NASA-TMN-5623% *

NASA Technical Memorandum 86288

NASA-TM-86288 19850002350

A RELATIONAL APPROACH TO THE DEVELOPMENT
OF EXPERT DIAGNOSTIC SYSTEMS

KATHY R, AMES

OCTOBER 1984

LIBRARY GOPY

LG 1984

LANGLEY RESEARCH CENTER
LIBRARY, NASA

N M A HAMPTON, VIRGINIA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

V8

Table of Contents

] Introduction .ececcceccesccnorscrscsossccscsscsccssssscsssscssscssce
2 The RKBM MOdel ceccecescascscescascssssososssscosnsssessonssannasns
2.]1 Implementation eceeececececccesssscsscassnsssssescssacscsoncas
2.2 The End Effector SyStem cesecsecoscssssccssssessssssscscascsee
2.3 The Format of the End Effector Model sceseececcssccscccvcsces
2.4 Some Details About the Model ceececescsscceccsscsosssccssonss
2.4.1 Representing the Jaw POSition ceeceessescssccsccsccsces

2.4.2 The Step Size of the Simulation eeeeeeccececccccccccscs

2.4.3 Representing Error Conditions in the Model .ceececesese

2.4.4 An Order-Dependent versus an Order-Independent Model ..

2.4.5 Some Example SimulatlonS eeecesesccsssccecsccsccscsancnsce

3 Error Diagnosis Using the RKBM Model «eeceeceescsacecssssccccccses
3.1 The RKBM Model and the Operational SySteém cceeeesecscocscccce
3.2 An Algorithm for Error Diagnosis .eeececececsscccccccccscccnsas
3.2.1 Method I 90 0 0 000G N OO OORLEN SO OPNDRNSNEONLNOIBNLBLEOLEOLEBLIOIEPLOLEOLIEOSIENNOGDS

3.2.2 Method II ® 000000000 L B0 00 0000 NCRLSEOIININOIERNOGESLIOLEOBNLIOIOOLEOLIOGLEOONDLNDS

AConcluSions O 0 0 0000 00 00 GO ONSPOOP00 RPN R00OOLNNSOEPNOEIESRLIEOINOEORNNOIOSEORNBSEOSDRL OO

5 REfereNCeS cevesessscecncssccsscssscesssasasssscsosrcsossscssssssascnse

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

TOMmMMEO QW >

Prime LISP versus UTLISP ccccoescccosccccscccccccncscs
RKBM Lisp ROULINES ceeecevescscssscssvsssscssscnccsossse
The RKBM End Effector Model seeccecesecccccccscccconscns
"Trouble-shooting' FlowcChart ..eeseececccscsssscccccsoane
Normal Simulation ceeececcsccsccscscscscsncenscsssncsscccs
Abnormal Simulation seceescesscccccssccscsscccsscncnce
Method I Trace for Bad Tachometer Example ecccececccces
Method II Trace for Bad Tachometer Example ceeesecccese

WO OO W W Wer

11

14
19
19
20
21
24
26
28

32
36
49
52
54
56
60

NG 5- 10658 *

1. Intfoductioni

Recently, there has been considerable interest in the development

of expert systems that use causal reasoning - reasoning based on an

undefstaﬁding\oflthe structure or function of thg device or system they-
are éxamining Il]. A proposal under current investigation is that,
given a ;eptesenta;iop of the funétional and/or structural interrela-
tidﬁships among the components of a system, an expert system could be -
developed to analyze it. For example, such an expert system could be
used for diagnostic problem solving, in which the normal states of the
components of a system under analysis are known and an abnormal state

and its cause can be identified.

A previous research project has examined this approach to develop-
ing expert systems [2]. A scheme for representing any real or abstract
system has been developed along with a set of routines capable of exe-
cuting a simulation of that system . The knowledge representation format
chosen is similar to that of a relational data base - a system 1is
modelled as a set of relations describing its structure and function.
This knowledge representation along with the machinery to drive it is

termed a Relational Knowledge-Base Machine (RKBM).

Given this RKBM modelling scheme, there are two goals of the
research described in this paper. The first goal 1s to use the RKBM
approach to model a microprocessor-controlled end effector/sensor sys—
tem currently under development in the Intelligent Systems Research
Laboratory of the Automation Technology Branch (ATB) at Langley Research

Center. The second goal 1s, by studying the end effector model, to

examine the possibility of extending the RKBM mechanisms to include the
functions of an expert diagnostic system. This second goal can be
stated in the form of two questions. First, can the RKBM representation
be used as the basis of an expert system that can answer such questions
as, “Whgt is the state of a component of the system?" and "Why is the
component in that étate?" Second, if the RKBM approach is found to be

suitable, then what is a reasonable algorithm for performing such ana-

lyses?

2. The RKBM Model

2.1. Implementation

The RKBM used for this research is programmed in UTLISP on the CDC
Network Operating System. Appen&ix A is a discussion of the conversion
from the original Prime LISP implementation to this impiementation. The
UTLISP code for the RKBM driver routines and end effector model is found

in Appendices B and C, respectively.

2.2. The End Effector System

fiThe end effectorZSYStem used as a basis for ‘this project is
diagr;mmed in figure 1. The end effector components ‘expanded in some
detail in the RKBM model are the microprocessor controller and the servo
‘power loop. The only mechanical action represented is the movement of
the jaws - details about the motion of specific gears are not included.
Alsé, no sensory information is included since little sensory informa-
tion was included in the laboratory system at the time development began
on the RKBM model. Following is a brief description of the operation of

the end effector system.

The system is controlled by an 8031 microprocessor. This micropro-
cessor has a position register which keeps track of the actual position
of the jaws. There‘ié'élso a memory location to hold a commanded jaw

position, which may be changed at any time by a user. Both of these
positions are represented in terms of oqtal encoder counts, where 0

represents- the fully open jaw position and -26135 represents the com-

pletely closed position. When the system is on, the micrbproceésor pro-

nnn
EPROM
2716 I’_TUUL
P r————-—-—-"--= AL Bl —
| Shaft
B I Gear encoder
R ErE—— (=" 250 pu]se]s
Int O 4—6—— | = 4]per revol.
+28v |
It 1 fe=o}— | 2.78:1
Digital |
Micro- to ‘ Gear
Torque -~
rocessor analog [powe » Rl
P convert. amp | | motor
8031 1 |
- 5018 [¥ A |
' 3.2 amp 2.78:1
max. | Gear
A - ean e
I (C-C
| Contained
| _in the base
Lof end effector
Limit sensor
v RS-232
Terminal 1200 BAUD

Figure 1.

Diagram of the End Effector System

000

00O

gram continually loops, computing the difference, or error, between this
commanded position and the actual jaw position in the position register.
The resulting error signal is transmitted to a digital/analog converter
(DAC) which, in turn, transmits the signal to a servo power amplifier.
From here, the amplified signal 15 passed to a DC torque motor. When
the error signal is sufficiently small, there is not enough power to
overcome friction in the motor. (In the model, however, a frictionless
environment 1is assumed.) Consequently, there is no jaw movement and the
system is in an equilibrium state. When the signal 1is strong enough,
the motor shaft drives a worm gear which, in turn, drives two sector

gears, each sector gear symmetrically controlling one of the jaw arms.

As the motor turns, an incremental shaft encoder ‘geared to the
motor provides feedback to the microprocessor program. A tachometer is
also geared to the motor in the same manner as the shaft encoder and
provides feedback from the motor to the servo amplifier. The tachometer
outputs rate information about the motor shaft movement which is com-
bined with the microprocessor error signal output to determine the input
to the servo amplifier. The purpose of this is to prevent the motor
shaft from rotating too quickly for the shaft encoder to encode the

movement.

Each shaft encoder count interrupts the microprocessor program and
this count is then used to increment or decrement the position register,
depending on the direction of jaw movement. The change in the position

register 1s then reflected in the error computed by the program which,

in turn, is reflected in the error signal transmitted to the DAC. This

cycle

of jaw movement

and

corresponding position

register updates

continues until the system once again reaches an equilibrium state.

2.3. The Format 2£ the End Effector Model

The RKBM format used to model the end effector is similar to that

of Blanks”

tion in the RKBM end effector model.

gas furnace system [2].

Table 1 illustrates the main rela-

Using relational data base termi-

NAME

microprocessor
commanded_
position
actual _
position
distance
error_signal

error_signal

dac
dac voltage
servo_amp
servo_amp__
voltage
motor_leads
motor circuit
motor voltage
motor_current
motor_switch
jaws_t 0o _move
gears
power supply
short:ci rcuit
tachometer
shafq_gncoder

END EFFECTOR RELATION

VARIABLE

condition
location

location

amount
direction

magnitude

condition
direction
condition
direction

condition
condition
direction
condition
condition

condition
condition

condition
condition
condition

condition

Table 1.

PARENT

system
micro~
processor
micro-
processor
system
micro-
processor
micro-
processor
system
dac
system
servo_amp

system
motor
motor.
motor
motor
system
system
system
system
system
system

VALUE_BY

default
default

ACTUAL

DISTANCE AMT
ERR_SIG DIR

ERR_SIG MAG

default
DAC VOLT
default
SERVO_VOLT

default
default
MOTOR VOLT
CURRENT
default
MOVE_JAWS
default
default
default
default

default

The End Effector Relation

VALUE#*

ok

off

ok
off
ok
off

ok
closed
off
off
on
no
ok
on
no
ok
ok

VALUE

ok

off

0

ok
off
ok
off

ok
closed
of £
off
on
no
ok
on

no
ok

ok

nology, each column heading is an attribute and each row is six-tuple

containing an entry for each of the six attributes. Each tuple

represents a component of the system.

The attribute NAME is used to identify a particular component.
Notice that each component does not necessarily correspond to a com=-
ponent in the actual end effector system. '"Distance" and "jaws_to_move"
are two such model componenfs. These two components are discussed in
more detail in later sections of this paper. The attribute VARIABLE
indicatés the particular quality of the component that is being
" described, e. g. thg.direction of the motor voltage. The attribute
PARENT .is intended to convey the structural organization of the system.
(The structural relationships between the components are néither incor-
porated in the proposed error detection algorithm, nor are they incor-
porated in running a simulation of this particular model.) The VALUE and
VALUE* attributes indicate the state of each component, e.g. the direc-
tion of the motor_voltage may have a VALUE of positive, negative, or
off. The . necessity of these two apparently equivalent attributes is
explained later. Throughout the remainder of this paper, references to
the value of a component in the model refer to the entry for the VALUE
attribute of that component. The VALUE BY attribute indicates how new
VALUE and VALUE* attributes are to be computed for each component, i. e.
how the value of one component depends upon the values of other com-
ponents, This is ho& the functional relationships between the com-

ponents are represented and, as will be shown later, is the key to the

error diagnosis.

Any entry other than "default" for the VALUE BY attribute is the
name of another relation in which this functional relationship is
stored. Default indicates thatvthis component is not affected by the
other components during a simulation. For example, one tuple whose
VALUE BY attribute is default is "commanded position". This is because
the value of commanded position is entered by the user before a simula-
tion and is not changed until the user enters a new position. The rest
of the tuples whose VALUE_BY attribute is default are included to indi-
cate the status of the system compdnents, either normal or defective in
some way. The state of such components must be determined before exe-
cuting a simulation and remain that way for duration of the simulation.

