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I° Introduction

In the analysis of spectral methods, Neumann or third type boundary value

problems for second-order elliptic operators have received less attention than

Dirichlet boundary value problems. The eigenvalues of a family of Chebyshev

collocation operators related to non-Dirichlet boundary conditions were

analyzed in [8], while the properties of stability and convergence of such

schemes were investigated in [3] using a general variational principle. In

both cases, the boundary conditions are satisfied exactly by the spectral

solution, while the differential equation is collocated at the interior nodes.

An alternative method of imposing the boundary conditons within a

pseudospectral scheme consists of modifying the boundary values of the first

derivative according to the Neumann or third type conditions, during the

evaluation of the differential operator. The equation is now collocated at

the boundary points, too. In this way all the grid-points are treated at the

same way by the iterative or time advancing algorithm of solution. We call

this method the implicit treatment of the boundary conditions.

In this paper we prove the stability and convergence of both a Legendre

and a Chebyshev collocation scheme in which the Neumann boundary conditions

are treated implicitly. Global error estimates are derived. Moreoever, it is

proved that the spectral solution satisfies the boundary conditions up to an

error which decays spectrally. Thus the spectral accuracy of the method is

not wasted.

Since the spectral collocation approximations of second order boundary

value problems are usually solved by iterative techniques (see, e.g., [13]),

we carried out an experimental analysis on the eigenvalues of the

corresponding operators, in which the boundary conditions are imposed either
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explicitly or implicitly. The results of this investigation are also reported

in this paper. It was found that for both the boundary treatments the

eigenvalues are real and positive. The matrix arising from an explicit

treatment can be preconditioned in a more natural way. However, it is shown

in Section 5 how to build-up an effective preconditioner also in the case of

implicitly-treated boundary conditions.

Notations: The following notations will be used throughout the paper.

_N: the space of the algebraic polynomials of degree up to N in the

variable x;

w(x) = (I - x2) I_: (the Chebyshev weight),

or

w(x) _ I: (the Legendre weight);

9

L_(-I,I): the Hilbert space of the (classes of) Lebesgue integrable

functions v such that the norm

1

,v,0,w = (f v2(x)w(x)dx) I/2-i

is finite;

H_(-I,I): the Sobolev space of the functions v _ L_(-I,I) such that their

distributional derivatives of order up to m are in L_(-I,I),

with norm

m 1 ]2 I/2"v! = ( I f [v(k)(x) w(x)dx) ;
m,w k=0 -I
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Hlw,0(-l,l): the subspace of Hl(-l'l)w of the functions vanishing at the

boundary points x = _1;

L2(0,T; H_(-I,I)): the Hilbert space of the (classes of ) functions

v = v(x,t) such that for almost every t € (0,T) the

function v(-,t) _ H_(-I,I) and the norm

T

If 'v(',t)"2 dr) 1/2
0 m)w

is finite.

When w(x) _ i, we will drop the subscript w in all the previous notations.

2. The Treatment of the Boundary Conditions

We shall base our discussion about different treatments of the boundary

conditions upon the following model problems:

(2.1) .- -u + u = f(x), -I < x < 1
xx

and (u t - Uxx = f(x,t), -i < x < I, t > 0
(2.2)

u(x,O) = Uo(X) , -I < x < I

In both cases, the solution u is assumed to satisfy the homogeneous

boundary conditions:
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I B+ u - 6ux + au = 0 at x = I

(2.3)
B_ u = _ux + yu = 0 at x = -I,

for real constants a,6,Y and _ such that

I 2 + 62 _ 0 aS> 0

(2.4)

.2 + _2 _ 0 _6 _< O.

Under this assumption, one has by partial integration

I I

- J u udx > J (Ux)2 dx.-I xx ---I

Hence, the energy method (see, e.g., [II], Vols. I and II) assures that for

all f _ L2(-I,I) there exists a unique variational solution u E H2(-I,I)

of the boundary value problem (2.1), (2.3), such that

luai <, Nfn0. ....

Similarly, for all u0 m L2(-1,1) and all f € L2(0,T; L2(-I,I)) with

T > O, there exists a unique variational solution u € L2(0,T; HI(-I,I)) (_

L_(0,T; L2(-I,I)) for the initial-boundary value problem (2.2), (2.3), such

that, for all t < T

t t
2 2 2 2

+ J lu(t) dt < lunlu(t)10 nl -- vl0 + exp(t) J If(T)l0 d_ .
0 0

Moreover, the regularity of the solution (in the Sobolev scale Hm(-l,l) or

H_(-I_I)) increases with the regularity of the data,
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REMARK 2.1: Weaker assumptions than (2.4) assure the weil-posedness of

the boundary value problems (2.1)-(2.3) (see, for instance, [8], Theorem

2.1). However, we are not interested here in the mlnlmallty of our

hypothesis, since we want to focus on the essential aspects of the treatment

of the boundary conditions' For the same reason, we confine ourselves to very

simple model problems, although the methods we discuss apply to general

boundary value problems as well.

