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ABSTRACT

This paper describes the hardware for a real-time
multiprocessor simulator (RTMPS) developed at the
NASA Lewis Research Center. The RTMPS is a multiple-
microprocessor system used to investigate the applica-
tion of parallel-processing concepts to real-time
simulation. It is desigred to provide flexible data
exchange paths between processors by using off-the-
shelf microcomputer boards and minimal customized
interfacing. A dedicated operator interface allows
easy setup of the simylator and quick interpreting of
simulation data.

Simulations for the RTMPS are coded in a NASA-
designed real-time multiprocessor language (RTMPL).
This language is high level and geared to the multi-
processor environment. A real-time multiprocessor
operating system (RTMPOS) has also been developed
that provides a user-friendly operator interface.

The RTMPS and supporting software are currently
operational and are being evaluated at Lewis. The
results of this evaluation will be used to specify
the design of an optimized parallel-processing system
for real-time simulatio~ of dynamic systems.

INTRODUCTION

Hardware-in-the~loop and man-in-the~loop simula-
tions, which require real-time performance, provide
many cost- and time-saving benefits. This is particu-
larly true for jet aircraft systems, where ground and
flight testing are costly. For example, piloted simu-
lators are used as a convenient, low-cost method to
evaluate system design changes and their effect on
piiot workload (1). Real-time simulztions of afrcraft
propulsion systems are extensively used to evaluate
new control system designs {2). More recently, there
have been proposals of fault-tolerant propulsion con-
trols, where an airborne engine simulation would be
used to detect sensor failures and to provide a simu-
lated signal for the faulty sensor (3).

These applications of real-time simulations re-
quire simulations that are portable and cost effec-
tive. Currently available mainframe computers and
hybrid (analog/digital) computers can achieve real-
time speeds but are not portable or cost effective for
these applications. Microcomputars are small and in-
expensive but lack sufficient compu.tational power.
However, by operating several microcomputers in parai-
lel, and through proper partitioning ¢f the simulation
problem, computational throughput can te increased
while cost and portability benefits are maintained.

The real-time multiprocessor simulator (RTMPS)
project at the NASA Lewis Research Center is aimed at
developing multiprocessor hardware and software that
satisfy the aforementioned design goals., To accom-
plish this task, an experimental multiprocessor system

was constructed. The design is intended to provide as

. many interprocessor communications paths as possible

“by using off-the-shelf microcomputers and minimal
Customized interfacing. System firmware is used to
coordinate data transfers, to provide extensive diag-
nostic capabilities, and to interface the multiple
processors to a simulation-oriented operating system.
This approach allows simulation software development
tools to be tested and verified in the multiprocessor
environment. It also provides a valuable facility for
investigating various methods of partitioning simula-
tions to run on multiple microcomputers.

This paper describes the multiprocessor research
hardware that is currently operational. The RTMPS is
being used as a test vehicle to aid ir specifying
hardware and software for a more optimized multi-
processor simylation system. These specifications
cen then be applied by using the most current micro-
processor technology for special-purpose simulators,
such as fault-tolerant control systems.

SYSTEM ARCHITECTURE

Several board-level computer systems are current-
1y availatle to support multiprocessing in a single-
bus environment. Intel's Multibus and Motorola's
Versabus are examples of this (4,5). In these sys-
tems, there is typically a bus controller that arbi-
trates requests from potential bus users. The bus
controller grants access to the bus accorling to some
priority scheme. Only one processor or device can use
the bus at any time. In such a multiprocessor system
the bus can quickly become congested when freguent
interprocessor communication is required. This is
especially true in a highly interactive enviromment,
where an operatcr may be continually accessing data
generated on one or more of the processors in the
system. One method of improving the bus throughput
is hy »dding one or more additional communication
paths to the system. This is the approach taken for
the RTMPS.

