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Abstract
We discuss two different ways of treating non-Dirichlet boundary
conditions in Chebyshev and Legendre collocation methods for second order
differential problems.
An error analysis is provided. The effect of preconditioning the
corresponding spectral operators by finite difference matrices is‘ also

investigated.
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l. Introduction

In the analysis of spectral methods, Neumann or third type boundary value
problems for second-order elliptic operators have received.less attention than
Dirichlet boundary value problems. The eigenvalues of a family of Chebyshev
collocation operators related to non-Dirichlet boundary conditions were
analyzed in (8], while the properties of staﬁility and convergence of such
schemes were investigated in [3] using a general variational principle. In
both cases, the boundary vconditions are satisfied exactly by the spectral
solution, while the differential equation is collocated at the interior nodes.

An alternative method of imposing the boundary conditons within a
pseudospectral scheme consists of>modifying the boundary values of the first
derivative according to the Neumann or third type conditions, during the
evaluation of the differential operator. The equation is now collocated at
the boundary points, too. In this way all the grid-points are treated at the
same way by the iterative or time advancing algorithm of solution. We call
this method the implicit treatment of the boundary conditions.

In this paper we prove the stability and convergence of both a Legendre
and a Chebyshev collocation scheme in which the Neumann boundary conditions
are treated implicitly. Global error estimates are derived. Moreoever, it is
proved that the spectral solution satisfies the boundary conditions up to an
error which decays spectrally. Thus the spectral accuracy of the method is
not wasted.

Since the spectral collocation approximations of second order boundary
value problems are usually solved by iterative techniques (see, e.g., [13]),
we carried out an experimental analysis on the eigenvalues of the

corresponding operators, in which the boundary conditions are imposed either




explicitly or implicitly. The results of this investigation are also reported
in this paper. It was found that for both the boundary treatments the
eigenvalues are real and positive. The matrix !arising from an explicit
treatment can be preconditioned in .a more natural way. However, it is shown
in Section 5 how to build-up an effective preconditioner also in the case of
implicitly—-treated boundary conditions.
Notations: The following notations will be used throughout the paper.

IB;: the space of the algebraic polynomials of degree up to N in the

variable x;

1
(1 - xz) /2: (the Chebyshev weight),

w(x) =
or

w(x) = 1: (the Legendre weight);
Li(-l,l): the Hilbert space of the (classes of) Lebesgue integrable

functions v such that the norm

1 1
vl o = (f vz(x)w(x)dx) 2
,w _1

is finite;

Hg(-l,l): the Sobolev space of the functions v ¢ Lé(-l,l) such that their

distributional derivatives of order up to m are in Li(—l,l),

with norm

m 1
e = (1 J [v(k)(x)]2 W(X)dX)l‘/2 ;
¥ k=0 -1




Hé 0(—1,1): the subspace of Hé(—l,l) of the functions vanishing at the

boundary points x = %l1;

L2(0,T; H:(—l,l)): the Hilbert space of the (classes of ) functions
v = v(x,t) such that for almost every t ¢ (0,T) -the

function v(e,t) € H:(—l,l) and the norm

T
((f) Iv(o,t)li’w dt) Yy

is finite.
When w(x) = 1, we will drop the subscript w in all the previous notations.
2. The Treatment of the Boundary Conditions

We shall base our discussion about different treatments of the boundary

conditions upon. the following model problems:

(2.1) R “u + u = £f(x), -1 <x<1

and -u_ = £(x,t) S1<x<1,t>0
ut uxx X,t), X ’
u(x,0) = uo(x), -1 <x <1

In both cases, the solution wu -1is assumed to satisfy the homogeneous

boundary conditions:
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for real constants a,B8,Y and & such that

+p2t0  aB> 0

(2.4)

v+ 20  ys<o.

Under this assumption, one has by partial integration

1 1 2
- [ u,_udx > [ (u))° dx.
XX = x
-1 -1
Hence, the energy method (see, e.g., [11], Vols. I and II) assures that for

all f ¢ L2(—1,1) there exists a unique variational solution u € H2(-1,1)

of the boundary value problem (2.1), (2.3), such that

Ruby <MERG.

Similarly, for all u, € Lz(—l,l) and all £ ¢ LZ(O,T; Lz(-l,l)) with

0
T > 0, there exists a unique variational solution u ¢ L2(0,T; Hl(-l,l)) M
ﬁw(O,T; Lz(—l,l)) for the initial-boundary value problem (2.2), (2.3), such
that, for all t < T
2, * 2 2 t 2
PuCe)ts + [ Ju(e)#] dt < fu 0° + exp(t) [ RECT)RS dT .
0 0 1 - 00 0 0

Moreover, the regularity of the solution (in the Sobolev scale H"(-1,1) or

Hg(-l,l)), increases with the regularity of the data.