These concepts will become clearer in the simulation examples.

2.4. Some Details About the Model

2.4.1. Representing the Jaw Position

There are three components associated with the position of the
jaws. Two of these were mentioned in the description of the end effec-
tor system. They are "actual position", which corresponds to the posi-
tion register in the microproceséor, and "commanded_ position", which
corresponds to the user”s input commanding the jaws to move to a
specific location. The third component is "distance", which represents
the observed_distance between the jaws. This component 1is necessary to
simulate failures in the system that result in a discrepancy between
this observation and the value stored in the position register of the
microprocessor. Although there 1is an equation available to convert a

given encoder count position to a measurement of distance in inches, it

was decided to eliminate this computation and to represent the observed

distance between the jaws in terms of encoder counts. Also it was

decided to represent all encoder counts as decimal rather than octal

values. (To give the reader an idea of the scale of the laboratory sys-—
tem, at the fuliy open position, the jaws are approximately 3.25 inches
apart.)

2.4.2. The Step Size of the Simulation

As stated in the introduction, machinery has been previously
developed to drive a simulation of a system modelled using the RKBM for-
mat. It is useful to check the validity of a model by executing such
simulations and comparing the results to the behavior of the physical
sttem. It is also necessary to execute a simulation where one or more
of the system ‘components is in an error state in-order to test and/or
illustrate the usefulness of the error diagnosis algorithm presented
later in this paper. An important consideration when developing the
model was the determination of the step size of a simulation. To under-
stand what is meant by this it becomes necessary to explain how the RKBM

model is used to perform a simulation.

A simulation is executed by a routine that cycles through the end
effector relation until a point is reached in which no changes are made
to the data in the relation or until some maximum number of cycles are
executed. A _cycle consists of evaluating, for each tuple in the rela-
tion, the VALUE;BY attribute and storing the result in the VALUE attri-
bute. At the end of a cycle, if, for every tuple, VALUE* (the previous

VALUE) is equal'to VALUE, then the simulation is ended and the system is

10
said to be in an equilibrium state. If the system is not at equili-

brium, the VALUE* attributes are updated with the entries in the VALUE

attributes and another cycle is executed.

The question that needs to be answered is, "How much should the
Jaws move on each cycle through the relation?" One possibility is to
have one simulation cycle be equivalent to one loop in the physical sys-
tem, i. e. move the jaws one encoder count per cycle. However, given
that there are 11357 encoder counts between the open and closed jaw
positions, moving the jaws any significant distance would require too
many simulation cycles. Another possibility is simulating the entire
jaw movement in one simulation cycle, but this is not a very natural
solution. The end effector is naturally an .incremental system, where
one gomponent takes some input, processes it, and passes along its out-
put as input to the next component. To determine the output of one com-
ponent, it 1is only necessary to examine its input and to consider the
states of a subset of the other components. Simulating the entire move-
ment at oncé would require that the state of the enti;e system be con-

sidered to update each component.

The approach selected was a compromise of these two extreme solu-
tions. It was decided to move the jaw in increments of 100 encoder
counts. This step size is large enough to prevent extremely long simu-
lations, yet small enough to realistically simulate the operation of the
jaws under both normal and abnormal conditions. There is a slight
trade-off for selecting this step size in order to have simulations of
reasonable length. An error tolerance of 100 must be introduced, which

limits the distance that the jaws can be requested to move to values

11

over 100. Under normal conditions, if the jaws are commanded to move to
a position 1less than 100 counts away from their current position, the
current position immediately satisfies the error tolerance and the jaws
will not move at all. However, it was decided that this is not a severe
restriction for the purposes of this model. (There is one exception to
this restriction. If there is a defective component in the system that
will cause the jaws to be driven to the fully open or fully closed posi-

tion, whether or not this is what was requested, the model will move the

jaws all the way to position 0 or position -11357.)

2.4.3. Representing Error Conditions in the Model

In order to simulate the operation of the system when one or more
components are defective, the effects of these defective conditions, or
error states, had to be built into the VALUE BY relations. Therefore,
another decision that had to be made in éetting up the model was which
error states to attempt to simulate. Through several discussions with
personnel in ATB and through the use of the "trouble-shooting" flowchart
in Appendix D, a set of possible error states to include in the model
was defined along with the effects these error states should have on the
operation of the model. A list of the components that may be defective
and their possible states, both normal and abnormal (error), is given in

table 2.

2.4.4. An Order-Dependent versus an Order-Independent Model

By referencing the VALUE attribute, the evaluation of a component
can incorporate new component values that have been computed earlier in

the current simulation cycle. .Refefencing-the VALUE* attribute prevents

12

Component States

Component Normal Possible Error
Name State States

microprocessor ok bad
constant_positive
constant negative

dac ok bad
reverse
constant_positive
constant_negative

servo_amp ok bad
reverse
constant_positive
constant_negative

motor_leads ok reverse

motor_ circuit closed open

motor_switch on off

gears ok jammed

power supply on off

short_circuit no yes

tachometer ok bad

shaft encoder ok bad
constant_positive
constant_negative

Table 2. Possible Error States.

evaluations from accessing these new values until the next cycle, when

VALUE* has been updated to VALUE. Therefore, referencing VALUE* will

require more simulation cycles to accomplish a given amount of action

than will referencing VALUE. The amount of difference depends on the

13

order of the components in the relation when referencing VALUE. The
. most efficlient ordering would place.each component after components that

it references and before components that reference it.

At first, it seemed better to leave any érder dependence out of the
system. Although this is less efficient, it has the benefit of prevent-
ing order dependence from being built into the model such that ré-
arranging the order of the components would not only change the number
of simulation cycles required, but would change the results of a simula-
tion. Also, Blanks” models [2] were designed without order dependence

so this did not appear to be an unnatural restriction.

However, the end effector proved to be very difficult, if not
impossible, to model without referencing VALUE and therefore, having an
order-dependent model. The problem involves the number of step by step
computations involved in starting and stopping the incremental movement
of the jaws. The model requires several steps for the signal from the
microprocessor to reach the motor and, in turn, sef the VALUE of
jaws_to_move to "yes". Jaws_to move was introduced as an intermediate
computation between determining that the jaws should move and the actual
movement. Without this intermediate calculation, the VALUE BY relations
for distance and actual position would be so complicated as to be almost

incomprehensible.

Once it is determined that the jaws should move (the value of
jaws_to move 1is 'yes"), they move a fixed amount each time distance is
re-evaluated. This occurs on every cycle until the value of jaws_to_move

is changed to '"no'. If several cycles are required from determining

14

that the jaws should not move until jaws_to move 1s changed to '"no",
they will move several more inqrements than desired before the movement
is actually stopped. .After several unsuccessful attempts to alter the
model in order to solve this problem without resorting to order depen-
dence, the desire for having an order-independent.model was re-—examined.
It was decided that the operation of the end effector system itself is
naturally order-dependent and, therefore, there is no reason to force a
modei of the system to operate wiﬁhout order dependence. This aspect of
the RKBM system should be studied further using several different models

before drawing any definite conclusions about order dependence versus

order independence.

..

2.4.5. Some Example Simulations

As stated earlier, a simulation is exeéuféa-by cycling through the
data base, evaluating the VALUE_BY attribute for each tuple and storing
the result in the VALUE attribute. The VALUE énd VALUE* attributes are
then compared and if, for any tuple, VALUE 15 not equal to VALUE*, the
the VALUE* attributes are updated with the ent;ies in the VALUE attri-
butes and another cycle is‘executed. If, for all tuples, VALUE is equal
to VALUE*, then the system is said to be in a stafé of equilibrium and

the simulation is ended.

Function "gotoit" controls the execution of a simulation and it is
invoked along with a parameter "ﬁax" which indicates the upper bound on
the number of cycles to perform. If equilibrium is not reached in max
cycles, the simulation is ended, indicating that the number of cycles

that have been executed has reached this upper bound. To inform the

15

user about the progress of the simulation, the NAME, VARIABLE, and VALUE
attributes of any tuple for which VALUE 1is not equal to VALUE* is
printed for each cycle. Thus, by knowing the status of all components
before the simulation begins, the user can determine the status of all

components when it ends.

Figures 2 and 3 are examples of two simulation executions. Some
extraneous output has been eliminated from the examples to conserve
space. The complete output for each example can be seen in Appendices E

and F, respectively.

In figure 2, the end effector begins at equilibrium with the jaws
fully open (at position 0, as shown in table l.) The commanded position
is changed to =-433 and the simulation is begun with the call (gotoit 8).
In the first cycle, the change in commanded_position is noted as well as
the effects of this change on the other effector components. The signal
from the microprocessor can be seen as it passes through the system.
The cycle ends with jaws to move equal to "yes". On the next cycle, the
jaws begin moving. This is reflected in the new actual position loca-
tion, distance amount, and error_signal direction. The next 2 cycles
are similar in that the jaws move 100 more counts. On the fifth cycle,
the jaws move to position -400, which is within 100 counts of the
commanded_position. Since this satisfies the error tolerance, the
error_signal from the microprocessor is turned off and the effect of
this change on the rest of the compoﬁents can be seen, ending with
jaws_to_move equal to "no". Cycle 6 then detects that the system is at

equilibrium and the simulation is ended.

'? (update “EFFECTOR “(equal (# NAME) “commanded |_position)
“(VALUE -433))

? (gotoit 8)

(CYCLE NUMBER - 1)

(COMMANDED POSITION LOCATION -=433)

(ERROR SIGNAL DIRECTION NEGATIVE)

(ERROR SIGNAL MAGNITUDE 433)

(DAC VOLTAGE DIRECTION NEGATIVE)

(MOTOR VOLTAGE DIRECTION NEGATIVE)

(HOTOR CURRENT CONDITION ON)

(JAWS TO) MOVE CONDITION YES)

(CYCLE NUMBER - 2)

(ACTUAL POSITION LOCATION -100)

(DISTANCE AMOUNT -100)

(ERROR SIGNAL MAGNITUDE 333)

(CYCLE NUMBER - 3)

(ACTUAL_POSITION LOCATION -200)

(DISTANCE AMOUNT -200)

(ERROR SIGNAL MAGNITUDE 233)

(CYCLE NUMBER -~ 4)

(ACTUAL POSITION LOCATION -300)

(DISTANCE AMOUNT -300)

(ERROR SIGNAL MAGNITUDE 133)

(CYCLE NUMBER = 5)

(ACTUAL POSITION LOCATION -400)

(DISTANCE AMOUNT ~-400)

(ERROR SIGNAL DIRECTION OFF)

(ERROR SIGNAL MAGNITUDE 0)

(DAC VOLTAGE DIRECTION OFF)

(SERVO AMP ' _VOLTAGE OFF)

(MOTOR VOLTAGE DIRECTION OFF)

(MOTOR CURRENT CONDITION OFF)

(JAWS TO MOVE CONDITION NO)

(CYCLE NUMBER - 6)

(== AT EQUILIBRIUM -=)

