
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA Technical Memorandum 83805

Hardware for a Real-Time
Multiprocessor Simulator

(NASA-Td-63605)	 HARDWARE FOB l E,EAL-TIME 	 N85-10659
MULTiPBOCESSOH SIMULATOR (eiDSA)	 11 p
HL A0218k A01	 CSCL 09B

Uncla=
G3/60 24154

Richard A. Blech and Dale J. Arpasi
Lewis Research Cewer
Ceue:and, Ohio

Prepared for the
1985 SCS Multiconference "Distributed Simulation"
sponsored by the Society for Computer Simulation
San Diego, California, January 24-26, 1985 	

n^^
J	 ,,^

J	 hC1	 J

RU\SA `^`^

^) ii

oRIan

NAROMARE FOR AREAL-TIME MULTIPROCESSOR SIMULATOR

M QU	 ^Richard A. Blech a^ Oahe J. Arpasi
oar	 National Aeronautics and Space A,«ninistration

Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

This paper describes the hardware for a real-time
multiprocessor simulator (RTMPS) developed at the
NASA Lewis Research Center. The RTMPS is a multiple-
microprocessor system used to investigate the applica-
tion of parallel-processing concepts to real-time
simulation. it is designed to provide flexible data
exchange paths between processors by using off-the-
shelf microcomputer boards and minimal customized
interfacing. A dedicated operator interface allows
easy setup of the simulator and quick interpreting of
simulation data.

Simulations for the RTMPS are coded in a NASA-
designed real-time multiprocessor language (RTMPL).
This language is high level and oeared to the multi-
processor environment. A real-time multiprocessor
operating system (RTMPOS) has also been developed
that provides a user-friendly operator interface.

The RTMPS and supporting software are currently
operational and are being evaluated at Lewis. The
results of this evaluation will be used to specify
the design of an optimized parallel-processing system
for real-time simulation of dynamic systems.

INTRODUCTION

Hardware-in-the-loop and man-in-the-loop simula-
tions, which require real-time performance, provide
many cost- and time-saving benefits. This is particu-
larly true for jet aircraft systems, where ground and
flight testing are costly. For example, piloted simu-
lators are used as a convenient, low-cost method to
evaluate system design changes and their effect on
pilot workload (1). Real-time simulations of aircraft
propulsion systems are extensively used to evaluate
new control system designs (2). More recently, there
have been proposals of fault-tolerant propulsion con-
trols, where an airborne engine simulation would be
used to detect sensor failures and to provide a simu-
lated signal for the faulty sensor (3).

These applications of real-time simulations re-
quire simulations that are portable and cost effec-
tive. Currently available mainframe computers and
hybrid (analogidigital) computers can achieve real-
time speeds but are not portable or cost effective for
these applications. Microcomputers are small and in-
expensive but lack sufficient computational power.
However, by operating several microcomputers in parai-
lel, and through proper partitioning of the simulation
problem, computational throughput can Le increased
while cost and portability benefits are maintained.

The real-time multiprocessor simulator (RTMPS)
project at the NASA Lewis Research Center is aimej at
developing multiprocessor hardware and software that
satisfy the aforementioned design goals. To accom-
plish this task, an experimental multiprocessor system

was constructed. The design is intended to provide as
many interprocessor communications paths as possible
by using off-the-shelf microcomputers and minimal
customized interfacing. System firmware is used to
coordinate data transfers, to provide extensive diag-
nostic capabilities, and to interface the multiple
processors to a simulation-oriented operating system.
This approach allows simulation software development
tools to be tested and verified in the multiprocessor
environment. It also provides a valuable facility for
investigating various methods of partitioning simula-
tions to run on multiple microcomputers.

This paper describes the multiprocessor research
hardware that is currently operational. The RTMPS is
being used as a to;t vehicle to aid i r specifyino
hardware and software for a more optimized multi-
processor simulation system. These specifications
can then be applied by using the most current micro-
processor technology for special-purpose simulators,
such as fault-tolerant control systems.