We want to dlscretize (in space) equations (2.1) and (2.2) by a

pseudospectral collocation method of Chebyshev or Legendre type. To this end,

we look for an approximate solution uN which is a global algebraic

polynomial of degree N in the domain (-I,I). Moreover, we consider the

N + I nodes

(25) -I:xN<XN_1...<xi<x0 1

of the Gauss-Lobatto integration rule for the Chebyshev weight
I,

w(x) = (I -x2) -_12 or for the Legendre welght w(x) - 1 in (-I,I), (see

[6]). If wj,j = 0,...,N, are the corresponding positive weights, one has the

identity

1 J N

(2.6) f f(x)w(x)dx = =[ f(xj)wj for all f _ ]P2N-I"-1 j 0

The points wj, j = 0,...,N, are the relative extrema in [-I,I] of the N-th

Chebyshev polynomial of first kind or of the N-th Legendre polynomial.
i

Since a polynomial of degree N is uniquely defined through its values at

the nodes (2.5) we shall identify throughout the paper a polynomial of
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degree N with the set of its values at the same nodes. Thus, if L is a

matrix of order N + 1 and u _ _, Lu will denote the product of the

matrix L by the vector [u(xj) I J = 0,''', N}T, i.e.,

(2.7) Lu =: L \U(XN)/ ¥ nu € _N"

Given a continuous function v in [-1,1], we denote by INV the unique

polynomial of degree N, interpolating v at the nodes (2.5), i.e.,

(2.8) INV _ PN, (INV)(X j) = v(xj), j = 0,-..,N.

Some approximation properties of the operator IN in the Sobolev scale

Hm
w' m _ 0, have been analyzed in [I] and will be used hereafter. In

particular, there exists a constant C > 0 independent of N such that if

the Chebyshev points are used, one has

(2.9) Iv - INVJ0, w < CN-m Iv! ¥ u _ H_(-T,T) m >1/2-- m,w' " ' '

while if the Legendre points are used one has

(2.9)" 'v - INV'0 < CN I/2-m 'vm V u _ Hm(-I I), m >1/2• -- m' ' "

Finally, we recall for future reference that the semi-norm

N

'V'N'w " j=O[ I v2(xj)wj) 1/2
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is uniformly equivalent to the norm Hvn0,w over _N (see [I], Sections

3.1, 3.2), i.e,, there exist constants C1 > 0, C2 > 0 independent of N

such that

(2.10) CllVno, w _ RVIN,w _ C2gvn0,w, ¥ u _ _N"

If the boundary conditions (2.3) are of Dirichlet type (i.e., B = _ = 0),

the typical spectral collocation scheme consists of collocating the

differential equation at the interior nodes (2.5) and setting to zero the

solution uN on the boundary. This procedure, which we shall call the

explicit imposition of the boundary conditions, is not restricted to Dirichlet

boundary conditions. Thus, the boundary valueproblem (2.1), (2.3) can be

approximated as

uN _ _N

(2.11) [-uxNx + uN)(xj) = f(xj) j = I,-.-,N-I

(B+ uN)(x0 ) = [B_ uN)(xN ) = 0,

while the initlal-boundary value problem (2.2), (2.3) can be discretized in

space for all t > 0 as

uN(t)€ mN

(B+ uN)(x0,t) = (B_ uN)(xN,t) = 0
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with the initial condition uN(0) = INU 0.

For the Chebyshev collocation points, the convergence of the scheme (2.11)

has been proven in [3], where error estimates have also been given.

Furthermore, in [8] it has been established that the eigenvalues obtained by

replacing f with %uN in (2.11) are all real, positive and distinct.

The unknowns to be solved for in both (2.11) and (2.12) are the values

of uN at the interior collocation nodes and at the boundary nodes where a

non-Dirichlet boundary condition is imposed. The algebraic system (2.11) can

be efficiently solved by an iteratlve method, applied after preconditioning

the spectral system (see, e.g., [13], [14]). We shall base our discussion of

the computational aspects of the boundary treatment on the Richardson method,

which is briefly recalled in Section 5.

The differential system (2.12) can be solved by an implicit or an explicit

time-marching method. In the first case, one has to solve at each time step a

discrete Helmholtz equation similar to (2.11), for which one can apply one of

the iterative procedures proposed for spectral methods. If an explicit scheme

is used instead, the solution is advanced only at the interior collocation

nodes. The boundary values of uN at the new time level are subsequently

determined in order to satisfy the boundarY conditions exactly. Such values

are obtained by solving the 2x2 system

N-I

<o+ .

j=l

N-I

(_ + 6dNN)_ + _dN0 Uo =-_ _ dNj u_
j=l
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where {dij } is the matrix representing the spectral derivative at the

collocation points (2.5) (an explicit formula for {dij } can be found in

[7]).