Figure 2. Normal Simulation

17

? (update “EFFECTOR “(equal (# NAME) “commanded position)
“(VALUE ~120))
? (update “EFFECTOR “(equal (# NAME) “tachometer)
“(VALUE “bad))
? (gotoit 6)
(CYCLE NUMBER - 1)
(COMMANDED POSITION LOCATION -120)
(ACTUAL POSITION LOCATION —400)
(DISTANCE AMOUNT -400)
(ERROR_SIGNAL DIRECTION POSITIVE)
(ERROR SIGNAL MAGNITUDE 280)
(DAC VOLTAGE DIRECTION POSITIVE)
(SERVO AMP VOLTAGE DIRECTION POSITIVE)
(MOTOR VOLTAGE DIRECTION POSITIVE)
(MOTOR CURRENT CONDITION ON)
(JAWS_TQ_MOVE CONDITION YES)
(TACHOMETER CONDITION BAD)
(CYCLE NUMBER - 2)
(ACTUAL_POSITION LOCATION —380)
(DISTANCE AMOUNT -300)
(ERRO&_SIGNAL MAGNITUDE 260)
(CYCLE NUMBER - 3)
(ACTUAL_POSITION LOCATION -360)
(DISTANCE AMOUNT -200)
(ERROR SIGNAL MAGNITUDE 240)
(CYCLE NUMBER - 4)
(ACTUAL_POSITION LOCATION -340)
(DISTANCE AMOUNT -100)
(ERROR SIGNAL MAGNITUDE 220)
(CYCLE NUMBER - 5)
(ACTUAL_POSITION LOCATION -320)
(DISTANCE AMOUNT 0)
(ERROR_SIGNAL MAGNITUDE 200)
(CYCLE NUMBER - 6)
(=- AT EQUILIBRIUM --)

Figure 3. Abnormal Simulation

In figure 3, the end effector begins at equilibrium with the jaws
at position -400. This time, however, the condition of the tachometer
component is changed to "bad" before beginning the.simulation. When the
tachometer 1is not working properly, the jaws move too quickly for the
shaft encoder to .encode the movement. Thefefore, the position register

in the microprocessor is not updated properly and the jaws move too far,

18

usually either all the way to the fully open or fully closed positiod,
depending on the direction of travel. To simulaté the bad tachometer,
it was decided to assume that the position register is only updated 20
counts for every 100 counts of jaw movement. (The number 20 was chosen
arbitrarily — the goal is to show that the jaws will end up in the wrong
position and the éxact location of this position is not important.) The
commanded_position is set to -120. On a normal simulation, where none
of the components 1is defective, the jaws should move to position =200
and the system should return to a normal state of equilibrium, i.e. the
jaws are not moving and there is no voltage signal in any of the com-
ponents. However, as the simulation indicates, the jaws move past posi-
tion =200, all the way to position 0, where they can move no farther.
At this point the system is in equilibrium - no VALUE attrcibute will
change no matter how many cycles are executed. However, the system is
in an abnormal state. There is still a positive error signal which
occurs all the way through the system because the microprocessor program
thinks the jaws are at position =-320. The system will remain in this

state until something or someone intervenes to correct it.

19

3. Error Diagnosis Using the RKBM Model

After completing the RKBM end effector model, the remaining task
was to determine how to use the information contained in the model to
answer questions about the state of the system. The question of partic-
ular interest in error diagnosis is, "Why does component "x" have value
"y" when it should have value "z"?" The answer might be something 1like,
"because component "q" is defective." Since, in the RKBM model, nothing
is defective unless it is specified as such, the reader may question the

need for an algorithm to detect a defective component. However, an
RKBM-based expert system working in cooperation with an operational sys—

tem would require such an algorithm.

3.1. The RKBM Model and the Operational System

The ultimate goal of this research is to have an RKBM model resid-
ing on a microprocessor which is physically connected to the operational
system represented by the model. As the system operates, the model will
be wupdated according to the values of the system components. For exam-
ple, the microprocessor on which the end effector model resides will
have a direct connection to the output of the end effector controller
microprocessor to detect the error signal output by .the controller
microprocessor. Similar connections will exist for all components of
the RKBM model whose VALUE BY attribute is not default. Consequently,
these components of the model will be updated by the operation of the
actual system, rather than the functional relationships in the model
that are used to drive a simulation. . There will be no such connections

for components whose VALUE BY attribute is default and, therefore, these

- 20
components will not be updated.

Whenvthe operationai system malfunctions, the error diagnosis algo-
rithm will be invoked to trace backwards through the functional descrip-
tion of the model to find the cause of the malfunction. As the trace
through the derivation of a component is performed and a component whose
VALUE attribute is derived by default is encountered, its current value
will not be found in the model. Human intervention will be required to
check that component and inform the expert system of the state of the
component. In performing these checks, the human user will eventually
discover the component responsible for the malfunction. Because of the
required human intervention, the algorithm proposed here is one fof

error diagnosis guided by an expert system rather than a . completely

automatic error diagnosis scheme.

3.2. An Algorithm for Error Diagnosis

The algorithm presented is defined by the recursive function
"examine origin'". Examine origin performs a backwards trace on the
derivation of the VALUE attribute of its component argument and returns
the entry in this VALUE éttribute. During this trace, the states of all
components that directly or indirectly (through the recursion) determine
the value of the component under examination are revealed. Therefore,
if there is a defective component that could have caused the incorrect
value of the component under examination, it will be discovered during

the trace.

Two slightly different versions of examine origin are presented

here, although both give the same results for the end effector example

21

upon which they are demonstrated. Method I represents the algorithm
originally tested and method II is an adaptation. The difference
between the two methods is noted as each is described. It is believed
that this difference would not be significant for any example involving
the end effector model, however, this has not been proven., It is also
unknown as to whether significantly different results would be produced

by the two methods if they were tested on a different RKBM model.
3.2.1. Method I

The algorithm for method I is shown in figure 4. The first step of
examine origin is to add its argument to the global examined list.
(This list prevents a component from being examined more than once and
thus prevents the trace from endlessly looping.) Next, if the VALUE
attribute of éhe component is derived by default, its value is returned
and examine origin is finished. However, if the VALUE attribute of the
component is not derived by default, the relation used to derive VALUE
must be examined. Each relétion consists of a set of boolean expression
(b_expr) - value expressidn (v_expr) pairs. At the time the relation
is wused to derive the value of a component, only one b _expr is true and
its corresponding v_expr is used to derive the value. Examine origin
uses '"evaluate b expr" on each b _expr in the relation until the true
b expr is found. Evaluate b expr uses "is" to check as many subcondi-
tions of the b expr as necessary to determine its truth or falsehood.
Examine origin is then invoked for each unexamined component in the true
b _expr and corresponding v_expr. As the value of a component is returned
by examine origin, it is checked against a set of acceptable values 'for

that component by "in range". Table 3 shows the acceptable value range

22

examine origin (component); (* returns value of component *)
begin '
add component to examined list;
if component value is derived by default then
return value
else begin (* component value is derived by relation *)
repeat
evaluate b_expr (b__exp r_number)
until a true b expr is found;
for each component in the true b_expr and corresponding
v_expr do
if component not already examined then
if not inrange (component,examing_prigin(component))
then
add component to possible malfunction list;
return value;
end
end; (* examine origin *)

evaluate b expr (b_expr_number); (* returns true if b expr %)
(* is true, false otherwise *)

begin ,

repeat

is (condition of 'b_expr)

until b expr can be determined true or false;

return true or false
end; (* evaluate_b_expr *)

is (condition of b_expr); (* returns true if condition *)
(* is true, false otherwise *)
begin
- look in database for value(s) of component(s) in condition
of b expr;
use value(s) to determine if condition is true or falsé?

return true or false
end; (* is *)

inrange (component,value); (* returns true if value is valid *)
(* range for component, false *)
" (* otherwise *)

Figure 4. Method I - Algorithm for Error Detection.

for each component of the end effector. If a component”“s value 1is not

in this acceptable range, the component is added to a possible

23

Value Ranges for End Effector Components

commanded position 0 to -11357
actual position 0 to -11357
distance 0 to -11357

error_signal direction positive, negative, off
error_signal magnitude =11357 to +11357

dac ok

dac_voltage positive, negative, off
servo_amp ok

servo_amp_voltage positive, negative, off
motor leads ok

motor_circuit closed

motor_current on, off

motor_ switch on

motor_voltage positive, negative, off
jaws to move yes, no

gears ok

power_supply on

short_circuit no

tachometer ok

shaft_encoder ok

Table 3. Value Ranges for End Effector Components.

malfunction list. -When the original invocation of examine origin is
finished, the possible malfunction list should contain any components
whose out-of-range values could have caused the problem in the component

under examination.

Appendix G contains a trace of the recursive calls to
examine origin when examine origin(distance) is invoked after the previ-
ously discuséed simulation with the bad tachometer in figure 3.
Examine origin(distance) 1is invoked because the problem here is that

distance does not have the value that was commanded.

24

2._2_._2_.- Method II

The algorithm using method II is shown in figure 5. Method 1II
differs from method I in that, as each b_expr is evaluated,
examine_origin is invoked for the components in the b expr. This seenms
more logical than simply inquiring about the value of a component at one
point and later examining 1it. However, it could also cause unnecessary
examination of some of the components in a false b expr since the com-
ponents examined before determiniﬁg that the b_expr is false may not
have any influence on the derivation of the value, i.e. the true b _expr

and corresponding V_expr may not involve these components.

Appendix H contains a trace of examine origin using method II for

the same bad tachometer example used to illustrate method I.

25

examine_origin (component); (* returns value of component *)
begin
add component to examined list;
if component value is derived by default then
return value
else begin (* component value is derived by relation *)
repeat
evaluate b expr (b_expr number)
until a true b _expr is found;
for each component in the corresponding v_expr do
if component not already examined then
if not inrange (component,examine origin(component))
- then
add component to possible malfunction list;
return value;
end
end; (* examine origin *)

evaluate b expr (b_expr number); (* returns true if b expr *)
begin (* is true, false otherwise *)
repeat
is (condition of b _expr)
until b_expr can be determined true or false;
return true or false
end; (* evaluate b expr *)

is (condition of b _expr); (* returns true if condition *)
begin (* is true, false otherwise *)
for each component in condition of b _expr do
if component of condition of b_expr not already examined

then begin

use examine origin(component) to get value of component;
if not inrange(component value) then
add component to posgible malfunction 1list
end
else
look up value of component in database;
use value(s) to determine if condition of b _expr is true or
: false;
return true or false
end; (* is *)

inrange (component,value); (* returns true if value is valid *)

2* range for component, false *3
* otherwise *

Figure 5. Method II - Algorithm for Error Detection.

26

4. Conclusions

The RKBM knowledge representation format has proven to be usable as
the basis of an expert diagnostic system. However, the method for using
an RKBM description in connection with an operational system has been
only loosely defined. More research is required in severallareas before

such an expert system becomes a reality.

First, the RKBM approach to modelling a system requires further
examination. Problems that have been encountered in modelling the end
effector may bg non-existent when modelling other systems. In particu-
lar, the question of an order-dependent versus an order~-independent
model may not be a significant issue for other systems. More experimén—
tation should be done to define classes of systems and corresponding

methods for best describing them using the RKBM approach.

Another area requiring further research concerns the two versions
of the error diagnosis algorithm presented here. Several other RKBM
models should be examined using both versions of the algorithm.
Although the difference between the two versions is insignificant for
the end effector model, error diagnosis using another RKBM model may

reveal that this difference has some significance.