" REMARK 2.1: Weaker assumptions than (2.4) assure the well-posedness of
the boundary .value problems (2.1)-(2.3) (see, for instance, [8], Theorem
2.1). However, we are not interested here ‘in the minimality of our
hypothesis, since we want to focus on the essential aspects of the treatment
of the boundary conditions. For the same reason, we confine ourselves to very
simple model problems, although the methods we discuss apbly to general

boundary value problems as well, ' - ‘ -

We want to discretize (in space) equations (2.1) and (2.2) by a
pseudospectral collocation method of Chebyshev or Legendre type. To this end,
we look for an approximate solution ol which is a global algebraic
polynomial of degree N in the domain (-1,1). Moreover, we consider the

N + 1 nodes

(2.5) : -] = Xy < xN_1°°°<‘xi <‘xd =1

of the Gauss-Lobatto integration rule for the Chebyshev weight

-1 ] o
w(ix) = (1 - xz) /2 or for the Legendre weight ~ w(x) =1 in (-1,1), (see
[6]1). If Wj,j = 0,%**,N, are the corresponding positive weights, one has the
identity

1 I n |
(2.6) | f(x)w(x)dx = § f(x,)w,  for all f e Byy_i.

- = 3773

1 j=0
The points wj, j = 0,e¢s,N, are the relative extrema in [-1,1] of the N-th
Chebyshev polynomial of first kind or of the N-th Legendre polynomial.

Since a polynomial of degree -N 1is uniquely'defined through its values at

the nodes (2.5) we shall identify throughout the paper a polynomial of




degree N with the set of its values at the same nodes. Thus, if L is a
matrix of order N + 1 and u e By, Lu will denote the product of the
matrix L by the vector {u(xj) | 5 = 0,-°°,N}T, i.e.,
u(xo)
(x,,)
N
Given a continuous function v in [~1,1], we denote by Iyv the unique

polynomial of degree N, interpolating v at the nodes (2.5), i.e.,
(2.8) INV € PN, (INV)(xj) = V(xj), j = 0,000,N.

Some approximation properties of the operator Iy in the Sobolev scale

HE, m > 0, have been analyzed in [1] and will be used hereafter. In
particular, there exists a constant C > 0 independent of N such that if

the Chebyshev points are used, one has

m
(2.9) - Twly <KONT R, ¥ue H(-T,T), m >,

while if the Legendre points are used one has

1/, ~
(2.9)° tv —.INvI < CN /2—m lvlm, ¥ue Hm(-l,l), m >1/2.

0

Finally, we recall for future reference that the semi-norm

N 1
vl ) vz(xj)wj) 72

=
N,w =0




is uniformly equivalent to the norm Ilvllo,w over I (see [1], Sections
3.1, 3.2), i.e., there exist constants C; > 0, ) > 0 independent of N
such that

(2.10) C, vt w-s tvi y ¥ ue R

If the boundary conditions (2.3) are of Dirichlet type (i.e., B = & = 0),

the typical spectral collocation scheme consists of collocating the
differential equation at the interior nodes (2.5) and setting to zero the
solution uM on the boundary. 'This procedure, which we shall call the
explicit imposition of the boundary conditions, is not restricted to Dirichlet

boundary conditions. Thus, the boundary value: problem (2.1), (2.3) can be

approximated as

uN € Iﬁ
(2.11) (el s uN)(Xj) = £(x,) Jo= 1,000 ,N-1

\ (B+ uN)(xo) = (B_ uN](xN) =0,

while the initial-boundary value problem (2.2), (2.3) can be discretized in

space for all t > 0 as
uN(t) e By

(2.12) (g = )Gep,e) = £0x,6) j = 1,ee0,8-1

\ (B, u")(xp) = (B_ uV)Gx,e) = 0




with the initial condition u(0) = Inug-.

For the Chebyshev collocation points, the convergence of the scheme (2.11)
has been proven in [3], where error estimates have also been given.
Furthermore, in [8] it has been established that the eigenvalues obtained by
replacing f with XuN in (2.11) are all feal, positive and distinct.

The unknowns to.be solved for in both (2.11) and (2.12) are the values
of ul at the interior collocation nodes and at the boundary nodes where a
non-Dirichlet boundary condition is imposed. The algebraic system (2.11) can
be efficiently solved by an iterat;ve method, applied after preconditioning
the spectral system (see, e.g., [13], [14]), We shall base our discussion of
the computational aspects of the boundary treatment on the Richardson method,
which is briefly recalled in Section 5.