SYSTEM ARCHITECTURE

Several board-level computer systems are current-
ly available to support multiprocessing in a single-
bus environment. Intel's Multibus and Motorola's
Versabus are examples of this (4,5). In these sys-
tems, there is typically a bus controller that arbi-
trates requests from potential bus users. The bus
controller grants access to the bus according to some
priority scheme. Only one Processor or device can use
the bus at any time. In such a multiprocessor system
the bus can quickly become congested when frequent
interprocessor communication is required. This is
especially true in a highly interactive environment,
where an operator may be continually accessing data
generated on one or more of the processors in the
system. One method of improving the bus throughput
is ')y rdding one or more additional communication
paths to the system. This is the approach taken for
the RTMPS.

The RTMPS uses a dual-bus architecture (fig. 1).
The lower bus, called the interactive information bus
(IBUS), provides a data path primarily for user input
and output. The upper, or real-time, information bus
(RBUS) provides a data path for transferring data
between the simulation processors. A special device
on the IBUS, called the front-end processor (FEP),
handles all inp!:L and output between the operator and
the RTMPS. T't other processors on the !BUS (called
IBP processors) perform tasks related to data trans-
fer to and from the FEP. The IBP processors can also
handle part of the real-time simulation calculations.
Processors on the RBUS (called RBP's) normally perform
the bulk of the simulation calculations. An 18P proc-
essor communicates with a RBP processor through a
dual-port interface memory. The combination of a IBP
processor, an RBP processor, and interface memory
forms a channel. Interprocessor communications can

V$
MN
J,

ORIGINAL. PAGE fS .

OF POOR QUALITY .n
be viewed as occurring locally within a channel (via

dual-port memory) or globally between channels (over

the IBUS or RBUS). The number of channels can range

from zero to the maximum allowed by the physical bus
limitations. The first channel (channel 0) plays a
special role. The RBP processor in channel 0, called
the real-time controller, is responsible for maintain-
ing synchronization between all RTMPS channels. It

Sets up and beg ins prog ram execution and monitors the

timing to ensure that all channels complete their cal-
culations in a specified time. The real-time control-
ler also handles analog input and output, interfacing
the RTMPS to external hardware such as actuators or
controllers. The IBP processor in channel 0 controls

the operatin g mode (RUN, HOLD, or STOP) and provides
real-time analysis functions as commanded by the FEP.
Real-time analysis functions include data collection,
event triggering, rate-of-change monitoring, and peak
detection.

The RTMPS architecture provides a highly user-

interactive environment. However, the architecture
can provide higher performance at the cost of user
interaction. In this case, both the IBUS and the RBUS
would be used for interprocessor transfers related to
simulation calculations. The FEP would serve only as

a l oader and initializer for the simulation code.
This mode of operation would be useful for applica-
tions where a p roven, dedicated real-time simulation
is required and only minimal operator interaction is
needed.

SYSTEM COMPONENTS

The various components of the RTMPS sy, terr.
(fig. 2) are mounted in the top halves of two relay
rar ks. Two terminals are shown. One terminal is
normally used to communicate with the multiprocessor
System through the FEP. The other terminal is avail-
aole for software development. The printer is used
for listing p rograms and results. The various archi-
tectural components introduced pre'iously are de-
scribed in detail here.

Microcomputer Boards

The IBP and RBP p rocessors are ir,plemented by

usina Motorola VMO2 microcomputer boards (6). These
boards consist of an 8-MHz 68000 microprocessor, 128K
of random-access memory, three pro g rammable timers, a
system bus interface, and an interrupt controller.
The VMO2 RAM is dual ported to the board's local bus
and the external system bus. Therefore ill of the
128K RAM is accessible by the local 68000 microproces-
sor or by any other microcomputer board on the system
bus. Each board also has an input-output channel to
allow communications with devices external to the
board and the system bus. This input-out p ut channel
is used to interface the microcomputer board to a
dual-port interface memory.

