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SUMMARY

A total strainrange version of strainrange partitioning (SRP) was
proposed by Halford and Saltsman to enhance the manner in which SRP is applied
to life prediction. This report describes, for the SRP mudel, how advanced
reliability technology can be applied to (a) perform risk analysis and (b)
to derive safety check expressions.

Uncertainties existing in the design factors associated with life
prediction of a component which experiences the combined effects of creep
and fatigue can be identified; (a) inherent uncertainty in material behavior,
(b) statistical uncertainty associated wi:h parameter estimates resulting
from small samples of fatigue specimens, (c) modelling error associated
with the SRP model, (d) data scatter in the environment, e.g., loads,
temperatures, hold times, (e) modelling error associated with service strain
analysis, Examples are presented which illustrate how reliability
analyses of such a component can be performed when all design factors in
the SRP model are random variables reflecting these uncertainties, P

Using the Rackwitz-Fiessler and Wu algorithms, estimates of the safety
index B and the probability of failure pg are demonstrated for an

SRP problem, Meihods of analysis of creep-fatigue data with emphasis on

procedures for producing synoptic statistics are presentedf An attempt

was made to demonstrate the importance of the contribution of the uncertainties
associated with small sample sizes (fatigue data) to risk estimates. In

the example presented, the influence of such statistical uncertainty was

small.




it

Finally, an illustration of the procedure for deriving a safety check
expression for possible use in a design criteria document was presented.
The format employs partial safety factors (PSF) which are derived from re-
liability analyses. The safety check inequality has the appearance of a

"conventional' design requirement, and therefore is familiar to designers.
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NOTATION

Constant in linear model; defined by Eq. A.2

Least squares estimator of a

Coefficients; Eq., D.6

Coefficient of strain-life curve; See Eq. A.1l
Coefficient of strain-life curves; defined in Eq. 6
Median of Ai

Constant in linear model; defined by Eq. A.2; also exponent in
inelastic strain-life curve

Least squares estimator of b

Coefficient of elastic strain-life curve in which only PP strain
is present; defined by Eq. 10

Median value of BPP
1/b
Hysteresis loop in which tensile creep reversed by compressive creep

Hysteresis loop in which tensile creep reversed by compressive plasticity

COV of Ai

Coefficient cf variation

Exponent of elastic strain-life curves; defined by Eqs. 10 and 11
Coefficient of BPP - Bi relationship; defined in Eq. 12

Type T extreme value distribution of maxima

Fraction of the total of each strain range type i = PP, PC, CP, CC

Probability density function of AET

Probability density function of Aes

Mean value of fPP
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NOTATION - (continued)

Mean value of fPC

Function which accounts for statistical scatter; defined in
Eq. A.8; also Eq. BE.3

A random variable which quantifies modelling error in computing
service strain range

A random variable which quantifies material behavior uncertainties
in computing service strain range

Coefficlent of inelastic strain-life relationship; defined by Egs., 8 & 9
Lognormal distribution

Sample size

Cycles to failure; also normal distribution

Service life

Cycles to failure for ith strain range type; i = PP, CP, PC, CC
Probability nf failure in service life No

Target risk or probability of failure

Probability of

Hysteresis loop in which tensile plasticity reversed by compressive
creep

Hysteresis loop in which tensile plasticity reversed by compressive
plasticity

Partial safety factors

Load (or nominal stress) range on the component
Sample standard deviation; estimate of o
Strain range partitioning

Time

Students' t variate

Hold time; in general a random variable

Mean value of T

R
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NOTATION (continued)
Reduced coordinate; defined in Eq. D.3
Logler
LoglOAei where i refers to ith specimen
a + bx; defined by Eq. A.2; also logloN
Least squares line
Log 1ONi where 1 refers to ithspecimen
Standard normal variate
As a superscript, refers to design point for that variable
Reference level for g; See Eqs. A.7 and A.8 and Refs, 5 and 11
Safety index
Target safety index
Empirical function of @ and T; defined by Eq. 2 and Fig. 5
Partial safety factor for variable X
Exponent of BPP - Bi relationship; defined in Eq, 12
Total strain range
St¢rain range;i = PP, P, PC, CC
Inelastic strain range
PP strain range
Cr strain range
PC strain range
CC strain range

Total service strain range

Mean value of Aes
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NOTATION ~ (continued)

Total strain range to produce failure at life N; describes the
strength of the material; defined in Eq. 14
Temperature; in general a random variable
Empirical function of © and T; defined by Eq. 2 and Fig. 5
Equivalent normal mean
Standard deviation of YIX
Equivalent normal standard deviation
Equivalent standard deviation

Standard normal density function; also empirical constant
defined by Eq. 2 and Fig. 5

Standard normal cumulative distribution function
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TABLE OF COMPARISONS OF NOTATION

The authors of this paper used notation which differs from that of the
authors (Halford and Saltsman [ 2]) of the advanced version of SRP., The
intent of this change of notatilon was to simplify the presentation in a

reliability format. Following is a comparison of notation of some key

parameters
Symbol
Halford This
Saltgman Paper
t T hold time
Ae Ae elastic strain range
el e ,
Ae, Ae, inelastic strain range ’
in in
AeT AET total Strain range
ct J coefficient of the inelastic strain life curve !
c c exponent of the inelastic strain life curve :
Bi Bi coefficient of the elastir strain life curve for the ith :
strain type; i = PP, PC, CP, CC :
b d exponent of the elastic strain life curve %
fs
Fi fi fraction of ith strain type to total inelastic strain :
A D, coefficient of relationship between B__ and B,
i i PP i
a 8 exponent to hold time in relationship between BPP
and BP ‘

N T



1, INTRODUCTORY COMMENTS ON STRAIN-RANGE PARTITIONING
The method of strainrange partitioning (SRP) for predicting high
temperature low cycle fatigue was introduced a decade ago by Manson, Halford,
and Hirschberg [1]. This scheme for making life predictions is based on
explicit knowledge of the magnitudes of rhe inelastic creep and plastic
strains present in a cycle of loading., Unfortunately for typical engineering
applications, the magnitudes of the plastic strains are small and they
cannot be calculated reliably from nonlinear structural analysis methods,
Halford and Saltsman have proposed a method which enhances the manner
in which SRP is applied to life prediction [2]., They develbped the basic
Manson-Coffin plastic strain-range power law of low cycle fatigue into a
total straln-range representation by the addition of the elastic and plastic
strain life relationships. It is argued that this method, a total strain-
range version of SRP, has the promise of more accurately estimating cyclic
lifetimes over a much broader range of strains and lives than was possible

on the basis of either the plastic or elastic strain-range alone.

Many uncertainties exist in the process of employing SRP for life
prediction. In a broad sense, these would include (a) scatter in environ-
mental data, and uncertainty in the computations of the environment, e.g.,
temperature, (b) modelling error associated with the procedures for comput-
ing loads on the components and then computing responses (stresses), (c)
uncertainty in the responses of the material to the environment, (d) scatter
in fatigue data, (e) modelling error of the theoretical strength model,
i.e., SRP, The general goal of this study is to demonstrate how modern
probabilistic design theory can be employed to predict reliabilities of com-
ponents subjected to high temperature low cycle fatigue. SRP will be the

basic prediction method used.




For reference purposes, the following basic definitions and descriptions
of SRP are included from Ref., 3. First consider a hysteresis loop as
shown in Fig. 1. Defined are the inelastic (Aein), elastic (Aee) and total
(Ae) strainranges . The basic premise for SRP is that in any hysteresis
lovp there are combinations of just two directions of =training and two types
of inelastic strain, The two directions are, of course, tension (associated
with a positive inelastic strain rate) and compression (associated with a
negative inelastic strain vate); the two types of inelastic strain are time
dependent (cyveep) and time independent (plastic). It should be noted that
only a portion of transient creep strain should be considered as plastic strain
and only the steady-state component be considered as ecreep strain [4]. By com-
bining the two directions with the two types of strain, we arrive at four possible

kinds of strainranges that may be used as basic building blocks for any conceivable

hysteresis loop, These define the manner in which a tensile component cf
strain is balanced by a compressive component to cluse a hysteresis loop.
The types of straln are illustrated in Fig. 2 and are described as follows:

(a) Tensile plasticity reversed by compressive plastielty 1s designated
a PP stralnrange and represented by AEPP‘

(b) Tensile creep reversed by compressive plasticity is designated a
CP strainrange and represented by AEGP'

(c) Tensile plasticity reversed by compressive creep is designated a
PC strainrange and represented by AEPC.

