."
Consistent with this perspective is the approximation of a general continuum of
matter by discrete particles and finite rigid bodies connected by finite elements.
Certain constraints may, in general, exist between the degrees of freedom
associated with these particles and rigid bodies. For example, certain
degrees of freedom might be "supported" with a prescribed and constant value,
In other cases, certain degrees of freedom may be constrained to other degrees of
freedom to form a '"mechanical system."

A mechanical system is an organization of interconnected mechanical
components. Machines and mechanisms are examples of mechanical systems. A
machine is a mechanical system that '"does work;" a mechanism is a mechanical
system that '"achieves a desired motion." Any of the mechanical components
comprising the system may be considered rigid or deformable., The intercon-
nection of these components, called kinematic pairs, is the distinguishing
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feature between a mechauical system and a structure.

There has been, and continues to be, considerable interest in the analysis
of mechanical systems. Much of this interest has focused on both open and closed
kinematic branch-chain mechanical systems. One of my favorite papers is that
published by Chace and Bayazitoglu [1] wherein the authors presented a complete

development of closed branch-chain mechanical systems and described the application

of this development in a 2-dimensional computer program. However, their develop-
ment does not seem to lend itself to easy implementation in 2 dimensions, and
would be very complex in 3 dimensions. More recently, Huston and Passerello

[2, 3, 4], and others, have published papers describing their approach to this
same problem. Of particular interest is the paper by Kamman and Huston (5], in
which the authors present what appears to be a new approach to the elimination

of the constrained degrees of freedom associated with a closed branch-chain
mechanical system.

This paper is restricted to discussion of open branch-chain mechanical
systems. The problem of interest is a formulation for the governing equations
for this class of mechanical systems that will lead to practical and efficient
implementation in a 3-dimensional finite-element program. It is the hope of
the author that the insight garnered from this development will lead to a
complete implementation for closed branch-~chain mechanical systems.

The remainder of this paper is organized as follows. After a brief dis-
cussion concerning the mathematical notation employed herein, a thorough
statement of the problem is given. Next a detailed investigation of the
equations of motion for a simple kinematic chain is presented. The results of
this investigation are a set of equations that provide the basis for the dis-
cussion, in the next part, of the system equations for a general open branch-
chain mechanical system. An example problem is then considered, followed by some
concluding remarks.

2. NOTATION
The dyadic notation for vectors and tensors is used throughout this paper.
This notation is well suited for working with 3-dimensional vectors and tensors.
Because of tlie need to work simultaneously with related pairs of vectors and
tensors (for example, forces and moments, and velocities and angular velocities),

I have also employed a "blend" of matrix notation and dyadic notation.

To illustrate, the velocity vector v and the angular velocity vector w
are "associated" to form a special velocity vector

w - {5}

where the braces indicate the special nature, in this case a vector (in the
matrix sense) of vectors (in the dyadic sense).
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Similarly, the mass matrix [M] (in the matrix sense) is defined as
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shere §, C, and I are the usual dyadic tensors (the superscript "t"
indicating .hat the transpose is to be taken) and where the brackets indicate
the special nature, in this case a matrix of tensors.

Operationally, standard matrix and dyadic concepts apply, for example

{u)tef{u} = vev + wew

and

3. STATEMENT OF THE PROBLEM

The objective of this paper is to describe a methodology that provides
for the computer analysis of prcolems in mechanics that involve structures
and/or mechanical systems. This methodology is a natural extension of a
finite-element pvogram to include the description and the analysis of mechanical
systems.

A finite-element program generates finite-element stiffness and mass
matrices and force vectors at the element nodal points, or nodes. These
matrices and the force vector are then assembled and accumulated at the system
degrees of freedom associated with the "joints." The joints are particles
which may possess inertia and may be subjected to applied forces. Many finite-
element programs provide for the concept of a finite-size joint, or rigid
body, through "eccentricities" or rigid "master/slave' constraints. For
example, the joint is considered to be the origin of the rigid body and a
finite-element node is at a fixed location with respect to the joint. A
simple geometric transformation matrix transforms the element stiffness, mass,
and force from the nodal location to the joint. With very little effort,
then, a finite-element program c:¢n be easily extended to solve problems
containing multiple non-interconnected rigid bodies.