The RTMPS uses a dual-bus architecture (fig. 1).
The lower bus, called the interactive information bus
(18US), provides a data path primarily for user input
and output. The upper, or real-time, information bus
(RBUS) provides a data path for transferring data
between the simulation processors. A special device
on the 1BUS, called the front-end processor (FEP),
handles all inp:i and output between the cperator and
the RTMPS, Tte other processors on the iBUS (called
1BP processurs) perform tasks related to data trans-
fer to and from the FEP, The IBP processors can also
handle part of the real-time simulation calculations.
Processors on the RBUS (called RBP's) normally perform
the bulk of the simulation calculations. An IBP proc-
esscr communicates with a RBP processor through a
dual-port interface memory, The combination of a IBP
processor, an RBP processor, and interface memory
forms a channel. Interprocessor communications can
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be viewed as occurring locally within a channel (via
dual-port memory) or globally between channels (over
the 1BUS or RBUS). The number of channels can range
frcm zero to the maximum allowed by the physical bus
limitations. The first channel (channel 0) plays a
special role. The RBP processor in channel 0, called
the real-time controller, is responsible for maintain-
ing synchronization between all RTMPS channels. It
sets up and begins program execution and monitors the
timing to ensure that all channels complete their cal-
culations in a specified time. The real-time control-
ler also handles analog input and output, interfacing
the RTMPS to external hardware such as actuators or
controllers. The IBP processor in channel 0 controls
the operating mode (RUN, HOLD, or STOP) and provides
real-time analysis functions as commanded by the FEP.
Real-time analysis functions include data collection,
event triggering, rate-of-change monitoring, and peak
detection.

The RTMPS architecture provides a highly user-
interactive environment. However, the 'architecture
can provide higher performance at the cost of user
interaction. In this case, both the IBUS and the RBUS
would be used for interprocessor transfers related to
simulation calculations. The FEP would serve only as
a loader and initializer for the simulation code.
This mode of operation would be useful for applica-
tions where a proven, dedicated real-time simulation
is required and only minimal operator interaction is
needed.

SYSTEM COMPONENTS

The various components of the RTMPS sy:tem
(fig. 2) are mounted in the top halves of two relay
racks. Two terminals are shown. One terminal is
normally used to communicate with the multiprocessor
cystem through the FEP. The other terminal is avail-
anle for software development. The printer is used
for listing programs and results. The various archi-
tectural components introduced pre‘iously are de-
scribed in detail here.

Microcomputer Boards

The IBP and RBP nrocessors are implemented by
using Motorola VM02 microcomputer boards (6). These
boards consist of an B-MHz 68000 microprocessor, 128K
of random-access memory, three programmable timers, a
system bus interface, and an interrupt controller.
The VM02 RAM is dual ported to the board's local bus
and the external system bus. Therefore 311 of the
128K RAM is accessible by the local 68000 microproces-
sor or by any other microcomputer board on the system
bus. Each board also has an input-output channel to
allow communications with devices external to the
board and the system bus. This input-output channel
is used to interface the microcomputer board to a
dual-port interface memory.

Interface Memory

The dual-port interface memory is the communica-
tions link between processors on the IBUS and those on
the RBUS. The memory consists of a small amount of
customized circuitry contained in a rack-mountable
chassis (fig. 3). It is interfaced to an IBP proces-
sor and an RBP processor through each processor's
input-output channel. The input-ortput channel is
composed of address, data, anu control lines that
define a memory-mapped segment of the processor's
address space. The input-output channel is specified
(7) to be an asynchronous communications path. Thus,
whenever a processor begins an input-output channel

access cycle, it must wait for an acknowledgment from
the channel before completing the cycle. The control
and arbitration logic decodes memory accesses from
both of the processors. Either processor can read
from or write to the memory. However, only one proc-
essor can access memory at any one time. If simul-
taneous accesses (contention) occur, one processor is
delayed while the other completes ‘ts cycle. Typical
access times without contention a 1.3 us for a read
cycle and 1.5 us for a write cycle.

There are three 1K blocks of memory. The address
spaces occupied by each of t“e first two blocks are
switch .=lectable by software (fig. 4). If the switch
is off, memory block 1 occupies the address space 0 to
1023, and blozk 2 resides in locations 1024 to 2047.
When the switch is on, memory block 1 is now located
at addresses 1024 to 2047 and block 2 is at 0 to 1023.
This feature is especially useful for a simulation
problem where past values, such as the derivatives
for an integration algorithm, must be retained. For
example, assume a variable is assigned to location
1024 and its past value to location 0. By togalina
the switch and then updating the variable at location
1024, the past value is automatically retained at
location 0.

