
MCR-84-596
Contract No NAS8-34938

/

NASA-CR-171213
19850003991

Phase 2
Final
Report September 1984

Power Subsystem
Automation Study

111
NF02672

IIIIARTIN IIIIARIET'TA

MCR·84·596

Contract No. NAS8·34938

Phase 2
Final
Report

POWER SUBSYSTEM
AUTOMATION
STUDY

John C. Tietz
David Lewy
Cynthia Plckenng

Ronald Sauers

September 1984

MARTIN MARlEnA AEROSPACE
DENVER AEROSPACE
PO. Box 179
Denver, Colorado 80201

rJ'

FOREWORD

This report presents the results of a study by Martin Marietta Denver
Aerospace for the National Aeronaut~cs and Space Administration's George
C. Marshall Space Flight Center. The study was the second phase of con­
tract NAS8-34938, Power Subsystem Automation Study. It resulted in the
demonstration of prototype "expert system" software for managing one as­
pect of a simulated space station power subsystem.

ii

'I

I,

CONTENTS

I.
A.
B.

II.
A.
B.
C.

III.
A.
B.
C.

IV.
A.
B.
C.

v.
A.
B.

VI.
A.
B.
C.
D.
E.

VII.
A.
B.
C.

EXECUTIVE SUMMARY
Description of EMES •••• • • • • •
Study Conclusions and Recommendations

INTRODUCTION • • • • • • • • • • ·
Definition of an Expert System
Description of EMES ••••••••
Benefits EMES Provides • • • •

CONCLUSIONS AND RECOMMENDATIONS
EMES Performance • • • • • • • • •

· . . .

Planning for and Managing Future Expert Systems

. . .

Recommended Future Activity • • • • • •

ASSUMED SPACE STATION CONFIGURATION
Configuration Details ••••••••••••
Configuration Ground Rules • • • • • • • •
How Intimately EMES Knows the Configuration

HOW EMES IS USED • • • • • ·
Overview of Operation

. . . .

Details of Dialog with the User ·

. . . · IMPLEMENTATION DETAILS • • •
Major Design Decisions • • •
EMES' Intelligent Functions

.
The Concepts of Rules and Goals
Rules Used in EMES •
Fortran Modules
FUTURE WORK IN EXPERT SYSTEMS

·
·

·
State of the Art in Expert Systems ••••
Applicability of Expert Systems to Power Subsystems
Applicability of Generic Capabilities of EMES to Other
Spacecraft Subsystems •••••• • • • • • • • • •

. . .

. . . .

1-1
1-2
1-4

thru
1-11

II-1
II-I
II-4
II-6

III-l
III-l
III-2
III-5

IV-l
IV-1
IV-8

IV-10

V-1
V-1
V-1

thru
V-23

VI-1
VI-1
VI-2
VI-6

VI-22
VI-32

VII-1
VII-1
VII-4

VII-5
and

VII-6

VIII. REFERENCES • • · ••• VIII-l

APPENDIX A.

APPENDIX B.

APPENDIX C.

SOFTWARE REQUIREMENTS DOCUMENT •

SOFTWARE DESIGN DESCRIPTION ·
SOFTWARE TE ST PLAN •

iii

A-1
thru
A­

B-1
thru
B­
C-1

thru
C-

Figure

IV-l
IV-2
IV-3
IV-4
IV-5
IV-6
IV-7
IV-8
IV-8

Major Space Station Systems • • • • • • • • • • • • • • • • • •
CTS Concept Configuration • • • • • • • • • •
CDS Concept Configuration • • • • • • • •
DMS Concept Configuration
ECS Subsystem Concept Configuration
GNCS Concept ••••••• · .
LSS Subsystem Concept • • • • • • • • • • • • • •
EPS Concept Configuration . . .
TCS Concept Configuration •• • • • • • • • • • • • • · .

Appendix B

V-l
V-2
VIII-l
VIII-2
VIII-3
VIII-4
VIII-5
VIII-6
VIII-7
VIII-8
VIII-9
VIII-lO
VIII-ll
VIII-l2
VIII-l3
IX-l

Solar Array Temperature vs Time
Solar Array Capability vs TUne • • • • • • • • • • • • • • • •
The Top-Level Executive • • • •
Library Development Module • • •
Load Development Module • • • • • • •
Event Development Module • • • • • • • • • • • • • • •
Mission Development Module • • • • • • • •
Define Mission Module •• • • • • • • • • • • • • • • • • • •
Orbit Definition Module • • • •
Power Capability Module ••••••••• • • • • •
Define Mission Timeline Module • • • • • •
Assemble Mission Definition Module •
Generate Mission Reports Module
Mission Execution Module •
Menu Structure Overview
EMES Directory Structure • . . .

iv

.

· .
. . .

· .

IV-2
IV-3
IV-3
IV-4
IV-4
IV-5
IV-5
IV-6
IV-6

I. EXECUTIVE SUMMARY

The purpose of phase 2 of the Power Subsystem Automation Study was to
demonstrate the feasibility of using computer software to manage an as­
pect of the electrical power subsystem on a space station. To accom­
plish this, we developed a software testbed that uses artificial intel­
ligence techniques. This software prototype, known as the energy man­
agement expert system (EMES), is a first step toward the long-range
objective of developing and demonstrating prototype software to automate
such tasks as managing loads, power, and resources, monitoring state of
health, and detecting and isolating faults in the space station power
subsystem. In this study we also investigated the state of the art in
expert systems software and analyzed the applicability of the generic
capabilities of the software to other space station subsystems.

An expert system is a computer program that can competently act in the
role of a human expert in a narrow field. Such programs are a new de­
velopment in artificial intelligence; most of the work has been done in
the past decade. They differ from conventional software in how they are
built, in how they solve problems, and in what problems they solve.
However, the most obvious physical difference is that expert systems are
usually built with an auxiliary piece of software known as a production
system and consist primarily of heuristics--rules of thumb extracted
from an expert--encoded in the production system's formalism. These en­
coded rules are interpreted by the production system and applied oppor­
tunistically as the production system sees they are applicable. A num­
ber of such systems have been developed, not all of them research pro­
jects, and many are of considerable commercial value. With today's
technology, prototype or operational expert systems have been written
for:

1) Analyzing or diagnosing problems in diesel-electric locomotives,
computers, telephone cables, and other equipment and systems;

2) Diagnosing diseases, analyzing electrocardiograms, and advising
doctors in administering chemotherapy;

3) Assisting in exploring for mineral deposits and oil, and analyzing
oil well data; .

4) Assisting in design and analysis of software, including other expert
systems;

5) Assisting in solving mathematical problems;

6) Assisting in the design or analysis of integrated circuits, data­
bases, printed circuit cards, and single-board computers and other
circuitry;

7) Assisting in job-shop scheduling and in management of manufacturing
and large projects;

I-I

A.

8) Assisting chemists and geneticists by analyzing protein crystallo­
graphy data, mass spectrograms and other chemical data, by planning
bioengineering experiments involving DNA, by solving certain pro­
blems in genetic engineering, and by helping plan organic chemical
synthesis;

9) Providing computer-aided instruction;

10) Configuring computers;

11) Assisting in solving water-resource problems;

12) Adjusting signal-processing systems;

13) Analyzing structures;

14) Performing statistical analysis.

EMES is the first expert system ever developed to address the problem of
spacecraft energy management. Some of the things E~~S does are now
handled by algorithmic load shedding. The problem with that approach
is that it does not reason about how priorities change with time and
circumstances. EMES can also do scheduling, which has traditionally
been an expensive human-intensive task.

EMES is also a first step toward building flight software. It provides
a baseline from which to build, highlights the major problems such soft­
ware must address, and illustrates how these problems can be solved.

The work performed under this contract provides NASA a benchmark for
estimating the speed and hardware requirements for a flight system. It
will also allow NASA to more accurately forecast the size and capability
of flight expert system software and determine how much time and effort
will be required to design and implement it.

DESCRIPTION OF EMES

The EMES software testbed demonstrates that expert system software can
manage the allocation of power to the various electrical components of
a simulated space station. It does this by sequencing the operation of
these components in an attempt to make the best use of available power
while meeting basic mission requirements and energy management con­
straints. EMES also permits graceful degradation of the spacecraft un­
der abnormal conditions.

The EMES program provides onboard automation of energy management under
normal, failure, and degraded modes of spacecraft operation. This in­
volves operation of all the housekeeping subsystems and payload equip­
ment that consume power.

1-2

I

EMES operates in three major phases: library development, mission de­
velopment, and mission execution. Of these, only the mission execution
phase involves artificial intelligence. The other two phases set up a
problem for EMES to solve, a task that corresponds to premission activ­
lties.

During the library development phase, the user defines a "library" of
electrical loads with which to develop mission models. For each load,
the user specifies a number of attributes, including power consumption
and duty cycle. To make deflning loads more convenient, the load li­
brary initially contains many predefined loads; the user can then add
others unique to the mission.

During the mission development phase the user constructs a mission,
using the loads in the library. In addition to specifying which loads
are to be in the spacecraft during the mission, the user provides in­
formation to define the orbit and spacecraft attitude. The system then
generates a mission definition file that is ready to be processed by the
intelligent portion of EMES.

The final phase is mission execution during which EMES inspects the
mission timeline, looking for resource requirements that cannot be met
and energy management constraints that have been violated. The expert
system modifies the mission timeline and produces a new one in which no
constraints are violated. If the power available is suddenly reduced,
EMES has the intelligence to reason about which loads can safely be re­
moved and which cannot be removed without loss of data, product, or
capability.

While working on the schedule revlslons, EMES explains its decisions.
Explanation is an important feature of an expert system because heuris­
tics, not algorithms, are used to solve problems. The explanations
allow humans to follow the line of reasoning that leads to the revised
schedule, either to approve EMES' decisions or to gain confidence in its
ability. To aid the human in overseeing the scheduling, EMES provides
tabular and graphical displays of the information it uses in making de­
cisions. The user obtains this information by selecting options from a
set of menus.

/,-

The EMES program was designed to run on a Digital Equipment Corporation
VAX-ll/7xx-series computer under the VMS operating system. It requires
Franz Lisp and Eunice as support software. Franz Lisp, created at the
University of California at Berkeley, is an interpreter for a dialect
of the LISP computer language. Eunice is a software package (produced
by the Wollongong Group, Inc.) that adapts Franz Lisp to the VMS oper­
ating system.

EMES also requires the HAPS production system, a product of Martin
Marietta Denver Aerospace. This software interprets the "rules" on
which EMES is based.

Although EMES requires these support software packages, their use is
completely transparent to the user. The user invokes EMES by typing the
VMS operating system command "EMES." EMES then uses these other packages
internally with no effects visible to the user.

1-3

If the user wishes to modify the rule base, he will also need two addi­
tional software packages:

1) Liszt, a LISP compiler that is compatible with Franz Lisp, created
at the Un~versity of California at Berkeley;

2) HAPSZT, the companion compiler of HAPS, a product of Martin Marietta
Denver Aerospace.

The EMES software requires approximately 75 megabytes of disk space. The
computer needs a minimum of three megabytes of memory for reasonably ef­
ficient operation, and a "working set" of at least 2000 pages should be
allocated to the user. For best performance, use of the computer by
others should be restricted while EMES is running.

All communication between EMES and the user can take place through a Di­
gital Equipment Corporation model VT-lOO terminal (or equivalent), but
full use of the program's graphics capability will require a line prin­

~in addition to the terminal.

B. STUDY CONCLUSIONS AND RECOMMENDATIONS

The energy management expert system was designed as a demonstration pro­
totype and software testbed. The intent was to demonstrate that expert
system technology could be applied to management of a space station po­
wer subsystem. The emphasis in its design was therefore not on produ­
cing a high-performance piece of production software but on:

1) Determining what heuristics are required;

2) Demonstrating that such a system can work, i.e., produce schedules
that experts would agree are reasonable;

3) Determining what constraints such an expert system places on hard­
ware, cost, and time;

4) Demonstrating the capabilities and limitations of such a system.

EMES does produce reasonable answers with the heuristics documented
elsewhere in this report. As it runs it explains its reasoning process
and we have found this reasoning to be logical. The schedules it pro­
duces are reasonable.

The constraints EMES places on hardware, cost, and time are considerably
greater than we had imagined. In its current implementation on a VAX-
11/750 computer, EMES' performance is slow compared to human experts:
it takes hours to perform tasks a human expert could accomplish in a few
minutes. Practical constraints on computer time, system software capa­
bilities, and human patience limrt it to planning for a mission time
period of approximately five hours, and it handles effectively only two

1-4

or three payloads. These limits are not imposed by the amount of know­
ledge EMES needs to reason about the problem, and they do not imply that
an expert system is impractical for the task. We know why its operation
is slow and the reasons are not insurmountable.

First, a major source of inefficiency in EMES comes from design deci­
sions in dividing the logic of EMES between production system rules and
functions written in the LISP computer language. For example, a con­
ceptually simple task, i.e., updating the power consumed by loads, was
found to require 80 "rule firings." In other words, EMES applied 80
production system rules to accomplish what could have been done in a
LISP function probably hundreds of times faster. The conclusion from
this is that production system rules should be used sparingly, prefer­
ably only for heuristics that are to be applied opportunistically. When
a predefined sequence of actions is to be taken, it is probably best to
use a single rule that invokes a function in a procedural language to
carry them out. If EMES were rewritten with this in mind, it might run
two or three times faster.

Second, we designed EMES to run on a VAX computer. LISP-oriented com­
puters on the market will run the same logic approximately five times
faster.

Third, EMES could be recoded to maximize efficiency. This would cer­
tainly involve replacing some rules with LISP procedures as discussed
previously, but it could also mean coding for a different production
system or a second generation of the HAPS production system in which it
is currently coded. Some expert systems have been improved in speed by
recoding in a procedural language, e.g., "e" or Fortran. This could be
an effective, although probably an expensive, solution because the size
of the program will increase greatly.

In its current implementation, EMES requires support from the HAPS pro­
duction system, from the Franz Lisp LISP interpreter, from the system
software known as Eunice, and from the VMS operating system. Altogether
EMES and the support software require the full capability of a VAX com­
puter with three megabytes of memory to operate with anything approach­
ing reasonable efficiency. The size of the program could certainly be
reduced dramatically--perhaps by a factor of 10 or more--if EMES were
recoded in a compiled procedural language. However, the cost of soft­
ware development would certainly be higher, perhaps by a factor of 10
for a system of comparable capability.

The energy management expert system (EMES) requires approx1mately 150
production system "rules" in the HAPS formalism. Because production
systems vary in how efficiently they encode heuristics, the same capa­
bility might require 300 or more rules in a different formalism. Flight
software to perform the same tasks will be more complex because EMES
benefits from a number of simplifying assumptions.

I-5

Flight software will also probably take on such additional tasks as tho­
rough state-of-health monitoring, energy storage management, and fault
detection, isolation, and correction. EMES addresses these problems
only to the extent of recognizing when the electric power available is
inadequate for scheduled activities and knowing how to ensure that it
stores enough energy from the solar arrays during daylight periods. A
different expert system developed by Martin Marietta Denver Aerospace
that requires approximately 200 rules performs fault isolation for a
simulated space station power subsystem.

One might extrapolate from the EMES experience that a flight system
might require 1000 to 2000 HAPS rules, each of which could be expected
to require as much effort as a small subroutine in a high-level pro­
gramming language. However, accurately estimating the development ef­
fort for a new domain is very difficult. The first problem for the es­
timator is that expert systems, even small ones, are difficult to build;
they are not trivial software systems. Therefore, the building of an
expert system will have all the aspects of a large software development
effort.

But what complicates estimating most is that initially no one working
on the project has a clear picture of what is involved in creating the
system. The domain expert knows nothing about building expert systems.
Although he knows his own field, he cannot grasp how difficult it may be
to encode what he knows. In fact, he may never have thought much about
how he goes about making expert decisions. Similarly, the implementers
know how to encode knowledge in general, but they do not yet know the
complexity of the knowledge they must encode for the current project.
They may not even be able to say with conviction that the expert's rea­
soning can be done in a computer at all. For example, after the project
starts they may find that a key element in what the expert does is a no­
toriously difficult problem that artificial intelligence researchers
have struggled with for years.

Because expert systems are new, it is not yet clear how their develop­
ment can best be managed. Many of the management techniques for con­
ventional software can be applied. For example, the concepts of modular
construction and top-down design are applicable. However, new techni­
ques are needed to deal with the fact that a great deal of work must be
done before anyone knows the true size of the problem.

The inherent risk in the design of expert system software argues for a
two-phase design approach. The first phase is the software analog of
hardware breadboarding. During this phase the knowledge engineers work
with the domain expert and extract as much knowledge as they can. They
formulate rules and test them with a crude software product they plan
to throwaway when they are done. This phase provides the understanding
needed to accurately estimate the amount of work phase 2 will require.
When phase 1 ends, they will have an initial set of heuristics; they
will know the major data structures required and will know how fast the
work can progress.

1-6

In the second phase, the project team builds on the work done in the
first phase. However, for t,.,o reasons they do not attempt to salvage
the software developed in the first phase. First, the original software
will generally be of poor design, if it can be said to be designed at
all. It will have been changed many times and its original structure
may be so hidden by patches and alterations that the program has become
difficult to understand. At best, it will not be a clean, coherent,
unified design. Second, if the implementers know they will have to
build on what they produce in phase 1, they will probably not learn as
much about the problem as they would otherwise. For example, the build­
ing of an expert system requires a great deal of experimentation because
it is almost impossible to predict how well a set of rules will solve
problems until one sees them in action on a computer. If the implemen­
ters spend much of their time keeping the program presentable, they will
have less time to experiment. They will also be more reluctant to ex­
periment because of the work it w1l1 entail.

Finally, quality-control constraints may make it difficult for them to
experiment with mUltiple versions of potentially deliverable software
or with software fragments they may want to use to test an idea. This
doesn't mean that they should not be encouraged to document their work
or that they should work without planning. But they should plan to
throw the first system away.

When preparing to build an expert system, it is crucial that a reliable,
thoughtful expert be found. It is hard to overestimate the importance
of this because the working relationship between the expert and the
knowledge engineer is key to the development of the expert system.

The ideal expert will be enthusiastic about the project, openminded, and
able to tolerate frustration well. However, computer experience is not
required. Indeed, such experience may be a handicap because he may try
to predigest the information he gives the "knowledge engineers" to match
the approach he would use in encoding his knowledge. If he does, he is
not likely to present the heuristics he really uses, and he is likely to
skip or gloss over the subtleties he does not know how to manage in con­
ventional software. It is much better if he lets the knowledge engi­
neers solve the encoding problems.

Enthusiasm and tolerance for frustration are vital because the project
will take several months of his time, and for much of that time he will
see nothing happening. He will answer countless "stupid" questions and
often wonder why he must explain "obvious" conclusions in detail.

Openmindedness is equally important because experts rarely appreciate
the amount of work required to encode their knowledge. Some experts­
will state categorically that their expertise is too subtle to be embed­
ded in a computer program. These experts may of course be right, at
least for today's technology, but they will rarely be good judges of the
matter and their skepticism does not help the project. In contrast,
other experts will greatly underestimate the effort because they do not
realize that some tasks easily handled by a three-year-old child are un­
solved problems in artificial intelligence. Such an expert may become
hostile toward the knowledge engineers who, he feels, are incompetent
and are wasting his time. In summary, it takes an open mind to prevent
inaccurate expectations from adversely affecting the project.

1-7

I~

Often more than one expert will be required to develop a useful system.
The builders of the expert system need to be careful of disagreements
among experts because this can result in a program that does not proper­
ly implement any consistent line of reasoning.

As important as finding a good expert is selecting the problem for which
an expert system is to be built. This is difficult because, while many
problems are complicated enough to warrant an expert system, most of
these are far too complicated. Soberly assessed, expert systems are
useful, but the technology is not sufficiently developed for tackling
the more difficult problems. Spacecraft load management appears to be a
good problem for an expert system because it requires diverse knowledge,
flexibility, and speed.

It is important that an adequate knowledge representation system be de­
signed for storing the information and knowledge the expert system will
use. A number of well-known production systems are byproducts of the
development of an expert system. Although some new production systems
have been developed simply because the group wanted to be among the pio­
neers who have developed one, most were developed because no existing
system was sufficiently suited to the new project. It is therefore not
safe to assume that an existing production system will be suitable for
a proposed expert system.

The designers of an expert system should seriously consider the division
between rules and procedural code. Rules should not be used for every­
thing because procedural code is faster for many operations and its pur­
pose is often more transparent. This fact argues for the use of a pro­
duction system that allows insertion of calls to functions or subrou­
tines in a procedural language. Some production systems make this very
difficult, a fact that should be remembered when selecting a production
system.

The use of computers especially designed to efficiently implement LISP
and related languages should also be seriously considered. Virtual­
memory architectures do not appear to be well suited to building large
expert systems because expert systems, by their nature, tend to cause a
large number of "page faults" on such machines. The result is that the
computer may spend more time in shuttling data into and out of memory
than in computing.

For example, on a VAX-ll/750 computer EMES takes approximately three
hours to initialize itself for a seven-orbit schedule. It then takes
an hour per orbit to compute the schedule. Our tests showed that LISP­
oriented machines operate approximately five times as fast. Moreover,
we found that when two users attempted to use an expert system on the
VAX computer simultaneously, the running time went up not by a factor
of two but by a factor of four. The lesson learned from this is that if
a virtual-memory machine is used, it should be populated with as much
real memory as possible, and the expert system should be given exclusive
use of the machine with as large a memory allocation as possible.

1-8

In the area of power subsystem automation with expert systems, we re­
commend a study to model energy storage management in sufficient detail
to allow an accurate estimate of the size and cost of an expert system
to perform this function. The study should address both nickel-cadmium
batteries and regenerative fuel cells and should consider causal reason­
ing as well as ru1e-of-thumb heuristics for managing energy storage.

A fault-isolation expert system should also be interfaced with a bread­
board power system to demonstrate its ability to diagnose faults in real
time from a hardware-generated telemetry stream. This will provide a
level of confidence in the expert system's logic that could not be
gained through all-software simulation.

Another area that should soon be investigated is the interface between
expert systems for space station and the human operators of such sys­
tems. It would be valuable to determine the strengths and shortcomings
of graphical and natural-language interfaces and to design and test one
or both.

An expert system with some of the capabilities EMES demonstrates could
be a useful experiment in its own right. For example, an expert system
could be developed to automate some function on a space station despite
doubts about its ability to handle the task. Its performance could be
evaluated during flight by comparison with the decisions of the human
experts who control the space station. During this evaluation, needed
improvements could be noted and the expert system could be modified so
it could be used for control in a future mission. If the function per­
formed is critical, or if the consequences of a bad decision could be
severe, the expert system might be carried as an experiment a number of
times.

Although EMES demonstrated management of only one aspect of a space sta­
tion power subsystem, the same generic capabilities could be put to work
in other aspects of managing the power subsystem. For example, an ex­
pert system developed under Martin Marietta Denver Aerospace IR&D pro­
ject D-55R demonstrated the ability of such software to detect and iso­
late faults in a space station power subsystem and, to a limited extent,
find a workaround procedure.

An expert system might provide automatic state-of-hea1th monitoring
beyond simple fault detection. For example, it could observe trends in
solar-array degradation and battery capacity, provide interpretations
and, where possible, corrective actions to prevent failures or avoid
operational problems.

Another fruitful area for "applying the capabilities EMES demonstrates
is in energy storage management. Software for this task will be more
complex than EMES, however, because it will have to reason from cause
and effect, whereas EMES rules do not require this. Reasoning from
cause and effect or fundamental understanding of a system is a relative­
ly new topic in the field of expert systems and the technology is not
yet mature. However, the capability can be reasonably expected to be
available in the space station time frame.

1-9

Organizing these capabilities in one expert system is currently beyond
the state of the art. However, it is reasonable to suppose that they
could be built into a hierarchy of cooperating experts with a "manager"
expert system controlling and organizing the activities of the others.
If this is done, the data passed among the expert systems should be min­
imized and highly structured to avoid design problems. The more the ex­
pert systems interact, the more problems can be expected in debugging
them. If development of such a system is contemplated, work should be­
gin soon on a prototype system to identify the design problems such an
architecture will present.

One issue that needs to be addressed is the fact that expert system
software, unlike conventional software, is generally neither "correct"
nor "incorrect." Like human judgment, the performance of expert sys­
tems is better described by assigning a degree of competence. This
means there is always the risk of finding a situation the software is
not competent to handle. The minimal-risk approach to placing expert
systems on space station to manage the power subsystem is to use them
as experimental software that makes recommendations but controls no­
thing, at least initially. As confidence builds in the system's com­
petence, it could be gradually given increased control over the power
subsystem.

EMES demonstrates five generally useful capabilities:

1) Scheduling and revising schedules;

2) Reasoning about priorities that change with time and circumstances;

3) Detection of abnormal situations;

4) Displaying data in the form of tables and graphs;

5) General reasoning ability.

These capabilities might find use in other spacecraft subsystems. For
example, the control and display subsystem could use these abilities for
"intelligent caution and warning." An expert system could preinterpret
the symptoms of abnormal conditions, find possible explanations, and
suggest corrective actions to the crew rather than simply presenting
raw data. As a minimum, the expert system could prioritize the display
of data to emphasize the most important indications. An expert system
with reasoning ability could do this more effectively than a simple al­
gorithmic prioritization scheme because it could recognize more subtle
patterns in the data, reason about possible causes and implications, and
obse~ve trends in data over a period of time.

These abilities might also be put to use in data management. An expert
system could screen some kinds of data to prevent storage or transmis­
sion of redundant or meaningless data; or it could prepare predigested
abstracts of data along with its interpretation of their meaning. These
capabilities would reduce the amount of data a space station would have
to return to earth, reduce the problems of data storage, and decrease
the manpower required to interpret the data.

1-10

Some of the capabilities demonstrated by EMES could be useful in various
payloads. Payloads such as scientific instruments and technology­
development experiments require a large amount of human supervision. An
expert system might substitute for some human activities, reducing costs
and decreasing the chances of something being overlooked because of fa­
tigue or inattentiveness. However, the payload would have to be chosen
with some care because the expert system will itself be expensive to de­
velop. The ideal payload to use an expert system is one that will be
used for more than a year, requires intelligent supervision beyond the
capability of convent~onal software, and does not require such human
capabilities as development of novel theories, invention of new methods
to solve unforeseen types of problems, insight, and intuition. Even
when these abilities are required on occasion, an expert system might be
able to reduce the human expert's burden.

1-11

II.

A.

INTRODUCTION

The purpose of this study was to demonstrate that it is feasible to use
computer software to manage electric power on a space station. To dem­
onstrate this, we developed a software testbed that uses artificial in­
telligence techniques. This software, known as the energy management
expert system (EMES), is a first step toward the long-range objective of
developing and demonstrating prototype software to automate such tasks
as managing loads, power, and resources, monitoring state of health, and
detecting and isolating faults in the space station power subsystem.
This study also investigated the state of the art in such software and
analyzed the applicability of the generic capabilities of the software
to other space station subsystems.

DEFINITION OF AN EXPERT SYSTEM

An expert system is a computer program that can completently act in the
role of a human expert in a narrow field. Such programs are a new de­
velopment in artificial intelligence; most of the work has been done in
the past decade. This work has received more attention than other arti­
ficial intelligence research because it has produced software of signi­
ficant commercial value and promises to produce much more.

Although researchers do not completely agree on what distinguishes an
expert system from conventional software, a number of differences are
readily observed in practice. Many of these differences are more a
matter of convenience or custom than necessity. For example, most ex­
pert systems are developed with support software known as a "production
system." This practice has become so universal that many workers in the
field cannot conceive of doing it any other way.