A mechanical system is an organization of interconnected rigid bodies,
which are called rigid Jinks. The connectivity of the rigid links in the
mechanical system can be represented by a hierarchical, tree-structured, or
branch-chain organization (see figure 1). A branch-chain system is also
referred to as a complex kinematic chain. A simple kinematic chain is a
mechanical system with only a single branch. A closed branch-chain system

L B cane v R T Ao cn W N
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contains at least one closed loop, otherwise it is an open system.

Because of the complexity of the closed branch-chain mechanical systems,
it was necessary to first fully understand the simpler but still complex
open branch-chain mechanical systems. The remainder of this paper is concerned
with the problem of developing the equations of motion for an arbitrary open
branch-chain mechanical system in a form suitable for implementation in a
general nurpose finite-element computer program. These equations of motion
are formulated using Lagrange's form of d'Alembert's principle [6]. From
these equations a system mass matrix and force vector are extracted.

Consider an arbitrary open branch-chain mechanical system. Let the

"upper-most" link (see figure 1) be the reference link, Any link in the . ystem,

except the "lowest' level links, can have any number of links '"siaved" to
it. Any link in the system, except the reference link, is itself slaved
to only one '"master" link.

The motion of each slave link is measured relative to its master link
(figure 2). The motion of the reference link is measured with respect to
an inertial reference frame. The generalized coordinates are selected as
the unconstrained relative degrees of freedom. Five lower kinematic pairs
[7] are easily modeled: 1) pin, 2) slider, 3) cylindric, 4) spheric, and
5) planar. The sixth lower kinematic pair, the helical pair, involves a
coupling between rotation about an axis (the pin) and translation along that
axis (the slider).

The development of the equations of motion for an arbitrary open branch-
chain mechanical system proceeds as follows. The equations of motion for
a simple kinematic chain are developed in a form in which the generalized
active forces and inertia iorces corresponding to the generalized coordinates
of a particular rigid link are determined completely from the forces applied
directly to that 1link and from the forces applied through the kinematic
pair of the rigid link that is slaved to it. Clearly, then, the contribution
of any number of slave links can be obtained by summing the contribution
of each slave link,

4., EQUATIONS OF MOTION: SIMPLE KINEMATIC CHAIN
In this section the dynamical equations of motion for a simple open
kinematic chain are developed in a form suitable for automatic generation

by a digital computer. Lagrange's form of d'Alembert's principle [6] is used.
This principle states that

Q +Q =0 (1

*
where and Q, are the generalized active force and the generalized active
inertia force, respectively, for the i-th generalized coordinate.

4.1 Description of the Model

With reterence to figure 2, a simple kinematic cl.ain which is comprised
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OI N Tlgld 11inks is considered. One of the end links is selected as the
reference link, and the links are numbered consecutively from the reference
link, 1 through N. The reference link is considered to have only one link
slaved to it, All other links are considered to be slaved to one master link.
That is, referring to figure 2, the k+l link is the slave link and the k-th
link is the master link. Of course, the k-th link is itself a slave to the
k-1 link.

4,2 Kinematics

Let EF be the vector fixed in the k-th link that defines the pgfeﬁence origin
of the k+l link with respect to the origin of the k-th link. Let = "x be the
relative displacement vector of the origin of the k-th link with respect to the
referencE_Yrkgin of the k-th link which is fixed in the k-1 link. Similarly,
define {" "0} as the set of three Euler angles which defines the oriencation
of the k-th link with respect to an arbitrary set of axes fixed in the k-1 link.