The differential system (2.12) can be solved by an implicit or an explicit
time-marching method. In the first case, one has to solve at each time step a
discrete Helmholtz equation similar to (2.11), for which one can apply one of
the iterative procedures proposed for spectral methods. If an explicit scheme
is used instead, the solution is advanced only at the interior collocation
nodes. The boundary values of uN ét the new time level are subsequently

determined in order to satisfy the boundary conditions exactly. Such values

are obtained by solving the 2x2 system

N-1

N N _ N

(a + Bdoo)u0 + BdON uy = B jzl dOj uj
N-1

N N _ _ N

(v + 8dgduy + 8dyy uy = =8 ) dy; uy

j=1




where {dij} is the matrix representing .the spectral derivative at - the
collocation points (2.5) (an explicit formula for {dij} can be found in
(7.

A completely different strategy can be followed in the process of imposing
the boundary conditions: these are taken into account during the spectral
evolution of the differential operator, by modifying accordingly the boundary
values of the first derivative of the spectral solution. Precisely, assume
that both the boundary conditions are of non-Dirichlet type, so that one can
set B =6 =1 in (2.3) with no loss of generality. For any v ¢ B; define

the polynomial Iy(Bv,) as follows

IN(Bvx)(xo) = —av(xo)

(2.13)
vIN(Bvx)(xj) = vx(xj) j = 1l,e¢¢,N~-1
IN(BVk)(xN) = —yv(xyg).

Thus IN(Bvx) coincides with v at the interior nodes, but it modifies the

X

boundary values of v, . according to (2.3). . We consider the following

approximation of the boundary value problem (2.1), (2.3): .
N
u E]PN

(2.14)

_[IN(BuE)]x(xj) + “N(xj) = f(xj), j = 0,e%¢,N.
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Similarly, we discretize the initial-bounda%y value problem (2.2), (2.3) as

follows:
uN(t) e By

(2.15) uI:(xJ. £) - [IN[Buf:)]x(xj,t) = £(x;,t), j =0,000,N
uN(O) = INuO'

Note that the differential equation is now collocated at the boundary points
also. On the other hand, the solution is not required to satisfy - and
generally it will not satisfy - the boundary conditions exactly. However, it
will be proved in the next sections that the boundary conditions are satisfied
up to an error which decays spectrally with N,

The procedure now described, first proposed by D. Gofflieb for time
dependent problems, will be called the implicit treatment of the boundary
conditions. All the iterative or the time—~advancing methods proposed for
solving the approximation schemes (2.11) or (2712) respectively, can be
applied in computing the solution of (2.14) or (2.15) as well, The
computational advantage arising from an implicit treatment of the boundary
conditions is that the iterative process of solution acts on all the grid-
points in the domain simultaneously. Any distinction between  boundary and
interior points is avoided.

More complex boundary conditions than (2.3), involving integro-
differential or non-linear boundary operators, can be easily implemented in an
implicit way, too. For instance, in [5] a far-field radiation condition of

the type
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where  K*u is a convolution operator on the far-field boundary, was
successfully taken into account implicitly within a Fourier-Chebyshev

collocation method for an exterior elliptic problem.

3. Theoretical Results for the Legendre Method

Throughout this section we assume that the collocation points (2.5) are
the quadrature nodes of a Gass-Lobatto formula for the Legendre weight
w(x) = 1. The corresponding weights are given by

(3.1) o, = 2 ,

I N+ 1)[LN(xj)]2

(see, e.g., [6]), where LN(x) denotes the N-th Legendre polynomial such
that Ly(l) = 1. |

We shall carry out an analysis for the implicit treatment of the boundary
conditions in the case of Neumann boundary conditions, - i.e., we choose
B=8=1 and a=7v =0 1in (2.3).

The first results concern the stability and convergence properties of  the

method.

THEOREM 3.1: Let ud be the solution of (2.12). The following estimate

holds:

1 N-1
(3.2) / [uN(x)J2 dx + 2 )

1
N 2 2
! ; [ux(xj)J w, £ {1 [INf(x)] dx.

1 J
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PROOF: Equation (2.12) can be equivalently written as

N N
(3.3) -[IN(Bux)]x +u = If, -1<x<1,

since both sides are polynomials of degree N which match at N + 1 distinct

N

points. Multiply by u and integrate over (-1,1). Since IN(Buz)

vanishes at the end points (see (2.11)), we have by partial integration

1 1 1
(3.4) ) IN(Buz)uz ax + [ [uN(x)]2 dx = | INf(x)uN(x)dx.
-1 -1 -1

On the other hand, by (2.6)

whence (3.3) follows by applying the Cauchy—-Schwarz inequality to the right-

hand side of (3.4). .