The firmware on each channel's RBP, which 1s
described in detail later, controls the setting of
the memory switch. It toggles the switch on each
channel at every update intervai. The update interval
defines what is "real time" for the system. The simu-
lation's dynamic equatiens, which are functions of
time, are recalculated at every update interval by
using a new value for tim'. Time is advanced by the
increment defined by the update interval, and the
memory switch is toggled.

The third and final block of memory is used to
store flags, control parameters, and other informa-
tion that synchronizes communicction between the two
precessors sharing the memory. Two 8-bit latches
within the interface memory are used to aenerate in-
terrupts. One latch is assigned to each of the proc-
essors that share the memory. One bit from the PBP
processor's latch is also used for the memory switch
as previously described. This bit is controlled by
the RBP processor firmware. Both processors have four
interrupts, each of which is used to beain interproc-
essor communications within an RTMPS channel.

Real-Time Information Bus

The RBP processors physically reside in Versabus
card cages. Thus data transfers that occur cver the
RBUS follow the Versabus soecification. The srecifi-
cation allows for multiple bus masters and fi'2 levels
of bus priority. Cecause all d2*a transfe - are as)n-
chronous, 2 sending device requires an acknowledar .t
from a receiving device before the transfer is com-
pleted. In “his arrangement, the bus controller must
reside in the first slot of the card cage. The bus
controller monitors requests for bus access and grants
access according to priority level.

Referring again to figure 1, the first processor
"located in channel 0) o~ the RBUS is desianated as
the real-time controller. This processor has the
responsibility of synchronizing all of the RBP proc-
essors during RTMPS operation and also performs the
analog input and output. Because board-level analoq
peripherals are not available for the Versabus, a
Versabus-to-Multibus converter is used. The con-
verter allows a Multibus card cage to act as an ex-
tension of the Versabus system. Thus the many



Multibus-compatible analog peripherals can be used
with the Versabus. Another benefit of the Multibus
extension is the :bility to communicate with other
Multibus board-levei products, including microcomputer
boards. This is a useful feature in the research
being performed at Lewis. Future applications of
RTMPS include evaluating experimental control systems.
These control systems are typically implemented at
Lewis by using Intel 8086-based Multibus microcom-
puters. With the Multibus extension of the Versabus
the experimental control computer can be easily inte-
grated into the RTMPS for testing. The RTMPS proces-
sors would perform engine simulation calculations,
obtaining the control values they need from the con-
trol computer's dual-port memory (via Versabus-
Multibus). In a similar manner the control computer
would sample the various erjine parameters it needs.

Interactive Bus

The IBUS is contained within a Motorola Exormacs
development system. Tne chassis is a 15-slot
Versabus, with several slots contaiming the develop-
ment system processor board, disk controller, RAM, and
communications controller. The development system's
Versabus furms the IBUS, with the previously described
board set c.nstituting the FEP. The remaining card
slots are used for the IBP processors in the RTMPS
channels.

Although the Exormacs development system was
designed for software development, it nas many useful
features that make it ideal for an FEP. The system
communications controller and a terminal are used as
the RTMPS operator's console. The disk centroller,
hard disk, and floppy disk systems provide storage for
programs and data. The resident disk operating sys-
tem, Versados, contains utilities and system routines
that can be called by the RTMPOS operating system.
Since the disk operating system is multiuser and
multitasking, the RTMPS can be used simultaneously
for software development and running real-time
simulations.

F IRMWARE

Hardware/Software Interface

The heart of the RTMPS system is the firmware.
Each IBP and RBP has its own distinct firmware. The
firmware contains the code (in read-only memory) that
initializes anc synchronizes the system and coordi-
nates ' he transfer of data between processors. It
provide: an interface between the RTMPS hardware and
the system software. It also controls the flow of
information to and from the analog hardware (i.e.,
DAC's and ADC's), as illustrated in figure 5. One of
the software/firmware interfaces shown is to the real-
time multiprocessor proaramming 1anguage (RTMPL) (8).
This is a NASA-designed language that is used to pro-
gram multiprocesser systems. Another interface is to
the real-time multiprocessor operating system (RTMPOS)
(9), which is a simulation-orier.ted operating system
used on the RTMPS. RTMPOS was also aeveloped by NASA.
Detailed descriptions of these software packages are
provided in the references, bu* a brief overview is
given here.

