
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

L <^.'t

• f

(NASA-CR-1714017) SAGI: l E10JECT TO	 $85-10685
AUTOMATE THE lMINAGENE11T OF SOFTVARE
PRODUCTION SISTERS Progress Report, Jan. -
Jun. 1984 (Illinois Univ.) 15 p 	 Unclas
HC 102/my 1101	 CSCL 09B G3/61 24279

1934 Mid-Year Report

NASA Grant NAG 1-138

SAGA: A Project to Automate the Management of
Software Production Systems

It I

University of Illinois
Department of Computer Science

1304 W. Springfield Ave.
Urbana, IL 61801-2987.

217-333-0215

Principal Investigator
Roy H. Campbell

Research Assistants
Wayne Badger

Carol S. Beckman
George Beshers

David Hammerslag
John Kimball

Peter A. Kirslis
Hal Render

Paul Richards
Robert Terwilliger

ABSTRACT

This report details work in progress on the SAGA project
during the first half of 1984.

f	 - 1, ti,

TABLE OF CONTENTS

1. Summary	 ...

2. Project Overview ..

3. SAGA Editor ...
3 .1. An Editor for Ada ..
3.2. SAGA Pascal Editor: Intermediate-Code Generation ...
3 .3. An Editor for Prolog ..

4. Mystro Parser-G , nerat.or ..

5. Olorin and Regular Right Part Grammars ..

6. Symbol Table Manager ..

7. Diff/Undo Facility ...

8. Software Specification ...

9. Proof Management ..

10. Summary	 ...

APPENINCES
A. The SAGA Project: A System for Software Development
B. RECIPE: Requirements for an Evolutionary Computer-based Information Processing En-

vironment
C. Regular Right Part Grammars and Incrementally Updatable Attributes for Language

: Oriented Editors
D. A Prototype Symbol Table Manager for the SAGA Environment
E. Make: A Separate Compilation Facility for the SAGA Environment
F. An Ada Grammar for Mystro
G. An Ada Grammar for olorin
H. An Introduction to the Language Prolog
L Uses of Differences with the Editor
J. A Proof Management System

1

1

3
4
6
6

7

8

8

9

10

11

11

1. Summary

This report describes t

highlights of this research arE

• Completion of the prototype SAGA Editor; commencement of testing.

• Completion of the prototype SAGA Symbol Table Manager; commencement

of testing.

• Completion of the RRP version of Olorin, the SAGA parser generator; com-

mencement of testing.

• Completion of prototype delta generator for SAGA; commencement of test-

ing.

• Completion of the prototype UNIX SAGA Pascai Make facility; commence-

ment of testing.

• Completion of an experimental Proof Management Syztem.

• Implementation of the Screen Editing Facilities of the Editor.

• Implementation of an RRP Parser Interface for the Editor.

• Implementation of ,SAGA Version Control using RCS.

• Berkeley Pascal, Ada, C, Prolog Editors.

• Experimental SAGA pretty printing facilities.

• Experimental Program Transformers.

• Design of the SAGA Attribute Evaluation Scheme.

• Design of an incremental compilation facility.

2. Project Overview

The SAGA system is a software environment that is designed to support most of

the software development activities that occur in a software lifecycle. The system can

be configured to support specific software development applications using given pro-

gramming languages, tools, and methodologies. Meta-tools are provided to ease

configuration. The "'AGA system consists of a small number of software components

;r

SAGA Project 1984 Mid-year Report	 2

that are adapted by the meta-tools into s;>ecific tools for use in the software develop-

ment application. The modules are designed so that the meta-tools can construct all

environment which is both integrated and flexible. A description of the SAGA project

was published at an ACM Software Engineering Symposium [Campbell and Kirslis, 841

and is included as Appendix A. Several major components of the SAGA system have

been completed to prototype form and the method of their construction has been

documented.

The project, has also been concerned to design SAGA as an evolutionary system

and a study of the requirements of such a system was undertaken last Fall with Visit-

ing Professor Peter Lauer. The conclusions of the study are published in the paper

RECIPE [Campbell and Lauer, 8 .11, wt. ;Ach is included as Appendix B.