THEOREM 3.2: Let u be the solution of the boundary value problem (2.1),
(2.3), and uV¥  the solution of (2.12). Assume the u'€ Hm(-l,l) with m >
5/2. There exist two constants C” > 0, C°7 > 0 independent of N, u.  and

uN such that

N-1 '
2 1
(3.5) - fu - uNl0 + (j_—Z.l [“x - ui] (xj)wj) /2
.
2-m 2 ®

< C°N ful + C°°N e
- m m—-2
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PROOF: Set V = {v e HX(-1,1) | v (£1) = 0} and

VN = {v e By | vx(il) = 0}. Let us define first a projection operator

Ry: V === Vo

in the following way. Given v V, denote by W the orthogonal projection

of v, upon nh_lf\Hé(-l,l) in the inner product of Hl(-l,l). According

to [12], Theorem 1.6, we have

If we set

X
(RyWI(x) = u+ [ w(s)ds,
-1
where p 1is such that
1 1
| Ry v(x)dx = [ v(x)dx,
-1 -1
it is not difficult to check by a duality argument that
(3.6) v - Rl < CNk‘mllvnm;  k=0,1,2.

By definition, u = RNu satisfies*the'équation'

~[1y(Bu )] +u = (-u  +u )+ (0 - u) + £.
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It follows from Theorem 3.1 that the difference eN =q - uN satisfies the
inequality
1 N-1 1
J [eN(x)J2 dx + 2 ) [eN(x.)Jz-w. <J [g-1 sz dx
-1 =1 * 37 17 N
1 ~ 12 1 ~12
+ {1 [uxx - uxxJ dx + {1 [u - u] dx.

According to (3.6) and (2.9) one has
(3.7)
1 N-1
)

/ [eN(x)]2 dx + 2
-1 j=1

1o Al T A e st T3 L
m m-2

I

2
[ei(xj)J wj

On the other hand, we have by (2.10)

Nl ~ 12 ¥ ~ 12 ~ g2
L [u, - 3] (x;)w, = 320 [u, -4 ] (2w < erggfu, - u )ty
~ 2 ~ 42
< cfr - u g+ I - I)(u - ux]lo}
~ 2 -1 2
S_C{Nux - uxlo + CN lu_ - uxll}

Then (3.5) follows from (3.6)-(3.7), using the triangle inequality for

u-uN=(u—;)+eN. .
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REMARK 3.1: Theorem 3.2 can also be proved by a different proof, similar

to the one which will be given in the next section for establishing Theorem

4.2. |

The previous theorems guarantee the stability and convergence of the
approximation (2.14) in the norm

1 N-1

1
(3.8) i, = (f vPodx + ) vA(xw.) 2.
-1 =1 X J 1

j=1

Therefore, we are led to investigate the relationship between this norm and

the usual energy norm

1 1 1
Ivi, = (J vz(x)dx + [ vz(x)dx) /2.
X
-1 -1
The two norms are clearly equivalent for polynomials of degree up to N, in

the sense that
(3.9) vl S_uvll < C(N)Mve,, ¥ ve B,

where C(N) 1s a function of N. However, the two norms are not uniformly

equivalent, i.e., C(N) cannot be bounded independently of N. For instance,

take v = Ly, the N-th Legendre polynomial. One has HLNIE = ILN g =

= 2/(1 + 2N), but HLNﬂf =2+ 2/(1 + 2N). The numerical evaluation of
C(N) shows that

(3.10) c) = 87?7 a5 N+ w
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Table 1. The constant C(N)

N e e /32
2 4, 1.42
4 9.6 1.19
6 : 16.6 _ 1.13
8 24.8 1.10
10 34.0 ~ 1.08
12 44.2 1.06
14 55.2 1.05
16 67.0 1.05
18 79.6 1.04

- 20 : 93.0 : 1.04

The asymptotic behavior of C(N) observed experimentally can be

mathematically proved as follows.

THEOREM 3.3: Let C(N) be defined by (3.9). Then

(3.11) | ey < on/2
~ PROOF: By (2.6),
2 2 2 2 S
lvl1 = lvly - vx(l)w0 - vx(—l)wN ¥ ve B,

where wgy, wy are given in (3.1). Then the theorem follows immediately from

the next lemma. B
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LEMMA 3.1: There exist two positive constrants C; and C, such that

for all v e Eh

N-1

5/2 3/2 v 2 L,
(3.12) lv D] < ¢ W' vy + ¢, N (jzl [vx(xj)_l W)

PROOF: Recalling the expansion of v, 1in terms of .Legendre polynomials

(see, e.g., [9], Appendix) one has

1
/ A (x)L (x)dx =
-1

1

1
{1 vx(x)LN;l(x)dx = (2N + 1) fl~v(x)L (x)dx

or equivalently

N-1
N
(3.13) vx(l)w0 + (-1) vx(-l)wN = —jzl Vx(xj)LN(xj)wj
N N-1
_vx(l)w0 - (=1) vx(-l)wN = JX v (xj)LN 1(xj)wj..
(3.14)

1,
+ (2N + 1) ] v(x)L (x)dx.

-1
Then (3.12) follows using (3.1) and the Cauchy-Schwarz inequality on the

right-hand side. .

