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1.0 SUMMARY

The goal this project was to demonstrate the increased efficiency and
increased blade life attainable through the use of an advanced turbine blade-
tip-seal system. The turbine blade tip design consisted of an environmen-
tally resistant activated diffusion bonded monocrystal superalloy combined
with a thin layer of aluminum oxide abrasive particles entrapped in an
electroplated NiCr matrix. The project established the tip design and joint
location, characterized the monocrystal tip alloy and abrasive tip treatment,
and established the manufacturing and quality control plans-required to fully
process the blades. Approximately 150 blades were finished machined and 100
were made available for endurance and performance test engines.

Two engine tests were conducted. The first engine test evaluated 20
advanced tip blades through cyclic endurance testing on a CF6-50 fan engine.
The second test evaluated a full set (80) of advanced tip blades on a vari-
able-cycle CF6-50 performance core engine. Both engines completed their
required cycles with no major problems. During the ongine tests, periodic

i	 borescope inspections were conducted to assess the condition of the blades
and shrouds. The engine tests were followed by posttest analyses including
visual, dimensional, and destructive evaluations on selected blades and
shrouds.

The endurance engine test was run for 1000 simulated flight cycles ("C"
cycles) and was conducted on CF6-50 fan Engine 455-509/14. The engine test
results showed that the monocrystal tip material and ADB joint were able to
withstand the rigors of cyclic engine testing (which included a heavy rub).
However, the oxidation resistance and thermal fatigue resistance of the mono-
crystal tip material were not sufficient to achieve the 2X life goal over
conventionally cast Rene 80.

The performance testing, which wis conducted on CF6-50 core Engine 455-
511/4, resulted in a successful demonstration of the abrasive tip system. A
heavy rub occurred over six CoNiCrAlY shrouds (-90 - ) and resulted in shroud
removal of up to 0.46 mm (0.018 inch) which exceeded the 0.3 mm (0.013 inch)
program goal.
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2.0 INTRODUCTION

The primary objective of the Materials for Advanced Turbine Engines

(MATE) Project is the introduction of new materials technologies into advanced
aircraft turbine engines to achieve potential economic and operational perfor-

mance advantages. The program encompasses accelerated transfer of selected
material technologies by scaling them up from the laboratory-feasibility stage

to engine demonstration as well as performing cost/benefit analyses to provide

guidance in the selection of the candidate material technologies to be scaled

up.

Project 3, the subject of this technical report, demonstrated the payoff

of an advanced tip-seal system designed to maintain close tolerances between
turbine blade tips and turbine shrouds and, at the same time, be resistant to

environmental effects including high-temperature oxidation, hot corrosion,

and thermal cycling. The project was structured toward the successful engine

demonstration of an improved efficiency, long life, tip seal system for tur-

bine blades; the technical effort was divided into the nine principal tasks

listed below:

Task I -	 Turbine Blade Tip Seal System Design
Task II -	 Monocrystal Tip Alloy Evaluation

Task III -	 Abrasive Tip Evaluation

Task IV -	 Seal System Verification

Task V -	 Quality Control Plan
Task VI -	 Manufacturing Process Plan

Task VII -	 Seal System Manufacture and Component Test
Task VIII -	 Engine Tests
Task IX -	 Posttest Analysis

The goal of the project was to demonstrate the increased efficiency and
increased blade life attainable through the advanced blade-tip-seal system.

The turbine blade tip consisted of a bonded, environmentally resistant, acti-

vated diffusion bonded (ADB) monocrystal superalloy covered with a thin layer

of aluminum oxide abrasive particles entrapped in an electroplated NiCr

matrix. The project established the tip design and joint location, charac-

terized the monocrystal tip alloy and abrasive tip treatment, and established
the manufacturing and quality control plans, and fully manufactured over 150

blades for component and engine testing. The results reported herein repre-

sent work performed in Tasks VIII and IX of MATE Project 3 and are presented

as FEDD Category 2 data.

2
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3.0 ENGINE TEST PROGRAM

Two separate CF6-50 engine tests, one endurance and one performance,

were conducted to demonstrate the life and clearance improvement through the
use of the advanced turbine blade tip system. While both tests evaluated the

identical blade tip treatment, different HPT shroud materials were used in
each test. The endurance engine test evaluated 20 (1/4 set) advanced tip

blades and was assembled with Bradelloy* shrouds whereas the performance
engine test evaluated 80 advanced tip blades (a full set) and utilized vacuum

plasma sprayed CoNiCrAlY shrouds.