Typically, the programmer specifies the expert system's knowledge to the
production system, using a formalism that differs significantly from
such conventional computer languages as Fortran, FORTH, Pascal, and
LISP. When the production system integrates this knowledge, it becomes
a major part of the finished product, saving a great amount of time in
software design and coding. Some production systems also come with use­
ful software tools for implementing and testing the expert system.

However, the use of a production system does not make software an expert
system. The primary differences between expert systems and conventional
software are:

1) How they are built;

2) How they solve problems;

3) What problems they solve.

11-1

1.

2.

How They Are Built

Expert systems are composed of rules or encoded knowledge painstakingly
derived from a series of interviews between the bu~lders of the expert
system and one or more human experts in some field. In general, the
builders or ''knowledge engineers" have little understanding of the field
when they start; their expertise is not in the domain of the expert sys­
tem but in extracting knowledge from experts and transforming it into a
form the computer can use.

This contrasts with the development of conventional floftware because of­
ten the designers of such software are either domain experts themselves
or at least can scope the task through knowledge of the algorithms re­
quired and comparison with similar software with which they are famil­
~ar. They may go to experts for algorithms, data, and advice, but typi­
cally they do not attempt to embed the experts' whole reasoning process
into the software.

This difference could largely disappear for many expert systems in the
near future with the development of tools that allow the expert to di­
rectly transfer his knowledge to the computer. This trend started with
a program called TEIRESIAS [Davis 1977], which acts as an assistant in
building expert systems. Recently a software package known as the auto­
mated reasoning tool (ART) has been introduced to allow novice engineers
to create full-scale expert systems [Williams 1984].

How They Solve Problems

Expert systems are often said to differ from conventional software in
their use of heuristics, not algorithms, as the backbone of their logic.
The chief difference between an algorithm and a heuristic is that an al­
gorithm is guaranteed to produce a desired result. A heur~stic isn't;
it corresponds to a human "rule of thumb" that usually gives satisfac­
tory results but can sometimes fail. The failure can be the production
of a wrong or suboptimal answer, or the heuristic may fail to find an
answer at all.

Heuristics are not used as a substitute for efficient and effective al­
gorithms. Rather, they are used when no satisfactory algorithm is
known, as is often the case for the complex problems expert systems are
designed to solve. For example, optimal load scheduling for a power
system is impractical on a computer or even in the human mind. The num­
ber of possible solutions increases dramatically with the number of
items to be scheduled, and no known algorithm to produce an optimal
schedule is much smarter than trial and error. Algorithmic solution
therefore takes far too long to be useful for problems of realistic size
or practical importance. But human experts can schedule loads reason­
ably well, even when the problem is large, by using rules of thumb.
These rules do not guarantee an optimal schedule; they don't even guar­
antee a good schedule. But they almost always produce an acceptable
schedule if one is possible. Expert systems solve problems by mimick-
ing the methods the experts use.

II-2

Although conventional software has made extensive use of heuristics, ex­
pert systems tend to use a larger collection of heuristics, and heuris­
tics that are less dependent on one another. They also tend to apply
their heuristics more opportunistically, i.e., they examine the situa­
tion, find an applicable heuristic, use it, see how this has changed the
situation, and repeat the process until either the problem is solved or
none of the heuristics is applicable. Conventional software, in con­
trast, tends to use a small set of closely related heuristics that are
applied sequentially or according to some explicitly coded sequencing
scheme. Because expert systems are not constrained to a predefined pro­
cessing sequence, they can often deal with uncertainty and missing in­
formation better than conventional software.

Expert systems also tend to search for a solution by attaining goals
that are set up during program execution; conventional software tends to
have only implicit goals, and these are thought out in advance by the
programmer and encoded into the program in a prescribed order.

Finally, in expert systems the emphasis is on domain-specific knowledge
rather than on specific techniques and this knowledge is largely quali­
tative or symbolic, not quantitative. For example, an expert system
typically reasons about the relationships among objects. Conventional
software is usually more concerned with manipulating objects according
to a predetermined processing method.

3. What Problems They Solve

Because expert systems are designed primarily for the implementation of
heuristics, the types of problems expert systems solve best differ from
the types of problems handled well by conventional software. If an al­
gorithm solves a problem with acceptable speed, or if an exact answer is
always required, an expert system should not be built to solve it. How­
ever, if there is no known algorithm, or if an answer is required more
quickly than an algorithm can provide it, an expert system is worth con­
sidering. Expert systems are best used in fields where humans do most
of the problem solving because many such domains require educated guess­
ing. Expert systems have been effective in incorporating this ability.

In summary, no clear line separates expert systems from ordinary soft­
ware, just as there is no clear line between great art and mediocre art.
Nevertheless, just as art critics generally concur in classifying a
work, the pract1t10ners of artificial intelligence are in reasonable
agreement about whether a given program qualifies as an expert system.

II-3

B. DESCRIPTION OF EMES

EMES is a prototype expert system computer program designed to demon­
strate that such a system can manage the allocation of power to the var­
ious electrical components of a simulated space station. It sequences
the operation of these components in an attempt to best use the avail­
able power while meeting basic mission requirements and energy manage­
ment constraints. EMES also permits graceful degradation of the space­
craft under abnormal conditions.

This demonstration software illustrates the kinds of tasks an expert
system could handle in a real space station scenario. In future appli­
cations where automation of various power system functions is expected
to playa crucial role, such a system might extend the life of critical
power system components as well as reduce the required size of energy
storage devices.

The EMES program provides onboard automation of energy management under
normal, failure, and degraded modes of spacecraft operation. This in­
volves operation of all the housekeeping subsystems and payload equip­
ment that consume power.

EMES operates in three major phases: library development, mission de­
velopment, and mission execution. Of these, only the mission execution
phase involves artificial intelligence. The other two phases set up a
problem for EMES to solve, a task that corresponds to premiss ion activi­
ties.

During the library development phase, the user defines a "library" of
electrical loads with which to develop mission models. For each load,
the user specifies a number of attributes, including power consumption
and duty cycle. To make defining loads more convenient, the load li­
brary initially contains many predefined loads; the user can then add
others unique to the mission.

During the mission development phase the user constructs a mission using
the loads in the library. In addition to specifying which loads are to
be on the spacecraft during the mission, the user provides information
to define the orbit and spacecraft attitude. The system then generates
a mission definition file that is ready to be processed by the intelli­
gent portion of EMES.

The final phase is mission execution during which EMES inspects the mis­
sion timeline, looking for resource requirements that cannot be met and
energy management constraints that have been violated. The expert sys­
tem modifies the mission time line and produces a new one in which no
constraints are violated. If the power available is suddenly reduced,
EMES has the intelligence to reason about which loads can safely be re­
moved and which cannot be removed without loss of data, product, or
capability.

II-4

While working on the schedule rev1s10ns, EMES explains its decisions.
Explanation is an important feature of an expert system because heuris­
tics, not algorithms, are used to solve problems. The explanations al­
low humans to follow the line of reasoning that leads to the revis~d
schedule, either to approve its decisions or to gain confidence in its
ability. To aid the human in overseeing the scheduling, EMES provides
tabular and graphical displays of the information it uses in making de­
cisions. The user obtains this information by selecting options from a
set of menus.

The EMES program was designed to run on a Digital Equipment Corporation
VAX-11/7xx-series computer under the VMS operating system. It requires
Franz Lisp and Eunice as support software. Franz Lisp, created at the
University of California at Berkeley, is an interpreter for a dialect of
the LISP computer language. Eunice is a software package (produced by
the Wo11ongong Group, Inc.) that adapts Franz Lisp to the VMS operating
system.

EMES also requires the HAPS production system, a product of Martin
Marietta Denver Aerospace. This software interprets the "rules" on
which EMES is based.

Although EMES requires these support software packages, their use is
completely transparent to the user. The user invokes EMES by typing the
VMS operating system command "EMES." EMES then uses these other packages
internally with no effects visible to the user.

If the user wishes to modify the rule base, he will also need two addi­
tional software packages:

1) Liszt, a LISP compiler that is compatible with Franz Lisp, created
at the University of California at Berkeley;

2) HAPSZT, the companion compiler of HAPS, a product of Martin Marietta
Denver Aerospace.

The EMES software requires approximately 75 megabytes of disk space.
The computer needs a minimum of three megabytes of memory for reasonably
efficient operation, and a "working set" of at least 2000 pages should
be allocated to the user. For best performance, use of the computer by
others should be restricted while EMES is running.

All communication between EMES and the user can take place through a Di­
gital Equipment Corporation model VT-IOO terminal (or equivalent), but
full use of the program's graphics capability will require a line prin­
ter in addition to the terminal.

II-S

c. BENEFITS EMES PROVIDES

The development of EMES accomplished several things important to NASA.
It is the first expert system ever developed to address the problem of
spacecraft energy management. Currently some of the things EMES does
are handled by algorithmic load shedding. The problem with that approach
is that it does not reason about how priorities change with time and
circumstances. EMES can also do scheduling, which has traditionally
been an expensive human-intensive task.

Second, EMES is a first step toward building flight software. It pro­
vides an initial set of heuristics, highlights the major problems such
software must address, and illustrates how those problems can be solved.

Finally, EMES provides a benchmark for estimating the speed and hardware
requirements for a flight system. It will also allow NASA to more ac­
curately forecast the size and capability of flight expert system soft­
ware and determine how much time and effort will be required to design
and implement it.

II-6

III. CONCLUSIONS AND RECOMMENDATIONS

A. EME S PERFORMANCE

The energy management expert system (EMES) was designed as a demonstra­
tion system and software testbed. The intent was to demonstrate that
expert system technology could be applied to management of a space sta­
tion power subsystem. The emphasis in its design was therefore not on
producing a high-performance piece of production software but on:

1) Determining what heuristics are required;

2) Demonstrating that such a system can work, i.e. produce schedules
that experts would agree are reasonable;

3) Determining what constraints such an expert system places on hard­
ware, cost, and time;

4) Demonstrating the capabilities and limitations of such a system.

EMES does produce reasonable answers with the heuristics documented
elsewhere in this report. As it runs it explains its reasoning process,
and we have found this reasoning to be logical. The schedules it pro­
duces are reasonable.

The constraints EMES places on hardware, cost, and time are considerably
greater than we had imagined. In its current implementation on a VAX-
11/750 computer, EMES' performance is slow compared to human experts.
It takes hours to perform tasks a human expert could accomplish in a few
minutes. Practical constraints on computer time, systems software capa­
bilities, and human patience limit it to planning for a mission time
period of approximately five hours, and it handles effectively only two
or three payloads. These limits are not imposed by the of the amount of
knowledge EMES needs to reason about the problem, and they do not imply
that an expert system is impractical for the task. We know why its op­
eration is slow, and the reasons are not insurmountable.

First, a major source of inefficiency in EMES comes from design deci­
sions in dividing the logic of EMES between production system rules and
functions written in the LISP computer language. For example, a concep­
tually simple task, i.e., updating the power consumed by loads, was
found to require 80 "rule firings." In other words, EMES applied 80
production system rules to accomplish what could have been done in a
LISP function probably hundreds of times faster. The conclusion from
this is that production system rules should be used sparingly, prefer­
ably only for heuristics that are to be applied opportunistically. When
a predefined sequence of actions is to be taken, it is probably best to
use a single rule that invokes a function in a procedural language to
carry them out. If EMES were rewritten with this in mind, it might run
two or three times faster.

III-l

B.

Second, we designed EMES to run on a VAX computer. LISP-oriented co~
puters on the market will run the same logic approximately five times
faster.

Third, EMES could be recoded to maximize efficiency. This would cer­
tainly involve replacing some rules with LISP procedures as discussed
previously, but it could also mean coding for a different production
system or a second generation of the HAPS production system in which it
is currently coded. Some expert systems have been improved in speed by
recoding in a procedural language, e.g., "c" or Fortran. This could be
an effective, though probably an expensive, solution because the size of
the program will increase greatly.

In its current implementation, EMES requires support from the HAPS pro­
duction system, from the Franz Lisp LISP interpreter, from software
known as Eunice, and from the VMS operating system. Altogether EMES and
the support software require the full capability of a VAX computer with
three megabytes of memory to operate with anything approaching reason­
able efficiency. The size of the program could certainly be reduced
dramatically--perhaps by a factor of 10 or more--if EMES were recoded
in a compiled procedural language. However, the cost of software de­
velopment would certainly be higher, perhaps by a factor of 10 for a
system of comparable capability.

PLANNING FOR AND MANAGING FUTURE EXPERT SYSTEMS

EMES requires approximately 150 production system "rules" in the HAPS
formalism. Because production systems vary in how efficiently they en­
code heuristics, the same capability might require 300 or more rules in
a different formalism. Flight software to perform the same tasks will
be more complex because EMES benefits from a number of simplifying as­
sumptions.

It is also likely that flight software will take on such additional
tasks as thorough state-of-health monitoring, energy storage manage­
ment, and fault detection, isolation, and correction. EMES addresses
these problems only to the extent of recognizing when the electric power
available is inadequate for scheduled activities and knowing how to en­
sure that it stores enough energy from the solar arrays during daylight
periods. A different expert system developed by Martin Marietta Denver
Aerospace performs fault isolation for a simulated space station power
subsystem and requires approximately 200 rules.

One might extrapolate from the EMES experience that a flight system
might require 1000 to 2000 HAPS rules, each of which could be expected
to require as mach effort as a small subroutine in a high-level pro­
gramming language. However, accurately estimating the development ef­
fort for a new domain is very difficult. The first problem for the es­
timator is that expert systems, even small ones, are difficult to build;
they are not trivial software systems. Therefore, the building of an
expert system will have all the aspects of a large software development
effort.

III-2

However, the fact that initially no one working on the project has a
clear picture of what is involved in creating the system complicates es­
timating the most. The domain expert knows nothing about building ex­
pert systems. Although he knows his own field. he cannot grasp how
difficult it may be to encode what he knows. In fact, he may never have
thought much about how he goes about making expert decisions. Similar­
ly, the implementers know how to encode knowledge in general, but they
do not yet know the complexity of the knowledge they must encode for the
current project. They may not even be able to say with conviction that
the expert's reasoning can be done in a computer at all. For example,
after the project starts they may find that a key element in what the
expert does is a notoriously difficult problem that artificial intelli­
gence researchers have struggled with for years.

Because expert systems are new, it is not yet clear how their develop­
ment can best be managed. Many of the management techniques for conven­
tional software can be applied. For example, the concepts of modular
construction and top-down design are applicable. However, new techni­
ques are needed to deal with the fact that a great deal of work must be
done before anyone knows the true size of the problem.

The inherent risk in the design of expert system software argues for a
two-phase design approach. The first phase is the software analog of
hardware breadboarding. During this phase the knowledge engineers work
with the domain expert and extract as much knowledge as they can. They
formulate rules and test them with a crude software product that they
plan to throwaway when they are done. This phase provides the under­
standing needed to accurately estimate the amount of work phase 2 will
require. When phase 1 ends, they will have an initial set of heuris­
tics--they will know the major data structures required and they will
know how fast the work can progress.

In the second phase, the project team builds on the work done in the
first phase. However, for two reasons they do not attempt to salvage
the software developed in the first phase. First, the original soft­
ware will generally be of poor design, if it can be said to be designed
at all. The software will have been changed many times and its original
structure may be so hidden by patches and alterations that the program
has become difficult to understand. At best, it will not be a clean,
coherent, unified design. Second, if the implementers know they will
have to build on what they produce in phase 1, they will probably not
learn as much about the problem as they would otherwise. For example,
the building of an expert system requires a great deal of experimenta­
tion because it is almost impossible to predict how well a set of rules
will solve problems until one sees them in action on a computer. If the
implementers spend much of their time keeping the program presentable,
they will have less time to experiment. They will also be more reluc­
tant to experiment because of the work it will entail. Finally,
quality-control constraints may make it difficult for them to experiment
with mUltiple versions of potentially deliverable software or with soft­
ware fragments they may want to use to test an idea. This does not mean
that they should not be encouraged to document their work or that they
should work without planning. But they should plan to throw the first
system away.

111-3

When preparing to build an expert system, it is crucial that a reliable,
thoughtful expert be found. It is hard to overestimate the importance
of this because the working relationship between the expert and the
knowledge engineer is key to the development of the expert system.

The ideal expert will be enthusiastic about the project, openminded, and
able to tolerate frustration well. However, computer experience is not
required. Indeed, such experience may be a handicap, because he may try
to predigest the information he gives the ''knowledge engineers" to match
the approach he would use in encoding his knowledge. If he does he is
not likely to present the heuristics he really uses, and is likely to
skip or gloss over the subtleties he does not know how to manage in con­
ventional software. It is much better if he lets the knowledge engi­
neers solve the encoding problem.

Enthusiasm and tolerance for frustration are vital because the project
will take several months of his time, and for much of that time he will
see nothing happening. He will answer countless "stupid" questions and
often wonder why he must explain "obvious" conclusions in detail.

Openmindedness is equally important because experts rarely appreciate
the amount of work required to encode their knowledge. Some experts
will state categorically that their expertise is too subtle to be em­
bedded in a computer program. These experts may be right, at least for
today's technology, but they will rarely be good Judges of the matter
and their skepticism does not help the project. In contrast, other ex­
perts will greatly underestimate the effort because they do not realize
that some tasks that are easily handled by a three-year-old child are
unsolved problems in artificial intelligence. Such an expert may become
hostile toward the knowledge engineers who, he feels, are incompetent
and are wasting his time. In summary, it takes an open mind to prevent
inaccurate expectations from adversely affecting the project.

Often more than one expert will be required to develop a useful system.
The builders of the expert system must be careful of disagreements among
experts because this can result in a program that does not properly im­
plement any consistent line of reasoning.

As important as finding a good expert is selecting the problem for which
an expert system is to be built. This is difficult because although
many problems are complicated enough to warrant an expert system, most
of these are far too complicated. Soberly assessed, expert systems are
useful, but the technology is not developed enough for tackling the more
difficult problems. Spacecraft load management appears to be a good
problem for an expert system because it requires diverse knowledge,
flexibility, and speed.

It is important that an adequate knowledge representation system be de­
signed for storing the information and knowledge the expert system will
use. A number of well-known production systems are byproducts of the
development of an expert system. Although some new production systems
have been developed simply because the group wanted to be among the pio­
neers who have developed one, most were developed because no existing
system was sufficiently well suited to the new project. It is therefore
not safe to assume that an existing production system will be suitable
for a proposed expert system.

111-4

The designers of an expert system should seriously consider the division
between rules and procedural code. Rules should not be used for every­
thing because procedural code is faster for many operations and its pur­
pose is often more transparent. This fact argues for the use of a pro­
duction system that allows insertion of calls to functions or subrou­
tines in a procedural language. Some production systems make this very
difficult, a fact that should be considered when selecting a production
system.

The use of computers especially designed to efficiently implement LISP
and related languages should also be seriously considered. Virtual­
memory architectures do not appear to be well suited to building large
expert systems because these systems, by their nature, tend to cause a
large number of "page faults" on such machines. The result is that the
computer may spend more time in shuttling data into and out of memory
than in computing.

For example, on a VAX-II/750 computer, EMES takes approximately three
hours to initialize itself for a seven-orbit schedule. It then takes
an hour per orbit to compute the schedule. Our tests showed that
LISP-oriented machines operate approximately five times as fast. More­
over, we found that when two users attempted to use an expert system on
the VAX computer simultaneously, the running time went up not by a fac­
tor of two but by a factor of four. The lesson learned from this is that
if a virtual-memory machine is used, it should be populated with as much
real memory as possible, and the expert system should be given exclusive
use of the machine with as large a memory allocation as possible.

C. RECOMMENDED FUTURE ACTIVITY

In the area of power subsystem automation with expert systems, we re­
commend a study to model energy storage management in sufficient detail
to allow accurate estimation of the size and cost of an expert system to
perform this function. The study should address both nickel-cadmium
batteries and regenerative fuel cells and should consider causal reason­
ing as well as rule-of-thumb heuristics for managing energy storage.

A fault-isolation expert system should also be interfaced with a bread­
board power system to demonstrate its ability to diagnose faults in real
time from a hardware-generated telemetry stream. This will provide a
level of confidence in the expert system's logic that could not be
gained through all-software simulation.

Another area that should soon be investigated is the interface between
expert systems for space station and the human operators of such sys­
tems. It would be valuable to determine the strengths and shortcomings
of graphical and natural-language interfaces and to design and test one
or both.

III-5

IV.

A.

ASSUMED SPACE STATION CONFIGURATION

EMES is designed to demonstrate that expert system software can compe­
tently manage load scheduling, i.e. the allocat10n of power to the var­
ious electrical components of a simulated space station. In scheduling,
EMES does far more reasoning than a simple load-shedding algorithm would
because EMES does not assign loads fixed priorities; it reasons about
the nature of each load in deciding when it should be scheduled and for
how long.

Such detailed reasoning cannot be done without considerable knowledge of
the space station configuration, the payloads, and the nature of the
power subsystem. We therefore describe here the details of the space
station modeled for EMES. We also define the extent to which EMES is
aware of these details.

CONFIGURATION DETAILS

The contract statement of work called for a "generic" power subsystem,
and the software design was not to rely on the details of a specific
configuration. This requirement was met. However, to exercise EMES we
found it necessary to assemble a set of baseline space station subsys­
tems to allow us to assign power consumption values and establish oper­
ating characteristics. It also provided a framework within which to op­
erate various payloads. The specific details of the subsystems are not
built into EMES, however. For example, the expert system rule base does
not depend on a specific number of power modules, a specific power capa­
bility, etc. When it needs specific details, it gets them from a disk
file produced by Fortran analysis software that is readily altered with
no impact on ~he logic of the expert system itself.

Because previous work had identified the major space station subsystems,
these were selected for the baseline configuration. This configuration
consists of the following subsystems and payloads:

1) Commercial payloads;

2) Communication and tracking (CTS);

3) Control and display (CDS);

4) Data management (OMS);

5) Environmental control (ECS);

6) Guidance, navigation, and control (GNCS);

IV-l

'I
7) Life support (LSS);

8) Electric power (EPS);

9) Science payloads;

10) Technology development payloads;

11) Thermal control (TeS).

The initial approach was to develop a few simple block diagrams to char­
acterize the design of the space station. From this we would develop a
set of loads for all the major components. It was soon determined, how­
ever, that most of our work would be influenced by the application of
payload-type loads rather than manipulating the space station subsystem
loads. For this reason, a major shift of emphasis was made to establish
a set of reasonable payloads that would be manipulated or scheduled to
exercise the EMES model.

The space station subsystems are represented by simplified block dia­
grams (Fig. IV-l through IV-9).

Be=]
88

Commercial
Payload

Figure IV-l Major Space Station Systems

The power subsystem we baselined uses three battery modules, each sup­
ported by a solar array module arranged in two large panels. For day­
light operation, the subsystem is specified to deliver an average of
34.2 kW per module over life and 32.5 kW at end of life. For night op­
eration, the module uses batteries with a capacity of 30 kWh per module.
The estimated depth of discharge is 20%. These design parameters give
an estimated battery power capability for each orbit of

(total battery capacity)(depth of discharge)/(dark time),

which equals 36 kW with the parameters cited previously and an assumed
dark time of 30 minutes.

Such a power subsystem would support a total day load of at least 97.5
kW and a night load of approximately 36 kW.

IV-2

(1'

CDS

CDS

OMS

OMS

OMS

CTSVT

Commands

Data

..
Data

Display

Housekeepmg
Data

!:I0usekeepmg
Oata : OMS
Data

CTSVR

VOice
Transceiver

Receiver
50W

Transmitter
50W

(CTSCRI

Command
Decoderl 50W
Data
Receiver

(CTSDXMI

Data 50W
Transmitter

(CTSRDRI
1000W

(CTSXPNI
50W

(CTSGPSI

I .. 30W GPS
Receiver

[Note' Wattage numbers are estimates only

Figure IV-2 CTS Concept Configurations

All Other
Subsystem
Control

EPS
Control Be
Distribution

OMS
Data
Controller

Figure IV-3 CDS Concept Configuration

IV-3

(, /iI'

EPS ~
OMS ~

GNCS r
TCS t-
CTS F

Transducer
Power
Supply

MinImum
Housekeeping

MIxed
Housekeeplngl
Payload

Payload

AID
Spacecraft
MultIplexer
(Typ)

r-,
I Tape I

Deck...!
'--

Data Controller

t
BB

LSS ~ DDDEJ CDS

ECS r:-
CDS ~

Figure IV-4 DMS Concept Configuration

Cabin AIr
Makeup
Unit

HumIdIty
Control
Unit

Deodorizer
Unit

ElectrostatIc
PrecIpItator
(Purifier)
Unit

Cabin
Heatlngl
Cooling

Note ThIS subsystem IS combined WIth the LSS

Figure IV-5 ECS Subsystem Concept Configuration

IV-4

Command
Recelverl
Decoder
(CTS)

Data
Links
(OMS)

~
~

Star
Tracker

FineSun
Sensors

Sun
AcquIsition

Figure IV-6 GNCS Concept Configuration

Resupply
Water

Water In

1
N2 Makeup Unprepared Food, Bone Dry

-- ____ R.!UP~y _FOOd __ 1 __ ---
Metabolic Latent

Feces Water CO2 Crewmen

~--------------------~~

l
I
I
I
I
I
I
I
I

Cabin

Metabolic Urine Water ~---"T""---""'~ Water;;.....;.;.;.;;..;.;.;;;.;.;;.;....-_________ ...
02 Makeup Net Cabin

02 for EVA

°2
Generation

EC/LSS

Condensate

Figure IV-7 LSS Subsystem Concept

IV-5

Drink/Food
Preparation -------,

Waste
Water

02 Water
Generation Reclamation

Sludge
Water

Used
Hygiene
Water

Hygiene
Latent

Cabin Leakage

Airlock Losses

Solar
Array
Module(s)

Battery
Module 1

Battery
Module 2

Battery
Module 3
(Special
Instrumentation)

Converters

Inverters

B
Regulators

Bus
Distribution

Bus
Control

System
Protection

Control
Electronics

Load
Distribution

Load
Control

Power
Supplies

CMS
Inverters

Figure IV-8 EPS Concept Configuration

Heat Out (External)

r---,
I Space I

Radiation L. ___ .J

Heat I nlOut (I nternal)

Power
Load

Variable

I Makeup I (EC/LSS)

Hardware
Plumbmg
Ducts

Heat In (External

r---'
I Solar I

Flux .J
'----

Figure IV-9 rcs Concept Configuration

IV-6

:1

The aggregate baseline load power consumption is 60 kW for daylight
operations and 25 kW for night operations. If the night load is fully
used during the eclipse portion of each orbit, the daytime charging load
will be somewhat less than the night load because the charge time is ap­
proximately twice as long. Specifically, for a 90-minute orbit and a
charging efficiency of 85%, the daytime charging load will be 21.18 kW.
Then for day payloads, the power available is approximately

(power available) - (baseline load power) - (battery charging power),

which equals 16.32 kW, a rough figure to use for daytime scheduling.

For night payloads the power available is

(power available) - (baseline load power),

which equals 11 kW, a rough figure to use for nighttime scheduling.

For each category of payload, i.e. commercial, science, and technology
development, a set of three payloads was identified. These were:

1) Commercial payloads,

a) Materials processor,

b) Medical mixer,

c) Biology cell;

2) Science payloads,

a) Day mapper,

b) Sun pointer,

c) Star pointer;

3) Technology development payloads,

a) Night mapper,

b) Laser communication unit,

c) Battery management expert system.

The payloads were "designed" with a variety of characteristics that
would constrain scheduling. These constraints created a number of real­
istic problems for intelligent decision-making in EMES. Although the
names of the payloads are arbitrary, they were chosen to help the user
grasp their intended functions. To this extent they may be considered
"generic" payloads, and a host of other types could have just as easily
been selected.

