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Abstract

The stability and convergence properties of the Legendre-tau approximation

for hereditary differential systems are analyzed. We derive a characteristic

equation for the eigenvalues of the resulting approximate system. As a result

of this derivation we are able to establish that the uniform exponential

stability of the solution semigroup is preserved under approximation. It is

the key to obtaining the convergence of approximate solutions of the algebraic

Riccati equation in trace norm.
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Introduction

It has been demonstrated in [6], [7] that the Legendre-tau approximation

is a quite powerful approximation method for hereditary differential systems

in many instances. However, there remained an important question which had

not been resolved. This is the question concerned with the presentation of

exponential stability under approximation. We establish it in Section 5.

As observed in [7], the Legendre-tau approximation scheme provides a good

approximation technique for computation of eigenvalues for hereditary

differential system as well as its optimal closed-loop system. We give a

justification of this observation deriving a characteristic equation for

eigenvalues of the approximating system and relating it to the Pade

approximations of the exponential function. Moreover, it leads to a

characterization of detectability and stabilizability conditions for the

approximating system and the preservation of those properties under

approximation.

The results discussed in this paper are similar to those for the

"averaging" approximation scheme [I] that have been obtained in [I], [5] and

[9], and a great deal of our discussions are motivated and inspired by those

investigations. We refer to [I], [8], [2], and [5] for the the summary of the

earlier contributions on optimal control and numerical approximation problems

for hereditary differential systems.

The following is a brief summary of the contents of this paper. In

Section 2 we state the type of problems to be considered and review the

equivalence results between hereditary differential equations and abstract

Cauchy problems on the product space _n x L2, and then describe the Legendre-

tau approximation scheme within the abstract framework. The convergence of
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the adjoints semlgroups sN(t) * is proved in Theorem 2.2. In Section 3 we

derive a characteristic equation for the approximating system and discuss its

stability and convergence properties. In Section 4 we review results on the
°

linear quadratic optimal control problem and prove the convergence of the

solutions of the approximating evolutlonal Riccati equation in trace norm. In

Section 5 we prove the Gibson conjecture; i.e., that exponential stability is

preserved under approximation. An important consequence of this is that by

following the approach given in [5] one can establish the convergence of

solutions of the approximating algebraic Riccatl equation in trace norm (which

implies strong and uniform convergence).

The notation used in this paper is standard and exactly the same as used

in [6], [7]. We denote by Z the product space _n × L2([_r,0] ; Rn). Given

an element z € Z, _ E _n and _ € L2 denote the two coordinates of

z:z = (n,_). For any function @ of the independent variable 8, we shall

use $ or _-_ to denote the derivative of _ with respect to e.

2. Legendre-Tau Approxluatlon

In this paper we will restrict our analysis tothe system:

0

dx(t)dt = Aox(t) + AlX(t-r) + f A(e)x(t+e)d8 + Bu(t)
--r

(2.1)

x(0) = U, x(e) = _(e), -r < e < 0,

where 0 < r < +_ and A0, A1 and A(.) are nxn matrices, the elements of the

latter being square integrable on [-r,0]. It is well known [I] that for
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pN-i a zN(t,e) = aa--{ a-{ zN(t'8)

0

d zN(t,0) = AozN(t,O ) + AlzN(t,_r) + j AN(e)zN(t,8)d8 + Bu(t)dt
-r

where AN(8) = (pN-IA)(8),- r _ 8 _ 0. As shown in [7], using (2.3),

zN(t), t > 0 satisfies

L ,

at zN(t) = ANzN(t) + Bu(t)

(2.4)

zN(o) = QN(_,_)

where

AN = QN AL N N > I.

AN
If we denote sN(t) = e-t t > 0, then it is proved in [7] by using the

Trotter-Kato semigroup approximation theorem [10], that sN(t)z converges

strongly to S(t)z for t _ 0 and z € Z, and the convergence is uniform

in t on bounded intervals.