Finally, further examination of the relationships between the
model, the operational system, the diagnosis algorithm, and the human
user is required. As stated earlier, the expert system proposed here is
not a completely automated‘error diagnosis system. Human intervention
is a gritical component of the error diagnosis scheme. The way in which

the diagnostic algorithm and the model are connected to the operational

v

27

system and the way in which information is requested and received from
the user must be defined more specifically. This area of research
necessarily includes the development of an implementation of the error

diagnosis system.

28

3. References

[1] Davis, R., "Diagnosis via causal reasoning: Paths of Interaction
and the Locality Principle", Proceedings of the National Conference
on Artificial Intelligence, August 22-26, 1983, pp. 88-94.

[2] Blanks, M., "Relational Knowledge~Base Machines - A New Approach to
Computer Problem Solving", Honors thesis for B. S. Computer Sci-

ence, College of William and Mary, Williamsburg, Va., April 1983.

29

Appendix A: Prime LISP versus UTLISP

Before beginning development of the end effector model, the RKBM
LISP functions had‘to be rewritfen from.Prime LISP to UTLISP for execu-
tion on the CDC Network Operating System. Thié appéndix is intended to
explain the differences between Blanks” implementation for Prime LISP
and the UTLISP implementation presented here. It is also intended to
aid the reader interested' in the implementation of an RKBM system in

porting the LISP routines provided here to another LISP implementation.
Minor changes to Blanks” implementation include:

(1) The SELECT function has been renamed SELEKT to avoid conflicts with

the UTLISP SELECT function.

(2) The Prime LISP functions SDEFUN and SNDEFUN are equivalent to the
UTLISP functions DEF and DEFF, respectively. The later functions

in each pair are used to define other functions whose arguments

will not be evaluated upon invocation of the function.

(3) The purpose of the fourth argument in Blanks” UPDATE function could

not be determined and this argument has therefore been removed.
More substantial changes to Blanks~ implementation include:

(1) The functions have been changed from “pure” LISP to include the use

of iteration for the sake of clarity.

(2) The Prime LISP GET and PUT functions for property lists are simu-

lated by GETV and PUTV in the UTLISP implementation. Prime LISP

(3)

(4)

(5)

30
allows any list with an even number of elements, regardless of how

it 1is generated, to be operated upon by GET and PUT as a property
list. UTLISP has a stricter implementation of property 1lists -
only true property lists can be operated dpon as property lists and
a property list does not héve the same structure as an ordinary

list,

The inability to manipulate property 1lists as in Prime LISP

required a change in the UPDATE function so that when a component

of the system is updated, the entire relation is replaced. This is
necessary so that components evaluated later in the database rela-
tion will have access to values that have been updatéd earlier in
the same cycle through the database. The Prime LISP property list
functions evidently manipulate the internal structure of the 1list,
thus ‘making a replacement of the entire list unnecessary. Without
this change to the UTLISP implementation, an order-dependent model

as described in section 2.3.4 would have been impossible .

Since property list GET and PUT functions are no longer being used,
it‘ is no longer necessary for each tuple in the representation of
the relatioh to contain attribute - value pairs. Instead, the
first tuple in a relation is a list of attributes and each tuple

contains a list of values corresponding to the attributes.

A function GOTOIT has been added that accepts. an argument “max”.

As described in section 2.3.5, GOTOIT drives a simulation of the

RKBM end effector system.

31

(6) Finally, the attribute DERIVED has been eliminated because the

information it contains can be found in the VALUE BY attribute. A
function VALUEFUNCTION has been added to be used by UPDATE within
GOTOIT to determine how to evaluate a new value for a component,
depending on whether value by is equal to “default”, a relation
name, oOr an e#pression. '(By representing expressions as relations
with one boolean expression - value expression pair, there are only

two possible entries for value by - default or a relation name.)

32

Appendix B: RKBM Lisp Routines

This appendix contains the lisp routines that execute the RKBM system.

(DEF (GETV (LISS ATTLIST KEY)
% LOCATES KEY IN ATTLIST, THEN RETURNS VALUE THAT %
% OCCUPIES CORRESPONDING POSITION IN LISS
% = INTENDED TO SIMULATE PRIME LISP GET FUNCTION
Z FOR PROPERTY LIST VALUES
(COND ((EQUAL (CAR ATTLIST) KEY) (CAR LISS))
(T (GETV (CDR LISS) (CDR ATTLIST) KEY))
)))

(DEF (PUTV (LISS ATTLIST KEY VALUE)
% LOCATES KEY IN ATTLIST, THEN REPLACES VALUE IN %
% CORRESPONDING POSITION IN LISS - INTENDED TO
% SIMULATE PRIME LISP PUT FUNCTION FOR PROPERTY
% LIST VALUES
(COND ((EQUAL (CAR ATTLIST) KEY)
(CONS VALUE (CDR LISS))

39 A e e

N e e

(T (CONS (CAR LISS) (PUTV (CDR LISS)
(CDR ATTLIST)
KEY
VALUE

))))))
(DEFF (# (X)

(GETV (CAR TUPLES) ATTRIBUTES (CAR X))
))

(DEF (SELEKT (RELATION SCRIT PCRIT)

% DATABASE SELECT QUERY - FOR EVERY TUPLE IN RELATION
FOR WHICH SCRIT IS TRUE, A TUPLE 1S CREATED
CONTAINING THE VALUES SPECIFIED IN PCRIT. THESE
TUPLES ARE GATHERED INTO A NEW RELATION THAT IS
RETURNED BY SELEKT.
(PROG (ATTRIBUTES TUPLES SELEKTION)

(SETQ ATTRIBUTES (CAR RELATION))

(SETQ TUPLES (CDR RELATION))
LOOP

(COND % END OF RELATION — RETURN NEW RELATION TUPLES %

((NULL TUPLES) (RETURN (REVERSE SELEKTION)))
% SCRIT TRUE - ADD NEW TUPLE TO NEW RELATION %

((EVAL SCRIT) (SETQ SELEKTION
(CONS (MAPCAR PCRIT “EVAL) SELEKTION)

A X
N 38 59N e

)
) _
(SETQ TUPLES (CDR TUPLES)) % NEXT TUPLE %
(GO LooOP)

)))
(DEF (SELECT1 (RELATION SCRIT PCRIT)

% SIMILAR TO SELEKT EXCEPT ONLY RETURNS pA

4 ONE TUPLE - FOR FIRST TUPLE FOUND FOR
% WHICH SCRIT IS TRUE.
(PROG (ATTRIBUTES TUPLES SELEKTION)
(SETQ ATTRIBUTES (CAR RELATION))
(SETQ TUPLES (CDR RELATION))
LOOP ‘ :
(COND % END OF RELATION - RETURN %
((NULL TUPLES) (RETURN NIL))
% SCRIT TRUE - RETURN NEW TUPLE %

((EVAL SCRIT) (RETURN (EVAL (CAR PCRIT))))

N e

(SETQ TUPLES (CDR TUPLES)) % NEXT TUPLE %
(Go Loop)
))

(DEF (PROJECT (RELATION SCRIT PCRIT)
% DATABASE PROJECT QUERY - DISPLAYS NEW RELATION AS ¥

% WOULD BE CONSTRUCTED AND RETURNED BY SELEKT BUT
% RETURNS NIL.

(PROG (ATTRIBUTES TUPLES)

(SETQ ATTRIBUTES (CAR RELATION))

(SETQ TUPLES (CDR RELATION))
LOOP ‘

(COND % END OF RELATION ~ RETURN %

((NULL TUPLES) (PRINT “(--END PROJECT))
(RETURN NIL)

N e N

A

Z SCRIT TRUE - DISPLAY NEW TUPLE %

; ((EVAL SCRIT) (PRINT.(MAPCAR PCRIT “EVAL)))

(SETQ TUPLES (CDR TUPLES)) % NEXT TUPLE A
(GO LooP)
)))
(DEF (UPDATE (RELATION SCRIT APAIR)
% DATABASE UPDATE QUERY -~ FOR EACH TUPLE IN RELATION
%Z FOR WHICH SCRIT IS TRUE, REPLACE THE VALUE OF
%Z ATTRIBUTE (CAR APAIR) WITH EVALUATION OF THE
% SECOND ITEM IN APAIR (CADR APAIR).
(PROG (ATTRIBUTES TUPLES UPDATED REL)
(SETQ REL (EVAL RELATION))
(SETQ ATTRIBUTES (CAR REL))
(SETQ TUPLES (CDR REL))
(SETQ UPDATED (LIST ATTRIBUTES))
Loop
(COND % END OF RELATION - RETURN ¥

((NULL TUPLES) (PRINT “(--END UPDATE))
(RETURN NIL)

39 N NN

)
%Z SCRIT TRUE - UPDATE ATTRIBUTE % :
((EVAL SCRIT) (SETQ UPDATED (CONS (PUTV (CAR TUPLES)
_ ATTRIBUTES
(CAR APAIR)
(EVAL (CADR APAIR))

33

34

UPDATED
))
%Z REPLACE ENTIRE RELATION - NECESSARY SO %
% LATER TUPLES DURING THIS UPDATE CAN Z
% ACCESS NEW ATTRIBUTE OF THIS TUPLE, %
(SET RELATION (APPEND (REVERSE UPDATED)
(CDR TUPLES)
)))

% SCRIT FALSE - GATHER OLD TUPLE INTO UPDATED LIST %
(T (SETQ UPDATED (CONS (CAR TUPLES) UPDATED)))
)
(SETQ TUPLES (CDR TUPLES)) % NEXT TUPLE ¥%
(GO LooOP)
))
(DEF (NOTEQ (X Y)
(COND ((EQUAL X Y) NIL)
(T T)
)
)

(DEF (GTREQ (X Y)
~ (COND ((LESSP X Y) NIL)
(T T)
)
))

(DEF (LSSEQ (X Y)
(COND ((GREATERP X Y) NIL)
(T T)

)
))
(DEF (ABS (X)
(COND ((GTREQ X 0) X)
(T (MINUS X))
) .
))

(DEF (EVLX (X)
(COND ((ATOM X) X)
(T (EVAL X))

))
(DEF (GOTOIT (MAX)
% CYCLES THROUGH END_EFFECTOR DATABASE UPDATING VALUE %

% ATTRIBUTES. STOPS WHEN 2 CONSECUTIVE CYCLES %
% PRODUCE EXACTLY THE SAME VALUES (I.E. VALUE = %
% VALUE* SO EQUILIBRIUM IS REACHED) OR MAX IS REACHED %
(PROG (KNT)

(SETQ KNT 1)

LOOP

(PRINT (APPEND “(CYCLE NUMBER -) (LIST KNT)))
(UPDATE “EFFECTOR “T “(VALUE (VALUEFUNCTION)))
(COND % ALL VALUES=VALUE*S — STOP ¥
((EQUAL (SELEKT EFFECTOR “T “((# VALUE)))
(SELEKT EFFECTOR “T “((# VALUE*)))
)

’;

»)

35

(PRINT (== AT EQUILIBRIUM --))
(RETURN NIL)
))
% DISPLAY ALL VALUES CHANGED ON THIS CYCLE %
(PROJECT EFFECTOR “(NOTEQ (# VALUE*) (# VALUE))
“((# NAME) (# VARIABLE) (# VALUE))
)

% UPDATE VALUE* FIELDS = VALUE FIELDS %
(UPDATE “EFFECTOR “T “(VALUE* (# VALUE)))
(SETQ KNT (PLUS KNT 1))
(COND % MAX IS REACHED - STOP %
((GREATERP KNT MAX) (PRINT “(-~- MAX CYCLE REACHED. --))
(RETURN NIL)
))

(GO LoOP)

(DEF (VALUEFUNCTION ()
% FUNCTION TO DETERMINE HOW TO DERIVE NEW VALUE %
% ATTRIBUTE IN RELATION %
(COND 7% VALUE DERIVED BY DEFAULT %

))

((EQUAL (# VALUE_BY) “DEFAULT) (# VALUE))

% VALUE DERIVED BY RELATION %

((ATOM (# VALUE BY)) (SELECT! (EVAL (# VALUE BY))

(EQUAL (EVLX (# B_EXPR)) °T)
“((EVLX (# V_EXPR)))

)

% VALUE DERIVED BY SINGLE EXPRESSION %
(T CEVAL (# VALUE_BY)))

Appendix C:

The RKBM End Effector Model

This appendix contains the lisp code that defines the
model.