(d) Tenslle creep reversed by compressive creep is designated a CC

strainrange and represented by AECC'
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The notation for the subseriprs for the strainranges uses the type of
tensile strain first, fecllowed by the type of compressive strain, The name
strainrange partitioning was chosen because it represented the premise that,
in order to handle a complcx high-temperature, low-cycle fatigue problem,
the inelastic strainrange must first be partitioned into its components,

The strength of the material is described by strain life curves,
an example of which is shown in Fig. 3. These %elationships follow the basic
Manson-Coffin law,

Given a stable hysteresis loop under constant amplitude oscillatory
loading, as shown in Fig. 1, the fraction of each strainrange type fi’ a
component of the total inelastic strainrange, is identified using an

algorithm as des:ribed in Refs. 1 and 3., For example, fpp = AEPP/Aein.

4 4
pey = ) bey ) £,=1 i = PP, CP, PC, CC (1)
i=1 i=1

Finally, it should be noted that notation of the original SRP work has
been changed somewhat herein, This was done for mathematical convenience

in applying reliability theory.

2, UNCERTAINTIES IN THE LIFE PREDICTION PROCESS

For typical designs in a high temperature environment, the present
state~pf~the-art precludes an accurate deterministic defipition of the en-
vironments and assoclated material responses. Moreover, fatigue behavior
under carefully controlled conditions is characterized by significant
uncertainty as evidenced by the large scatter in fatigue failure data.

The goal of this study is to ¢ast the total strain range version of
SRP into a reliability format. All sources of uncertainty will be identified.

Techniques for quantifying uncevtainty will be addressed. Mechanisms for
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formal introduction into the limit state function will be described as will
modern methods for performing the reliability analyses.

The sources of uncertainty in the process of fatigue life estimation
can be identified as follows:

1. Environment. There is uncertainty in temperatures, hold times
and pressures, static and centrifugal loads, etc. Stress producing environ-
ments may be random processes or deterministic processes with random magni-
tudes. Statistical descriptions of the environment may be available,

2. Response to the Environment. The computational methods for computing
stresses will contain modelling error resulting from the assumptions made.

3. In general, strain at the fatigue critical point will be a random
process, Strain range and mean strain for each hysteresis loop will be a
random variable, reflecting uncertainties in material properties (e.g.,
Young's modulus) as well as environmental and analysis uncertainties.

4, Dividing hysteresis loops into strain types. The process of
identifying the fractions of each hysteresis loop associated with each strain
type (PP, PC, CP, CC) will likely contain uncertainty. The method used may
not accurately reflect real strain behavior of the material.

5. Linear damage rule. The interaction damage rule used in
SRP may not accurately describe fatigue behavior of the material [51].

This uncertainty is referred to as modelling error, and is associated with
the theoretical model which is assumed to define strength.

6. Material behavior, Fatigue data is typically characterized by

"large' scatter. Moreover, parameters used to provide statistical summaries

o

PSR '
\\#W&mww s
X 5



of the data are themselves random variables when the estimators are used
to represent the parameters.
7. Material behavior, . . . other uncertainties., The fatigue strength
of a material may be influenced by processing operations, e.g., cold work-
ing and heat treating), . . . and assembly operations (e.g., bolting,
shrink fits). Uncertainties in material strength may result. Moreover,
material strength may be influenced by time and/or by corrosion and/or
extreme thermal environments to a degree which is not accurately known.
Following are discussions of the components of the SRP model and a
demonstration of how modern methods can be used to perform reliability analysis

on a high temperature low cycle fatigue problem.

3. SERVICE STRAIN

It is assumed that the component operates at constant temperature and
that the temperature is high enough so that creep deformation must be con-
sidered. Also, it is assumed that the loading 1s constant amplitude, The
physical problem is illustrated in Fig. 4. Assume that the load (or nominal
stress) range, Q, is a random variable reflecting (a) uncertainties in the
environment, and (b) modelling error in translating the effect of environ-
ment to loads on the component.

The total service strailnrange Ass at. the notch will be a function of

Q, temperature ® and hold time T as shown in Fig. 5. An analytical model for

service strain range can be formulated as

feg = YQ + 6Q)" (2)
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where the parameters vy, ¢, and n may be functiuns of ¢ and T,

v(6,T)
= $(0,T) (3)
= n(O,T)

e =
1 "

=
i

Both hold time and temperature can be random variables by virtue of uncertainties

in the operating environment and perhaps the codes used for their prediction.

Thus vy, ¢, and n will, in general, be r#ndom variables.

There are two other sources of uncertainty here. First, the method by

which strains are computed from load will contain modelling error. Then
there will be uncertainties in the material response as could be measured

from experimental data. A more general form of Aes would be

beg = GH {yQ + ()M (4)

where G and H are random variables which account for modelling error and

material behavior respectively.

4, TIDENTIFYING THE STRAINRANGE COMPONENTS

The SRP literature describes the mechanical procedure for quantifying
the partitioned strainrange components of a complex hysteresis loop [3].
It is possible to have only three of the four types in the same loop.

Let f,; 1 = PP, PC, CP, CC denote the fractions of each partitioned

i’
strainrange. The sum of the fractions is unity and as an example

consider

G Tn SN awr e g rpre g
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l= fPP + fPC + fCC (5)

Each term can be considered as a random variable. Three sources of uncertainty
can be identified, First, there may be uncertainty in the way that the loop
is analyzed (modelling error) or there could be some error in the basic
algorithm for dividing the plastic strains. It is expected that this error
may be small and difficult to quantify, Nevertheless, 1f the fi's can be
modelled as random variables, no problem is presented to the reliability
method.

But the fi's will also depend upon hold time T and temperature €,
If T and 0 are known random variables, and if their functional relationship
to fi can be described, then in theory, the distribution of each fi can be
derived. Fig. 6 illustrates the relationship which must be established from
testing.

In the design equation, the fi's are clearly not independent as seen

from Eq, 2, For three strainrange types, two f_ 's can be specified indepen-

i
dently, and the third fi expressed as a function of the other two. A demon-
stration of how to handle this in a reliability format is provided in the

examples below.

5, THE STRAIN-LIFE RELATIONSHIPS., HOW SCATTER IN FATIGUE DATA IS TREATED
The inelastic strainrahge-life curves are established by conventional

SRP techniques. It is assumed that the data will follow a linear trend on

- log-log paper (the Manson-Coffin law) and that the techniques of basic linear

model analysis apply. Methods of analysis for e-N data for design purposes

are summarized in Appendix A.
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As shown in Fig, 7, it is also assumed that the slope, b, of each
e~N curve is the same and equal to the PP curve (for which the sample sizes
are usually much larger}., Fig. 3 illustrates how this assumption may be in
error, but these curves were based on a small number of points.

The empirical relationship for each strainrange type 1ls given as

= yb &)
Npp = A (depp) (6

N, ., = Az(Ae

)b
PC PC

b |
Nep )

Ayl g

b
N

cc = A {eg)
The e~N curves of Fig.7 are median curves through the data and are

defined by the relationships given on the figure. The tildes indicate

median value.

