
NASA Contractor Report 172476

IC_kSEREPORT NO. 84254

NASA-CR_172476
" 19850003279 i

,J

" ICASE'
SHUFFLE-EXCHANGES ON AUGMENTED MESHES

Shahld H. Bokhari

Contract No. NASI-17070

October 1984

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

, Operated by the Universities Space Research Association

LIB_A2VC0PY

National Aeronautics and
Space Administration LANGLEYRESEARCHCENTER

LIBRARY,NASA
Langley Research Conler HAMPTON,VIRGINIA
Hampton,Virginia23665

SHUFFLE-EXCHANGES ON AUGMENTED MESHES

Shahid H. Bokhari

Institutefor ComputerApplicationsin Scienceand Engineering
and

Universityof Engineeringand Technology,Lahore, Pakistan

Abstract

Prior research has shown how a mesh connected array of size N=2K, K

an integer, can be augmented by adding at most one edge per node such

N
that it can perform a shuffle-exchange of size _ in constant time.

We now show how to perform a shuffle-exchange of size N on this

augmented array in constant time. This is done by combining the avail-

N

able perfect shuffle of size _ with the existing nearest neighbor con-

nections of the mesh. By carefully scheduling the different permuta-

tions that are composed in order to achieve the shuffle, the time

required is reduced to 5 steps, which is shown to be optimal for this

network.

This research was supported by NASA Contract NASI-17070 while the

author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center.

i

I. Introduction

It has been shown [I] that a mesh connected computer of size N=2 K,

• integer K, can be augmented by adding at most one edge per node so that

N
it can carry out the shuffle-exchange permutation [2] of _ elements in

constant time. On a 4-nearest neighbor mesh, for example, this requires

3 time steps.

The motivation for this work was to construct new interconnectlon

structures that combine the capabilities of shuffle-exchange networks

and nearest neighbor arrays but with cost less than the sum of the costs

of the constituent networks. It is clearly trivial to superimpose two

networks to get the sum of their capabilities. The augmentation

described in [I] permits a mesh of size N to perform a shuffle exchange

N

of size _ at the cost of at most one additional edge per node. A

question that was unresolved in [I] is how efficiently the augmented

network could carry out a shuffle-exchange of size N.

In the present paper we demonstrate that this augmented network can

be used to perform the shuffle-exchange of N points in constant time.

Furthermore, we show that, by carefully scheduling the data transfers

between different parts of the network, this can be done in 5 time

steps, which is optimal for this network.

2. The Augmented Mesh

A shuffle-exchange network of size 8 is shown in Fig. I. Fig. 2

shows how a 4-nearest neighbor mesh of size 16 may be augmented by

adding the required shuffle connections. It is clear that data at nodes

0,I,,7 can be shuffled over to nodes 0_,I_,...,7 _. The exchange

operation can then be performed using the vertical mesh connections

between pairs of nodes 0_-I _, 2_-3 _ etc. and the results moved back to

the original set of nodes O, I,..., 7 via the horizontal mesh connec-

tions. For example, data in nodes ! and 5 would, after shuffling, end

up in nodes 2" and 3", respectively. The exchange would be performed

using the vertical edge joining 2" and 3_. Finally data from 2_ and 3"

would be shipped back to 2 and 3 via horizontal edges. The entire

N

shuffle-exchange operation of size _ requires 3 time steps.

N

The augmentation procedure is to give unprimed labels 0 to (T-I)

to the odd columns and primed labels 0_ to (_
to the even columns.

Shuffle connections are then added between these nodes. It is important

to note that this augmentation can be applied to any array as long as it

is a "true" rectangle (each size has at least 2 nodes along it) and the

number of nodes is a power of 2. Such an array can be divided into
4

squares of size 4 each (e.g. O,O',I,I _ in Fig. 2) which can carry out

the exchange operation.

_. Complete Shuffles on an Augmented Mesh

We now show how a shuffle of size N can be performed on a mesh that

has been augmented in the manner described in the previous section. As

a running example, we use a rectangular mesh of size 32.

The shuffle-exchange operation in the previous section utilizes all

the added shuffle edges plus som__eof the original mesh edges. In Fig. 3

we have deleted from our augmented rectangular mesh all connections

unnecessary for the shuffle-exchange operation. The layout of the

3

original mesh is not important to our analysis. It could be configured

as 2x16, 4x8, 8x4 or 16x2 nodes. In all cases we would add shuffle con-

nections as described in the previous section. Our problem now is to

show how a shuffle-exchange operation can be performed on the 32 data

items stored in nodes 0..31 of Fig. 3.