A completely different strategy can be followed in the process of imposing

the boundary conditions: these are taken into account during the spectral

evolution of the differential operator, by modifying accordingly the boundary

values of the first derivative of the spectral solution. Precisely, assume

that both the boundary conditions are of non-Dirlchlet type, so that one can

set 8 = 6 = 1 in (2.3) wlthno loss of generality. For any v _ _ define

the polynomial IN(BVx) as follows

/
IN(BY x) € _N

IN(BVx)(X0) = -av(x0)

(2.13) <

IN(BVx)(Xj) = Vx(Xj) j = I,''',N-I

IN(BVx)(X N) = -yV(XN).

Thus IN(BVx) coincides with vx at the interior nodes, but it modifies the

boundary values of vx according to (2.3). We consider the following

approximation of the boundary value problem (2.1), (2.3): •

I uN _ _N

(2.14) ....

-[IN(BU_)]x(Xj) + uN(xj) = f(xj), j = 0,''',N.
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Similarly, we discretize the initial-boundary value problem (2.2), (2.3) as

follows:

uN(t) € _N

uN(0) = INU0.

Note that the differential equation is now collocated at the boundary points

also. On the other hand, the solution is not required to satisfy - and

generally it will not satisfy - the boundary conditions exactly. However, it

will be proved in the next sections that the boundary conditions are satisfied

up to an error which decays spectrally with N.

The procedure now described, first proposed by D. Gottlieb for time

dependent problems, will be called the implicit treatment of the boundary

conditions. All the iterative or the time-advancing methods proposed for

solving the approximation schemes (2.11) or (2_12) respectively, can be

applied in computing the solution of (2.14) or (2.15) as well. The

computational advantage arising from an implicit treatment of the boundary

conditions is that the iterative process of solution acts on all the grid-

points in the domain simultaneously. Any distinction between boundary and

interior points is avoided,

More complex boundary conditions than (2.3), involving integro-

differential or non-linear boundary operators, can be easily implemented in an

implicit way, too. For instance, in [5] a far-field radiation condition of

the type
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where K*u is a convolution operator on the far-field boundary, was

successfully taken into account implicitly within a Fourler-Chebyshev

collocationmethod for an exteriorellipticproblem.

3. Theoretical Results for the Legendre Method

Throughout this section we assume that the collocation points (2.5) are

the quadrature nodes of a Gass-Lobatto formula for the Legendre weight

w(x) _ I. The corresponding weights are given by

2
(3.1) w. =

3 N(N + I) [LN(Xj) ]2 '

(see, e.g., [6]), where LN(X) denotes the N-th Legendre polynomial such

that LN(I ) = I.

We shall carry out an analysis for the implicit treatment of the boundary

conditions in the case of Neumann boundary conditions, i.e., we choose

8 = _ = 1 and a = y = 0 in (2.3).

The first results concernthe stabilityand convergencepropertiesof the

method.

THEOREM 3.1: Let uN be the solutionof (2.12). The followingestimate

holds:

1 N-I 1

(3.2) f [uN(x)] 2 dx + 2 [ [uxN(xj)l2 w. < I [INf(x)]2 dx.
-1 j=1 3 -- -I
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PROOF: Equation (2.12) can be equivalently written as

N1 N+ u = INf -I < x < 1(3.3) -[IN(BU ]x ' '

since both sides are polynomials of degree N which match at N + 1 distinct

points. Multiply by uN and integrate over (-I,i). Since IN(BuN 1

vanishes at the end points (see (2.11)), we have by partial integration

1 1 1

(3.4) J IN(BuN)uNx dx + J [uN(x) ]2 dx-- f INf(x)uN(x)dx.
-I -i -I

On the other hand, by (2.6)

I N-1

!  NCBu IuNdx 2-I x j=1_ J wj,

whence (3.3)follows by applying the Cauchy-Schwarz inequality to the right-

hand side of (3.4).

THEOREH 3.2: Let u be the solution of the boundary value problem (2.1),

(2.3), and uN the solution of (2.12). Assume the u € Hm(-l,l) with m >

5/2. There exist two constants C" > 0, C'" > 0 independent of N, u and

uN such that

N-I N 2(x j)wj 1/2
(3.5) ,u , uN,0 + (j_l [ux - ux] )

5
-- -m

< C'N2-mlu! + C''N2 If
-- m Im-2
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PROOF: Set V = {v € H2('I,I) i Vx(±l) = 0} and

VN = {v € _ i Vx(±l) = 0}. Let us define first a projection operator

RN: V ---. VN .

in the following way. Given v E V, denote by wN the orthogonal projection

of vx upon ]P, ._-_HI(-I,I) in the inner product of HI(-1 I) AccordingN-I 0 ' "

to [12], Theorem 1.6, we have

Ivx - wNIk _ cNk+l-mavlm, k = 0,I.