Scatter in observed fatigue data is accounted for by treating the A's
as random lognormally distributed varilables. The exponent b is considered
to be constant. Appendices A and B describe the process of translating
e-N data into statistical parameters of the random variables Ai'
In order to gronstruct the appropriate inelastic strain-life curve, the

basic SRP model is employed [l]. The total cycles to faillure, N, is

4
1
5= Z £, /N, i = PP, PC, CP, CC (7)

4
= 2, LA
(heiéf i=1

Rearranging, the resulting e-N relationship becomes,
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be, = JN (8)
whezre,
4 ]
J= )£ /A (9
im1 R §
c = 1/b

Eq. 8 then provides an expression of the inelastic strain life curve. An
example is given in Fig. 8 in which it is assumed that only PP and PC strain

are present.

The elastic strain range~life curves are &itablished as follows,

First, the PP line is defined from the data using the method of Appendix A.

The strain life model is,

d
Aee = BPPN (10)

in which BPP is a random variable and the exponent d is a constant., This
curve is illustrated in Fig. 9. Then the elastic strain life curve for a
given hold time and for a given constant amplitude load can be established
from experimental data in the same way.

As the hold time is increased, the e-N curves will indicate lower
fatigue strength as suggested by Fig., 9. The curves will be parallel to the
PP curve and will have the form

pe, = BiNd i = PC, CP, CC or (11)

some combination
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The subscript 1 refers to the form of the hysteresis loop, i.e., PC, CP, CC,
or a combination of these with PP,
Experimental data has suggested that the assumption of (a) parallel

e-N lines and (b) an empirical form

, )
zn{BPP/Bi] = 0,7 (12)

are reasonable, An 1llustration of data which supports Eq. 12 is shown
later in Fig., 16, In general, Di and 6§ will be functions of hoid time,
temperature, and type of cycle, Using the general scheme as de~

scribed in Appendix A, D, will be a random variable, and § will be constant,

i
Di and 6 will be established from experimental data so that the distribution
of Di will reflect both material and statistical uncertainty.

In general, the elastic strain-life expression is given by Eq. 11,

substituting B, from Eq. 12,

i

_ 6
Bi = BPP exp[~DiI ] (13)

Combining the plastic and elastic strain ranges, the total strain
life curve 1s given as

_ _ d c
AeT = Aee + Aein = Bih + JN (14)

The strxain-life curves are illustrated in Fig. 10,
Upon substituting the expressions for J and Bi the total strain life

expression becomes

Ae = {B

o= Bep expl-D,7°1} 1 + (Te, /8,0 (15)

N
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This is the definition of fatigue strength., It i1s assumed that BPP’ Di
: ’
fi’ and Ai are random variables. Therefore, for a given life AeT

also will be a random variable,.

6. RELIABILITY ANALYSIS

The probability density function (pdf) of the fatigue strength, AET, denoted
as feT, will be a function of Nj it is illustrated in Fig. 11 at the intended se:
vice life No. The service strain range is denoted as Aes. Also shown on this
figure is the pdf of Aes, denoted as fcs. It is assumed that the strain
range will be constant over the life of the component, but the magnitude
(&es) is treated as a random variable to reflect uncertainties in the
environment as well as the procedures used to compute the strains,

The event of failure is defined as (AeT < Aes), and the probability

of failure is

Pg = P(AeT < Aes) (16}

In the language of mechanical reliability, AeT is the "strength,'" and

Acs is "stress."

EXAMPLE 1

Consider a component, subjected to a constant amplitude oscillatory
stress, which is expected to experience some inelastic strain, of the PP
and PC types only. Thus, the fatigue strength of the material would be de-

fined by a special case of Eq. 15,

£ £
_ _ $ d PP PCy, C
beq = (Bp, exp[-Dp. T 1} N+ {—-——Al + _Az}N (17)

which includes only PP and PC strain terms.
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The material is to be a nickel base alloy AF2-1DA at 1400 F (760 C). A
summary of the mechanical properties is given in Table 1. This example i1~
lustrates the use of modern reliability methods to assess the structural
performance of the component. For a specified 1life, and the associated
service strainrange, it is required to estimate the safety index and the
probability of failure., Data used for all design factors are summarized

in Table 2. Commentary on how the parameters are determined from these

data is provided in the following.
Hold time, fPP’ fPC' Assume that there is uncertainty in the hold time, T.

Thus, T can be a random variable, and for this example the coefficlent of variatic
was assumed to be only 5%. But fPP and fPc will be functions of T, and it is
therefore necessary to provide explicit functions. Fig, 12 shows how such a re-
lationship might appear. This 1s used for the example and 1s not based on actual
data., In fact; such a relationship could be established from a simple test,
Scatter in material behavior is not considered here. It should be noted
that the fPP—fPC~T relationship will also depend upon temperature @ and
service strain range, Aes; the latter is also a function of T and €. A
simplified physical model is employed herein for demonstration purposes.

In this example, it is assumed that the uncertainty in hold time
will be relatively small, and that in the first approximation the relation-
ship between fPP and T is the tangent to the curve at the mean value (in

this example, 100 sec.) as shown in Fig. 12.

S - 18
fop 1.1 - 0.10 log,, T (18)

-1 - 19
fpe = 1 = fpp (29)

Thus, upon substituting Eqs. 18 and 19 into Eq. 17, the plastic strain

1life curve can be expressed as a function of T.
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TABLE 1

Mechanical Properties of AF2-1DA at 1400 F (760C); Ref. 6

Young's Modulus
Yield Strength
Ultimate Strength

Reduction of Area

Stress Rupture Properties

Stress (ksi) Reduction
in Area (%)

135 15.8
130 14.6
125 15.0

25 x 10° ksi

123 ksi
164 ksi

22.3%

Time to
Rupture (hrs)

1.1
2.1

196 .

P A
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TABLE 2

Data for Example 1

()

Random Variables Distribution Mean cov(%)
Aeg EVD 4,45E-3 20
T N 100 5
Bpp LN 0.0216(b) 9.9
DPC LN 0.0447(b) 30
A] LN 0.0281(b) 47
Ay LN 0.0156(D) 69

Constants

8 0.25

c=1/b -0.637

d -0.117

No’ service life |1,000 cycles

Notes
(a) Abbreviations

EVD Type I extreme value distribution of maxima
N Normal

LN Lognormal
(b) For lognormal variates, the median is used rather than the mean
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Tangent at T = 100

¥ -
fpp 1.7 - 0.10 1og]oT

This is a valid approximation only
when T is "close to" 100 sec.

In this example, T has a small variance
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Fig. 12. Relationship Between fpp and fPC as a Function of Hold

Time for a Given Strain Range.
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Data used for all of the design factors are summarized in Table 1.
Commentary on these data ig provided in the following,

Stress, It is assumed that the service strain amplitude, Aeg, has
a Type I extreme value distribution of maxima, (EVD). The COV of 20% is fairly
typical of loading variables and reflects primarily modelling error resulting
from assumptions made in the computational procedures which translate en-
vironment into notch strains. A more refined and complete model in which
Aes is expressed as a function of temperature and hold time is presented
above in Eq. 4, but the simplified approach is used here simply to illus-

trate the reliability methods,
PP Strain range Data, The PP strain range-life data for AF2-1DA at

1400 F is shown in Fig. 13. Methods of analysis of these data are described

in Appendix A, and a summary of the results is given in Table 3. It should

be noted that the uncertainty in fatigue strength is described by the random
variable Al, whose COV includes data scatter as well as statistical uncertaintic
in the estimates of the least squares parameters.

PC Strain range Data. The PC strain range-life data is shown in Fig., 14,

To analyze the data, it is first assumed that the slope will be the same as
the PP curve, i.e., b = - 1,57, A least squares method, with the exponent
known, is employed, and the results are summarized in Table 4. The COV

of A2 refleacts both data scatter and statistical uncertainty, the latter
which is quantified using the methods described in Appendix B.

Elastic Strainrange Data. The PP elastic strain life data is plotted

in Fig. 15. A summary of the statistical analysis of this data is pro-
vided in Table 5. Basic analysis methods are summarized in Appendix A.