The RTMPL lanquage allows a user to describe
simulation equations that have been partitioned to
run on multiple processors in a high-level, structured
manner. RTMPL acts as an assembly lanquage program-
mer, translating the high-level simulation description
into time-efficient, assembly language code for the

ORIGINAL PAGE 8
OF POOR QUALITY

processors. All required interprocessor communica-
tions (i.e., data transfers) are automatically estab-
lished by the RTMPL translator. RTMPL simulations
are self-documenting since the translator utility
produces listings, error messages, warnings, and data-
base filex that can aid in the debugging and running
of a simulation. The RTMPL utility is written in
Pascal and run: on a Motorola Exormacs development
system (which also serves as the RTMPS FEP). The
RTMPL interface firmware implements data transfer
between processors and issues simulation-generated
advisories to RTMPOS.

The real-time multiprocessor operating system
provides the RTMPS user with engineerina-level, run-
time operations such as loading and modifying of pro-
grams, simulator mode control, data handling, and
run-time monitoring. The RTMPOS acts in conjunction
with the FEP's manufacturer-supplied disk operating
system, Versados. Versados supplies typical utilities
such as file handling and input-output services. It
also provides software development tools surh as a
text editor, an assembler, a linker, and a Pascal
compiler. The RTNPOS software is programmed mainly
in Pascal with some assembly language routines.

The RTMPOS interface firmware provides the primi-
tive operations necessary for (1) information transfer
between the FEP and *he RTMPS processors, (2) simula-
tion mode control, {3) sequencing and execution of
simulation code segments, (4) execution of functions
for data analysis, and (5) issuing of diagnostic ad-
visories and status information.

The information transfer functions allow program
loading, initialization, data display, and execution
control by RTMPC® to be done by using "handshake"
mechanisms. Flags #-e used to synchronize firmware
and RTMPOS execution. RTMPOS sets a flaa to beain a
function and monitors it until it is reset by the
firmware, an indication that ine function has been
performed.

Data Transfer

The transfer of data between processors during
simulation execution is coordinated by firmware. The
transfer requirements are established by RTMPL durina
translation of the simulation source code. For exam-
ple, the source code for one processor may reference
a variable that is calculated on another processor.
RTMPL recognizes this situation and generates the
necessary code to begin the transfer of the variable
from the source processor to the destination proces-
sor. The firmware provides the services to perform
the physical data movement and to maintain data cur-
rency within a simulation update interval. Data cur-
rency is maintained through the use of a currency
flag. A1l external variables have a currency flac
that alternates in value every update interval. A
destination processor requiring an external variable
must first verify that the variable is current by
testing this flag. A source processor transferring a
variable to a destination processor must send the cur-
rency flag with the variable. The use of the currency
flag allows data to bhe transferred asynchronously
(i.e., at any time) during an update interval. The
ability to transfer data asynchronously provides the
maximum flexibility for partitioning of simulation
code to run on multiple processors. A more detailed
discuscion of asynchronous and synchronous (where all
transfers occur at a fixed interval) data transfer is
given in McLaughlin (10).
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Mode Control

Three major simulation modes are supported by
the firmware: STOP, RUN, and HOLD. In the STOP mode
all simulation processors are available for program
loading and initialization. In the RUN mode the vari-
ous segments of the simulation code are executed re-
petitively on the basis of the cyclic timeouts of a
programmable timer. The timeout generates an inter-
rupt in each of the RTMPS processors. The period
between interrupts defines the simulation update in-
terval. It is the responsibility of the real-time
controller to verify that all channels have completed
their calculations before the end of the update inter-
val. During the computation interval each processor
performs calculations for its one segment of the simu-
lation. The RUN mode is illustrated in figure 6 for
an example simulation involving three variables (VAR1,
VAR2, and VAR3).