3.1 PREPARATION FOR ENGINE TEST

The blades for each CF6-50 engine test were manufactured as described in
Tasks "I and VII of the MATE 3, Volume I report. Twenty blades were assembled
into CZ6-50 endurance fan Engine 455-508/21 and 80 blades were assembled into

CF6-50 performance core Engine 455-511. The blades were manufactured to the
quality control constraints required by CF6-50 Design Engineering for factory

engine teat blades.

3.2 VERIFICATION

In Volume I of tte MATE 3 final report, mechanical, physical, and com-

ponent testing of the advanced tip seal system is discussed extensively.

Exhaustive testing was conducted on the monocrystal/abrasive tip system to

assure reliability prior to engine test evaluation. The results of the

mechanical property and component testing showed that the materials and
processes required to fabricate the blades were sufficient for safe engine

operation.

3.3 ENGINE TESTING

3.3.1 Endurance Testing

Twenty advanced tip CF6-50 high pressure turbine blades were assembled

into Engine 455-508/21 and were engine tested for 1000 standard "C" cycles.
In a test cell, "C" cycle engine testing simulates the temperature, stress,
and cyclic nature of actual engine operation on a commercial transport air-

craft and is shown graphically in Figure 1. A typical "C" cycle includes
ground idle, takeoff, climb, cruise, descent, and thrust reverse engine oper-

ating conditions.

* Brodelloy, the current HPT shroud material for the CF6-50 is comprised of
sintered NiAl and will not sufficiently abrade with the Al 20 3 abrasive tip

system (see Task III wear test results in Volume 1).

3
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3.3.1.1 Enit:.:e Test Flan

The engine chosen to evaluate the benefits of the advanced tip system
was factory endurance Engine 455-508/11 which was scheduled to run 1000 "C"
cycles and attain a maximum exhaust gas temperature (EGT) of 1778' F. Table I
shows variations in the type of "C" cycles run, the number of "C" cycles for
each variation, and the correeFonding exhaust gas temperatures for each cycle.

Table I. Engine "C" Cycle Mix For Test Engine 455-511/2..1.

Type of "C" Cycles Exhaust Gas Temperature Number of Cycles

M Below 890' C (1634'	 F) 150

N 891'-925' C (1635'-1697' F) 350

0 926'-950' C (1698°-1742 * F) 300

P 951'- % 0' C (1742'-1760' F) 100

P1 961'-965' C (1761'-1769' F) 50

P2 966'-970' C (1770'-1778' F) 50

Twenty advanced tip blades were installed along with 16 current produc-
tion, conventionally cast Rene 80 blades of the identical cooling configura-
tion. The balance of the blades were comprised of Rene 150 blades (from MATE
Project 2) and conventionally cast Rene 80 blades with advanced cooling con-
figurations. All of the blades in the rotor were tip ground to the same rotor
dimension. The monocrystal-tipped blades which were abrasive-treated were
therefore 0.13 to 0.15 mm (0.005 to 0.006 inch) longer than the balance of the
blades in the rotor. The turbine shrouds were current-production Bradelloy
and were ground to produce a severe intentional tip rub at the 3:00 position
to simulate the worst possible conditions that a blade tip might experience
under actual break-in or flight conditions. The severe intentional tip rub
was designed to assess the ability of the tip-to-blade ADB joint to withstand
abnormally high rub-induced stresses.

Engine 455-508/21 was run for 1000 "C" cycles (250 hours) without any
major interruptions. Throughout the test, periodic borescope *.nspections
were conducted to assess the condition of the blade tips. Th(: borescope
inspections indicated that an early rub had occurred and the abrasive was com-
pletely removed after initial break-in (-4 hours). No die=ress was noted in
either the monocrystal tip material or at the ADB joint throughout the test
duration. Using the borescope inspection, it was not possible to assess
whether or not shroud material had been removed by the abrasive tipped blades.

PER
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3.3.2 Performance Testing

Since engine efficiency is strongly related to HPT blade tip-to-shroud
clearances, compensation for shroud distortions and rotor shift are made by
offset grinding of the shroud assembly at engine build. However, iarying
operating conditions add additional turbine distortions that cannot be pre-
dicted. Abrasive tip turbine blades offer the potential to "grind" the
shroud round, in-situ, and remove the unpredictable shroud distortions.

The objective of the performance engine trst was to establish the capa-
bility of the abrasive tip system to remove shroud material in an actual
engine environment. The engine te • t was conducted so chat a sufficient
incursion would occur that would coi •pletely remove the abrasive tip, thus
providing the design engineers with data on the max:+^ •.m capability of the
system. This data could then be used to establish the precise shroud offset
grind configuration and build clearances that would provide the maximum
benefit of the abrasive tip system for produr:ion CF6-50 engines.