(SETQ EFFECTOR “(

(

NN\

L X\ 4

N

NN\

N\

NAME
VARIABLE
PARENT
VALUE BY
VALUE*
VALUE

MICROPROCESSOR
CONDITION
SYSTEM
DEFAULT

OK

OK

COMMANDED_POSITION
LOCATION
MICROPROCESSOR
DEFAULT

0

0

ACTUAL_POSITION
LOCATION
MICROPROCESSOR
ACTUAL

0

0

DISTANCE
AMOUNT.

-SYSTEM

DISTANCE AMT
0

0

ERROR_SIGNAL
DIRECTION
MICROPROCESSOR
ERR_SIG_DIR
OFF

OFF

ERROR_SIGNAL
MAGNITUDE
MICROPROCESSOR

36

RKBM end effector

ERR_SIG_MAG
0
0

DAC
CONDITION
SYSTEM
DEFAULT
OK

OK

DAC_VOLTAGE
DIRECTION
DAC
DAC_VOLT
OFF

OFF

SERVO AMP
CONDITION
SYSTEM
DEFAULT
OK

)4

SERVO_AMP_VOLTAGE
DIRECTION
SERVO_AMP
SERVO_VOLT

OFF '

OFF

MOTOR_LEADS
CONDITION
SYSTEM
DEFAULT

OK

OK

MOTOR CIRCUIT
CONDITION
MOTOR

DEFAULT
CLOSED

CLOSED

MOTOR_SWITCH
CONDITION
MOTOR
DEFAULT

ON

ON

37

w—*

MOTOR _VOLTAGE
DIRECTION

. MOTOR

~~

~

MOTOR_VOLT
OFF
OFF

MOTOR CURRENT
CONDITION
MOTOR

CURRENT

OFF

OFF

JAWS_TO MOVE
CONDITION

"~ SYSTEM

N\

MOVE_JAWS
NO
NO

GEARS
CONDITION
SYSTEM
DEFAULT
OK

OK

POWER_SUPPLY
CONDITION
SYSTEM
DEFAULT

ON

ON

SHORT_CIRCUIT
CONDITION
SYSTEM
DEFAULT

" NO

N\

N\

NO

TACHOMETER
CONDITION
SYSTEM
DEFAULT

OK

OK

SHAFT_ENCODER
CONDITION

SYSTEM
DEFAULT

38

39

OK
0K
)

)
(SETQ MOTOR VOLT ~(

(V_EXPR B _EXPR)
((SELECT1 EFFECTOR “(EQUAL (# NAME) “SERVO AMP VOLTAGE) ~((# VALUE)))

(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “POWER_SUPPLY) “((# VALUE)))
: . “ON

) ' :
(EQUAL (SELECT! EFFECTOR “(EQUAL (# NAME) “MOTOR_LEADS) ~((# VALUE)))

“0K
)))
(OFF
(OR (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “POWER_SUPPLY) “((# VALUE)))
“OFF :

)
(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “SERVO_AMP_VOLTAGE)
“((# VALUE))
)

“OFF

)))
(POSITIVE

(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “POWER_SUPPLY) “((# VALUE)))
“ON
)

(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “MOTOR _LEADS) “((# VALUE)))
“REVERSE
)

(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “SERVO_AMP_VOLTAGE)
“((# VALUE))

)
“NEGATIVE
)))
(NEGATIVE
(AND (EQUAL (SELECT] EFFECTOR “(EQUAL (# NAME) “POWER _SUPPLY) “((# VALUE)))
“ON
)
(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “MOTOR_LEADS) “((# VALUE)))
“REVERSE

)
(EQUAL (SELECT1 EFFECTOR ~(EQUAL (# NAME) “SERVO_AMP_VOLTAGE)
“((# VALUE))
)

“POSITIVE ’
o)))
))

(SETQ SERVO_VOLT “(
.(V_EXPR B_EXPR)
((SELECTI EFFECTOR ~(EQUAL (# NAME) “DAC_VOLTAGE) ~((# VALUE)))
(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “SERVO_AMP) “((# VALUE)))
“OK
))

40

(OFF
(EQUAL (SELECT1 EFFECTOR ~(EQUAL (# NAME) “SERVO_AMP) “((# VALUE)))
))

(POSITIVE :
(OR (EQUAL (SELECT! EFFECTOR “(EQUAL (# NAME) “SERVO_AMP) “((i# VALUE)))
“CONSTANT. POSITIVE

)
(AND (EQUAL (SELECT1 EFFECTOR ~(EQUAL (# NAME) “SERVO_AMP) “((# VALUE)))
“REVERSE
)

(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “DAC_VOLTAGE)
“((# VALUE))
)

“NEGATIVE

)))
(NEGATIVE

(OR (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “SERVO_AMP) “((# VALUE))) o
“CONSTANT NEGATIVE D
) :

(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “SERVO AMP) ~((# VALUE)))
“REVERSE
)

(EQUAL (SELECT1 EFFECTOR '(EQUAL (i# NAME) “DAC_VOLTAGE)
“((# VALUE))
)

“POSITIVE
))))
)
(SETQ DAC VOLT “(
(V EXPR B EXPR)
((SELECT1 EFFECTOR “(AND (EQUAL (# NAME) “ERROR_SIGNAL)
(EQUAL (# VARIABLE) “DIRECTION)

)
“((# VALUE))

)
(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “DAC) “((# VALUE)))
“0K :
))
(OFF
(OR (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “DAC) “((# VALUE)))
“BAD
)
(EQUAL (SELECT1 EFFECTOR “(AND (EQUAL (# NAME) “ERROR_SIGNAL)
(EQUAL (# VARIABLE) “DIRECTION)
“((# VALUE))
) ;
“NIL
)))
(POSITIVE

(OR (EQUAL (SELECT! EFFECTOR “(EQUAL (# NAME) “DAC) “((# VALUE)))
“CONSTANT POSITIVE

41

)
(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “DAC) “((# VALUE)))
“REVERSE
)

(EQUAL (SELECT1 EFFECTOR “(AND (EQUAL (# NAME) “ERROR _SIGNAL)
(EQUAL (# VARIABLE) “DIRECTION)
)

“((# VALUE))

)
“NEGATIVE

)))
(NEGATIVE
- (OR (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “DAC) ~((# VALUE)))
“CONSTANT NEGATIVE
)

(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “DAC) ~((# VALUE)))
“REVERSE
)

(EQUAL (SELECT1 EFFECTOR “(AND (EQUAL (# NAME) “ERROR_SIGNAL)
(EQUAL (# VARIABLE) “DIRECTION)
)

“((# VALUE))
)
“POSITIVE
)))
))
(SETQ CURRENT “(
(V_EXPR B EXPR)
(ON -

(AND (NOTEQ (SELECT1 EFFECTOR “(EQUAL (# NAME) “MOTOR _VOLTAGE) “((# VALUE)))
“OFF
)

(EQUAL (SELECT1 EFFECTOR ~(EQUAL (# NAME) “MOTOR . CIRCUIT) ~((# VALUE)))
“CLOSED
)))

(OFF

(OR (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “MOTOR ._VOLTAGE) “((# VALUE)))
“OFF
)

(EQUAL (SELECTI EFFECTOR ~(EQUAL (# NAME) “MOTOR _CIRCUIT) “((# VALUE)))
“OPEN
))

)
(SETQ ERR_SIG_MAG “(

(V EXPR B EXPR)
(0
(OR (EQUAL (SELECT1 EFFECTOR - (EQUAL (# NAME) MICROPROCESSOR) “((# VALUE)))
“BAD
)

(AND (EQUAL (SELECT1 EFFECTOR ~(EQUAL (# NAME) “MICROPROCESSOR)
“((# VALUE))
)

“0K

42

) .
(LESSP (ABS (DIFFERENCE (SELECT1 EFFECTOR
“(EQUAL (# NAME) “ACTUAL . POSITION)
“((# VALUE))
)
(SELECT1 EFFECTOR
“(EQUAL (# NAME)
“COMMANDED POSITION
)

“((# VALUE))
)))
100

)))
(1200

(OR (EQUAL (SELECT1 EFFECTOR ~(EQUAL (# NAME) “MICROPROCESSOR) “((# VALUE)))
“CONSTANT POSITIVE
)

(EQUAL (SELECT1 EFFECTOR ~(EQUAL (# NAME) “MICROPROCESSOR) “((# VALUE)))
, “CONSTANT NEGATIVE
)))

((ABS (DIFFERENCE (SELECT1 EFFECTOR “(EQUAL (# NAME) “ACTUAL , POSITION)
“((# VALUE))
)

(SELECT1 EFFECTOR ~(EQUAL (# NAME) “COMMANDED) POSITION)
, “((# VALUE))
)))

(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “MICROPROCESSOR) “((# VALUE)))
0K
)

(GTREQ (ABS (DIFFERENCE (SELECTl EFFECTOR
“(EQUAL (# NAME) ’ACTUAL_POSITION)
“((# VALUE))

)
(SELECT1 EFFECTOR
“(EQUAL (# NAME)
“COMMANDED_POSITION
)

“((# VALUE))

)))
100

)))

))

(SETQ ERR_SIG DIR “(
(V_EXPR B_EXPR)
(OFF

(OR (EQUAL (SELECT! EFFECTOR “(EQUAL (# NAME) “MICROPROCESSOR) “((# VALUE)))
“BAD
)

(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “MICROPROCESSOR)
“((# VALUE))
) .

