
NASA Technical Memorandum 86288

NASA-TM-86288 19850002350

A RELATIONALAPPROACHTOTHEDEVELOPMENT

OFEXPERTDIAGNOSTICSYSTEMS

KATHYR, AMES

OCTOBER1984

[B A IY3PY
i..,:"/(; 1984

; LANGLEYRESEARCHCENTER
LIBRARY,NASA

__A HA,IP_I_O.,yJRGINLAj
NationalAeronautics and
Space Administration

LangleyResearchCenter
Hampton,Virginia23665

Table of Contents

1 Introduction .. I
2 The RKBM Model .. 3

2.1 Implementation .. 3
2.2 The End Effector System 3
2.3 The Format of the End Effector Model 6
2.4 Some Details About the Model 8

2.4.1 Representing the Jaw Position 8
2.4.2 The Step Size of the Simulation 9

: 2.4.3 Representing Error Conditions in the Model II
• 2.4.4 An Order-Dependent versus an Order-Independent Model .. II

2.4.5 Some Example Simulations 14
3 Error Diagnosis Using the RKBM Model 19
3.1 The RKBM Model and the Operational System 19
3.2 An Algorithm for Error Diagnosis 20

3.2.1 Method I ... 21
3.2.2 Method II .. 24

4 Conclusions .. 26
5 References ... 28
Appendix A: Prime LISP versus UTLISP 29
Appendix B: RKBM Lisp Routines 32
Appendix C: The RKBM End Effector Model 36

Appendix D: "Trouble-shooting" Flowchart ...!!!!!!!!!!iiiiiiiiiiii 49

Appendix E: Normal Simulation 52
Appendix F: Abnormal Simulation 54
Appendix G: Method I Trace for Bad Tachometer Example 56
Appendix H: Method II Trace for Bad Tachometer Example 60

i

I. Introduction s :_ " ' '

Recently, there has been considerable interest in the development

of expert systems that use causal reasoning - reasoning based on an

: understanding of the structure or function of the device or system they

are examining [I]. A proposal under current investigation is that,

given a representation of the functional and/or structural interrela-

tionships among the components of a system, an expert system could be

developed to analyze it. For example, such an expert system could be

used for diagnostic problem solving, in which the normal states of the

components of a system under analysis are known and an abnormal state

and its cause can be identified.

A previous research project has examined this approach to develop-

ing expert systems [2]. A scheme for representing any real or abstract

system has been developed along with a set of routines capable of exe-

cuting a simulation of that system . The knowledge representation format

chosen is similar to that of a relational data base - a system is

modelled as a set of relations describing its structure and function.

This knowledge representation along with the machinery to drive it is

termed a Relational Knowledge-Base Machine (RKBM).

Given this RKBM modelling scheme, there are two goals of the

research described in this paper. The first goal is to use the RKBM

approach to model a mlcroprocessor-controlled end effector/sensor sys-

tem currently under development in the Intelligent Systems Research

Laboratory of the Automation Technology Branch (ATB) at Langley Research

Center. The second goal is, by studying the end effector model, to

examine the possibility of extending the RKBMmechanisms to include the

functions of an expert diagnostic system. This second goal can be

stated in the form of two questions. First, can the RKBM representation

be used as the basis of an expert system that can answer such questions

as, "What is the state of a component of the system?" and "Why is the

component in that state?" Second, if the RKBMapproach is found to be

suitable, then what is a reasonable algorithm for performing such ana-

lyses?

3

2. The RKBM Model

2.1. Implementation

The RKBM used for this research is programmed in UTLISP on the CDC

Network Operating System. Appendix A is a discussion of the conversion

" fromthe originalPrimeLISP implementationto thisimplementation.The

UTLISP code for the RKBM driver routinesand end effectormodel is found

in AppendicesB and C, respectively.

.. Th____eEnd Effectqr System

_ The end effector system used as a basis for this project is

diagrammed in figure I. The end effector components 'expanded in some

detail in the RKBM model are the microprocessor controller and the servo

power loop. The only mechanical action represented is the movement of

the jaws - details about the motion of specific gears are not included.

Also, no sensory information is included since little sensory informa-

tion was included in the laboratory system at the time development began

on the RKBM model. Following is a brief description of the operation of

the end effector system.

The system is controlled by an 8031 microprocessor. This micropro-

cessor has a position register which keeps track of the actual position

of the jaws. There is also a memory location to hold a commanded jaw

position, which may be changed at any time by a User. Both of these

positions are represented in terms of octal encoder counts, where 0
t

represents the fully open jaw position and -26135 represents the com-

pletely closed position. When the system is on, the microprocessor pro"

I FLFLFL

EPROM FU-LFL
2716

t "A' I

III11111 l s,o,*encoder I_. B I Gear 250
_'A _ I (_-_-_-i)errevol,

Int 0 _ +28V I

Int 1 -_ I 2.78:1

Digital I I 000

Micro- _ to Gear I

)rocessoru analog Torque 1100:1"-" convert, motor
8031 _ o o

5018 T I
• 3.2 ampI 2.78:1

max. I Gear

I (
Tach-

I Contained ometer I
L in the base [

of end effector l

Limit sensor

RS-232
Terminal 1200 BAUD

Figure 1. Diagramof the End EffectorSystem

i
I
J

I •) .|

gram continually loops, computing the difference, or error, between this

commanded position and the actual jaw position in the position register.

The resulting error signal is transmitted to a dlgltal/analog converter

(DAC) which, in turn, transmits the signal to a servo power amplifier.

From here, the amplified signal is passed to a DC torque motor. When

• the error signal is sufficiently small, there is not enough power to

overcome friction in the motor. (In the model, however, a frlctlonless

environment is assumed.) Consequently, there is no jaw movement and the

system is in an equilibrium state. When the signal is strong enough,

the motor shaft drives a worm gear which, in turn, drives two sector

gears, each sector gear symmetrically controlling one of the jaw arms.

As the motor turns, an incremental shaft encoder _geared to the

motor provides feedback to the microprocessor program. A tachometer is

also geared to the motor in the same manner as the shaft encoder and

provides feedback from the motor to the servo amplifier. The tachometer

outputs rate information about the motor shaft movement which is com-

bined with the microprocessor error signal output to determine the input

to the servo amplifier. The purpose of this is to prevent the motor

shaft from rotating too quickly for the shaft encoder to encode the

movement.

Each shaft encoder count interrupts the microprocessor program and

this count is then used to increment or decrement the position register,

depending on the direction of jaw movement. The change in the position

register is then reflected in the error computed by the program which,

in turn, is reflected in the error slgnal transmitted to the DAC. This

cycle of Jaw movement and corresponding position register updates

continues until the system once again reaches an equilibrium state.

2.3. The Format of the End Effector Model

The RKBM format used to model the end effector is similar to that

of Blanks" gas furnace system [2]. Table 1 illustrates the main rela-

tion in the RKBM end effector model. Using relational data base terml-

END EFFECTOR RELATION

NAME VARIABLE PARENT VALUE BY VALUE* VALUE

microprocessor condition system default ok ok
commanded location micro- default 0 0

position processor
actual location micro- ACTUAL 0 0

position processor

distance amount system DISTANCE AMT 0 0

error_slgnal direction micro- ERRSIG__DIR off off
processor

error__signal magnitude micro- ERR SIGMAG 0 0
processor

dac condition system default ok ok

dac__voltage direction dac DAC VOLT off off
servoamp condition system default ok ok

servo__amp direction servo_amp SERVOVOLT off off
voltage

motor leads condition system default ok ok

motor circuit condition motor default closed closed

motor_voltage direction motor MOTOR VOLT off off
motor current condition motor CURRENT off off

motor switch condition motor default on on

jaws to move condition system MOVE JAWS no no
gears condition system default ok ok

power_supply condition system default on on
short circuit condition system default no no
tachometer condition system default ok ok

shaft encoder condition system default ok ok

Table I. The End Effector Relation

nology, each column heading is an attribute and each row is six-tuple

containing an entry for each of the six attributes. Each tuple

represents a component of the system.

The attribute NAME is used to identify a particular component.

Notice that each component does not necessarily correspond to a com-
J

ponent in the actual end effector system. "Distance" and "jaws_.to__move"

are two such model components. These two components are discussed in

more detail in later sections of this paper. The attribute VARIABLE

indicates the particular quality of the component that is being

described, e. g. the direction of the motor__voltage. The attribute
o.

PARENT is intended to convey the structural organization of the system.

(The structural relationships between the components are neither incor-

porated in the proposed error detection algorithm, nor are they incor-

porated in running a simulation of this particular model.) The VALUE and

VALUE* attributes indicate the state of each component, e.g. the direc-

tion of the motor_oltage may have a VALUE of positive, negative, or

off. The necessity of these two apparently equivalent attributes is

explained later. Throughout the remainder of this paper, references to

the value of a component in the model refer to the entry for the VALUE

attribute of that component. The VALUE BY attribute indicates how new

VALUE and VALUE* attributes are to be computed for each component, i. e.

how the value of one component depends upon the values of other com-

ponents. This is how the functional relationships between the com-

ponents are represented and, as will be shown later, is the key to the

error diagnosis.

8

Any entry other than "default" for the VALUE BY attribute is the

name of another relation in which this functional relationship is

stored. Default indicates that this component is not affected by the

other components during a simulation. For example, one tuple whose

VALUE__BY attribute is default is "commanded__position". This is because

the value of commande_position is entered by the user before a simula-

tion and is not changed until the user enters a new position. The rest

of the tuples whose VALUE BY attribute is default are Included to indl-

care the status of the system components, either normal or defective in

some way. The state of such components must be determined before exe-

cuting a simulation and remain that way for duration of the simulation.

These concepts will become clearer in the simulation examples.

2.4. Some Details About the Model

2.4.1. Representing the Jaw Position

There are three components associated with the position of the

jaws. Two of these were mentioned in the description of the end effec-

tot system. They are "actual positlon", which corresponds to the posi-

tion register in the microprocessor, and "commanded_osition", which

corresponds to the user's input commanding the jaws to move to a

specific location. The third component is "distance", which represents

the observed distance between the jaws. This component is necessary to

simulate failures in the system that result in a discrepancy between

this observation and the value stored in the position register of the

microprocessor. Although there is an equation available to convert a

given encoder count position to a measurement of distance in inches, it

9

was decided to eliminate this computation and to represent the observed

distance between the jaws in terms of encoder counts. Also it was

decided to represent all encoder counts as decimal rather than octal

values. (To give the reader an idea of the scale of the laboratory sys-

tem, at the fully open position, the jaws are approximately 3.25 inches

• apart.)

2.4.2. The Step Siz_____eofth____eSimulatlon

As stated in the introduction, machinery has been previously

developed to drive a simulation of a system modelled using the RKBM for-

mat. It is useful to check the validity of a model by executing such

simulations and comparing the results to the behavior of the physical

system. It is also necessary to execute a simulation where one or more

of the system components is in an error state in order to test and_or

illustrate the usefulness of the error diagnosis algorithm presented

later in this paper. An important consideration when developing the

model was the determination of the step size of a simulation. To under-

stand what is meant by this it becomes necessary to explain how the RKBM

model is used to perform a simulation.