Interface Memory

The dual-port interface memory is the communica-

tions link between processors on the IBUS and those on
the RBUS. The memory consists of a small amount of
customized circuitry contained in a rack-mountable
chassis (fig. 3).	 It is interfaced to an IBP proces-
sor and an RBP p rocessor throu g h Each processor's
inp ut-output channel. The input-o- put channel is
composed of address, data, anu Lontrol lines that
define a memory-mapped segment of the processor's
address s p are. The input-output channel is specified
(7) to be an asynchronous communications p ath. Thus,
whenever a p rocessor be q ins an input-output channel

access cycle, it must wait for an acknowledgment from
the channel before completing the cycle. the control
and arbitration logic decodes memory accesses from
both of the processors. Either processor can read
from or write to the memory. However, only one proc-
essor can access memory at any one time. if simul-

taneous accesses (contention) occur, one processo r is
delayed while the other completes ^ t s cycle. Typical
access times without contention a	 1.3 us for a read

cycle and 1.5 us for a write cycle.

'here are three 1K blocks of memory. The address
spaces occupied by each of t`.e first two blocks are
switch ,-lectable by software (fig. 4). 	 If the switch
is off, m.emory block 1 occu p ies the address space 0 to
1023, and block 2 resides in locations 1024 to 2047.
When the switch is on, memory block 1 is now located
at addresses 1024 to 2047 and block 2 is at 0 to 1023.
This feature is especially useful for a simulation
problem where past values, such as the derivatives
for an integration al gorithm, must 5c retained. =or
example, assume a variable is assigned to location
1024 and its past value .o location 0. By togolina
the switch and then updating the variable at location

1024, the past value is aitomatically retained at
location 0.

The firmware on each channel's RBP, which is

described in detail later, controls the setting ,f
the memory switch. It toggles the switch on each
channel at every update interval. The update interval

defines what is "real time" for the system. The simu-
lation's dynamic equations, which are functions of
time, are recalculated at every update inter ,.al by
using a new value for t i mt. Time is advanced by the
increment defined by the update interval, and the
memory switch is toggled.

The third and final block of memory is used to

store flans, control parameters, and other informa-
tion chat synchronizes communicc,'ion between the two

pre,:essors sharing the memory. Two 8-bit latches
within the interface memory are used to g enerate in-
te-rupts. One latch is assi g ned to each of the proc-
essors that share the memory. One bit from the PRP
processor's latch is also used for the memory switch
as p reviously described. This hit is controlled by
the RBP processor firmware. Both processors have four
interrup ts, each of which is used to beoin interproc-
essor communications within an RTMPS channel.

Real-Time Information Bus

The RBP processors physically reside in Versabus

card canes. Thus data transfers that occur over the
RBUS follow the Versabus soecification. The s- ecifi-
cation allows for multiple hus masters and fi-e level;
of bus priority. Cecause ali ^!*a transfc - are as , n-
chronous, ^ sendin q device requires an acknowledorr t
from a receiving device before the transfer is com-
pleted. In 'his arran gement, the bus controller must
reside in the first slot of the card caae. The bus
controller monitors requests for bus access and grants
access accordino to priority level.

Referring again to figure 1, the first processor

'located in channel 0) o, the RBUS is desionated as
the rea r -time controller. This p rocessor has the
responsibility of synchronizing all of the RBP proc-
Pssors during RTMPS operation and also performs the
analoo input and output. Because board-level analog
peripherals are not available for the Versabus, a
Versabus-to-Multibus converter is used. The con-

verter allows a Multibus card caae to act as an ex-
tension of the Versabus system. Thus the many

r^

Vii.

Multibus-compatible analog peripherals can be used
with the Versabus. Another benefit of the Multibus

extension is tht bility to communicate with other
Multibus board-lev^'i products, includinq microcomputer
boards. This is a useful feature in the research
beinq performed at Lewis. Future applications of
RTMPS include evaluating experimental control systems.

These control systems are typically implemented at

Lewis by usin q Intel 8086-based Multibus m i crocom-

puters. With the Multibus extension of the Versabus
the experimental control computer can be easily inte-

grated into the RTMPS for testinq . The RTMPS proces-

sors would perform eng ine simulation calculations,

obtaining the control values they need from the con-

trol computer's dual-port memory (via Versabus-
Multibus). In a similar manner the control computer
would sample the various er.yine parameters it needs.