“0K

43

(LESSP (ABS (DIFFERENCE (SELECT1 EFFECTOR
“(EQUAL (# NAME) “ACTUAL_POSITION)
“((# VALUE))
)
(SELECT1 EFFECTOR
“(EQUAL (# NAME)
5 “COMMANDED POSITION

“((# VALUE))

)))
100

))))
(POSITIVE
(OR (EQUAL (SELECT! EFFECTOR ~(EQUAL (# NAME) “MICROPROCESSOR) “((# VALUE)))
“CONSTANT_POSITIVE

(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “MICROPROCESSOR)
“((# VALUE))
)

“0K

(GTREQ (DIFFERENCE (SELECT! EFFECTOR ‘
“(EQUAL (# NAME) “COMMANDED POSITION)
“((# VALUE))
)
(SELECT1 EFFECTOR
“(EQUAL (# NAME) “ACTUAL_POSITION)
“((# VALUE)) '
))
100
))))
(NEGATIVE
(OR (EQUAL (SELECT1 EFFECTOR ~(EQUAL (# NAME) “MICROPROCESSOR) ~((# VALUE)))
“CONSTANT NEGATIVE
)

(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “MICROPROCESSOR)
“((# VALUE))
)

70K
)
(GTREQ (DIFFERENCE (SELECTl EFFECTOR
“(EQUAL (# NAME) “ACTUAL POSITION)
“((# VALUE))
)
(SELECT1 EFFECTOR
“(EQUAL (# NAME) “COMMANDED_POSITION)
“((# VALUE))
))
100
D))
))

(SETQ DISTANCE_AMT ~(
(V_EXPR B _EXPR)

44

((DIFFERENCE (SELECT1 EFFECTOR “(EQUAL (# NAME) “DISTANCE) “((# VALUE)))

100
) _
(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) 'JAWS_IQ_MOVE) “((# VALUE)))
) .
(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) 'MOTOR;YOLTAGE) “((# VALUE)))
“NEGATIVE
)
(GREATERP (SELECT1 EFFECTOR “(EQUAL (# NAME) “DISTANCE) “((# VALUE)))
. -11258
)) -)
((PLUS (SELECT1 EFFECTOR “(EQUAL (# NAME) “DISTANCE) “((# VALUE)))
- 100
)
(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) ’JAWS_IQ_MOVE) “((# VALUE)))
“YES
)
(EQUAL_(SELECTI EFFECTOR “(EQUAL (# NAME) 'MOTO&_VOLTAGE) “((# VALUE)))
“POSITIVE
)
(LESSP (SELECT1 EFFECTOR “(EQUAL (# NAME) “DISTANCE) “((# VALUE)))
~100
))
(-11357 .
(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) 'JAWS_IQ_MOVE) “((# VALUE)))
B “YES
)
(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) 'MOTOR_VOLTAGE) “((# VALUE)))
“NEGATIVE
) . |
(LSSEQ (SELECT1 EFFECTOR '(EQUAL (# NAME) “DISTANCE) “((# VALUE)))
~11258
)))
(0
(AND (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) 'JAWS_?Q_MOVE) “((# VALUE)))
“YES '

)

(EQUAL (SELECT! EFFECTOR “(EQUAL (# NAME) “MOTOR_VOLTAGE) “((# VALUE)))
“POSITIVE '

)

(GTREQ (SELECT1 EFFECTOR “(EQUAL (# NAME) “DISTANCE) “((# VALUE)))
-100
)))

((SELECT1 EFFECTOR '(éQUAL (# NAME) “DISTANCE) “((# VALUE)))
(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “JAWS_TO MOVE) “((# VALUE)))
))

))
(SETQ ACTUAL “(
(V_EXPR B_EXPR)
((DIFFERENCE (SELECT1 EFFECTOR ~(EQUAL (# NAME) “ACTUAL POSITION)

)
100

)
(OR (AND (EQUAL

(EQUAL

(EQUAL

)
(EQUAL

)

“((# VALUE))

(SELECT1 EFFECTOR

)
“YES

(SELECT1 EFFECTOR
“0K

(SELECT1 EFFECTOR

)
“0K

(SELECT1 EFFECTOR

)
“NEGATIVE

“(EQUAL (# NAME)
'((# VALUE))

“(EQUAL (# NAME)

“(EQUAL (# NAME)
“((# VALUE))

“(EQUAL (# NAME)
“((# VALUE))

45

“JAWS_TO_MOVE)

“TACHOMETER) “~((# VALUE)))

“SHAFT_ENCODER)

“MOTOR_VOLTAGE)

(GREATERP (SELECT1 EFFECTOR “(EQUAL (# NAME) “DISTANCE)

))

)
-11258

“((# VALUE))

(EQUAL (SELECT1 EFFECTOR ~(EQUAL (# NAME) “SHAFT _ENCODER) “((# VALUE)))
“CONSTANT NEGATIVE

)))
«

PLUS (SELECT1 EFFECTOR “(EQUAL (# NAME) “ACTUAL . POSITION) “((# VALUE)))

100

)
(OR (AND (EQUAL

)
(EQUAL

)
(EQUAL

)
(EQUAL

)
(LESSP

(SELECT1 EFFECTOR

)
“YES

(SELECT1 EFFECTOR
“0K

(SELECT1 EFFECTOR

)
“0K

(SELECT1 EFFECTOR

)
“POSITIVE

(SELECT1 EFFECTOR

“(EQUAL (# NAME)
“((# VALUE))

“(EQUAL (# NAME)

“(EQUAL (# NAME)
“((# VALUE))

“(EQUAL (# NAME)
“((# VALUE))

“(EQUAL (# NAME)
“((# VALUE))

“JAWS_TO_MOVE)

“TACHOMETER) ~((# VALUE)))

“SHAFT_ENCODER)

“MOTOR_VOLTAGE)

“DISTANCE)

)

)
-100

)

46

(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “SHAFT_ENCODER) “((# VALUE)))

)))

’CONSTANI_POSITIVE

((DIFFERENCE (SELECT1 EFFECTOR

)
(AND

))

)
20

(SELECT1 EFFECTOR
“YES

(EQUAL

)
(EQUAL

)
(EQUAL

)
(EQUAL

)
(NOTEQ

)

(SELECT! EFFECTOR
“BAD

(SELECT1 EFFECTOR
“O0K

(SELECT1 EFFECTOR
“NEGATIVE

(SELECT1 EFFECTOR
-11357

“(EQUAL (#

NAME) “ACTUAL_POSITION) '

“((# VALUE))

“(EQUAL (#
“(EQUAL (#
;(EQUAL (i#
“(EQUAL (#

- (EQUAL (#

((PLUS (SELECTl EFFECTOR “(EQUAL (# NAME)

)

(AND (EQUAL

))
(-1135
(AND

20

(SELECT1 EFFECTOR
“YES

)
(EQUAL

)
(EQUAL

)
(EQUAL

)
(NOTEQ

)
7
(EQUAL

)
(EQUAL

)
(EQUAL

(SELECT1 EFFECTOR
“BAD

(SELECT1 EFFECTOR
“O0K

(SELECT1 EFFECTOR
“POSITIVE

(SELECT1 EFFECTOR
0

(SELECT1 EFFECTOR
“YES

(SELECT1 EFFECTOR
“OK

(SELECT1 EFFECTOR
“OK

“(EQUAL (#

“(EQUAL (#

~(EQUAL (#

“(EQUAL (#

- (EQUAL (#

“(EQUAL (#

“(EQUAL (#

“(EQUAL (#

NAME) “JAWS_TO MOVE) “((# VALUE)))

NAME) “TACHOMETER) “((# VALUE)))
NAME) “SHAFT_ENCODER) “((# VALUE)))

NAME) “MOTOR_VOLTAGE) “((# VALUE)))

NAME) “DISTANCE) “((# VALUE)))
“ACTUAL_POSITION) “((# VALUE)))
NAME) “JAWS_TO MOVE) ~((# VALUE)))
NAME) “TACHOMETER) “((# VALUE)))
NAME) “SHAFT_ENCODER) ~((# VALUE)))
NAME) “MOTOR VOLTAGE) ~((# VALUE)))

NAME) “DISTANCE) “((# VALUE)))

NAME) “JAWS TO MOVE) ~((# VALUE)))

NAME) “TACHOMETER) ~((# VALUE)))

NAME) “SHAFT _ENCODER) “((# VALUE)))

))
(0
(AND

))

)

(EQUAL (SELECT1 EFFECTOR

“NEGATIVE

)
(LSSEQ

(SELECT1 EFFECTOR

-11258

)
(EQUAL

)
(EQUAL

)
(EQUAL

)
(EQUAL

“YES

(SEL
“0K

‘0K

(SELECT1 EFFECTOR

(SELECT! EFFECTOR

(SELECT1 EFFECTOR

ECT1 EFFECTOR

“POSITIVE

)
(GTREQ

)

-100

(SELECT1 EFFECTOR

“(EQUAL (# NAME)

“(EQUAL (# NAME)

“(EQUAL (# NAME)

“(EQUAL (# NAME)

“(EQUAL (# NAME)

- (EQUAL

“(EQUAL (# NAME)

(# NAME)

47

“MOTOR_VOLTAGE) “((# VALUE)))

“DISTANCE) “((# VALUE)))

“JAWS_TO_MOVE) “((# VALUE)))

“TACHOMETER) “((# VALUE)))

“SHAFT_ENCODER) “((# VALUE)))

“MOTOR_VOLTAGE) “((# VALUE)))

“DISTANCE) “((# VALUE)))

((SELECT1 EFFECTOR “(EQUAL (# NAME) “ACTUAL POSITION) “((# VALUE)))
(OR (EQUAL (SELECT! EFFECTOR “~(EQUAL (# NAME) “SHAFT_ENCODER) “((# VALUE)))

)

“BAD

(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “JAWS_TO MOVE) “((# VALUE)))

)

“NO

(AND (EQUAL (SELECT1 EFFECTOR

)

)
(EQUAL

)
(EQUAL

)
(EQUAL

)
(EQUAL

)

)
“YES

(SELECT! EFFECTOR
“BAD

(SELECT1 EFFECTOR

)
“0K

(SELECT1 EFFECTOR

)
“NEGATIVE

(SELECT1 EFFECTOR

=-11357

(AND (EQUAL (SELECT1 EFFECTOR

-(EQUAL (# NAME)
“((# VALUE))

“(EQUAL (# NAME)

~(EQUAL (# NAME)
“((# VALUE))

~(EQUAL (# NAME)
“((# VALUE))

“(EQUAL (# NAME)

“(EQUAL (# NAME)
“((# VALUE))

“JAWS_TO_MOVE)

“TACHOMETER) “((# VALUE)))

“SHAFT_ENCODER)

“MOTOR_VOLTAGE)

“DISTANCE) “((# VALUE)))

~JAWS_TO_MOVE)

)
“YES

)

(EQUAL (SELECT1 EFFECTOR
“BAD

)
(EQUAL (SELECT1 EFFECTOR

)
“0K

)

(EQUAL (SELECT1 EFFECTOR
)
“POSITIVE

)

(EQUAL (SELECT1 EFFECTOR
0

))
))

(SETQ MOVE_JAWS “(
(V_EXPR B_EXPR)
(YES

(AND (NOTEQ

)
(EQUAL

)
(EQUAL

)
(EQUAL

)
(EQUAL

)))
(NO

“OFF

“ON

“ON

“NO

0K

“(EQUAL (# NAME)

“(EQUAL (# NAME)
“((# VALUE))

“(EQUAL (# NAME)
“((# VALUE))

“(EQUAL (# NAME)

48

“TACHOMETER) “((# VALUE)))

“SHAFT_ENCODER)

“MOTOR_VOLTAGE)

“DISTANCE) “((# VALUE)))

(SELECT1 EFFECTOR ~(EQUAL (# NAME) "MOTOR_VOLTAGE) “((# VALUE)))
(SELECT! EFFECTOR ~(EQUAL (# NAME) “MOTOR_SWITCH) “((# VALUE)))

(SELECT1 EFFECTOR “(EQUAL (# NAME) “MOTOR _CURRENT) “((# VALUE)))
(SELECT1 EFFECTOR “(EQUAL (# NAME) “SHORT_CIRCUIT) “((# VALUE)))

(SELECT1 EFFECTOR “(EQUAL (# NAME) “GEARS) “((# VALUE)))

(OR (EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “MOTOR_VOLTAGE) “((# VALUE)))

“OFF
)

(EQUAL (SELECT1 EFFECTOR ~(EQUAL (# NAME) “MOTOR SWITCH) ~((# VALUE)))

“OFF
)

(EQUAL (SELECTl EFFECTOR - (EQUAL (# NAME) “MOTOR CURRENT) “((# VALUE)))

“OFF
)

(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “SHORT_CIRCUIT) “((# VALUE)))

“YES
)

(EQUAL (SELECT1 EFFECTOR “(EQUAL (# NAME) “GEARS) ~((# VALUE)))

“JAMMED

)))
)

49
Appendix D: "Trouble-shooting" Flowchart

Start

* Assumptions: Turn motor

switch off
and apply
power

1. Actual jaw position
can be visually observed

2. No obstruction in the

Jjaws
3. Voltmeter connected to
DAC output (Ep) Push reset’

4. Move jaws mechanically
to mid travel

5. A positive error drives

the jaws open Does the Check Go
communications terminal, back
1ink check - power supply, to
etc. start
Turn motor
switch
on
Does 7N
7 Jaws N

the motor

open or close

completely
?

move fu]1\\:> On
N oren - page 4

No

Type 1

'

Next page

Stop

0.K.