Lemma 2.1. Fo_./_r(y,@) _ Z,

(AN)*(y,@) = IA_y + _N(0), _ _N + AN(.)Ty) € Z,

whe re

_N = pN-I_ + (AlY (pN-l_)(_r))PN. "
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Proof: Note that for (q,_) € Z,

0

AN(n,_) = (Aon + AI_N(_r) + f AN(e)_(e)d0, _N) (2.5)
- , m r

where

_N = pN-I¢ + (_ _ (pN-I_)(0)) PN"

Then we have

I = <AN(n,¢),(y,_)>Z •

0

= <_n + AI_N(-r) + f AN(0)¢(6)d6,Y>
-r

0

+ _ <$N(6),_(9)>de
-r

0
T

= <q,A0Y> + ] <_(8), ANco)Ty>de
-r

T
+ <_N(-r), AIY> + <n,_N(8)> - <¢N(-r),_N(-r)>

0

- _ <¢N(e), _N(6)>de,
-r

where cN(0) = q and _N Is a vector in _n whose elements are polynomials

of degree less than N-I. Note that _N(-r) = A_y and pN-I_N .N
= _ . Thus,

0

I = <n,AoY + _N(-r)> + _ <_(B),AN(e)Ty - _N(e)>dg,
-r

for all (n,$), (y,_) _ Z, which completes the proof. (Q.E.D)
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Although we will not pursue the details here, the error estimates in [6],

[7] can be used to prove that

(A) (y,_) ----+ A (Y,_d), for all (y,_) g p((A*)2).

Hence the Trotter-Kato theorem again applies to obtain

Theorem 2.2:

sN(t) * *z ----+ S (t)z, t > 0

uniformly on bounded t-intervals.

3. Characteristlc Equations

In this section we will derive a characteristic equation for A N. If

N
z g Z is an eigenfunction of AN:

(ll -AN)z N = 0 for some complex number l, (3.1)

then zN QNzN (nN,N_ 1= = _pk). Let LNz = (nN,_ N) € P(A) where
k=0

N-1

_N [ N N-- akPk +k=0 aNPN

N-I
N N v N
aN = q - ) ak •

k=0

Then from (3.1) and the definition (2.5) of AN, we have
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0

%nN - A0nN - AI_N(-r) - ] AN(9)_N(e)d9 = 0 (3.2)
-r

%(pN-I@N) - sN = 0. (3.3)
-

From (3.3)

a

X _ 2 S = 0 (3.4)
r

kaN-1

where S is the matrix representation of the derivative (_/_B) and is given

by
m

0 I 0 I 0 • • • 1 0
0 0 3 0 3 • • • 0 3
0 0 0 5 0 • • • 5 0

s= : : : : :

0 0 0 0 0 . . . 2N-3 0
0 0 0 0 0 • • • 0 2N-I _

for N even. For N odd, only the last column of S is different. Let us

define {b_}Nkffi0by !

N N N
bk - bk+2 = ak, 0 < k_< N-2

N N and N N
bN_1 = aN_1 bN = aN.

Then from (3.4) if . = (2)_,
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B _ D I

1 N
D,

0

N EN(u) •ub 0 •• = ••

_T

where EN is a tridiagonal matrix:

1 U

-p 3 p

EN(u ) = -U 5 "

- -I1 2N-1 _

Applying Cramer's rule, one obtains

N k N N N
bk = P Yk+l b0/Yl

whe re

l m

2k-I

N -P ° ° • M

Yk = det " " " Y_:+IN. . P , 0 _< k _< N and = I.

-p 2N-I _m

N N 2 N

Since Yk = (2k-l)Yk+l + p Tk' it follows from (3.5) that

N . . N N N
ak = t2k+l)Pk Tk+1 b0/YI, 0 <_k <_ N-I

N N N N

aN = _ b0/Yl"
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N

N It now follows from (3.2) that
Note that nN = _ ak = b0 + bI.

k=O

0

where

N N r2e+r_.N
_N(8) = [ (2k+l)pk Yk+2 Pk[---_)°0

k=O

and

Thus, we obtain

N N 0

_I - A0 - A1 _ _ f AN(8)¢N(e)d b = 0 (3.6)

Y1 + PY2 -r

where

N N N N t28+r_
cN(o)= [ (2k+l)_k ¥k+2 1 !_I+ _'_2) -r < 0 < 0.Pk(--"_), _ _k=O

For N > I, let us define

_N = y_ and 8N N= Y2"

Then we have the recurrence formula:
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6N = (2N_1)6N-I + 2 6N-2 (3.7)

8N = (2N_I)8N-I+ 2 8N-2

60 6 1
I, 80 = 0 and 81 = i, so that [f p__ = _N ± _sN, then the

with

O'S satisfy the recurrenceformula:

N )oN-1 2 N-2p = (2N-I + _ O

with pO = I and p,l = I "F.. The recurrence formula (3.7) is exactly the

same as that for the diagonal Pade approximation of exp(-rl) [4]. Note that

_N(0) = I and _N(-r) - - Pade (e-rl). (3.8)

Hence from (3.6), we obtain:

Theorem3.1 l is an eisenvalueof AN if and only.if l satisfies

det AN(1) = 0 where
.I

AN(1) = hi - A0 - Al Pade (e-rl) - jO AN(B)@N(B)d8"
-r

Lemma 3.2: If the elements of A(.) are absolutely continuous on [-r,0],

then there exists a positive constant C such that

0

]_ AN(8)_N(8)d81d C
-r
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for every _ £ _ with Re _ _ 0.