If we set

X

(RNvl(x)= +J wCs)ds,-I

where , is such that

1 I

--J RN v(x)dx = J v(x)dx,
-I -I

it is not difficult to Check by a duality argument that

(3.6) Iv - sP_'vJk < cNk-mlIvn k = 0,I 2.B m' '

By definition, u = _u satisfies the equatlon "

-[IN[B_x)]x + u = (-Lx + Uxx) + [u- u) + f.
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N
It follows from Theorem 3.1 that the difference eN = _ - u satisfies the

inequality

I N-I I

] [eN(x)]2 dx + 2 1 [eN(xj)]2.w. < J [f- INf]2 dx
-1 j--1 3 -- -1

1 1

+ ] [Uxx- Lx j2 dx + ] [u- uJ2 dx.
-I -I

According to (3.6) and (2.9) one has

(3.7)

I N-I

] [eN(x)]2 dx + 2 _ [exN(xj)]2 wj < _'N 4-2m lul2 + _''N 5-2m nf,2-I j 1 -- m m-2 "

On the other hand, we have by (2.10)

N-I N
= 2

Z [Ux-Ux12%)wjj__l°[Ux-u12%)wj<___,_NCuX-u),oj=l

~ 2

<__c{,uX-ux,o+,(_-_.)(ux-u),_}

'-"2
_<C[Jux - Uxl0 + CN-I lux - LN_}

< CN3-2m nul2 .
-- m

Then (3.5) follows from (3.6)-(3.7), using the triangle inequality for

N ~ N
u - u = (u - u) + e . I



-15-

REMARK 3.1: Theorem 3.2 can also be proved by a differentproof, similar

to the one which will be given in the next section for establishingTheorem

4.2. i

The previous theorems guarantee the stability and convergence of the

approximation (2.14) in the norm

1 N-I

(3.8) =CJv2(x)dx+ Z Vx2(Xj)WjlI/2
-i j=I

Therefore, we are led to investigate the relationship between this norm and

the usual energy norm

I I

'vlI = 1]' v2(x)dx + _" V2x(X)dx) 1/2"
-I -1

The two norms are clearly equivalent for polynomials of degree up to N, in

the sense that

(3.9) MvR, _ nvlI ! C(N) NvI,, V v € _N'

where C(N) is a function of N. However, the two norms are not uniformly

equivalent, i.e., C(N) cannot be bounded independently of N. For instance,

take v = LN, the N-th Legendre polynomial. One has nLNl_ = nLNl__ =

2N), but nLNn_ = 2 + 2/(1 + 2N). The numerical evaluation of
2/(I +

C(N) shows that

(3.10) C(N) = N3/2 as N +
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Table I. The constant C(N)

N C(N) C(N)/N 3/2

° 2 4. 1.42

4 9.6 1.19

6 16.6 I.13

8 24.8 I.I0

I0 34.0 1.08

12 44.2 1.06

14 55.2 1.05

16 67.0 i.05

18 79.6 1.04

20 93.0 1.04

The asymptotic behavior of C(N) observed experimentally can be

mathematically proved as follows.

THEOREM 3.3: Let C(N) be defined by (3.9). Then

(3.11) C(N) < CN3/2

PROOF: By (2.6); ....

• _v__ Vx_w0-v_x__ _v__

where w0, wN are given in (3.1). Then the theorem follows immediately from

the next lemma.
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LEMMA 3.1: There exist two positive constrants CI and C2 such that

for all v _ _N

N-I j2 I/2
(3.12) IVx(±l)l < el N5/2 UvR0 + C2 N3/2 [j--[l[Vx(Xj) wj)

PROOF: Recalling the expansion of vx in terms of Legendre polynomials

(see, e.g., [9], Appendix) one has

I

f Vx(X)LN(X)dx = 0
-i

I I

• J Vx(X)LN_l(X)dx = (2N + I) J v(X)LN(X)dx
-I -I

or equivalently

N-I

(3.13) Vx(1)w0+ (-I)N Vx(-I)WN= j=[lVx(Xj)LN(Xj)W3

N-I

Vx(1)w 0 - (-I)N Vx(-l)w N = - _. Vx(Xj)LN_I(Xj)W j....
j=l

(3.14) .,
I

+ (2N + I) ] v(X)LN(X)dx.
-I

Then (3.12) follows using (3.1) and the Cauchy-Schwarz inequality on the

right-hand side.