Servo | Yes

Replace the
defective part

and
go to start

BAD
DAC
or

u process

initialization

50

switch on
?

Turn on

switch

Repair open
motor circuit
and
go to start

Bad Check for
servo amp short circuit
or or
power supply jammed gears

the defective part
and go back to start

Replace or fix

Check
E.E.Q. Overload
circuit sensor 0.K.
and go to ?
start
Repair
Timit sensor
and go to
start
Repair Y Is rate
tachometer | Y5 “groater than
and go to normal
start ?
Repair
shaft encoder
and go to
start
Return
to
start
Repair
servo amp
and go to
start
Repair
DAC
and go to
start

Jaws
move full
open
?

Set P <P
c

D

Error
negative
?

Jaws
move full

closed
?

ED negative ?

i ?
EM negative ?

EM negative ?

Check p process

and go to
start

negative ?

Replace u process

and go to
start

No

51

Return
to
start

No

Reverse
motor leads
and go to
start

Repair
servo amp
and go to

start

Repair
DAC
and go to
start

Appendix E:

Following is the complete output for the

52

Normal Simulation

normal simulation dis-

cussed in section 2.3.5 and presented in figure 2.

? (update “effector “(equal (# name)

(--END UPDATE)

? (gotoit 8)

(CYCLE NUMBER - 1)

(--END UPDATE)

(COMMANDED POSITION LOCATION =433)
(ERROR SIGNAL DIRECTION NEGATIVE)
(ERROR SIGNAL MAGNITUDE 433)
(DAQ_VOLTAGE DIRECTION NEGATIVE)
(MOTOR_YOLTAGE DIRECTION NEGATIVE)
(MOTOR CURRENT CONDITION ON)
(JAWS_TO MOVE CONDITION YES)
(--END PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 2)

(-~END UPDATE)

(ACTUAL POSITION LOCATION -100)
(DISTANCE AMOUNT ~100)

(ERROR SIGNAL MAGNITUDE 333)
(--END PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 3)

(=—~END UPDATE)

(ACTUAL_POSITION LOCATION ~200)
(DISTANCE AMOUNT -200)

(ERROR SIGNAL MAGNITUDE 233)
(-—END PROJECT)

(-~END UPDATE)

(CYCLE NUMBER - 4)

(~~END UPDATE)

(ACTUAL POSITION LOCATION -300)
(DISTANCE AMOUNT -300)
(ERROR_SIGNAL MAGNITUDE 133)
(--END PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 5)

(--END UPDATE)

(ACTUAL POSITION LOCATION -400)
(DISTANCE AMOUNT -400)
(ERROK_SIGNAL DIRECTION OFF)
(ERROR;ﬁlGNAL MAGNITUDE 0)
(DAQ_VOLTAGE DIRECTION OFF)
(SERVO_AMP_VOLTAGE OFF)

(MOTOR VOLTAGE DIRECTION OFF)
(MOTOK:CURRENT CONDITION OFF)

“commanded_position) “(value -433))

(JAWS_TO MOVE CONDITION NO)
(--END PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 6)

(--END UPDATE)

(-- AT EQUILIBRIUM ~-)

53

54

Appendix F: Abnormal Simulation

Following is the complete output for the abnormal simulation dis-
cussed in section 2.3.5 and presented in figure 3.

? (update “effector “(equal (# name) “commanded_position) “(value -120))
(--END UPDATE)

? (update “effector “(equal (# name) “tachometer) “(value “bad))
(--END UPDATE)

? (gotoit 6)

(CYCLE NUMBER - 1)

(--END UPDATE)

(COMMANDED) POSITION LOCATION -120)
(ACTUAL POSITION LOCATION -~400)
(DISTANCE AMOUNT -400)

(ERROR SIGNAL DIRECTION POSITIVE)
(ERROR SIGNAL MAGNITUDE 280)
(DAC VOLTAGE DIRECTION POSITIVE)
(SERVO AMP ' _VOLTAGE DIRECTION POSITIVE)
(MOTOR VOLTAGE DIRECTION POSITIVE)
(MOTOR CURRENT CONDITION ON)

(JAWS TO MOVE CONDITION YES)
(TACHOMETER CONDITION BAD)

(--END PROJECT)

(~-END UPDATE)

(CYCLE NUMBER - 2)

(--END UPDATE)

(ACTUAL_POSITION LOCATION -380)
(DISTANCE AMOUNT -300)
(ERROR_SIGNAL MAGNITUDE 260)
(--END PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 3)

(~--END UPDATE)

(ACTUAL POSITION LOCATION -360)
(DISTANCE AMOUNT -200)
(ERROR_SIGNAL MAGNITUDE 240)
(--END PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 4)

(--END UPDATE)

(ACTUAQ_POSITION LOCATION ~340)
(DISTANCE AMOUNT -100)

(ERROR SIGNAL MAGNITUDE 220)
(-~END PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 5)

(--END UPDATE)

(ACTUAL POSITION LOCATION -320)
(DISTANCE AMOUNT 0)

(ERROR_SIGNAL MAGNITUDE 200)

(--END PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 6)
(--END UPDATE)

(-- AT EQUILIBRIUM --)

55

56

Appendix G: Method I Trace for Bad Tachometer Example

Following is a trace of the recursive calls to examine _origin for
method I generated by a call to examine origin(distance). The end
effector system is in the abnormal state resulting from the simulation
with the bad tachometer discussed in section 2.3.5 and presented in fig-
ure 3 and Appendix F.

examine origin(distance)

. examined = (distance)

o 1f default? - n

. else relation

eval b expr(1) '
is(jaws_to move = y) -t

L

. is(motoq;voltage = negative) - f
.+ eval b expr(2)

. is(jaws_to move = y) - t

. is(motor voltage = positive) - t

. is(distance <= -100) -~ f
+ eval b expr(3)

. isTjaws_to _move = y) - t

. is(motor voltage = negative) - f
« eval b expr(4)

. is(jaws_to move = y) - t

. is(motor voltage = positive) - t
. is(distance >= -100) - t

- examine origin(jaws_to_move)

. . examined = examined + jaws_to_move
. o« if default? - n :

. . else relation

eval b _expr(1)

.
L]

.« is{motor_voltage <> off) - t
. . is(switch = on) - ¢t

. . is(motor current = on) - t

. . is(short circuit =n) - t

. . is(gears = ok) - t

. . examine origin(motor voltage)

. . - examined = examined + motor voltage

< « . 1if default? - n -

. . . else relation

o e « eval b expr(l)

. . . is(power_supply = on) - t

. . is(motor_leads = ok) - t

. + examine_origin(power_ supply)

. . . . examined = examined + power_ supply
o R « 1f default? - y

. . . .esreturn “on” - power supply

. . . inrange(poweq_pupply,sh) -t

. . « examine origin(motor leads)

. . . . examined = examined + motor, leads
. . . . 1f default? - y

..return “ok” - motor_ leads
inrange(motor leads,ok) -t

examine origin(servo_amp_voltage)

. examined = examined + servo_amp voltage
« 1f default? - n

. else relation

. eval b expr(l)

. is(servo amp = ok) - t

. examine origin(servo _amp)

. . examine = examined + servo_amp
. o if default? -y

. ..return “ok” - servo_amp

« 1inrange(servo amp,ok)

o+ examine origin(dac volt)

. . examined = examined + dac_volt
. « 1f default? - n

. . else relation

. . eval b expr(l)

. . is(dac = ok) - t

. + examine origin(dac)

. . + examined = examined + dac
. . o if default? - y

. . .sreturn “ok”

« + inrange(dac,ok) - t

. . examine origin(err - sig « dir)
. . . examined = examined + err - sig dir
. . o 1f default? - n

. . « else relation

. . . eval b _expr(l)

. . . is(microprocessor = bad) - £

. . . or

. . . is(microprocessor = ok) - t

. . . is(abs(actual-commanded) < 100) - £

. . « eval b expr(2)

. . . ié?hicroprocessor = constanq_positive) - f
. . . or

. . . is(microprocessor = ok) - t

. . . is(abs(actual-commanded) >= 100) — t

. . . examine origin(microprocessor)

. . . . examined = examined + microprocessor
. . . o if default? -y

. . . «.return “ok” - microprocessor

. . . inrange(microprocessor,ok) ~ t

. . . examine origin(commanded position)

. . . . examined = examined + commanded_ position
. . . o 1f default? - y

. . . sereturn “=120" - commanded_position

. . . inrange(commanded position) - t

. e o« examine origin(actual _position)

. . . . examined = examined + actual __position
. . . o 1f default? - n

o e . . else relation

. . . . eval b expr

is(jaws_to move = yes) - t
is(tachometer = ok) - f
or

is(shaft_encoder = constant _negative) - f

eval_k_exﬁ?(Z)
is(jaws_to move = yes) - t
is(tachometer = ok) - f
or

58

is(shaft encoder = constant_positive) - f

eval b e xpr(3)
is(jaws_to move = yes) - t
is(tachometer = bad) -~ t
is(shaft_encoder = ok) -t
is(motor 1 - voltage = negative) - f
eval b expr(4)
ié?jaws to move = yes) - t
is(tachometer = bad) - t
is(shaft_encoder = ok) - t
is(motor ~_voltage ositive) -t
is(distance <> 0) - f
eval b expr(5)
is(gaws to move = yes) - t
is(tachometer = ok) = f
eval b expr(6)
is(jaws to move = yes) - t
is(tachometer = ok) - f
eval b expr(7)
ié(éhaft encoder = bad) - f
or
is(jaws to move = no) - f
or
is(jaws_to move = yes) - t
is(tachometer = bad) - ¢t
is(shaft encoder = bad) -t
is(motor - voltage = negative) - f
or
is(jaws_to move = yes) -t
is(tachometer = bad) -t
is(shaft_encoder = ok) - t
is(motor - voltage = positive) - t
is(distance = 0) - t
jaws_to_move already examined
examine origin(tachometer)
. examined = examined + tachometer
o 1if default? - y