IV-7

1

The major characteristics selected for the payloads are:

1) Some payloads operate exclusively during daylight, some exclusively
at night, and others either day or night;

2) Some require continuous power, wh1le others may have the power in­
terrupted without harm;

3) Some require a warmup period, and some require an active or passive
cooldown period;

4) The payloads differ in duty cycle from short to long;

5) Some require pointing. This may involve a maneuver prior to activa­
tion, continuous pointing, pointing at a specified time, and/or
pointing at a specified target.

Although practical payloads have many other characteristics that could
be considered, this set provides a good cross-section of typical con­
straints.

The user of EMES can change the payload power consumption values and
other characteristics by answering a series of questions EMES asks.
This allows the user to investigate the performance of EMES with var­
ious levels of problem difficulty. The nominal power requirements of
the loads are tabulated.

Name Power Required, kW

Materials processor 12
Medical mixer 2
Biology cell 1.4
Day mapper 8
Sun pointer 10
Star pointer 6
Night mapper 5
Laser communications unit 11
Battery management expert system 4

B. CONFIGURATION GROUND RULES

In a demonstration system with a limited development time, it is not
practical to consider all the problems of flight software for a real
space station. A number of ground rules were therefore developed to aid
in defining and bounding the problem:

1) For normal operations, all subsystems are free of hardware and soft­
ware failures;

2) Any redundancy, switchover, crossfeeds, etc are not included;

IV-8

T

3) All subsystems are near-ideal state-of-the-art equipment. They are
sophisticated and can perform all necessary tasks, including com­
plex data management, precise voltage regulation for all buses, pre­
cise guidance and navigation, target acquisition and lock on target,
mUltiple axis control, flexible communications, and maintenance of
all life support requirements and space station integr1ty for long
life;

4) The number of crew members is not a factor in this study;

5) All space station loads are gener1c representations only and may be
changed as required;

6) Day prime power is from solar arrays;

7) Night prime power is from batteries;

8) The power system size may be changed as required;

9) Power distribution losses are absorbed in the baseline loads;

10) There are no special charging components in the power subsystem;

11) Thermal control provides for and maintains the required space sta­
tion thermal balance at all times;

12) The life support subsystem and environmental control provide all re­
quired life support functions and an ideal working environment;

13) Ground stations or relay links are available at all times for com­
mand or data uplink or downlink;

14) Voice communication links are available at all times;

15) The space station is collecting housekeeping data at all times for
storage or downlink;

16) The capability exists to handle a broad mix of analog and digital
data and a wide range of data rates;

17) Data may be collected, stored, transmitted, and received simultan­
eously;

18) Selected data may be retrieved and displayed when desired;

19) The guidance, navigation and control subsystem can perform all de­
sired pointing maneuvers and maintain an absolute or relative
pointing orientation;

20) Pointing refers to an allocation and may be accomplished by the
space station itself or by a platform;

21) Payloads are arbitrarily named and were selected to provide a var­
iety of operating requirements, duty cycles, and constraints;

IV-9

C.

1

22) The payload power consumption levels may be adjusted as required;

23) The payload success criteria may be adjusted as required;

24) Any payload may have its success criteria specified by a higher
authority.

HOW INTIMATELY EMES KNOWS THE CONFIGURATION

Because EMES is a testbed for demonstrating a generic power system man­
agement capability, we tried to make it as independent as possible of
any specific power subsystem configuration. For example, although EMES
needs specific information about how much power is available at differ­
ent times, the details of calculating this information can be divorced
from the reasoning of the expert system itself. Specifically, EMES uses
Fortran software to provide a profile of power available during each
6-minute time slot. This software is equivalent to the analysis soft­
ware a human expert might use in planning a mission. So although EMES
reasons about the information in a data file this software produces, it
does not know the configuration details the Fortran software needed to
produce the data. An entirely new power system could be modeled for
EMES without changing the reasoning of the expert system itself; only
the Fortran analysis software would need to be changed. Furthermore, if
the change is minor, this software can be changed very quickly. For ex­
ample, the number of power modules is simply a parameter that can be
changed by modifying one line in the Fortran software.

Some of the heuristics EMES uses would not be applicable if the power
system did not rely on solar power. For example, EMES knows that, when
there is a choice, it is better to use power in the daytime than at
night because energy storage always involves some inefficiency. A radi­
cally different power subsystem, e.g., nuclear, would have a different
set of constraints. However, the EMES rules should be suitable for a
variety of energy storage methods as long as the principal source of
energy is solar power. In particular, we attempted to use rules that
would be equally applicable to subsystems using batteries, fuel cells,
or flywheels for energy storage.

Much of this generality was achieved by pushing subsystem details into
the Fortran analysis software. For example, constraints on depth of
discharge are embedded in this software. However, some of the knowledge
could not conveniently be divorced from the EMES rule-based logic. For
example, to make proper use of its knowledge that nickel-cadmium batter­
ies need reconditioning periodically, an expert system needs more than
a table of data; it needs rules for determining when and how to recondi­
tion. These rules are closely tied to the choice of energy storage
technology but are not readily removed from the scheduling logic. In
minimizing this system-specific knowledge, we were sometimes forced to
make EMES less intelligent than it might otherwise be.

IV-IO

V. HOW EMES IS USED

A. OVERVIEW OF OPERATION

B.

Before the intelligent portion of EMES begins to run, the user sets up a
problem for it to solve by selecting options from menus and answering
questions the program asks. The user can then define the characteris­
tics of electrical loads and the constraints these loads place on sche­
duling. He can also specify a number of mission parameters, including
the orbit, the time interval for which EMES is to prepare a schedule,
success criteria, and the level of degradation of the power subsystem.
This problem-setup phase of EMES operation corresponds to premiss ion ac­
tivities and does not use the intelligence of the expert system.

After the user has defined the electrical loads and the mission charac­
teristics, he can start execution of the intelligent portion of EMES to
schedule the loads.

While producing the schedule, EMES explains its reasoning. Although
some production systems have built-in explanation facilities for this
purpose, such facilities were not appropriate for EMES because they are
designed for expert systems that consult with the user by asking a ser­
ies of questions and then giving advice. In such programs the consulta­
tion is directed by the intelligence of the expert system, and the ex­
planation consists of the rationale for asking each question or drawing
each conclusion. In contrast, the EMES question-and-answer operations
are completed before the intelligent part of EMES starts working. The
explanation facility in EMES is therefore not a part of the "HAPS" pro­
duction system used to implement the program. Instead, it is a comment
routine activated during the execution of certain key rules. Though
this routine is not part of the production system, it is not unique to
EMES and can be used by any expert system implemented with the HAPS pro­
duction system.

After EMES has scheduled the loads, the user can request any of four
types of graphical reports--power capability, load profile, power mar­
gin, or battery depth of discharge. The user can direct the program to
print the graphs on paper or display them on the computer terminal.

DETAILS OF DIALOG WITH THE USER

EMES contains separate modules for library development, mission develop­
ment, and mission execution. The first two correspond to ground ac­
tivities before the mission; the latter simulates the flight software.

V-l

The load library development module allows the user to construct and
maintain a set of load definitions with which to develop mission models.
Loads have various user-specifiable attributes, e.g., power consumption
and duty cycle. The library initially contains many predefined pay­
loads, and the user is permitted to add to these at any time. The li­
brary also contains a set of predefined subsystem loads. These loads
are necessary to maintain normal spacecraft operation and are automatic­
ally integrated into the spacecraft timelines. Loads of th1s type in­
clude guidance, navigation and control, thermal control, and life sup­
port and environmental control among others.

The mission development module allows the user to construct a mission
using the loads in the system load library. To construct a mission, the
user lists the information required for orbit and attitude definition
and then specifies the set of loads he wishes on board the spacecraft
during the mission. The software uses this information to generate a
mission definition file that can be processed by the EMES m1ssion execu­
tion module to simulate a mission.

After the user has defined the loads and the mission, the mission exe­
cution module can be used. This is the module that simulates the flight
software. It inspects the mission timeline, looking for any resource re­
quirements that cannot be met and energy management constraints that
have been violated. It then modifies the mission timeline and produces
a new one in which no constraints are violated. If the mission defini­
tion does not initially violate any power constraints, EMES schedules
the payloads requested during mission definition.

The user selects the module he needs by using a dispatching module
called the top-level executive. This module directs the user through
library development, mission development, and mission execution. It is
started by typing the command "EMES" after the VMS operating system
prompt:

$ EMES

When EMES starts, it presents to the user the following top-level menu.

Top-Level Executive.

1. Load Library Development.
2. Mission Development.
3. Mission Execution.
4. Exit EMES.

Menu Selection:

This menu is used to select the major function to be performed. If the
value selected is "4," which corresponds to the "Exit EMES" command,
control is returned to the VMS operating system. The other possible
values are "1," "2," or "3," which invoke the library development, mis­
sion development and mission execution submodules, respectively. These
submodules return control to the top-level executive when they have
completed their tasks, allowing the user to select another function.

V-2

1. Load Library Development

The load library development module allows the user to create and main­
tain the payload definitions used in developing mission models and in
maintaining and updating the baseline loads' power consumption in four
modes of operation--normal, degraded, severely degraded, and emergency.
For payload development, four basic development functions are prov~ded:
define a load, remove an old load definition, list loads in the library,
and show the definition of a load. The load library development module
is activated by selecting "1" when the library development menu is dis­
played:

Menu Selection: 1

Load Library Development.

1. Define a new load.
2. Redefine baseline load power consumption.
3. Remove an old load definition.
4. List loads in the library.
5. Show baseline load power consumption.
6. Show the definition of a load.
7. Return to top-level menu.

a. Baseline Load Upkeep - The load library development module allows
the user to edit and view the system-defined baseline loads. If the
user selects option "5" from the load library development menu, corres­
ponding to the "Show baseline load power consumption" command, another
menu will appear:

Send output to

1. The Terminal.
2. A Disk File.
3. The Line Printer.

Menu Selection:

This gives the user the option of viewing the baseline load information
directly on the terminal, having it printed out, or placing it in a disk
file. This menu appears whenever the user wishes to view any type of
load or mission information.

If the user wishes to change the base!ine loads' power consumption for
the four levels of degradation, option "2" should be selected. The
energy management expert system will step through all four modes of all
seven baseline loads. The system will prompt the user as to what the
new power level should be. The power levels for the baseline loads in
the system library at present are:

V-3

I
BASELINE-LOADS MODEl MODE2 MODE3 MODE4
--
Communication-and-Tracking 100 90 80 70
Control-and-Display-System 1600 1500 1450 1400
Data-Management-System 4000 3500 3000 2500
Guidance-Navagation-and-Control 3300 3000 2900 2800
Life-Support-Systemsl
Environmental-Control 6000 6000 5000 5000
Electrical-Power-System 2100 1800 1700 1600
Thermal-Control-System 8000 7500 7000 6000

TOTAL 25100 23390 21130 19370

The following is an example of the system prompts for baseline power
consumption editing:

Baseline Load Power Consumption for Degraded Operation

Mode 1 power level is power required during normal operating
conditions.
Modes 2, 3, and 4 are power consumption levels for degraded
operating conditions where mode 2 is less than mode 3 is less than
mode 4.

Type the power consumption in watts for
Communication-and-Tracking during mode 1: 100

Type the power consumption in watts for
Communication-and-Tracking during mode 2: 90

Type the power consumption in watts for
Communication-and-Tracking during mode 3: 80

Type the power consumption in watts for
Communication-and-Tracking during mode t;: 70

b. Define a Payload - If the user wishes to define a new payload to be
maintained by the load library, option "1" should be selected at the
load library development menu level. This will cause another menu to be
displayed:

V-4

T

Load Library Development.

1. Define a new load.
2. Redefine baseline load power consumption.
3. Remove an old load definition.
4. List loads in the library.
5. Show basel~ne load power consumption.
6. Show the definition of a load.
7. Return to Library Development Menu.

Menu Selection: 1

The user will then be prompted for the name of the load. The name must
be one word, although hyphens may be added for clarity. In the follow­
ing example the name "TEST-LOAD" is used to illustrate the load defini­
tion process.

Defining a New Load.

Name of this load: TEST-LOAD

The user is asked what the power consumption is for the defined load.
If the user enters a value of less than 3000 watts, the soon-to-follow
bus-connection menu will not display the choice "High Power Bus." On
the other hand, if the user inputs a value of more than 3000 watts, the
menu will not give the option of "Low Power Bus." If the value selected
is exactly 3000 watts, High Power, Low Power, and Critical Power will
all appear on the menu.

Power consumption (watts): 3000
Note that selecting the Critical Bus implies
that TEST-LOAD is a critical load.

The next thing EMES prompts for is the bus connection for the load. If
the user selects "I" (Critical Bus), the load is considered "continu­
ous." (This term is defined below.)

Which bus is TEST-LOAD connected to?

1. Critical Bus.
2. Low Power Bus.
3. High Power Bus.

Menu Selection:

EMES then asks to what category the payload belongs. The user should
then choose the most appropriate selection.

V-5

1

To which category does TEST-LOAD belong?

1. Commercial Payload.
2. Science Payload.
3. Technology Development Payload.

Menu Selection:

The next series of questions ask how long the payload should run. All
values entered must be mUltiples of 6 minutes. The first question asks
if any warmup time is required for the payload. The user should simply
press the "return" key if the question is not applicable.

Type the warmup time required for
TEST-LOAD, in minutes.
Enter the value as a positive integer that is a multiple of 6.

If TEST-LOAD requires no warmup period,
then type [return].

Preconditioning Power Period (minutes):

EMES next asks for the duration of the main power duty cycle. This will
usually mean the amount of time the load operates when it is collecting
its data, producing its resource, etc. Again, the value must be a mul­
tiple of 6 minutes. This value is not optional.

Type the duty cycle of TEST-LOAD, in
minutes, which should be a positive integer
and a mUltiple of six.

Main Power Duty Cycle (minutes):

User-defined loads may have an active or passive cooldown period, also
referred to as the postconditioning period. The user can enter a value
for either active or passive cooldown periods but never both. If nei­
tper passive nor active apply in the definition, the user need only
press the "return" key.

Type the cooldown power period for TEST-LOAD, in minutes.
Enter the value as a positive integer.

If TEST-LOAD requires no cooldown
time, then type [return].

Post Power Period (minutes):
Type the passive cooldown power period for TEST-LOAD, in minutes.
Enter the value as a positive integer that is a multiple of 6.

V-6

T

If TEST-LOAD has no passive cool down
time, then type [return].

Passive Cool Down Period (minutes):

The next series of questions requires several definitions for reference.
The following definitions refer to the data or product being collected
or produced dur~ng main duty cycle:

1) Continuous - Operation of this load must be continuous for the dura­
tion of the duty cycle or the data/product already collected will be
lost;

2) Interruptable - Operation of this load may be interrupted before the
duty cycle is completed without loss of data/product.

The following definitions refer to the payloads:

1) Restartab1e - The payload is not damaged if power ~s interrupted,
and the payload can be restarted at another time;

2) Nonrestartab1e - The payload is damaged if the power to the load is
interrupted and cannot be restarted at another time.

The questions continue:

If TEST-LOAD requires continuous power each
time it operates, then select 'continuous'.
Otherwise, select 'interruptable'.

The power to TEST-LOAD •••

1. must be continuous.
2. can be interrupted.

Menu Selection:

If TEST-LOAD cannot be restarted after an
interruption, then select '2'.
Otherwise, select '1'.

The power to TEST-LOAD •••

1. can be restarted.
2. cannot be restarted.

Menu Selection:

V-7

The following three questions inquire about the success criteria for the
payload being defined. A success criterion is defined as the amount of
time a payload must operate to achieve the intended success level.
EMES allows the user to define three success levels for each payload.
The success criteria are defined in minutes and must be a multiples of
the load's duty cycle. For example, TEST-LOAD has a 60-minute duty
cycle. If total success means running the load three times, the user
would enter "180" (three times 60). Partial success could be "120,"
(two times 60), and minimum success could be "60." The only other re­
striction on success criteria values is that the ''minimum'' success value
should never be greater than the "partial" success value, which, in
turn, should never be greater than the "total" success value. They can
be equal.

Success Criteria for TEST-LOAD :

Enter the time in minutes required for minimal,
partial, and total success of this payload.
Valid entries must be mUltiples of 60.

Total success time must be an integral mUltiple of 60.

Total success (minutes):

Partial success time must be an integral multiple of 60.

Partial success (minutes):

Minimal success time must be an integral mUltiple of 60.

Minimal success (minutes):

The next set of questions requests the knowledge needed if the payload
requires any pointing. If the payload does not require any pointing,
the user responds "no" to the following question. Otherwise a series of
questions pertaining to pointing maneuvers will be asked.

Does TEST-LOAD require target acquisition?

Target Acquisition Control Axis Specification

EMES then asks whether this load requires one aX1S, two axes, or three
axes of control to perform its pointing task.

The Axes of Control needed for Target Acquisition by TEST-LOAD
are •••

1. One Axis
2. Two Axes
3. Three Axes

Menu Selection:

V-8

The program continues by asking whether the load needs to be repointed
after it is finished with one run or whether it can be immediately re­
run.

Does TEST-LOAD require repointing after each duty cycle?

The next question asks whether the load must run only at nighttime or
only during daytime. If the question is not applicable, the user should
select option "3."

Operating Time Constraints

If operating time is not a constraint for TEST-LOAD, then 'Either'
should be selected.

TEST-LOAD must operate during the •••

1. Daytime
2. Nighttime
3. Either day or night

Menu Selection:

The following questions inquire into the nature of the product and its
use. The appropriate response is indicated by selecting the proper in­
teger value. Or, by selecting "3" ("other"), the user can enter a se­
lection other than those listed on the menu. This selection must be a
single word.

This load produces:

1. Data or Information
2. Physical Product
3. Other

Menu Selection:

The Product of this load meets a:

1. General Need
2. Specific Need
3. Other

V-9

Menu Selection:

The urgency for the Product of this load is such that:

The Result of this load is needed:

1. Immediately
2. In the Near Future
3. Sometime in the Future

Menu Selection:

Select one or any combination of the listed categories.
If product use is not described above, then 'Other' should be
selected.

The Product of this load is useful to:

1. Medicine
2. Biology
3. Science
4. Military
5. Space
6. Commerce
7. Other or Combination of the Above

Menu Selection:

The Resource of TEST-LOAD provides:

1. Earth Knowledge
2. Universe Knowledge
3. Scarce Products
4. Product to Relieve Human Suffering
5. Other or Combination of the Above

Menu Selection:

After EMES asks the last question, it lists all the information it has
just collected and asks the user whether it is correct. If it is not
correct, the whole load definition process is repeated.

The power consumption of TEST-LOAD is 3000 watts.
TEST-LOAD is connected to the high-power bus.
TEST-LOAD is a Commercial Payload.
The preconditioning power period of TEST-LOAD is 6 minutes.
The duty cycle of TEST-LOAD is 60 minutes.
TEST-LOAD requires no cooldown time.
The passive cooldown time for TEST-LOAD is 6 minutes.
The total duty cycle of TEST-LOAD is 60 minutes.

V-lO

The power to TEST-LOAD can be interrupted.
The power to TEST-LOAD can be restarted.
The total success time required for TEST-LOAD is 180 minutes.
The partial success time required for TEST-LOAD is 120 minutes.
The minimum success time required for TEST-LOAD is 60 minutes.
TEST-LOAD requires one-axis of control for target acquisition.
TEST-LOAD does not require repointing after each duty cycle.
TEST-LOAD requires target acquisition.
TEST-LOAD operates during the day.
TEST-LOAD produces output that is data-information.
The product of TEST-LOAD meets a general need.

[MORE]

The result of TEST-LOAD is needed immediately.
The product of TEST-LOAD is useful to a medicine application.
TEST-LOAD provides information on the-earth.

Is this information correct? Y

Note: The word "[MORE]" displayed at the bottom of the screen means
that there is more information to be displayed and the program is wait­
ing for the user to press the "return" key before displaying the rest.

Finally EMES will ask for a single-word file name, which the user must
supply.

Entering this load into the load library •••
What file will contain this load definition? TL

c. List Loads in the Library - If the user chooses selection "4" from
the load library development menu, EMES displays a list of the loads it
is maintaining. First, however, it asks the user to select one of three
display options:

Load Library Development.

1. Define a new load.
2. Redefine baseline load power consumption.
3. Remove an old load definition.
4. List loads in the library.
5. Show baseline load power consumption.
6. Show the definition of a load.
7. Return to Library Development Menu.

Menu Selection: 4

Send output to •••

1. The Terminal.
2. A Disk File.
3. The Line Printer.

v-u

Menu Selection: 1

Load Library Index.

Load Name Definition File

BATTERY-MANAGEMENT-EXPERT-SYSTEM
load-lib:BMES.def

DAY-EARTH-MAPPER load-lib:DEM.def
LASER-COMMUNICATION-UNIT

Definition Date

Wed Jul 11 09:18:51 1984
Tue Jul 10 16:09:40 1984

load-lib:LCU.def Wed Jul 11 09:14:42 1984
MEDICAL-MIX
MATERIALS-PROCESSOR
BIOLOGY-CELL
NIGHT-EARTH-MAPPER
STAR-POINTER
SUN-POINTER
TEST-LOAD

[MORE]

load-lib:medmix.def Mon JUl 9 17:39:56 1984
load-lib:matproc.def Mon JUI 9 0:0:00 1984
load-lib:biocel1.def Mon Jul 9 0:0:00 1984
load-lib:NEM.def Wed Jul 11 09:08:18 1984
load-lib:STP.def Tue Jul 10 16:18:05 1984

load-lib:SP.def Tue Jul 10 16:13:16 1984
load-lib:TL.def Thu Jul 12 14:11:17 1984

d. Remove an Old Load Definition - The load library development module
also allows the user to remove previously defined payloads. The user
must make selection "3" from the load library development menu. EMES
will then prompt the user for the name of the load to be removed.

Load Library Development.

1. Define a new load.
2. Redefine baseline load power consumption.
3. Remove an old load definition.
4. List loads in the library.
5. Show baseline load power consumption.
6. Show the definition of a load.
7. Return to Library Development Menu.

Menu Selection: 3

Name of load to Delete:

The user then enters the name of the load he wishes to delete. If
the user does not want to delete a load but has already entered the
delete module, he may type "Control-Z," i.e., the letter Z pressed
while the "CTRL" key is held down). E:MES will return the user to
the load library development menu without making any changes.

V-12

2.

1

e. Show the Definition of a Load - The user may choose to view the de­
finition of a prevl.ously defined load by selecting option "6" from the
load library development menu. EMES will then ask the user for the name
of the load to be viewed and how the information should be presented.

Mission Library Development

The mission development module allows the user to create and maintain
mission definitions. Within this module, the user can define a new mis­
sion, remove an old mission definition, list all the missions in the li­
brary, generate mission reports, or show the definition of a specific
mission. The mission development module is activated by selecting "2"
from the library development menu. This results in the display of an­
other menu:

Menu Selection: 2

Mission Development.

1. Create a mission definition.
2. Remove an old mission definition.
3. List missions in the library.
4. Show the definition of a mission.
5. Generate a mission report.
6. Return to top-level menu.

Menu Selection:

a. Define a New Mission - To define a new mission to be executed by
EMES at a later time, the user should select option "1" from the mission
library development menu:

Mission Development.

1. Define a new mission.
2. Remove an old mission definition.
3. List missions in the library.
4. Show the definition of a mission.
5. Return to Library Development Menu.

Menu Selection: 1

EMES will then ask for the name the user wishes to assign to the mis­
sion. As with previous names, this name must be a single word but may
be hyphenated for clarity:

Name of this mission: TESTMISSION

V-13

,If

The series of questions EMES asks next are used to define the orbit.
Orbit information is used, in turn, to calculate the dark time and light
time for the spacecraft. The questions list the valid range for data
the user is to supply. When the range values are "real" numbers in the
Fortran sense of the word (i.e., they contain decimal points or the let­
ter "E" indl.cating an exponent), EMES expects the user to supply an an­
swer in that form:

SENTER LONGITUDE OF INITIAL ASCENDING NODE IN DEGREES.
$SUGGESTED VALUE FOR SPACE-STATION IS 28.5.
STHE VALID RANGE IS 0.0 to 360.0 :

SENTER ORBIT INCLINATION (IN DEGREES) IN EARTH EQUATORIAL COORDINATE
$SYSTEM.
SSUGGESTED VALUE FOR SPACE-STATION 23.5.
STHE VALID RANGE IS 0.0 to 89.99

SENTER THE ALTITUDE OF THE ORBIT (NAUTICAL MILES).
SSUGGESTED VALUE FOR SPACE-STATION IS 250.0.
STHE VALID RANGE IS 0.0 to 40000.0 :

When entering the date, the form should be month, date, and year, se­
parated by the "/" character. Each number should have two digits. If
the month number or date is less than 10, the user should add a leading
zero to make a two-digit number, e.g., "06/05/61". One-digit values
("6/5/61") are not accepted:

SENTER DATE OF ASCENDING NODE--IN THE FORM--MM/DD/YY

When entering the time of the ascending node, the form should be
01:10.00. Remember that there are only 24 hours in a day and 60
minutes in an hour.

SENTER TIME OF ASCENDING NODE WITH HOURS AS AN INTEGER AND MINUTES
SAS A REAL NUMBER--IN THE FORM--HH,MM.MM :

SENTER THE FIRST ORBIT AT WHICH CALCULATIONS SHOULD START.
STHE VALID RANGE IS 1 TO 9999 :

SENTER THE NUMBER OF ORBITS FOR WHICH CALCULATIONS SHOULD BE MADE.
STRE NUMBER OF ORBITS MUST BE NO MORE THAN 24 :

After these questions have been properly answered, the user can view the
orbit definition:

Send output to

1. The Terminal.
2. A Disk File.
3. The Line Printer.

V-14

Menu Selection: 1

rr Mission Definition:

Orbit 1 starts at 510 and ends after 600
minutes of elapsed mission time.

In Orbit 1 the sun sets at 540 and rises after 570
minutes of elapsed mission time.

In Orbit 1 the battery power capability is 31157 watts.

At time 510 the solar power capability is 124568 watts.
At time 516 the solar power capability is 112478 watts.
At time 522 the solar power capability is 106723 watts.
At time 528 the solar power capability is 103500 watts.
At time 534 the solar power capability is 101531 watts.
At time 570 the solar power capability is 124568 watts.
At time 576 the solar power capability is 112478 watts.
At time 582 the solar power capability is 106723 watts.
At time 588 the solar power capability is 103500 watts.
At time 594 the solar power capability is 101531 watts.
At time 600 the solar power capability is 100262 watts.

II At time 606 the solar power capability is 99416 watts.
At time 612 the solar power capability is 98840 watts.
At time 618 the solar power capability is 98442 watts.
At time 624 the solar power capability is 98164 watts.

Orbit 2 starts at 600 and ends after 690
minutes of elapsed mission time.

In Orbit 2 the sun sets at 630 and rises after 660
minutes of elapsed mission time.

In Orbit 2 the battery power capability is 31181 watts.

At time 660 the solar power capability is 124568 watts.
At time 666 the solar power capability is 112478 watts.
At time 672 the solar power capability is 106723 watts.
At time 678 the solar power capability is 103500 watts.
At time 684 the solar power capability is 101531 watts.
At time 690 the solar power capability is 100262 watts.
At time 696 the solar power capability is 99416 watts.
At time 702 the solar power capability is 98840 watts.
At time 708 the solar power capability is 98442 watts.
At time 714 the solar power capability is 98164 watts.

l'
Orbit 3 starts at 690 and ends after 780
minutes of elapsed mission time.

