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MICROSTRUCTURE OF CERAMICS FABRICATED
BY UNIDIRECTIONAL SOLIDIFICATION

Tadashi Kokubo

Institute for Chemical Research
Kyoto University

1.	 Introduction

Multi-crystal oxides have been f,-bricated, most often 	 /176'

so far, by sintering crystal powder or crystallizing glass. Or,

to make multi-crystal metal, the melt used to be directly crysta-

llized (solidified). however, this technique has been rarely
[11

applied to oxides, except when some particular bricks were

made. The reason is that it is difficult to make dense multi-

crystal bodies of oxides by the same technique used for metal

^asting, which consists of the processes of melt draining in a mold

and solidifing it by natural cooling.	 The melt of an oxide is too

viscous, the volume shrinks a great deal when it is solidified,

and the heat conductivity of its crystals is too low.

However, if an oxide melt is cooled and solidified in mealy

one direction, which is called unidirectional solidification, it

will not only form densely packed crystals, but also some particular

multi-crystal con f igurations can be obtained, as shown in Figure 1,

when the right conditions are applied. These special multi-crystal

configurations include the transparent multi-crystal body consisting

*Numbers in the margin indicate pagination in the foreign text.
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of columns of one type of crystals standing parallel and containing

no pores, or whose crystal columns developed to a specific direction,

es shown in Figure 1(a); a complex multi--crystal body, consisting

of thin plates of two types of crystals standing alternately

parallel next to eac i other, as ihown in Figure 1(b); and a

complex multi-crystal body which has a basic crystal phase in

which the wire shaped crystal phases are disposed parallel to

others, as shown in Figure 1(c).	 These multi-crystal bodies of

^"	 ^^(/ ^ I flll'^

Figure 1. Microstructure of multi-crystal bodies fabricated
by unidirectional solidification of melts

such configurations are different from those fabricated by other

techniques. They show the electric, magnetic, optical and

mechanical_ properties particular to them. That is why this

technique has been applied recently to various kinds of oxides

experimentally.

The following discussions concern the method for solidi-

fying the melt urAdirectionally and the conditions necessary to

obtain the special multi-crystal configurations that were discus-

sed above.

2
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2. Unidirectional Solidification

The following discusses the techniques for fabricating

multi-crystal bodies by solidifying the melt unidirectional ly.

All of these techniques are similar to those for fabricating

a single crystal from a melt.	 In the case of multi-crystal

bodies, fabrication conditions are not required to be

controlled as strictly as a single crystal.	 And, a single crystal

is used as a seed for fabricating single crystal, while mult-

crystals are used as seeds for fabricating multi-crystals.

2.1 Zone Melting

A raw material stick, made by powder sintering or melt 	 /177

casting, is kept standing vertically in the center of the circular

furnace which is kept in the horizontal balance, and the stick is
(2)-[6]

melted from the bottom up as it is lowered at a fixed speed.

Figure 2 illustrates one of the examples of this type of

Keys

O
O

^`
O
O

1. Raw material	 stick
-^ 2. Melt

^ t 3. Insulator
4. High	 frequency	 coil
5. Carbonic	 pyrogen

-O 6. Slow cooling	 chamber
7. Solid

Figure 2:	 An Example of Zone Melting

3
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apparatus. When the solidification speed is smaller than the

lowering speed of the stick, the solid horizontal size will

be greater than that of the raw material stick.	 This technique's

advantage is that a great temperature gradient can be applied on

the crystal—melt boundary surface, but this technique does not

work for the fabrication of the solid of shapes other than a

stick.

2.2 Crystal Pulling

The melt in a container is pulled out from the top at the
[7)[b]

fixed speed as it solidifies. One of the apparatuses used for this

technique is illustrated in Figure 3. 	 In addition to the stick type,

Cc)

m, O ^
(
'
''1 

^ 'J I {( 11 rr

``I

	 ILIv

a. Platinum crucible
b. Lid
C.	 Pattern
d. Melt
e. Solid
f. Platinum wire
b,h,k.	 Refractory material
1.	 ?Iigh frequency coil
M.	 Eater cooling copper pipe

Figure 3:	 An Example of Crystal Pulling

tubular or plate type solids may be fabricated by placing the

proper pattern on the surface of the melt. "owever, this

technique may not be applied to the melt of high vapor pressure.