A\

The spectral solution N of problem (2.12) 1is not required to satisfy

(and generally it will not satisfy exactly) the boundary conditions (2.3).
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However, since these are taken into account in the collocation process, one

expects W to satisfy approximate boundary conditions very close to the

exact ones. Lemma 3.1 yields an estimate for the values of uz on the

boundary. Actually, define u = RNu as in the proof of Theorem 3.2 and set

N

again e = u - uN, so that |e§(tl)| = IuE(tl) . Using (3.12) for v = eV

and (3.7), one obtains the following result.

THEOREM 3.4: Under the hypothesis of Theorem 3.2, the following estimate

holds:

9/2~-m 5-m ey

N rd Ca
(3.15) lu (£1)] < c°N hul _+ C°°N

mn-2"°

Estimate (3.15) shows in particular that the boundary conditions are
satisfied with spectral accuracy when they are imposed implicitly in a
collocation scheme.

The analysis of stability and convergence for the discrete initial
boundary value problem (2.13) can be carried out by the same technique used in
the proofs of Theorems 3.1 and 3.2. We omit the details of the analysis and

we report hereafter the final result.

THEOREM 3.5: Let the solution wu of the initial-Neumann boundary value

problem (2.2)-(2.3) satisfy the following regularity assumptions:

ue LZ(O,T; H'(-1,1)), u € L2(0,T; Hm-z(—l,l))

for a fixed T > 0 and m > 5/2. If o denotes the solution of the

approximation scheme (2.13), then for all t < T
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t N-1

2 L .
fu(t) - uN(t)IO + ((j) jzl [u, - ui] (xj,t)wj) /25 cNe™® hu?
t 2-m " 2 ¢ 2 . 1Y
(3.16) + exp(z){C N " [[ mu()1Z dr + [k (1)0% dr] 72
0 m o °

t 1
£ C T (1 ag(oyi? ax) 2,
0 m—-2

for suitable constants C”, C°°, C°°~ independent of u, u¥ and N
4. Theoretical Results for the Chebyshev Method

The most popular family of collocation points 1s the family of the
Chebyshev points, which we consider in this section. The nodes (2.5) are
given by

(4.1) X. = cos *+— j= 0,-00,N’

while the corresponding weights are

L .
Wj =ﬁ j= l’oo.’N—l
(4.2)
— — "
WO = WN —'—2N .

Hereafter, we shall discuss some theoretical properties of the implicit

treatment of the Neumann boundary conditions. From now on we assume that

B=686=1 and a=vy =0 in (2.3).
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First, we prove the stability and the convergence of the time-independent

scheme (2.14).

THEOREM 4.1: Let o be the solution of (2.14). There exists a
constant C > 0 independent of N and uY  such that

1 N 2 N-1
(4.3) | [u'(x)]° wx)dx +

1
N 2 2
u (x,)|"w, <C I f(x) | w(x)dx.
I FRCCRIEREY

J

PROOF: Equation (2.14) can be equivalently written as

M otV =1f,  c1<x<1

(4e4) —IN(Bux N N

since both sides of (4.4) are polynomials of degree N which match at

N + 1 distinct points. Following an idea due to D. Gottlieb, let us
differentiate (4.4) with respect to x. If we set ,UN(X) = IN(Buz)(x), then
N is a polynbmial of degree N which vanishes at the boundary points and

satisfies the collocation equation
(4.5) N (x,) + tN(x,) = (1,6)(x,) j = 1,ee%,8-1.
xx AL A 1 T

The stability analysis for the Chebyshev collocation approximation of the

Dirichlet boundary value problem (see [2]) yields the estimate

(4.6) whr o+ o
w X

0, o < CHLE!

O’ O,W
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for a constant C > 0 independent of N. Using this estimate and equation
(4.4) we obtain the further inequality
N

(4.7) Pa'hy < CITEl

o,w o,w’

This proves (4.3). _ [ |

THEOREM 4.2: Let u be the solution of the boundary value problem (2.1),
(2.3) and uN the solution of (2.14)., Assume that u e_Hi(—l,l) with nm >
5/2. There exists a constant C > 0 independent of N, u and uY  such that

N-1

. : 1 -
o,w () [ux - ui](xj)wj) /ZS N2 pur_

N
(4.8) flu - u't . m,w
j=1

PROOF: The convergence analysis for the approximation (4.5) gives the

estimate ([2])

P e = Ulo, F 10 = Ul <G N a4 Cy N 1 o

(4.9)

N ful s
m,w

where we have used (2.1) in order to bound the norm anm_z w by the norm
’

Iuﬂm w* BY equations (2.1) and (4.4) we get
3




-22-

On the other hand, the equivalence of norms (2.10) and the triangle inequality
yields the inequality

N-1

2 N
le [u -u ] (x )w < CS{ - Iy uxuO,w t e -0 nO,w}’

whence the result, using (4.9) and (2.9). B

As for the Legendre method discussed in the previous section, it is
possible to estimate the error on the boundary conditions produced by the

spectral solution. We have the following result.