	

A basic SAGA editor is available with both line editing and screen editing modes. 	 f

*%'e h,-ve constructed example editors for Ada, Pascal, Prolog and C. Olorin, the

	

SAGA r arser generating system, has been augmented to allow specification of	 '.

	

languages by means of Regular Right Part grammars. An incremental parser for the 	
Y g

editor has been built that accepts the tables produced for Regular Right Part LALR(1)

grammars. This scheme and a system for semantic evaluation of edited languages

using attribute grammars is documented in the Ph.D. Preliminary Proposal of George
F

Beshers which is included as Appendix C.

The SAGA Symbol Table Manager is completed to prototype form and is docu-

mented in Paul Richard's Masters Thesis which is included in Appendix D. The Sym-

bol Table Manager is now being 'Oegrated into the editor and an example Pascal

cross-referencing facility :s being built. Make, the SAGA separate compilation facility

is completed to prototype form and is documented in Wayne Badger's Masters Thesis

which is included as Appendix E. A Berkeley Pascal Malec has already been integrated

into the Pascal SAGA editor. Testing of the prototypes is in progress.

The significant results from this year's research are detailed in the following sec-

tions. A tape containing many of the completed prototypes will be sent to NASA in

t

SAGA Project 1984 Mid-year Report
	 3

September for testing and comment.

3. SAGA Editor

During the past half-year, a basic screen interface has been developed for the

SAGA editor. The editor now may be run in either screen mode or line mode. Any

soft-copy terminal usable with the Maryland Window Library (Torok; which has a

standout (or highlighting) mode may be used with the screen-mode editor. The screen

interface permits the user to display a screenful of program text from the file being

edited. The editing cui7w: is represented by the terminal's cursor, which is moved

over the displayed test and used to select tokens, lines, or trees for editing operations.

Intra-token ­haracter editing will be added in the near future. New text may be

inserted simply by typing it at f ae cursor's Fosition. The text is tokenized line by line,

ana parsed at the end of the insertion. Commands are invoked by single-touch control

characters, (including function keys if present on the terminal and enabled in the edi-

tor), ar.0 by a line-mode command escapo to execute line moo ,^ and user-defined editor

comman3s. A more complete discussion of the editor appears in [Campbell and hirslis,

841, included as Appendix A.

A new feature was added to the editor to allow separate processes to be invoked

to analyze or manipulate the parse tree du.-in- an editor session. The filter command

takes the name of a program to be run, and an optional sub-tree specification to be

passed to the program. When this command is invoked, the editor writes its internal

data to disk, waits while the program :uns, and then reads back in, possibly reparsing,

sections of the tree specified by this program. When combined with the user-defined

command facility, the filter command allows easy invokation of sophisticated opera-

tions on the parse tree. The program which is invoked accesses the tree through an

interface which provides function calls to read and write fields in the parse tree. This

facility has L een used to write programs pretty-print the parse tree and to

transform programming statements from one form to another; for example, to

transform a `for statement' into a `while statement'. We hope to use the scheme to

----	 yr --- - -Tam-7lr - '^r •^/R+ ./ r r - T.r -	 ^. r t =

r	 j

Y

hA

SAGA Project 1984 Mid-year Report 	 4
Al

connect the editor to an expert system that helps a user seeking guidance in a program

development or debugging task.

Two parser-generating systems can presently be used to provide a language

specification for a SAGA editor: Mystro and Olorin. In addition, any parser-generating

system which can meet the editor's LALR(1) style incremental parsing interface can

also be used.

3.1. An Editor for Ada

Work is continuing on deve'opment of a language-based editor for Ada, using the

editor generation facilities of the SAGA environment. The purpose here is not only to

provide a ri gorous test of the facilities on a large, complex source language, but to pro-

duce valuable tools for Ada software creation. The Department of Defense's Ada ini-

tiative guarantees the need for such tools on futurl! installations of SAGA, and our

effort aims to prepare for this eventuality.