4	 ^I
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2.3 Bridgman

The raw material powder is put in the cylinder type

container, which is planed in a tubular furnace and is lowered at a
[6][9-13]

fixed speed. The powder is melted and solidified from the bottom

up.	 Figure 4 shows one of the examples of the apparatus used

for this techn i que. This technige may be applied to the melt of

high vapor pressure because the container can be tightly closea,

but it may not_ be applied for fabricating other types of solids

except sticks.
1)

1 ^

Keys:
1. Molybdenum wire
2. Molybdenum crucible
3. Graphite	 pyrogen
4. Zirconium insulator
5. Silica	 glass tube
6. Induction coil
7. Zirconium support	 table

-^ 7 7r i .• :•1-^

C	 O
O	 F O

O	 f^ J

Figure 4:	 An example of Bridgman technique

2.4 Temperature-Gradient and Slow-Cooling Technique

The crucible containing a melt is placed in a furnace that 	 /17$

is heated to the different gradient temperatures. 	 The temperatures

are lowered at a fixed speed as maintaining the sradient, and the
[14]-[24]

melt is solidified in one direction from the bottom up.	 Figure 5

shows one of the apparatus used for this technique. This technique

is most appropriate to be applied for the fabrication of large size

solids, but the disadvantage is that it is difficult to apply

-	 5



6r.sgru _W
Pt5..l —(9)

1"4
!M W'

sic Rka

A	 , ^,	 e

URIVNAL PAGE
OF POOR QUALITY,

C4

PkR;t — d

Keys:
1. Thermocouple
2. Refractory material
3. SiC pyrogen
4. Pt crucible
5. Thermocouple
6. Melt
7. Thermocouple
B.	 Seed crystal
9.	 SiC pyrogen

Figure 5:	 Example of gradient-temperatures
and slow-cooling tecllnique

temperatures with the high gradient difference on the crystal-melt

field plane.

3.	 Microstructure of Solid:	 The Identical ,Melt Composition

When the melt takes the composition C c of Figure 6, which

represent the identical or near identical compositions, the melt

reys.
1. Temperature
2. Composition
3. Liquid phase

T
4. Liquid + solid phases (A)
5. Liquid + sil.i.d phases (B)
6. Solid (A) + solid (B)

Figure 6:	 An example of phase equilibrium

6	
D
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solidifies in the configuration shown by Figure 1(a) and produces

either a transparent or directional multi—crystal body made of one

type of crystals if the right conditions are applied and it is

solidified in one direction.

3.1	 Pores in the Solid

To fabricate a transparent multi—crystal body, pores should

not be -rown 4n the solid during the fabrication process.	 Air

bubbles and voids and cracks m&y be cons-i dered as the cause for

developing pores.

3.1.1	 Air Bubbles

H 9 0 and other gases are usually dissolved in the oxide

melt, but these gases are hardly dissolvable in crystals. 	 The

dissolved glass pours in the melt located in front of crystals

as the melt solidification progresses, and the -ases eventually dif—

fuse and dissipate gradually from the front of crystals. But, the

gas concentration there prows higher rapidly, as the solidifica-

tion progresses, especiallywhen the solidification speed is high,

gas exhaust speed high consequently, and the melt viscosity high,

since these reduce the gas diffusion speed. These gases will

keep growing, eventually past the tolerable saturation point,
['26]

and generate air bubbles. 	 These air bubbles will float in the

melt, among which the bubbles of small diameter will be trapped

by the crystals growing from underneath and will form pores in

the solid.	 Therefore, it t. required to choose the particulary
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small solidification speed when the high viscosity melt is used

for fabricating the type of solid which does not contain pares

generated by gases, since air bubbles should not he groin.

I'1	 3.1.2	 Void

When the solidification speed is great and the temperature

gradient is small, the latent heat generated by solidification is 	 /171;

stored in the neighborhood of crystal-melt boundary surface. This

lowers the temperature of the melt in front of the boundary surface

lower than the bondary surface temperature. That area may be

C

1. Temperature
2. Distance	 _0
3_	 f,iquid phase	 ^.

temperature
4. Composition	 -^

excessive cooling
5. Actual temperattre
6. Me1t	 (^	 ^
7. Crystal	 --

1. Crystal
2. 'Melt
3. Cell structure

rioure 7:	 The cornpositional excessive cooling ar,d cell structure
when the melt composition does not match the
identical one

8

Ca)