\

The spectral solution uN of problem (2.12) is not required to satisfy

(and generally it will not satisfy exactly) the boundary conditions (2.3).
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However, since these are taken into account in the collocation process, one

expects uN to satisfy approximate boundary conditions very close to the

N
exact ones. Lemma 3.1 yields an estimate for the values of u on the

x

boundary. Actually, define _ = _u as in the proof of Theorem 3.2 and set

again e = u- u , so that le (±I) 1 = lu (±I) I. Using (3.12) for v

and (3.7), one obtains the following result.

THEOREM 3.4: Under the hypothesis of Theorem 3.2, the following estimate

holds :

(3.15) luN(±l)l _< C'N 9/2-m llUnm+ C''N5-m Dflm-2"

II

Estimate (3.15) shows in particular that the boundary conditions are

satisfied with spectral accuracy when they are imposed implicitly in a

collocation scheme.

The analysis of stability and convergence for the discrete initial

boundary value problem (2.13) can be carried out by the same technique used in

the proofs of Theorems 3.1 and 3.2. We omit the details of the analysis and

we report hereafter the final result.

THEOREM 3.5: Let the solution u of the initial-Neumann boundary value

problem (2.2)-(2.3) satisfy the following regularity assumptions:

u € L2(0,T; Hm(-l,l)), ut v L2(0,T; Hm-2(-l,l))

for a fixed T > 0 and m > 5/2. If uN denotes the solution of the

approximation scheme (2.13), then for all t < T
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t N-I

uN 12, i/2< C'N 2-m
flu(t)- uN(t)g 0 + (f _ [ux - xJ Lxj,t)wj) lU01m_ 20 j=1

t t

(3.16) + exPI2){C''N2-m [J 'u(T) g2 dT + J lut(T)g2 dT] I/2
0 m 0

t

+ C"''N5/2"m (f Hf(T) fl2 dr) I/2}m-Z0

for suitable constants C', C'', C"" independent of u, uN and N.

4. Theoretical Results for the Chebyshev Method

The most popular family of collocation points is the family of the

Chebyshev points, which we consider in this section. The nodes (2.5) are

given by

(4.1) x. = cos jn
j --_ j = 0,-..,N,

while the corresponding weights are

i =__

wj N j= 1,-.-,N-1
(4.2)

_

w0 = WN 2N "

Hereafter, we shall discuss some theoretical properties of the implicit

treatment of the Neumann boundary conditions. From now on we assume that

B = _ = 1 and _ = y = 0 in (2.3).
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First, we prove the stability and the convergence of the tlme-independent

scheme (2.14).

THEOREM 4.1: Let uN be the solution of (2.14). There exists a

constant C > 0 independent of N and uN such that

1 ]2 N-I ]2 1 ]2(4.3) J [uN(x) w(x)dx + _ [UxN(xj) w. < C J [INf(x) w(x)dx.
-I j=l 3 -- -I

PROOF: Equation (2.14) can be equivalently written as

_) N "I < x < 1(4.4) -IN[BU x + u = INf,

since both sides of (4.4) are polynomials of degree N which match at

N + I distinct points. Following an idea due to D. Gottlieb, let us

differentiate (4.4) with respect to x. If we set uN(x) = IN(BU_)(x),
then

UN is a polynomial of degree N which vanishes at the boundary points and

satisfies the collocation equation

(4.5) -UNxx(Xj)+ uN(xj) = (INf)(xj), J = I,---,N-I.

The stability analysis for the Chebyshev collocation approximation of the

Dirichlet boundary value problem (see [2]) yields the estimate

+ UU_Uo,w < CllNf_0, w(4.6) IuNi0,w _
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for a constant C > 0 independent of N. Using this estimate and equation

(4.4) we obtain the further inequality

(4.7) guNg0,w < Ci;INfg0 •-- ,W

This proves (4.3). •

THEOREM 4.2: Let u be the solution of the boundary value problem (2.1),

(2.3) and uN the solution of (2.14). Assume that u £ H_(-I,I) with m >

5/2. There exists a constant C > 0 independent of N, u and uN such that

N-I N 1/2 CN2-m+[[ [ux u](xj] < ,u,
(4.8) flu uNH0, w j=l x )wj _ m,w"

PROOF: The convergence analysis for the approximation (4.5) gives the

estimate ([2])

- _ - uNfl0 < C1N 2-m gug + C2 N2-m fffUxx U fl0,w + lUx ,w-- m,w gm-2,w

(4.9)

< C3 N2-m llufl-- m,w '

where we have used (2.1) in order to bound the norm gfflm-2,w by the norm

lug . By equations (2.1) and (4.4) we get
m,w

fu- uNfl0 < C4 N2-m fun,W -- m,w °
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On the other hand, the equivalence of norms (2.10) and the triangle inequality

yields the inequality

N-I

2 uNfl2 |
I [ux - uN]2(xj)wj <__c5{gu x - IN Uxg0, w + flux - 0,w"

j=l

whence the result, using (4.9) and (2.9).