V-15

In Orbit 3 the sun sets at 720 and rises after 750
minutes of elapsed mission time.

rr In Orbit 3 the battery power capability is 31205 watts.

At time 750 the solar power capability is 124568 watts.
At time 756 the solar power capability is 112478 watts.
At time 762 the solar power capability is 106723 watts.
At time 768 the solar power capability is 103500 watts.
At time 774 the solar power capability is 101531 watts.
At time 780 the solar power capability is 100262 watts.
At time 786 the solar power capability is 99416 watts.
At time 792 the solar power capability is 98840 watts.
At time 798 the solar power capability is 98442 watts.
At time 804 the solar power capability is 98164 watts.

Overall-Mission starts at time 510.
The Overall-Mission ends at 1050 minutes.

EMES also lists the baseline loads and their power consumptions:

Communication-and-Tracking is a base-line load.
The power consumption of Communication-and-Tracking during mode 1 is

1~
100.
The power consumption of Communication-and-Tracking during mode 2 is
90.
The power consumption of Communication-and-Tracking during mode 3 is
80.
The power consumption of Communication-and-Tracking during mode 4 is
70.

Control-and-Disp1ay-System is a base-line load.
The power consumption of Control-and-Disp1ay-System during mode 1 is
1600.
The power consumption of Control-and-Display-System during mode 2 is
1500.
The power consumption of Control-and-Display-System during mode 3 is
1450.
The power consumption of Control-and-Display-System during mode 4 is
1400.

Data-Management-System is a base-line load.
The power consumption of Data-Management-System during mode 1 is
4000.
The power consumption of Data-Management-System during mode 2 is
3500.
The power consumption of Data-Management-System during mode 3 is

T
3000.
The power consumption of Data-Management-System during mode 4 is
2500.

V-16

l'

Electrical-Power-System is a base-line load.
The power consumption of Electrical-Power-System during mode 1 is
2100.
The power consumption of Electrical-Power-System during mode 2
1800.
The power consumption of Electrical-Power-System during mode 3
1700.
The power consumption of Electrical-Power-System during mode 4
1600.

Guidance-Navigation-and-Control-System is a base-line load.
The power consumption of Guidance-Navigation-and-Control-System
during mode 1 is 3300.
The power consumption of Guidance-Navigation-and-Control-System
during mode 2 is 3000.
The power consumption of Guidance-Navigation-and-Control-System
during mode 3 is 2900.
The power consumption of Guidance-Navigation-and-Control-System
during mode 4 is 2800.

Thermal-Control-System is a base-line load.

is

is

1S

The power consumption of Thermal-Control-System during mode 1 is
8000.
The power consumption of Thermal-Control-System during mode 2 is
7500.
The power consumption of Thermal-Control-System during mode 3 is
7000.
The power consumption of Thermal-Control-System during mode 4 is
6000.

Life-Support-and-Environmental-Control is a base-line load.
The power consumption of Life-Support-and-Environmental-Control
during mode 1 is 6000.

The power consumption of Life-Support-and-Environmental-Control
during mode 2 is 6000.
The power consumption of Life-Support-and-Environmental-Control
during mode 3 is 5000.
The power consumption of Life-Support-and-Env1ronmental-Control
during mode 4 is 5000.

EMES will then ask the user if he wishes to schedule any previously de­
fined loads in this mission. The following example illustrates how to
insert a load into a mission.

Mission Definition.

1. Request a load to be scheduled.
2. List the loads which have been requested.
3. Return to Mission Development Menu.

V-l7

1

Menu Selection: 1

Name of this load: TEST-LOAD

Would you like to see the load definition?N

The user is given the option of when he would like the various runnings
of the payload. If the user wants the payload to run at a certain time,
he says so here.

Options for duty cycle scheduling

1. Request specific start times for all duty cycles.
2. Request start time windows for all duty cycles.
3. Schedule each duty cycle individually.
4. Start times for all duty cycles can be anytime.

Menu Selection: 4

The user is also given the option of specifying when he wishes his spe­
cified success criteria to be complete. Therefore the user can request
to have minimum success (e.g., 1 run) completed a quarter of the way in­
to the mission, partial success (e.g., 2 runs) half way through the mis­
sion and total success by the end of the mission.

Do you wish to specify mission success criteria for this load?Y

Minimum success (%) 25

Partial success (%) 50

Total success (%) 100

Minimum success for TEST-LOAD should be accomplished within 25
% of the mission.
Partial success for TEST-LOAD should be accomplished within 50
% of the mission.
Total success for TEST-LOAD should be accomplished within 100
% of the mission.

Minimum 25%
Partial 50%
Total 100%

This menu will continue to appear until the user selects the option to
return to the mission development menu. EMES will then enter the mis­
sion into the mission library after requesting and being given a file
name.

Mission Definition.

1. Request a load to be scheduled.
2. List the loads which have been requested.
3. Return to Mission Development Menu.

V-18

T

Menu Selection: 3

Entering this mission into the mission definition library ••• What
file will contain this mission definition? TEST

b. Generate a Mission Report - The "generate mission report" module al­
lows the user to generate graphical reports summarizing various impor­
tant characteristics of a mission. Four types of reports are permitted:
power capability, load profile, power margin, and battery depth of dis­
charge (DOD).

Generate Mission Reports.

1. Report Mission Power Capability.
2. Report Mission Load Profile.
3. Report Mission Power Margin.
4. Report Mission Battery DOD.
5. Return to Mission Development Menu.

c. Report Mission Power Capability - The "report mission power capa­
bility" module allows the user to obtain a graphic representation of the
power available for each 6-minute time slot for the duration of the mis­
sion. The user is prompted for the name of the mission definition file.
The system looks for the file in the mission library and reads its con­
tents. All solar array capability and battery capability data items are
summarized to obtain the solar array output profile for each daytime
period and the battery capability for each nighttime period. The solar
array and battery degradation factors are taken into account only if
they are present in the mission definition (that is, only if this mis­
sion definition has already been processed by the EMES mission execution
module). Otherwise, degradation factors are assumed to be zero. The
data are shown graphically. The user has the option of showing the data
on the terminal, sending them to a disk file, or sending them to the
line printer:

Generate Mission Reports.

1. Report M1ssion Power Capability.
2. Report Mission Load Profile.
3. Report Mission Power Margin.
4. Report Mission Battery DOD.
5. Return to Mission Development Menu.

Name of mission: today-show

V-19

Send output to ...

'I
1. The Terminal.
2. A Disk File.
3. The Line Printer.

Menu Selection: 1

30 39 48 58 67 77 86 95 105 114
--

636 *
642 *
648 *
654 *
660 !*
666 ~*
672 !*
678 ~*
684 !*
690 '*
696 *
702 *
708 *
714 *
720 *
726 *

'/T 732 *
738 *
744 *
750 *
756 .*
762 ~*
768 !*
774 ~*
780 !*
786 , * · 792 *
798 , * · 804 *
810 *
816 *
822 *
828 *
834 *
840 .*
846 !*
852 ~*
858 !*
864 ~*
870 !*
876 , * · 882 * /T 888 *
894 *

V-20

900 *
906 *

l'
912 *
918 *
924 *
930 ~*
936 !*
942 ~*
948 !*
954 *
960 *
966 *
972 *
978 *
984 *
990 *
996 *
1002 *
1008 *
1014 *
1020 .*
1026 !*
1032 ~*
1038 !*
1044 ~*
1050 '*
1056 *

if
1062 *
1068 *
1074 *
1080 *
1086 *
1092 • *
1098 *
1104 , * .
1110 ~*
1116 !*
1122 !*
1128 !*
1134 '*
1140 *
1146 *
1152 *
1158 *
1164 *
1170 *
1176 *
1182 *
1188 *
1194 *
1200 .*
1206 !*

T
1212 ~*
1218 !*
1224 ~*

V-21

1230
1236

l'
1242
1248
1254
1260
1266

3.

*
*

*
*

*
*

*

After the graph has been displayed, the "generate mission reports" menu
is displayed again. This process is continued until the user explicitly
selects the option to leave the submodule.

The "report mission load profile" module allows the user to obtain a
graphic representation of the power consumed by loads for each 6-minute
time slot for the duration of a mission. The system looks for the file
in the mission library and reads its contents. If the mission has not
yet been processed by the EMES mission execution module, the system will
inform the user and return to the "generate mission report" menu.
Otherwise, a menu will appear inquiring as to where the user wishes to
have the graph displayed.

The "report mission power margin" module allows the user to obtain a
graphic representation of the power margin for each 6-minute time slot
for the duration of a mission. Again, the mission must be processed by
the EMES mission execution module before the requested information can
be displayed. Otherwise the user is informed that the mission has not
been processed.

The "report mission battery DOD" module allows the user to obtain a gra­
phic representation of the battery depth of discharge for each 6-minute
time slot for the duration of a mission. The procedure for displaying
this report graphically is the same as used with the power margin and
load profile modules. Note that only the power capability module can
generate a graphics display without prior processing by the EMES mission
execution module.

Mission Execution

The mission execution module of EMES corresponds to the flight software
portion of the expert system. It can inspect a mission timeline, sche­
dule any unscheduled mission events or load requests, and ensure that no
resource-requirement or energy-management constraints have been viola­
ted. The user is prompted for the name of the mission to be executed:

V-22

T

Mission Execution

Type the name of an existing mission which mayor may not already be
executed.

Name of mission: TESTMISSION

The user is asked what percentage of solar array degradation is to be
assumed for the mission:

Type solar array degradation between 0 and 1.00 O.

The user is next asked for the time he would like the degradation, if
any, to begin. This time must be between the start time and end time of
the mission.

Type start of degradation between 636 and 1266 636

Similarly, for battery degradation, EMES asks:

Type battery degradation between 0.0 and 1.00 O.

Type start of degradation between 636 and 1266 : 636

The user is then prompted for the current mission time. This can be
either mission start time of the earliest degradation time, if one ex­
ists. Current mission time can never be after the earliest degradation.

Type current mission time between 636 and 1266:

The user is next asked for a new name for the mission.

Create a new name for the executed mission.
Name of this mission:

As the expert system is examining the timeline, it will print out its
decisions to the terminal. EMES will then list all the loads it has
scheduled in this particular execution and list their start times.
Finally, the user is asked for the name of a file it should use to store
the executed mission. The mission report menu will also appear so that
the user can graphically see aspect s of the mission. The use of this
menu has been described previously.

EMES Scheduled Loads

Entering this mission into the mission definition library •••
What file will contain this mission definition:

V-23

VI. IMPLEMENTATION DETAILS

A. MAJOR DESIGN DECISIONS

EMES is divided into three separate parts: problem setup, execution
without interaction, and report generation. Th1s design was not se­
lected arbitrarily. It simplifies operation because the user does not
need to know very much about the expert system to use it. It also made
the logic of the expert system's intelligence independent of the pro­
blem-setup and reporting functions so it can be understood more readily
and be more easily extracted for other uses than would be the case if
it were intertwined with the other operations.

For similar reasons, we did not give EMES a natural-language interface
to the user. Designing and implementing such an interface would have
diluted the study effort because it would have required as much develop­
ment time as the intelligence of the expert system. We also realized
that natural language would be of very little benefit in this system for
two reasons. First, nearly all the interfacing with the user takes
place before the intelligent portion of EMES starts to run. The inter­
face would therefore not really be with the expert system itself but
with a database editor. Second, without detailed prompts and a thick
user's manual, the user would not know what kinds of things to tell the
program in natural language. An interface that could handle anything he
asked for would be totally impractical; it would dwarf the work on the
load-scheduling logic. And a less sophisticated interface would pro­
bably frustrate the user by constantly telling him that it did not
understand his commands.

One of the objectives of the study was to demonstrate a simplified
state-of-health monitoring and fault detection capability. In EMES
these functions are limited to detecting that the power available is in­
adequate for the scheduled activities. The decision to limit EMES capa­
bilities in this area was not taken lightly. Initially we considered
integration of EMES with the Martin Marietta Denver Aerospace fault iso­
lation expert system. However, we found there were more difficulties in
doing so than we had initially realized, and there was less to be gained
than we originally believed. The reasons were:

1) The two expert systems require different reasoning models of the
power subsystem. The fault isolation program needs to know the con­
figuration in great detail because 'it attempts to 1solate the faulty
component. On the other hand, the energy management program has no
need for these details. It does, however, need to predict power
available as a function of time, which the fault isolation system
does not need to do, and, to make its predictions efficiently, it
must use a simplified modeling of the power subsystem. As a result,
if the programs are to be joined, the connection must be at a very
high level of abstraction, e.g., an executive that selects one or
the other;

VI-l

B.

2) The two expert systems use different kinds of expertise. The fault
isolation system uses the knowledge of an electrical engineer or
technician; the energy management system uses the knowledge of a
systems expert. Such different forms of expertise should not be
merged at a low level because the resulting program would not imple­
ment the coherent line of reasoning of either expert;

3) The two expert systems work with different time scales. The fault
isolation system reasons about the current situation; the energy
management system plans for times hours into the future. Again,
linking the low-level internal reasoning processes is unwise.

This leaves the possibility of a high-level link. In a flight situa­
tion, such a link between the two programs might be useful. For exam­
ple, the fault isolation program could detect a fault-and then invoke
the energy management program to plan around the problem. It could also
tell the energy management system how much degradation is involved.

However, in the laboratory implementation we were designing, the fault
isolation system does not run continuously waiting for a fault to occur
as it would in flight. Rather, it checks simulated measurements that
reflect a static situation. We therefore believed that little would be
gained by linking these programs. But there was much to lose. If the
programs were linked, the resulting program would be larger and more
complex than the sum of the two individual programs because the desig­
ners of each program would have to know details of the other program.
This would result in an increased development time and cost or a less
thorough treatment of both problems. It would also result in a greatly
increased testing and debugging time because both programs would have
to be run to thoroughly test either. Finally, it would make the logic
of each program harder to understand or to apply in another context.

EMES' INTELLIGENT FUNCTIONS

Scheduling is the most basic operating mode of the intelligent portion
of EMES. EMES takes as input the mission power profile, i.e., solar
array and battery capabilities for each time slot during the mission.
The power consumption of each of the spacecraft housekeeping subsystems
(each summarized in a total baseline power rating) is incorporated in
this power profile. EMES also accepts a set of requests for loads to be
scheduled into tHe timeline, along with the loads' operational con­
straints and mission success criteria. Scheduling rules consider the
amount of power available over time, permitting graceful degradation
under abnormal modes of operation.

VI-2

EMES attempts to schedule the loads so the mission success criteria are
satisfied as well as poss1ble, while abiding by energy management con­
straints that optimize power allocation and extend the life of critical
power subsystem components. The rule-based nature of EMES allows the
scheduling of load requests to be triggered by data. EMES can enter the
scheduling mode as a result of load requests generated either by the
user or by other EMES rule modules.

EMES also has a "descheduling" mode. Descheduling is required when a
change in the expected power profile occurs because of power subsystem
degradation, resulting in insufficient power to operate all of the loads
scheduled for execution. In this case, EMES must reason about the pri­
orities of the payloads and other subsystem components to determine
which loads should be removed from the schedule. If possible, these
loads are then placed elsewhere in the timeline.

The final major operating mode is the handling of contingency situa­
tions. These situations arise when the spacecraft is operating with a
degraded power subsystem, resulting in a shortage of power to run the
scheduled loads. However, the contingency mode is more complex than
simple degradation because the expert system does not know about the
degradation in advance, i.e. the degradation occurs suddenly during the
mission, reSUlting in the need to turn off loads already in operation.

This means that EMES must reason about the effects of interrupting an
operating load on the overall level of mission success. Such reasoning
is important because a badly timed interruption of power may cause the
loss of an important set of data or destroy a product being manufac­
tured. In fact, in extreme cases a payload may be destroyed or rendered
inoperable for the duration of the mission. EMES must consider all
these factors in deciding which loads to deschedule.

In addition to the three major modes of operation, EMES provides an ad­
ditional function, timeline optimization, that may get triggered into
operation at various times. Optimization occurs when EMES recognizes
that a legal mission timeline is not optimal because of, for example,
energy management constraints or the level of mission success achieved.
Optimization rules interact with the other EMES rules to make the en­
ergy management process more intelligent.

1. Scheduling

The scheduling module is the most fundamental of all modules in the ex­
pert system. It is activated when there are load requests in the mis­
sion definition file that have yet to be scheduled. It takes as input
a set of load requests and a power profile, and results in a scheduled
time line.

The scheduling control structure (Fig. VI-I) is algorithmic and starts
with the first day or night of the first orbit, iteratively analyzing
each day and night until the end of the mission. The actual scheduling
of payloads that occurs within this process, however, consists of two
sets of rule-based heuristics.

VI-3

1

1

Is There a
Scheduled
Load with
Not Enough
Power Already
Operating?

No

Is There a
Scheduled
load with
Not Enough
Power?

No

8
Figure VIol Simplified Control Flow

Are There
Interrupteble Ves
Loads That
Should Be
Removed?

No

Ves

8

Remove
the Best
One

Predict
New
Level of
MIssion
Success

The first set makes a list of all the loads desirable to be scheduled
during each day and night period and then intelligently selects the best
load to lay into the time line. To decide which loads are desirable, it
initially looks at which loads can run during that period. For example,
day payloads can only operate during the day and night payloads can op­
erate only at night. EMES also considers other operational constraints.
For example, no two payloads that require pointing maneuvers for orien­
tation can operate at the same time.

When the selection process is complete, the list of desired payloads is
sent to the second set of heuristics, which intelligently chooses the
best load to schedule next. This decision also considers energy manage­
ment rules, efficient use the power, and scheduling urgency. For exam­
ple, if a specific payload is not scheduled immediately, it may not have
another chance to be scheduled later in the mission. After examining
all of the desirable payloads, EMES determines the best load to schedule
next during the same period. When little or no unallocated power re­
mains for scheduling loads in this period, EMES recognizes this fact and
begins scheduling the next day/night period.

VI-4

2.

T 3.

T

Each time an optimum load is chosen during this scheduling process, the
instantiation* mechanism incorporates the payload into the time line and
updates information about the amount of power the new load requires. .
This process repeats, working with the same day/night period, until E}mS
does not believe there is an optimal load to schedule. The scheduling
module then starts working with the next day/night period.

Descheduling

The descheduling module is activated when EMES discovers a period in
which there is insufficient power for the loads assigned. This is us­
ually the result of using a previously scheduled timeline with a new,
degraded power profile. To accommodate this power shortage, EMES must
perform intelligent descheduling.

Descheduling can occur in two ways. If the level of degradation is
small, EMES removes selected loads from the timeline. On the other
hand, if the power shortage is severe, EMES deschedules the entire time­
line. When a load is descheduled, it is put back onto the scheduling
list and is treated once again as a load request. The reason for the
dual mode of operation is that descheduling is not as efficient as sche­
duling. If much descheduling is required, it is most efficient to erase
the whole timeline and reschedule under the new degraded power profile.
This also leads to a timeline that makes better use of the power
available.

When the power problem is relieved, EMES exits the descheduling module,
and rescheduling of the descheduled loads is attempted.

Contingencies

The contingency mode is activated when loads are in operation and, be­
cause of some malfunction, e.g., solar array or battery degradation,
there is no longer enough power to support them. EMES distinguishes
this problem from the degraded mode that the descheduling module handles
by checking the current time of the mission. If the current time is the
same time as that of the power shortage, EMES recognizes that the space
station is in a state of contingency. Otherwise, EMES enters the pre­
viously discussed descheduling mode.

In the contingency mode, EMES must use a set of transition heuristics to
alleviate the power problem without damaging any of the payloads while,
if possible, retaining all of the data and products already collected.
The first thing EMES looks for in the overloaded time slot are interrup­
table loads. These loads can be turned off without loss of any of the
product or data already collected.

* Instantiation of a rule is application of the rule with a specific
set of data.

VI-5

C.

1.

T

If turning these loads off does not solve the problem, EMES cuts power
to certain subsystem loads to accommodate payloads that must continue
operating. The tradeoff that EMES reasons about here is that of the
astronauts' comfort (subsystem loads) versus support of the payloads.
EMES will will cut back power from the subsystem loads only to accom­
modate payloads in operation that can't be turned off without damage to
the payload or product. Thus, subsystems are never cut back in the nor­
mal scheduling mode. The subsystem modes will return to the normal op­
erating mode as soon as possible. When this occurs, EMES is no longer
in the contingency mode, and any further power problems will be handled
by the descheduling module.

THE CONCEPTS OF "RULES" AND "GOALS"

The IF/THEN Approach and HAPS Formalism

The heuristics or rules of thumb used in EMES are encoded in a formalism
called the HAPS production system language. This language differs from
conventional languages in several ways, but the most fundamental differ­
ence is that the programmer does not specify the order in which instruc­
tions are to be executed. In fact, the statements of a program in this
language can be rearranged or even shuffled with no effect on the way
the program executes.

Most procedural languages provide a number of statement types. For ex­
ample, Pascal provides an "IF/THEN/ELSE" type, a "DO WHILE" type, a
"REPEAT UNTIL" type, a "00 CASE" type, and a number of others to declare
variables, perform arithmetic, and control the sequence of operations.

The fundamental statement type in the HAPS production system language ~s
the "IF/THEN" statement used to express a rule. Despite the apparent
resemblance between this type and the "IF/THEN" type in Pascal, the
meaning of the word "IF" in this statement differs radically from the
meaning in Pascal. In Pascal, it means "If the specified condition is
true, perform the following task before executing the next instruction;
otherwise go on to the next instruction." In the HAPS formalism, the
meaning of "IF" is close to the meaning of the English word "whenever."
If we ignore for the moment the concept of "goals," which will be intro­
duced shortly, the HAPS "IF" means "Any time you notice that the follow­
ing condition is true for any set of data you find in memory, you might
want to perform the following action." Thus, while Pascal and other
procedural languages require the programmer to specify the order in
which things are done, the HAPS formalism does not. The production sys­
tem software decides what sequence will be used. Furthermore, the se­
quence is determined as the program executes, not in advance.

At any given time during program execution, more than one "IF/THEN"
statement (rule) may be applicable. HAPS must then decide which rule to
apply or "fire." The process of making this decision is called "con­
flict resolution." Conflict resolution may also be required when a sin­
gle rule could be used with any of several sets of data. HAPS must pick
one set.

VI-6

1

Most of the conditions tested in the "IF" parts of HAPS rules are the
existence or nonexistence of data items in so-called "working memory,"
and most of the actions in the "THEN" parts are insertion of data items
into working memory or removal of such items. For example, the HAPS
rule fragment

IF:
THEN:

(a b c)
(x y z)

says that if the item "(a b c)" is ever found in working memory, the
program should insert the item "(x y z)" into working memory. This par­
ticular rule is not very useful, because if it is ever used ("fired")
there is nothing to turn it off again. The action of the rule does no­
thing to invalidate the condition in the "IF" part of the rule.

Another reason the rule is not very useful is that it tests for only one
specific data item. The following rule fragment is more practical:

IF:
THEN:

(a b =c) : 1
(*remove :1)
(x y =c)

This rule says that any time the program finds a three-element list that
starts with the symbols "a" and "b" in working memory, it should remove
it and insert in its place a three-element list that starts with the
symbols "x" and "y." The third element of the new list equals the third
element of the list that was originally in memory. This element will be
a constant, which may be a number, a symbol, or an entire list enclosed
in parentheses. Because this rule will fire regardless of the value of
the third list element, it is far more general than the original rule.
And because it removes the triggering data item from memory, the rule
will not fire continuously; eventually it will run out of lists starting
with "a" and "b."

HAPS knows that the third item is a variable because its name starts
with the character "=." A rule may contain a number of such variables.
Each variable is assigned a value when HAPS finds a data item that
matches the remaining symbols in the list in which it is embedded. How­
ever, the value of such a variable will be consistent throughout the
rule. For example, if a variable appears in two lists in the "IF" part
of a rule, it is given a value when HAPS matches the first list with an
item in memory. The variable then acts as a constant with that value in
subsequent lists. This process of associating a constant value with a
variable is called binding, and a variable that has been given a value
~s said to be bound. For example, the rule fragment

IF: (a b =c)
(q r =c)

THEN: ••••

means, "Whenever working memory contains a three-element list that
starts with the symbols "a" and "b," and there is also a three-element
list that starts with "q" and "r," and the third element of the first
list matches the third element of the second list, •••• " There may be
many lists in working memory that satisfy these conditions. HAPS may

VI-7

apply the rule to any or all of them. For example, if working memory
contained the lists "(a b f)" and "{q r f)," the production system could
bind the variable "=c" to the symbol "f." Whis would produce the speci­
fic instance or "instantiation" of the rule:

IF: (a b f)
(q r f)

THEN:

Similarly, if working memory also contained the lists "(a b m)" and "(q
r m)," the production system could produce the instantiation

IF: (a b m)
(q r m)

THEN:

When mUltiple data sets satisfy a rule's "IF" part, HAPS may apply the
rule to them in any order.

A rule can also test for the absence of a data item from working memory.
Any list in the "IF" part of a rule can be preceded by a minus sign to
signify a list that cannot be in working memory if the rule is to apply.
For example,

IF: (a b =c)
-em =c q)

THEN:

means, "Whenever you find a list of three elements that starts with 'a'
and 'b,' and there is no list of the form 'em =c q),' where '=c' stands
for the third element of the first list, •••• "

Sometimes it is useful to use a variable as a mere place holder for an
item whose value we do not care about. To specify such a variable, the
HAPS formalism uses a question mark. Thus,

IF: (a b 1)
THEN:

means, "Whenever working memory contains a three-element list that
s tarts with the symbols 'a' and 'b,' •••• " The value of the third item
in the list is not bound.

Every rule must be applied in the context of a "goal." Only rules that
bear on the currently active goal are considered as candidates to exe­
cute or "fire." Rules can also suspend direct work on the current goal
by setting up subgoals that must be achieved to accomplish the larger
goal. Similarly, they can reverse this operation by declaring a goal to
have been successfully achieved, sending the production system back to
a suspended higher level goal.

The ability to create and manipulate goals allows EMES to use its heur­
istic knowledge in the proper problem-solving context. It also makes
the expert system easier to modify and extend because it promotes modu­
larity in the rule base, increases code readability, and decreases de­
bugging time.

VI-8

The main goals used in EMES are:

1) Initialize timeline: Initialize the mission timeline with power
capabilities and day/night periods, and allocates baseline loads;

2) Inspect timeline: Inspect timeline for needed scheduling and for
degradation and contingency situations;

3) Schedule: The top-level goal for scheduling a load;

4) Handle power shortage: The goal for degraded mode of operation;

5) Handle contingency: The goal for the situation where there is not
enough power and a load is already running;

6) Schedule initializations: Initialize for scheduling;

7) Determine desired loads: Determine a set of desired loads for sche­
duling from the set of all loads;

8) Determine optimum loads: Determine one optimum load for scheduling;

9) Schedule a load: Schedule a particular load;

10) Drop baseline: Lower the baseline. The baseline is the base level
of loads needed for spacecraft operation. The levels run from nor­
mal to survival mode;

11) Unschedule a load: The goal for unscheduling a load;

12) Calculate pointer opportunity.

Several additional goals are used for "bookkeeping" and do not directly
relate to the heuristics a human expert would use to solve the problem:

1) Update legal slots;

2) Update load opportunity;

3) Update load opportunity by success;

4) Update active slot;

5) Update power consumed;

6) Update pointer opportunity;

7) Update pointer opportunity by success.

HAPS allows the programmer to specify the LISP functions to be executed
in either the "IF" part or the "THEN" part of a rule. The syntax of the
LISP invocation is identical to that used in normal LISP programming ex­
cept that LISP function names are preceded with an asterisk. Bound var­
iables can be passed to LISP functions and the functions can, in turn,
invoke other functions or even Fortran code.