Proof: Since cN satisfies

I_N _ sN laN(%)pN

N N
where aN(1) = _ /p+, we have

_8 0laN(k)ek(0-_) _2_+r_,_
€N(8) = e + S PN[---{--)a_.

0

Thus,

0 0 0

S AN(o)_N(0)d0 = S A(o)$N(8)d0 - S A(o)aN(X)PNd6
-r -r -r

0 ( 0 )PNd_ 20+r))
= S A(8) e_o + S _aN(_) e_(8-_ - aN(X)pNI----{- dS. (3.9)

-r 8

Here,

0 0

S A(O) S _.eX(8-_) r2_+r_dg,pNt----{-)
-r O

o
r2_+r

= S S A(0) %el(o-_)do PN(---_)H_
-r -r

= SO (A(_)- A(-r)e -_t(r+l_) - S1"_e_(8-_) A(O)dO)PNd_.--r -r

Hence from (3.9)
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0 0 0( , )If AN(0)_N(0)d01 < f IA(0)[d0 + laN(1)l f IA(-r)[+ f IA(0)Id0d_
-r -r -r -r

o ( o )<f ]A(e)lde + r IA(-r) l +f ]A(e)lde
--r -r

on €+-- [l _ {, Re I > 0} where we used [aN(:)l! 1 on _+. (Q.E.D.)

Corollary 3.3: If the elements of A(-) are absolutely continuous on [-r,0],

then the complex function det AN(1) cannot have a zero in the closed right

halfplane outside the disc of radius ]A01 + IAI] + C.

Proof: Note that ]eade (e-rl)l d 1 on {+. The corollary follows from

Lemma 3.2. (Q.E,D.)

Lemma 3.4: AN(1) conver_es to A(I) uniformly on every bounded subset of

the complex plane.

Proof: We only need to show that

0 0

f AN(8)_N(e)d8 ----+ f A(e)elSd8, uniformly.
-r -r

•From (3.9)

0

, If0AN(e)_N(e)de - f A(e)e;_edel
--r -r

If aN(l )A(8 ) )PNd_ - PN(---_--) I
= d8

--r
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= lJ aN(1) -A(_) + J Xe%(e-_)A(e)d8 pN( )d_ I
-r -r

_< laN(k)l1 + r f !Xexe d IA(e) de (TN'_-) '
_r

which converges uniformly to zero on every bounded subset of the complex

plane. (Q.E.D)

4. Riecatl Equations

Let G be a non-negative, self-adjoint operator on Z and C be

a pxn matrix. Consider the optimal control problem on a finite interval: for

given initial data z = (n,_) € Z

T

minimize J(u; [0,T]) = J (ICz(t)l2 + lu(t)12)dt + <Gz(T),z(T)> (4.1)
0

over u _ L2([0,T]; _m) subject to (2.2), where C(q,_) = Cq for

(q,_) € Z. It is well known [3], [5] that the optimal solution u0 to

(4.1) is given by

u0(t)= - 8 n(t)z0(t)

where _(t)_ t < T is the unique non-negatlve, self-adjoint solution to the

Riccati equation:

d <II(t)z,z> = -2<Az,H(t)z> + <B*_(t)z,B*_(t)z> - <Cz,Cz> (4.2)

for all z € P(A)
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_(_)= G,

and z0(t) satisfies the evolution equation

d

z°(t)= (A-BB*n(t))z°(t)

z0(O)= z.