THEOREM 4.3: Under the hypothesis of Theorem 4.2, there exists a

constant C > 0 independent of N and uN  such that

(4.10) |u§(t1)| < o™ par

m,w

PROOF: For any polynomial v €& T§;, one has (see, e.g., [9])

1
f A (x)T (x)w(x)dx =
-1
1 - 1
f v (x)TN 1(x)w(x)dx = N f v(x)T (x)w(x)dx,
-1 -1
whence
L N No1
(4.11) sV, (1) + (-1) v (1] = - 2 AMCILNCIOLE

j=
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. N N-1
WD - DT v D] = -

34 vx(xj)TN-1<xj)wj

(4.12)
1
+ N [ v(x)TN(x)w(x)dx.
-1

Let u e By be a primitive of the Hé—projection of u, wupon the space
{ve B [v(£1) = 0}. Then (4.10) follows from (4.11) and (4.12), choosing

here v = uN -1 and using Theorem 4.2 in order to estimate the right-hand

sides. .

As far as the evolution scheme (2.15) 1is concerned, the following

convergence estimate holds.

THEOREM 4.4: Let the solution u of the initial-Neumann boundary value

problem (2.2), (2.3) satisfy the following regularity assumptions:
we 120,75 H-1,10), u, ¢ 120,15 BT (-1,1))

for a fixed T > 0 and m > 5/2. Moreover, let u € H(-1,1). If uV

0
denotes the solution of the approximation (2.15), one has for all t£< T

N-1 1
Tu(t) - uN(t)Io’w + (j§1 [u, - ug]z(xj,t)wj) 2

t
(4.13) < CNZ-m{"uonm,w + exp(%ﬂ[é lu(T)Ii dt

¢ 2
+ [ b (on ) de]}
0
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PROOF: As in the proofs of Theorems 4.1 and 4.2 we set
N N
U (x,t) = IN(Bux)(x,t)

and we x~ differentiate the equation

-1 (Bux)* = If,

which is equivalent to (2.15). Estimate (4.13) is then a consequence of the
convergence analysis for the Chebyshev approximation to an initial-Dirichlet

boundary value problem (see [2], Theorem 3.3). The error on the initial data

is

N N _ _
uO,x -U(0) = uO,x - IN(Bux(O)) = uO,x IN(B(IN uo)x).

The Li- norm of this term can be estimated as follows:

N
bug x ~ U 005 o <M ™ Ty Yo,x'o,w * 1Ty luy , = By )y Ity o

(by (2.10)) 5-““0,x - IN uO,x“O,w + C"uO,x - B(IN uO)xuN,w .

Since both Uy x and B(IN uo)x are zero at the boundary, one has
8 2
Ty o - B(Iy uy) IN RS E [uo’x - (I uo)xj (x)w

< e, = (I

N "0,x O)X O,w

2
S_C{!uo,x - IN(uO,x)lo,w * gy x T - Uy updyelo,w } :
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By the estimate (3.7) in [1] we conclude that

N 2-m
"uO,x - U (O)HO,W < CN flu Im.

The remaining part of the proof is straightforward. -

5. Computational Aspects of the Methods

5.1 The Richardson Iterations

The Richardson method with a finite difference preconditioning (see [13])
is certainly the simplest and most popular iterative method for solving
spectral systems. We shall briefly discuss the use of this method in the
solution of the linear systems (2.11) and (2.14). Hereafter we assume again
that B =38 =1 in (2.3).

The system (2.11) can be written as
(5.1) L u =F

where LE is the matrix of order N + 1 defined by the relation (recall

(2.7)):

(-B+V)(XO)

(5.2) L v= (—vxx + v)(xj) j= l,f--?N-l, for all v e By,

(B_v)(x)
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and FE = (O,f(xl),o..’f(xN_l),O)T. An approximate inverse Ap of Lg, to
be used as a preconditioner, can be built up by low order finite differences

at the nodes (2.5) as follows:

(5-3) —l—h—g'- uvo
0
2 2 2
Ap v = v + [ - 1lv, - v,
h, h, + h, -1 h, h, h,[h, + h, +1
BRI i -1 glhy #hy 13
v -V,
i - Y
N-1

for all v e Ty, where hj = Xy T Xjape Thus, a one-sided finite difference
approximation of the boundry conditon is imposed at the boundary nodes, while
centered differences are used at the interior.