A simulation is executed by a routine that cycles through the end

effector relation until a point is reached in which no changes are made

to the data in the relation or until some maximum number of cycles are

executed. A cycle consists of evaluating_ for each tuple in the rela-

tion, the VALUE BY attribute and storing the result in the VALUE attri-

bute. At the end of a cycle, if, for every tuple, VALUE* (the previous

VALUE) is equal to VALUE, then the simulation is ended and the system is

I0

said to be in an equilibrium state. If the system is not at equili-

brium, the VALUE* attributes are updated with the entries in the VALUE

attributes and another cycle is executed.

The question that needs to be answered is, "How much should the

jaws move on each cycle through the relation?" One possibility is to

have one simulation cycle be equivalent to one loop in the physical sys-

tem, i. e. move the jaws one encoder count per cycle. However, given

that there are 11357 encoder counts between the open and closed jaw

positions, moving the jaws any significant distance would require too

many simulation cycles. Another possibility is simulating the entire

jaw movement in one simulation cycle, but this is not a very natural

solution. The end effector is naturally an incremental system, where

one component takes some input, processes it, and passes along its out-

put as input to the next component. To determine the output of one com-

ponent, it is only necessary to examine its input and to consider the

states of a subset of the other components. Simulating the entire move-

ment at once would require that the state of the entire system be con-

sidered to update each component.

The approach selected was a compromise of these two extreme solu-

tions. It was decided to move the jaw in increments of I00 encoder

counts. This step size is large enough to prevent extremely long simu-

lations, yetsmall enough to realistically simulate the operation of the

jaws under both normal and abnormal conditions. There is a slight

trade-off for selecting this step size in order to have simulations of

reasonable length. An error tolerance of I00 must be introduced, which

limits the distance that the jaws can be requested to move to values

II

over I00. Under normal conditions, if the jaws are commanded to move to

a position less than I00 counts away from their current position, the

current position immediately satisfies the error tolerance and the Jaws

will not move at all. However, it was decided that this is not a severe

restriction for the purposes of this model. (There is one exception to

this restriction. If there is a defective component in the system that

will cause the jaws to be driven to the fully open or fully closed posi-

tion, whether or not this is what was requested, the model will move the

Jaws all the way to position 0 or position -11357.)

2.4.3. Representing Error Conditions in the Model

In order to simulate the operation of the system when one or more

components are defective, the effects of these defective conditions, or

error states, had to be built into the VALUE BY relations. Therefore,

another decision that had to be made in setting up the model was which

error states to attempt to simulate. Through several discussions with

personnel in ATB and through the use of the "trouble-shootlng" flowchart

in Appendix D, a set of possible error states to include in the model

was defined along with the effects these error states should have on the

operation of the model. A llst of the components that may be defective

and their possible states, both normal and abnormal (error), is given in

table 2.

2.4.4. An Order-Dependent versus an Order-Independent Model

By referencing the VALUE attribute, the evaluation of a component

can incorporate new component values that have been computed earlier in

the current simulation cycle. Referencingthe VALUE* attribute prevents

12

Component States

Component Normal Possible Error
Name State States

microprocessor ok bad

constantposltive

cons tant_negat ive

dac ok bad

reve rse

constant_positive

constant-negatlve

servo__amp ok bad
reverse

constant_positive
constant-n_negative

motor leads ok reverse

motor circuit closed open

motor switch on off •

gears ok jammed

power_supply on off

short circuit no yes

tachome ter ok bad

shaft encoder ok bad

constant_posltlve
constant_negative

Table 2. Possible Error States.

evaluations from accessing these new values until the next cycle, when

VALUE* has been updated to VALUE. Therefore, referencing VALUE* will
L

require more simulation cycles to accomplish a given amount of action

than will referencing VALUE. The amount of difference depends on the

13

order of the components in the relation when referencing VALUE. The

most efficient ordering would placeeach component after components that

it references and before components that reference it.

At first, it seemed better to leave any order dependence out of the

. system. Although this is less efficient, it has the benefit of prevent-

ing order dependence from being built into the model such that re-

arranging the order of the components would not only change the number

of simulation cycles required, but would change the results of a simula-

tion. Also, Blanks" models [2] were designed without order dependence

so this did not appear to be an unnatural restriction.

However, the end effector proved to be very difficult, if not

impossible, to model without referencing VALUE and therefore, having an

order-dependent model. The problem involves the number of step by step

computations involved in starting and stopping the incremental movement

of the jaws. The model requires several steps for the signal from the

microprocessor to reach the motor and, in turn, set the VALUE of

jaws to move to "yes". Jaws to move was introduced as an intermediate

computation between determining that the jaws should move and the actual

movement. Without this intermediate calculation, the VALUE BYrelations

for distance and actual_positlon would be so complicated as to be almost

incomprehensible.

Once it is determined that the Jaws should move (the value of

Jaws to move is "yes"), they move a fixed amount each time distance is

re-evaluated. This occurs on every cycle until the value of jaws._to__move

is changed to "no". If several cycles are required from determining

14

that the jaws should not move until Jaws to move is changed to "no",

they will move severalmore incrementsthan desiredbefore the movement

is actuallystopped. After severalunsuccessfulattempts to alter the

model in order to solve this problemwithoutresortingto order depen-

dence, the desire for having an order-independent model was re-examined.

It was decided that the operation of the end effector system itself is

naturallyorder-dependent and, therefore, there is no reason to force a

model of the system to operate without order dependence. This aspect of

the RKBM system should be studied further using several different models

before drawing any definite conclusions about order dependenceversus

order independence. 4

2.4.5. Some Example Simulations _
°,

As statedearlier, a simulationis executedby cyclingthrough the

data base, evaluatingthe VALUE BY attributefor each tuple and storing

the result in the VALUE attribute. The VALUE @nd VALUE* attributes are

then compared and if, for any tuple,VALUE is not equal to VALUE*,the

the VALUE* attributesare updatedwith the entries in the VALUE attri-

butes and anothercycle is executed. If, for all tuples,VALUE is equal

to VALUE*, then the system is said to be in a state of equilibrium and

the simulationis ended.

Function "gotoit"controlsthe executionof a simulationand it is

invoked along with a parameter"max" which indicatesthe upper bound on

the number of cycles to perform. If equilibriumis not reached in max

cycles, the simulation is ended,indicatingthat the number of cycles

that have been executedhas reachedthis upper bound. To inform the

15

user about the progress of the simulation, the NAME, VARIABLE, and VALUE

attributes of any tuple for which VALUE is not equal to VALUE* is

printed for each cycle. Thus, by knowing the status of all components

before the simulation begins, the user can determine the status of all

components when it ends.

Figures 2 and 3 are examples of two simulation executions. Some

extraneous output has been eliminated from the examples to conserve

space. The complete output for each example can be seen in Appendices E

and F, respectively.

In figure 2, the end effector begins at equilibrium with the jaws

fully open (at position O, as shown in table i.) The commanded_posltion

is changed to -433 and the simulation is begun with the call (gotoit 8).

In the first cycle, the change in commanded_position is noted as well as

the effects of this change on the other effector components. The signal

from the microprocessor can be seen as it passes through the system.

The cycle ends with jaws__to_move equal to "yes". On the next cycle, the

jaws begin moving. This is reflectedin the new actual_positlonloca-

tion, distance amount,and error signal direction. The next 2 cycles

are similarin that the jaws move 100 more counts. On the fifth cycle,

the jaws move to position-400, which is within |00 counts of the

commanded__posltion.Since this satisfies the error tolerance,the

. error_signal from the microprocessor is turned off and the effect of

this change on the rest of the components can be seen, ending with

jaws to move equal to "no". Cycle 6 then detects that the system is at

equilibrium and the simulation is ended.

16

_? (update "EFFECTOR "(equal (# NAME) "commandedpositlon)
"(VALUE-433))

? (gotoit 8)
(CYCLE NUMBER- I)

(COMMANDED POSITION LOCATION -433)

(ERROR SIGNAL DIRECTION NEGATIVE)

(ERRORSIGNAL MAGNITUDE 433)
(DAC VOLTAGE DIRECTION NEGATIVE)

(MOTORVOLTAGE DIRECTION NEGATIVE)
(MOTOR CURRENT CONDITION ON)

(JAWS_TOMOVE CONDITION .YES)
(CYCLE NUMBER- 2)
(ACTUAL POSITION LOCATION-I00)

(DISTANCE AMOUNT-I00)

(ERROR SIGNAL MAGNITUDE 333)
(CYCLE--NUMBER - 3)

(ACTUAL POSITION LOCATION -200)

(DISTANCE AMOUNT-200)

(ERRORSlGNAL MAGNITUDE 233)
(CYCLE NUMBER - 4)

(ACTUAL POSITION LOCATION -300)

(DISTANCEAMOUNT-300)
(ERROR_SIGNAL MAGNITUDE 133)
(CYCLE NUMBER - 5)

(ACTUAL POSITION LOCATION-400)
(DISTANCE AMOUNT-400)

(ERROR SIGNAL DIRECTION OFF)

(ERROR--SIGNAL MAGNITUDE O)

(DAC VOLTAGE DIRECTION OFF)

(SERVO AMP VOLTAGE OFF)

(MOTOR_VOL_AGE DIRECTION OFF)

(MOTOR_CURRENT CONDITION OFF)
(JAWS TO MOVE CONDITION NO)
(CYCL_ NUMBER - 6)

(-- AT EQUILIBRIUM --)

Figure 2. Normal Simulation

17

? (update "EFFECTOR "(equal (# NAME) "commandedposition)
"(VALUE -120))

? (update "EFFECTOR "(equal (# NAME) °tachometer)
"(VALUE "bad))

? (gotoit 6)
(CYCLENUMBER- 1)
(COMMANDED POSITION LOCATION -120)

" (ACTUAL POSITION LOCATION -400)
(DISTANCE AMOUNT -400)

(ERROR SIGNAL DIRECTION POSITIVE)

(ERROR SIGNAL MAGNITUDE 280)

(DAC V_LTAGE DIRECTION POSITIVE)

(SERVO AMP VOLTAGE DIRECTION POSITIVE)
(MOTOR--VOLYAGE DIRECTION POSITIVE)

(MOTORCURRENT CONDITIONON)
(JAWS TO MOVE CONDITION YES)

(TACHOMETER CONDITION BAD)
(CYCLE NUMBER - 2)

(ACTUAL POSITION LOCATION -380)
(DISTANCE AMOUNT -300)

(ERROR SIGNAL MAGNITUDE 260)

(CYCLE NUMBER- 3)

(ACTUAL POSITION LOCATION -360)

(DISTANCE AMOUNT -200)

(ERROR SIGNAL MAGNITUDE 240)
(CYCLE--NUMBER - 4)

(ACTUAL POSITION LOCATION -340)

(DISTANCE AMOUNT -i00)
(ERROR SIGNAL MAGNITUDE 220)

(CYCLE NUMBER- 5)

(ACTUAL POSITION LOCATION-320)
(DISTANCE AMOUNT O)

(ERROR SIGNAL MAGNITUDE 200)

(CYCLE NUMBER- 6)
(-- AT EQUILIBRIUM --)

Figure 3. Abnormal Simulation

In figure 3, the end effector begins at equilibrium with the jaws

at position -400. This time, however, the condition of the tachometer

component is changed to "bad" before beginning the simulation. When the

tachometer is not working properly, the jaws move tooqulckly for the

shaft encoder to encode the movement. Therefore, the position register

in themicroprocessor is not updated properly and the jaws move too far,

18

usually either all the way to the fully open or fully closed position,

depending on the direction of travel. To simulate the bad tachometer,

it was decided to assume that the position register is only updated 20

counts for every I00 counts of jaw movement. (The number 20 was chosen

arbitrarily - the goal is to show that the jaws will end up in the wrong

position and the _xact location of this position is not important.) The

commanded_posltion is set to -120. On a normal simulation, where none

of the components is defective, the jaws should move to position-200

and the system should return to a normal state of equilibrium, i.e. the

Jaws are not moving and there is no voltage signal in any of the com-

ponents. However, as the simulation indicates, the jaws move past posi-

tion -200, all the way to position 0, where they can move no farther.