-sereturn “bad” - tachometer

inrange(tachometer,bad) - £
poss_malfunctions = (tachometer = bad)
examine > origin(shaft_encoder)

. examined = examined + shaft ._encoder
o if default? -y

.sreturn “ok” - shaft encoder
inrange(shaft_encoder,ok) - t

. motor_voltage already examined
. distance already examined

.sreturn “=320" - actual position
. . .) . . inrange(actual_position,-320) -t

. . . . + . e.return “positive” --err_sig dir

. . . . + inrange(err_sig dir,positive) -t

. o ‘ + sereturn “positive” - dac_volt

. . o . inrange(dac_yolt,positive) -t

. . . «.return “positive” - servo_amp_volt

. . . inrange(servo_amp volt,positive) -t

. . .s.return “positive” - motor ~_voltage

. o Inrange(motor voltage,positive) -t

. « examine origin(motor switch)
« + .« examined = examined + motor_switch

. . . if default? -y

e o sereturn “on” - motor switch

. .+ 1inrange(motor_ switch,on) - t

. . examine origin(motor current)

. . . examined = examined + motor ~_current
. . o if default? - n

. . . else relation

. . . eval b expr(l)

o e e is(motor voltage <> off) - t

. . . is(motor circuit = closed) - t
. . o motoq_yoltzge already examined

. . . examine origin(motor circuit)

. . . . examined = examined + motor_circuit
. . . o if default? -y

. . . «.return “closed”

o o . inrange(motor circuit,closed) - t
. . .sesTEtUrn “on” - motor current

. + inrange(motor_current,on) - t

. . examine origin(short_circuit)

R . . examined = examined + short circuit
e « o if default? -y -

o . .sreturn “no” - short_circuit

. . inrange(short_circuit,no) -t

. . examine origin(gears)

. . . examined = examined + gears

. . o« 1f default? -y

. . ..return “ok” - gears

. . inrange(gears ok) - t

. essoreturn “yes” - jaws_to move

. inrange(jaws_to move,yes) - t

. motor voltage already examined

. distance already examined

. distance already examined

eessreturn “0° ~ distance

59

60

Appendix H: Method II Trace for Bad Tachometer Example

Following is a trace of the recursive calls to examine origin for
method II generated by a call to examine origin(distance) The end
effector system is in the abnormal state resulting from the simulation

with the bad tachometer discussed in section 2.3.5 and presented in fig-~
ure 3 and Appendix F.

examine origin(distance)
. examined = (distance)
o if default? =-no

. else relation

. eval b expr(1l)

. is(jaws to move = yes) - t

. examine origin(jaws to_move)

.« . . examined = examined + jaws_to_move

. o 1f default? - n

. « else relation

. . eval b expr(l)

. . is(motor_voltage <> off) - t

. . examine origin(motor - voltage)

. . + examined = examined + motor voltage

. . o 1f default? - n

.« . . else relation

. . « eval b expr(l)

. . . is(power supply = on) - t

. . . examine origin(power ~ supply)

. . . + examined = examined + power_ supply
. . . o 1f default? - y

. . . +.Teturn “on” - power ~_supply

. . . inrange(power - _supply,on) - t

. . . is(motor_leads = ok) - t

. . . examine origin(motor leads)

. . . - examined = examined + motor_leads
. . . + 1f default? - y

. . . sereturn “ok” - motor leads

. . . inrange(motor leads ,0k) =t

. . . (* b_expr 1 true - motor - voltage *)

. . . examine _origin(servo_amp voltage)

. . . . examined = examined + servo _amp_voltage
. e . « if default? - n

. . . . else relation

. . . . eval b expr(l)

. . .« . is(servo amp = ok) - t

. . . . examina;prigin(servo amp)

. examined = examined + servo _amp
. . . . o if default? -y

.ereturn “ok” =~ servo _amp

. . . . inrange(servo amp,ok) -t

. . . . (* b_expr 1 true - servo_amp _voltage *)

. . . « examine origin(dac_voltage)

[] . L] L]

61

examined = examined + dac_voltage

if default? - n
else relation
eval b expr(l)

L]

is(dac = ok) - t
examine origin(dac)
. examined = examined + dac
. if default? -y ‘
.ereturn “ok” - dac
inrange(dac,ok) - t
(* b_expr 1 true - dac_voltage *)
examinq_prigin(er;_§ig_dir)
examined = examined + err_sig dir
if default? - n '

else relation

eval b expr(l)
is(microprocessor = bad) - f
examine origin(microprocessor)
. examined = examined +

microprocessor

o 1f default? -y
«srTeturn “ok” - microprocessor
inrange(microprocessor,ok) - t

or

is(abs(actual position-

commanded position) < 100) - f

examine_prigin(actual_position)
. examined = examined +

actual position

if default? - n

else relation

eval b expr(l
isszwgzpé_%ove = yes) - t

jaws_to move already
examined

is(tachometer = ok) = f

examine origin(tachometer)
. examined = examined +
. tachometer
. 1f default? -y
.soreturn “bad” - tachometer
inrange(tachometer,bad) - f
poss malfunctions =

- (tachometer = bad)

is(shafq_encoder =

constant_negative) - f
examine origin(shaft_

. . encoder)
« examined = examined +
. shafq_encoder

« if default? - y
.sreturn “ok” - shaft_

62

encoder
inrange(shaft_encoder,
ok) - t
eval b expr(2) ,
is(jaws_to move = yes) - t
jaws _to move already
- examined
is(tachometer = ok) - f
tachometer already examined
or
is(shaft_encoder =
constant negative) - f
eval b expr(3)
is(jaws_to move = yes) -t
jaws_to move already
v examined
is(tachometer = bad) - t
tachometer already examined
is(shaft encoder = ok) - t
shaft_encoder already
exanmined
is(motor voltage =
negative) - £
motor_voltage already
examined
eval b expr(4)
is(jaws to move = yes) - t
jawq;quiove already
examined
is(tachometer = bad) - t
tachometer already examined
is(shaft_encoder = ok) - t
shaft_encoder already
examined
is(motor_voltage =
positive) -t
motor voltage already
examined
is(distance <> 0) - f
distance already examined
eval b expr(5)
is?hzhg_tq_move = yes) - t
jaws_to move already
- examined
is(tachometer = ok) - f
tachometer already examined
eval b expr(6)
is(jaws_to move = yes) - t
jaws_to move already
examined
is(tachometer = ok) - f
_ tachometer already examined
eval b expr(7)

63

is(shaft_encoder = bad) - f
shaft_encoder already
examined
or
is(jaws_to move = no) - f
jaws_to move already
examined
or
is(jaws_to move = yes) - t
jaws to move already
- . examined
is(tachometer = bad) - t
tachometer already examined
is(shaft_encoder = ok) ~ t
shaft_encoder already
. examined
is(motor voltage =
negative) - f
motor voltage already
- examined
or
is(jaws_to move = yes) - t
jaws_to move already
examined
is(tachometer = bad) - t
tachometer already examined
is(shaft_encoder = ok) -t
shaft encoder already
- examined
is(motor voltage =
- positive) - t
motor_voltage already
examined
is(distance = 0) ~ ¢t
distance already examined

.esreturn =320 - actual position

inrange(actual position,=320) - t

examine origin?bommanded_position)

. examined = examined +

. commanded position

o if default? - y

sereturn “=120° - commanded position
inrange(commanded position,-120) - t

(* b_expr 1 false - err_sig dir *)
_eval b expr(2)

or

is(microprocessor = v
constant_positive) = f

microprocessor already examined

is(microprocessor = ok) = t

microprocessor already examined

is(abs(commanded position -

actual position) >= 100) -t

.return “positive” - err sig dir

. . . . inrange(erq_gigLﬁir,positzbe) -t
. . . .sTeturn “positive” - dac volt

. « .« inrange(dac_volt,positive) - t

. . «esTeturn “positive” - servo_amp _volt
o . inrange(servq_pmp_yolt,positive) -t
. «sreturn “positive” - motor voltage

. inrange(motor voltage,positive) - t

. is(motor_switch = on) - ¢t

R examine origin(motor switch)

. . examined = examined + motor_switch

. . 1f default? - y

. .sreturn “on” - motor_switch

. inrange(motor_switch,on) - t

. is(motor_current = on)

. examine origin(motor_ current)

. « examined = examined + motor_ current

. o 1f default? - n

. . else relation

. + eval b expr(l)

. . is(motor voltage <> off) - t

. . motor_voltage already examined

. . is(motor_circuit = closed)

. . examine origin(motor circuit)

. . + examined = examined + motor_circuit
. . o 1f default? - y

. . ..return “closed” - motor circuit
. . inrange(motor circuit,closed) - t
. . (* b expr 1 true = motor_current *)
. «sTeturn “on” - motor_current

. inrange(motor_current,on) - t

. is(short_circuit = no)

. . examing_origin(shorq_;ircuit)

. « examined = examined + short circuit

. . if default? -y -

o «esreturn “no” - short_circuit

. inrange(short circuit,no) - t

. is(gears = ok)

. examine origin(gears)

. . examined = examined + gears

. o if default? - y

. «sreturn “ok” - gears

. inrange(gears,ok)

« (* b_expr 1 true - jaws to move *)
-e.return “yes” - jaws_to _move
inrange(jaws_to move,yes) - t
is(motor_voltage = negative) - £
motor_ voltage already examined
eval b expr(2)
is(jaws_to move = yes) - t
jaws_to move already examined
is(motor_voltage = positive) - t
motor voltage already examined

. is(distance <= -100) - £

. distance already examined

. eval b expr(3)

is(jaws_to_move = yes) = t
jaws_to 1 move already examined

. is(motor voltage = negative - f

. motor voltage already examined

. eval b expr(4)

. is(jaws to move = yes) = t

. jaws to move already examined

. is(motor_voltage = positive) — t
. motor_voltage already examined

. is(distance >= -=100) - t

. distance already examined

R (* b_expr 4 true - distance *)
. distance already examined
.esreturn “0° -~ distance

65

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
. NASA TM-86288
4. Title and Subtitle . 5. Report Date
A Relational Approach to the Development of Expert October 1984
Diagnostic Systems . ’ 6. Performing Organization Code
505-37-13-04
7. Author(s) 8. Performing Organization Report No.

Kathy R. Ames

10. Work Unit No.

. Performing Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665 11. Contract or Grant No.

13. Type of Report and Period Covered

12,

Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Adminstration

14. S ing A Code
Washington, DC 20546 ponsoring Agency

15.

Supplementary Notes

16.

Abstract

The proposition that, given a structural and/or functional description of any real
or abstract system, an expert system can be built based on this description is
examined., First, a model is developed for a microprocessor-controlled end effector/
sensor system using a modeling approach called a Relational Knowledge-Base Machine
(RKBM). Next, an explanation of how the end effector model could be used for the
error diagnosis on the operational end effector is given and two versions of an
error diagnosis algorithm based on the model are presented. Finally, areas of
further research are described that are necessary before an expert system using

this approach becomes a reality.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

expert system Unclassified - Unlimited

relational data base

simulation

system modeling)

error diagnosis _ Subject Category 59
19. Security Classif. (of this report} 20. Security Classif. (of this page) 21. No. of Pages 22, Price

. .o 0
Unclassified Unclassified 67 Ao4

N-

305 For sale by the National Technical information Service, Springfield, Virginia 22161

4