As for the Legendre method discussed in the previous section, it is

possible to estimate the error on the boundary conditions produced by the

spectral solution. We have the following result.

THEOREM 4.3: Under the hypothesis of Theorem 4.2, there exists a

constant C > 0 independent of N and uN such that

(4.10) _lUx(±l)l_< CN4-m nU!m,w

PROOF: For any polynomial v € _N' one has (see, e.g., [9])

1

f Vx(X)TN(X)W(x)dx = 0
-I

I 1

S Vx(X)TN_l(X)W(x)dx = N S v(X)TN(X)W(x)dx,
-I -I

whence

N-I

= - Vx(X j)TN(X j)wj
(4.11) 2-N[Vx(1) + (-I)N Vx(-l)] j=_l
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N-I

(4.12) _[Vx(1)-(1)Nv(1)J=-j=11v(xj)TN1(xj)wJ
1

+ N J v(X)TN(X)W(x)dx.
-I

~ I

Let u € _N be a primitive of the H_-projection of ux upon the space

{v € PN-I Iv(±l) = 0}. Then (4.10) follows from (4.11) and (4.12), choosing

here v uN ~
= - u and using Theorem 4.2 in order to estimate the right-hand

sides. 1

As far as the evolution scheme (2.15) is concerned, the following

convergence estimate holds.

THEOREM 4.4: Let the solution u of the inltial-Neumann boundary value

problem (2.2), (2.3) satisfy the following regularity assumptions:

m-I
u € L2(0,T; _w(-1,1)), ut s L2(0,T; H_ (-1,1))

for a fixed T > 0 and m > 5/2. Moreover, let u0 s H_(-I,I). If uN

denotes the solution of the approximation (2.15), one has for all t < T

N-I N 2 1/2

,u(t)- uN(t),0,w+(j_1[ux- ux](xj,t)wj)
t

(4.13) < CN2-m{"u0! + exP(2)[ f 'u(T)l2 dT
-- m,w 0 m

t

+ f lut(T) 12 dt]}m-1o
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PROOF: As in the proofs of Theorems4.1 and 4.2 we set

uN(x,t) = IN(BU_)(x,t)

and we x- differentiate the equation

N INtBuN_x[ x) _sf _Ut --

which is equivalent to (2.15). Estimate (4.13) is then a consequence of the

convergence analysis for the Chebyshev approximation to an inltlal-Dirlchlet

boundary value problem (see [2], Theorem 3.3). The error on the initial data

is

• _ uN(0) = u0 - IN(BuN(0)) = u0 - IN(B(I N U0)x)"Uo ,X _X ,X

The L2- norm of this term can be estimatedas follows:
w

lu0 - uN(0)aO < "u0 - IN + IIN[U0 - B(IN U0)x]10_x _w -- _x u0 _xH0_w _x _w

(by (2.10)) _< lU0,x - _ U0,xn0,w + C1U0,x - B(IN U0)xaN,w "

and B(I N are zero at the boundary, one hasSince both u0, x Uo) x

2 N 2

nU0'x - B(IN U0)xlN'w--< j=0[ [U0'x - (IN u0)x] (xj)wj

2

<__CtlN u0, x - (IN U0)xn0,w

< C[au0, x - IN(U0,x)_0, w + nUo,x - (IN U0)xRO,w }2-
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By the estimate (3.7) in [i] we conclude that

gu0,x - uN(0) ll0,w _ CN2-m _U0am.

The remaining part of the proof is straightforward. •

5. Computational Aspects of the Methods

5.1 The Richardson Iterations

The Richardson method with a finite difference preconditioning (see [13])

is certainly the simplest and most popular iterative method for solving

spectral systems. We shall briefly discuss the use of this method in the

solution of the linear systems (2.11) and (2.14). Hereafter we assume again

that _ = _ = I in (2.3).

The system (2.11) can be written as

N
(5.1) LE u = FE,

where LE is the matrix of order N + 1 defined by the relation (recall

(2.7)):

_ (_B+v)(x0)

(5.2) LE v = (-v + v)(x.) j = I,.-.,N-I, for all v _ PN,XX • J

(B-v)ixN)
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and FE = 10,f(xl),''',f(XN_l),0)T. An approximate inverse AE of LE, to

be used as a preconditioner, can be built up by low order finite differences

at the nodes (2.5) as follows:

Vl - v0 1
(5.3 ) h0 av0

2 1 -
AE v = - hj_ l[hj + hj 11 vj-i + [h 2 2- J hj_l ]vj hi[hi + hi_l] Vj+l

VN-I i vNhN_l + YVN

for all v _ _N, where hj = xj - Xj+l. Thus, a one-sided finite difference

approximation of the boundry conditon is imposed at the boundary nodes, while

centered differences are used at the interior.