Keys.
1	 Composition
2. Distance
3. Crystal
4. Melt
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coolen excessively. 	 When the melt compo:ition is slight]y

different from the identical one represented by C' c in Fi clure 6,

the composition in the crystal.-melt boundary surface area will change

to that as indicated by Figure 7(a). 	 This change will also cause

the temperature change of the liquid phase in the same area to

that represented by Figure 7 (b).	 In such a case, excessive

cooling ( compositional excessive cooling) can eaaily occur in

the melt located in frontof the crystal-melt boundary surface, as

shown in Figure 7 (b), when the solidification speed is great,

temperature gradient Small, 5ut when there is no solidification
[27]

latent heat stored. When this type of excessive cooling occurs,

the crystal-melt boundary surface will not take such a flat form,

g ut it will have a rough surface with protrusions and concaves.

It is called a cell structure and shown in Figure 7(c). If the

size of concaves is great, the melt left in the concaves solidifies

slowly, and prevents the melt from being supplied to the area
[21][28]
where the volume has shrunk; thus, voids are left there. There-

fore, in order to avoid fabricating the solid that has pores

made by the volume shrinkage, the melt whose composition is as

close as possible to the identical one needs to be solidified at

a low speed and great gradient temperatures so that the cell

structure will not grow enormously.

3.1.3.	 Cracks

During the process cooling the crystals from the solidification

temperature to room temperature and when the precipitated crystals

shrink by the effect of heat and changes the crystal direction or

they switch the phases and change the volume, the solid may not

C,
	 .J
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[191[21i[261-[291
contain pores at the beginning but may have them at room temperature.

The pores are grown by the cracks caused by the thermal stress.

For preventing the growth of such cracks, the affective measure

is to add a small amount of components to grow glass in the melt

and have thin ;lass phase grow in the precipitated crystals during
[9I[261-[301

the solidification process.	 This glass phase mitigates the thermal

stress by its viscous fluidity and st:presses the crack growth while

the solid is cooled down to room temperature.

If pore 	 void and crack growth is supressed, it is

; p ossible to obtain transparent multi-crystals.	 The transparent

multi-crystal., that have been obtained by the unidirectional
[14][161	 [22]

solidifi c ation include d- Al 2 0 3 , ?1g0•Al 2 0 3 , U.7Na'Vbti,^(;.31;aTiO3[201(241

and)'6Ri 2 0, • Si0 2 .	 Figure 8 shows a ;p hoto g raph of a transparent

multi-crystal body of 6Bi 2 0 3 'Si0 2 .	 This crystal body shows the

pnoto conductivity as superior as a single crystal.

I

ni3irectiona

ratisparent Y

Figure 8:	 A Y-6B J 2 () 3 'Si02 *_ransnarent multi-crystals
(thickness, 1 min)
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The requiremei	 for fabricating directional multi-crystals

by the unidirectional solidification of the melt is that a large

number of seed cr y stals should exist and the crystal precipitation

speed of each :rystal direction vary with lame differences.

When a melt is solidified unidirectionally s a Puch conditions,

each granule in the seed crystal layer grows to the crystal

direction to which the highest granule growth speed is oriented to.

When the configuration of each granule is not in an order in the

seed crystal layer, the growth direction is not in a regular crder in

the initial stage, as shown in Fi g ure 9.	 Rut, the crystals whose

Keys:
1.	 'Ie 1 t	 (	 II	 i	 -+'^^
1.	 C y s t a I s I	 i
3.	 Seed crystals

Figure 9:	 The proc-ss where the directional multi-crystals
are formed

growth is oriented toward the direction other than the

temperature gradient direction (the direction that the melt is

fed) eventually slow down their growth as they run into other

crystals surrounding them. 	 Thus, only the crystals which ,ar^

growing to the direction of the temperature gradient will

continue to grow, and ultimately the crvstals growing toward the

temeprature gradient direction at the highest speed will remain

.	 -..:0-..	 -D ,
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[21]
growing and constitute the directional crystal body.