Note that for this data, the least squares analysis is applied to the form
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TABLE 3

STATISTICAL ANALYSIS OF PP DATA
(AF2~1DA at 1400F, 760C)

® Transformation

Yi = loglo Ni X:L - logleri

® Data (See Fig. 13); Sample Size, n = 9 {

hepp (%) (cyifes) X, Y, %
.896 43 2,047 | 1.633 !
.368 200 2,434 | 2.301 i
.154 756 -2.812 | 2,878 f
,104 1,322 2,983 | 3.121 .
.089 2,695 ~3.0506 | 3.430
.037 4,205 -3.432 | 3.624 9
.032 5,745 ~3.495 | 3.759
.018 25,433 ~3.745 |  4.405 |
011 59,121 ~3.959 4.772 ?

® Least Squares Analysis [See Apperdix A)

§ = 3 + ﬁx
5 = =1.552 b= -1.57
s = 0,138

® Statistical Model (See Appendix A for detail of this example)
b d
PP) il

NPP = A (Ae

1
b=2>b=-~1,57

X Kl = 0.0281

1} CA = 0,472

Median of A

COV of A
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Fig. 14, PC Strain Range-Life Data for AF2-1DA at 1400 F.
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TABLE 4

OTATISTICAL ANALYSIS OF PC DATA

® Transformation

¥y = logyo My

Xi = 1ogleri

® Data (See Fig. 14 ); Sample Size, n = 6

aepq (%) (cyﬁfes) Xy Y,
671 51 ~-2.173 1,710
290 212 -2.537 2,326
. 184 300 ~-2,735 2,478
069 904 ~-3.158 2.956
.043 1,807 -3,366 3.257
.051 3,380 -3.291 3.529

® Least Squares Analysils (assume the same slope as the PP data;

b= =1.57)
Y = a+ bX
a = ~-1,807
s = 0.173

Statistical Model (See Appendix B for detail of this example)

Npg = Ap(bepg)

b=b=~1,57

Median of A,; X = 0.0156

COV of A

97

c

2

= 0.687
)

—y A T e
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Fig. 15. Elastic Strain Range-Life Data for AF2-1DA at 1400 F.
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TABLE 5

Statistical Analysis of Elastic Strain Lif: Data
(AF2-1DA at 1400F)

® Transformation

Y, = log. N

i

® Data (See Fig., 15); Sample

104

Size, n = 9

Xi = log

Aee(%) ] Nf Xi Yi
(cycles)

1.492 43 ~-1,826 1.633

1.155 200 -1.937 2,301
.898 756 ~2.,047 2,878
.898 1,322 -2,047 3,121
. 799 2,695 -2,097 3.430
.800 4,205 -2.097 3.624
.783 5,745 ~2,106 3.759
. 703 25,433 ~2.153 4,405
.652 59,121 ~2.186 4.772

® Least Squares Analysis (See Appendix A)

Y

a

fl

]

s

® Statist

N =

a+ gx
-14.21

0.2581

1cal Model
b

A(Ase)

b = -8,532

Median of A = X = 10

o>

COV of A, C, =

here)

= -8,532

-14,21

1.01 (See Eqs. A.7 ard A,10; g(.01,9) = 1.41 used

’

10084

s sy e o ot e R
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TABLE 5 (contirued)
@ Alternate Form Used in Analysis
- d
Aee BPPN
i) ¢ = 1/b
1) ¥, = @/%HH? = 0.0216

[ 2 (l/b)2 3
i) ¢, = l@+ep -1
PP -

= 0,099

The relationships of 1i) and iii) are valid only when A (and therefore, B)
have lognormal distributions. These are basic forms for lognormal variates

[e.g., See Ref. 5].
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N = A(Ae)b. For the strength formulation, statistics on the parameters
of the equation Ae = B N d are required. Forms for relating statistics
between A and B anu c and d are given in Table 5,

Elastic Strain-Life vs. Hold Time Relationship. The relationship

between elastic strain-life curves and hold time is established from experi-
mental data as shown in Fig. 16. Data from CC and CP strains, not shown,
supported a selection of a slope of 0.25 for the data. Thus, the empirical

form, relating BPP and BPC is,

D T0.25

n(3pp/Bpe) = Dpg (20)

Least squares analysis 1s performed; the statistics on DPC are presented

in Table 6.

Elastic and Inelastic Strainrange-Life Relationships. The strain-

1ife curves, employing the total strainrange version of SRP and the data
of Table 2, are presented in Fig., 17 for reference only. These curves

suggest that the influence of creep in this example is relatively small,

Beliability Analysis. The fatigue strength, AET, of the material is

given by Eq. 17 with substitutions of Eqs. 18 and 19 for fPP and fPC'
The event of failure is (AE;S < AET). The following methods will be used
to evaluate the probability of failure,

1) Monte Carlo. This method is widely employed for solving compli-
cated probability problems. It is a very useful tool, but it suffers
from high computer costs relative to accuracy.

2) Rackwitz-Fiessler (R-F). The R-F scheme is a numerical method for
evaluating reliabilities in problems such as this one [5]. It
is now widely employed and details of the method are well doru-

mented {7, 8, 9]. It has been demonstrated by Wu et al. [10]
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Fig. 16. Time-Dependent Intercepts for Elastic Strain Range Life Relations,
AF2-1DA, 7609C, Halford and Nachtigall Data [6].
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TABLE 6

STATISTICS ON DPC

Y = log,, {an(B,,/B. )]

X = 1og10t

PP°"PC

® Data (See Fig. 16); Sample Size, n = 6

Y X

i i
-1.00 1.83
-0.813 1.86
-0.779 2.62
-0.733 2.46
=0.707 2.51
~0.466 3.16

® 1east Squares Analysis

Y=A+4+ 0.25X

Least squares relationship

A=(ly, -025]X)/n=-1.35

1]

e e

® Statistics on D

Median, B

cov

Then

PC

PC

1 SN2
~TT L (¥, - Y% =0.081

(See Appendix B for definitions of terms)

108 - 107135

0.0447

i}

g(a,n)s

g(.01,6) = 1.56

(1.56)(0.081) = 0.126

2
CD N »{0('126) /. 434 1% 0.30

A%

0.30

P

LI
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that the R-F method does an adequate job of estimating reliabilities
at computer costs far less than Monte Carlo. A summary of the R-F

method is given in Appendix C,

3) The Wu Algorithm. This scheme was developed by Y.-T. Wu on the same

NASA/Lewis grant which sponsored this project [10]. This numerical
method, summarized in Appendix D, is more complicated than R-F,

but increased computer costs, relative to R-F, are insignificant.

Al)l evidence seems to indicate that the accuracy in estimating
probabilities of failure is substantially better, At this time
the Wu algorithm has not been subjected to peer review and has not
been published, but its performance has been demonstrated to be

of consistently high 'quality in a large number of examples. This
SRP problem is another example.

The Results. The output of the R-F and the Wu programs are provided
in Tables 6 and 7 respectively. Results are summarized in Table 8. Agree-
ment of the three methods in this example is better than ugwal [10]. 1In
this example, three approximations to B and pp are being compared, although
Monte Carlo is exact as n + o,

A practical limitation to Monte Carlo for structural risk problems
is demonstrated by this example. Note the relatively broad range of
the 98% confidence interval for a sample of n = 100,000. This range
would be even broader for the "more typical" risk levels of 10-3 or lower.
To sharpen the limits, a much larger sample would be required. But even
for this probiem, approximate relative computer costs presented in Table

8 illustrate the inefficiency of Monte Carlo.