The system (2.14) is represented as

N
(5.4) LI u = FI,

where LI is the matrix of order N+I defined by the relation

T
(5.5) LI v = {[-IN(BVx)x + v](xj)}O_j(N for all v _ _N

T

and FI = {f(xj)}0(j(N. Preconditioning this matrix is a more delicate

matter than preconditioning the matrix (5.2). In analogy with (5.3), one

could consider the matrix AI defined as
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f 2(I + =h0)v 0 - 2vI 1

(5.6) 2 + v0
h0

AlV = [hi-2 2 1 + -2hi_ I + hj_ I] vj-I + [hj hj_l ]vj hj[hj + hi_ I] Vj+l ;

2(1 - YhN_l)V N - 2vN_ 12 + VNhN- 1

namely, the differential operator is discretized also at the boundary nodes by

a centered difference formula, and the boundary conditions are used in

eliminating the auxiliary nodes outside the domain. Such a matrix exhibits

very poor preconditioning properties for the matrix (5.5). This can be

explained by considering the structure of the spectrum of LI in the case of

Neumann boundary conditions. The eigenvalue I has double multiplicity, the

corresponding eigenfunctions being v _ I and v = _N (the N-th Chebyshev or

Legendre orthogonal polynomlal). Actually, the Gauss-Lobatto quadrature nodes

are such that _N,x(Xj) = 0 for j = I,...,N-I. Hence

IN(B#N, x) _ O.

On the contrary, #N is not an eigenfunction for the matrix (5.6) and 1 is a

simple eigenvalue.

However, it is easy to build up a finite difference approximation of the

operator (2.1) which for the Neumann boundary conditions has I as a double

eigenvalue with eigenfunctions v _ I and v = _N" At each interior node

xj(j-l,...,N-l), define the differentiation formula
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(5.7) aju(xj_l) + bju(xj) + ¢ju(xj+ I) = Ux(X j)

by the conditions of being first order accurate and of satisfying the identity

aj_N(Xj_l) + bj_N(Xj) + Cj_N(Xj+l) = 0.

If the Chebyshev points (4.1) are used, then _N(Xj) = TN(X j) = 1-I}_,
hence

bj = 0 and (5.7) is the centered difference approximation of the first

derivative.

After computing the numbers aj, bj and cj we define the matrix AI as

follows

(5.8) i -i /

_0 _0 0 0 0 [_ 0

AI = - a. bj cj aj bj cj + 1

0 J 1 -1 _0_._ • o B

The matrix AI is a five-diagonal approximation of the operator LI, which

has the required spectral properties.

The Richardson method is applied in solving (5.1) and (5.4) in the

following form:

N,k+l = uN,k ok ,k)(5.9) u + A-I(F - LuN k > O,I
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k
where _ > 0 is an acceleration parameter. In (5.9), A, F and L stand

for AE, FE, LE if the system (5.1)is to be solved, and for AI, FI, LI if

the system (5.4) is considered instead. Under the assumption that the

matrix A-IL is dlagonalizable, the method is convergent (with a proper

choice of the acceleration parameter) provided all the eigenvalues of A-IL

have strictly positive real parts. For the pure Dirichlet boundary value

problem this is true since it has been proven ([I0]) that the eigenvalues of

A-IL lie in the interval [I,_2/4]. For the general boundary conditions

(2.3), the behavior of the eigenvalues has been investigated numerically and

will be discussed hereafter.

The convergence of the Richardson method is crucially influenced by the

choice of the parameter ak. Several strategies have been proposed ([13],

k
[14], [I0]). The simplest and most effective one consists of computing a

by minimizing some Hilbertian norm of the residual rk+l = F - Lu N'k+l.

Assume that the Hilbertian norm is defined by the inner product

((u,v)) = lj_ hij ui vj,

where H = {hlj } is a symmetric positive definite matrix. Then, the
k

resulting expression for = is

(5.10) =k = ((rk, LA -I rk))

((LA-I rk, LA-I rk)) "

The iteratlve procedure (5.9)-(5.10) (called the Minimal Residual Richardson

Method) will not break down if ek remains bounded away from 0. This occurs

if the symmetric part of the matrix HLA-I is positive definite.
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Unfortunately, the numerical computations described in the next subsection

show that whenever the boundary conditions are not of Dirichlet type few

eigenvalues of HLA -I + (HLA-I) T are of negative sign.

Thus one has to resort to iterative methods which converge even if the

symmetric part of the matrix of the system is indefinite. Among them, the

algorithm Orthodir (see [15]) seems particularly apt to be used with spectral

methods. Setting B = A-I L, the algorithm is defined as

k k
uN,k+l = uN,k + _ P

where the descent direction pk is given by

k-I

k-I pj (B2 P , BpJ) .
pk _-Bpk-1 _ _ 8kj , 8kj = _

j=0 (Bpj , Bpj )

and ak is chosen by the minimal residual strategy.