/1;10

The directional multi-ciysta1s that have been fabricated by

the unidirectional solidification of melt include Li2G9
[17]	 [19]

2Si0 2 (<001>), Li 2 0 • Al 2 I 3 . 4SiO 2 (<110>), P,a(Zn, Fe)2Fe120"'<110>),
[29]	 ' 1231

Bi 2 PbNb 2 0 9 (010), PbTiO 3 (<l10> at the solidification speed
[21]

2 mm/h, <001> at 40 mm/h).	 Figures in parentheses indicate the

crystal direction. The direction of PbTiO 3 varies according to

different solidification speeds. 	 These directional multi-crys-
[31]	 [i9]	 [29]

tls are expected to show superior dyna^iic, thermal and magnetic

or electric properties in the solidificatin direction.

4.	 Hicrostruct ure of the Solid:	 Eutectic Composition

When the melt takes the composition indicated by C F of

Figure 6, the eutectic or near eutectic composition, the complex

multi-crystals of two different configurations of right orders,

shown by (b) or (c) in Figure 1, may be fabricated when it is

so1idiIied unidirectionaIIy 	 in the appropriate conditions.
i

4.1 Configurations of Regular Orders

The requirement for obtaining the solid of the configuration
[32]

of the regular order discussed above, according to Hunt

et al., is that at least one of the two eutectic crystal pnases

should	 have	 the melting entropy (4 S f )	 smaller	 than 2R

(P.,	 a	 gas	 cons, ,.t),	 because	 the crystals	 with d S f larc;er	 than



2R are likely to take their own particular facet form.

However, the question whether the crystal takes in reality the

facet form or not does not only depend on aSff, but the mel`
[10]

composition, temperature gradient, solidification speed are also

affecting factors. Therefore, it seems that the most significant

requirement for fabricating the solid of -egular configuration is

that both the: eutectic crystal phases should grow in the form of

flat crystal —melt boundary surface instead of cell structure. The

effective tec.,nique for growing eutectic crystals with the flat

crystal—melt boundary surface, instead of in the cell structure, is

to p r epare the melt of the eutect i.r composition as close to

perfect as possible and to solidif y it in the great temperature

gradic-t at a low speed, so that an excessive cooling will not

occur in front of the crystal—melt boundary surface, just as it tras
[33]

needed to be avoided with the identical melt composition. But,

waen the liquid phase temperature does not vary as different

compositions are used, an excessive cooling does not occur in

front of the crystal—melt boundary plane even if the melt compo-

sition is not very close to the perfect eutectic composition;
[33]

therefore, a solid of regular configuration may be obtained.	 _Tn

[ 34
such a case, the volume ratio of the two types of crystals may

be varied in a large ranhe. 	 Figure 10 illustrates some examples

of the solids with such regular configurations. Because the wire

structure crystals in this solid has the refraction rate higher than

that of the surrounding matrix, this multi—crystal body shows the

function same as that of the :lad type photo—fiber bundled in the

high density.	 T;iese crystals )lave the color similar to that of 	 181

cat's eye ston2.

13
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(a) Cross section vertical to
the solidification direction

(b) Cross section parallel to
the solidification direction

Figure 10:	 The microstructure of the eutectic composition solids

of Bi,) 0 3(Nb 2 0 -5 )-6Bi.0 3 Si0 2 type.

Wire type crystals: 6- Bi203(Nb205)•
Matrix: -C-613i203Si02

4.2 Either Thin Plate or Wire Structure

The question whether the regular order solid takes the thin

plate structure, as shown by (b) of Figure 1, or the structure as

wire, as illustrated by (c), depends on the question which

structure aas the smaller energy on the boundary surfaces among

crystals. The roundary surfaces area among crystals of

the thin plate structure remains the same per unit volume of

complex crystals, in the case of the than plate structure, as

shown in Figure 11.	 In the case of the wise structure, the

14

!fail



ORIGMAH FAGZ 19
OF POOR QUALITY

Keys:
1. Volume rate of the

phase smaller than
the other

2. Boundary surface
area/ volume rate

3. Thin plate structure
4. Aire structure

^.

t	 -

Figure 11:	 The relation between vIume rates of composin crystal
phase and crystal boundary surface area.

[36]
(The diagram is supplied by Minford et al.