Interactive Bus

The IBUS is contained within a Motorola Exormacs

deve'opment system. Tne chassis is a 15-slot
Versabus, with several slots containing the develop-

ment system processor board, disk controller, RAM, and
communications controller. The development system's

Versabus fi rms the IBIS, with the previously described

board set c.nstitutin q the FEP. The remaininq card

slots are ust:i `or the IBP processors in the RTMPS
channels.

Although the Exormacs development system was

designed fo •• software development, it nas many useful
features tfat make it ideal for an FEP. The system
communications controller and a terminal are used as
the RTMPS opErator's console. The disk controller,
hard disk, and floppy disk systems provide storaqe for
p rogr ams and data. the resident disk operatina sys-
tem, Versados, contains utilit i es and system routines
that can be called by the RTMPOS operating system.
Since the disk operatina system is multiuser and
multitaskin q , the RTMPS can be used simultaneously
for software development and running real-time
simulations.

FIRMWARE

Hardware/Software Interface

The heart of the RTMPS system is the firmware.

Each IBP and RBP has its own distinct firmware. The
firmware contains the code (in read-only memory) that
initializes ant; synchronikes the system and coordi-
nates he trans f er of data between p rocessors. it
provide, an interface between the RTMPS hardware and
the system software. It also controls the flow of
information to and from the analoq hardware (i.e.,

DDC's and ADC's), as illustrated in figure 5. One of
the software/fir,nware interfaces shown is to the real-
time multiprocessor programminq l a nguage (RTMPL) (8).
This is a NASA-designed lanquaqe chat is used to pro-
gram multi p rocessor systems. Another interface is to
the real-time multiprocessor operatin q system (RTMPOS)

(9), which is a simulation-oriei.ted operatinq system
used on the RTMPS. RTMPOS was also developed by NASA.

Detailed descriptions of these software packages are
provided in the references, bu' a brief overview is
given here.

The RTMPL lanquaae allows a user to describe
simulation e q uations that have been partitioned to
run on multiple p rocessors in a high-level, structured
manner. RTMPL acts as an assembly lan q uag e prog ram-
mer, translating the hi g h-level simulation description
into time-Pfficient, assembly lan q ua g e code for the

ORIGINAL PAGE 'kS

OF POOR QUALITY
processors. All required interprocessor communica-
tions (i.e., data transfers) are automatically estab-
lished by the RTMPL translator. RTMPL simulations
are self-documenting since the translator utility
produces listings, error messages, warninqs, and data-
base file' that can aid in the debugging and running
of a simulotion. The RTMPL utility is written in
Pascal and rur: on a Motorola Exormacs development
system (which alsi serves as the RTMPS FEP). The
RTMPL interface firmware implements data transfer

between processors and issues simulation-qenerated
advisories to RTMPOS.

The real-time multiprocessor operating system

provides the RTMPS user with encineerinq- level, run-
time o perations such as loading and modifyinq of pro-
grams, simulator mode control, data handling, and

run-time monitorina. The RTMPOS acts in conjunction
with the FEP's manufacturer-supplied disk operating

system, Versados. Versados supplies typical utilities
such as file handling and in put-output services. It
also provides software development tools surh as a
text editor, an assembler, a linker, and a F_scal
compiler. The RTMPOS software is programmed mainly
in Pascal with somE assembly language routines.

Data Transfer

The transfer of data between processors durina

simulation execution is coordinated by firmware. The

transfer requirements are established by RTMPL durino
translation of the simulation source code. For exam-
p le, the source code for one processor may reference
a variable that is calculated on another processor.
RTMPL recognizes this situation and generates the
necessary code to :ieg in the transfer of the variable
from the source pn)cessor to the destination proces-
sor. The firmware provides the services to perform
the physical data movement and to maintain data cur-
rency within a simulation update interval. Data cur-
rency is maintained through the use of a currency
flaq . All external variables have a currenc y flan

that alternates in value very update interval. A
destination processor requiring an external variable

must first verify that the variable is current by

testina this flaq. A source p rocessor transferrin g a

variable to a destination processor must send the cur-
rency flaq with the variable. The use of the currency

flaq allo.^s data to he transferred asynchronously
(i.e., at any time) durinq an update interval. The
ability to transfer data asynchronouslyprovides the
maximum flexibility for partitionino of simulation
code to run on multiple processors. A more detaileu
discussion of asynchronous and synchronous (where all
transfers occur at a fixed interval) data transfer is
given in McLaughlin (10).

