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ACCELERATED CONVERGENCE FOR INCOMPRESSIBLE FLOW CALCULATIONS

Geralyn M. Neely and Russell W. Claus

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Abstract	 tit	 turbulent viscosity
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Two improved Algorithms which solve the

steady-state Nav i er-Stokes equations, PISO and
SIMPLER, are studied in this paper. Computations
were carried out on progressively finer grids for
the driven cavity and flow over a backward-facing
step. The effects of relaxation factor, number of
grid nodes and number of sweeps through the pres-
sure equations are studied to evaluate the perfor-
mance of the PISO and SIMPLER schemes. Results
show that these improved schemes accelerate the
convergence rate of the solution generally by a
factor of two as compared to the SIMPLE method.

Introduction

Although currently available combustor models

have already proven useful as analytical tools,
these codes are not yet cost-effective alterna-
tives to traditional design methods. One area in
which combustor codes can be improved is in the
execution time required for the solution algo-
rithm. Typically, the method used to solve the
steady-state Navier-Stokes equations is an itera-
tive procedure, which, for stability reasons, must

be underrelaxed. The widely-used SIMPLE (Semi-
Implicit Method for Pressure-Linked E(,-rations)
scheme, developed by Patankar and Spading in
1912, is one such solution algorithm. 	 Although
this method has been demonstrated to be quite
effective, its convergence rate can be improved.
This investigation focuses on two alternate
approaches which a^celerate the solution to the
steady-state Navier-Stokes equations.

A short discussion of the solution algorithms
studied, SIMPLE, SIMPLER (SIMPLE Revisedl, and
PISO (Pressure Implicit Split Operator),.i is in-
cluded in this report. Results are presented for
the driver. cavity and flow over a backware-facing
step. The SIMPLE scheme is used as a basis for
comparison to evaluate the performance of these
algorithms.

S^rtnbol List
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,CE	 turbulence model constants

turbulence kinetic energy

pressure

Re	 Reynold's number . pullP

ui	 fluctuating velocity about mean

Ui	 mean velocity

turbulence energy dissipation rate

®	 any of the independent variables

P	 density

of	 turbulent Prandtl number

Mathematical Model

The TEACH code, developed at Imperial Col-

lege, as the solution procedure used in this
study.	 This algorithm solves partial differen-
tial equations which describe the fluid flow.

Governing Equations

The governing equations for two-dimensional,

steady-state, incompressible, turbulent flow are
shown below. The turbulence model employed is the
two-equa ion k- e model developed by Jones and
Launder
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Solution Algorithms

A staggered grid arrangement is set up to

obtain the finite difference approximations.
Scalar variables such as pressure and turbulence
kinetic energy are stored at mesh points, while
velocities are stored at control volume faces.
Integration is performed over the control volume
surfaces. The partial differential equations are
discretized using the hybrid (upwind/central) dif-
ferencing scheme for the convective terms, and
central differencing for the other terms.

SIMPLE

In the SIMPLE algorithm, a guessed pressure

field is inserted into the discretized momentum
equations to obtain a velocity field. The pres-
sure field is corrected via an equation which is
derived through a combination of the discretized
continuiiy and momentum equations. The velocity
field is then updated and is used to solve equa-
tions for k, a and m. The corrected pressure
field is treated as the guessed pressure field and
the procedure is repeated until a converges solu-
tion is obtained.

The velocity correction equation used in the

SIMPLE scheme for u at the point a is the
following:

Aee
u	 -	Anb unb ` ( pP - pE ) Ae

Primes indicate corrections to old values. The
underlined term, which represents the influence of
corrected pressures on neighboring velocities, is
neglected in the SIMPLE algorithm. To include
this term would entail solving pressure correction
equations for the whole flow field. On the other
hand, the converged solution is unchanged by the
exclusion of this term since this equation is
merely used to correct the velocity. Doing this,
however, results ir an overestimation of the pres-
sure field, requiring relaxaton of the velocity
equations to obtain a converged solution. Relaxa-
tion factors less than 1.0 decelerate changes in
the velocity from one iteration to the next. The
lower the relaxation factor, the more slowly con-
vergence is reached. TheSIMPLE scheme necessi-
tates the choice of very low relaxation factors to
obtain convergence.