:1s of this report two editors exist: one based on the Olorin translator writing

system, being developed by George Beshers for the SAGA project, and one based on 	 s r

the \fvstro translator writing system. Each of these editors accepts the full Ada

language as given in the Ada Reference Manual [ARNI, 831, and each is camplete

through the lexical analysis and parsing stages of translation. Current efforts include

incorporating the symbol table manager [Richards, 8.11 into the editor, with a tentative

completion date of late August, 1981. Initial validation of the editor, concurrent with

the testing and refinement, will be continuing through the fall of 1981.

Accompanying this work is an evaluation and comparison of the two translator

writing systems. Initial indications are that 'the Olorin system provides a faster

specification time than the Mystro system. This results from Olorin's use of regular

expressions extended-BNF as a specification language, versus Mystro's use of standard

BNF. For Ada this is particularly helpful as the Ada Reference Manual uses

extended-BNF in its specification of the language syntax. In general, if the

SAGA Project 1984 Mid-year Report 	 b

implementor is familiar with either regular expressions or extended-BNF, completion of

the lexing/parser phases of the editor is reduced to a matter of days. Further, tl,e

input grammar to Olorin can be easily adapted from a syntax chart of the language,

with changes necessary only to make the grammar LALR(1). This property of the sys-

tem is an obvious plus when one considers that syntax chart specifications of program-

min g languages are becoming much more prevalent than the traditional Backus-Naur

specifications. For Ada we used a syntax chart produced by Frank DeRemer, Tom

Penello and W.M. McKeeman using an automated translator writing system at the

University of California at Santa Cruz.

The editor produced by Mystro is at the same level of completion as the one pro-

duced by Olorin, though its implementation took considerably longer. The lack of an

OTHERWISE clause in Berkeley Pascal incapacitated the lexical analysis phase of Mys-

tro, requiring the hand-coding of an analyzer similar to one that was created for the

Pascal editor. In addition, care was needed to ensure that the input grammar

remained LALR(1), as even small modifications to the source gramm-r [Wetherell, 81]

tended to make it non-LALR (1) when fed into Nlystro. The difficulty seemed to stem

from the inability of Nlystro to choose between two default; reductions in the same

state, even given disjoint follow sets. (A more complete discussion of problems with

Mystro is contained elsewhere in this report.) In its current incarnation, however, Mys-

tro is more versatile than Olorin as it allows the user to invoke more options for the

system output, including cross- refere ice tables, extensive error listings and so forth.

These and other factors are being considered in the ongoing evaluation of the two

translator writing systems. A decision regarding which of the two to make the pri-

mary driver for the editor generating system should be made by late 1984.

Still to consider in the full implementation of an Ada editor are the semantic

analysis and code generation stages of translation. A projected back-end for the editor

would include these operations, with the use of the DIANA intermediate code for Ada

as the object language currently being explored. Linkage and referencing errors may

need to be detected by a module separate from the editor, thus requiring further

SAGA Project 1984 Mid-year Report 	 6

investigation of Ada and its operating environment. These facets of the project will

continue to be attended through the end of 1984.

For a listing of the Ada input grammars to Mystro and Olorin, see Appendices F

and G at the end of this report.

3.2. SAGA Pascal Editor: Intermediate-Code Generation

A Pascal code-generating utility is under development which will generate inter-

mediate code directly from the parse tree produced by the SAGA Pascal editor; when

the Pascal source is re-edited, the utility will modify that intermediate code to reflect

the changes made.

The first goal is a code generator. Its input will be: 1) the parse tree file from the

Pascal syntax-directed editor, and 2) symbol table information from the SAGA Symbol

Table Manager. Its output will be the "c-code" expected by the fl pass of the Unix

FORTRAN 77 compiler; fl is used by the Berkeley Unix Pascal compiler as its second

pass.

The second goal is an incremental recompilation facility. Its input will be: 1) the

input and output from part one, along with 2) information about the modifications in

the edited program text, from the SAGA Pascal XIake facility. Its output will be the

c-c _e file produced by part one, suitably altered so that this is now a translation of

the edited text, rather than the original.