The RTMPOS interface firmware provides the primi-

tive operations necessary for (1) information transfer
between the FEP and the RTMPS processors, (2) simula-
tion mode control, 0) sequencin g and execution of
simulation code seqments, (n) execution of functions
for data analysis, and (5) issuinq of diacnostic ad-
visories and sttLus information.

The information transfer functions allow program

loading, iiitialization, data display, and execution 	 I
control by RTMP,' to be done by usin g "handshake"
mechanisms. Flaas , -e used to synchronize firmware
and RTMPOS execution. RTMPOS sets a flao to be g in a

function and monitors i^ until it is reset b y the
firmware, an indication that ine function has been
performed.	 f`

JaM.+ L	 rl
	

1

CRIGIMAL PAGE 19
OF POOR QUALITY

Mode Control

Three major simulation modes are supported by
the firmware: STOP, RUN, and HOLD. In the STOP mode
all simulation processors are available for program
loading and initialization. In the RUN mode the vari-
ous segments of the simulation code are executed re-
petitively on the basis of the cyclic timeouts of a
p rogrammable timer. The timeout generates an inter-
rupt in each of the RTMPS processors. The period
between interrupts defines the simulation update in-

terval.	 It is the responsibility of the real-time
controller to verify that all channels have completed

their calculations before the end of the update inter-
val. During the computation interval each processor
performs calculations for its one segment of the simu-
lation. The RUN mode is illustrated in figure 6 for
an example simulation involving three variables (VApl,
VAR2, and VAR3).

In the example, variable VAR1 is computed on

IBP 1 and VAR2 and VAR3 on kBP 2. Variable VAP1 must
be trans f erred to RBP 1 in order for that pro.essor to

complete its calculations. Similarly, VAR2 must be
r isferred tc IBP 1 and VAR3 to 1BP 2. The wait

c,.I es shown in figure 6 represent testing of a vari-
able's currenc y . When each RBP has comnlctciJ 'Its cal-
culations, it waits until the associated IBP processor
is finished. The RdP then signals the real-time con-
troller, via interrupt, of that channel's completion.
Before this interrupt the real-time controller has
been perfuming simulation calculations, supporting
analysis functions, ani outputtin g information to the
DAC's. When all chanrels have completed their calcu-
lations, the real-tirrz, controller ino:Ls ADC informa-
tion for the next upda t e interval.	 :f all channels
have not completed their calculations before the next

update ir,torval, an interrupt is issued to the operat-
inq syste,-. R MPOS then advises the user of a fail-
ure. In addition, the firmware maintains a watc:.dog
timer for each processor that, if not reset periodi-
cally, interrupts RTMPOS to issue an advisory.

The HOLD mode is similar to the RUN mode in that

the simulation is repetitively executed. 	 In HOLD,
however, user-specified variables are held constant
and the computation is recycled upon completion and is
not timer driven. The watchdo g_ timer does operate in
HOLD. Before each computation is executed, latches
(a-sociated with each v:.riable whose value is to be
held) are set by the firmware. During computation in
this mode the latches are tested when a variable value
has been computed and, if set, the new W ie is re-
placed by the old one.

Analysis and Advisories

The firmware serves the following RTMPOS-

selectable analytical functions: data sampling, peak
detection, and rate-of-cha-3e detection. These ser-
vices are set up in STOP and may be activated in
either RUN or HOLD. The real-time analysis processor
in channel 0 executes the analysis firmware (if an
analytical task is selected). This allows the othor
processors to perform simulation calculations
uninterrupted.