SIMPLER

The SIMPLER algorithm imprnves up on the

SIMPLE scheme by including the neglected terms in
calculating the pressure field. The calculation
sequence starts with a guessed velocity field. As
in the SIMPLE scheme, an equation for the pressure
field which combines the discretized momentum and
continuity equations is solved. This pressure
field is inserted into the discretized momentum
equations to obtain a velocity field. A corrected
pressure field is calculated and used to update
the velocity field. This velocity field is
treated as the guessed velocity field and the
iteration procedure continues until convergence is
reached.

Because two additional equations are solved,

each iteration step through the SIMPLER routine
involves more computational time than an iteration
step through the SIMPLE procedure. However,

higher relaxation factors can be applied in the
SIMPLER routine and therefore, convergence is much
faster.

PISO

The PISO scheme also takes into account the
terms neglected in the SIMPLE code, but in a dif-
ferent manner. The PISO routine mimics the SIMPLE
code up until the end of the first iteration. At
this point, the PISO scheme employs an equation
containing the neglected terms which corrects the
pressure. The velocity is then corrected and up-
dated. Again, this procedure is repeated until
the solution converges. For each iteration, the
PISO scheme more closely satisfies continuity and
momentum than the SIMPLE scheme, due to the addi-
tional pressure and velocity corrections. In this
manner, the PISO code allows for higher relaxation
factors to accelerate convergence.

Results

The main thrust of this investigation is to
analyze methods which speed the convergence of
incompressible flow calculations. In order to
accomplish this, several factors are considered.
The most significant element in the optimization
process is the relaxation factor. The choice of a
too high relaxation factor may cause divergence; a
too low relaxation factor results in a slow,
costly calculation. Secondly, the optimum number
of sweeps through the pressure equations per velo-
city iteration is determined. This optimum varies
according to the exactness with which each scheme
solves the pressure-velocity equations. A third
factor to consider is the grid size. A dense mesh
may require much longer computational time than a
coarse one. All of the above analyses are done
for laminar flows. Finally, the "stiffness" im-
posed by the turbulence model is studied.

The two configurations chosen for this study
are the square driven cavity and flow over a
backward-facing step. The velocity vectors for a
typical driven cavity calculation (Re = 1000) are
illustrated (Fig. 1). The top wall of the cavity
moves at a constant velocity, u, while the 3 other
walls remain motionless. The grid for these cal-
culations is evenly spaced.

Figure 2 shows the geometry employed in the

backward-facing step calculations. Computations
for this geometry were performed at Reynolds num-
hors of 1000 (laminar) and 330 000 (turbulent),
based on the channel inlet height of 3 h (see
Fig. 2). Aspect ratios (ax/ay) for these calcula-
tions range from 1.0 to 5.0.

Effect of Relaxation Factor

The importance of applying the optimum relax-

ation factor for each scheme to obtain the fastest
convergence time is illustrated (Fig. 3). Resid-
ual error values are 1x10- for the laminar driven
cavity and 1x10-4 for step flow calculations.
Residual errors were chosen based on an overall
error of 2 percent in the results. The minimum
value on each curve represents the fastest conver-
gence time and the corresponding optimum relaxa-
tion factor. The vertical lines indicate the
relaxation factors at which the calculations
become unstable. For the 38 by 38 driven cavity
calculations, (Fig. 3(a)), the SIMPLER and PISO



algorithms have higher optimum relaxation factors
and therefore, lower convergence times. Note,
however, that if a lower relaxation factor, for
example 0.5, is chosen, both the SIMPLER and PISO
schemes would be slower to converge than the
SIMPLE routine.