3.3. An Editor for Prolog

A language-oriented editor for Prolog has been developed using the SAGA editor

generation tools. Prolog is a logic based programming language. Append ;- H contains

an introduction to Prolog. The editor was easy to construct using the SAGA tools. A

pre-existing grammar in BNF was put into a format suitable for input to the Mystro

parser generator. The lexical specification was modified, and the editor was con-

structed. Construction of an editor for Prolog was an interesting exercise that demon-

strated the utility of the SAGA tools, and produced an editor which may be useful in

SAGA Project 1984 Mid-year Report	 7

future development efforts. Because. Prolog is a very high-level language, it has been

promoted as a fast prototyping tool.

4. Mystro Parser-Generator

We are presently converting to version 7.0 of Mystro, which provides some of the

support for LALR(1) grammars which we require. We converted a PRIME computer

version of Mystro to run under Berkeley UNIX versions 4.1 and 4.2, and added some

code neede(: to generate additional tables needed in our environment, in particular, a

table of non-terminal token names, which aids editor debugging and grammar preoara-

tion.

The present version of Mystro provides inadequate support at the lexical analysis

level. Although a case-statement fragment is generated for certain lexical categories,

the lack of an otherwise clause in our version of Pascal makes its use impossib,,z, and

we have written our own code to directly query the terminal token tables instead. A

larger problem is the difficulty of specifying generic token classes for unusual token

classes. A typical situation is the specification of a grammar to specify Mystro gram-

mars. Since we have a language-oriented editor, it is desirable to use it when prepar-

ing grammars for other languages. Yet there is no way to describe a non-terminal class

except with an angle-bracketed terminal aLd a manually written code fragment to

recognize that class. The fact that a manually written fragment is necessary precludes

automatic generation of editors with Mystro for many languages. A useful extension to

the Mystro system would be an additional section in the input grammar file in which a

regular expression could be used to specify the constru tion of a terminal class that is

referred to by an angle-bracketed terminal. A standardized piece of code could then

either be generated from these expressions, or provided to pattern match input charac-

ters against this specification during the lexical analysis phase, greatly increasing

Mystro's applicability.

An additional difficulty encountered with Mystro reduce-reduce conflicts during

the generation of an Ada editor is described in the Ada editor section of this report.

di

r

I

J

b. Olorin and Regular Right Part Grammars

Since the 1983 year end report, a new version of the Olorin system has been

developed. The new system permits the editor builder to specify his language using

regular right part grammars. Regular right part grammars are context free grammars,

except that the right hand side of all productions can be any regular language, not just 	 r

a simple string. This means that the syntax charts used by many authors, including

N. Wirth, can be translated directly into a SAGA editor (assuming the syntax charts

are not too ambiguous). Thus only the non-terminals appearing in the language

definition need to be present in the editor. The result of this work is that the parse

trees are more amenable to structured editing commands, and that the size of the

parse tree is reduced by as much as a third in many examples. The new Olorin system

has been used to successfully generate editors for Pascal, ADA, and a Cliff Jones gram-

mar. The new Olorin will be included in the September tape.

Appendix C on the Olorin system also discusses the current efforts to add a sym-

bol table and cross reference facility to the Olorin Pascal editor. The principal goal of

this research is to develop a language description w"ich can be mechanically translated

into efficient editors. The context sensitive portion of this description is based on

attribute grammars, and includes incrementally updatable attributes. The updatable

attributes introduce a carefully controlled concept of state into the attribute grammar.

The state information is structured explicitly for efficient processing of symbol table

information in an incremental environment. These efforts are in the early development

phases, and should be ready by the year end report.

8. Symbol Tabie Manager

The first version of the SAGA prototype symbol table manager has been com-

pleted, and is described in detail in Appendix D. The symbol- table manager is the

module responsible for storing and retrieving names used in program code,

specifications, and other components manipulated by the SAGA environment tools. It

provides the data structures and primitive operations to locate names given scoping

I

SAGA Project 1484 Mid-year Report 	 9

rules for a given programmiug language, store new names, and store and retrieve basic

attributes attached to the names. A set of basic primitives to store and retrieve

strings is also provided with the symbol table manager.