The position of the origin of the k-th link in an inertial reference
frame R is given by

where

B 1

Mt \(areum ol

[N

i
H

kelok ko keLlk 3)

0k Rk
P

The orientation of the k-th link with respect to an arbitrary set of
axes fixed in the k-1 link is completely defined by the unique rotation
matrix

kelgk | k=lgk k=l ky,

It follows that the orientation of the k-th link with respect to an arbitrary
set of axes fixed in R is defined by

REF = Rg} . k—lEF %)

The angular velocity of the k-th link with respect to the arbitrary set
of axes fixed in R is

k
- 3 713 (5)

R k
L £
I=1
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vhere 37241 1s the angular velocity of the j-th link with respect to the j-1

lin§. The vector 3'19? is related to the first derivative of the Euler angles
{3713y through the equality

(3-183) = o3y (-Ldy (6)

where the matrix [Qj] is obtained directly from the definition of the Euler
angles.

Finally, the velocity of the origin of the k-th link is obtained from

k k-1
R!F = T j-IX? + T gﬂq N j2q+1 (7
j=1 3=1
where
Rk _R, Rk ORIGINAL F/ 27 [T
L= acpoja OF POOR ¢+
13 L 31370y g,
Since
k-1 k-1
T Rgé x 12;+1 - I J-{2§ x 32} (8)
i=1 i=1
and introducing the antisymmetric temsor C(r) such that
COw=wxr 9
then equation (7) can be written as
k k-1
R!F - 7 j-lxq + T Q(JRF)'j-IE? (10)
i=1 j=1
Introduce, now, the geometric transformation matrix
k
N I
txl-lo , (3 <k ‘ (11)
8

where 52F = 0, and where § is the idem factor (or "identity" tensor). Also
let
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k"l k i b .
o gg'?é*‘-«» ‘ . (12)
- k-lwk : St
Then equation (10) can be written in the symbolic form
R k K gk, 3=l
ST ST O o RY SR (13)
j=1

4,3 Generalized Coordinates

The position of the origin of the slave link with respect to the reference
origin fixed in the master link, and the Euler angles defining the orientation
of the set of axes fixed in the slave link with respect to the set of axes
fixed in the master link are selected as the generalized coordinates. There
may be from zero to six generalized coordinates relating the positionkgTdk
orientation of the slave link with respect to tnglmgster 1§B¥'k Let {" 'q}
be the set of generalized coordinates, and let x_ and { 6.} be the pre-
scribed values such that the actual position and orfentation of the k-th
link with respect to the k-1 link are given by

k—lxk k-lxk
[k-l—k - (Mg 4 k=1 k (14)
716 o)
Following Kane [ﬁlt-k‘ is convenient to introduce {k-luk} as linear
combinations of the {° "q }, that is -

k—lvk
{k‘luk} - _q
| k-lwk
29

where k-lvk and k-lwk are the relative veloEEEykand angukgi Kelociﬁzlcgr-

respondineqo the QZﬂeralized coordinates {k-lqk}' Leﬁ_1 We and w, 8im-
ilarly correspond to the prescribed values X, and { et} so that
k-lvk
k-1 ky _ k-1 k =t
" O ““k-lk] (15)
w
=t
4.4 Lagrangian Base Vectors
The Lagrangian base vectors, also known as the partial rates of change N
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of position and orientation [6], that span the multi-dimensional vector space
defined by tne generalized coordinates can be determined 'by inspection" when
the velocity and angular velocity are expressed as a linear function of the

{u , }. These Lagrangian base vectors are simply the coefficients of the {u_, }
in9tfat linear expression. Referring to equation (13), the Lagrangian base
vectors are obtained as follows:

Decompose the matrix [jQF] as

P = Ozg + 0, g s (16)
where
[jg,‘;]-{j‘lgj} - [J;“l-{j“gfl}. (4 <k (17)
and
k 13 Jok ]
Ioky,3-13y o J Tt
(k- 3-1uy [_1_1[1_13}. (3 < k) (16)
Le
Then,
k
Ry = (3% + PO (19)
ul - T I, I u

and by inspection the Lagrangian base vectors are simply the columns of the
submatrices of the gecmetric transformation matrix [ ;q], j <Lk,

4.5 Generalized Active Forces
The contribution of the forces acting on the k~th link to the generalized
active forces associated with the i-th link is
ik ik, t k
{7} = [ lq] {F'}, (i=1,...,k) (20)

where [iT:]t is the array of Lagrangian base vectors, and

k
£
g

and where f and g are the applied forces and moments, respectively, acting on
the k-th link.

The total of the generalized active forces associated with the i-th link
is the sum

URIGIMAL b,
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@l =z M OF BUol .
k=i
N
ik .t
= L [T ] {F} 21
k=i ¢ - 2y
Using the property that
A9t - 1 (NS ks o) (22)
- g=i+1 -
then
(@) = i Fhy + p p ;q] &y (%) (23)
'L k=1+1 z-1+1

When this seemingly intractable expression is expanded it can be seen
that it can be replaced with the folowing equivalent simple recursive equations:

Ny, _ (NNt oN
{_q}-[;q] {F'} (24)

i i.t

(ot = 'z {F}+[li’rlt

i+l

{Q7" "}, (4=N-1,N-2,...,1) (25)

These equations are used to compute the total generalized active forces
associated first with the N-th link, then the N-1 link, etc., in subsequent
steps until all N links have been considered.

4.6 Generalized Active Inertia Forces

The generalized active inertia forces are determined in a process similar
to the generalized active forces. Specifically, the contribution of the inertia
forces acting on the k-th link to the generalized active inertia forces
associated with the i-th link is

i

*
where F k is the vector of inertia forces and moments acting on the k-th
link, that is,

"y - [‘=:1t (F5}, (k > 1) (26)

R (ck.RKy

(F¥} = = [M¥]. (27)

Rek
Rk]'

R (kR

The link mass matrix is
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<] = (28)
- e 1

where Mk, g}, and lk are the rigid link mass, mass courling tensor, and inertia

tensor, respectively.

The accelerations can be expressed in terms of the first derivative of the
u as
(ugrg!

e gk s k
= - +
Rek 'f ( Lt Ly o105 {A™} (29)
w =1 w
where
|ak
{aky = l"k (30)
b
and
k C iy s
2& I Rﬁ? x J—lﬁ? (31)
i=1
L j j+#1 , R 3 3-13 i k
_a_=2[£3lej +(£JXJ£J)XJE (32)
j=1

+ B3 < Radpithyran, x>

The inertia for.e on the k-th 1ink can be written as

k . . . -
T T U B S S e I (7"} (33)
=1 %
where
"k k ko g ky  g-le] k
T I (Vs DY CGE A O & IS DI AR (34)
j=1
Rk (kR
Rk Uék'Rﬁk)
Uhai s, .
OF FOU .
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The total of the generalized inertia forces associated with the i-tt 1link

is obtained using the recursive formulas derived above for the generalized
active forces. That is,

*N N..N.t *N
@M = ("1t E™) (35)
@™ = gt + Ot @ a2, (36)

4.7 First-Order Differential Equations

The dynamical equations of motion are typically solved numerically with
the aid of an explicit time integration scheme, and such a scheme is considered
here. Toward this end the dynamical equations are considered as a first-order
system of ordinary differential equations of the form

[A] {y} = {b}

. {q}
{y} =1 .
{u_}
q
Actually, the {u_ ) are uncoupled from the {&} and are obtained from the solution
of the system of "equations

where

(M) {u } = (F} (37)

Once the {ﬁq} are computed, the {&} are computed directly from the equations
R T ' PO ) (38)
AL R 1110 N Gk s TR W) (39)

5. SYSTEM EQUATIONS: OPEN BRANCH-CHAIN SYSTEMS
Using the results obtained for the simple kinematic chain, the dynamical
equations for open branch-chain mechanical systems can be automatically
generated and solved with the use of a digital computer. This result follows

directly from the form of the equations derived for the simple kinematic chain.
In particular, the recursive equation (25) is readily generalized to

i i.i,t i i i+l.t i+1
{Q°} = ["T ] «{F'} + | J Q") (40)
- slaves £q

where the sum is over all links that are slaved to the i-th link.