At tills point the system is in equilibrium - no VALUE attribute will

change no matter how many cycles are executed. However, the system is

in an abnormal state. There is still a positive error signal which

occurs all the way through the system because the microprocessor program

thinks the jaws are at position -320. The system will remain in this

state until something or someone intervenes to correct it.

19

_. ErrorDiagnosisUsin_the RKBMModel

After completing the RKBM end effector model, the remaining task

was to determine how to use the information contained in the model to

answer questions about the state of the system. The question of partic-

• ular interest in error diagnosis is, "Why does component "x" have value

"y"when it shouldhavevalue"z"?"The answermightbe somethingllke,

"because component "q" is defective." Since, in the RKBM model, nothing

is defective unless it is specified as such, the reader may question the

need for an algorithm to detect a defective component. However, an

RKBM-based expert system working in cooperation with an operational sys-

tem would require such an algorithm.

.. The RKBM Model and the Operational System

The ultimate goal of this research is to have an RKBM model resid-

ing on a microprocessor which is physically connected to the operational

system represented by the model. As the system operates, the model will

be updated according to the values of the system components. For exam-

ple, the microprocessor on which the end effector model resides will

have a direct connection to the output of the end effector controller

microprocessor to detect the error signal output by the controller

microprocessor. Similar connections will exist for all components of

the RKBM model whose VALUE_BY attribute is not default. Consequently,

these components of the model will be updated by the operation of the

. actual system, rather than the functional relationships in the model

that are used to drive a simulation. •There will be no such connections

for components whose VALUE_BY attribute is default and, therefore, these

20

components will not be updated.

When the operational system malfunctions, the error diagnosis algo-

rithm will be invoked to trace backwards through the functional descrlp-

tion of the model to find the cause of the malfunction. As the trace

through the derivation of a component is performed and a component whose

VALUE attribute is derived by default is encountered, its current value

will not be found in the model. Human intervention will be required to

check that component and inform the expert system of the state of the

component. In performing these checks, the human user will eventually

discover the component responsible for the malfunction. Because of the

required human intervention, the algorithm proposed here is one for

error diagnosis guided by an expert system rather than a completely

automatic error diagnosis scheme.

.. An Algorithm for Error Diagnosis

The algorithm presented is defined by the recurslve function

"examlne_rlgin". Examlne_origin performs a backwards trace on the

derivation of the VALUE attribute of its component argument and returns

the entry in this VALUE attribute. During this trace, the states of all

components that directly or indirectly (through the recursion) determine

the value of the component under examination are revealed. Therefore,

if there is a defective component that could have caused the incorrect

value of the component under examination, it will be discovered during

the trace.

Two slightly different versions of examine_orlgln are presented

here, although both give the same results for the end effector example

21

upon which they are demonstrated. Method I represents the algorithm

originally tested and method II is an adaptation. The difference

between the two methods is noted as each is described. It is believed

: that this difference would not be significant for any example involving

the end effector model, however, this has not been proven. It is also

unknown as to whether significantly different results would be produced

by the two methods if they were tested on a different RKBMmodel,

3.2.1. Method I

The algorithm for method I is shown in figure 4. The first step of

examlne_origln is to add its argument to the global examined llst.

(This list prevents a component from being examined more than once and

thus prevents the trace from endlessly looping.) Next, if the VALUE

attribute of the component is derived by default, its value is returned

and examine._originis finished. However, if the VALUE attribute of the

component is not derived by default, the relation used to derive VALUE

must be examined. Each relation consists of a set of boolean expression

(b_.expr)- value expression (v._expr)pairs. At the time the relation

is used to derive the value of a component, only one b_expr is true and

its corresponding v_expr is used to derive the value. Examineorlgln

uses "evaluate__b__expr"on each b expr in the relation until the true

b__expris found. Evaluate__b__expruses "is" to check as many subcondl-

. tions of the b__expras necessary to determine its truth or falsehood.

Examine_origin is then invoked for each unexamined component in the true

b__exprand corresponding v_.expr.As the value of a component is returned

by examine._origln,it is checked against a set of acceptable values for

that component by "in._range". Table 3 shows the acceptable value range

22

examineorigln (component); (* returns value of component *)

begin
add component to examined list;

if component value is derived by default then
return value

else begin (* component value is derived by relation _)

repeat

evaluate b_expr (b _expr_number)

until a true b__expr is found;

for each component in the true b expr and corresponding

v_.expr do
if component not already examined then

if not inrange (comp orient,examine orlgln(comp onent))
then

add component to possible malfunction llst;
return value;
end

end; (* examine orlgin *)

evaluate_b_expr (b_expr_umber); (* returns true if b expr *)
(* is true, false ot_erwlse *)

begin

repeat

is (condition of b_expr)

until b_expr can be determined true or false;
return true or false

end; (* evaluate_b_expr *)

is (condition of b_expr); (* returns true if condition *)
(* is true, false otherwise *)

begin

look in database for value(s) of component(s) in condition
of b expr;

use value(s) to determine if condition is true or false?

return true or false

end; (* is *)

inrange (component,value); (* returns true if value is valid *)
(* range for component, false *)

(* otherwise *)

Figure 4. Method I - Algorithm for Error Detection.

for each component of the end effector. If a component's value is not

in this acceptable range, the Component is added to a possible

23

Value Ranges for End Effector Components

commanded position 0 to -11357

actual_o_ition 0 to -11357
distance 0 to -11357

• error__signal direction positive, negative, off

error_ignal magnitude -11357 to +11357
dac ok

dac__voltage positive, negative, off

servo__amp ok

servo__amp__voltage positive, negative, off
motor leads ok

motor circuit closed

motor current on, off
motor switch on

motor__voltage positive, negative, off
jaws to move yes, no
gears ok

power_supply on
short circuit no
tachometer ok

shaft encoder ok

Table 3. Value Ranges for End Effector Components.

malfunction list. When the original invocation of examine_rigin is

finished, the possible malfunction list should contain any components

whose out-of-range values could have caused the problem in the component

under examination.

Appendix G contains a trace of the recursive calls to

examine_origin when examine__origin(distance) is invoked after the previ-

ously discussed simulation with the bad tachometer in figure 3.

Examine_origin(distance) is invoked because the problem here is that

distance does not have the value that was commanded.

24

3.2.2. Method II

The algorithm using method II is shown in figure 5. Method II

differs from method I in that, as each b_expr is evaluated,

examlne_orlgin is invoked for the components in the b_expr. This seems

more logical than simply inquiring about the value of a component at one

point and later examining it. However, it could also cause unnecessary

examlnatlon of some of the components in a false b_expr since the com-

ponents examined before determining that the b_expr is false may not

have any influence on the derivation of the value, i.e. the true b_expr

and corresponding v expr may not involve these components.

Appendix H contains a trace of examlne_origin using method II for

the same bad tachometer example used to illustrate method I.

25

examlne__origin (component); (* returns value of component *)
begin

add component to examined list;

if component value is derived by default then
return value

• else begin (* component value is derived by relation *)

repeat

evaluate_ expr (b_expr_number)
until a true b_xpr is found;

for each component in the corresponding v__expr do
if component not already examined then

if not inrange (component,examlne__origln(component))
then

add component to possible malfunction list;
return value;
end

end; (* examlne__origln *)

evaluate_b_xpr (b expr_umber); (* returns true if b_expr *)
begin (* is true, false otherwise *)

repeat

is (condition of _expr)

until b__expr can be determined true or false;
return true or false

end; (* evaluate b__expr *)

is (condition of b__expr); (* returns true if condition *)
begin (* is true, false otherwise *)

for each component in condition of b__expr do
if component of condition of b__expr not already examined

then begin

use examine origin(component) to get value of component;
if not inra_ge(component,value) then

add component to possible malfunction llst
end

else

look up value of component in database;

use value(s) to determine if condition of b__expr is true or
false;

return true or false

end; (* is *)

inrange (component,value); (* returns true if value is valid *)

I: otherwiserange for component, false **I

Figure 5. Method II - Algorithm for Error Detection.

26

4. Conclusions

The RKBM knowledge representation format has proven to be usable as

the basis of an expert diagnostic system. However, the method for using

an RKBM description in connection with an operational system has been °

only loosely defined, More research is required in several areas before

such an expert system becomes a reality.

First, the RKBM approach to modelling a system requires further

examination. Problems that have been encountered in modelling the end

effector may be non-existent when modelling other systems. In particu-

lar, the question of an order-dependent versus an order-independent

model may not be a significant issue for other systems. More experimen-

tation should be done to define classes of systems and corresponding

methods for best describing them using the RKBM approach.

Another area requiring further research concerns the two versions

of the error diagnosis algorithm presented here. Several other RKBM

models should be examined using both versions of the algorithm.

Although the difference between the two versions i_ insignificant for

the end effector model, error diagnosis using another RKBM model may

reveal that this difference has some significance.

Finally, further examination of the relationships between the

model, the operational system, the diagnosis algorithm, and the human

user is required. As stated earlier, the expert system proposed here is

not a completely automated error diagnosis system. Human intervention

is a critical component of the error diagnosis scheme. The way in which

the diagnostic algorithm and the model are connected to the operational

27

system and the way in which information is requested and received from

the user must be defined more specifically. This area of research

necessarily includes the development of an implementation of the error

: diagnosis system.

28

5. References

[I] Davis, R., "Diagnosisvia causal reasoning: Paths of Interaction

and the LocalityPrinciple", Proceedingsof the NationalConference

on ArtificialIntelligence,August 22-26, 1983, pp. 88-94.

[2] Blanks,M., "RelationalKnowledge-BaseMachines - A New Approach to

Computer Problem Solving", Honors thesisfor B. S. Computer Sci-

ence, Collegeof William and Mary, Williamsburg,Va., April 1983.