VI-9

A rule from EMES illustrates how these principles work in practice.
EMES has a set of rules that allow it to determine which of the major
modes of operation should be entered. To recognize the contingency
scheduling mode, it uses a heuristic that can be stated in plain
English:

IF: I am inspecting a mission timeline,
AND there is any time when more power is scheduled to be

consumed than is available,
AND EITHER the current mission time equals the time of the

power shortage
OR a load that is now running will encounter the power

shortage before it is scheduled to finish running,
THEN: Enter contingency mode.

In HAPS notation, this heuristic becomes the formal rule:

Recognize contingency mode
(INIT-PRODUCTION recognize-contingency

CONTEXT:
(OBJECT: inspect-timeline)

IF:
than is available ; more power used

(power-available
(power-consumed
(*lessp

=tl =wattsl)
=tl =watts2)
=wattsl =watts2)

(current-mission-time =t2)

;mission time is same as time of power problem
OR [(*eq =tl =t2)

THEN:

;a load is running
AND [(scheduled ?

-(*lessp
(*lessp

-(*lessp
(*lessp

and there is
(=t3 =t4»
=t2 =t3)
=t2 =t4)
=tl =t3)
=tl =t4)]]

a power problem

;notify user we have a contingency situation
(*explain ([CR] "A contingency situation has been"

"recognized!" [CR] "Entering handle contingency mode"
[CR]))

(GOAL
OBJECT:
MISSION-TIME:

handle-contingency
=t2»

Notice that this rule is identified as an "init" production. This
means that the rule will be given priority over other rules or "produc­
tions" within this rule's goal context. Specifically, if HAPS is try­
ing to determine which of several rules to fire, it will not consider
any ordinary productions if it can fire any "init" productions. Simi­
larly, regular productions have priority over so-called "default" pro­
ductions. The programmer can use this feature of the HAPS formalism to
avoid the inefficiency that might result from random rule selection. In
this example it prevents HAPS from attempting to produce a schedule it
will later have to throwaway.

VI-IO

2.

A second thing to notice about this rule is that the value bound to the
variable "=t2" is passed as a private object to the "handle-contingency"
goal context under the name "MISSION-TIME." This information can be
used much as if it were in working memory, but it is automatically
erased after the goal "handle-contingency" has been satisfied. This
feature of the HAPS formalism is analogous to the passing of parameters
to subroutines in procedural languages.

Benefits of a Production System

A production system is not required to implement expert systems or even
to use the IF/THEN approach to programming described previously. How­
ever, they do provide advantages in:

1) Speed of implementation - Production system languages allow the pro­
grammer to ignore such low-level implementation details as how test­
ing of the "IF" conditions of rules is done, how binding of vari­
ables is accomplished, how private memory for goals is allocated,
etc;

2) Transparency of code - Experience has shown that experts who do not
know computer programming can quickly learn to understand rules
written in a production-system language. TIle same cannot be said of
programs written in "C," LISP, Fortran, or Pascal;

3) Speed of operation - A straightforward implementation of a rule­
based program in a conventional procedural language is very ineffi­
cient. Consider, for example, the logic shown here in pseudocode,

For each rule
For each combination of data items in working memory that
matches the constants in the rule [

Bind the variables in the rule to the constants that are in
corresponding positions in the data-item elements;
If the condition in the "IF" part of the rule is true with
this set of bindings THEN

Perform the actions in "THEN" part of rule;

With 200 data items and an average of four items involved in the "IF"
part of each rule, the program1s inner loop could test over a billion
data combinations for each rule. With the number of rules EMES has, the
program could test over 200 billion rule/data combinations before find­
ing an applicable data set and rule to "fire." This approach is pa­
tently impractical for a useful expert system.

The clever programmer can do a number of things to speed execution of
the program. For example, he can maintain a list of eligible rules,
updating this list each time the contents of memory are altered. How­
ever, in doing so, he is creating a special-purpose production system
whether he realizes it or not. The decision he then faces is not whe­
ther to use a production system but whether to write a new one or use
one that already exists.

VI-II

11' 3.

If he elects to write a new one, he must also decide whether to make
the production system and rule base separate, distinct, recognizable
entities or to merge them. Most implementers have chosen to keep them
separate because this makes the rule base easier to understand and
allows reuse of the production system in future projects. It also makes
the rule base far easier to modify. This is perhaps the greatest virtue
of a separate production system because a typical expert system requires
many revisions of the rule base before it performs properly. An inter­
woven production system would require manual revision of all the tricks
used to speed rule selection, dramatically increasing the time required
to debug the program. However, writing a general-purpose, reusable pro­
duction system is a large undertaking, and a special-purpose production
system may be considerably faster because the overhead of generality is
removed and domain-specific knowledge can easily be built into the rule­
selection process.

The prograllUller might also abandon the "IF/THEN" approach entirely. For
problems that do not require extensive opportunistic application of
rules, it is practical to use conventional languages and design prac­
tices. Some would deny that the resulting product constitutes an expert
system. It will also probably be less able to cope with incomplete in­
formation than a rule-based system. However, the issue should not be
whether researchers in artificial intelligence would certify it as an
expert system. Rather, the issue should be whether it meets the needs
of the user. The nature of EMES tasks did require opportunistic rule
application, although perhaps not to the extent we used it.

Why HAPS was Chosen Over Other Production Systems

Many production systems are available for developing expert systems.
Among the better known are OPS5, KAS, ROSIE, EMYCIN, and MRS. In look­
ing at these, we found none that combined the speed and flexibility we
believed we needed to implement EMES. For example, OPS5 is a general­
purpose knowledge representation and inference system. It derived from
its predecessor, OPS4, which was developed for an expert system to con­
figure VAX computer systems. OPS5 is mature and very fast. But it is
not very flexible because:

1) OPS5 restricts the tests in the "IF" portion of rules to arithmetic
comparisons of two numerical values ("greater than," "less than,"
etc) and to tests of equality or inequality. Similarly, the "THEN"
part of a rule is restricted to a set of actions OPS5 provides for.
Furthermore, OPS5 makes no provision for interfacing an expert sys­
tem with Fortran, which EMES needs for analyz1ng the power available
over time, times of local sunrise and sunset, and similar calcula­
tidns. HAPS allows all the tests and actions allowed in OPS5 and
any function that can be written in LISP or Fortran as well;

2) With OPS5, information stored in the expert system's database must
be represented as simple lists with no embedded lists. This re­
striction would make knowledge representation in EMES both difficult
to implement and difficult to decipher. HAPS allows an arbitrary
list structure.

VI-l2

I . /~) ,

Although the MRS (metalevel representation system) environment has the
flexibility of HAPS, we found HAPS to be approximately 30 times faster
than MRS in a benchmark test comparing the two. Because EMES can take
hours to solve some problems with HAPS, it is totally impractica~ to use
a production system this much slower.

Other production systems investigated had similar problems in speed,
flexibility, or features that were not well suited to the nature of
EMES.

Some of the features of these other production systems could have been
useful, however. For example, unlike such production systems as KAS
and EMYCIN, HAPS does not have a built-in uncertainty model. Such a
model might have been useful, although we did not find it necessary to
implement one in EMES. Similarly, some production systems come with a
full development environment to assist in the creation of expert sys­
tems. Such an environment could have shortened the time required to im­
plement EMES.

4. How HAPS Works

a. Background and Motivation for HAPS - As expert systems move into
broader and more complex domains, new constraints on their design come
into play:

1) The systems must be able to handle larger rule bases because an ex­
pert system's breadth of knowledge and level of expertise both de­
pend on the number of rules in its rule base. If a system is to
handle more complex domains at a higher level of expertise, the size
of the rule base must increase;

2) The system must be able to handle a much larger working memory set.
One reason for this is that when the domain of an expert system be­
comes larger, more domain-specific knowledge is required;

3) Some systems will have to operate in real time. Many new applica­
tions, including automation of satellite subsystems, will require
the processing of data streams in real time. These domains also of­
ten require problem solving in time-critical situations so the ex­
pert system must be flexible enough to consider the constraints im­
posed by the availability and distribution of scarce system re­
sources during the problem-solving process.

Such constraints imply that efficiency concerns will become increasingly
important in the design of future expert systems. This demands the de­
velopment of new tools for construction of the expert systems subject
to these constraints.

Most of the research concerning the efficiency of production systems fo­
cuses on pattern matching, the process by which patterns from the con­
ditional ("IF") portions of rules are compared to data items in working
memory. When all of the conditionals of a rule or "production" are true
for a specific set of data, the production may be "instantiated," or
fired with that set of data. At any given time, several rules might be
applied and a large number of data items might be used with each. The
set of all possible production instantiations is known as the conflict
set.

VI-13

-I

Pattern matching to produce or maintain this set is the most time-con­
suming operation the production system must perform and is therefore the
system bottleneck. The most widely known and most efficient of the pat­
tern-matching algorithms is the Rete match algorithm [Forgy 1982}. This
algorithm takes advantage of two important characteristics of expert
systems:

1) Pattern similarity - Because productions are tested against the same
set of data items, many of the patterns will have similar character­
istics so at least some of the matching for many of the patterns can
be done simultaneously;

2) Temporal redundancy - The contents of working memory change slowly
over time. In any given recognize/act cycle, a few data items may
be added and a few may be modified or removed, but most remain the
same. Thus pattern-matching information can be saved from cycle to
cycle with only a few modifications.

Taking advantage of these concepts requires the compilation of produc­
tion patterns into a "discrimination network." Data elements entering
working memory are sent through the network starting at its "root." The
conflict set is modified at the network's terminal nodes. These princi­
ples lead to the Rete match algorithm. With this algorithm the execu­
tion time for a single firing is very insensitive to the number of data
items in working memory, which is why it is used in the interpreters of
most state-of-the-art production systems.

Introducing goa1-directedness into a production system makes writing of
programs for that system easier. For example, OPS5 provides an alter­
native conflict resolution strategy that facilitates means-ends analysis
[Forgy 1981]. Other systems are explicitly goal-directed [Sauers and
Farrell 1982]; the system builds an explicit hierarchy of goals during
execution. At any given time, such a system is focusing on a single
goal, and the system objective is to find a way to achieve that goal.

Conceptually, productions in a goal-directed system are expressed in
the form:

IN a given goal context,
IF some set of conditions is true,
THEN perform some set of actions.

The use of an explicit goal hierarchy has many advantages. From the
user's standpoint, goal-directed programs are easier to construct be­
cause a production is prohibited from firing unless it is applicable to
solving the specific subtask at hand. Equally important, however, is
the increase in runtime efficiency that can be obtained by incorporating
goa1-directedness into a system design. This efficiency comes about two
ways.

First, because restricting productions to firing in a particular goal
context forms natural partitions in the rule set, a set of equivalence
classes can be defined. Productions in the same class are all ones that

VI-14

fire in the same goal context. During execution, the interpreter knows
which class of productions is relevant to achieving the current goal,
and only productions in that class need be considered. This means that
no class of productions needs to be processed until it becomes relevant
to the problem-solving process.

Similarly, the nature of the goal hierarchy can be exploited in the de­
sign of the working memory structure. Often during operation of a goa1-
directed system, data items are inserted into working memory that are
relevant only to achieving a given goal. Once a method for achieving
that goal has been determined, these data items are no longer needed.

This characteristic can be exploited to improve efficiency by introdu­
cing hierarchical levels of working memory. Data elements can be de­
clared local to a particular goal; when a goal is achieved, its local
data elements disappear. Such a scheme allows the working memory struc­
ture to grow hierarchically along with the goal structure. This is im­
portant because it permits all processing resulting from the creation of
a given data element to occur only within a limited local environment.

While the notion of goal-directedness is by no means novel, the incor­
poration of an explicit goal hierarchy into a production system archi­
tecture is important in terms of efficiency because it provides two key
capabilities:

1) Productions can be integrated into the problem-solving process in
such a way that system resources are spent in processing only pro­
ductions that apply to the solution of the current sub task;

2) A hierarchical working memory scheme can be introduced, allowing
for more efficient management of the large, domain-dependent know­
ledge bases future expert systems will use.

An explicit goal hierarchy also allows for the construction of expert
systems with a much more general control structure, which more closely
models the proble~solving processes of a human expert in a dynamic en­
vironment.

b. Production Hierarchies - Much research has been done on the nature
of the knowledge contained inside a production. This research has led
to a distinction between productions and metaproductions. In general,
a standard production represents a piece of expert knowledge specific
to a given domain. A metaproduction contains metaknow1edge, i.e.,
knowledge about the system's knowledge and how to use it. The use of
such knowledge allows a system to make such high-level decisions as
which of a set of solution paths is most likely to lead to the best an­
swer to the problem at hand.

Usually metaproductions have precedence over regular productions because
of the nature of the knowledge encoded in the metaproductions. It is
generally preferable to make high-level decisions concerning how the
system will attempt to solve a problem before considering the minute de­
tails of the solution itself.

VI-1S

This idea has been important in the design of state-of-the-art hier­
archical planning systems [Stefik 1980]. A hierarchical planner first
produces an abstract representation of a plan to accomplish a task.
Then, as more constraints are considered, this plan gradually becomes
increasingly detailed until the final plan is produced.

These concepts can be generalized to produce the notion of production
hierarchies, in which productions are grouped in sets--productions are
placed in the same set if they are similar according to specified cri­
teria, e.g., level of knowledge represented or level of detail of pro­
blem solution produced.

Now suppose the interpreter can fetch selected rule sets into the envir­
onment at execution time. The system starts with some initial rule sets
provided by the user. These rules can recognize situations that require
additional rule sets, and these can be loaded into the environment and
declared local to a given goal. The resulting production hierarchy can
grow as new levels of subproblems are identified.

This is best illustrated through an example. Suppose an expert system
has the task of troubleshooting some malfunction in a satellite system.
Initially only general problem-solving procedures and high-level trou­
bleshooting rules reside in the environment. One production might no­
tice that the malfunction was caused by a loss of power, and might sug­
gest focusing on the power subsystem. As the malfunction becomes iso­
lated to a smaller subset of possible faults, the interpreter may call
in a production set specific to the power subsystem of a particular
satellite, a production set specific to solar arrays, and even a pro­
duction set particular to the environmental causes of solar array fail­
ure.

One advantage of this scheme is that it provides an efficient way to
manage large rule bases. Individual groups of productions can reside
in separate source files and on different physical devices. A group of
productions does not need to reside in memory until it is needed. Also,
the addition of a new production set is often triggered by the system's
attention to a particular goal. In these instances, not only can the
goal hierarchy be used as a framework for building production hierar­
chies, but it can also serve as a framework for dismantling them. If a
production set was brought into memory in response to the creation of a
particular goal, it can be removed from memory when that goal has been
achieved.

Adding an hierarchical production scheme to the expert system environ­
ment works well in conjunction with the goal-directed partitioning stra­
tegy discussed earlier. The resulting system is one in which, conceptu­
ally, a library of production sets relevant to different problem-solving
tasks is available. Several sets are selected during system execution,
and the goal-directed nature of the system guides the search through
these selected sets. Together these techniques provide an efficient
mechanism for managing large rule sets.

VI-16

c. Alternative Memory Structures - The efficiency of a data representa­
tion ~s usually measured along two dimensions: space and time. We have
already considered the space efficiency of working memory and a memory
management scheme based on hierarchical levels of working memory has
been described. We still need to address the time efficiency of the op­
erations performed on working memory.

The operations usually performed on working memory are updating its con­
tents and pattern matching against the individual data elements. The
Rete match algorithm previously discussed efficiently implements these
operations.

Recall that the Rete algorithm exploits pattern similarity and temporal
redundancy in the database. Temporal redundancy is therefore critical
to its efficiency. Imagine a situation, however, in which a set of data
items changes frequently, e.g., during every recognize/act cycle. Each
time any data element is updated, all the production instantiations in
the conflict set that depend on that data item must be removed or tagged
invalid. Then the new value of the data item must be matched again to
form the set of valid instantiations.

This is clearly inefficient, yet this is precisely the situation that
exists in a real-time environment. Real-time systems must deal with
such data as health and status information, links to other real-time in­
formation, and feedback from sensor systems. Such data may change hun­
dreds of times in the interval between production cycles.

One solution to the resulting efficiency problem is to provide addition­
al, globally accessible memory structures in addition to standard work­
ing memory. A variety of these structures has been implemented in HAPS,
including system attributes, arrays, and tables. Pattern matching must
now occur in two stages. Matching against standard working memory re­
mains a data-driven process, i.e., matching is done at the time the
database changes. Matching against alternative memory structures, how­
ever, must be performed dynamically at instantiation time, i.e., at the
start of each recognize/act cycle.

In addition to solving some of the problems of processing real-time
data, this scheme simplifies the interface with other software systems.
This permits the development of expert systems consisting of many com­
ponents, not all of which are rule-based. Finally, this scheme allows
for creation of separate match procedures for each data type so in fu­
ture systems the idiosyncrasies of each memory structure can be iden­
tified and exploited in the same way the Rete algorithm takes advantage
of the temporal redundancy in standard working memory.

d. Conflict Resolution - Often during the running of a rule-based pro­
gram, the production system finds either that any of several rules could
be selected next or that any of several sets of data could be used in
instantiating one or more rules. The procedure it uses to pick a single
instantiation of one rule is called conflict resolution. Two strategies
are commonly used for this--elimination strategies and selection strate­
gies. As the name suggests, an elimination strategy rules out certain

VI-17

alternatives. Selection strategies are then used to choose among the
remaining alternatives. An example of an elimination strategy is re­
fraction, which rules out production instantiations that have already
fired in the past. A common selection strategy is specificity, i.e,
favoring specific productions over more general ones.

These standard conflict resolution strategies have an important flaw-­
they are generally unaware of the characteristics of the system environ­
ment and therefore cannot respond to changes in the environment. This
is especially true of characteristics that affect system efficiency. An
intelligent system should be able to maintain a set of performance sta­
tistics over time and use them in selection strategies to improve effi­
ciency.

Suppose, for example, a large expert system has been installed and has
been operating in the same environment for a long time. Assume also
that a statistical summary of past system performance is available.
Now, in a certain context, several productions are candidates to fire,
each representing a different approach to the solution of the problem
at hand. One production may have a history of taking a long time to run,
and another may have a history of seldom leading to a good solution. It
might be desirable to eliminate these productions immediately. Of the
remaining rules, Some might be more likely to lead to long-term solu­
tions than others, and it may be desirable to select these first. Thus
conflict resolution can be used to help allocate resources to tasks with
the greatest probable payoff.

Conflict-resolution strategies can also address the constraints of real­
time operation by enabling productions to alter conflict-resolution
strategies in critical situations. For example, suppose an expert sys­
tem is given a limited amount of time to solve a critical problem. If
time begins to run out, the program could consider only productions that
always produce answers quickly. Although this may provide only a short­
term failure workaround, the time-critical nature of the situation will
have disappeared, and the system will then have more time to pursue a
more permanent solution.

Finally, many systems require that some operations (in this scheme, for
example, the matching against alternative memory structures) be perfor­
med at instantiation time. The conflict resolution process usually as­
sumes that it is given a valid conflict set--a set of production instan­
tiations all of which have all their conditionals satisfied. Here, how­
ever, the system has at instantiation time only a list of candidates for
the conflict set. These candidates are not valid members of the con­
flict set until they are found to satisfy the tests to be performed at
instantiation time.

This suggests that a type of meta-conflict-resolution procedure should
be used. Meta-conflict-resolution strategies can consider such statis­
tics as cost for instantiation and can eliminate some candidate instan­
tiations before they are tested for validity. For example, if the sys­
tem is performing under a time-critical condition, it is reasonable to
immediately eliminate candidate instantiations that would require a
great deal of some expensive processing, e.g., inferencing, to enter
the conflict set.

VI-18

T

e. Control Strategies - Most production systems use the same general
control structure; th~s is the recognize/act cycle. In goal-directed
systems, an additional issue must be addressed. The system has a hier­
archy of goals to achieve, and it must choose one goal as the focus of
attention in each cycle.

One of the most common search strategies for this is a depth-first
search. In this strategy, a goal is pursued until it is achieved, or,
if it sprouts subgoals, until all of its subgoals have been achieved.
An alternative strategy is breadth-first search, in which all of the
sub goals of a particular goal are expanded one level before any deeper
expansion of any subgoal occurs.

These search strategies are adequate for some applications, but they
have an inherent flaw--neither can respond to changes in the system en­
vironment so neither can take into account the particular characteris­
tics of the problem being solved.

This flaw adversely affects system efficiency. For example, consider a
system that has two ways to achieve a particular goal, each of which re­
quires the achievement of a different subgoal. If the system does not
have enough information to select the more efficient method and uses a
blind depth-first search strategy, it may waste large amounts of some
scarce resource, e.g., time, pursuing one goal when pursuing the other
would have led to an immediate solution.

Because this problem is closely related to those we discussed previously
in analysis of conflict resolution, it seems appropriate here to apply
techniques traditionally use for conflict resolution, i.e., the use of
selection and elimination strategies. We can use system performance
statistics to produce a more effective search of the goal hierarchy,
thereby allowing system resources to be applied in the directions where
they will most likely produce desirable results.

For example, to solve the search problem one might rule out the pursuit
of goals that have already consumed more than a specified amount of a
given system resource. Alternatively, a selection strategy may be used
that pursues those branches of the goal tree that have produced the lar­
gest amount of new information for each unit of some selected resource.
Similarly, these control strategies can be used to prevent the pursuit
of goals that have failed under similar circumstances in the past and to
prevent infinite recursion.

Control strategies work well in conjunction with the explicitly repre­
sented goal hierarchy. For example, the goal may be achieved through
either of two different sets of subgoals. The system can begin to pur­
sue one solution path and then decide, through the use of a control
strategy that monitors the depth of subgoal expansion, that it might be
more advantageous to switch to an alternative solution path. The resul­
ting control structure is one that can recover from situations human ex­
perts could avoid, yet which could not be handled with more traditional
production system architectures.

VI-19

f. Inference - Another problem directly related to memory management
is the need for inference. This need can be demonstrated quite easily.
Suppose some pattern in the conditional portion of a production does
not match. There are at least two ways this can occur:

1) The data item being tested for represents a proposition that is
false in the current context;

2) The proposition is true in the given context but is not explicitly
represented in working memory.

In the latter situation, we may be able to infer the truth of the de­
sired data element from other data items that are explicitly represen­
ted. In this case, an interpreter that does not permit inferencing will
disallow the execution of what we would like to be a valid production
instantiation.

Many knowledge representation schemes provide automatic inferencing
capabilities [Genesereth, Greiner and Smith 1980]. In these schemes,
inferencing is performed at the time the database is queried. Such in­
ference mechanisms usually require the representation of some form of
metaknowledge. However, these schemes are not currently applicable in
the production system scenario, primarily because production systems
cannot take advantage of such properties as temporal redundancy unless
the data items are explicitly represented in memory.

For this reason, inferencing in a production system is an expensive
operation. One method for increasing its efficiency is to modify the
inference scheme as follows:

1) The individual patterns on which inferencing is permitted are
tagged. This ensures that inferencing is permitted only on those
clauses for which it is desirable;

2) Inferencing is not performed when data elements required for instan­
tiation of a production are explicitly represented in memory;

3) Inferencing is delayed until instantiation time and is only executed
for instantiations that have passed the meta-conflict-resolution
process.

These modifications allow a cost to be associated with any given infer­
ence mechanism so potential instantiations that would require extensive
calculations to test their validity can be eliminated by meta-conflict­
resolution strategies.

Finally, it has been shown that the inference procedures required to
derive new data elements are not uniform over all data types [Fox 1979]
so it is wise to let the user define external inference routines and
indicate which types of data element these procedures are designed for.

Combining these ideas results in a simple inference scheme that pro­
vides many of the advantages of automatic inference mechanisms without
imposing an unnecessary strain on system resources.

VI-20

g. How HAPS Addresses These Issues - These considerations have led to
the design of a new production system architecture known as HAPS, the
hierarchical, augmentable production system architecture. HAPS is a
goal-directed system that allows both hierarchical levels of working
memory and the dynamic construction of production hierarchies. HAPS
also provides predefined global memory types designed to facilitate the
implementation of large expert systems for real-time situations.

The system also provides modular, modifiable sets of control strategies
and conflict-resolution strategies, making the system responsive to
changes in its environment. These strategies take into account cost
estimates, the history of system statistics, and the availability of
scarce system resources to more effectively guide the problem-solving
process.

User-declared inference procedures are also handled, and cost estimates
of operations performed at instantiation time can be included in meta­
conflict-resolution strategies.

Finally, the system is equipped with a sophisticated production com­
piler, HAPSZT, which is designed to increase the overall level of system
efficiency.

D. RULES USED IN EMES

EMES uses a large collection of heuristics to schedule the various
loads. These do not always correspond one-for-one with the rules in

. HAPS formalism, although the agreement is close. Production systems
differ considerably in their expressive power, and what can be said in
one rule in one production system's formalism may require two or three
rules in another formalism. None can match English in expressive power.
In EMES, 77 heuristics are expressed in approximately 150 rules. In
some cases it was necessary to use several rules to accomplish what is
described here in one plain-English rule of thumb.

"Initialize the Timeline" is the top-level goal of EMES, i.e., the goal
that is active when EMES starts to run. Several of EMES' heuristics,
grouped under this goal context, are used to initialize the expert
system:

1) Calculate day power available with degradation - When solar degra­
dation has been introduced into the system for time t, calculate the
power available at time t by applying the degradation to the solar
array capability at time t;

2) Calculate day power available without degradation - If there is no
solar degradation at time t, the power available at time t is simply
the solar array capability at time t;

VI-2l

3) Calculate night power available with degradation - When battery de­
gradation has been introduced into the system for time t, calculate
the power available at time t by applying the degradation to the
battery capability at time t;

4) Calculate night power available without degradation - If there is no
battery degradation at time t, the power available at time t is sim­
ply the battery capability at time t;

5) Calculate day/night periods - For every orbit in the mission, desig­
nate a period whose interval is greater than or equal to timel and
less than time2 for the day portions and the night portions of the
orbit. Here we are separating the orbits into day and night periods
and identifying when these periods start and end;

6) Calculate day/night period spanning orbits - A contiguous day/night
period might have been erroneously declared to be two separate per­
iods if the period overlaps orbits. Look for such cases and make
one contiguous period out of two periods. More precisely, if the
end time of a day period equals the start time of another day per­
iod, combine the two periods into a single day period beginning at
the start of the first period and ending at the conclusion of the
second period;

7) Initialize total day/night - If the total period for the day and/or
the total period for the night hasn't been initialized, then ini­
tialize the total period for the day and night to zero;

8) Calculate total day/night - Update the total period for the day or
the night by adding the duration of a particular day or night per­
iod to the current total period. Day and night totals are calcula­
ted separately;

9) Initialize total baseline power consumed - If the total baseline
power consumed has not been initialized, initialize it to zero;

10) Calculate total baseline power consumed - If the total baseline
power consumed is initialized, calculate the total baseline power
consumed as the sum of the power consumed by all the baseline loads
for the current operating mode;

11) Determine survival mode - Establish the survival mode for minimal
baseline load operation as mode 4;

12) Initialize power consumed to total baseline power consumed - After
all baseline loads have been scheduled, calculate and remember the
baseline power consumed for each 6-minute interval as follows. For
each time t that marks a 6-minute interval and for the applicable
baseline mode of operation (normal, degraded, etc), the total base­
line power consumed at time t is the sum of the power consumptions
of all baseline loads;

13) Determine baseline mode - If the baseline operating mode has not
been established for time t, let the baseline mode be the mode for
which the difference between the total baseline power consumed and
the power available at time t is the least but greater than zero;

VI-22

1

14) Not enough power for baselines - If not enough power is available
at time t to support the total baseline power consumed, recommend
using a different mission profile to generate a time line;

15) Cannot operate mission in normal mode - If the baseline operating
mode is not mode 1 (the normal operating mode), inform the user that
the mission cannot be supported in the normal manner and suggest
trying to process a different mission profile;

16) Ready to inspect - If all initializations are completed, insert the
goal "inspect the timeline."