A strategy for automatic generation of the dynamical equations, i.e.,
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generation of the system force vector and the system mass matrix, has been
developed and implemented as an integral part of a general—purpose finite-
element computer program. In this implementation the rigid links are pro-
cessed by the program as joints with rigid body mass. The system mass matrix
and force vector are assembled including contributions from both finite elements
and joints/links. The assembly strategy for the joints/links within an open
branch-chain mechanical system is described below. It is worth noting that

the assembly of a tangent stiffness matrix is completely analogous to the
assembly of the mass matrix.

5.1 Assembly of the Force Vector

The generalized active forces and certain terms from the generalized active
inertia forces must be assembled to form the system force vector. Because
the necessary terms from the generalized active inertis forces can be combined
directly with the applied forces for each rigid 1link, it is sufficient to
consider that this has been done.

Because the generalized active forces associated with the generalized
coordinates of the i-th link are dependent only on the forces applied to the
i-th link and to the generalized active forces associated with the i+l link
[equation (25)], it follows that the generalized active forces associated with
all links at the i+l level of links in the branch-chain system can be summed
directly at the i-th link.

The assembly procedure is therefore straightforward. Beginniag at the
lowest level, that is, the links to which no other slave links are attached,
assemble the contribution of the forces applied to those links to their
generalized active forces using equation (24). For these links, transform
their generalized active forces and accumulate the contribution to the master
link to which each slave link is attached. The procedure is repeated until
all links have been considered.

5.2 Assembly of the Mass Matrix

The system mass matrix can be assembled using an extension of the pro-
cedure used to assemble the system force vector. Because of the symmetry
of the mass matrix, only the upper triangle needs to be assembled. Referring
to equations (33),.(%5), and (36), it can be seen that the geometric trans-
formation matrix [JI,] transforms the right side of the mass matrix [M’]
from the k-th columnlto the j-th column, Similarly, with reference to
equationi §2§) and (36), the transpose of thﬁ geometric transformation
matrix [T '] transforms the mass matrix [M ] from the i+l row to the
i-th row. =

Using these concepts, the assembly procedure is as follows. Referring
to figure 3, the mass matrix for each of the lowest level links is assembled at
the row and column locations associated wholly with each link. This mass matrix
is then transformed up to the row associated with the master link. Before
assembling at this location, and before performing the successive transforma- .
tions and assemblies that complete the entire column, a copy of this mass matrix
is transformed over one column, transposed, and accumulated at that master
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link. This procedure is repeated for all rigid links at the lowest level,

At the next level of links, the accumulated mass matrix is added to the
actual mass matrix for each link, and the same procedure, as described above,
is repeated. All levels of links are processed in the same manner.

6. EXAMPLE PROBLEM

The purpose of this example problem is to further examine the nature
of the formulation presented in this paper and to compare results obtained
from this formulation with those derived from an alternate approach. In
particular, a 3-degree of freedom translating compound pendulum is considered.
The dynamical equations are derived explicitly using Lagrange's equations.
These derived equations are compared numerically with the computer-generated
equations as described in this paper.

The problem considered consists of three rigid links as depicted imn
figure 4. The first link is the reference link. The origin of the first link
is free to translate along the x-axis of the inertial reference frame R, and
a set of axes fixed to this link at the origin are free to rotate about the
z-axis of the frame R.