29

Appendix A: Prime LISP versus UTLISP

Before beginning development of the end effector model, the RKBM

L_SP functions had to be rewritten from Prime LISP to UTLISP for execu-
L

• tion on the CDC Network Operating System. This appendix is intended to

explain the differences between Blanks _ implementation for Prime LISP

and the UTLISP implementation presented here. It is also intended to

aid the reader interested in the implementation of an RKBM system in

porting the LISP routines provided here to another LISP implementation.

Minor changes to Blanks _ implementation include:

(I) The SELECT function has been renamed SELEKT to avoid conflicts with

the UTLISP SELECT function.

(2) The Prime LISP functions SDEFUN and SNDEFUN are equivalent to the

UTLISP functions DEF and DEFF, respectively. The later functions

in each pair are used to define other functions whose arguments

will not be evaluated upon invocation of the function.

(3) The purpose of the fourth argument in Blanks ° UPDATE function could

not be determined and this argument has therefore been removed.

More substantial changes to Blanks _ implementation include:

(I) The functions have been changed from "pure _ LISP to include the use

of iteration for the sake of clarity.

(2) The Prime LISP GET and PUT functions for property lists are simu-

lated by GETV and PUTV in the UTLISP implementation. Prime LISP

30

allows any llst with an even number of elements, regardless of how

it iS generated, to be operated upon by GET and PUT as a property

list. UTLISP has a stricter implementation of property lists -

only true property lists can be operated upon as property lists and

a property llst does not have the same structure _ as an ordinary
f

list.

(3) The inability to manipulate property lists as in Prime LISP

required a change in the UPDATE function so that when a component

of the system is updated, the entire relation is replaced. This is

necessary so that components evaluated later in the database rela-

tion will have access to values that have been updated earlier in

the same cycle through the database. The Prime LISP property list

functions evidently manipulate the internal structure of the list,

thus making a replacement of the entire list unnecessary. Without

this change to the UTLISP implementation, an order-dependent model

as described in section 2_3.4 would have been impossible .

(4) Since property list GET and PUT functions are no longer being used,

it is no longer necessary for each tuple in the representation of

the relation to contain attribute - value pairs. Instead, the

first tuple in a relation is a list of attributes and each tuple

contains a list of values corresponding to the attributes.

(5) A function GOTOIT has been added that accepts an argument "max'.

As described in section 2.3.5, GOTOIT drives asimulation of the

RKBM end effector system.

31

(6) Finally, the attribute DERIVED has been eliminated because the

information it contains can be found in the VALUE BY attribute. A

function VALUEFUNCTION has been added to be used by UPDATE within

GOTOIT to determine how to evaluate a new value for a component,

depending on whether value__by is equal to "default', a relation

name, or an expression. (By representing expressions as relations

with one boolean expression - value expression pair, there are only

two possible entries for value_by - default or a relation name.)

32

Appendix B: RKBM Lisp Routines

Thisappendixcontainsthe lisproutinesthatexecutetheRKBMsystem.

(DEF (GET_/(LISS ATTLISTKEY)
% LOCATESKEY IN ATTLIST,THEN RETURNSVALUE THAT %
% OCCUPIES CORRESPONDING POSITION IN LISS %

% - INTENDED TO SIMULATE PRIME LISP GET FUNCTION %

% FOR PROPERTY LIST VALUES %

(CORD ((EQUAL (CAR ATTLIST) KEY) (CAR LISS))
(T (GETV (CDR LISS) (CDR ATTLIST)KEY))

)))
(DEF (PUTV (LISS ATTLIST KEY VALUE)

% LOCATES KEY IN ATTLIST, THEN REPLACES VALUE IN %
% CORRESPONDING POSITION IN LISS - INTENDED TO %

% SIMULATE PRIME LISP PUT FUNCTION FOR PROPERTY %
% LIST VALUES %

(CORD ((EQUAL (CAR ATTLIST) KEY)

(CONS VALUE (CDR LISS))
)
(T (CONS (CAR LISS) (PUTV (CDR LISS)

(CDR ATTLIST)
KEY

VALUE

))))))
(DEFF (# (X)

(GETV (CAR TUPLES) ATTRIBUTES (CAR X))

))
(DEF (SELEKT (RELATION SCRIT PCRIT)

% DATABASE SELECT QUERY - FOR EVERY TUPLE IN RELATION %
% FOR WHICH SCRIT IS TRUE, A TUPLE IS CREATED %
% CONTAINING THE VALUES SPECIFIED IN PCRIT. THESE %

% TUPLES ARE GATHERED INTO A NEW RELATION THAT IS %

% RETURNED BY SELEKT. %

(FROG (ATTRIBUTES TUPLES SELEKTION)

(SETQ ATTRIBUTES (CAR RELATION))

(SETQ TUPLES (CDR RELATION))
LOOP

(CORD % END OF RELATION - RETURN NEW RELATION TUPLES %

((NULL TUPLES) (RETURN (REVERSE SELEKTION)))
% SCRIT TRUE - ADD NEW TUPLE TO NEW RELATION %

((EVAL SCRIT) (SETQ SELEKTION

(CONS (MAPCAR PCRIT "EVAL) SELEKTION) °
)

)

(SETQ TUPLES (CDR TUPLES)) % NEXT TUPLE %

(GO LOOP)
)))

"! (DEF (SELECT1(RELATIONSCRIT PCRIT)
% SIMILAR TO SELEKT EXCEPT ONLY RETURNS %

/

33

% ONE TUPLE - FOR FIRST TUPLE FOUND FOR %

% WHICH SCRIT IS TRUE. %

(PROG (ATTRIBUTES TUPLESSELEKTION)

(SETQ ATTRIBUTES (CAR RELATION))

(SETQ TUPLES (CDR RELATION))
LOOP

(CORD % END OF RELATION - RETURN %
((NULL TUPLES) (RETURN NIL))
% SCRIT TRUE - RETURN NEW TUPLE %

((EVAL SCRIT) (RETURN (EVAL (CAR PCRIT))))
•)

(SETQ TUPLES (CDR TUPLES)) % NEXT TUPLE %

(GO LOOP)
)))
(DEF (PROJECT (RELATION SCRIT PcRIT)

% DATABASE PROJECT QUERY - DISPLAYS NEW RELATION AS %
% WOULD BE CONSTRUCTED AND RETURNED BY SELEKT BUT %

% RETURNS NIL. %

(PROG (ATTRIBUTES TUPLES)

(SETQ ATTRIBUTES (CAR RELATION))

(SETQ TUPLES (CDR RELATION))
LOOP

(CORD % END OF RELATION - RETURN %

((NULL TUPLES) (PRINT "(--END PROJECT))

(RETURN NIL)
)
% SCRIT TRUE - DISPLAYNEW TUPLE %
((EVAL SCRIT) (PRINT(MAPCAR PCRIT "EVAL)))

)
(SETQ TUPLES (CDR TUPLES)) % NEXT TUPLE %

(GO LOOP)
)))
(DEF (UPDATE (RELATION SCRIT APAIR)

% DATABASE UPDATE QUERY - FOR EACH TUPLE IN RELATION %
% FOR WHICH SCRIT IS TRUE, REPLACE THE VALUE OF %

% ATTRIBUTE (CAR APAIR) WITH EVALUATION OF THE %

% SECOND ITEM IN APAIR (CADR APAIR). %

(PROG (ATTRIBUTES TUPLES UPDATED REL)

(SETQ NEE (EVAL RELATION))
(SETQ ATTRIBUTES (CAR REL))

(SETQ TUPLES (CDR REL))

(SETQ UPDATED (LIST ATTRIBUTES))
LOOP

(CORD % END OF RELATION - RETURN %

((NULL TUPLES) (PRINT "(--END UPDATE))

(RETURN NIL)
)
% SCRIT TRUE - UPDATE ATTRIBUTE %

. ((EVAL SCRIT) (SETQ UPDATED (CONS (PUTV (CAR TUPLES)
ATTRIBUTES

(CAR APAIR)

(EVAL (CADR APAIR))

)

34

UPDATED

))
% REPLACE ENTIRE RELATION - NECESSARY SO %

% LATER TUPLESDURING THIS UPDATE CAN %

% ACCESS NEW ATTRIBUTE OF THIS TUPLE. %

(SET RELATION (APPEND (REVERSE UPDATED)

(CDR TUPLES)

)))
% SCRIT FALSE - GATHER OLD TUPLE INTO UPDATED LIST %

(T (SETQ UPDATED (CONS (CAR _PLES) UPDATED)))
)
(SETQ TUPLES (CDR TUPLES)) % NEXT TUPLE %

(GO LOOP)
)))

(DEF (NOTEQ (X Y)
(CONS ((EQUAL X Y) NIL)

(TT)
)

))
(DEF (GTREQ (X Y)

(CONS ((LESSP X Y) NIL)

(T T)
)

))
(DEF (LSSEQ (X Y)

(CONS ((GREATERP X Y) NIL)

(T T)
)

))
(DEF (ABS (X)

(CONS ((GTREQ X O) X)
(T (MINUS X))

)
))
(DEF (EVLX (X)

(CONS ((ATOM X) X)

(T (EVAL X))
)

))
(DEF (GOTOIT (MAX)

% CYCLES THROUGH END EFFECTOR DATABASE UPDATING VALUE %

% ATTRIBUTES. STOPS WHEN 2 CONSECUTIVE CYCLES %

% PRODUCE EXACTLY THE SAME VALUES (l.E. VALUE = %
% VALUE* SO EQUILIBRIUM IS REACHED) OR MAX IS REACHED %

(PROG (KNT)

(SETQ KNT i)
LOOP

(PRINT (APPEND "(CYCLE NUMBER -) (LIST KNT))) °

(UPDATE *EFFECTOR "T "(VALUE (VALUEFUNCTION)))
(CONS % ALL VALUES=VALUE*S - STOP %

((EQUAL (SELEKT EFFECTOR "T "((# VALUE)))
(SELEKT EFFECTOR "T "((# VALUE*)))

)

35

(PRINT 0(-- AT EQUILIBRIUM --))

(RETURN NIL)

))
% DISPLAY ALL VALUES CHANGED ON THIS CYCLE %

(PROJECT EFFECTOR "(NOTEQ (# VALUE*) (# VALUE))

"((# NAME) (# VARIABLE) (# VALUE))
)
% UPDATE VALUE* FIELDS = VALUE FIELDS %

(UPDATE "EFFECTOR "T "(VALUE* (# VALUE)))

(SETQ KNT (PLUS KNT I))
• (CORD % MAX IS REACHED - STOP %

((GREATERP KNT MAX) (PRINT "(-- MAX CYCLE REACHED.--))
(RETURN NIL)

))
_..

....-" (GO LOOP)
)))
(DEF (VALUEFUNCTION()

% FUNCTIONTO DETERMINEHOW TO DERIVE NEW VALUE %
% ATTRIBUTE IN RELATION %
(CORD % VALUE DERIVED BY DEFAULT %

((EQUAL (# VALUEBY) "DEFAULT) (# VALUE))
% VALUE DERIVED BY RELATION %

((ATOM (# VALUE__BY)) (SELECT1 (EVAL (# VALUE BY))
:_ "(EQUAL(EVLX (# B EXPR)) "T)

"((EVLX (# VEXPR)))))
% VALUE DERIVED BY SINGLEEXPRESSION%
(T _EVAL (# VALUE_BY))))))

36

Appendix C: The RKBM End Effector Model

This appendix contains the lisp code that defines the RKBM end effector
model.