T
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In summary, for a single problem, Monte Carlo computer costs may not be
excessive, But for a large scale program, the R-F and Wu schemes may be
mich more efflcient. Furthermore, these methods provide a basis for
developing safety check expressions for design criteria documents (See

Example 3 below.)
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Table 6

Output of Rackwitz-Fiessler Program for Example 1

COMPUTATION OF THE SAFETY INDEX USING R-F ALGORITHM

NUMBER OF DESIGN VARIABLES, N= &

STORP SENSITIVITY = , 00010000

INITIAL QUESS OF REDUCED VARIABLES = 0.0
INITIAL STEP SIZE = 0.1

LIMIT STATE G(R, S)=0, STRAIN RANGE PARTITIONING MODEL

DESIGN VARIABLES

VARIABLE TRANSFORMATION MEAN/MEDIAN
ES EVD . 83400E-02
T NORMAL. . 10000E+03
BPP LOG . 21600E-01
DCP LOG . 44700E-01
Al LOG . 28100E-01
A2 LOG . 15600E-01

NOTE: THE MEDIAN IS SPECIFIED FOR A LOG

VARIABLE

ES XR(1)=
T XR(2)=
BPP XR(3)=
DCP XR(4)=
Al XR(S)=
A2 XR(&)=

SAFETY INDEX .,

PROBABILITY OF FAILURE =

*pe = ¢(-8)

DESIGN POINT

REDUCED VALUE

2, 34338
. 01660
-, 784652
. 36855
~-. 280864

-. 07246

BETA = 2 5164

. 593446E-02 *

NORMAL VARIABLE ONLY,

cov
. 20000E+00
. 90000E~-01
. 99000E-01
. 30000E+00
. 47000E+00
69000E+00

BASIC VALUE

X(1)m=
X(2)=
X(3)=
X(4)=
X(5)=
X(6)=

. 87259E-02
. 10008E+03
. 199685E-01
. 49814E-01
. 24782E-01
. 14907E-01




Output of Program Which Uses the Wu Algorithm; Example 1
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Table 7

COMPUTATION OF THE SAFETY INDEX USING THE Y, T. WU ALGORITHM

LIMIT STATE G(R, 8)m0.

VARIABLE
ES
T
BPP
DCP
Al
A2

STRAIN RANGE PARTITIONING MODEL

DESIGN VARIABLES
TRANSFORMATION

EVD
NORMAL
LOG
LOG
LoG
LOG

MEAN/MEDIAN
. 33400E-02
. 10000E+03
. 21600E-01
. 44700E~-01
. 2B8100E-01

15600E-01

cov

. 20000E+00
. 30000E-01
. 99000E-01
., 30000E+00
. 47000E+00
. 49000E+00

NOTE: THE MEDIAN IS SPECIFIED FOR A LOGNORMAL VARIABLE ONLY,

VAR IABLE
ES

T

BPF
DCP

Al

A2

SAFETY INDEX ,

PROBABILITY OF FAILURE = L 41295E-02*

*pf = (I)(-B)

DESIGN POINT

REDUCED VALUE

XR{1)=
XR(2)=
XR(3)=
XR(4)=
XR(5)=
XR(b6)=

4.
. 01855
. 85075
. 40547
. 31582
. 07969

16752

BETA = 2. 5050

BASIC VALUE

X(1)=
X(2)=
X(3)=
X(4)=
X(5)=
X(6)=

. B6154E~-02
. 10009E+03
. 19785€E-01
. 50354E-01
. 43935E-01
. 14840E-01
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Table 8

Comparison of Reliability Analyses Between Monte Carlo,
Rackwitz-Fiessler, and the Wu Algorithms

Safety Probability Relative
. (a) Cost
Index, B of Failure'™’, Ps Factor
Rackwitz-Fiessier(d) 2,516 5,93E-3 1
wuld) 2.505 6.13E-3 2
Monte CarloP) 2.485 6.48E-3 50

98% Confidence Limits

(5.909 70]0E"3)

(a)B computed first. Then Ps = o(-g) where ¢ is the standard
normal distribution function

(b)pf computed by counting the number of failures in a sample

of n = 100,000. Then g = —¢'1(pf).
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EXAMPLE 2, Details of constructing the random variable A are described
in Appendix A for the two variable case and in Appendix B for a single
variable, The function g(a,n) is introduced to quantify the statistical
uncertainty component, essentially by enlarging the sample standard
deviation, s, It is s which quantifies variability in material proper=-
ties, A summary is provided in Table 9,

As n becomes larger, this statistical uncertainty becomes smaller,
and g(a, n) approaches unity. In this example, it is assumed that
the data of Example 1 is now based on large samples so that all statis-~
tical uncertainty disappears (i.e., g(a, n) = 1), Table 9 summarizes
those variables and their COV's in Example 1 for which this error term
was included. Also shown 1s the reduction in COV if the sample size were
large and g =1 . . . assuming the same statistics for all varilables.

The goal of this exercise is to demonstrate the effect of statistical
uncertainty on the design. How important is it to the overall reliability
analysis to increase sample sizes to reduce this statistical error?

To accomplish this goal (1) the statistical uncertainty component was
removed from the COV's of the four variables considered in Table 9, (2)
the mean value of service strain, Aes was increased so that the safety
index was the same as in Example 1, (for both R-F and Wu),

The results using both schemes were identical, as summarized in Table
10, As the statistical uncertainty is removed, the mean value of Aes can
be increased at the same level of risk. But the increase in allowable
strain (mean) is only 2.67%. Thus, in this example at least, it seems that

while statistical uncertainty may strongly influence the COV of a design
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Table 9

A Summary of the Effect of Statistical Uncertainty on the COV's

of the Random Design Factors of Example 1

For the random variable, X, the coefficient of variation (COV) is

where ¢

{ 2
C = 000/c434_]

is the equivalent standard deviation

0
Uo =gs
s = sample standard deviation
g = factor to account for statistical
uncertainty in estimating parameters
COV, including COV, assume n large
Variable statistical enough so that there
uncertainty, i.e., g > 1 is no statistical
uncertainty; g = 1
BPP 9.9% 7.0%
DPC 30, 19.
A] 47, 33.
A2 69. 41.
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factor, its impact on the overall reliability seems rlmost negligible., On
the basis of this one example, 4it would, of course, be dangerous to con-
clude that statistical uncertainty is unimportant and that small samples

are OK, Clearly more studies need to be made on this problem,
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Change in the Mean Value of Scrvice Strain, Aeg which would be
allowed at the same level of risk as Example 1. When the Statis-
tical Uncertainty Component of Bpp, Dpe» Ay+ and A, is Removed.
(Essentially same results for both Rackwitz-Fiessler and Wu
algorithms.)

Including Statistical Uncertainty (Example 1) 5,34E-3

Excluding Statistical Uncertainty 5.48E-2

Percentage Increase: Would be equal to the
percent increase in the requirement for the 2.6
cross sectional area of a tension member if
stress and strain were linearly proportional
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EXAMPLE 3, This example demonstrates the use of the R-F and Wu algorithms

to derive a safety check expression which could be used for a design criteria
document, The problem of Example 1 is used. The general method for

deriving partial safety factwrs, (PSF's) is described in the literature

(8, 10, 12], A simple tutorial 4n PSF's is provided in Appendix E for readers
who are unfamiliar with the concepts.,

In conventicnal design practice, typically a single safety factor is
employed to account for all uticertainty. A more refined criterion, could
be developed by applying safety factors to each random design factor.

In theory, a criterion using these PSF's would produce a more efficient
design. Described in Appendix E is how probabilistis design methods,
namely the R-F scheme, can be used to derive the PSF’s,

It should be noted that a probability based design criterion could
require that the designer compute Pe (or B) for the component in question.
The component would be safe if Pe < P, (oxr B > Bo) where P, and Bo are the
target risk and safety index respictively. To require a designer to exercise
skills in probability theory may be impractical., The much more familiar
format, a deterministic inequality involving safety factors, is easy to
understand and use. In summary, a reliability based safety check expression
is derived, having a format, familiar to designers, such that probabilistic
and statistical analyses are invisible.

In this example, the problem is defined as follows:

1. The limit state is defined by Eq. 17 (with the substitution of

Eqs. 18 and 19).
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2. Distributional forms and statistics of the design factors are
defined in Table 2.