The firmware provido^ `or advisories to the user

through RTMPOS. These services are of two types:
system advisories indicating RTMPS status, and user
advisories indicating simulation status. System ad-
visories are used for timeouts, hardware errors, and

diagnostic information. User advisories are program-
med in RTMPL and allow the user to obtain run-time
simulation information. The firmware issues advisor-
ies by interrupting the FEP to activate service tasks
that issue the advisory.

The firmware also performs power-up and initiali-

zation functions for each processor. At power-up the
p rocessor interrupt vector table is set uo. Program
memory is initially cleared and a channel interrunt
test is performed. This to-st checks the interrupt
mechanism in the dual-port interface memory, which is
critical to RBP-IBP processo • communications. Once
the interrupt test is completed, each channel exe-

cutes r test of the interface memory. This is a dual-
processor version of the slid ng-ones-and-slidin q

-zeros test described by Milner (11). If a channel
fail; to pass these tests, !ZTMOS alerts the operator.
After the power-up tests each channe: then enters the
STOP mode to await program loading.

To accomplish these functions, the firmware re-

quires about 4K bytes of ROM an each processor. As
development proceeds in RTMPS, more features will be
added to enhance the interactive natur e f the operat-
ing system.

CONCLUDING REMARKS

The overall performdnce of the RTMPS is tied

directly to processor spc pd and the level of parallel-
ism in the simulation ceie. In the existingRTMPS
configuration an increase in processor speed will
decrease the minimum update inte rval achievable (i.e.,
more calculations can be done during_ the update inter-
va l.). The update interval can also be decreased by
more efficient partitioning of the simulation code.
There is, however, a "critical path," or a limit to
how far the cone can be segmented.

Advances in microelectronics are expected to

affect the RTMPS hardware. For example, the next
generation of microcomputer boards, which can be
"plugged" directly into the RTMPS system, is expected

to be three to four times faster than existino boards.
Hardware per`ormance can also be improved by using
bit-slice computer technology for the processors, such
as the AMU 2900/29000 family. This approach must be
evaluated, however, from the standpoint of sire, cost,
and software development, since a penalty is paid in
each of these areas for the increase in speed.

The RTMPS hardware described herein is currently

being used to investigate the application of parallel
processing to real-time simulation of dynamics sys-
tems. The RTMPL language and the RTMPO`• operatinq
system are operational and in the proce ,.s of op timiza-
tion. Partitioning algorithms are also bein g evalua-
ted on RTMPS. A benchmark simulation of a small
turboshaft helicopter engine has been partitioned and
is operational on the system. A future application is
the real-time simulation of a wind tunnel facility.

The simulation will be used to evaluate control system
hardware and for operator training. As the evaluation
process proceeds, it is anticipated that improvements

to the RTMPS hardware and software will result.

REFERENCES

Nieuwenhui`;se, A.w.; and Franklin, J.A.: "A

Simulator Investigation of E-1gine Failure
Compensation for Powered Lift STOL Aircraft."
NASA TM X-62363, 1974.

ORIGINAL PAGE 13

OF POOR QUALITY

w .

2. Szuch, J.R.; Skira, C.; and Soeder, J.F.:
"Evaluation of an F1OO Multivariable Control
Using a Real-Time Engine Simulation." NASA TM
X-734648. 1977.

3. Merrill, W.C.: "Sensor Failure Detection for
Jet Engines Using Analytical Redundanc y." NASA
TM-83695, 1984.

4. Intel Corp: "Intel Multibus Specification."
Intel Manual 9800683, 1978.

5. Motorola, Inc.: "Versabus Specification Manual."
Motorola Manual M68KVBS(04), 1981.

6. Motorola, Inc.: "VERSA Module Monoboard
Microcomputer. 11ser's Guide." Motorola Manual
M68KVMO2(D1), 1982.

7. Motorola, inc.: "Input/Output Channel
Specification Manual." Motorola Manual
M68RIOCS(D2), 1982.

8. Arpasi, D.J.: "RTMPL - 1 Structured Programming
and Documentation Utility for Real-Time
Multiprocessor Simulations." NASA TM-83606,
1984.

9. face, G.L.: "Operating System for a Real-Time
Multiprocessor Propulsion System Simulator."
NASA TM-83605, 1984.