Consider the Nth approximate problem to (4.1): minimize

T

jN(u;[0,T] ) = J (IczN(t)l 2 + lu(t)12)dt + <Gw zN(T),zN(T)> (4.3)
0

subject to (2.4) where GN = QNGQN. The optimal control uN to (4.3) is

given by

uN(t) = -B _N(t)zN(t),

where _N(t), t < T is the unique non-negative, self-adjoint operator to the

Nth approximate Riccati equation:

d
_-_ <_N(t)z,z> = -2<ANz,_N(t)z> + <B*_N(t)z,B*_N(t)z> - <Cz,Cz>

for all z _ Z (4.4)

_N(T) = GN

and zN(t) satisfies
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d__
dt zN(t) = (AN - BB*_N(t))zN(t)' t _ 0

zN(o) QN= Z.

From Theorem 2.2 and Theorem 6.1 - 6.3 in [5], we have the desired convergence

results:

Theorem 4.1. HN(t) converses strongly to _(t) fo.._r_rt ! T and the

^N
convergence is uniform for t in bounded intervals. If u = -B*llN(t)zN(t),

t < T where zN(t) is the mild solution to

d zN(t) = (n - BB*_N(t))zN(t)

IN(0) z;

i.e., the Nth feedback -ontrol law applied to the original hereditary system

(2.1), then for any E > 0 there exists a nondecreasln$ function

N€(.): [0,m) _ ]R+ such that for N_> Ng(T)

j(uN; [O,T]) _< j(uO; [0,T]) + €,z, 2.

Moreover, if G is given by G(n,_) = (Go_,O), then _N(t) converges in

trace norm to N(t) for t < T and the convergence is uniform for t in

bounded intervals.

Let us now consider the optimal control problem on the infinite interval.

For given initial data z = (_,_) g Z, minimize the cost functional:
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J(u,z) = (ICz(t)l 2 + lu(t)12)dt (4 5)
0

subject to (2.2).

Definition: The pair (A,B) is stabilizable if there exists an operator

K g i(Z, _m) such that A - BK generates a uniformly exponentially stable

semigroup. (C,A) is detectable if (A*,C*) is stabilizable.

The following theorem is now standard [11], [5].

Theorem 4.2. If (A,B) is stabilizable and (C,A) is detectable, then the

algebraic Riccatl equation (ARE):

(A11 + IIA - IIBB 11+ C C)z = 0 for all z g D(A)

has a unique self-adjoint, non-negative solution• Moreover, if R denotes

the said solution, then A -BB*R generates a uniformly exponentially stable

semigroup and the optimal control to (4.5) is given by

uO(t) = -B*_zO(t)

where zO(t) is the mild solution to

d

_F zO(t)= (A - BB*_)zO(t)

zO(o)= z
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Remark: For the hereditary d£fferentiai systems, we have

(1) (A,B) is stabilizable if and o,lly if

rank[A(k),B] = n for ali k _ _+,

(li) (C,A) is detectable if and o_ly if

rank = n for all k _ _+

(ill) a complex number k € o(A - BB ._) if and only if Re k < 0 and

satisfies det _(%) = 0 where

_ [D(%) -BBT 1_,(X) -- XI [ -cTc -D(-k) "x

0

-r_ )eXS
D(X) = A0 + A! e + f A(_ d0[51.

-r

The next lemm_ gives the ehararter[zation of stabilizing and deteatability

for the approximating system (2.4) whleh Js precisely the analogon to those

given in Remark.



-19-

Lemma4.3.

(i) (AN,B) is stabilizable if and only if

rank[AN(%),B] -- n for all % g _+

(ii) (C,AN) is detectable if and only if

rank = n for all _ _ _+.

Proof: We will only prove the statement (ii) since (i) follows from Lemma 2.1

and (ii) by duality. It follows from the finite dimensional linear system

theory that (C,AN) is detectable if and only if

A N_..= %z and Cz = 0 for % € _+

imply QNz = 0. Hence from (3.6), (3.8) and Theorem 3.1, it is equivalent to

ker bN(%)_'_ ker C = {0} for % € _+. (Q.E.D.)

The next corollary follows from Corollary 3.3, Lemma 3.4 and Lemma 4.3.

Corollary 4.4. Suppose that the elements of A(-) are absolutely, continuous

on [-r,o]. if (A,B) Is stabilizable ((C,A) is detectable, respectively),

then _ N,B) is stabilizable ((C,A N) is detectable, respectively) for N

sufficiently large.
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For the rest of this section we assume that the conditions stated in

Corollary 4.4 hold. Let us consider the Nth approximate problem to (4.5):

minimize

jN(u,z) = J (]CzN(t)] 2 + ]u(t)]2)dt (4.6)
0

subject to (2.4). The optimal control uN to (4.6) is given by

uN(t) = - B*_NzN(t)

and

zN(t) = e(AN- BB*ffN)tQNz,

where fiN is the unique nonnegative, self-adjolnt solution to (ARE)N:

(AN)* fiN + ffNAN _ fiN BB* fiN + C*C = #.