3. The target safety index, Bo is given as Bo = 3,0, Just for ref-
erence, ., . . the notional probability of failure associated with this
value 1s p, = ¢ (-3) ¥ 0,0013.

4., The tuning factor A (See Appendix E) is defined by replacing
Aes with AerS. In the R-F algorithm, A is adjusted so that B = 3.0,

As an alternative viewpoint, Aes can be taken as unity, and A then could
be thought of as the mean of Aes.

5. The nominal values are defined as the median values for variables
having lognormal distributions and the mean values for the other wvariables,

With this information, the PST program at the University of Arizona
was run; the results are presented in Table 11. Input to the program are
the variables, their distributions and statistics, the nominal values
(at the top of the table), and Bo (at the bottom). The program computes
the partial safety factors, Yi’ as listed.

Combining the PSF's with the limit state expression, a safe design

results when the following inequality is satisfied.

£ £
1.84 (Be) < {091 ¥ exp [-1.148, 7013 % +{—EB 4 E€_Ln® (o)
S PP PC n 5
0.86Al 0.95 9

where,

Hhi
t

pp = 1.1 - 0.10 1og10 T

fpe =1 - fpp

Note that the relationship for fPP is valid only for a limited range of

hold time (See Fig. 12).
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Table 11

Results of PSF Program

FATLURE FUNCTTON: SRP MODEL

DESIGN VARTABLES

VARIABLF  DTSTRIBUTION NOMINAL MEAN/MEDTAN cov
ES EVD «19090E401 «LODOOE+01 «20000
T NORMAL «10000F+03 «10000E+03 05000
BPP L1G «21600E-01 «2160CE-0} «09900
pCP LG «44700€E~01 v44700E-01 +30000

Al L0G «28100E-01 «28100E~01 «47000
A2 LOG +15600E-01 «15600E-01 «69000

NOTF: THE MEDIAN 1S SPECIFIEﬁx?BENA\}DGNORMAL VARTABLE ONLY.

JFSIGN POINT PAgQIAL
VARTABLF REJUCED VALUE RASIC VALUE SAFETY FACTIRY

ES XR{l)s= 2.80029 X{1)= +18404E+01 1.8404
T XR(?) = « 02031 X(2)= «1D010E+03 1.0010
BPP XR(3jm -.92031 X(3)= ,L,19723€-01 «9131
pce XR(4)a «44062 X(4)s ,50873E-01 l.1381
Al XR(5)= ~+33125 X{(5)= 424235E-01 « 8624
A? XR (&)= -.08437 K{6)= 14785E-01 «9478

SAFETY INDEX, BETA= 3.00 *'Bo

SCALF FACTORs «46658E-02 “ A

*Assumes that nominal values = [&ed1an for lognormal variates

mean for Aes and T
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where the bar over a variable denotes mean, and the tilde denotes median

(the nominal values by definition),

This example was presented only for demonstration purposes. Limitations

of its use in a design criteria document center around the fact that each
PSF is a function of all of the statistics and parameters.

1. The expression was derived on the basis of known statistics of
the design factors. It applies to a specific case. For application, a
range of possible statistics and corresponding PSF's should be studied
to construct characteristiec PSF's. The problem may require some engineering
judgement in smoothing the PSF's.

2. 'The PSF's were derived for a specific life, N = 1,000 cycles.
If the requirement should include other values of N, then the behavior

of the PSF's should again be scrutinized,




52

SUMMARY COMMENTS

Reliability technology has now developed to the point where application
to complicated problems is a practical reality in many cases. The Rackwitz-
Fiessler and Wu algorithms provide an estimate of reliability of a component
experiencing the combined effects of creep and fatigue. The strain range
partitioning form of the limit state has a relatively complex and highly
non-linear form; yet, as demonstrated herein, these algorithms easily handle
this problem with negligible computer cosis.

Reliability analysis was used to assess the impact of small sample sizes
on component risk. In addition to uncertainty due to inherent data scatter
resulting from material behavior, statistical uncertainty, resulting from the
fact that parameter estimates are random variables, is present. An example
provides an illustration that statistical uncertainty may be relatively
insignificant, but it would be dangerous at this time to present this as
a general conclusion.

These advanced reliability methods can also be used to derive safety
check expressions which employ partial safety factors. A maximum allowable
risk is the basic criterion. An example in which PSF's are derived for the
SRP problem was presented. As a general comment, caution should be exercised
in specifying PSF's for general application simply because they are functions

of all of the statistical parameters in a given limit state.

T TN LT T s
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APPENDIX A, ANALYSIS OF STRAIN-LIFE DATA

Methods for analyzing strain-life fatigue data are discussed in this
appendix. The goal of such data analysis 1s to provide a characterization
or statistical summary of the e-N relationship in a form suitable for inclu-
slon in a comprshensive reliability analysis.,

Considered will be uncertainty associated with (a) inherent behavior
of the material as evidenced by scatter in the data, and (b) statistical
behavior of the least squares estimators, This problem was addressed in

Ref. 11, and the following summary describes a model for quantifying both

uncertainties, thereby producing a model for reliability analysis.

The Least Squares Line

Consider a constant amplitude fatigue test in which pairs of data
(Aei, Ni)’ i =1, n are collected. Ni is the cycles to failure associated
with strain-range (or amplitude,Aei) and n is the sample size. Ae is
the independent (or controlled) variable and N {s the dependent variable,
Hypothetical test data are shown in Fig. A.l plotted on log-log paper.

There data imply a model of the form

N = A(Ae)? (A.1)

where A is a random variable and b is constant, Therefore, N would be
a random variable also; its density function fNIAe is shown 1in Fig. A.l.
Because b and A would be those parameters in a design algorithm which

represents the fatigue strength of a material, it is necessary to provide :

a description of b and A.

e T —

N T e



54 la

np, ..1 A

Strain Range
Ae

(10g)

Cycles to Failure, N

Fig. A.1. Typical Fatigue Data I1Justrating the Median Curve and
the Distribution of Cycle Life.
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Therefore, the problem is to translate the data (Aei, Ni> into the

value of b and a distribution of A, In order to do this, first consider
n
the median curve defined by A (the median of A) in Fig. A.l. A linear form

of this median curve is
Y =a+ bX (A.2)
where
n
Y=1log N, X = log Ae, a = log A (A.3)

Eq. A.3 translates the data (Aei, Ni) into (Xi, Yi)’ i=1,n Eq. A2
defines the mean of Y (log N) given X (log Ae). The scatter in the data
is defined by the standard deviation of Y given X, denoted as o and assumed
to be constant (not a function of X). Moreover, Y is assumed to have a
normal distribution for all X.

Using the method of least squares, a, b, and o are estimated by &, g,

and & respectively [11],

=] &, - X YB) %> |
b = X, - (. - ¥) (X, - %)
=1 a =1 1 L
;'—'-?-bx (A.A)
n ~
i) Y, - (5 + bx)1?

where X and Y are the sample means of X and Y respectively. Because each

Yj is a random variable, the estimates 4, b, and s are also random variables.

The "best fit" line

r4 >
1t
(VR
+
o>
>

(A.5)
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is called the least squares line, § is the estimate of the mean of Y given
X.

Note that (a) Y given X is normal and (b) the least squares line is
the estimate of the mean of Y]X. Therefore, it follows that (a) NIAe
is lognormal and (b) the least squares line, N, is the estimate of the
median of N|Ae. As 1llus 'rated in Fig., A.2, the least squares line, §,
is only an estimate of the actual median by virtue of the fact that a
and g are only estimates.

The general goal of this study is to develop an empirical relation-
ship between Y and X which accounts for both the scatter in the data and
the distribution of the estimators, but is easy to use in probability-
based design formats, A proposed model, suggested by the above discussion,
is as follows:

1. Let b= g be a constant.

2, Assume that the uncertainty due to both sources 1s accounted for in

a (and therefore A) by considering the y intercept as a random
variable.