(SETQ EFFECTOR "(

(NAME
VARIABLE

PARENT

VALUE BY
VALUE*

VALUE

)
(MICROPROCESSOR

CONDITION

SYSTEM

DEFAULT
OK

OK

)
(COMMANDED POSITION

LOCATION

MICROPROCESSOR
DE FAU LT

0
0

)
(ACTUAL POSITION

LOCATION
MICROPROCESSOR

: ACTUAL
0

0

)
(DISTANCE
AMOUNT

SYSTEM

DISTANCE AMT
0

0

)
(ERROR SIGNAL

DIRECTION

MICROPROCESSOR
ERR SlG DIR

OFF

OFF

)
(ERROR SIGNAL

MAGNITUDE

MICROPROCESSOR

37

ERR SIG MAG
0
0

)
(DAC

CONDITION

SYSTEM
DEFAULT

OK

OK

)
(DAC VOLTAGE

DIRECTION
DAC

DAC VOLT

OFF
OFF

)
(SERVO AMP

CONDITION

SYSTEM
DEFAULT

OK

•OK

)
(SERVO AMP VOLTAGE

DIRECTION

SERVO AMP
SERV0 VOLT

OFF

OFF

)
(MOTOR LEADS

CONDITION
SYSTEM

DEFAULT

OK
OK

)
(MOTOR CIRCUIT

CONDITION
MOTOR

DEFAULT
CLOSED

CLOSED

)
(MOTOR SWITCH

CONDITION

MOTOR

DEFAULT

ON

ON

)

38

MOTOR VOLTAGE
DIRECTION

MOTOR

MOTOR VOLT
OFF

OFF

.,)

(MOTOR CURRENT
CONDITION

MOTOR
CURRENT

OFF

., OFF
..)

:_ JAWS TO MOVE
CONDITION

SYSTEM

MOVE JAWS

NO

NO

)
(GEARS

CONDITION

SYSTEM

DEFAULT
OK

OK

)
(POWER SUPPLY

CONDITION
SYSTEM
DEFAULT

ON
ON

)
(SHORT CIRCUIT

CONDITION
SYSTEM

DEFAULT

NO
NO

)
(TACHOMETER

CONDITION

SYSTEM
DEFAULT

OK

OK

)
(SHAFT ENCODER

CONDITION

SYSTEM

DEFAULT

39

OK

OK

)
))
(SETQ MOTOR VOLT "(

(V_EXPRB__EXPR)
((SELECT1 EFFECTOR "(EQUAL (# NAME) "SERVO AMP VOLTAGE) °((4# VALUE)))

- (AND (EQUAL (SELECT1EFFECTOR "(EQUAL(#.NAME_"POWER_SUPPLY)"((4#VALUE)))-"ON
)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (4#NAME) "MOTORLEADS) "((# VALUE)))

"OK

)))
(OFF

(OR (EQUAL (SELECT1 EFFECTOR "(EQUAL (4#NAME) "POWERSUPPLY) 0((# VALUE)))
"OFF

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (4#NAME) "SERVO_AMPVOLTAGE)

"((4# VALUE))
)
"OFF

)))

• (POSITIVE

(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (4#NAME) "POWERSUPPLY) "((# VALUE)))
"ON

)
(EQUAL (SELECT1 EPFECTOR "(EQUAL (# NAME) "MOTORLEADS) "((# VALUE)))

"REVERSE
)

(EQUAL (SELECT1 EFFECTOR "(EQUAL (4#NAME) "SERVO_AMPVOLTAGE)
"((# VALUE))

)
"NEGATIVE

)))
(NEGATIVE

(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "POWERSUPPLY) "((# VALUE)))
"ON

)
(EQUAL (SELECTI EFFECTOR "(EQUAL (4#NAME) "MOTORLEADS) "((4# VALUE)))

"REVERSE
)

(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "SERVO AMPVOLTAGE)
-((# VALUE))

)
"POSITIVE I

)))
))
(SETQ SERV0 VOLT "(

- (V EXPR B EXPR)

((_ELECTI--EFFECTOR "(EQUAL (4#NAME) "DACVOLTAGE) "((# VALUE)))

(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "SERVO_AMP) "((# VALUE)))
"OK

))

- 40

(OFF
(EQUAL (SELECTIEFFECTOR "(EQUAL(# NAME) "SERVO__AMP)"((# VALUE)))

"BAD
77
(POSITIVE
(OR (EQUAL (SELECT1EFFECTOR "(EQUAL(# NAME) "SERVO_AMP)"((# VALUE)))

"CONSTANT.POSITIVE
)
(AND (EQUAL (SELECT1EFFECTOR"(EQUAL(# NAME) "SERVOAMP) "((# VALUE)))

"REVERSE
)
(EQUAL (SELECT1EFFECTOR "(EQUAL(# NAME) "DAC__VOLTAGE)

"((# VALUE))

) •. i

"NEGATIVE r
)))) . ,
(NEGATIVE

(OR (EQUAL (SELECT1EFFECTOR"(EQUAL(# NAME) "SERVO_AMP)"((# VALUE))) :"
"CONSTANTNEGATIVE .i 'i

) --
(AND (EQUAL (SELECTiEFFECTOR"(EQUAL(# NAME) "SERVOAMP) "((# VALUE)))

"REVERSE
) :

: !

(EQUAL (SELECT1EFFECTOR"(EQUAL(4tNAME) "DAC_.VOLTAGE) :;-,
"((# VALUE)) ' '

)
"POSITIVE

))))
))
(SETQ DAC VOLT "(
(V EXPR B EXPR)
((_ELECTI--EFFECTOR"(AND (EQUAL (# NAME) "ERROR SIGNAL)

(EQUAL(# VARIABLE)"DIRECTION)
)
"((# vALuE))

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "DAC) "((# VALUE)))

"OK
))
(OFF

(OR (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "DAC) "((# VALUE)))
"BAD

)
(EQUAL (SELECT1 EFFECTOR "(AND (EQUAL (4tNAME) "ERROR SIGNAL)

(EQUAL (ItVARIABLE) "D_RECTION)
)
"((# VALUE))

)
"NIL

)))
(POSITIVE

(OR (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "DAC) "((# VALUE)))
"CONSTANT POSITIVE

[,
L'

!.

i.i'

41

)
(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "DAC) "((# VALUE)))

"REVERSE

)
(EQUAL (SELECT1 EFFECTOR "(AND (EQUAL (# NAME) "ERROR SIGNAL)

(EQUAL (# VARIABLE) "D_RECTION)
)

- "((# VALUE))
)
"NEGATIVE

•))))
(NEGATIVE

(OR (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "DAC) "((# VALUE)))
"CONSTANT NEGATIVE

).
(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "DAC) "((# VALUE)))

"REVERSE

)
(EQUAL (SELECT1 EFFECTOR "(AND (EQUAL (# NAME) "ERROR SIGNAL)

(EQUAL (# VARIABLE) "D_RECTION)
)

"((# VALUE))
)
"POSITIVE

))))
))
(SETQ CURRENT "(

(V EXPR B EXPR)
(oN

(AND (NOTEQ (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTOR__VOLTAGE) "((# VALUE)))
"OFF

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTOR CIRCUIT) "((# VALUE)))

"CLOSED

)))
(OFF

(OR (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTOR__VOLTAGE) "((# VALUE)))
"OFF

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTOR__CIRCUIT) "((# VALUE)))

"OPEN

)))
))
(SETQERRSIGMAG"(

(V EXPR B EXPR)
(O--
(OR (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MICROPROCESSOR) "((# VALUE)))

"BAD

)
(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MICROPROCESSOR)

"((# VALUE))

)
"OK

42

)
(LESSP (ABS (DIFFERENCE (SELECT1 EFFECTOR

"(EQUAL (# NAME) "ACTUALPOSITION)
o((# VALUE))

)
(SELECT1 EFFECTOR

"(EQUAL (4/ NAME)
"COMMANDED POSITION

)

"((4tVALUE))
))) :.
I00

))))
(1200

(OR (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MICROPROCESSOR) "((# VALUE)))
"CONSTANT POSITIVE

)

(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MICROPROCESSOR) 0((# VALUE))) :
"CONSTANTNEGATIVE

)))
((ABS (DIFFERENCE (SELECT1 EFFECTOR "(EQUAL (/!NAME) "ACTUALPOSITION)

"((4/ VALUE))
)
(SELECT1 EFFECTOR "(EQUAL (4/NAME) "COMMANDED POSITION)

"((4/ VALUE))
)))
(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (4/ NAME) "MICROPROCESSOR) °((4/ VALUE)))

"OK

)
(GTREQ (ABS (DIFFERENCE (SELECT1 EFFECTOR

"(EQUAL (4/NAME) "ACTUALPOSITION)

"((# VALUE))

ISELECTI EFFECTOR

"(EQUAL (# NAME)

"COMMANDED POSITION
)

"((# VALUE))

)))
tO0

)))
))
(SETQ ERR SIG DIN "(

(V EXPR--B__EXPR)
(O_F

(OR (EQUAL (SELECT1 EFFECTOR "(EQUAL (4/NAME) "MICROPROCESSOR) "((41 VALUE)))
"BAD

)
(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MICROPROCESSOR)

"((# VALUE))
)
"OK

)

43

(LESSP (ABS (DIFFERENCE (SELECT1EFFECTOR

"(EQUAL (# NAME) "ACTUAL__POSITION)
"((# VALUE))

)
(SELECT1EFFECTOR

"(EQUAL (# NAME)

"COMMANDED POSITION
.) m

"((#VALUE))
.)))