In the following lemma we give a characteristic equation for elgenvalues of

AN BB*- ii N.

Lemma 4.5: A complex number l is an ei_envalue of AN - BB* _N if and only

if Re I < 0 and l satisfies det _N(1) = 0 where

_N(1) = _I - [ DN(I) -BBT ]-cTc -DN(-I)TJ

0

DN(x) = A0 + A1 _N(-r) + / AN(8)#N(8)de.
-r
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Proof. It follows from [5] that _ _ o(A N - BS* _N) if and only if

Re _ < 0 and I _ o(H N) where

A N -88" ]

HN ZN ZN= on x

-C C - ( AN)

and ZN - QNz.

From (2.5) and Lemma 2.1, if _ € o(HN), then there exists an element

((n,_), (y,_)] € ZN x ZN such that

0

A0 n + Al_(Tr) + f AN(8)_(0)d0 - BBT y = l_
r

T
-CT Cy - A0 y - $(0) = Xy

AN(')Ty - $ = l_

where

= _ + (n - _(0))p N, n = _(0)

T ~ T
= _ + (A1 y - _(-r))pN and _(-r) = A1 y.

Thus the similar arguments as given in Section 3 allow us to conclude that
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_ o(H N) if and only if det _N(%) = 0. (Q.E.D.)

5. Gibson's Conjecture

In this section, we prove the Conjecture 7.1 in [5] for the Legendre-tau

approximation: if the semlgroup Is(t), t _ 0} is uniformly, exponentially

stable, then there exist positive constants M and w such that, for N

sufficiently large

IsN(t)! < Me-_t.

To this end we need the following two results.

Lemma 5.1: Let us denote by AO, a _enerator on Z defined by _(A O) = _(A)

and

%(,(o),,)= z

and define A_ = QNAoLN, N > I. Then there exist positive constants _0

and M0 such that

tl __! <M 0 e

and

-- oo A_t
j IE e z12 2
0 _ <-M0UzU

where E is an operator on Z defined by
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E(q,_) = _(-r) for (q,_) £ Z.

Proof: We define the weighted inner product <.,.> on Z by
g

0

<(n,_),(y,_)>g = <q,Y>Rn + -nJ <@(8)'_(O)>Rn g(9)d9 (5.1)

where g is positive on [-r,0] defined by

I 2e + r).g(e) = + r ( r

1
Since _ _ g(e) ! 1 on [-r,0], if Zg denotes the completion of Z with

respect to the inner product (5.1) and E-U denotes the induced norm, then
g

Izl 2 < Jzl2 < 2nzl 2. (5.2)
g-- -- g

For zN = (n,$) € ZN = QNz

0

I = <AN zN,zN>g = J <pN-I @N,$N>g(9 ) _ ]hi2-r

where _N = _ + (q _ _(0))pN and _N(0) = q.

Note that

0

<(n__(0))PN(28 + r.) sN> g(8)d8r
-r

0

=j <(_+(o))pNsN>_(26.r)der
-r
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0

1 2B + r)= J In - .(o)[2 pN PN_( 7 dO
-r

1

I ]2= _ J In - *(0) PN(X)PN(X)X dx
-i

1
1

= _-J (2N-I) ]n - _(0)[ 2 PN(X)PN_l(X)dx
-r

I

i ]2= _ J [_ - _(0) PN(X)INPN(X) -- (N-l)PN_2(x))dx
-I

1 2N 2

=w(_) In - ,(o)1 ,

where we used that pN-i sN = sN and

NPN(X) = (2N-I)XPN(X) - (N-I)PN_2(x) , -I _ x _ I. Thus, we have

0

I = f <%%N,_N>g(B)dB _ lnl2 i 2N 2-_ (_r) I. - ,(o)1
-r

0

I l)N(o)12] 2 _ I (2)f I+NI2= _ - W I)N(-r)l _ d8
-r

. Inl2 1 2N 2- w(_) In- .(o)1

1 inl2 1 2 I 2 0 _ 1 12-- -_ -T I*_(-r)l -_ ( ) f 1'12 dO _ In - ,(o)
-r

< _,,,01(n,€)_2 1 2_ g -_ I.(-r)l ,

(_ _-) It now follows thatwhere m0 = mln , .