The following heuristic forecasts the required success level for the
mission and applies in the goal context "forecast":

17) Determine forecasted success goal for the mission - If we haven't
determined the success goal for the mission, insert into working
memory the information that the required success level is "total
success." Then inform the user and declare forecasting successful.

In a flight system this heuristic would certainly be replaced with a
less arbitrary one.

The following four heuristics, which apply in the goal context "inspect­
timeline," are used to inspect the timeline and recognize "contingency"
situations before the degraded or scheduling mode is entered:

18) Recognize contingency - If there is any time when more power is
scheduled to be consumed than is available and either the current
mission time equals the time of the power problem or a load is run­
ning during the power problem, enter the contingency mode;

19) Recognize power shortage - If there is a time when more power is
schedules to be consumed than is available and heuristic (18) does
not apply, enter the degraded mode;

20) Do Scheduling initializations - If the scheduling mode has not been
entered for this mission definition yet but you are about to do so
and scheduling has not previously been initialized, initialize it
and then go directly into the scheduling mode;

21) Do scheduling - If there are load requests that haven't been sche­
duled yet, and there are no recognized power shortages in the mis­
sion, enter the scheduling mode.

The following heuristics, which apply in the goal context "sched-init,"
are used to initialize scheduling:

22) Initialize forecast - If the forecasted success goal has not been
determined, insert the goal that enables entrance into the fore­
casting stage, which predicts achievable success level;

23) Initialize load opportunity - For every load request, and for the
total, partial, and minimum success levels, find the dc time, deter­
mine the mission start and end, and calculate the load opportunity
as the dc time divided by the difference between the mission start
and end times;

VI-23

1

24) Initialize pointer opportunity - For every pointer load request, and
for the total, partial, and minimum success levels, initialize the
pointer opportunity for the period, i.e., day or night, in which the
pointer load operates. This is done by inserting the goal to calcu­
late pointer opportunity;

25) Initialize legal slots - For every load request, initialize the le­
gal slot for the load as the entire mission. Then insert the goal
to update legal slots by applying constraints, e.g., two operations
of the same load cannot run concurrently, two pointer loads may not
operate simultaneously, etc;

26) Initialize active slot - Initialize the active slot to the current
mission time.

Heuristic (27) handles scheduling and is applicable under the goal con­
text "schedule":

27) Choose a load to be scheduled - If there is still time rema1n1ng in
the mission, find the active slot, determine if there are any un­
scheduled load requests that could be scheduled in the slot, and
insert the goals to determine desired (legal) loads and, from the
desired loads, determine the optimum load. The optimum load is the
load that will be scheduled.

The following four heuristics determine desired loads to schedule.
These rules apply in the goal context "determine-desired-loads":

28) Desired load for inclusive legal slots - Determine which loads can
be scheduled in the active slot by collecting all legal loads and
attaching the earliest possible start time. A legal load is one
whose duty cycle is within an active slot time duration;

29) Desired continuous load for encompassing legal slot - pick a desir­
able load when the legal slot encompasses the active slot and the
load under consideration is a continuous load, i.e., cannot be
turned off once it is turned on. The recommended start time for
such a load is the start time of the active slot;

30) Desired load for legal slot after start of active slot - Determine
a desired load whenever the legal slot starts after the start of the
active slot and stops after the end of the active slot but the duty
cycle of the load still fits within the active slot time period;

31) No desired loads selected - If no load can be legally scheduled for
the current active slot, update the active slot.

The following heuristics pick the optimum load for scheduling from a
list of desired loads, i.e., ones that can be scheduled during a par­
ticular period. Picking the optimum load involves ranking, pruning,
and choosing the event of the optimum load and the time to schedule
that event. These rules apply in the goal context "determine optimum
loads":

VI-24

32) Establish ranking, selecting, and event choice subgoals - If the
context is "determine optimum load," insert the goals to rank loads,
pick the optimum load, and choose an event of the optimum load to
schedule.

Three heuristics apply in the goal context "rank for scheduling" and
assign each load a rank for used in scheduling:

33) Rank according to pointer opportunity
a pointer and the pointer opportunity
sion success is greater than or equal
than any load that is nat a painter.
is defined in heuristic (61);

ratio - If a desired load is
ratio for the forecasted mis­
to 64%, rank the load higher
The pointer opportunity ratio

34) Rank according to opportunity ratio - If loads A and B are desired
loads to schedule, and if load A's opportunity ratio is greater than
load B's for the forecasted mission success, rank load A higher than
load B for opportunity ratio. This ratio is defined in heuristic
(58). Each load may have a different ratio;

35) Rank according to power consumption - If loads A and B are desired
loads to schedule, and if load A consumes more power than load B,
rank load A higher than load B for power consumption.

The following heuristics apply in the goal context "pick optimum load
for scheduling," and their function is just what the goal name implies.
They pick an optimum load from a set of desired loads, which are ranked
for scheduling via various justifications:

36) Pick the one that's best - If the optimum load hasn't been chosen
yet, the desired load that is ranked higher than any other desired
load is the optimum load;

37) Pick a pointer from many - If there are pointers that are desired
loads and an optimum load hasn't been chosen yet, arbitrarily
choose one of the pointers as the optimum load for scheduling;

38) Prune off all nonpointers - If there is a pointer that is a desired
load, and the pointer opportunity ratio is greater than 65%, no non­
pointer load is to be considered for scheduling;

39) Prune opportunity versus power consumption - Prune off opportunity
ranking if a load's opportunity ratio is less than 75% and power
consumption is a lower ranking for that load. In other words, don't
worry about opportunity ratio if the ratio is less than 75%, because
power is a bigger concern with ratios this small;

40) Prune multi-outranked loads - Prune off nonpointer loads that are
outranked by more than one load;

41) Only one desired load - If there is only one desired load, it has
to be the optimum load for scheduling.

VI-25

1

The next group of heuristics applies in the goal context "find time slot
for scheduling,1I and, as the goal name suggests, they define a time slot
to be used for scheduling loads:

42) Use the earliest time for start - Pick an event (period of opera­
tion) of the optimum load and use the recommended start time for
scheduling. The recommended time may be user-defined or set to a
default value as determined by other heuristics;

43) Start at user-defined start - If the user specified a time to start
the load to be scheduled and the time is in the scheduling period,
that is the time to schedule the event, 1. e., the "recommended
time ll of heuristic (42);

44) Start at user-defined starting window - If the user specified a
starting window for the load to be scheduled, and the window is in
the scheduling period, the beginning of the window is the time to
schedule the event;

45) Use the desired start time - If the user hasn't requested a starting
time for the optimum load, use the start time recommended when the
load was chosen as a desired load;

46) Only one event can be used - If several events for a load request
have been instantiated and heuristic (47) does not apply, choose one
event that has not been scheduled, schedule it, and delete the
others. Selection is done arbitrarily;

47) pick the event with the earliest time - If there is more than one
optimum event, then pick the event with the earliest recommended
start time as the optimum event for scheduling.

The following heuristics record the of power consumed during the mis­
sion. They apply in the goal context "update power consumedll

:

48) Increase-power-consumed violation - For a specific mission time, if
the power consumption of the load being scheduled, when added to the
current power consumption, will cause the total power consumption
to be greater than the power available at the mission time in ques­
tion, inform the user that there is not enough power available at
that mission time;

49) Increase power consumed - For a specific mission time, add the power
consumption of the load being scheduled to the current power con­
sumption to generate the new "power consllmed" data item. Remove the
old "power consumed" data item for the mission time in question.

The following two heuristics, which reinstate legal slots, apply in
the goal context "reinstate legal slots":

50) Reinstate Legal Slots - If there is a load request for which a le­
gal slot does not exist, create the legal slot and update the load
opportunity;

VI-26

r

51) Reinstate legal slot cleanup - Make sure that the reinstated legal
slot is continuous. If a load has more than one legal slot and
these two legal slots overlap, generate a new legal slot using the
minimum start time and he maximum end time. Then remove the old
legal slots and update the load opportunity.

The following heuristics are used to update legal slots and apply in the
goal context "update legal slots":

52) Continuous load constraints - If the legal slot for a continuous
load is smaller than the total duty cycle for that load, remove the
legal slot and update the load opportunity;

53) Day/night constraints - If a load may only operate during the night
but the legal slot for that load overlaps a day period, remove the
legal slot and generate a new legal slot for the load with day times
eliminated. Also update the load opportunity. Likewise, if a load
may only operate during the day, but the legal slot for that load
overlaps a night period, remove the legal slot, generate a new legal
slot for the load with night times eliminated, and update the load
opportunity;

54) Load constraints - Make sure that the same load does not "operate
simultaneously with itself." If a duty cycle of a load is already
scheduled during a time that overlaps with the current legal slot
for the load, remove the legal slot and update the load opportunity;

55) Resource constraints - If a load consumes more of a resource than
is available during the legal slot for the load, remove the legal
slot and update the load opportunity;

56) Pointer constraints - Make sure that no two pointers are scheduled
to operate simultaneously. If load A is a pointer and is scheduled
during a time that overlaps with the legal slot for load B, which
is also a pointer, remove the legal slot and update the load oppor­
tunity for load B;

57) Power constraints - If the power consumed exceeds the power avail­
able when we hypothetically schedule a load at time t and time t
falls within the legal slot for the load, rem~ve the legal slot and
update the load opportunity for the load.

The following heuristics update load opportunity and apply in the goal
context "update load opportunity":

58) Update load opport~nity ratio - For each load success specification,
update the opportunity ratio for the load. That is, update the op­
portunity ratio for total, partial, and minimum levels of success.
The opportunity ratio is calculated by dividing the amount of data
collection time still required to meet a particular success level by
the amount of time remaining in which these data can be collected;

59) Tell the user about success accomplishments - If all the data col­
lection required to attain a particular level of success for a load
has been completed, inform the user that the success criteria have
been met;

VI-27

60) Tell the user about success failures - If, ~n order to reach the re­
quired success level, more data-collection time is required than re­
mains in the mission, inform the user that the success level will
not be met.

The following heuristic calculates and updates the pointer opportunity
ratio. It applies in the goal context "calculate-pointer-opportunity":

61) Calculate pointer opportunity - Calculate the pointer opportunity
ratio for the specified day or night periods for each of the success
levels: total, partial, minimum. For every load request, determine
how much data collection time is required for each load that oper­
ates in the specified day/night period and has not been accounted
for. Add the data collection time to the current pointer opportun­
ity data collection time. Then calculate the pointer opportunity
ratio by dividing the new data collection time by the time available
in the mission for collecting the data. Finally, account for the
load, remove the old pointer opportunity data item, and add the new
ratio to working memory.

These rules apply in the goal context "update pointer opportunity":

62) Update pointer opportunity by success levels - For each success
level--total, partial, and minimum--and for every load that is a
pointer, update the current pointer opportunity ratio by subtracting
the data collection time the pointer load requires from the present
data collection time and decreasing the present availability by the
amount of time used by the pointer load. Remove the old pointer
opportunity ratio data item and add the new pointer opportunity to
working memory;

63) Explain pointer opportunity - Pointers that operate during the "day/
night" must operate "x minutes" to reach total success. "y minutes"
are available to operate these loads;

64) Tell user about pointer success failures - If more data collection
time is required than is available, report to the user that day or
night pointers do not have enough time to meet success criteria;

The following heuristics hand.le degradation. They apply in the goal
context "handle power shortage":

65) Deschedule interruptable load - If an interruptable load is sche­
duled at a time when power available is less than power consumed,
unschedule the load;

66) Deschedule continuous load - If a continuous load is scheduled at a
time when power available is less than power consumed, remove the
load from the schedule;

67) Deschedule baseline mode - If no loads are scheduled at a time when
power available is less than power consumed, reduce the baseline
load power requirements by dropping the baseline mode of operation
by one.

VI-28

The following heuristics, which are used in the goal context "drop base­
line mode," reduce baseline load power requirements:

68) Drop baseline modes at time t - If not in survival mode, i.e., the
lowest poss1ble baseline power consumption, and the baseline mode
has not already been dropped for time t, drop baseline mode by one
and insert a goal to update power consumed for time t;

69) Baseline already in survival mode - If baseline power consumption
is at the survival level, i.e., it can't be reduced any further
without endangering the mission, abort the mission.

Following are the heuristics that handle contingency situations. These
rules apply in the goal context "handle-contingency":

70) Recognize earliest contingency - Recognize that any times in the
mission when power available is less than power consumed are power
problems. Then locate the time of the earliest power problem in
the mission;

71) Immediate contingency workaround with interruptable load - If an in­
terruptable load is scheduled during a power problem, unschedule
that load;

72) Immediate contingency workaround with continuous but no interrupt­
able load - If a continuous load is scheduled during the power pro­
blem and there are no interruptable loads, drop the baseline load
power consumption levels at the time of the power problem;

73) Immediate contingency workaround and no interruptable or continuous
loads - If no 1nterruptable or continuous loads are scheduled dur­
ing a power problem, reduce baseline power requirements for the re­
mainder of the mission;

74) Inevitable contingency workaround with interruptable load - If an
interruptable load is on and will run into a power problem, un­
schedule the load;

75) Inevitable contingency workaround with continuous not on but no in­
ter~uptable load - If no interruptable loads are scheduled and there
is a continuous load that is not on yet but will run into the power
problem if turned on, don't turn on the continuous load, unschedu1e
it;

76) Inevitable contingency workaround with continuous on but no inter­
ruptable load - If no interruptable loads are scheduled and a con­
tinuous load is running during the power problem, reduce baseline
load power requirements during the power problem;

77) Inevitable contingency workaround, no interruptable no continuous -
If there are no loads on during a power problem at current mission
time, reduce baseline load power requirements for the remainder of
the mission.

VI-29

1. Possible Improvements

EMES was designed as a software testbed, not as a finished product. A
number of improvements would increase its "intelligence." For example,
although the user provides criteria for various degrees of success, the
program always attempts to achieve total success. Additional rules
could be added to forecast the degree of success it might achieve, re­
sulting in better schedules under degraded and contingency conditions.

Another potential improvement relates to EMES' treating all payloads as
being of equal importance. This simplification results from any firm
guidelines for setting priorities. In a real space station, this is un­
likely to be the situation. For example, some payloads will cost many
times more than others.

These improvements would come largely from increased knowledge of the
constraints placed on scheduling; they do not materially affect the so­
phistication of EMES' reasoning process.

However, we have identified one improvement that would improve the pro­
gram's reasoning ability. After EMES places a load on the timeline, it
does not remove it unless it discovers a power problem. In contrast, a
human expert might notice that an improvement could be made to a sche­
dule he was developing. For example, he might move a load he had placed
near the start of the timeline after noticing that another load was par­
ticularly hard to place. Similarly, he might notice that one of the
loads is far easier to place than the others and might give other loads
priority, knowing that the easy load can be used as a gap filler later.
This kind of mental backtracking and learning by observing are not built
into EMES. Nor would they be easy to add. On the other hand, they
could produce superior schedules.

We would not recommend that EMES be modified to add these improvements.
Although EMES was built with a modular design to facilitate future de­
velopment and it could be expanded, doing so would require intimate
familiarity with its rules and structure and with the HAPS production
system. We believe that more can be learned with the same amount of ef­
fort by studying other areas where expert systems could be applied.

If an EMES-like expert system is to be designed for use on a space sta­
tion, the major design issues should be thoroughly investigated again
because much more is known now than when this project started about
space station and the capabilities and limitations of expert systems for
energy management. The constraints on operational software will also be
far different from the constraints on a laboratory testbed or prototype
like EMES.

2. Dependency on Spacecraft Configuration

In designing EMES, we attempted to minimize dependency on the details of
our specific space station model so mistakes in predicting the ultimate
space station configuration would not result in a fundamentally flawed
rule base. For example, we avoided rules that reason about the details
of managing energy storage because we did not know whether to plan for
batteries or regenerative fuel cells. Similarly, we made the payloads
as generic as possible, allowing the user to characterize them according

VI-30

E.

1

to a number of parameters. The EMES rules then reason about the para­
meters rather than about the idiosyncrasies of precisely defined pay­
loads that mayor may not fly.

As a result, the changes EMES would require to adapt it to another (or
more spec~fic) configurat~on are primarily the addition of rules rather
than the removal or revision of rules. The details of these changes,
however, will be difficult to predict until the space station design is
well along.

FORTRAN MODULES

EMES uses Fortran modules in much the way a human expert would use com­
puter programs to automate such tasks as analyzing the orbit, determi­
ning power availability as a function of time, and drawing graphs of
certain quant~t1es. While these functions aid the reasoning process by
supplying information, they are not in themselves part of the reasoning
process.

We wrote these portions of EMES in Fortran because that language is
better suited to algorithmic computation than a production system. Fur­
thermore, portions of Fortran programs were available to use as models
in writing these portions of EMES.

Appendix B presents the details of the algorithms used in these modules.
In general, we did not attempt to provide as accurate a set of software
tools for EMES as a human expert might want for a flight situation. For
example, the orbit calculations use only a first-order approximation in
accounting for the oblateness of the earth. Similarly, the calculations
for solar array efficiency use simplified formulas for both temperature
change and the variation of efficiency with temperature. These approxi­
mations are entirely adequate for demonstrating EMES' reasoning ability,
and uncertainties in the mission model produce far larger errors than
the simplifications in the algorithms. However, a flight system is
likely to require considerable refinement in these modules.

VI-3l

VII. FUTURE WORK IN EXPERT SYSTEMS

A. STATE OF THE ART IN EXPERT SYSTEMS

Expert systems have built an impressive record in a short time. The
work started with DENDRAL, an expert system for determining the struc­
ture of molecules from mass-spectrometer data. This project began ~n
1965, and was received with some skepticism when it was introduced in
1967: "It sounds like good chemistry, but what does it have to do with
A[artificial] I[intelligence]?" [Michie 1979].

Since then a number of such systems have been developed, not all of them
research projects. Many are of considerable commercial value. With to­
day's technology, prototype or operational expert systems have been
written for:

1) Analyzing or diagnosing problems in diesel-electric locomotives,
computers, telephone cables, and other equipment and systems;

2) Diagnosing diseases, analyzing electrocardiograms, and advising
doctors in administering chemotherapy;

3) Assisting in exploring for mineral deposits and oil, and analyzing
oil well data;

4) Assisting in design and analysis of software, including other expert
systems;

5) Assisting in solving mathematical problems;

6) Assisting in the design or analysis of integrated circuits, data­
bases, printed circuit cards, and single-board computers and other
circuitry;,

7) Assisting in job-shop scheduling and in management of manufacturing
and large projects;

8) Assisting chemists and geneticists by analyzing protein crystallo­
graphy data, mass spectrograms and other chemical data, by planning
bioengineering experiments involving DNA, by solving certain pro­
blems in genetic engineering, and by helping plan organic chemical
synthesis;

9) Providing computer-aided instruction;

10) Configuring computers;

11) Assisting in solving water-resource problems;

12) Adjusting signal-processing systems;

13) Analyzing structures;

14) Performing statistical analysis.

VII-l

The majority of today's expert systems use shallow reasoning, i.e., they
apply heuristics, but they do not "understand" the basic principles un­
derlying the problem they are solving. For example, an expert system to
analyze a piece of electronic equipment may know such rules of thumb as
might be found in a user's manual under "In Case of Problems," e.g., "If
you are just starting to troubleshoot, check the indicator lights and
the power-supply voltages." In fact, the rules used by the expert sys­
tem will likely go well beyond these in detail. However, the program
will not know or apply such fundamental principles as cause-effect rela­
tionships, Ohm's law, Kirchoff's laws, etc. If it uses Ohm's law at
all, it may know it only as a formula for computing current when it
knows voltage and resistance. It will not realize that the same equa­
tion can be used to compute any of these three quantities when it knows
the other two.

This kind of expert system is coming, and there are a few examples to­
day, but they are still the exception. The reasons are easy to state:

1) "Deep reasoning," "causal reasoning," and "reasoning from first
principles" are the buzzwords of recent research in expert systems,
but they represent a new field that has not had time to mature. It
will take time for effective techniques to be developed and for
these to become widely known;

2) This kind of system involves much more work than a shallow-reasoning
system.

The term "shallow reasoning" should not be taken as a pejorative, how­
ever. Such reasoning has proved adequate for producing expert systems
for a wide variety of applications.

Another limitation of current expert systems is a very limited ability
to learn. Typically, such programs do not learn new methods of solving
problems--new rules--although some adjust parameters through experience
to improve performance. This, too, is an active area for research. One
of the best known is VEXED [Schindler 1984], developed at Rutgers Uni­
versity for very-large-scale integrated circuit design. This system is
designed to add rules of its own invention by generalizing feedback from
users.

Human experts know their limitations far better than expert systems do.
When an expert system is presented with a problem that is close to the
limits of its competence, it performs badly but provides no indication
that anything is wrong. When human beings know something, they also
know that they know it, and when they don't know something, they typi­
cally are aware that they are ignorant. But building this kind of self­
awareness into a computer program is very difficult and is an issue that
has largely been ignored in the design of today's expert systems.

Most of today's expert systems are restricted to narrow domains so that
one expert can supply all the rules. Handling knowledge from mUltiple
experts is very difficult and is referred to as the "scattered expert"
problem. What makes it a problem is that different experts approach a
problem different ways, and the rule base can easily end up with rules
that contradict each other or are at least incompatible.

VII-2

T

j, ,I

A related problem occurs when there is no expert. Curiously, it is
easier to write a program to outperform most human experts in a narrow
domain than to write one to do what a three-year-old child can do. The
developer of an expert system runs the risk of finding a classic un­
solved problem of artif1cial intelligence embedded in the expertise he
is trying to capture. This risk is minimized when the expert is called
an expert primarily because he knows a lot, not because he is better
than the average person in applying ordinary human skills.

Expert systems are not well suited to performing tasks for which ade­
quate algorithmic solutions are known because the algorithmic solution
will invariably be faster. This is more an issue of practicality than
a fundamental limitation, and an expert system might be useful in, for
example, selecting an appropriate algorithm or assisting in formulating
a problem properly for algorithmic solution.

Some of the limitations of today's expert systems can be attributed to
the limitations of today's hardware. This problem is the driving force
behind Japan's "Fifth Generation" project, which aims to develop com­
puters that are orders of magnitude faster than those now available for
running expert system programs.

A final limitation on expert systems is that they can take a long time
to develop. While new expert systems can be developed quickly in fields
where others have been developed, e.g., for medical diagnosis, attacking
a new field is difficult. Similarly it is difficult to develop expert
systems for a field that is changing rapidly. For example, an expert
system for electronic circuit design could become obsolete before it is
debugged if the implementers embed the part numbers of today's integra­
ted circuits in the rule base instead of providing a means to update
through a parts list. Even so, it would be difficult to allow for
breakthroughs like microprocessors, which make major changes in the con­
straints on practical designs.

This is a potential problem for space station, because its design fea­
tures may change during the design of the expert systems it is to em­
ploy. Fortunately, design tools are being developed to greatly reduce
the time required to implement these programs. Some such tools are al­
ready available, and there is a great economic incentive to develop
more.

EMES has the same limitations that characterize most of today's expert
systems. It does not learn new problem-solving techniques on its own,
although it could be modified periodically to add intelligence, and it
cannot reason about cause and effect. However, it knows a lot about
the payloads aboard the simulated space station--their power consump­
tion, success criteria, interruptability, pointing requirements, etc-­
and it knows how to create schedules that meet these requirements.
These are the primary characteristics of today's first-generation expert
systems: possession of rare knowledge and the ability to apply it in
solving problems.

VII-3

B. APPLICABILITY OF EXPERT SYSTEMS TO POWER SUBSYSTEMS

EMES demonstrated management of only one aspect of a space station power
subsystem, but the same generic capabilities could be put to work in
other aspects of managing the power subsystem as weli. For example, an
expert system developed under Martin Marietta Denver Aerospace IR&D pro­
ject D-55R demonstrated the ability of such software to detect and iso­
late faults in a space station power subsystem and, to a limited extent,
find a workaround procedure.

An expert system might provide automatic state-of-health monitoring be­
yond simple fault detection. For example, it could observe trends in
solar-array degradation and battery capacity, provide interpretations
and, where possible, corrective actions to prevent failures or avoid
operational problems.

Another fruitful area for applying the capabilities EMES demonstrates is
in energy storage management. Software for this task will be more com­
plex than EMES, however, because it will have to reason from cause and
effect, whereas EMES rules do not require this. As we discussed pre­
viously, reasoning from cause and effect or fundamental understanding
of a system is a relatively new topic in the field of expert systems,
and the technology is not yet mature. However, the capability can be
reasonably expected to be available in the time frame of space station.

Organizing these capabilities in one expert system is currently beyond
the state of the art. However, it is reasonable to suppose that they
could be built into a hierarchy of cooperating experts with a "manager"
expert system controlling and organizing the activities of the others.
If this is done, the data passed among the expert systems should be min­
imized and highly structured to avoid design problems. The more the ex­
pert systems interact, the more problems can be expected in debugging
them. If development of such a system is contemplated, work should be­
gin soon on a prototype system to identify the design problems such an
architecture will present.

One issue that needs to be addressed is the fact that expert system
software, unlike conventional software, is generally neither "correct"
nor "incorrect." Like human judgment, the performance of expert sys­
tems is better described by assigning a degree of competence. This
means there is always the risk of finding a situation the software is
not competent to handle. The minimal-risk approach to placing expert
systems on space station to manage the power subsystem is to use them
as experimental software that makes recommendations but' controls no­
thing, at least initially. As confidence builds in the system's com­
petence, it could be gradually given increased control over the power
subsystem.

VII-4

1

C. APPLICABILITY OF GENERIC CAPABILITIES OF EMES TO OTHER SPACECRAFT
SUBSYSTEMS

EMES demonstrates five generally useful capabilities:

1) Scheduling and revising schedules;

2) Reasoning about priorities that change with time and circumstances;

3) Detection of abnormal situations;

4) Displaying data in the form of tables and graphs;

5) General reasoning ability.

These capabilities might find use in other spacecraft subsystems. For
example, the control and display subsystem could use these abilities for
"intelligent caution and warning." An expert system could pre interpret
the symptoms of abnormal conditions, find possible explanations, and
suggest corrective actions to the crew rather than simply present raw
data. As a minimum, the expert system could prioritize the display of
data to emphasize the most important indications. An expert system with
reasoning ability could do this more effectively than a simple algorith­
mic prioritization scheme because it could recognize more subtle pat­
terns in the data, reason about possible causes and implications, and
observe trends in data over a period of time.

Similarly, these abilities might be put to use in data management. An
expert system could screen some kinds of data to prevent storage or
transmission of redundant or meaningless data; or it could prepare pre­
digested abstracts of data along with its interpretation of their mean­
ing. These capabilities would reduce the amount of data space station
would have to return to earth, reduce the problems of data storage, and
decrease the manpower required to interpret the data.

Some of the capabilities demonstrated in EMES could be useful in various
payloads. Currently such payloads as scientific instruments and techno­
logy-development experiments require a large amount of human supervi­
sion. An expert system might substitute for some human activities, re­
ducing costs and decreasing the chances of something being overlooked
because of fatigue or inattentiveness. However, the payload would have
to be chosen with some care because the expert system will itself be ex­
pensive to develop. The ideal payload to use an expert system is one
that will be used for more than a year, requires intelligent supervision
beyond the capability of conventional software, and does not require
such human capabilities as development of novel theories, invention of
new methods to solve unforeseen types of problems, insight, and intui­
tion. Even where these abilities are required on occasion, an expert
system might be able to reduce the human expert's burden.