I00
))))
(POSITIVE

(OR (EQUAL (SELECT1EFFECTOR "(EQUAL (# NAME) "MICROPROCESSOR) "((# VALUE)))
"CONSTANT POSITIVE

)
(AND (EQUAL (SELECT1EFFECTOR "(EQUAL (# NAME) "MICROPROCESSOR)

"((# VALUE))
_)
"OK

)
(GTREQ (DIFFERENCE (SELECT1EFFECTOR

,(EQUAL (# NAME) "COMMANDED__POSITION)
"((# VALUE))

)
(SELECT1EFFECTOR

"(EQUAL (# NAME) "ACTUAL POSITION)
"((# VALUE))

))
I00

))))
(NEGATIVE

(OR (EQUAL (SELECT1EFFECTOR "(EQUAL (# NAME) "MICROPROCESSOR) "((# VALUE)))
"CONSTANT NEGATIVE

)

(AND (EQUAL (SELECT1EFFECTOR "(EQUAL (# NAME) "MICROPROCESSOR)
"((# VALUE))

)
,'OK

)
(GTREQ (DIFFERENCE.(SELECTI EFFECTOR

"(EQUAL (# NAME) "ACTUAL POSITION)
"((# VALUE))

)
(SELECTI EFFECTOR

"(EQUAL (# NAME) "COMMANDEDPOSITION)
"((# VALUE))

))
I00

))))
))
(SETQDISTANCE AMT "(

(V_EXPR B__EX_R)

44

((DIFFERENCE (SELECT1EFFECTOR "(EQUAL (# NAME) "DISTANCE) "((# VALUE)))
I00

)
(AND (EQUAL (SELECT1EFFECTOR "(EQUAL (# NAME) "JAWS TO MOVE) "((# VALUE)))

"YES
)
(EQUAL (SELECT1EFFECTOR "(EQUAL (# NAME) "MOTOR_VOLTAGE) "((# VALUE)))

"NEGATIVE

)
(GREATERP (SELECT1 EFFECTOR "(EQUAL (# NAME) "DISTANCE)"((# VALUE)))

-11258

)))
((PLUS (SELECT1 EFFECTOR "(EQUAL (# NAME) "DISTANCE) "((# VALUE)))

I0O
)
(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "JAWS._TOMOVE) "((# VALUE)))

"YES
)
(EQUAL(SELECT1EFFECTOR "(EQUAL(# NAME) "MOTOR.VOLTAGE) "((# VALUE)))

"POSITIVE

)
(LESSP (SELECT1 EFFECTOR "(EQUAL (# NAME) "DISTANCE) "((# VALUE)))

-I00
)))
(-11357
(AND (EQUAL (SELECT1EFFECTOR "(EQUAL(# NAME) "JAWS TO MOVE) "((# VALUE)))

.- "YES
)
(EQUAL (SELECT1EFFECTOR "(EQUAL(# NAME) "MOTOR_.VOLTAGE)"((# VALUE)))

"NEGATIVE
)
(LSSEQ (SELECT1EFFECTOR "(EQUAL(# NAME) "DISTANCE)"((# VALUE)))

-11258
)))
(o
(AND (EQUAL (SELECT1EFFECTOR"(EQUAL(# NAME) "JAWS_TO__MOVE)"((# VALUE)))

"YES
)
(EQUAL (SELECT1EFFECTOR "(EQUAL(# NAME) "MOTOR.VOLTAGE)"((# VALUE)))

"POSITIVE
)
(GTREQ €SELECT1EFFECTOR "(EQUAL(# NAME) "DISTANCE)"((# VALUE)))

-I00
)))
((SELECT1EFFECTOR"(EQUAL(# NABS) "DISTANCE)"((# VALUE)))
(EQUAL (SELECT1EFFECTOR "(EQUAL(# NAME) "JAWS TO MOVE) "((# VALUE)))

"NO
))

))
(SETQ ACTUAL "(
(V EXPR B EXPR)
((DIFFERENCE(SELECT1EFFECTOR"(EQUAL(# NAME) "ACTUAL__POSITION)

45

"((# VALUE))
)
loo

)
(OR(AND(EQUAL(SELECTIEFFE_OR"(EQUAL(# NAME)"JAWS_!O_MOVE)

"((# VALUE))
)
"YES

)
• (EQUAL (SELECT1EFFECTOR"(EQUAL(41NAME) "TACHOMETER)"((# VALUE)))

"OK
)
(EQUAL (SELECT1EFFECTOR"(EQUAL(# NAME) "SHAFT_ENCODER)

"((# VALUE))

)
"OK

)

(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTOR VOLTAGE)
"((4/VALUE))

)
"NEGATIVE

)
(GREATERP(SELECT1EFFECTOR"(EQUAL(# NAME) "DISTANCE)

"((#vALUE))
)
-I1258

))
(EQUAL (SELECT1EFFECTOR "(EQUAL(# NAME) "SHAFTENCODER) "((# VALUE)))

"CONSTANTNEGATIVE
)))
((PLUS (SELECT1EFFECTOR"(EQUAL(# NAME) "ACTUAL__POSITION)"((# VALUE)))IOO
)
(OR (AND (EQUAL (SELECT1EFFECTOR "(EQUAL(# NAME) "JAWSTO MOVE)

"((# VALUE))
)
"YES

)
(EQUAL (SELECT1EFFECTOR "(EQUAL(# NAME) "TACHOMETER)"((# VALUE)))

"OK
)
(EQUAL (SELECT1EFFECTOR"(EQUAL(# NAME) "SHAFTENCODER)

"((# VALUE))
)
"OK

•)
(EQUAL (SELECT 1 EFFECTOR "(EQUAL (# NAME) "MOTOR__VOLTAGE)

"((# VALUE))
)
"POSITIVE

)
(LESSP (SELECT1 EFFECTOR "(EQUAL (# NAME) "DISTANCE)

"((# VALUE))

46

)
-100

))
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) •SHAFTENCODER) "((# VALUE)))

"CONSTANT POSITIVE

)))
((DIFFERENCE (SELECT1 EFFECTOR "(EQUAL (# NAME) "ACTUALPOSITION)

•((# VALUE))
)
20

)
(AND (EQUAL (SELECTI EFFECTOR "(EQUAL (# NAME) "JAWS TO MOVE) "((# VALUE)))

"YES

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "TACHOMETER) "(('# VALUE)))

"BAD

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (i/NAME) "SHAFTENCODER). "((i/ VALUE)))

"OK

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (i/NAME) "MOTORVOLTAGE) "((ii VALUE)))

•NEGATIVE

)
(NOTEQ (SELECTIEFFECTOR "(EQUAL (i/NAME) "DISTANCE) "((# VALUE)))

-11357

)))

((PLUS (SELECT1 EFFECTOR "(EQUAL (# NAME) "ACTUALPOSlTION) "((ii VALUE)))
20

)
(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "JAWS TO MOVE) "((# VALUE))) ,

"YES ..

(EQUAL (SELECT1 EFFECTOR "(EQUAL (llNAME) "TACHOMETER) "((# VALUE))) I
"BAD

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (4tNAME) "SHAFT_ENCODER) "((It VALUE))) ...

"OK

)
(EQUAL (SELECTI EFFECTOR "(EQUAL (# NAME) "MOTOR_VOLTAGE) "((# VALUE)))

"POSITIVE

)
(NOTEQ (SELECT1 EFFECTOR "(EQUAL (ItNAME) "DISTANCE) •((it VALUE)))

0
)))
(-I 1357

(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "JAWSTOMOVE) "((# VALUE)))
•YES

)

(EQUAL (SELECT1 EFFECTOR "(EQUAL (i# NAME) "TACHOMETER) o((i# VALUE)))
*OK

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (it NAME) "SHAFTENCODER) "((It VALUE)))

"OK

i

i

47

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (ItNAME) "MOTORVOLTAGE) 0((# VALUE)))

"NEGATIVE

)
(LSSEQ (SELECT1 EFFECTOR "(EQUAL (41NAME) "DISTANCE) "((# VALUE)))

-I 1258

)))
" (0

(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (4tNAME) "JAWS TO MOVE) "((4tVALUE)))
. "YES

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "TACHOMETER) "((# VALUE)))

"OK

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "SHAFTENCODER) 0((# VALUE)))

"OK

)
(EQUAL (SELECT1 EFFECTOR °(EQUAL (# NAME) _OTORVOLTAGE) "((# VALUE)))

"POSITIVE

)
(GTREQ (SELECT1 EFFECTOR "(EQUAL (# NAME) "DISTANCE) "((# VALUE)))

-100
)))
((SELECT1 EFFECTOR "(EQUAL (# NAME) "ACTUAL POSITION) "((# VALUE)))

(OR (EQUAL (SELECTI EFFECTOR "(EQUAL (# NAI_IE)"SHAFTENCODER) 0((# VALUE)))
"BAD

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "JAWS TO MOVE) 0((# VALUE)))

°NO

)
(AND (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "JAWS TO MOVE)

o((# VALUE))
)
"YES

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (41 NAME) °TACHOMETER) 0((# VALUE)))

"BAD

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "SHAFTENCODER)

"((# VALUE))
)
"OK

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTORVOLTAGE)

0((# VALUE))
)
FNEGATIVE

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "DISTANCE) 0((# VALUE)))

-11357

))
(AND (EQUAL (SELECT1 EFFECTOR _(EQUAL (# NAME) FJAWSTOMOVE)

0((# VALUE))

48

)
"YES

)
(EQUAL (SELECT!EFFECTOR "(EQUAL(# NAME) "TACHOMETER)"((# VALUE)))

"BAD
)
(EQUAL (SELECT1EFFECTOR"(EQUAL(# NAME) "SHAFTENCODER)

"((# VALUE))
)
"OK

)
(EQUAL (SELECT1EFFECTOR "(EQUAL(# NAME) "MOTORVOLTAGE)

"((# VALUE))
)
"POSITIVE

)
(EQUAL (SELECT1EFFECTOR"(EQUAL(# NAME) "DISTANCE)"((# VALUE)))

o
))))

))
(SETQ MOVE JAWS "(

(V EXPR B EXPR)
(Y_S

(AND (NOTEQ (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTORVOLTAGE) "((# VALUE)))
"OFF

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTORSWITCH) "((# VALUE)))

"ON

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTOR__CURRENT) "((# VALUE)))

"ON

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "SHORT_CIRCUIT)"((# VALUE)))

"NO

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "GEARS) "((# VALUE)))

"OK

)))
(NO

(OR (EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTORVOLTAGE) "((# VALUE)))
"OFF

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTORSWITCH) "((# VALUE)))

"OFF

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "MOTORCURRENT) "((# VALUE)))

"OFF

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "SHORT__CIRCUIT) "((# VALUE)))

"YES

)
(EQUAL (SELECT1 EFFECTOR "(EQUAL (# NAME) "GEARS) "((# VALUE)))

"JAMMED

)))
))

49

Appendix D: "Trouble-shooting" Flowchart

. I Start I

* Assumptions: \ Turn motor /
I. Actual jaw position _switch off_

can be visually observed \and apply/

2. No obstruction in the \ power /
jaws

3. Voltmeter connected to

DACoutput (ED) I Push reset. I
4. Move jaws mechanically

to mid travel

5. A positive error drives

the jaws open No terminal, back

Turn motor/
switch [

on /

the motor _ Yes i _ Jaws _>I
_. open or close _ move full I On_completelyJ _ open _ I page 4

N° I

Next page

50

Normal
initiali

?

= 0 No Turn on
switch on switch

Yes

Replacethe BAD Repair open

defectivepart DAC ED = 0 IM = 0 ? motor circuitand or and
go to start _ process go to start

No No

Bad Check for
servo amp short circuit

or or

power supply jammed gears

I I
Replaceor fix

the defectivepart
and go back to start

51

move full move full No Returnto
• open closed start

. Yes Yes

Check Reverse
L.E.D. _verload motor leads

circuit sensor O.K. Limit = i ? M negative? and go to
and go to _ start

start

Yes Yes

Repair Repair

limit sensor I < Pal negative_ servo ampand go to Set Pc D " and go to
start start

Repair Repair
Yes DAC

tachometer greater than jaws
and go to normal and go to
start start

No No Yes

Repair I Check _ process

shaft encoder EM negative ? I and go to
and go to

start start
Return

to No
start

Repair
servo amp Yes
and go to !D

negative?

start

No

- Repair
DAC Yes

and go to negative
start

No

I Replace _ process I

and go to
start

52

Appendix E: Normal Simulation

Following is the complete output for the normal simulation dis-

cussed in section 2.3.5 and presented in figure 2.