[34]
Additional data supplied by us.)

boundary surface area increases as the volume rate of the wire

structure crystals increases, as shown in Figure 11.	 11hen the

volume rate of the wire structure crystals is 0.28, its surface
[35][36]

area equals :.o that of the thin plate structure crystals.	 In

consequence, complex multi-crystals take the ;-:ire structure when

the volume rate of the smaller phase of the two is less than

0.28, and they take the thin plate structure when it is greater

than 0.28.	 In Figure 11, markins; of the solids that have been

reported to have taken the wire structure is made_ on the line

represenLing the boundary surface of the wire structure; and of

the solids which have been reported to have taken the thin plate

structure, on the line representing the boundary area of the thin

15	
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plate structure, and both structures are marked at the point

representing the volume rate of the smaller ;.base. 	 The diagram

indicates that the crystals actually take on a wire stnicture then t,e

sa-iller phase's volume rate is smal ler than 0.28, and thin plate

structure when it is greater than 0.28. 	 The Zr02(Y203)-Al203

type solid indicated in Figure 11 takes the structure where

Zr0 2 (Y 2 0 3 ) array parallel in a high density in the matrix Al203,

and this multi-crystal body shows a great mechanical strength at

room temperature or temperatures as high as 1500 °C, much greater

than that of alumina multi-crystals made by not press process.

4.3 Distance Between Crystals

The distance/Ibetween the centers of crystals of the same

U	 structure, either thin p) ate or wire type, is determined by the

balance between two forces: one that tries to keeps small so that

the horizontal diffusion distance of the crystal components is kept

y	 ^i

-	 -- —

Figure 12:	 The relation betureen crystal distance
and solidification speed R	 [36]
(The diagram is su p plied by Minford et al.,
and more data added by us. [23][34])

16
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short, and the other force that tries to keep jIgreat so that the

boundary surfce area between the two types of crystals is kept
[37]
small. Consequently,' =CR 1 ^ 2 (C is a constant determined by the

21t composition) is set as the relation between iI and the

solidification speed R. Figure 12 shows the relation between,"

and R of some solids of thin plate and wire structures that have
[23][34][36]
been r•ported.	 It is clear, from this figure, that the above

ment i oned relation is observed in many systems.

5. Postscript

The above discussion outlines multi-crystals of what charac-

teristic microstructure can b , obtained and what are the require-

ments for fabricating the multi-crystals of such characteristics

microstructure. We :ri gid to avoid using formulae as much as

possible in this paper.	 If any reader wishes to find more

details of such information, we hope that he will use the reference

materials listed in each chapter and other materials listed in

the bibliography, No. 41-44. The multi-crystals fabricated by
[9,20,24,45,47,48]

unidirectional solidification show particualr electric,
[6,29,45,47,48]	 [6,18,20,24,25-27,51]	 [19]	 [3,6,40,49,50]
magnetic,	 optical,	 thermal,	 and dynamic

nature, but we were nat able to discuss them much in this report.

Please use the reference and bibliography on these points also.

Additionally, one of the techniques developed from the melt

unidirectional solidification is the method, which is to freeze

hydrogel unidirectionally in place of melt, then to melt the

ice portion at room temperature, nne to fabricate porous non-

crystal fiber. This was done recently as an experiment.



?ibliography

1. Rardhan, P. et al., J. Mater. Sci., 15, 2409 (1980).

2. Galasso, F. S., et al., J. Am. Cerm. Soc., 50, 333 (1967).

3. Rowcliff, D. J., et al., J. ml-teri. Sci., 4, 902 (1969).

4. Hu 1 se, C. 0., et a 1., "Advanced Materi.a Is, Composites and

Carbon", Ain. Ceram. Soc., Inc. Ohio (1971) p.132.

5. Dhalenne, G., et al., Mater. Res. Bull., 7, 1385 (1972).

6. Hulse, J., et al., "United Aircraft Pest-arch Laboratorie.s

Report" N910803-10 (1974).

7. Van Den Bromgaard, J., et al., J. Mater. Sci., 9, 1705

(1974).

8. Kramer, W. E., et al., J. 'later. Sci., 12. 409 (1977).

Harrison, D. E., J. Crystal (Irowth, 3, 4, 674 (1968).

10. Viechnicki, D., et al., J. mater. Sci., 4, 84 (1969).

11. Schmid, F., et al., J. 'Mater. Sci., 5, 470 (1970).

12. Kennard, F. L., et al., J. Am. Ceram. Soc., 56, 566 (1973).

13. Akexandroff, Japanese Kokai Patent Publication, No. 49-

111899 (1974).

14. Schmid, F., et al., J. Am. Ceram. Soc,, 53, 528 (1970).

15. Schmid, F., et al., "Advanced Xaterials, Composites and

Carbon", Am. Ceram. Soc. Inc., Ohio (1971) p. 96.