VII-5

T

In addition, an expert system with some of the capabilities EMES demon­
strates could be a useful experiment in its own right. For example, an
expert system could be developed to automate some function on a space
station despite questions about its ability to handle the task. Its
performance could be evaluated during flight by comparison with the de­
cisions the human experts who control the space station. During this
evaluation, the improvements needed could be noted, and the expert sys­
tem could be modified so it could be used for control in a future mis­
sion. If the function performed is critical, or if the consequences of
a bad decision could be severe, the expert system might be carried as an
experiment a number of times.

VII-6

VIII. REFERENCES

B. Buchanan and E. Feigenbaum: "DENDRAL and META-DENDRAL: Their Appli­
cations Dimensions." Artific~al Intelligence 11, 1978, pp 5-24.

Randall Davis: "Interactive Transfer of Expertise: Acquisition of New
Inference Rules." Proceedings of the Fifth International Joint Confer­
ence on Artificial Intelligence, Massachusetts Institute of Technology,
Cambridge, Massachusetts, August 22-25, 1977.

C. L. Forgy: "On the Efficient Implementation of Production Systems."
PhD Thesis, Carnegie-Mellon University, 1979.

C. L. Forgy: OPS5 User's Manual. Department of Computer Science,
Carnegie-Mellon University, 1981.

C. L. Forgy: "Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern-Match Problem." Artificial Intelligence 19, 1982, pp 17-37.

M. S. Fox: "On Inheritance in Knowledge Representation." Proceedings
of the Sixth International Joint Conference on Artificial Intelligence,
1979, pp 282-284.

M. R. Genesereth, R. Greiner, and D. E. Smith: MRS Manual. Stanford
Heuristic Programming Project, Memo HPP-80-24.

J. McDermott: "R1: A Rule-Based Configurer of Computer Systems."
Artificial Intelligence 19, 1982, pp 39-88.

D. Michie, ed.: Expert Systems in the Microelectronic Age. Edinburgh
University Press, Edinburgh, Scottland, 1979, p 7.

R. Sauers and R. Farrell: GRAPES User's Hanual. Technical Report
ONR-82-3, Carnegie-Mellon University, 1982.

M. Schindler: "Artificial Intelligence Begins to Pay Off with Expert
Systems for Engineering." Electronic Design 32:16, August 9, 1984, pp
133-134.

E. Short1iffe: H1, Computer-Based Medical Consultations: MYCIN. Ameri­
can Elsevier Publishing Company, New York, NY, 1976.

M. J. Stefik: ''Planning with Constraints." PhD Thesis, Stanford Univer­
sity, 1980.

Chuck Williams: "Software Tool Packages the Expertise Needed to Build
Expert Systems," Electronic Design 32:16, August 9, 1984, pp 154+.

VIII-1

APPENDIX A - ENERGY MANAGEMENT EXPERT SYSTEM SOFTWARE REQUIREMENTS DOCUMENT

The following pages contain the software requirements document origi­
nally submitted to Marshall Space Flight Center in December 1983. This
appendix is included in this report to satisfy the requirements of the
contract statement of work.

I. INTRODUCTION

The Energy Management Expert System (EMES) is a rule-based expert system
designed to demonstrate management of the power resources on a space­
craft. The expertise applied in building EMES is that of a payload op­
erations director who must decide whether the various loads onboard a
spacecraft should be operated and, if so, when the best time is to oper­
ate each.

The loads that make up the spacecraft configuration must be managed, as
well as system experiments and other miscellaneous payloads. The infor­
mation the director has available includes the orbit-by-orbit power cap­
ability of the spacecraft, a set of requests for the operation of var­
ious loads during particular time windows, and a set of mission events
that must be performed. The director must attempt to schedule each load
requested in a way to preclude violation of a set of energy management
cons~raints.

EMES must be able to make load management decisions normally made by the
payload operations director. In this context, load management consists
of determining a mission timeline (the operational sequence of the var­
ious loads) that avoids violation of operational constraints and that
meets the efficiency requirements for the use of available power.

For example, EMES must use the power produced by the solar arrays during
the daytime portion of an orbit more than the power drawn from the bat­
teries during eclipse portions of the orbit. More battery power can be
used immediately after reconditioning than under normal conditions; less
battery power can be used toward the end of battery life, etc. Stan­
dardly, as many loads as possible will be scheduled for the daylight
portions of each orbit. These are only a few of the heuristics that
govern the behavior of EMES.

EMES is intended as a demonstration software package illustrating the
feasibility of using expert system technology in conjunction with stan­
dard automation techniques to provide a general increase in the effi­
ciency of spacecraft power utilization, regardless of power capability.

A-I

II. OVERALL FUNCTIONAL REQUIREMENTS

The energy management expert system must have the following capabili­
ties:

1) Be able to provide the required electric power to the user loads
under normal and degraded modes of power system operation;

2) Be able to optimize the use of available power;

3) Be able to determine the sequence of operation of all electrical
equipment in conjunction with basic mission operation activities and
requirements;

4) Be able to extend the life of critical power system components, such
as the batteries, through the use of energy management heuristics.

The EMES software must be applicable to manned and unmanned spacecraft.
It shall be designed to a large photovo1taic power system with multiple
power modules similar to that to be found on board a space station.
The designed power capability of the spacecraft power system will be 75
kilowatts.

The EMES system shall be designed with future real-time applications in
mind. The initial version of EMES shall use an adequate simulation of
the capability of the photovo1taic power system, and shall be designed
to facilitate future modifications to allow an interface with the appro­
priate sensors in a real hardware power system. For example, the even­
tual system would be able to calculate solar array capability from sev­
eral voltage and current measurements at the operating point, and the
total array energy or sunlight average array power would then be deter­
mined from this peak power profile.

EMES shall also be designed with the following future capabilities in
mind:

1) An onboard EMES would enable autonomous spacecraft operation for an
extended length of time in the event of a sudden change in power
capability during which ground intervention is not possible;

2) EMES has the potential for significantly enhancing ground mission
planning capability and reducing human-intensive tasks;

3) EMES can reduce the total required battery weight of a system via
reduction of nighttime energy demand through appropriate bus load
control;

4) The extension of battery life is possible via minimization of bat­
tery depth of discharge and operating temperatures;

5) EMES can satisfy other subsystem operational constraints as they
are defined.

A-2

III.

The EMES software will be designed so the priorities of loads to be
scheduled in the mission timeline can be reasoned about dynamically.
EMES must also be able to reason about the relationship between loads
and mission events so it can make intelligent decisions about what ef­
fect turning off a given load will have on the overall mission success.

For demonstration purposes, EMES must allow the user to conveniently
specify the desired mission timeline. This means that the user must be
able to specify various mission events that will occur during the time­
line, as well as the loads that should operate during specified time
windows. The user must be able to specify the constraints on the opera­
tion of loads and between mision events and loads.

SYSTEM ENVIRONMENT REQUIREMENTS

The EMES software will operate in a LISP environment on a VAX running
the VMS operating system. The decision to use LISP was based on its
generality, knowledge representation capabilities, and ability to inter­
face with other required software. The specific dialect of LISP re­
quired for running EMES is Franz-LISP. This dialect runs on either a
VAX-ll/750 or VAX-ll/780. Both a compiler and an interpreter for Franz
Lisp are required. Also, Eunice (the UNIX emulator) is recommended be­
cause it generally facilitates compiling LISP. The ideal operating sys­
tem environment is VMS with Eunice facilities.

Because software modules that perform heavily calculation-oriented engi­
neering functions will be implemented in Fortran, a VAX Fortran compiler
is required.

The actual rule base, the core of the energy management system, will be
implemented in HAPS. HAPS is an interpreter for rule-based systems de­
veloped at Martin Uarietta that runs in a Franz Lisp environment. Thus,
the environment described above is sufficient to ensure the ability to
execute HAPS.

IV. REPORTING

The following documentation shall be produced for the energy management
expert system:

1) Software Design Description Document - The software design descrip­
tion document shall contain the design details for each EMES module.
It will provide a complete technical description of the functions
performed by each module, the structure of each module, and the con­
trol flow through the major system components;

A-3

2) Software Test Plan - The software test plan will define the scope
of tests required to ensure that the software meets all applicable
technical, operational, and performance specifications. It will
establish acceptance criteria for the program and identify each le­
vel of testing;

3) EMES User's Manual - The user's manual will contain scope of appli­
cation, program limitations, and all other operating constraints.
The document will provide explanations for the operation of all
software modules. All I/O to and from the user shall be documented
either in the form of a sample run or an operational description.

A-4

APPENDIX B - ENERGY MANAGEMENT EXPERT SYSTEM DETAILED DESIGN SPECIFICA­
TION

The following pages contain the software design description originally
submitted to Marshall Space Flight Center in December 1983. This appen­
dix is included in this report to satisfy the requirements of the con­
tract statement of work.

I. INTRODUCTION

This document presents the Detailed Design Specification for the Energy
Management Expert System (EMES) software designed under contract with
NASA Marshall Space Flight Center (MSFC). The energy management system
is intended to permit onboard automation of energy management under nor­
mal, failure, and degraded modes of spacecraft operation. This is a
system-level spacecraft supervisory function because it involves the
operation of all housekeeping subsystem and payload equipment that con­
sume power.

The energy management software is intended to provide electric power to
the loads of a spacecraft to optimize the use of available power. It
must determine the sequence of operation of all electrical equipment on
board the spacecraft with respect to basic mission event requirements.
It is also intended to permit graceful degradation of the spacecraft un­
der abnormal conditions. Such a system would extend the life of criti­
cal system components such as the batteries, as well as reduce the re­
quired size of energy storage devices.

The primary focus of this phase of the effort is to demonstrate the fea­
sibility of using expert system technology in an application such as the
energy management task. The intent is not for expert system technology
to replace traditional automation, but to work in conjunction with tra­
ditional automation on tasks that are currently human-intensive.

The remainder of this document provides an overview of the design of the
energy management expert system, followed by a detailed design of each
of the system software components. A familiarity with the EMES Require­
ments Document, which contains an overview of the functional and perfor­
mance requirements of the energy management software, is assumed. For
information regarding the planned testing and evaluation of the EMES
software, the energy management expert system test and evaluation plan
(Appendix C) should be consulted.

~l

II.

T

DESIGN OVERVIEW

Overall operation of the EMES consists of three major phases--library
development, mission development, and m~ssion execution. The software
design of EMES reflects this division.

The library development phase allows the user to construct and maintain
a set of load and event definitions with which to develop mission mo­
dels. Two system libraries exist--the load-library, which holds defini­
tions of the various loads in the spacecraft, and the event-library,
which holds definitions of mission event types that can be scheduled in­
to the mission timeline. Both loads and event types have various user­
specifiable attributes (for example, the power consumption of a load).
The system libraries are initialized to contain many predefined loads
and event types, and the user is permitted to modify these libraries at
any time.

The mission development phase allows the user to construct a spacecraft
mission, using the loads and event types in the system libraries. To
construct a mission, the system must perform several operations. First,
the system must initialize the spacecraft configuration, using the
spacecraft-configuration-file, which contains information about the
spacecraft that does not change between missions (e.g., the set of all
subsystem loads always required for operation of the spacecraft). Next,
the user must specify the set of loads to be on board the spacecraft
during this mission (those not critical to spacecraft operation but that
can change from mission to mission). This completes the definition of
the spacecraft configuration.

The user is now permitted to supply event requests (events to be sche­
duled into this mission such as stationkeeping), and load requests (re­
quests to operate a load at particular times during the mission). Fi­
nally, the user provides information required for orbit and attitude
definition. The system now uses all of the above information to gen­
erate a mission definition file ready to be executed by EMES.

The final phase of operation is mission execution during which EMES is
executed on a particular mission definition. The system inspects the
mission timeline, looking for resource requirements that cannot be met
or energy management constraints that have been violated. The expert
system modifies the mission timeline and produces a new time line that
does not violate mission constraints.

Because the EMES software will operate in a LISP environment, all of the
software described in this document will be developed in LISP unless
otherwise noted. The decision to use LISP was based on its generality,
knowledge representation capabilities, and ability to interface with
other required software.

Modules that perform engineering functions or that are heavily calcula­
tion-oriented are encoded in Fortran. This decision was based on the
efficiency of numeric computation in Fortran.

B-2

The actual rule base, which is the core of the EMES, will be implemented
in HAPS. The decision to use HAPS for the development of the rule base
was based on its knowledge representation capabilities, powerful rule
formalism, efficiency with respect to the large amounts of knowledge to
be processed, and its ability to interface with other software systems.

The remainder of this document provides a detailed description of EMES
design. The system is divided into its component software modules, and
each is described individually. The data required to interface the var­
ious system components are described. Where disk files are required to
support the software components, they are also described.

III. TOP-LEVEL EXECUTIVE

IV.

Overall operation of EMES is controlled by the top-level executive.
This module is responsible for directing the user's activity through
each of the major system functions--library development, mission de­
velopment, and mission execution.

The Top Level Executive provides the user with simple menu-driven access
to any of the-three major system modules. This will be 'implemented as a
call to the Select Menu Entry module, with Menu Descriptor equal to Top
Level Menu. Top_Level_Menu is a global constant, with value

("Top Level Executive."
(Library Development. "Library Development.")
(Mission-Development • "Mission Development.")
(Mission-Execution. "Mission Execution.")
(Exit. iTExit EMES."»

Select_Menu_Entry is called repeatedly until the value returned is Exit,
in which case the EMES halts and control is returned to the VMS opera­
ting system. Other possible values returned are Library Development,
Mission Development, and Mission Execution. In each of these cases, a
call to-the named major system s~bmodule is made.

LIBRARY DEVELOPMENT

The Library Development module is responsible for the construction, de­
velopment, and maintenance of the system libraries. The system requires
two libraries: a load library, which contains definitions of all loads
known to the system, and an event library, which contains definitions
of the different types of mission events known to the system. The user
has full control over the development of each library; that is, the user
is able to both access and modify the contents of each library.

B-3

A.

T

The Library Development module provides the user with a menu-driven in­
terface to two major library development submodules--the Load Library
Development module, and the Event Library Development Module. This will
be implemented as a call to the Select Menu Entry module, with Menu Des­
criptor equal to Library Development Menu. -Library Development Menu is
a global constant, with value - - -

("Library Development.."
(Load Library. "Load Library Development.")
(Event Library. "Event Library Development.")
(Exit :- "Return to Top Level Menu."»

Select_Menu_Entry is called repeatedly until the value returned is Exit,
in which case control is returned to the top-level executive. Other
possible values returned are Load Library and Event Library. In each of
these cases, a call to the appropriate submodule is-made.

LOAD LIBRARY DEVELOPMENT

The Load Library Development module allows the user to maintain a set of
load definitions-for use in the development of mission models. Four ba­
sic development functions are provided: Show Load Index, Show Load De­
finition, Define Load, and Delete Load. Each of these functions is per­
formed by a different Load Library submodule.

The Load Library Development module provides the user with a menu-driven
interface to the-four named load library submodules. This will be im­
plemented as a call to the Select Menu Entry module, with Menu Descrip­
tor equal to Load Library Development Menu. Load Library Development
Menu is a global constant: with value- --

("Load Library Development."
(Define Load. "Define a new load.")
(Delete-Load. "Remove an old load definition.")
(Load index. "List loads in the library.")
(Show-Load. "Show the definition of a load.")
(Exit-. "Return to Library Development Menu."»

Select_Menu_Entry is called repeatedly until the value returned is Exit,
in which case control is returned to the library development module.
Other possible values returned are Load Index, Show Load, Define Load,
and Delete Load. In each of these cases, a call to-the appropriate sub­
module is made.

The load library will be located in the directory "load lib:". Thus,
the VMS logical name load lib: must be initialized to point to the load
library directory. The EMES system: directory contains the load li­
brary index file, which serves as an index to all of the loads currently
defined in the system. An index entry for each load exists, with a
pointer to a file in the load_lib: known as the load_library_definition_
file, which contains the actual definition for that load.

B-4

0

1

1. Define Load

The Define Load module allows the user to define a new load to the sys­
tem. Each-new load requires a Load Definition File in the load lib:,
and also requires an entry in the load_library:index_file. -

The Define Load module leads the user through each step required to de­
fine a new-load. The following interaction between the system and the
user occurs when defining a new load. First, the system asks about the
characteristics common to all loads.

Name of this load:

The user must input the name of this load. The name must be an atomic
symbol, and must not be a previously defined load or a previously de­
fined event type.

Power consumption (watts):

The user must input the peak power consumption of this load, in watts.
The power consumption must be an integer, in the range 1 •• max_power
consumption.

Which bus is this load connected to?

1. Critical Bus.
2. Low Power Bus.
3. High Power Bus.

Menu Selection:

The user must type the number corresponding to the name of the power
system bus that this load gets connected to when it is included in a
mission. The selection process is implemented through a call to the
Select_Menu_Entry module, which will return one of the following:

critical: This load gets connected to the critical bus.
low-power: This load gets connected to the low power bus. Only

loads whose peak power consumption is in the range 1 •• max low
power_load may be connected to the low power bus.

high-power: This load gets connected to the high power bus. Only
loads whose peak power is in the range min high power load ••
max_power_consumption may be connected to the high po;er bus.

Note that loads do not actually become connected to spacecraft buses at
this point they merely get definitions in the load library.

Duty Cycle (minutes):

B-5

The user must type the duty cycle of this load. Legal inputs are

en], where en] is a positive integer, which is the number of minutes
this load is turned on each time it is used.

[return], which means that this load does not have a known duty
cycle. This is used to describe loads such as heaters, which
are thermally controlled, or loads that are on for the duration
of the mission.

The next selection is made only for noncritical loads.

The operation of this load

1. must be continuous.
2. can be interrupted.
3. can be restarted.

Menu Selection?

The user must type the number corresponding to the choice that best de­
scribes the operation of this load. The selection process is implemen­
ted through a call to the Select_Menu_Entry module, which will return
one of the following:

continuous: No operation of this load resulting from a single load
request can be interrupted without damage to the load or to
other resources used by this load.

interruptable: The operation of this load can be interrupted before
the duty cycle is completed without damage to the load or other
resources.

restartable: The operation of this load may be interrupted and re­
started later in the mission. Thus, a single request for this
type of load may result in turning the load on at several dif­
ferent times during the mission.

Critical loads are assumed to require "continuous" power when they are
in operation.

To which category does this load belong?

1. Commercial Payload.
2. Communication and Tracking.
3. Control and Display.
4. Data Management.
5. Environmental Control.
6. Guidance, Navigation, and Control.
7. Life Support.
8. Power System.
9. Science Payload.

10. Technology Development Payload.
11. Thermal Control.

B-6

T

Menu Selection:

The user must type the number corresponding to the choice that best de­
scribes the category of this load. The selection process is implemented
through a call to the Select Menu Entry module, which will return one
of commercial-payload, communicatTon-and-tracking, control-and-display,
data-management, environmental-control, guidance, life-support, power­
system, science-payload, technology-development-payload, or thermal­
control.

Some loads (for example, the flight computer or a heater) provide a re­
source (such as compute-power or heat) to be used by other loads in the
system. For this reason, the system needs to ask about resources.

Each of the above inputs results in the creation of a new data item to
be inserted into the working memory of the expert system. At this
point, the system shows the user the translation of each new data item,
using the Translate Data Item module, and then asks for confirmation.
For example, --

The power consumption of load-l2 is 500 watts.
Load-l2 is connected to the low-power bus.
The duty cycle of load-12 is 10 minutes.
The power to load-l2 must be continuous.
Load-12 is a techno1ogy-deve1opment-pay1oad.

Is this information correct?

If the user does not confirm that this information 1S correct, the sys­
tem repeats the process starting with the input of the power consumption
of the load.

Does this load provide any resources?

The user types a yes/no answer. If the user responds with a "yes," the
system proceeds to ask for the name and quantity of each resource.

Type the resources provided by this load.
Type each resource on a separate line, followed by the quantity of
that resource provided.
Type [return] when done.

Resource:

The user now proceeds to describe the resources provided by this load.
On each line, the user types the resource name (an atom), optionally
followed by the quantity of that resource (which defaults to 1). Legal
resource names are given in the system resource list. If the resource
cannot be found in this list, the user-is given-a warning.

Each resource results in the creation of a "resource-provided" data
item. When all resources have been input, the system shows the user the
translation of each new data item, using the Translate Data Item module,
and then asks for confirmation. For example, --

B-7

T

Load-12 provides 12 units of compute-power.

Is th1s information correct?

If the user does not confirm that this information is correct, the sys­
tem repeats the process of getting the resources provided by this load.

Next, the system asks about resources required by this load.

Does this load require any resources?

The user types a yes/no answer. If the user types "yes," the system
proceeds to ask the user for the name and quantity of each resource.

Type the resources required by this load.
Type each resource on a separate line, followed
by the quantity of that resource required.
Type [return] when done.

Resource:

The user now proceeds to describe the resources required by this load.
On each line, the user types the resource name (an atom), optionally
followed by the quantity of that resource (which defaults to 1). Legal
resource names are given in the system resource list. If the resource
cannot be found in this list, the user-is given-a warning.

Note that "power" should not be treated as a resource by the user be­
cause the system will later do that automatically. Thus if the user re­
fers to "power" or "energy" as a resource, the system will print an
error message and ignore that reference.

Each resource results in the creation of a "resource-required" data
item. When all resources have been input, the system shows the user the
translation of each new data item, using the Translate Data Item module,
and then asks for confirmation. For example, --

Load-12 requires 2 units of compute-power.

Is this information correct?

If the user does not confirm that this information is correct, the sys­
tem repeats the process of getting the resources required by this load.

Do any loads conflict with this load?

The system requires a yes/no answer. If the user responds with "yes,"
this means there are loads that cannot operate while this one is opera­
ting. In this case, the system asks for the name of each conflicting
load.

B-8

2.

1

Type the loads that conflict with this load.
Type each confl~cting load on a separate line.
Type [return] when done.

Load name:

The user types each conflicting load on a separate line. Each load must
be an atom. If the load is not the name of a load already defined in
the system library, the user is given a warning message.

Each conflicting load results in the creation of a "conflicts" data
item. When all loads have been input, the system shows the user the
translation of each new data item, using the Translate Data Item module,
and then asks for confirmation. For example, --

Load-l conflicts with 10ad-12.
Load-3 conflicts with load-12.

Is this information correct?

If the user does not confirm that this information is correct, the sys­
tem repeats the process of getting the loads that conflict with this
load.

This completes the definition of a new load to the system. The system
now enters the new load definition into the load library.

Entering this load into the load library •••

What file will contain this load definition?

The user must type the name of the file that will contain the new defi­
nition. The file name must not be the name as a file currently con­
taining a load definition. The file will reside in the load lib: direc­
tory.

All of the information in a load definition file is represented as a set
of data items to be inserted into the working memory of the EMES. An
entry for this load also gets inserted into the load_Iibrary_index_file.

When this process is complete, the system will respond with

Done.

and the Define Load module exits. Control is returned to the Load Li­
brary Development module.

Delete Load

The Delete Load module allows the user to remove the definition of a
load from the load library. The user is prompted for the name of the
load to be deleted, which must be a load currently defined in the li­
brary. The entry for that load in the load library index file is then
removed, and the file containing the definition of that load in the load
library is deleted.

B-9

3.

4.

5.

Show Load Index

The Show Load Index module allows the user to get a listing of all of
the loads currently defined in the system. For each defined load, the
user is shown the name of the load, the name of the file that contains
the load definition, and the date when the load definition was last mod­
ified. All of this information can be obtained from the load library
index file. The Direct User Output module provides the user the option
of showing the load index on-the terminal, sending it to a disk file, or
sending it to the line printer.

Show Load Definition

The Show Load Definition module allows the user to get a listing of all
of the i~fo~tion in the definition for a load in the load library.
The user is prompted for the name of the load whose definition is to be
shown. This must be a load currently defined in the library, and the
system reads the contents of the load library definition file for that
load. Each piece of information in the load definition Is a data item
to be inserted into working memory. The Translate Data Item module is
used to print an English description of each of these data items. The
Direct User Output module provides the user the option of showing the
load definition on the terminal, sending it to a disk file, or sending
it to the line printer.

Load Library Index File

The load library index file (currently loadlib.idx) is the master file
for the load library and serves as an index to all of the loads that
have definitions in the system. This is a LISP text file, containing
the load index list. The load index list is a LISP list (initially nil)
serving as an Index to the indIVidual load definitions. This list con­
tains one entry for each load currently defined in the system, listed in
alphabetical order according to load name. Each entry is of the form

(load-name definition-file definition-date),

where

load-name: Is an atom representing the name of this load;
definition-file: Is the name of the file containing the

definition of this load;

definition-date: Is an atom representing the date when this
load definition was created.

The load index list gets updated whenever a new load is defined or an
old load-is deleted.

6.

B.

Load Library Definition Files

Each load defined in the load library has a load definition file. The
load definition file contains all of the information required to define
this particular load to the EMES. All information in a load definition
file is represented as a separate list (in the LISP sense) to be in­
serted into working memory and processed by EMES during mission execu­
tion.

The following are examples of the types of data that may be contained in
a load definition file:

(power-consumption vacuum 1000)
(bus-connection vacuum low-power)
(subsystem vacuum environmental-control)
(duty-cycle vacuum 5)

For more information on the representation of a load to the system, see
Section VI.A.l.

EVENT LIBRARY DEVELOPMENT

The Event Library Development Module allows the user to maintain a set
of event-type defInitions for use in the development of mission models.
Four basic development functions are provided: Show Event Index, Show
Event Definition, Define Event, and Delete Event. Each of these func­
tions is performed by a different Event Library submodule.

The Event Library Development module provides the user with a menu­
driven interface to the four named event library submodules. This will
be implemented as a call to the Select_Menu_Entry module, with Menu_De­
scriptor equal to Event Library Development Menu. Event Library De-
velopment_Menu is a global constant, with value - -

("Event Library Deve lopment. "
(Event Index. "List event types in the library.")
(Show Event. "Show the definition of an event type.")
(Define Event. "Define a new event type.")
(Delete-Event. "Remove an old event type definition.")
(Exit .-"Return to Library Development Menu."»

Select Menu Entry is called repeatedly until the value returned is Exit,
in whi~h ca;e control is returned to the Library Development module.
Other possible values returned are Event Index, Show Event, Define
Event, and Delete Event. In each of these cases, a call to the appro­
priate submodule Is made.

B-ll

1.

The event-type library will be located in the directory "event lib:."
Thus, the VMS logical name event lib: must be initialized to point to
the event library directory. The EMES system: directory contains the
event library index file, which serves-as an index to all of the event
types-currently defined in the system. An index entry for each event
type exists, with a pointer to a file in the event lib: known as the
event library definition file, which contains the actual definition for
that event type. -

Define Event

The Define_Event module allows the user to define a new event type to
the system. Each new event type requires an Event Definition File in
the event lib:, and also requires an entry in the ;vent libra;y index
file. - - -

The Define_Event module leads the user through each step required to
define a new event type. The following interaction between the system
and the user occurs when defining a new event type. First, the system
asks for the name of this event type.

Name of this event type:

The user must input the name of the event type being defined. The name
must be an atomic symbol, and must not be a previously defined load or
a previously defined event type.

Is this a major mission phase?

The user must tell the system whether or not this event is a major
sion phase. The main difference between mission phases and other
is that two different mission phases cannot occur simultaneously.
system requires a yes/no response.

Are there any sub events that occur during this event?

mis­
events

The

The user must tell the system whether or not any subevents occur during
this event. The system requires a yes/no answer. If the user responds
with 'yes', then the system continues with

Type the events which occur during this event.
Type each subevent on a separate line.
Type [return] when done.