The system (2.14) is represented as
(5.4) L. u =F

where Ly 1is the matrix of order N+1 defined by the relation

e T |
(5.5) LI v = {[ IN(BVx)x + v](xj)}0<j<N for all v ; By

T

0<j<N° Preconditioning this matrix is a more delicate

and FI = {f(xj)}
matter than preconditioning the matrix (5.2). In analogy with (5.3), one

could consider the matrix AI defined as
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2(1 + uho)v0 - 2v1

(5.6) hz — + Yo
0
-2 2 -2
Aqv = v, .+ [ llv, + v,
I h h, + h -1 h, h h.[h, + h, +1 ’
j_1[ 4 R LT h| J[ 5 J_1] j
2(1 = yhy_ vy = v
+ v
h2 : N
N-1

namely, the differential operator is discretized also at the boundary nodes by
a centered difference formula, and the boundary conditions are used in
eliminating the auxiliary nodes outside the domain. Such a matrix exhibits
very poor preconditioning properties for the matrix (5.5). This can be
explained by considering the structure of the spectrum of Ly 1in the case of
Neumann boundafy conditions. The eigenvalue 1 has double multiplicity, the
corresponding eigenfunctions being ”v =1 and v = ¢N (the N~th Chebyshev or
Legendre orthogonal polynomial); Actually, the Gauss-Lobatto quadrature nodes

are such that ¢N x(xj) =0 for j = 1,%++,N~1. Hence
b

IN(B¢N’X) = 0.

On the contrary, ¢N is not an eigenfunction for the matrix (5.6) and 1 is a
simple eigenvalue.

However, it is easy to build up a finite difference approximation of the
operator (2.1) which for the Neumann boundary conditions has 1 as a double
eigenvalue with eigenfunctions v =1 and v = ¢N. At each interior node

xj(j-l,'°-,N-1), define the differentiation formula
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(5.7) aju(xj_l) + bju(xj) + cju(xj+1) = ux(xj)

by the conditions of being first order accurate and of satisfying the identity
aj¢N(xj_l) + bj¢N(xj) + cj¢N(xj+1) = 0.

If the Chebyshev points (4.1) are used, then ¢N(xj) = TN(xj) = (-l)j, hence
bj =0 and (5.7) 1is the ceﬂtered difference approximation of the first
derivative.

After computing the numbers a;, 'b: and c; we define the matrix A; as

J J ]
follows
(5.8) L -
: 'h—'h— 0 -a 0 0 1 0

0 0

A_ = - a b c, a b c + 1

I j 3 73 Jj 3 3
0 = = 0 0o 8 0 1

by Py

The matrix Ay 1is a five-diagonal approximation of the operator Ly, which
has the required spectral properties.
The Richardson method is applied in solving (5.1) and (5.4) in the

following form:

(5.9) GOk Nk k=T Nk .

v
o
-
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where ak > 0 1is an acceleration parameter. In (5.9), A, F and L stand

for AE’ FE’ LE if the system (5.1) is to be solved, and for A FI’ L. if

I’ I

the system (5.4) 1is considered instead. Under the assumption that the
matrix A-IL is diagonalizable, the method is convergent (with a proper
choice of the acceleration parameter) provided all the eigenvalues of A~
have strictly positive real parts. For the pure Dirichlet boundary value
problem this is true since it has been proven ([10]) that the eigenvalues of
A”lL  1ie in the interval [1,ﬂ2/4]. For the general boundary conditions
(2.3), the behavior of the eigenvalues has been investigated numerically and
will be discussed hereafter.

The convergence of the Richardson method is crucially influenced by the
choice of the parameter ak. Several strategies have been proposed ([13],
[14], [10]). The simplest and most effective one consists of computing ak
by minimizing some Hilbertian norm of the residual rk+1 =F - LuN’k+1.

Assume that the Hilbertian norm is defined by the inner product

((u,v)) =) n
ij

13 "1 Yy

where H = {h is a symmetric positive definite matrix. Then, the

)

resulting expression for ak is

(5.10) o = (=5, a7t %) ]
(et %, wa™l X)

The iterative procedure (5.9)-(5.10) (called the Minimal Residual Richardson
Method) will not break.down if ak remains bounded away from 0. This occurs

if the symmetric part of the matrix HLA™l is positive definite.
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Unfortunately, the numerical computations described in the next subsection
show that whenever the boundary conditions are not of Dirichlet type few
eigenvalues of A~ + (A~ DHT  are of negative sign.

Thus one has to resort to iterative methods which converge even if the
symmetric part of the matrix of the system is indefinite. Among them, the
algorithm Orthodir (see [15]) seems particularly apt to be used with spectral
methods. Setting B = a~1 L, the algorithm is defined as

JokH Nk kK

k

where the descent direction p is given by

2 k-1 j
B- p. ~, Bp)) .

(

k-1
k Bpk—l -7 8

p = J:
3=0

kj P B

(s, Bpd)
and ak is chosen by the minimal residual strategy.