The symbol table is intended tc., be integrated into the SAGA editor so it may be

used in the attribute grammar evaluator described in the section on Software

Specification. As an intermediate step in this integration, an independent utility to

generate a cross-reference index for Pascal programs is being constructed, which uses

the prototype symbol table manager. This cross-reference generator will be aware of

Pascal scoping and typing constructs and will annotate the program correctly when

several definitions for an identifier are present. The attributes and data structures

used in the cross-reference utility to analyze Pascal typing will form the basis for the

integrating the symbol table into the SAGA Pascal editor. The first version of this

utility is about fifty percent complete at the present time.

7. Diff/Undo Facility

A diB command, in a very basic form, has been added to the editor. The user

can view differences between an old version and the current version of the program

being edited, and undo the differences. The undo function does not depend upon the

order in which changes were made to the old versiob.

An existing version control system (RCS) has been adapted to handle SAGA edi-

tor files. The version control system can keep several versions of a program readily

available using Icss disk space since it keeps only one complete version and backward

differences between versions to recreate any other. The system also maintains some

documentation of changes such as the person who made a change, when the change

was made, and a short description of the change from the person who made it. These

uses of differences with SAGA editor files are expUned more fully in Appendix I.

SAGA Project 1984 Wd-year Report 10

8. Software Spulftation

Plans are being made for an integrated system, i.e. a set of tools and methods, to

support software specification :ind deveJopment using abstract specifications. The sys-

tem will be based on the Vienna Development Method (VDM)(Jones, 801, which allows

the developer to start with a completely abstract specification then refine it through a

number of steps into a program. The abstract specifications are based on predicate

logic and predefined mathematical data types. The VDM has been used successfully on

large software projects, and :s suggested as a good choice for automation (Shaw et. al.,

841.

Each step in the refinement process and each design decision produces an

abstract program (Parnas, 771 from a specification. An abstract program may be

described in two ways. An abstract program is: an abstract specification with some

design decisions made; and a program in the base language (the language in which the

completed program is written) with some modules only specified abstractly. Through a

sequence of refinements, the abstract program is transformed into a concrete program

in the base language. Erich design decision will be supported by some documentation,

and a rigorous argument, or proof, that the design decision produced an abstract pro-

gram that matches the original specification.

The system will support versioning of abstract programs and the supporting

documentation and proofs. The idea of versions and alternatives has been used in sys-

tems for design of VLSI circuits (Katz and Lehman. 821. A design begins as a initial

version. During the development, a new in-progress version can be created from an

initial version. A version may be split into several alternatives which may be

developed independently. One of several alternatives may be selected to form a new

version. At any point during the development process the developer can change to a

previous or alternative version.

3 ► .,^ 	 4	 -

l

P

SAGA Project 1884 Mld-rear Report

9. Proof Management

To aid in the development of formal proofs, such as those aril' ig in formal pro-

gram verification, a proof management system is a desirable tool. A proof manage-

ment system can make large, complex proofs easier to write, modify, and understand.

More importantly, a proof management system also provides a means for the validity

of a proof to be checked automatically.

A prototype proof management system has been implemented. The system is

based on a structure editor for trees. In this system a proof is represented by a tree,

with each node in the tree representing a formula derived from that node's children.

In the proof trees the vat;dity of a node depends only on that node's relationship with

its immediate children.

By itself the editor has no ability to certify (check) inferences. However, through

the editor's call command, external pro-rams can be invoked to examine and alter the

proof tree being edited. A number of such external programs have been written and

can be called from the tree editor. These include interfaces: to a resolution based

theorem prover, interfaces to a theorem prover based on term rewriting systems, a

program to include previously proven theorems a4 .lemmas for the proof being edited,

and programs to display proofs.

Currently the interfaces to theorem provers rely on an awkward, prefix notation

for first order formulas. Although the syntax is rather unpleasant, the notation is

sufficient and was readily available. It is anticipated that a better syntax will be

implemented in the future. A more complete description of the editor and associated

programs is given in appendix J.

io. Summary

We believe the SAGA project has made significant progress in this last half-year.

Several components have developed to the point where tools can be built that use

them. The Olorin parser generator has developed to the point where it offers a useful

SAGA Project 1884 Midyear Report
	

12

alternative b the Mystro parser generator: allowing syntax diagrams to be easily coded

for use in editor production. The viability of the SAGA editor recognizsr approach is

no longer in question and the major performance issues can now be addressed. Incre-

mental reparsing provides an efficient way of maintain;ng data modified by the editor.