3. Therefore, let the empirical relationship be

Y = a, + bx (A.6)

where ao has a normal distribution with mean & and standard

deviation oo.

The concept of an equivalent prediction interval (EPI) was employed

to derive 00[11].

nep
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The actual median
N
Y = a + bx

? = K(Ae)b

The Teast squares
Tine

. . . an estimate of the
actual median

Y = log N

An I1lustration that the Least Squares Line is Only an
Approximation to the Median Curve.
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o, = g(n,a)s (A.7)

where
g(n,0) = explAa){ln n) 2]

1,12

Ala) = 1.56[%'- n (2% (A.8)

o}

B(a) = 3.32 - 1.7a

6 <n g 503 0,01 s & 5 0.15

g(n,a) is in essence, an adjustment factor to s to account for the fact
that there is uncertainty in the estimates of a and b and s. In turn,
s accounts for the scatter in material behavior,

The value of o 1is arbitrary., It refers to that region of the tail
area where it is desired to have a good fit [ 5, 71]. As a general rule,
a value of o = 0.0l 1s reasonable. For reference, g(a,n) 1s plotted as a
function of n for a = 0,01 in Fig. A.3. g is the measure of statistical
error, and it is interesting to note how quickly it drops as n increases, . . .
thus suggesting that statistical uncertainty may be small for n 2> 10,

The consequences of the model described above, relative to reliability
analyses are:

1. Y|X has a normal distribution. (Thus N given Ae has a lognormal

distribution)
2. The mean value of YIX is a + gx. (Thus the median of N is

N = 103 (Ae)b

3. The standard deviation of YIX is % (and is not a function of X).
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4, a = log A is normal and A 1s lognormal. The median X and
coefficlient of variation CA of A can be obtained from the log-

swemal (base 10) forms

X = 108 (A.9)

g, = V/;o(°§/'434)-1 (A.10)

EXAMPLE Given the PP strain-life data (n = 9) as illustrated in Fig, 13
and given in Table 3, it is required to produce to statistics on A,

From the least squares analysis,
A=-1.552 bo=-1,57 s =0,138
The median of A is computed by Eq. A.9,
X = 107372 = 0,0281
From Fig. A.3, fora = ,0l and n = 9

g(.,01, 9) = 1,41

The equivalent standard deviation is,

= (L1.41) (0.138) = 0.194

and the COV of A is computed from Eq. A.l0 as,

2 =
c, = /100-194%434 _ = 0.472
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APPENDIX B, STATISTICAL ANALYSIS OR SINGLE RANDOM VARIABLE

Cons.ier a random sample of size n of a single random variable, X.

% = (X1, 412, T ) xn) (B.l)

It is known that X has a normal distribution, The sample mean, i} and
sample standard deviatjon, 5. are computed, To establish a "desigq

value" of X, the notion of an equlvalent prediction interval (EPI) can

be used [ 5], But the EPI can also be used to provide "improved" statistics
for probabilistic design.

Define an equivalent standard deviati n as,

g, = gl(a,n)sx (8.2)

where

gl(a,n)= ta;n—l Yl 4 (l/n)%ﬂ (B.3)

t = students t variate
oj3n-1

z, = standard normal variate

o = reference probability level

The choice of o is arbitrary, but for general design, a value of 0.01 is

recommended. Reference 5 provides additional discussion, For conveni-

ent reference, the value of glfor a = 0,01 is presented as a function of

n in Fig., B.1.
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For design purposes, one can state that X has a normal distribution |
having mean and standard devigtion (i, oo). Scatter =y™erent in the
phenomena is described by 8.9 and statistical scatter, i.e., the fact that

X and s are random variables is described by g.

§ Example: Let Z be a lognormally distributed random variable. Let it
Y = 1og102. Then Y has a normal distribution, A random sample, Z, of
size n = 6 is taken, Transforming tc Y and computing the statistics,

Y = -1.807 and s = 0.173.

The equivalent standard deviation of Y is given by Eq. B.2., From

Fig. B.1, g = 1.56 for o = ,0L and n = 6. Thus, ﬁ

0, = (1.56)(0.173)

= 0,270
rInvoking basic properties of the lognormal distribution (See Appendix C).

® Median of Z

% = 10° = 0.0156

i ® Coefficient of variation of Z

2
c, = /10“0/'434 -1 = 0.687
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APPENDIX C. THE RACKWITZ-FIESSLER (R~F) ALGORITHM

The algorithm proposed by Rackwitz and Fiessler (7) has been extensively
described in recent literature (8, 9, 12). The procedure for calculating
the R-F algorithm safety index can be summarized as follows:
1. Define each design factor, Xi (i=1,n) and its corresponding
probabdility dist:ribution;Fi and fi denotes to cdf and pdf of
X, respectively.

i

2., Define reduced variables

i S i=1,n (C.1)

where (ui,oi) = mean and standard deviation of Xi respectively.

3., Define the limit state in reduced variables
g'(w) =0 (€.2)

where u = (ul, Upy o v o un)

4, Make an initial estimate of the safety index

[T 2 2
B = min Jﬁl + u, + ...+ u (€.3)

subject to g'(%) = 0. This is the Hasofer-Lind generalized safety index. :

*
5, Calculate the corresponding design point, X where

*
o, *+uy i=1,n (c.4)

X*
P -uil

i
The design point is that point on the failure surface closest to

the origin of yreduced coordinates.

e L IR SN
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6. Calculate the means and standard deviations of the equivalent

normal distributions for each non-normal variable

o1e™ (r, (X))
ag =

Ni *
fi(Xi)
(Cc.5)
* -1 *
Mg = Xy - @ TIF X Noyy
where ¢ = standard normal pdf and 9 = standard normal cdf
for each variable.
7. Define the new reduced variables
X, =¥
1
u = .,_:La__._lii (C.6)
Ni
8. Calculate a new estimate of the safety index
2 2 2
= md ' ' '
Bl mln/?ul) + (u2) + ., . .+ (uN) c.7)
subject to g'(g') = 0,
9. Repeat steps 6 through 10 until the difference
IBN - BN-lI < t (c.8)
where t is the "error." In this study, the value t = 0,001
was used.
10.

The probability of failure is calculated using B = BN

P. = ¢(-B) (C.9)
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APPENDIX D. A NEW METHOD OF CONSTRUCTING EQUIVALENT NORMAL DISTRIBUTION
AND COMPUTING PROBABILITY OF FAILURE

This method constructs, for each non-normal variable, a scaled
three parameter equivalent normal distribution function (cdf) employing
a least square scheme., The probability of failure Pe is computed using
the obtained parameters by assuming that the limit state is linear at

the design point,

Consider a limit state function g(%) involving n independent random
variables which is linearized at the design point,

n
8RR = a +izlaixi (D.1)

Three equivalent normal parameters, (A, My cN), for each X, are found,

i
one by one, and the probability of failure is estimated as

n
={ f = d A D.2
Ps [91 p x) j92¢% (y)du ;zl ) (p.2)

where Ai are the scale factors, f (ﬁ) and ¢&(%) denote the joint prob-

X

ability density function (pdf) of the original and equivalent normal

variables, respectively. Ql is the failure region on the original

coordinates, R and 92 is the corresponding failure region on the

reduced coordinates, g, in which

X, - u
y, = 3 (D.3)

Ni
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Using Eq. D.3, the reduced limit state function is also linear. A minimum

distance, 8, on the u space can be found, and pf is estimated as

n
P = $(-9) (1A (D.4)

The generalized safety index, B, is computed as

B = =07 (o) (D.5)

Consider constructing the equivalent normal cdf for one of the

varilables, Xi’ and let

Y=aX +...ta X ota X+ aX  (D.6)

Eq. D.1 becomes

g(X) =a +aX +Y (D.7)

Thus, the limit state involves only two variables; Xi is the variable to
be normalized and Y represents the sum of the other variables. Assume
that the Rackwitz-Fiessler (R-F) algorithm has been performed, and X are

replaced by the equivalent normals, then Y is also a normal variable with

pdf of
y H 2
1 1 Y
o' (y) = ——— & 7 TG ) ®-8)
/27 o,
which will be used in the following procedure.
Define the R-F reduced design point as
*
I S

e T T
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where Hy and o, are the R-F equivalent normal mean and standard deviation,

*
respectively. A variable may be defined as a 'strength' variable if 2z

150
*
and a "stress" variable if 2, > 0.