A truncated version, consisting of setting Bkj =0 1if j < k-1, is
generally preferred, although the convergence is not assured in this case.
Since one step of Orthodir requires twice as many operations as one step of
Richardson“s method, it is convenient to execute a few Orthodir iterations
only when the Richardson method breaks down, then going back to the original

method. See [5] for a successful application of this strategy.

5.2 The Behavior of the Eigenvalues

The eigenvalues of the spectral matrices L, HL + (HL)T and the

preconditioned matrices A-IL, HA™l + (A ™HT  were computed by EISPACK

routines. The computation was carried out for N = Zk, k = 2,¢°°,6 and for
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the boundary conditions a =y =0 (pure Neumann) a = 1, y=0 (mixed
Neumann-Robin) and a =y =5 (pure Robin). The eigenvalues were found
scarcely sensitive to the kind of boundary conditions, the qualitative
behavior being the same for the three conditions considered. The following

discussion refers to the pure Neumann problem.,

a) Chebyshev explicit method ((5.1), (4.1))

The eigenvalues of the matrix Lg defined in (5.2) are real, positive,
distinct and bounded from below by 1. The eigenvalues of the preconditioned
matrix AEI LE’ with Ap defined in (5.3), are also real positive and

distinct. Moreover, they lie in the interval [1,n2/4], as shown in Table 2,

Table 2. Largest eigenvalues for the
Chebyshev "explicit" method

N Lg Tl
24, 1.75
231. 2.10
16 3242, 2.29
32 50,208. 2.38
64 701,902, 2.44

Let H ©be the matrix associated with the Chebyshev discrete inner product,

i.e., H = diag{w),*++,u} where the wy's are defined in (4.2).  The
symmetric part of the matrices HLE and HLE AEI 1s indefinite. In both

cases two eigenvalues are negative and. their largest modulus is of the order

of the largest positive eigenvalues. Unlike Agl LE’ the eigenvalues of
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HL AEI + (HL Agl)T are not bounded independently of N, the largest
E E
‘eigenvalue growing 1like O(Na). - A similar behavior occurs if H ~ 1s the

identity matrix.

b) Chebyshev implicit method ((5.4), (4.2))

The eigenvalues of the matrix L; defined in (5.5) are real and positive,
as it easily follows from (4.5). Moreover,'they are all simple, except the
smallest eigenvalues 1 which is double, as already pointed out. If the
matrix (5.6) 1s used "as a preconditioner, the largest eigenvalues of the

matrix AEl LI remains bounded, but the smallest eigenvalue tends to zero

as ’O(N_3).

If the matrix (5.8) is used instead, the smallest eigenvalue of the matrix

A;l LI is 1 with double multiplicity, while the modulus of the largest

eigenvalue, although not bounded independently of N, grows like 0(N3/2).

Table 3. - Largest modulus of the eigenvalues
for the Chebyshev "implicit" method.
The matrix A; 1s defined in (5.8).

N ' c(N) AEI Ly
4 19. , 5.
214, 14.6
16 3174. 38.

64 700,893. 342.
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The eigenvalues of A;I LI are all real and positive, except the two largest

eigenvalues which for N 2> 32 are complex conjugate (with positive real
parts).

The symmetric part of the matrices HLy and HLI A;l are indefinite.

The number of negative eigenvalues for HLI + (HLI)T is 2 1in all the cases
under investigation, while for HL_ ATl + (ML, AT1)T

1 A1 141 this number grows slowly

with N (it is 6 for N = 64),.

c) Legendre explicit method ((5.1), (3.1))

The eigenvalues of Lg and AEI LE behave qualitatively as the
eigenvalues of the corresponding matrices for the Chebyshev method. Table 4
contains the largest eigenvalues for the two matrices, the smallest eigenvalue

being 1 1in all cases.

Table 4. Largest eigenvalues for the Legendre
"explicit" method

-1
N Lg Ag” Lg
22. 1.6
162. 1.9
16 -~ 1978. 2.17
32 28,639. 2.31

64 432,449, 2.41
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1

For the Legendre method too, the symmetric parts of HLp and HLE A; (where

H= diag{w0,°--,wN}, w3 being defined in (3.1)), are indefinite.

d) Legendre implicit method ((5.4), (3.1))

The eigenvalues of the matrix L; are real, positive and bounded from
below by 1. Such properties can be easily proved using the identity (3.4).
The same properties are shared by the eigenvalues of the preconditioned matrix
A;I LI’ with A; defined in (5.8); in this case the largest eigenvalue grows

like 0(N3/2).

Table 5. Largest eigenvalues for the
Legendre "implicit" method

N Lp A7l L
17. 5.6
146. 18.7
16 1921. - 55.
32 28,424, 148.
64 431,676, 384,

The symmetric parts of the matrices HL; and HLI A;l are indefinite.
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