16. Viechnicki, D. et al., J. Crystal Growth, 28, 162 (1974).

17. Arioka, M. et	 al.,	 Yokyo, 85, 501	 (1977).

18. Ito,	 S., et al.,	 Am.	 Ceram.	 Sco.	 Pull.,	 58,	 591	 (1979).

19. Arioka, M., et	 al.,	 Yokyo, 88, 128,	 (1980).

20. Ito,	 S. et al.,	 Yokyo,	 89, 323 (1981).

21. Kokubo, T., et	 al.,	 Yokyo, 89, 507	 (1981).

18



^ D*- ^ I......so,
19

^^ 1

22. Genti lman, R.L. et a 1., Am. Ceram. Soc. flu 11., 60, 906

(1981).

23. Kokubo, T., et al., Yokyo, 90, 295 (1982).

24. Kokubo, T., et al., Yokyo, 90, 348 (1982).

25. Kokubo, T., et al., Yokyo, 86, 512 (1978).

26. Kokubo, T., et al., Yokvo, 86, 368 (1978).

27. Flemings, M.C., "Solidification Process". Mc Graw Hill, New

York (1974) p. 58.

28. Kokubo, T., et al., Yokyo, 90, 633 (1982).

29. Kokubo, T., et al., Yokyo, 90, 187 (1982).

30. Kokubo, T., Nikka, 1978, 1357 (1978).

?1.	 Kokubo, T., Yokyo, 87, 182 (1979).

32. Hunt, J.D., et al., Trans. :'fetal. Soc., .AIMS, 236, 843

(1966).

33. Flemings, M.C., "Solidification Processing", etc Graw (fill,

New York (1974) p. 109.

34. Kokubo, T., ct al., Collection of Speeches, Yokyo Conference

(1982) p.38.

35. Cooksey, D.J.S., et al., Philos. `lag., 10, 745 (1964).

36. Minford, W.J., et al., J. Am. Ceram. Soc., 62, 154 (1979).

37. Chalmers, B., "Principles of Solidification", Wiley, New

York (1964) p. 194.

38. Stubican, V.S., et al., J. Am. Ceram. Soc., 61, 17 (1974).

39. Moore, J.'W., et al., J. Am. Ceram. Soc., 51, 428 (1968).

40. Kennard, F.L., et al., J. Am. Ceram. Soc., 57, 428 (1974.

41. Tashiro, M., Pt al., Bul 1. Tnst. Chem. Res., Kyoto Univ.,

53, 471 (1975).



,r-.1 l

42. Gupta, K.P., "treatise on Materials Science and Technology"

vol. 9, et. F.F. Wang, Academic Press, New York (1976)

p. 305.

43. Ashbrook, R.L., J. Am. Ceram. Soc., 60, 428 (1977).

44. Stubican, V.S., et al., Ann. Rev. dater. Sci., 11, 267

(1981).

45. Galasso, F.S., J. Metals, [6] 17 (1967).

46. Batt, J.A., et al., Am. Ceram. Soc. Pull., 48, 622 (1969).

47. Galasso, F.S., et al., J. Metals, [6] 40 (1970).

48. Van Ran, A.M.J.G. et al., J. Mater. Sci., 9, 1710 (1974).

49. Mahler, W., et al., Nature, 285, 27 (1980).

50. Kokubo, T., et al., Collection of Speeches from Yokyo

Conference, (1982), p. 27.

51. Kubota, T., et al., Collection of Speeches, 23rd Glass

Conference, (1982) p.9.

Introduction of the Author

Tt,dashi Kokubo

Graduated from Oosaka City University in March 1962, major in geology.

Became an assistant in the Chemistry Research Institute of Kyoto

University in April, 1962; professor since January, 1974.

F	 20


	GeneralDisclaimer.pdf
	0032A02.pdf
	0032A03.pdf
	0032A04.pdf
	0032A05.pdf
	0032A06.pdf
	0032A07.pdf
	0032A08.pdf
	0032A09.pdf
	0032A10.pdf
	0032A11.pdf
	0032A12.pdf
	0032A13.pdf
	0032A14.pdf
	0032B01.pdf
	0032B02.pdf
	0032B03.pdf
	0032B04.pdf
	0032B05.pdf
	0032B06.pdf
	0032B07.pdf
	0032B08.pdf
	0032B09.pdf