In the example, variable VAR1 is computed on

IBP 1 and VAR2 and VAR3 on kBP 2. Variable VAR] must
be transferred to RBP 1 in order for that prozessor to
crmplete its calculations. Similarly, VARZ must be

rcisferred tc IBP 1 and VAR3 to iBP 2. The wait
cy.les shown in figure 6 represent testing of a vari-
able's currency. When each RBP has comnlzied its cal-
culations, it waits until the associated IBP processor
is finished. The RBP then signals the real-time con-
troller, via interrupt, of that channel's completion.
Before this interrupt the real-time controller has
been perturming simulation calculations, supporting
analysis functions, arJ outputting information to the
DAC's. When all chanrels have completed their calcu-
lations, the real-time controller inoucs ADC informa-
tion for the next upda‘'e interval. If all channels
have not completed their calculations before the next
update interval, an interrupt is issued to the operat-
ing system. R/MPOS then advises the user of a fail-
ure. In addition, the firmware maintains a watciidog
timer for each processor that, if not reset periodi-
cally, interrupts RTMPOS to issue an advisory.

The HOLD mode is similar to the RUN mcde in that
the simulation is repetitively executed. In HOLD,
however, user-specified variables are held constant
and the computation is recycled upon completion and is
not timer driven. The watchdog timer does operate in
HOLD. Before rach comjutation is executed, latches
(ausociated with each veriable whose value is to be
held) are set by the firmware. Ouring computation in
this mode the latches are tested when a variable value
has been computed and, if set, the new value is re-
placed by the old one.

Analysis and Adv’sories

The firmware serves the following RTMPOS-
selectable analytical functions: data sampling, peak
detection, and rate-of-charje detection. These ser-
vices are set up in STOP and may be activated in
either RUN or HOLD. The real-time analysis processor
in channel 0 executes the analysis firmware (if an
analytical task is selected). This allows the other
processors to perform simulation calculations
uninterrupted.

The firmware providec ‘or advisories to the user
through RTMPOS. These services are of two types:
system advisories indicating RTMPS status, and ucer
advisories indicating simulation status. System ad-
visories are used for timeouts, hardware errors, and

.

diagnostic information. User advisories are program-
med in RTMPL and allow the user to obtair run-time
simulation information. The firmware issues advisor-
ies by interrupting the FEP to activate service tasks
that issue the advisory.

The firmware also performs power-up and initiali-
zation functions for each processor. At power-up the
processor interrupt vector table is set uo. Program
memory is initially cleared and a channel interrupt
test is performed. This test checks the interrupt
mechanism in the dual-port interface memory, which is
critical to RBP-IBP processo~ communications. Once
the interrupt test is completed, each channel exe-
cutes a test of the interface memory. This is a dual-
processor version of the sliding-ones-and-sliding-
zeros test described by Milner (11). If a channel
fails to pass these tests, XTMOS alerts the operator.
After the power-up tests each channe! then enters the
STOP mode to await program loading.

To accomplish these functions, the firmware re-
quires about 4K bytes of ROM on each processor. As
development proceeds in RTMPS, more features will be
added to enhance the interactive nature > the operat-
ing system.

CONCLUDING REMARKS

The overall performance of the RTMPS is tied
directly to processor speed and the level of parallel-
ism in the simulation cose. In the existing RTMPS
configuration an increase in processor speed will
decrease the minimum update interval achievable (i.e.,
more calculaticns can be done during the update inter-
val). The update interval can also be decreased by
more efficient partitioning of the simulation code.
There is, however, a "critical path," or a limit to
how far the code can be segmented.

Advances in microelectronics are expected to
affect the RTMPS hardware. For example, the next
generation of microcomputer boards, which can be
"plugged” directly into the RTMPS system, is expected
to be three to four times faster than existing boards.
Hardware performance can also be improved by using
bit-slice computer technology for the processors, such
as the AMD 2900/29000 family. This approach must be
evaluated, however, from the standpoint of size, cost,
and software development, since a penalty is paid in
each of thcse areas for the increase in speed.

The RTMPS hardware described herein is currently
being used to investigate the application of parallel
processing to real-time simulation of dynamics sys-
tems. The RTMPL language and the RTMPOS operating
system are operational and in the process of optimiza-
tion. Partitioning algorithms are also being evalua-
ted on RTMPS. A benchmark simulation of a small
turboshaft helicopter engine has been partitioned and
is operational on the system. A future application is
the real-time simulation of a wind tunnel facility.
The simulation will be used to evaluate control system
hardware and for operator training. As the evaluation
process proceeds, it is anticipated that imorovements
to the RTMPS hardware and software will resuit.
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Figure 1. - General simulator configuration.

Figure 2. - Real-time multiprocessor simulator.
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