A truncated version, consisting of setting 8kj = 0 if j < k-l, is

generally preferred, although the convergence is not assured in this case.

Since one step of Orthodir requires twice as many operations as one step of

Richardson's method, it is convenient to execute a few Orthodir iterations

only when the Richardson method breaks down, then going back to the original

method. See [5] for a successful application of this strategy.

5.2 The Behavior of the Eigenvalues

The eigenvalues of the spectral matrices L, HL + (HL)T and the

preconditioned matrices A-IL, HLA -I + (HLA-I) T were computed by EISPACK

routines. The computation was carried out for N = 2k, k = 2,.-.,6 and for
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the boundary conditions c = y = 0 (pure Neumann) a = I, y = 0 (mixed

Neumann-Robin) and c = y = 5 (pure Robin). The eigenvalues were found

scarcely sensitive to the kind of boundary conditions, the qualitative

behavior being the same for the three conditions considered. The following

discussion refers to the pure Neumann problem.

a) Chebyshev explicit method ((5.1), (4.1))

The eigenvalues of the matrix LE defined in (5.2) are real, positive,

distinct and bounded from below by I. The elgenvalues of the preconditioned

matrix _I LE ' with AE defined in (5.3), are also real positive and

distinct. Moreover, they lle in the interval [I,_2/4], as shown in Table 2.

Table 2. Largest eigenvalues for the

Chebyshev "explicit" method

N LE A_ 1LE

4 24. 1.75

8 231. 2.10

16 3242. 2.29

32 50,208. 2.38

64 701,902. 2.44

Let H be the matrix associated with the Chebyshev discrete inner product,

i.e., H = dlag{w0,--.,WN} where the wj's are defined in (4.2). The

Isymmetric part of the matrices HLE and HLE is indefinite. In both

cases two eigenvalues are negative and their largest modulus is of the order

of the largest positive eigenvalues. Unlike A_ I
LE ,

the eigenvalues of
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HLE _I + (HLE _I)T are not bounded independently of N, the largest

eigenvalue growing like 0(N4). A similar behavior occurs if H is the

identity matrix.

b) Chebyshev implicit method ((5.4), (4.2))

The eigenvalues of the matrix LI defined in (5.5) are real and positive,

as it easily follows from (4.5). Moreover, they are all simple, except the

smallest eigenvalues I which is double, as already pointed out. If the

matrix (5.6) is used as a preconditioner, the largest eigenvalues of the

A_ 1L I remains bounded, but the smallest eigenvalue tends to zero
matrix

as 0(N-3).

If the matrix (5.8) is used instead, the smallest eigenvalue of the matrix

A_I 1 with double multiplicity, while the modulus of the largestLI
is

elgenvalue, although not bounded independently of N, grows like 0(N3/2).

Table 3. Largest modulus of the eigenvalues

for the Chebyshev "implicit" method.

The matrix AI is defined in (5.8).

N C(N) A_ I LI

4 19. 5.

8 214. 14.6

• 16 3174, 38.

32 49,938. 107.

64 •700,893. 342.
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The elgenvalues of A_ 1L I are all real and positive, except the two largest

eigenvalues which for N _ 32 are complex conjugate (with positive real

parts).

The symmetric part of the matrices HL I and HL I are indefinite.

The number of negatlve elgenvalues for HLI + (HLI)T is 2 in all the cases
m

under investigation, while for HL I All + (HLI AII)T this number grows slowly

with N (it is 6 for N = 64).

c) Legendre explicit method ((5.1), (3.1))

The eigenvalues of LE and _I LE behave qualitatively as the

eigenvalues of the corresponding matrices for the Chebyshev method. Table 4

contains the largest eigenvalues for the two matrices, the smallest eigenvalue

being 1 in all cases.

Table 4. Largest eigenvalues for the Legendre

"explicit" method

N LE A_1LE

4 22. 1.6

8 162. 1.9

16 1978. 2.17

32 28,639. 2.31

64 432,449. 2.41
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For the Legendre method too, the symmetric parts of HLE and HLE A_ 1 (where

H = diag{w0,---,WN} , wj being defined in (3.1)), are indefinite.

d) Legendre implicit method ((5.4), (3.1))

The eigenvalues of the matrix LI are real, positive and bounded from

below by I. Such properties can be easily proved using the identity (3.4).

The same properties are shared by the elgenvalues of the preconditioned matrix

_I LI ' with AI defined in (5.8); in this case the largest elgenvalue grows

llke 0(N3/2).

Table 5. Largest eigenvalues for the

Legendre "implicit" method

N LE A_ILI

4 17. 5.6

8 146. 18.7

16 1921. 55.

32 28,424. 148.

64 431,676. 384.

A_IThe symmetric parts of the matrices HLI and HLI are indefinite.
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