Recall that the shuffle operation is defined [2] as follows:

N

P(1) = 21, 0 _ i _ -I (I)

N

P(i) = 2i-N+l, : _ i _ N-I (2)

It is easy to trace through the network of Fig. 3 and see that a

path of length no greater than 4 exists between any node i and its P(i),

as defined by (I) and (2) above. This does not necessarily imply, how-

ever, that the shuffle can be performed in four steps because for any

nodes i and J, the paths i to P(i) and j to P(J) can have several common

edges, leading to delays.

Inspection of the edges in Fig. 3 reveals that they can be divided

into four classes: the horizontal and vertical edges of the original

network and the shuffle connections from left to top right and from left

to bottom right.

In the following, we specify routings between all i and their

correspondingP(1) suchthatthe shuffleoperationcan be performedin

constant time, independentof the size of the array. In the next section

we show how these routlngscan be scheduledso that the shuffleis done

• in optimal time.

The edges of the augmented network allow us to perform the follow-

ing permutations.

I) Vertical edges:

V(1) ffii + i 0 < i < N-l, eveni (3.)

v-l(1) = i - I 0 _i _ N-l, odd i (4)

2) Horizontal edges:

H(1)= i + N

H-l(1) = i ---N __N< i < N-I (6)2 2-- --

3) Shuffle edges from left towards top right:

T(i) = 2i + N N
y 0 ! i ! _ -1 (7)

-I i N N
T (1) = _ - _ y! i ! N-l, even i (8)

4) Shuffle edges from left towards bottom right:

N N

B(i) = 2i + 1 _! i _y -I (9)

B-l(1)= i -1 N2 _! i ! N-l, odd i (I0) .

We will be applying the permutations (3)-(10) above on groups of

nodes. For notational convenience, we replace "(1)" in (3)-(10) with

the triple "[begin, end, step]". In this vector notation, V[I ,9- I, 2]

means that permutation V is applied to every second node, starting with

N

node I and going up to node _ - I.

The following are the permutations that must be composed in order

to obtain the perfect shuffle. (We use the left composition convention

in this discussion.)

N N

• H-I[_, N-2, 2] o T[0, _-I, I] (II)

V-I N N
[-_+I, N-I, 2] o B[_, _-I, I] (12)

H-I N 2 N H-I N 3N[_ +3,N-1,4] o V[+2,N-2,4] o T[I, _-1,2] o [7 +I, _---1,2] (13)

N H-I N N H-I N 3N
V[0, _-4, 4] o [-_,N-4, 4] o T[0, _-2, 2] o [7' 4-"-2, 2] (14)

B[4, N H-l [3N-I, 1] o 4 ' N -I, 1] (15)

It is easy to verify that (II) to (15) correspond to (I) and (2)

over the correct ranges•

To avoid edge conflicts, we can successively apply (ii) to (15) to

the network. The perfect shuffle permutation can thus be achieved in 14

time steps (the sum of the times required for (11)-(15)). The exchange

permutation involves nothing more than the interchange of data via the

vertical mesh links, i.e. the application of V and V-I to all even and

odd nodes respectively. This can be done in one step, resulting in a

total of 15 time steps for the shuffle-exchange.

. _. Optimal Scheduling

In this section we describe how we can optimally perform the per-

fect shuffle. We view this as a scheduling problem• The jobs are data

0 through N. Permutations (3)-(I0) are the available processors which

must be applied to these jobs according to the sequences (11)-(15).

Each permutation requires one time step. At any time step a datum may

have only one permutation applied to it. Each permutation (strictly

speaking, each edge) may be used only once during each time step.

By inserting idle times (null permutations) very carefully, the

schedule of Table I is obtained. In order to be consistent with the

left composition convention, time advances from right to left in this

table. It may be verified that this schedule satisfies all of the above

constraints•

The longest compositions, (13) and (14), are of length 4. Thus our

schedule, also being of length 4, is optimal. A further step is

required for the exchange, giving a total of 5 steps.

Table II gives the instance of Table I for N=32 (corresponding to

Fig. 13.) The extra leftmost column in this table shows the range of the

last permutation in each row, demonstrating that all points are

included.

5. Conclusions

We have shown that an augmented mesh of size N can perform the

shuffle- exchange in constant time and have also shown how this can be

done optimally in 5 time steps. This result indicates that the shuffle

augmented mesh of [I] is a powerful interconnection structure that com-

bines the advantages of nearest neighbor arrays and shuffle exchange

networks.