Similar results can be seen for the 62 by 22

step flow calculations (Fig. 3(b)). For these
computations, the PISO code has the lowest conver-
gence time. Note also that with the PISO scheme,
one can be quite a bit far from the optimum relax-
ation factor with minimal effect. The opposite
can be said of the SIMPLE algorithm, which has a
very short range of relaxation factors which give
reasonable results. Although the SIMPLER algo-
rithm has a high optimum relaxation factor as com-
pared to the SIMPLE code, its fastest convergence
time is about equal to that of the SIMPLE code.

Effect of Number of Pressure Sweeps

Once the optimum relaxation factor for each

scheme was established, the calculations were
optimized with respect to the number of sweeps
through the pressure equations. The optimum
relaxation factor for each scheme is used in all
further comparisons. The optimum number of pres-
sure sweeps varies from 5 to 10, depending on the
scheme and flow situation. Table I shows typical
variations in convergence times for different num-
bers of sweeps through the pressure equations for
the PISO and SIMPLER algorithms. For the SIMPLE
scheme, increasing the number of pressure sweeps
beyond five resulted in an increased convergence
time. Because of the neglected terms in the pres-
sure correction equation, the pressure field at
each iteration is quite inaccurate until the solu-
tion nears convergence. Sweeping the inaccurate
pressure field several times does little to
enhance convergence for the SIMPLE algorithm.
Since the PISO and SIMPLER schemes both include
the neglected terms, the equations are more exact
and the pressure field at each iteration is not
nearly as inaccurate as that in the SIMPLE code.
By increasing the number of sweeps through the
pressure equations, the pressure field becomes
more accurate and thus speeds convergence.

Effect of Grid Size

Computations were done for meshes ranging
from 100 to 4700 nodes, with results shown in
figure 4. All calculations were performed using
the optimum relaxation factors and number of pres-
sure sweeps determined previuusiy. For the driven
cavity (Fig. 4(a)) the PISO and SIMPLER schemes
give nearly iden'ical results, with the PISO
scheme about 6 percent faster for the finest mesh.
The relative efficiency, defined as

((CPU time for SIMPLE) - (CPU for scheme))L 

remained at around 60 percent for both PISO and

SIMPLER throughout the calculations.

The PISO scheme efficiency improves from about
20 percent for the coarse mesh to 40 percent for
the 4700 node calculation.

A convergence rate comparif,m (Fig. 5) gives

insight into the directness or rapidity with which
each scheme converges on a solution. These fig-
ures also indicate that the results presented
herein are not sensitive to the choice of conver-
gence level. Again, optimum relaxation factors
and number of pressure sweeps are used to obtain
these results. For each iteration step, the maxi-
mum residual error (made up of residuals of u
momentum, v momentum and pressure) is established
and graphed versus the execution time for that
step. For the laminar driven cavity, the PISO and
SIMPLER schemes have much steeper slopes and con-
verge twice as fast as the SIMPLE algorithm for
any given residual error value. In the step flow
calculations, the PISO code again has a steeper
slope and converges rapidly. The SIMPLE and
SIMPLER codes performed similarl; for this
calculation.

Turbulent Flow Calculations

To investigate the "stiffness" imposed by the

turbulence model, calculations were performed for
the step flow geometry at a Reynold's number of
30 000. "Stiffness" as it relates to turbulent
flow calculations results from updating the turbu-
lent viscosity at the end of each momentum
pressure-correction iteration. In other words,
the momentum equations are solved with the old
values of turbulent viscosity and updated at the
end of the iteration. This frequently slows con-

vergence, i.e., imposes a "stiffness" on the cal-
culation. These calculations (Fig. 6) were done
for a residual error of 1x10 -2 . The SIMPLER
scheme gives the best performance, with the lowest
convergence time at an optimum relaxation factor
of 0 85 (Fig. 6(a)). The SIMPLER scheme also
demonstrates a reasonable range of fast, stable
operation for relaxation factors from about 0.80
to 0.90. Although the PISO code improves upon the
convergence time of the SIMPLE scheme by a factor
of 2, it appears to have a much shorter range of
stable operation than either of the other two
schemes.