Assume that a non-normal variable, denoted as X (without the sub-
script 1) is a strength variable with cdf of F(x) and pdf of £(x). The
three equivalent normal parameters can be found by minimizing the sum
of the errors of the squares between two functions, F(x)¢'(y) and
Ad(x)¢'(y), L.e.,

Min: E = j [Ad(x)o' (y) - F(x)¢'(y)]2dx (D.10)
Subject to g(%) =a + aX+Y=0
where A% (x) is the equivalent normal cdf with mean Uy and standard
deviation N

The procedure described in the folloiwng imposes two constraints,
similar to the R-F algorithm, to Eq, D. 10, i.e., match cdf's and pdf's
at the design point,

* *
AdP(u ) = F(x ) (D.11)
w* *
A-%i-l= £(x) (D.12)
N

* *
where ¢(u ) and ¢(u ) are the '"standardized" normal cdf and pdf, respectively.
Using Eq. D.ll and Eq, D,12, the error sum, E, can be evaluated for a

given A value.

&
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The procedure for determining the normal parameters can be summarized

as follows:

i
1

NETNTRT e

g e e

AR s EELE 2 o g

Calculate ¢'(y) as a function of x.

Define
X -
2y = 3 X (D.13)
X
y -
2y = — Y (D.14)
%

The reduced limit state using R-F results can be derived as

* * 2
2, 2y + 2y 2, = B (D.15)
so that 2 *
g™ -~ Zl Zl
22 = —— (D.16)
2y

Given any x value, z, can be calculated. Therefore, ¢'(y)
can be computed using Eq. D,8. Note that because Oys in Eq. D.8,
is a constant, it can be taken out from the E integral without

affecting the result of the parameters.

*
Make an initial guess of A (e.g., A = 1) and calculate u

from
Eq. D.11,
* -
- o 1[!“_%)1 (D.17)
Calculate On from Eq. D.12
oy = A ¢ ) (D.18)
f(x )
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4, Calculate Hy using Eq. D.3,

by = % - uo (D.19)

N

5. Compute the error sum, E, in which ¢(x) is evaluated using My

and ON'

6. Choose other values of A and repeat step 2 through step 5. An
"optimum" A, whizh minimizes E, can be determined using a suitable
optimization routine, Three parameters are thereby determined,

7. Repeat the above procedure for other non-normal variables, If the
variable is a stress variable, F(x) and ¢(x) should be replaced by
1 - F(x) and 1 - ¢(x), respectively, in all the formulations.

8. Compute Pe and B according to Eq. D.4 and Eq. D.5,

Because, in general, there is no closed form solution for the E
integral, a numerical scheme must be used to approximate E by replacing
the integral by a summation and replacing dx by Ax, i.e., x values must
be discretized, The region of x must also be set., It can be determined
such that
Elﬁ%_ﬂlil%. < H for the two limits of x (D.20)
F(x )¢'(y )
where H is a reasonably small value, say, 0.2. Note that F(x)¢'(y) relates
closely to Pgs therefore small H value implies that a sufficiently wide
region of x will be included in the summation of E. However, when a variable
has a relatively small z* (e.g8., z:/B < 0,1) and a large coefficient of vari-

ation (e.g., 0.4), the range of x may become very wide (therefore, too many

U | SimaRnoon Lo
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points of x need to be included in the summation) to satisfy Eq, D,20,
In such cases, it is suggested that R~F equivalent normal parameters may
*

be used (i.e., A = 1) directly. Because 2, is small, the difference in

Pg estimate 1is usually negligible.

A user-oriented computer program applying the above numerical scheme
has been developed in the University of Arizona, The process of choosing
x values is automated; only the distributional information and the limit

state need be input by the user to generate the probability of fallure

estimate,

S e—

N
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APPENDIX E, A SIMPLE ILLUSTRATION OF THE COMPUTATION OF PARTIAL SAFETY
FACTORS
Definition of and derivation of partial safety factors (PSF) is described
in the literature [8 , 10, 12]. Because techniques of construeting design
criteria using PSF's are relatively new and not widely known.in the aerospace

and mechanical design community, a simple example is presented which provides

a tutorial,
THE EXAMPLE

The limit state is

L+ D= AR (E.1)

where L and D are stress variables and AR is strength variable.

The target safety index is chosen as

Bo = 3.0 (E.2)

The statistical parameters are given as follows: (p = mean, ¢ = standard

deviation, tilde indicates median, C = COV)

L Extreme Value Hy, = 10 o, = 2.0
Distribution (EVD)
D Lognormal (LN) b= 20 Cy = 0.15
' Weibull (WEIL) or Mg = 50 op = 5.0
. Lognormal (LN)

A = constant; here we could assume that it is a geometric variable,
e.g., cross sectional area. But in the process of computing

the point, A plays the role of an adjustment or "tuning factor."

Its role will be described later.
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1iOW THE PARTIAL SAFETY FACTORS ARE COMPUTED

The Rackwitz~Fiessler (R-F) method for approximating non-normal variates
with an equivalent normal in a Hasofer~Lind generalized safety index approach
is employed. An R~F program, (named RACA), based on an optimation method
for computing the safety index, B, has been developed at the University of
Arizona. This program was used for the calculations., 7' PSF's were com-
puted by the following steps.

First RACA was used to compute the design point so that B = 3,0, the
target safety #ndex., This has to be done (with the present version of the
program) by iteration by adjusting the value of A so that B = 3,0, Thus, A

is called the tuning factor. The output of the program is illustrated in

Table 2, The results of the program are the design point (L%, D*, R¥), , ., ,

and A. Note that the design point is on the failure surface, i.e.,

* % = ARK , 2
L* + D% = AR (E.3) “
"stress' "strength' |

Define partial safety factors, Yi

L* = y L D¥ = ypD (AR%) = YR(ARn) (E.4)

where the subscript '"n'" refers to the nominal value. This value is ar-
bitrarily chosen, It could be chosen as the mean or median, or perhaps

a value in right tail for stress variable or in left tail for strength
variable, Clearly the partial safety factors depend upon the definition
of nominal values and therefore, codified safety check expressions should

clearly specify the definition of a nominal value,

i
¢
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Substituting Eq, E,4 into E,3
YL, toYaD = YR(ARn) (E.5)
But 1if we let
Tk F VP £ YRUARY) (.6

we will insure that B 2 Bo. Here we are just saying that it is okay to
lower stresses or increase strength.

In this example, A = 1,06, and

L* = 11,17
Design Point D% = 23,53 (E.7)

AR%* = (1,06)(32,73)

Assume that means are nominal values (often the mean val. 1s used
for stress variables, but some number in lower tail for strength variable).

Then it follows from Eq, E.4 that

L* _ 11.17 -
oot = 1,02
L Y 10.0 1.1
D+ _ 23.53 _ . ., ?
Yp = w " 20.0 - 118 ,
D
AR* _ 32.73 _
vp = AR5 = 322 = 0.655

PR

Thus, the safety check expression or condition for a safe design Eq. E.5

expressed in terms of the PSF's, becomes,
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1.2 L +1.18D = 0/65- ) (E.9)

Eq, E.9 could then be employed as a safety check expression in a
design criteria document, It is of cougrse understood that the inequality
would be valid only for cases when the design factors s#re assumed to possess

the same statisticvs as the variables used to derive the PSF's,
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