_. Acknowledgement

The author is grateful to Dr. R. G. Volgt for several discussions

and for a critical reading of the manuscript.

g

7. References

[I] S.H. Bokhari and A. D. Raza, "Augmenting Computer Networks,"

Proc. 1984 Int. Conf. on Parallel Proc. August 1984, pp. 338-345.

[2] H.S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE

Trans. Computers., vol. C-20, No. 2, pp. 153-161, February 1971.

8

I

Fig. i. Single stage recirculating shuffle-exchange network of size N=8.

-I
I

I
\ I

w

i/ \ \\

Fig. 2. Shuffle connection augmented 4x4 4-nearest neighbor array that can
emulate the network of Fig. I in constant time.

Fig. 3 Essential Features of a 32 node shuffle augmentedrectangular mesh.

Table I. Optimal schedule for the perfect shuffle.

(Time advances from right to left.)

H-1 N N
[_, N-2, 2] IDLE IDLE T[O, _-1, I] II

-1 N N
IDLE V [_ +I, N-l,,2] IDLE B[_, _ -I, I] 12

-I N 2 N H-I N 3NH [_ +3,N-1,4] V[+2,N-2,4] T[I, _ -1,2] [_ +I, _-- -1,2] 13

N H-I,N N -I N 3N
V[O, _-4, 4] |_, N-4, 4] T[0, _-2, 2] H [_, _---2, 2] 14

N N

IDLE B[_, _ -I, I] H-I 3N[_--,N-I, I] IDLE 15

o

• q w !

%

f-

TableII.OptimalscheduleforN=32.

The last (leftmost)column contains the range of the last permutationIn each row.

[0)2)4)6,8,10,12)14] H-I[16)18,20)22)24)26)28)30] IDLE IDLE T[0)1,2)3,4,5,6,7] II:

[16,18,20,22,24,26,28,30] IDLE V-1[17,19,21,23,25,27,29,31] IDLE B[8,9,10,I1,12,13,14,15] 12

[3,7,11,15] H-I[19,23,27,31] V[18,22,26,30] T[1,3,5,7] H-I[17,19,21,23] 13

[1,5,9,13] V[0,4,8,12] H-I[16,20,24,28] T[0,2,4,6] H-I[16,18,20,22] 14

[17,19,21,23,25,27,29,31] IDLE B[8,9,10,II,12,13,14,15] H-I[24,25,26,27,28,29,30,31] IDLE 15

I.--..
l---.

"1. Report No. NASA CR-172476 2. Government Accession No. 3. Reclpient's Caulog Nol

ICASE Report No. 84-54

'4. Title andSubtitle 5. ReportDate
October 1984

SHUFFLE-EXCHANGES ON AUGMENTED MESHES 6.PerformingOrganlzationCode

-7. Author(s) 8. Performing Organ;zation ReportNo. _

Shahid H. Bokharl 84-53

10. Work Unit No.
9. Performing Organization NameandAddress

Institute for Computer Applications in Science

and Engineering 11. Contractor GrantNo. "
Mail Stop 132C, NASA Langley Research Center NASI-17070

Hampton, VA 23665 13. Typeof ReportandPeriodCovered
12. SponsoringAgencyNameandAddress

Contractor Report

National Aeronautics and Space Administration 14.SponsoringAgencyCode

Washington, D.C. 20546 505-31-83-01

15. Supplementary Notes

Langley Technical Monltor: J. C. South, Jr.
Final Report

161 Abstract

Prior research has shown how a mesh connected array of size N = 2K, K an

integer, can be augmented by adding at most one edge per node such that it can

perform a shuffle-exchange of size N/2 in constant time.

We now show how to perform a shuffle-exchange of size N on this augmented array

"in constant time. This is done by combining the available perfect shuffle of size

N/2 with the existing nearest neighbor connections of the mesh. By carefully

scheduling the different permutations that are composed in order to achieve the

shuffle, the time required is reduced to 5 steps, which is shown to be optimal for
this network.

i

17. Key Words (Suggested by Authmis)) 18. Distribution Statement

array processors, augmented networks, 62 - Computer Systems

meshes, nearest neighbor arrays networks 66 - Systems Analysis

perfect shuffle, shuffle-exchange
Unclassified - Unlimited

19. SecurityClassif.(of thisreport) 20. SecurityClassif.(of thispage) 21. No, of Pages 22. Price
Unclassified Unclassified 13 A02

,-aDS ForsalebytheNationalTechnicalInformationService,Springfield,Virginia22161

IIr

II

..%

II