In particular, we have shown that the editor user interface is flexible and allows arbi-

trary modifications without compromising the editor's ability to detect invalid pro-

grams.

Several of the tools (the editor, symbol table, diffundo, and RCS) are being

integrated, with encouraging results. The Ada editor is a significant milestone in the

SAGA effort as it demonstrates the capability to support a complex programming

language. The Make system and the diffundo system are both tools that benefit from

the modular interfacing of several SAGA components. Application of the symbol table

manager to support a Pascal cross-reference tool is making progress. It is interesting

to note that it has been possible to construct several simple tools like a pretty printer

and program transformer out of the existing tools quickly and with little effort.

By adopting Clifford Jones' rigorous design methodology, we believe that we can

demonstrate how the specification, design, and verification stages of software develop-

ment can be integrated with the programming, version control, and testing stages of

the lifecycle. The proof management system has made good progress and has been

used to manage several simple, but lengthy proofs. Although it is in experimental

form, the proof management system now allows us to proceed to associate the design

process with an automated mechanism for verifying that design process.

To conclude, we have little doubt that the tools we have produced in the last six

months will make the next six months a very exciting period as the simple components

we have designed are integrated together to form a powerful software development

prototype environment.

..	
J	 ! ^'	 1

SAGA Project 1084 Mid-year Report 	 13

References

(ARM, 831 U.S. Department of Defense, Reference Manual for the Ada Programming Language,

ANSI/MILSTD-181SA-1983, U.S. Dept, of Defense, Springer-Verlag, 1983.

(Campbell and Kirslis, 841 Campbell, Roy H., and Peter A. Kirslis, "The SAGA Project: A System for

Software Development," Proceedings of the ACM SIGSOFT /SIGPLAN Software Engineering Sym-

posium on Practical Software Development Environments, Pittsburgh, PA., Apr., 1984.

(Campbell and Lauer, 841 Campbell, Roy H., and Peter E. Lauer, "RECIPE: Requirements for an Evolu-

tionary Computer-based Information Processing Environment," Presented at the Software Process

Workshop sponsored by ACM, BCS, ERO, IEE, IEEE Computer Society, Surrey, Feb. 6-8,1984.

(Jones, 80) Jones, Clifford B., Software Development: A Rigorous Approach, Prentice H- 11 International

Series in Computer Science, 1980.

)Katz and Lehman, 821 Katz, R. H. and T. Lehman, "Storage Structures for Supporting Versions and

Alternatives," Computer . :fences Tech. Report #479, University of Wisconsin-Madison, July 19b2.

(Parnas, 77) Parnas, David L., "The Use of Precise Specifications in the Development of Software." Prot.

IFIP Congress, 1977, pp. 861-867.

(Richards, 841 Richards, Paul, A Prototype Symbol Table Manager for the SAGA Environment, Master's

Thesis, Dept. of Computer Science, University of Illinois at Urbana -Champaign, 1984.

(Shaw et. al., 841 Shaw, R.C., Hudson, P.N., and N.W. Davis, "Introduction of a Formal Technique Into

a Software Development Environment (Early Observations), " Software Engineering Notes, Vol 9,

No 2, April 1984, pp. 54-79.

JTorekl Torek, C., The Maryland Window Library, Dept. Computer Science, University of Maryland,

College Park., MD., 20742. No date given.

(Wetherell, 811 Wetherell, C.S.. "Problems with the Ada Reference Grammar," ACM SIGPLAN Notices,

Vol. 16, no. 9, September 1981, pp, 90-104.

	GeneralDisclaimer.pdf
	0020A02.pdf
	0020A03.pdf
	0020A04.pdf
	0020A05.pdf
	0020A06.pdf
	0020A07.pdf
	0020A08.pdf
	0020A09.pdf
	0020A10.pdf
	0020A11.pdf
	0020A12.pdf
	0020A13.pdf
	0020A14.pdf
	0020B01.pdf
	0020B02.pdf