The reference origin for the second link is fixed in the first link at
a location of ~2 e} with respect to the origin of the first link, where e?,
el are orthogonai*znit vectors fixed in the first link. A set of axes fixed
t8 the second link are free to rotate about the z-axis of the first link,
which is coincident with the z-axis of the reference frame R.

The third link is rigidly attached to the second link at a location
-2.e? with respect to the origin of the second link, where e?, e? are
orgEXgonal unit vectors fixed in the second link. Each of the ;Xgid links
has a mass of m, and a moment of inertia at the link origin of Ii’ where
i=1, 2, 3.

The generalized coordinates for this system are

e
LN

t
{q} = {X, 61’ 92} C'I'_ AT

and
{u} = {q} = {v, Wy wz}t
The kinetic energy is
K= }’mlxl'll + }illﬁl.gl + ;m‘2!2.y_2
2,2 3,,3 3, 3
+3512_(£ w +35m3y_ v +3113£ w

The equations of motion are obtained directly from Lagrange's equations of
the first kind [6],

d/dt(3K/3a,) - 3K/dq; = Q,

417

. L e - r . P . LN

)

"),

) {

i & . | - . t. T o ket e A ot St N
. - -t - CN C



| gde)

ORIGIN"L U s -
OF PGOR Gt d

These equations can be written as

where

and

and where f, and g, are the applied forces and moments at the link originms,
and E , E , E are orthogonal unit vectors fixed in the inertial reference

frame

11
12
13
M1
22
23
31
32

33

*R. 7Y

M) {u} = {F)

- m, + m

™ 2 3

= 2.
(m2 + m3)21cose1 + m322(gx Ex)

myt, (ex"E,)

M2

I+ 1, + 1,4+ mzzi + m3(1i + z; + 22,8,c086,)
I, + 1 + my(L,2)c080, + 23)

M3

M3

I+ 1+ m32§

. 2
(£, + £, + 53) E + (m2 + m3)llsin61w1

2, 2
myl, (eyE) (w) + wp)

= [(g) + 8y *+ 8) - Mgy * £ - ey + 2} X F)E,

“+

- m,2, 8%, [sinl .0

malydy

2 .
lgy *+ &5 - 258 * L) °E,

2 _ 2
sinez[(w1 + w2) wll

342 PO + cosez(w1 + mz)wll

The accelerations are given by

.
al = vE

—X

|

2 4 a1 P | 2.1
a t e, v huegy

32 a2 . R 2,2
a a‘ + zz(wl + mz)_g_x + zz(w1 + mz) gy

while the angular accelerations are
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w® = (w) +w,)E F POOK Curiry
R'S - R'Z

w = W

The procedures discussed in this paper can be directly applied to give
the 1dentical dynamical equations. However, because this formulation has
been implemented in a computer program it was of interest to check the generated
numerical values. For various initial conditions, the components of the mass
matrix, the force vector. and the acceleration vector can be computed and
compared. It is sufficient, I believe, to report that the computation of
these values with a digital computer using the formulation presented herein
is of the same level of accuracy as the computation using the explicit
equations and a band-held calculator.

7. CONCLUSIONS

A methodology has been described that provides for the computer analysis
of structures and mechanical systems. This methodology is a natural extension
of a finite-element program to include the description and the analysis of
mechanical systems. The rigid links in a mechanical system, for example,
are processed by the finite-element program as joints with rigid-body mass
properties.

Because of the complexity of closed branch-chain mechanical systems, this
paper was restricted to the simpler but still complex open branch-chain
mechanical systems. The equations of motion for a single kinematic chain
are derived in a form that provides for their ii.mmediate generalization to
an arbitrary branch-chain mechanical system. Finally, a strategy for automatic
generation of the system mass matrix and force vector was described. The
work presented in this paper has be2n implemented in a general-purpose finite-
element computer program.

Future research is principally being directed at the automatic generation
of the system equations for closed branch-chain mechanical systems.
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