3.3.2.1 Engine Test Plan

A full set (80) of the advanced tip (monocrystal Normalloy + Al 203 abra-
sive) HPT blades and a full set of VPS CoNiCrAlY solid shrouds were installed
in CF6-50 core Engine 455-511/4. The shrouds were ground to create an inter-
ference of 0.6 mm (0.024 inch) at the 3:00 position where it could be viewed
by borescope inspection.

Unlike the "C" cycle test%r.g conducted on the endurance test, the per-
formance test involved various types of cycles including slow acceleration/
deceleration, steady-state running, and chops and bursts, and was designed to
evaluate various other engine design modifications as well as the abrasive
tip system. The performance engine test ran for a total of approximately 27
hours.

Periodic borescope inspections were conducted throughout the duration of
the test to assess blade tip and shroud wear. The first borescope inspection,
at 2-1/2 hours, showed that a rub had occurred; however, shroud loss and blade
tip condition could not be accurately assessed. Subsequent borescope inspec-
tions were conducted mainly to monitor the blades and shrouds for radical
changes (deterioration) that might occur. Do major changes in the condition
of either the blade tips or shrouds were noted throughout the engine test.

6
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4.0 POSTTEST ANALYSES

4.1 ENDURANCE TEST RESULTS

4.1.1 Post Teardown Visual Inspection

As mentioned earlier, the engine experienced a severe rub during break-in
and, as anti,-ipated, removed all of the abrasive. The actual magnitude of the
rub could not be assessed because of deterioration of the shrouds which had
occurred during cyclic testing. Visual inspection, of the blade tips showed
that 11 of the 20 monocrystal t:.pped blades exhibited radial cracking, as
shown in Figure 2. Only 5 of the 16 identically cooled, conventionally cast
Rene 80 blades showed radial tip cracks. Moderate surface oxidation was
noted on both the wonocrystrl tipped blades and the CC Rene 80 blades. No
distress at the monocrystal-to-blade ADB joints was observed on any of the
blades.

4.1.2 Metallurgical Investigation

Five of the 20 monocrystal-tipped turbine blades from Engine 1,15-508/21
were submitted for metallurgical evaluation. Four of the blades had radial
tip cracks; the fifth blade exhibited a dent (FOD) on the convex side of the
blade at midchord. The purpose of this evaluation was to assess the condi-
tion of the monocrystal tip material and the bond joint and to determine the
origin and cause of the radial cracking that had occurred in the monocrystal
material.

All exposed (uncoated or cracked) surfaces of the monocrystal Normalloy
material exhibited internal oxidation ranging from moderate to high (as shown
in Figures 3 and 4). Oxide penetration in the cracks was severe, suggesting
that the cracks had initiated relatively early in the engine test, probably
as the result of thermal fatigue. The cracks appeared to be low cycle fatigue
in mode and init;.ated in the oxidized layer of the monocrystal and extended
down through the bond joint and into the Rene 80 blade material as shown in
Figure 5. The balance of the monocrystal material exhibited a complete "twin-
ning" type of recrystallization (Figure 6), which conceivably could have been
caused by the severe rub encountered during the early portion of the engine
test. In all cases, the monocrystal-to-blade ADB joint was intact with no
distress noted. The dent (FOD of unknown origin) on the one blade, shown in
Figures 7 and 8, was confined to only the monocrystal material where conven-
tional recrystallization was evidenced; again, "no" distress was found in the
ADB joint.

4.1.3 Endurance Engine Test Conclusions

The method used to join the monocrystal Normalloy to the conventionally
cast blade (that is, activated diffusion bonding) was shown to be a reliable

7
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Figure 2. MATE Project 3 Blade Tip After Endurance Testing
(Note Tip Crack).
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process and was sufficiently strong to withstand a severe tip/shroud incur-
sinn. The monocrystal Normalloy tip material, however, did not demonstrate

the oxidation and LCF resistance that was projected as the result of the labo-
ratory and rig testing conducted in Tasks II, IV, and VII. Further investiga-

tion into the cause of the cracking revealed that the coefficient of thermal
expansion of the Normalloy, which was greater than that of Rene 80, would have

produced a high stress in the monocrystal tips during engine cycling. The

additional stress-induced strain could have produced the recrystallization

and/or thermal fatigue cracking, resulting in the lower life observed. The
abrasive tip was totally removed and, as expected, did not sufficiently abrade
the Bradelloy shroud material. The Bradelloy shroud material was oxidized and

was swelled slightly and, in the region of this rub, exhibited metal transfer

(scabbing) of the tip material.