? (update "effector "(equal (# name) "commanded_posltion) "(value -433))
(--END UPDATE)
? (gotoit 8)

(CYCLE NUMBER - I)

(--END UPDATE)

(COMMANDED POSITION LOCATION -433)

(ERROR SIGNAL DIRECTION NEGATIVE)
(ERROR--SIGNAL MAGNITUDE 433)
(DAC V_LTAGE DIRECTION NEGATIVE)

(MOTOR VOLTAGE DIRECTION NEGATIVE)

(MOTOR CURRENT CONDITION ON)

(JAWS T_ MOVE CONDITION YES)

(--END PROJECT)

(--END UPDATE)
(CYCLE NUMBER - 2)

(--END UPDATE)

(ACTUAL POSITION LOCATION -I00)
(DISTANCE AMOUNT -I00)

(ERROR SIGNAL MAGNITUDE 333)

(--END--PROJECT)
(--END UPDATE)

(CYCLE NUMBER - 3)
(--END UPDATE)

(ACTUAL POSITION LOCATION -200)

(DISTANCE AMOUNT -200)
(ERROR SIGNAL MAGNITUDE 233)

(--END'-PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 4)
(--END UPDATE)

(ACTUAL POSITION LOCATION -300)

(DISTANCE AMOUNT -300)

(ERROR SIGNAL MAGNITUDE 133)

(--END PROJECT)
(--END UPDATE)

(CYCLE NUMBER - 5)

(--END UPDATE)

(ACTUAL POSITION LOCATION -400)
(DISTANCE AMOUNT -400)

(ERROR SIGNAL DIRECTION OFF)

(ERROR SIGNAL MAGNITUDE 0)

(DAC VOLTAGE DIRECTION OFF)

(SERVO AMP VOLTAGE OFF)

(MOTOR VOLTAGE DIRECTION OFF)

(MOTOR--CURRENT CONDITION OFF)

53

(JAWS TO MOVE CONDITION NO)

(--END PROJECT)

(--END UPDATE)

(CYCLE NUMBER- 6)
(--END UPDATE)

(-- AT EQUILIBRIUM --)

54

Appendix F: Abnormal Simulation

Following is the complete output for the abnormal simulation dis-

cussed in section 2.3.5 and presented in figure 3.

? (update "effector "(equal (# name) "commanded_positlon) "(value -120))
(--END UPDATE)

? (update "effector "(equal (# name) "tachometer) "(value "bad))
(--END UPDATE)

? (gotolt 6)

(CYCLE NUMBER - I)

(--END UPDATE)
(COMMANDED POSITION LOCATION -120)

(ACTUAL POSITION LOCATION -400)

(DISTANCE AMOUNT -400)

(ERROR SIGNAL DIRECTION POSITIVE)

(ERROR SIGNAL MAGNITUDE 280)

(DAC VOLTAGE DIRECTION POSITIVE)

(SERVO AMP VOLTAGE DIRECTION POSITIVE)

(MOTOR VOLTAGE DIRECTION POSITIVE)

(MOTOR-'CURRENT CONDITION ON)

(JAWS TO MOVE CONDITION YES)

(TACHOMETER CONDITION BAD)
(--END PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 2)
(--END UPDATE)

(ACTUAL POSITION LOCATION -380)

(DISTANCE AMOUNT -300)

(ERRORSIGNAL MAGNITUDE 260)
(--END PROJECT)
(--END UPDATE)

(CYCLE NUMBER - 3)

(--END UPDATE)

(ACTUAL POSITION LOCATION -360)
(DISTANCE AMOUNT -200)

(ERROR SIGNAL MAGNITUDE 240)

(--END--PROJECT)
(--END UPDATE)

(CYCLE NUMBER - 4)

(--END UPDATE)
(ACTUAL POSITION LOCATION -340)

(DISTANCE AMOUNT -I00)

(ERROR SIGNAL MAGNITUDE 220)
(--END--PROJECT)

(--END UPDATE)

(CYCLE NUMBER - 5)
(--END UPDATE)

(ACTUAL POSITION LOCATION -320)

(DISTANCE AMOUNT 0)

(ERRORSlGNAL MAGNITUDE 200)

55

(--END PROJECT)
(--END UPDATE)

(CYCLE NUMBER - 6)
(--END UPDATE)
(-- AT EQUILIBRIUM--)

56

Appendix G: Method I Trace for Bad Tachometer Example

Following is a trace of the recursive calls to examlne__origin for
method I generated by a call to examlne__origin(distance). The end
effector system is in the abnormal state resulting from the simulation
with the bad tachometer discussed in section 2.3.5 and presented in fig-
ure 3 and Appendix F.

examine__origin(distance)
• examined = (distance)
. if default? - n
• else relation

• eval b expr(1)
. is_j_ws to move ffiy) - t

• is(motor__voltage= negative) - f

.. eval___expr(2)
• is(jaws__to_move= y) - t
• is(motor voltage = positive) - t

• is(distance <= -I00) - f
eval b expr(3)

. isVjFws omove= y)- t
• is(motor voltage = negative) - f
• eval b exp'(4)
• is[j_ws_.to_move= y) - t
• is(motor voltage = positive) - t
. is(distance >= -I00) - t

• examine_rlgin(jaws_.to_ove)
. . examined = examined + jaws__to__move
. . if default? - n
• . else relation

• . eval b expr(1)
• . is_m_tor voltage <> off) - t
• . is(switch= on) - t
• . is(motor current = on) - t
• . is(short circuit = n) - t
• . is(gears----ok) - t

• . examine_rigin(motor_voltage)
• . . examined = examined + motor voltage
. . . if default? - n
• . . else relation

. . . eval b expr(1)
• . . is_p_wer,supply= on) - t
• . . is(motor leads = ok) - t

• . . examine_or_gln(power__supply)
.... examined = examined + power supply
.... if default? - y
..... return "on" - power supply
• . . inrange(power__supply,on)- t
• . . examine_origln(moto_eads)
.... examined = examined + motor leads
.... if default? - y

57

..... return "ok" - motor leads

. . . inrange(motor_leads,ok) - t

• . . examine_origin(servo__amp_voltage)

.... examined = examined + servo__amp_voltage

.... if default? - n

.... else relation

.... eval b expr(1)

• is_s_ k)• • • • rvo amp = o - t

.... examine orlgin(servo amp)

• • • • . examine = examined + servo amp

..... if default? - y

• . . . •.return "ok" - servo amp

.... inrange(servo amp,ok)-

.... examine-Ùrigin(dac--v__t)

..... examined = examined + dac volt

..... if default? - n

..... else relation

..... eval b expr(1)

..... is(dac = ok) - t

..... examine origin(dac)

...... examined = examined + dac

...... if default? - y
• • • . . •.return "ok"

..... inrange(dac,ok) - t

..... examine orlgln(err sig dir)

...... examined = examined + err sig dir

...... if default? - n

...... else relation

...... eval b expr(1)

...... is(microprocessor = bad) - f
• • • • • • or

...... is(microprocessor = ok) - t

...... is(abs(actual-commanded) < I00) - f

...... eval b expr(2)

...... is_m_croprocessor = constant_positive) -f
• • • • • • or

...... is(microprocessor = ok) - t

...... is(abs(actual-commanded) >= I00)- t

...... examine origin(microprocessor)

....... examined = examined + microprocessor

....... if default? - y

........ return "ok" - microprocessor

...... inrange(microprocessor,ok) - t

...... examine origin(commanded position)

....... examined = examined + commanded position

....... if default? - y

........ return "-120" - commanded position

...... inrange(commanded position) - t

...... examine origin(actual position)

....... examined = examined + actual_position

....... if default? - n

....... else relation

....... eval b expr

58

....... is(jaws to move = yes) - t

....... is(tachometer = ok) - f
• • • • • • • or

....... is(shaft encoder = constant negative) - f

....... eval b e_(2)

....... is(jaws to move = yes) - t

....... is(tachometer = ok) - f
• • • • • • • or

....... is(shaft_encoder = constantpositlve) - f

....... eval b expr(3)

....... is(jaws to move = yes) - t .i

....... is(tachometer = bad) - t

....... is(shaft encoder =ok) - t

....... is(motor--voltage = negative) - f

....... eval b expr(4)

....... is(jaws to move = yes) - t

....... is(tachometer = bad) - t

....... is(shaft encoder = ok) - t

....... is(motor voltage = positive) - t

....... is(distance <> O) - f

....... eval b expr(5)

....... is(jaws to move = yes) - t

....... is(tachometer = ok) - f

....... eval b expr(6)

....... is_j_ws to move = yes) - t

....... is(tachOmeter = ok) - f

....... eval b expr(7)

....... is_s_aft encoder = bad) - f
• • • • • • • or

....... is(jaws to move = no) - f
• • • • • • • or

....... is(jaws to move = yes) - t

....... is(tachometer = bad) - t

....... is(shaft encoder = bad) - t

....... is(motor--voltage = negative) - f
• • • • • • • or

• (j ye)• • • • • • • is aws tO move = s - t

....... is(tachometer = bad) - t

....... is(shaft encoder = ok) - t

....... is(motor--voltage = positive) - t

....... is(distance = O) - t

....... jaws to move already examined

....... examine origin(tachometer)

........ examined = examined + tachometer

........ if default? - y
return "bad" tachometer

....... inrange(tachometer,bad) - f

....... poss malfunctions = (tachometer = bad)

....... examine origin(shaft encoder)

........ examined = examined + shaft encoder

........ if default? - y

......... return "ok _ - shaft encoder

....... inrange(shaft encoder_ok) - t

59

....... motor voltage alreadyexamined

....... distance alreadyexamined

....... return "-320"- actual position

..... [inrange(actualposition,-3_O)- t

....... return "positive"- err slg dlr

..... inrange(err_ig_dlr,posltlve)- t
• • , . .•return "positive"- dac volt

" • • • . inrange(dacvolt,posltlve)_ t
..... return "positive"- servo amp__volt
• . . Inrange(servoamp volt,poslti_e)- t
.... return "positive"- motor voltage
• • inrange(motor__voltage,poslt_ve)- t
• . examineorlgln(motorswitch)
• • . examined= examine_[+ motor switch
• . . if default?- y
.... return "on" - motor switch

• • inrange(motor_wltch,_n)- t
• . examine._orlgln(motorcurrent)
• . . examined= examined+ motor current
• • . if default?- n
• • . else relation
• • . eval b expr(1)
• • • is_m_tor_voltage<> off) - t
• • . is(motorcircuit= closed)- t
• • . motor__voltagealreadyexamined
• • • examine_orlgln(motor__circult)
.... examined= examined+ motor circuit
.... if default?- y
..... return "closed"