<_tzN(t) zN(t)>g < - _0nzN(t)W 2 -_ ]E zN(t)l2* __ g



-25-

or

nzN(t)H2 < IzN(o)a2 - 2m0 ftlzN(s)N2 __ ft [EzN(s)i2 ds (5.3)
g-- g 0 g 0

t

< uzN(0)n_- 2m0 _ lzN(s)N2 ds.-- g

Hence by Gronwall's lemma

-_0t
nzN(t)1 < e uzN(0)_ t > O.

g -- g' --

From (5.3), for all t > 0

t [2 82 < 4RzNi 2 < 4azl 2. (Q.E.D.)
[EzN(s) as _ 4azN(o) g _

0

Corollary 5.2. Let I denote an operator on z defined by I(_,#) = n € ]Rn

for (n,_) € Z. Then, if

N

f lie t_12dt<_K,z'2
0

for some positive constant K, there exists positive constants ml and MI,

such that

AN -mlt
_e tniMIe ,t_>O.

Proof: The same argument as in the proof of Lemma 5.1 yields that for

(n,¢) g ZN
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0

<ANzN,zN>g = <Aon + AI_N(-r) + J AN(0)_N(e)d0,n>
-r

0

l [2 1 2 1 (2) f i_(0)12+ : [n - : l_N(-r)[ --8- d6
- m r

0
T

_< {_ + IA01 + IAIAII + 2r f iA(e)12de) in12 ][ImO 'zN'2
-r

- a I_]2 1 zN_2-_0 U

where we used the relation: 2 <x,y> <__Ixl2 + [yl2 for x,y € _n. It then

follows that

<d zN(t), zN(t)>g _< a[nN(t)12 - _I _0 IzN(t)12

or

t t

RzN(t)1_ + m0 j nzN(s)n2 ds < nzN(0)D 2 + 2a J InN(s)[ 2 ds0 -- g 0

for all t > O.

Hence we obtain

J HzN(s)I 2 ds < 1 (I + 2a)Hzl 2.
0 --_0

The corollary now follows from Datko's theorem (see Lemma 7.4 in [5]).

(Q.E.D.)

We are now ready to state the main theorem.
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Theorem 5.3: If the elements of A(.) are absolutely continuous on [-r,O]

and the semi_roup Is(t), t _ O} is uniformly, exponentially stable, then

there exist positive constants _ and M such that, for N sufficiently

qeANt_ < Me-_t.

Proof: It follows from Corollary 3.3 and Lemma 3.4 that there exists an

integer NO such that, for N > NO det AN(h) _ 0 for all _ _ _+. But for

I_I >__IA01 + IAII + C --8 and _ _ JR, it follows from Corollary 3.3 that

IAN(i )-ll< I

This inequality, when combined with Lemma 3.4 shows that there exists a

constant = such that for N _ NO

Note that for z € Z

eANt A_t t eAN( ,z = e z + f t-s) [ f(s)ds (5.4)
0

where f(t) = Fe z, t > 0 and F is an operator on Z defined by

0

F(_,#) = (I + A0)n + Al_(-r) + f A(O)#(O)d8 for (q,#) € Z.
-r
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It then follows from Lemma 5.1 that there exists a positive Constant y such

that

eAOf_l[ tzl2 dt and f If(t)l2 dt <yazE 2.
0 0

t N(t_s ) ,
If y(t) = _ leA I f(s)ds, then the Fourier transformation ;(i_) of

0

y is given by

;(i ) AN(i )-I ^(i )[O = _ f _ .

Hency,by the Parseval'sequality.

f [y(t)l2 dt = f [y(i_)12d,,,
0 --_

< e 2 _ [f(i_)[ 2 d_ = =2 _ if(t)[2 dr.
-_ 0

It now follows from (5.4) that

GO

lieANt zl2 dt < 2y(I + 2) IzI2
0

which completes the proof along with Corollary 5.2. (Q.E.D.)

The following theorem is an important consequence of Theorem 5.3.

Theorem 5.4. If the elements of A(.) are absolutely continuous on [-r,0],

rank C = n an____d(A,B) is stabillzable, then for N sufflclentl7 large .o
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Remark: In the above proof the condition: rank C = n is only used for the

derivation of (5.5). But it seems to be enough to assume the detectability of

(C,A) for such a derivation.
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