For a series of increasingly finer meshes
(Fig. 6(b)) the SIMPLER scheme speeds convergence
by a factor of 3 with relative efficiencies rang-
ing from 50 percent for the coarsest mesh to 60
percent for the finest mesh. The PISO scheme is
faster than the SIMPLE scheme by a factor of 2 and
has a relative efficiency of 45 percent for all
grid sizes.

A convergence rate comparison for the turbu-

lent flow case, again using the optimum relaxation
factors for each scheme (Fig. 7), shows the PISO
and SIMPLE schemes with steeper slopes and faster
convergence times than the SIMPL R scheme for max-
imum residual errors up to 1x10 - .

Conclusions and Recommendations
Laminar step flow results are shown in figure

4(b). The SIMPLER scheme has the same convergence
times as the SIMPLE code for grid sizes up to 1800
nodes, and becomes faster for finer meshes, with
an efficiency of about 40 percent at 4700 nodes.

Two improved solution algorithms, PISO and
SIMPLER, have been tested in two flow situations,
the driven cavity and flow over a backward-facing
step. Effects of relaxation factor,number of



pressure sweeps and number of grid nodes on the
convergence time of these schemes have be^.-n ana-
lyzed. These results show:

1. The imp lementation of the PISO or SIMPLER

scheme accelerates convergence generally by a fac-
tor of 2 as compared to the SIMPLE algorithm.

2. The efficiency relative to the SIMPLE
scheme of the PISO and SIMPLER algorithms improves
as more nodes are added to the flow field.

3. The efficiency of the FISO and SIMPLER

schemes is dependent upon the relaxation factor,
flow situation and the number of sweeps through
the pressure equations.

Obviously, since these solution algorithms
are tested here for two flow cases, these results
cannot be taken as universal. However, they are
useful in giving insight and making some general
conclusions which should apply in similar flow
situatlons. For a given class of problers, once
the oit,mum relaxation factor and number of pres-
sure sweeps has been determined, we recommend that
these numbers be used for all further calculations
in this class of problems.

For general engineering use, it is recom-

mended that a relaxation factor of 0.85 will give
reasonable results for both the PISO and SIMPLER
methods for laminar flow. The number of pressure
sweeps to give fastest convergence is 10 for the
SIMPLER method and 5 for the PISO method. For
turbulent flow, a lower relaxation factor of 0.75
for the PISO scheme and 0.85 for the SIMPLER
scneme shouli y' e optimal results. Calculations
for the SIMPLE method should be done with a relax-
ation factor of 0.5 and 5 pressure sweeps for both
laminar and turbulent flow.

As a final note, it has been observed that
the accuracy with which the pressure correction
equations are solved affects the convergence time
for the PISO and SIMPLER schemes. A faster tri-
diagonal matrix algorithm solver may be imple-
mented to make both of these schemes even more
attractive.
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TABLE I. - 
DEPENDENCE OF CONVERGENCE TIME ON NUMBER

OF PRESSURE SWEEPS

Driven Cavity 38x38

PISO

Relaxation factor No. p ressure sweeps Conv. time,

,'ec

0.85	 5	 74.2
10	 104.1
20	 136.0

SIMPLER

--	 --_ _ —
.93	 5	 -- 94.9

7	 83.6
10	 78.5
12	 85.2

Laminar flow over a step 62x22

PISO

Relaxation factor No. pressure sweeps Conv. time,

sec

.93 
	5--- --	

139.8
7	 I	 139.1

10	 111.5
15	 151.4

SIMPLER

865	 196.6
7	 2.06.7

10	 173.9E— 	 15	 224.9
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Figure 1. - Velocity vectors for driven cavity calculations.
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Figure 2. - Backward-facing step geometry.
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Figure 3. - Effect of relaxation factor on convergence time
for laminar flow calculations. Reynolds number, 1000.
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Figure 4. - Effect of grid size on convergence time for laminar
flow calculations.
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Figure 5. - Convergence rate comparison for laminar
flow calculations. Reynolds number, 1000.
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