• • . inrange(motor__clrcult,closed)- t
• •return"on" - motor current

• • inrange(motor__current, o_) - t
• . examine orlgln(short circuit)
• • . examined = examined + short circuit

• . . if default?- y
.... return "no" - short circuit
• • Inrange(short clrcuit_no) - t
• • examlne__orlgi_(gears)
• . . examined= examined+ gears
• • . if default? - y

.... return "ok" - gears
• • inrange(gears,ok) - t
..... return "yes" - Jaws to move
• inrange(jaws__to__move,ye_) --t
• motorzoltage alreadyexamined

- . distancealreadyexamined
• distance already examined
....return "0" - distance

60

Appendix H: Method II Trace for Bad Tachometer Example

Following is a trace of the recursive calls to examine_orlgln for

method II generated by a call to examine orlgln(dlstance)• The end

effector system is in the abnormal state resulting from the simulation
with the bad tachometer discussed in section 2•3.5 and presented in fig-

ure 3 and Appendix F.

examine__orlgln(dlstance)
. examined = (distance)

. if default? -no
• else relation

• eval b expr(1)

• is_j_ws .to, ore = yes) - t

• examine_orlgin(J aws to move)
• . examined = examined + jaws to move

• . if default? - n
• . else relation

• . eval b expr(1)

• . is_m_tor voltage <> off) - t

• . examln__origln(motor_voltage)
• . . examined = examined + motor voltage
• . . if default? - n

• . . else relation

• . . eval b expr(1)

• . . is_p_wersupply = on) - t
• . . examin___orlgln(power_supply)
.... examined= examined+ power supply
.... if default?- y
..... return "on" - power supply
. . . inrange(power__supply,on) - t
• . . is(motorleads= ok) - t
• . . examln_rlgln(motor__leads)
.... examined= examined+ motor leads
.... if default?- y
..... return "ok" - motor leads
• . . inrange(motorleads,ok) - t

• . . (* b expr I true - motor_voltage *)

• . . exam_ne_origln(servo_ampvoltage)

.... examined = examined + servo__amp_voltage

.... if default? - n

.... else relation

• . . . eval b expr(1)
isVs_ k). . . . rvo amp = o - t

.... examin_origln(servo amp)

..... examined = examined + servo amp

..... if default? - y
• . . . ••return "ok" - servo amp

.... inrange(servo_amp,ok) - t

.... (* b expr I true - servo amp_.voltage *)

.... examTne orlgln(dac voltage)

61

..... examined m examined . dac voltage

..... if default? - n

..... else relation

..... eval b expr(1)

..... is(dac = ok) - t

..... examine origin(dac)

...... examined = examined + dac

" • if default? - y
....... return _ok _ - dac

..... inrange(dac,ok) - t

..... (* b__expr 1 true - dac.voltage *)

...... examine origin(err sig dir)

...... examined = examined + err__sig_dir

...... if default? - n

...... else relation

...... eval b expr(1)

...... is_m_croprocessor = bad) - f

...... examine origin(microprocessor)

....... examined = examined +

• • microprocessor

• if default? - y

. •.return _ok _ - microprocessor

...... Inrange(microprocessor,ok) - t
• • • • • • or

...... is(ahs(actual position-

...... commanded position) < I00) -f

...... examine__orig_n(actual__position)

....... examined = examined +

• • • actual position

....... if default? - n

....... else relation

....... ev@l. b expr(1)

....... isl-3_ws__to__move= yes) - t

....... jaws to move already
• examined

....... is(tachometer = ok) - f

....... examine origin(tachometer)

........ examined = examined +

........ tachometer

if d f it? y• • • • , • • . e au --

return "bad" tachometer

inrange(tachometer bad) - f• • • • • • • j

....... poss malfunctions =

....... (tachometer = bad)
• • • • • • • or

....... is(shaft encoder =

....... constant negative) - f

....... examine origi_(shaf t
" en_der)• • • • • • • •

........ examined = examined +

........ shaft encoder

........ if default? - y
return "ok _ shaft• • • • • • • .• m

62

• • • • • • • encoder

....... inrange(shaft encoder,

....... ok) - t

....... eval b expr(2)

is[j_ws yes)• • • • • • • to move = - t

....... jaws to move already
• • • examined

is(tachometer ok) f

....... tachometer already examined
• • • • • • • or

....... is(shaftencoder =

....... constant negative) - f

....... eval b expr(3)

....... is(jaws to move = yes) - t

....... jaws to move already
• • • examined

....... is(tachometer = bad) - t

....... tachometer already examined

....... is(shaft encoder'= ok) - t

....... shaft encoder already

....... examined

....... is(motor voltage =

....... negative) - f

....... motor voltage already
• • • • • • • examined

....... eval b expr(4)

....... is(jawsto move = yes) - t

....... jaws to move already

....... examined

....... is(tachometer = bad) - t

....... tachometer already examined

....... is(shaft encoder = ok) - t

....... shaft encoder already
• • • • • • • examined

....... is(motor voltage =

....... positive)- t

....... motor voltagealready
• • • • • • • examined
....... is(dlstance<> O) - f
....... distance already examined
....... eval b expr(5)
....... is(jaws to move = yes) - t

....... jaws to move already

...... • examined

....... is(tachometer = ok) - f

....... tachometer already examined

....... eval b expr(6)

....... is(jaws to move = yes) - t

j dy "• • • • • . • flwsto move alrea
• • • • * * * examined

....... is(tachometer = ok) - f

....... tachometer already examined

....... eval b expr(7)

63

....... is(shaft encoder = bad) - f

........ shaft_ncoder already
• • • • • • • examined

• • • • • • • or

....... is(jaws to move = no) - f

....... jaws to move already
• • • • • • • examined
• • • • • • • or

....... is(jaws to move = yes) - t

....... jaws to move already
• • • • • • • examined

....... is(tachometer = bad) - t

....... tachometer already examined

....... is(shaft encoder = ok) - t

....... shaft encoder already
• • • examined

....... is(motor voltage =

....... negative) - f

....... motor voltage already
• • . examined

• • • • • • • or

....... is(jaws to move = yes) - t

....... jaws to move already
• examined

....... is(tachometer = bad) - t

....... tachometer already examined

....... is(shaft encoder = ok) - t

....... shaft_ncoder already
• • examined

....... is(motor voltage =

....... positive) - t

....... motor voltage already

.... • • . examined

....... is(distance = O) - t

....... distance already examined

........ return "-320" - actual_osition

...... inrange(actual position,-320) - t

...... examin_origin_commanded position)

....... examined = examined +

....... commanded position

....... if default? - y

........ return "-120" - commanded position

...... inrange(commanded_positlon,-120) - t

...... (* b__expr I false - err sig dir *)

...... eval-b__expr(2)
- • is(mlcroprocessor=

...... constant_.posltlve) - f

...... microprocessoralready examined
• • • • • , or

...... is(mlcroprocessor= ok) - t

...... microprocessoralreadyexamined

...... is(abs(commandedposition-

...... actual_positlon)>= I00) - t

64

....... return "positive" - err sig dlr

..... inrange(err__slg_.dir,positive)- t

...... return "positive" - dac volt

.... Inrange(daevolt,positlve_- t

..... return "positive" -servo._amp__volt
• . . inrange(servo_mp__volt,positlve) - t
.... return "positive" - motor voltage
. . inrange(motor voltage,poslt[ve) - t
• . is(motor switch----on) - t

• . examin_orlgin(motorswitch)_
• . . examined = examined + motor switch

• . . if default? - y
.... return "on" - motor switch

• . inrange(motor_witch,_n) - t
• . is(motor current = on)

• . examin_ _orlgin(motor__current)
• . . examined = examined + motor current
• . . if default? - n
• . . else relation

• . . eval__b_expr(1)
• . . is(motor_oltage <> off) - t
• . . motor__voltagealready examined
• . . is(motor_ircuit = closed)
• . . examine__origin(motor__circuit)
.... examined = examined + motor circuit
.... if default? - y
..... return "closed" - motor circuit

• . . inrange(motor__circuit,clo_ed)- t
• . . (* b__exprI true - motor_current *)
• . .,return "on" - motor current

• . inrange(motor_.current_on)- t
• . is(short circuit = no)

• . examine origin(short_clrcuit)
• • • examined = examined + short circuit
• . . if default? - y
.... return "no" - short circuit

• . inrange(shortcircult_no) - t i
• . Is(gears = ok)

!

• . examine origin(gears)
• . . examined = examined + gears
. . . if default? - y
• . ••return "ok_ - gears
• . inrange(gears,ok)

• . (* b_xpr I true - jaws to move *)
• ..return "yes" - jaws_o__move
• inrange(Jaws to move,yes) - t
• is(motor__voltage_ negative) - f
• motor._voltagealready examined
• eval b expr(2)
• is_J_ws_o__move = yes) - t
• jaws to move already examined
• is(mot_r_oltage = positive) - t
• motor__voltagealready examined ,i

65

• is(distance <= -I00) - f
• distance already examined
• eval b expr(3)
• is_J_ws to move = yes) - t
• jaws to move already examined
• is(motor voltage = negative - f
. motor Voltage already examined
• eval__b__ex_r(4)
• is(Jaws__to__move= yes) - t

, . jaws to move already examined
• is_mot'or__voltage= positive) - t
• motor__voltagealready examined
• is(distance >= -I00) - t
• distance already examined
• (* b expr 4 true - distance *)
• dis_nce already examined
•.return °0_ - distance

1. Report No. 2. GovernmentAccessionNo. 3. Recipient'sCatalogNo.
NASA TM-86288

l

4. Title and Subtitle 5. Report Date

A RelationalApproachto the Developmentof Expert October 1984
Diagnostic Systems S.PerformingOrganizationCode

505-37-13-04

7. Author(s) 8. PerformingOrganizationReport No.

Kathy R. Ames
10. Work Unit No.

9. PerformingOrganizationNameand Address

NASA LangleyResearchCenter
Hampton,VA 23665 '11.Contractor Grant No.

I

13. Type of Report and PeriodCovered
"12.'SponsoringAgencyName and Address

Technical Memorandum
NationalAeronauticsand Space Adminstration !14SponsoringAgencyCode
Washington,DC 20546

15. Supplementary Notes

16. Abstract

The propositionthat, given a structuraland/or functionaldescriptionof any real
or abstract system,an expert system can be built based on this descriptionis
examined. First,a model is developedfor a microprocessor-controlledend effector/
sensor system using a modeling approachcalled a RelationalKnowledge-BaseMachine
(RKBM). Next, an explanationof how the end effectormodel could be used for the
error diagnosison the operationalend effector is given and two versionsof an
error diagnosisalgorithmbased on the model are presented. Finally,areas of
furtherresearchare describedthat are necessarybefore an expert system using
this approach becomesa reality.

=

17. Key Words (Suggestedby Author(s)) 18. DistributionStatement '

expert system Unclassified- Unlimited
relationaldata base
simulation

systemmodeling
error diagnosis Subject Category 59

19. Security Cla=if. (of thisreport) 20. SecurityCla=if. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 67 A04

N-30S ForsalebytheNationalTechnicalInformationService,Springfield,Virginia22161