10. McLaughlin, P.N.: "Parallel Processor Engine
Model Final Report." NASA CR-174641, 1984.

11. Milner, E.J.: "A Generalized Memory Test
Algorithm." NASA TM-82874, 1982.

5

ORIGINAL FAuI= '.9
OF POOR QUALITY

REAL-TINE INFORMATION BUS (RtBU-))

CHANNEL	 I y

F`
• ^I

BUS EXTENSION

REAL-TIME	
RBUS	 RBUS

CONTROLLER 0	 RB

PROCESSOR	 I • • •	 PROCESSOR

 I N
ANALOG

INPUT/OUTPUT

FRONT-END

PROCESSOR

INTERFACE	 I I	 INTERFACE 1 	 1 INTERFACE
MEMORY	 I I I MEMORY	 • • • MEMORY
AND CONTROL 0	 AND CONTROL 1	 AND CONTROL I N

REAL-TIMEIBUS
	 IBUS

ANALYSIS	 0	
PROCESSOR I • • •	 PRBOCESSOR N

INTERACTIVE INFORMATION BUS IIBUSI

Figure 1. - General simulator configuration.

t.

Figure 2. - Real-time multiprocessor simulator.

r
i

[-TO AND	
ORIGINAL PAGE 19

FROM IBP	 OF POOR QUALI'I"Y

I

ADDRESS

DATA

STROBE	
CONTROL AND

	

READIWRITE	 ARBITRATION

	

ACKNOWLEDGE	 LOGIC

ENABLE

ADDRESS

DATA

TO AND
FROM
RBP-\

ADDRESS

DATA

STROBE

READ IWRITE

ACKNOWLEDGE

MEMORY SWITCH

ENABLE

SELECT
1

2

3

BLOCK 1
(1K)
MEMORY
BLOCK 2
(1K)

LATCH	 MEMORY	 LATCH

BLOCK 3
(1K)

INTERRUPTS	 INTERRUPTS
TO RPB	 TO IPB

Figure 3, - Diagram of interface memory blocks.

PROCESSOR PROCESSOR

ADDRESS ADDRESS

0 0

MEMORY MEMORY
BLOCK 1 [S^WITCH ON BLOCK 2

1023 1023
1024 1024

MEMORY SWITCH OFF MEMORY
BLOCK 2 BLOCK 1

2047 2047

Figure A. - Memory switching arrangement

t

i

3

1

j
I

ORIGINAL PACaC'-. ' S
OF POOR QUALITY

USER
	

SIMULATION
DESCRIPTION

RTMPOS
	

RTMPL
RTMPS

FIRMWARE

RTMPS
HARDWARFF

DAC'S IADC'S

ANALOG WORLD

Figure 5. - RTMPS firm-Nare interfaces.

j

a:

y •.

..
J7

T

I	 I 1	 I I	 1 I	 1 v,
^	 1 I I I I

o
-

I
1 I

1`^	 I I i	 i	 i I 0
0 1 1	 1 I	 I ^

PAVE IS 1 I I	 I ^
ORIGINAL

POOR QUALITY
^	

I 1ĉ ^ C
OF I	 I

I	 I

I
I	

i I	 II	 I ^I

I 4
J W I	 I J Z I

zQ I	 i ^,¢ 1	 I
N V '	 I N V 1

N

W CL
O

a a a3	 co a o
U = O N ch 1

d p N C

z
C

T
t7

j
^'

CL
^" C 1

H C

>~
^

^'
¢ .

a0
d

^o
as

U > N w

CL z
ix

L) > ^!

LLJ a

U

{J
¢

N
1

zw^ as
W W

a
""^ .^+ N N J

Q
J Q

oD m co m^
1
{

-T-

1

	GeneralDisclaimer.pdf
	0019A02.pdf
	0019A03.pdf
	0019A03_.pdf
	0019A04.pdf
	0019A04_.pdf
	0019A05.pdf
	0019A05_.pdf
	0019A06.pdf
	0019A06_.pdf
	0019A07.pdf
	0019A08.pdf
	0019A09.pdf
	0019A10.pdf
	0019A11.pdf