4.2 PERFORMANCE TEST RESULTS

4.2.1 Visual/Dimensional Inspection

The rotor assembly (blades) and shroud assembly after engine testing are

shown in Figures 9 and 10. As shown in Figure 10, considerable rub (-180°)
had occurred, the heaviest of which occurred on six shrouds between the 1:00

and 4:00 positions (-90°). The shrouds were removed from the shroud assem-
bly and measurements were made to determine the extent of shroud removal.
The volume of material removed was substantial. The greatest depth of shroud

rub was at a position corresponding to the midchord of the blade where up to
0.46 mm (0.018 inch) of shroud had been removed as shown in Figure 11. Lesser,

but still significant (0.30 mm [0.012 inch]), amounts of shroud material were
removed at regions corresponding to the ends of the tip cap cavity. The very

trailing edge of the tip did not remove any shroud material which was believed

to be the result of the higher temperatures present in this uncooled region

of the blade tip. A distribution of grind capability versus axial position
along the blade tip is shown in Figure 12.

The blades were removed from the rotor and were visually examined. As

shown in Figure 13, all of the abrasive treatment on all of the blades was
removed at the tip; however, some abrasive still remained on the suction

(convex) side of the airfoil. Considerable debris also was present on the

blade tips. The monocrystal material and ADB joint a p peared unaffected by

the engine test.

4.2.2 Metallurgical Evaluation

Selected blade tips and shrouds were sectioned and evaluated. Figure 14
shows a cross section of one of the blades at approximately midchord. As

shown in this figure, both the monocrystal material and the ADB joint were

intact. Also shown is the debris that had collected on the suction sides of
the squealer tips. This debris has been identified as CoNiCrAlY and was shown

to be on all of the blade tips. Note also that the abrasive treatment is

14
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Figure 13. Blade Tip Showing Tip Wear
and Debris.
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still present on the suction side of the airfoil. The condition shown in
Figure 14 was typical of all of the sections evaluated.

Figure 15 shows a cross section of one of the rubbed CoNiCoAlY shroud
segments. The structure was typical of VPS CoNiCrAlY and exhibited no unusual
phases or deterioration.

4.2.3 Results and Conclusions

Since a core engine and a fan engine differ in their operating condi-

tions, shroud distortion and consequently rub characteristics of each, also

differ. A fan engine shroud system will generally distort locally over only

a f,-x shrouds whereas a core engine will experience a more "uniform" distor-
tion and will result in a large circumferential rub which was evidenced on
Engine 455-511/4. The results of this test were used to predict the effec-

tiveness of the abrasive tip system when used in a fan engine under actual
production engine break-in conditions. Figure 16 shows the relationship
between grind capability* and grind depth for the abrasive tip system when
used with the CoNiCrAlY shroud system and plots the actual data (32.5 in2)

from Engine 455-511/4. This plot depicts four different types of probable
shroud distortion ranging from a 0.20 mm (0.008 inch) rub over 12 shrouds to

a 0.41 mm (0.016 inch) rub over six shrouds. The flat section in the upper
part of the curves represents a total removal of the distortion and a 360'

grind. The 0.41 mm (0.016 inch) rub over six shrouds is probably the cost
realistic in a CF6-50 engine creak in.

Engine 455-511/4 experienced a severe, but predicted, rub condition that

resulted in considerable shroud removal. As planned, the rub was sufficient

to assess the full capability of the abrasive tip treatment. Based on the
results of this engine test, the Al 20 3 abrasive tip system, as used in con-

junction with the CoNiCrAlY shroud material, was capable of reducing blade

tip-to-shroud clearance lose by a minimum of 0.41 mm (0.016 inch) and realiz-ad
an estimated 0.76% improvement in specific fuel consumption (sfc). The pro-
gram goal of 0.43% sfc impro^iement was therefore exceeded.

*Grind capability refers to the projected circumferential area that the blade
tip would "sweep" during a rub and is shown schematically in Figure 17.
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5.0 CONCLUSIONS

The results of the endurance and performance engine tests were mixed.
The degree of radial tip cracking encountered in the endurance engine test
indicated that the monocrystal Normalloy tip material could not achieve the
2X life goal. The endurance testing did, however, demonstrate the reliabil-
ity of the activated diffusion bonded joint between the monocrystal tip and
the blade to withstand both a heavy rub and shear stresses that were present
as the result of the differences in thermal expansion of the Rene 80 and
Normalloy. Improved environmentally resistant tip alloys are currently being
evaluated.

The performance test results were extremely encouraging. The abrasive
tip system exhibited the capability of removing substantial amounts of
CoNiCrAlY shroud material. Analyses of the results indicate that the abra-
sive tip system, when used in conjunction with the VPS CoNiCrAlY shroud sys-
tem has the capability to remove typical CF6-50 shroud distortion during
engine break in.
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