Subevent Name:

The user then types the names of the subevents. Each subevent name must
be an atomic symbol and cannot be a previously defined load name. If
the subevent is not yet defined in the system, the user is given a warn­
ing message.

Each subevent results in the creation of a "during" data item. When all
subevents have been input, the system shows the user the translation of
each new data item, using the Translate Data Item module, and then asks
for confirmation. For example, --

B-12

'I
Event-l2 must occur during eVent-l.
Event-13 must occur during event-l.

~

Event-l4 must occur during event-l.

Is this information correct?

If the user does not confirm that this information is correct, the sys­
tem repeats the process of getting the subevent names.

Are there any loads which must operate during this event?

The user must tell the system whether or not any loads that must operate
during this event. This does not include loads that have already been
declared as operating during one of the subevents. The system requires
a yes/no answer. If the user responds with "yes," the system continues
with

Type the loads that operate during this event.
Type each load on a separate line.
Type [return] when done.

Load Name:

The user then types the names of the loads. Each load name must be an
atomic symbol and cannot be a previously defined event type. If the
load is not yet defined in the system, the user is given a warning mess­
age.

Each load resul ts in the creation of a "during" data item. When all
loads have been input, the system shows the user the translation of each
new data item, using the Translate Data Item module, and then asks for
confirmation. For example, --

Load-3 must operate during event-l.
Load-4 must operate during event-I.
Load-5 must operate during eVent-l.

Is this information correct?

If the user does not confirm that this information ~s correct, the sys­
tem repeats the process of getting the load names.

Now, if any subevents or required loads have been specified, the system
asks the user:

Would you like to place any additional constraints
on the scheduling of these loads or subevents?

The user must tell the system whether or not any additional scheduling
constraints are desired. The types of constraints allowable are con­
straints such as "event-l must occur before event-2." The system re­
quires a yes/no answer. If the user responds with "yes," the system
continues with

B-13

Type the desired scheduling constraints.
Type each constraint on a separate line.
Type [return] when done.

The user then types the scheduling constraints. The process of getting
the constraints from the user is implemented through a call to the Get
Event Constraints module, which returns a list of new data items repre­
senti~g scheduling constraints on the events in this event type. When
all constraints have been input, the system shows the user the transla­
tion of each new data item, using the Translate Data Item module, and
then asks for confirmation. For example, --

Load-3 must operate before load-5.
Load-4 conflicts with load-5.
Event-l and Load-4 occur simultaneously.

Is this information correct?

If the user does not confirm that this information is correct, the sys­
tem repeats the process of getting the scheduling constraints.

Do any events conflict with this event?

The user must tell the system whether or not any other events conflict
with the event being defined (that is, cannot occur during this event).
Note that two major mission phases are automatically conflicting so
these do not need to be specified. The system requires a yes/no answer.
If the user responds with "yes," then the system continues with

Type the names of conflicting events.
Type each event on a separate line.
Type [return] when done.

Event Name:

The user then types the names of conflicting events. Each event name
must be an atomic symbol and cannot be the name of a previously defined
load. If the event is not an event in the event library, the user is
given a warning. Each conflicting event results in the creation of a
"conflict" data item. When all conflicting events have been input, the
system shows the user the translation of each new data item, using the
Translate_Data_Item module, and then asks for confirmation. For
example,

Event-l conflicts with event-2.

Is this information correct?

If the user does not confirm that this information is correct, the sys­
tem repeats the process of getting the conflicting event types.

Are there any loads that cannot operate during this event?

B-14

The user must tell the system whether or not any loads conflict with the
event being defined (that is, cannot operate during this event). The
system requires a yes/no answer. If the user responds with "yes," the
system continues with

Type the names of conflicting loads.
Type each load on a separate line.
Type [return] when done.

Load Name:

The user then types the names of conflicting loads. Each load name must
be an atomic symbol, and cannot be the name of a previously defined
event type. If the load is not a load in the load library, then the
user is given a warning. Each conflicting load results in the creation
of a "conflict" data item. When all conflicting loads have been input,
the system shows the user the translation of each new data item, using
the Translate Data Item module, and then asks for confirmation. For
example, - -

Load-17 conflicts with event-I.
Load-16 conflicts with event-I.

Is this information correct?

If the user does not confirm that this information is correct, the sys­
tem repeats the process of getting the conflicting loads.

This completes the definition of a new event type to the system. The
system now enters the neW event type definition into the event library.

Entering this event type into the event library •••
What file will contain this event definition?

The user must type the name of the file that will contain the new defi­
nition. The file name must not be the name of a file currently con­
taining an event definition. The file will reside in the event lib:
directory.

All of the information in an event type definition file is represented
as a set of data items to be inserted into the working memory of the
EMES. An entry for this event type also gets inserted into the event
library_index_file.

When this process is complete, the system will respond with

Done.

and the Define Event module exits. Control is returned to the Event
Library Development module.

B-15

2.

3.

4.

5.

Delete Event

The Delete Event module allows the user to remove the definition of an
event type from the event library. The user is prompted for the name of
the event type to be deleted, which must be an event type currently de­
fined in the library. The entry for that event type in the event li­
brary index file is then removed, and the file containing the def~ition
of that event type in the event library is deleted.

Show Event Index

The Show Event Index module allows the user to get a listing of all of
the event types currently defined in the system. For each defined event
type, the user is shown the name of the event type, the file that con­
tains the event-type definition, and the date when the event type was
defined. The user has the option of showing the event-type index on the
terminal, sending it to a disk file, or sending it to the line printer.

Show Event Definition

The Show Event Definition module allows the user to get a listing of all
of the information in the definition for an event type in the event li­
brary. The user is prompted for the name of the event whose definition
is to be shown. This must be an event type currently defined in the li­
brary, and the system reads the contents of the event library defini­
tion file for that event type. Each piece of information in the event­
type-definition is a data item to be inserted into working memory. The
Translate Data Item module is used to print an English description of
each of these data items. The Direct User Output module provides the
user the option of showing the event definItion on the terminal, sending
it to a disk file, or sending it to the line printer.

Event Library Index File

The event library index file (currently eventlib.idx) is the master file
for the e;ent library, and serves as an index to all of the event types
that have definitions in the system. This is a LISP text file contain­
ing the event index list. The event index list is a LISP list (initial­
ly nil) serving as an index to the individ~al event type definitions.
This list contains one entry for each event-type currently defined in
the system, listed in alphabetical order according to event type. Each
entry is of the form

(event-type definition-file definition-date),

where

event-type: Is an atom representing the name of this event type;
definition-file: Is the name of the file containing the definition
of this event type;

definition-date: Is an atom representing the date when this
event type definition was created.

B-16

6.

V.

The event index list gets updated whenever a new event type is defined
or an old-event-type is deleted.

Event Library Definition Files

Each event type defined in the event library has an event definition
file. The event definition file contains all of the information re­
quired to define this particular event type to the EMES. All informa­
tion 1n an event def1nition file is represented as a separate list (in
the LISP sense) to be inserted into working memory and processed by EMES
during mission execution.

The following are examples of the types of data that may be contained in
an event definition file:

(mission-phase event-I)
(during load-l event-I)
(during load-2 event-I)
(conflict load-l load-2)

For more information on the representation of an event to the system,
see Section VI.A.2.

MISSION DEVELOPMENT

The Mission_Development module allows the user to develop mission defi­
nitions for processing by the EMES. Three basic mission development
functions are provided--Define Mission, Show Mission Definition, and
Generate Mission Reports. Each of these functions is provided by a dif­
ferent Mission Development submodule.

The Mission Development module provides the user with a menu-driven in­
terface to the three named mission development submodules. This will be
implemented as a call to the Select_Menu_Entry module, with Menu_De­
scriptor equal to Mission Development Menu. Mission Development Menu is
a global constant, with value - - -

("Mission Development."
(Define Mission. "Create a Mission Definition.")
(Show MIssion. "Show the Definition of a Mission.")
(Report Mission • "Generate a Mission Report.")
(Exit .-"Return to Top Level Menu."»

Select Menu Entry is called repeatedly until the value returned is Exit.
Other possible values returned are Define Mission, Show Mission, and Re­
port Mission. In each of these cases, a call to the appropriate submo­
dule -is made.

B-17

A.

r

DEFINE MISSION

The Define Mission Module is responsible for allowing the user to con­
struct mis;ion models to be processed by the EMES using the event types
and loads defined in the system libraries. The development of a single
mission requires the specification of several pieces of information by
the user, as well as the processing of several system-defined
parameters.

First, the user must specify the definition of the orbit of the space­
craft. This information is required so EMES can determine periods of
daylight and eclipse for each orbit in the mission timeline. This phase
of mission development is handled by the Orbit_Definition module.

Next, the system must determine the power capability of the solar arrays
for each daytime interval during the mission, and the power capability
of the batteries for each nighttime interval. This phase of mission
development is handled by the Power_Capability module.

Now, the mission timeline must be specified. The mission timeline con­
sists of the desired sequence of mission events to occur during the mis­
sion, along with any additional loads that are to be operational at var­
ious points in the mission (for example, miscellaneous experiments).
Two types of events get scheduled. The first is a set of load requests
that are constant for each mission. These are requests for critical
loads and other data that define the spacecraft configuration to the
system. These definitions are handled by the Initialize Mission Time­
line module.

Next, the user specifies the parts of the mission timeline that are uni­
que to this mission. This includes the scheduling of mission events
(along with their subevents and required loads), plus any miscellaneous
load requests that may be desired (for example, miscellaneous experi­
ments). This phase of mission development is handled by the Define Mis­
sion Timeline module.

Finally, the Assemble Mission Definition module is used to take all of
the information that defines this mission and to create from it a Mis­
sion Definition File. This file contains the mission definition in a
form that can be read in and processed by the rule base of the EMES.

For the purposes of demonstration, the mission timelines processed by
EMES cover time periods 1 to max num orbits in length (currently 24 or­
bits, or approximately 36 hours ~xi;um). This decision was made so
realistic energy management decisions could be reached in a reasonable
time frame. We do not feel that this is a significant limitation for the
feasibility demonstration.

The mission definition process maintains a Mission Definition Data list,
which is a list of all of the data items that make-up the defInition.
When the mission definition is complete, the data items in this list are
used as the contents of the mission definition file. Several of the
mission definition submodules make updates to this list. The mission
definition submodules are described in the following subsections.

B-18

1.

'1'
Orbit Definition

The purpose of the Orbit Definition module is to calculate the amount of
time per orbit the spacecraft is in the earth's shadow over the duration
of the mission. The Orbit Definition module obtains the required input
parameters from the user through the use of the Input Orbit Data module.
The Eclipse Sun Profile module performs the actual calculations and #

sends the o~tput to the Day Night Cycles File. The Orbit Definition mo­
dule, along with its submodules, will be-coded in Fortran-because of the
computational nature of the task.

Input Orbit Data - The Input Orbit Data module gets the parameters nec­
essary to generate the orbit-definition for a given mission. The fol­
lowing interaction between the system and the user occurs. All month,
day, year, hour, and minute parameters are Greenwich Mean Time (GMT) un­
less otherwise noted.

Longitude of initial ascending node (degrees):

The user inputs the value of LONG_INIT, the longitude of the initial
ascending node in a rotating equatorial, earth-centered coordinate
system. The units are degrees. The type is REAL and the range is 0.0
to 360.0.

Month of initial ascending node (1 •• 12):

The user inputs the value of GMON_INIT, the month of the year corres­
ponding to the initial ascending node. The type is INTEGER, and the
range is 1 to 12.

Day of initial ascending node (1 •• 31):

The user inputs the value of GDAY INIT, the day of the month correspon­
ding to the initial ascending node. The type is INTEGER, and the range
is 1 to 31.

Year of initial ascending node (0 •• 99):

The user inputs the value of GYEAR INIT, the last two digits of the year
corresponding to the initial ascending node. The type is INTEGER, and
the range is 0 to 99.

Hour of initial ascending node (0 •• 23):

The user inputs the value of GHOUR INIT, the hour of the day correspon­
ding to passage at the initial ascending node. The type is INTEGER, and
the range is 1 to 23.

Minutes of initial ascending node (0.0 •• 59.99):

The user inputs the value of GMIN_INIT, the minutes of the hour corres­
ponding to passage at the initial ascending node. The type is REAL, and
the range is 0.0 to 59.99.

Inclination of the orbit (degrees):

B-19

The user inputs the value of INC EQU, the inclination of the orbit in
an earth equatorial coordinate system. The units are degrees. The
type is REAL, and the range is 0.0 to 89.99.

Altitude of the orbit (kilometers):

The user inputs the value of ALT, the altitude of the orbit. The units
are kilometers. The type is REAL, and the range is 0.0 to 40000.0.

Initial orbit in this mission:

The user inputs the value of ORB START, the first orbit at which calcu­
lations are to begin. One orbit-is defined as the time between passage
of the spacecraft through consecutive local noons. The first orbit is
the first local noon following the initial ascending node. The type is
INTEGER and the range is 1 to 9999.

Total number of orbits in this mission:

The user inputs the value of NUM_ORB, the total number of orbits for
which the calculations should be made, beginning at ORB START. The
type is INTEGER, and the range is 1 to max num orbits. -

This completes definition of the orbit parameters. The input data are
summarized on the user's terminal, and the user is asked for confirma­
tion. If the data are incorrect, the input process is repeated.

Eclipse/Sun Profile - The Eclipse_Sun_Profile module uses the input or­
bit definition data to calculate the amount of time per orbit the space­
craft is in the earth's shadow over the duration of the mission. A sim­
plified analytical technique previously developed for analyzing lighting
conditions [Brown 1969] is the basis for this module.

For the purposes of EMES development and demonstration, the following
criteria apply. The spacecraft is assumed to be in a low-earth circular
orbit. Therefore, the penumbra can be assumed nonexistent and the sun's
rays are parallel to the earth-sun line. This causes the shadow to be­
come a circular cylinder whose diameter is the mean diameter of the
earth. These assumptions introduce an error in eclipse duration of a
few seconds. The orbit altitude is assumed to be constant and not decay
over the mission time. Only first-order earth oblateness correction is
included in computing the regression rate of the ascending node.

The Eclipse_Sun_Profile module shall be implemented as follows:

1. A set of initial conditions is generated.

Initial day of the year (days):
IF (GMON INIT.EQ.l) THEN DY INIT=GDAY INIT
DOY_INIT~DAY_PER_MON(GMON_INIT)+GDAY_INIT

Correct for leap year:
IF (MOD(GYEAR INIT,4).EQ.0.AND.GMON INIT.GT.2)

THEN DOY-INIT=DOY INIT+l -- -

B-20

Initial hour of the day (hours):
HOD INIT=GHOUR INIT+GMIN INIT/60.0

Orbit radius (kilometers):
RADIUS ORBIT=RADIUS EARTH+ALT

Orbit period (hours):
PERIOD=TWO_PI*SQRT(RADIUS_ORBIT**3/GRAV)/SPH

Time between local noons (hours):
DELTA_NOON=l.O/(l.O/PERIOD-l.O/DPY)

Orbit inclination with respect to equator (radians):
I~=INC _ EQU*RPD

Longitude of initial ascending node in rotating, earth
equatorial system (radians):

LONG=LONG INIT*RPD

Ascending node of the initial orbit in inertial, ecliptic
coordinate system (radians):

SIGMA=RDOT EARIH*(DOY INIT+HOD INIT/HPD-82.859)
SIGMA must be forced between 0 and-TWO PI.

OMEGA=LONG+SIGMA+HOD INIT*ROT RATE­
OMEGA must be forced between 0 and TWO PI.

Time to first local noon (hours):
ALPHA=(HOD INIT-l2.0)*ROT RATE-LONG

ALPHA must be forced between 0 and TWO PI.
COS A=SIN(INC)*COS(LONG)
A=ACOS(COS A)
THETA_NOON~ASIN(SIN(LONG)/SIN(A»

Place THETA NOON between 0 and TWO PI and in the same quadrant
as ALPHA. -

HOD NOON=HOD INIT+THETA NOON/TWO PI*PERIOD
DOY-NOON=DOY-INIT - -

If HOD NOON is greater then or equal to HPD, then subtract HPD
from HOD_NOON and increment DOY_NooN by 1.0.

Update the orbit number, day of year, hour of day, and right
ascension for starting orbit.

DELTA ORB=ORB START-l
DELTA-HOURS=DELTA ORB*DELTA NOON
OMEGA';OMEGA-TWO PI*J2*COS (INC)*

(RADIUS EARTH/RADIUS ORBIT)**2*DELTA HOURS/PERIOD
OMEGA must be forced between O-and TWO PI -

DOY NOON=DOY NOON+DELTA HOURS/HPD -
HOD-NOON=HOD-NOON+MOD(DELTA HOURS,HPD)
ORB=ORB START -

B-2l

2. The output parameters are calculated.

Current local noon (days):
DAY=DOY_NOON+HOD_NOON/HPD

Calendar date of local noon (via subroutine CAL DATE):
CALL CAL DATE (GYEAR INIT,DAY,GMON NOON,GDAY NOON,GYEAR
NOON, GHOUR_NOON,GMIiLNOON) - -

Time from initial conditions (days):
DELTA_TIME=DAY-DOY_INIT-HOD_INIT/HPD

Revolution number (REV is type INTEGER):
REV=DEL~ TIME*HPD/PERIOD

Time of last ascending node (days);
DAY_NODE=DOY_INIT+HOD_INIT/HPD+REV*PERIOD/HPD

Calendar date of last ascending node (via subroutine CAL DATE):
CALL CAL DATE (GYEAR INIT,DAY NODE,GMON NODE,GDAY NODE,

GYEAR_NODE, GHOUR_NODE,GMrN_NODE) - -

Inclination of orbit plane to ecliptic (radians):
GAMMA=ACOS(O.9l706009*COS(INC)+O.39874902*SIN(INC)*COS(OMEGA)

Right ascension of ascending node in ecliptic plane (radians):
SIN SIGMAO=SIN(OMEGA)*SIN(INC)/sIN(GAMMA)
COT-SIGMAO=O.9l706009/TAN(OMEGA)-O.39874902/

- (SIN(OMEGA)*TAN(INC»
SIGMAO=ASIN(SIN_SIGMAO)

If COT SIGMAO and SIN SIGMAO are of opposite signs then
SIGMAO;;PI-SIGMAO. Now force SIGMAO between 0 and TWO PI.

Earth position in inertial, ecliptic coordinate system for
satellite at local noon (radians):

SIGMA=RDOT EARTH*DAY-82.859
SIGMA mus t be forced be tween 0 and TWO PI.

Sun-plane incident angle (radians):
BETA=ASIN(SIN(GAMMA)*SIN(SIGMA-SIGMAO»

Shadow angle (radians):
THETA ECLIPSE=ACOS«I.O/COS(BETA»*

SQRT(I.O-(RADIUS_EARTH/RADIUS_ORBIT)**2»)

Dark time (hours):
DA~TIME=THETA_ECLIPSE/PI*PERIOD

Light time (hours):
LlTE_TIME=DELTA NOON-DARK TIME

Calendar date of sunset (via subroutine CAL DATE):
DAY SET=DAY+LITE TIME/MPD/2.0
CALL CAL DATE (GYEAR INIT,DAY SET,GMON SET,GDAY SET,GYEAR
SET, GHOUR_SET,GMIN_SET) - - -

B-22

3.

4.

5.

Calendar date of sunrise (via subroutine CAL DATE):
DAY RISE=DAY SET+DARK TIME/MPD -
CALL CAL DATE (GYEAR INIT ,DAY RISE ,GMON RISE ,GDAY RISE,

GYEAR_RISE,GHOUR_RISE,GMIN_RISE) - -

Write output parameters to disk file and print out. Note it is
necessary to convert angle parameter units from radians (used
in internal computations) to degrees (used on the output).

Return execution control to Executive Module if ORB is greater
then ORB START+NUM ORB.

Increment parameters for the next orbit.

Upda te time:
HOD NOON=HOD NooN+DELTA NOON

If HOD NOON is greater then-or equal to HPD, then subtract HPD
from HOD_NOON and increment DOY_NOON by 1.0.

Update the ascending node location:
OMEGA=OMEGA-TWO PI*J2*COS(INC)*

(RADIUS_EARTH/RADIUS_ORBIT)**2*DELTA_NOON/PERIOD

Update orbit number:
ORB=ORB+1

6. Repeat calculations starting at Step 3.

7. The CAL DATE subroutine executes as follows.

Assume the argument sequence -
(YEARO,DOF,HON,DAY,YEAR,HOUR,MIN)

where DOF, MIN, and TEMP are REAL*8 and all other parameters
are type INTEGER

TEMP=DOF
YEAR=YEARO

K=O
IF (MOD(YEAR,4).EQ.0) K=l
TEMP=TEMP-365.0-K
IF (TEMP.GE.O.O) YEAR=YEAR+l and repeat these four statements

TEMP=TEMP+365.0+K
MON=TEMP/29.0+l
IF (MON.EQ.13) MON=12
IF (MON.NE.l) THEN

IF (TEMP.LE.DAY PER MONTH(MON-l» THEN MON=MON-l
ENDIF - -
IF (K.EQ.l.AND.TEMP.GT.3l.AND.TEMP.LT.6l) HON=2

IF (MON.GT.l) THEN TEMP=TEMP-DAY PER MONTH(MON-l)
IF (MON.GT.2) TEMP=TEMP-K --
DAY=TEMP
TEMP=(TEMP-DAY)*HPD
HOUR=TEMP

MIN=(TEMP-HOUR)*60.0

B-23

The Eclipse Sun Profile module will create the Day Night Cycles File,
which contains all of the information relevant to the orbit definition.
A report file showing the user all of the information contained in the
disk file shall also be generated in a tabularized format.

Day/Night Cycles File - The Day_Night_Cycles_File is a data file gener­
ated by the Eclipse Sun Profile module, containing all of the orbit data
required for calculation of the solar array capability data. The Day
Night Cycles File shall be a temporary sequential file, with variable
record size.- The contents of the file shall be as follows.

Record 1 - This record contains the orbit initial conditions used
in the generation of the day/night cycle data.

LONG INIT

GMON INIT

GDAY INIT

GYEAR INIT

GHOUR INIT

GMIN INIT

ALT

ORB START

NUM ORB

Longitude of the initial ascending node in a rotating
equatorial, earth-centered coordinate system. The
units are degrees. The type is REAL and the range is
o • 0 to 360.0.

Month of the year corresponding to the ascending node.
The type is INTEGER and the range is 1 to 12.

Day of the month corresponding to the ascending node.
The type is INTEGER and the range is 1 to 31.

Last two digits of the year corresponding to the as­
cending node. The type is INTEGER and the range is 0
to 99.

Hour of the day corresponding to passage at the as­
cending year. The type is INTEGER and the range is 0
to 23.

Minutes of the hour corresponding to passage at the as­
cending node. The type is REAL and the range is 0.0
to 59.99.

Inclination of the orbit in an Earth equatorial coor­
dinate system. The units are degrees. The type is
real and the range is 0.0 to 89.99.

Altitude of the orbit. The units are kilometers. The
type is REAL and the range is 0.0 to 40000.0.

The first orbit at which calculatictns are to start.
One orbit is defined as the time between passage of
the satellite through consecutive local noons. The
first orbit is the first local noon following the ini­
tial ascending node. The type is INTEGER and the range
is 1 to 9999.

The number of orbits for which the calculations should
be made beginning at ORB START. The type is INTEGER
and the range is 1 to 9999.

B-24

Records 2 through the end - One record is written for each orbit of
the spacecraft.

O~ Orbit number of current local noon. The type is INTE­
GER and the range is 1 to 9999.

DAY Day of the year referenced to midnight December 31st.
The units are days. The type is REAL and the range is
0.0 to 365.9999.

GMON NOON Month of the year corresponding to the current local
noon. The type is INTEGER and the range is 1 to 12.

GDAY NOON Day of the month corresponding to the current local
noon. The type is INTEGER and the range is 1 to 31.

GYEAR NOON Last two digits of the year corresponding to the cur­
rent local noon. The type is INTEGER and the range is
o to 99.

GHOUR NOON Hour of the day corresponding to the current local
noon. The type is INTEGER and the range is 0 to 23.

GMIN NOON Minutes of the hour corresponding to the current local
noon. The type is REAL and the range is 0.0 to 59.99.

REV

GMON NODE

GDAY NODE

GYEAR NODE

GHOUR NODE

GMIN NODE

BETA

Revolution number. One revolution is defined as the
time between consecutive ascending nodes. The type is
INTEGER and the range is 0 to 9999.

Month of the year corresponding to the previous ascen­
ding node. The type is INTEGER and the range is 1 to
12.

Day of the month corresponding to the previous ascen­
ding node. The type is INTEGER and the range is 1 to
31.

Last two digits of the year corresponding to the pre­
vious ascending node. The type is INTEGER and the
range is 0 to 99.

Hour of the day corresponding to the previous ascen­
ding node. The type is INTEGER and the range is 0 to
23.

Minutes of the hour corresponding to the previous as­
cending node. The type is REAL and the range is 0.0
to 59.99.

Sun-plane incident angle. The units are degrees. The
type is REAL and the range is -90.0 to +90.0.

B-25

T
GMON SET

GDAY SET

GYEAR SET

GHOUR SET

GMIN SET

GMON RISE

GDAY RISE

GYEAR RISE

GHOUR RISE

GMIN NODE

2. Power Capability

Month of the year corresponding to the next sun set.
The type is INTEGER and the range is 1 to 12.

Day of the month corresponding to the next sun set.
The type is INTEGER and the range is 1 to 31.

Last two digits of the year corresponding to the next
sun set. The type is INTEGER and the range is 0 to 99.

Hour of the day corresponding to the next sun set. The
type is INTEGER and the range is 0 to 23.

Minutes of the hour corresponding to the next sun set.
The type is REAL and the range is 0.0 to 59.99.

Month of the year corresponding to the next sun rise.
The type is INTEGER and the range is 1 to 12.

Day of the month corresponding to the next sun rise.
The type is INTEGER and the range is 1 to 31.

Last two digits of the year corresponding to the next
sun rise. The type is INTEGER and the range is 0 to
99.

Hour of the day corresponding to the next sun rise.
The type is INTEGER and the range is 0 to 23.

Minutes of the hour corresponding to the next sun rise.
The type is REAL and the range is 0.0 to 59.99.

The amount of dark time on the current orbit. The
units are hours. The type is real and the range is
0.0 to 30.0.

The amount of light time on the current orbit. The
units are hours. The type is real and the range is
0.0 to 30.0.

The purpose of the Power Capability module is to determine the amount of
power available from the solar arrays during the daylight portions of
each orbit in the mission, and the power available from the batteries
during the nighttime portions of each orbit. These functions are per­
formed by the Solar Array Capability and Battery Capability modules, re­
spectively. Because of the computational nature-of these tasks, the
Power Capability module, along with all of its submodules, will be im­
plemented using Fortran.

B-26

Solar Array Capability - The purpose of the Solar_Array_Capability mo­
dule is to calculate the solar array power available for each 6-minute
time interval as a function of the position of the eart:h in its orbit
around the sun. For the purposes of this demonstration, it is assumed
chat the solar arrays are gimbaled so they are always in the solar iner­
tial (sr) mode regardless of the attitude mode of the spacecraft. This
assumption is realistic because space stations will probably use this
design and it allows for accurately calculating the solar power for the
purposes of energy management.

For this simulation, the power capability of the solar arrays during the
daylight portions of the orbit is approximated as a function of the so­
lar intensity and the temperature of the solar array panels.

INTENSITY SOLAR
POWER SOLAR = c1 --------------- + c2

TEMP SOL ARRAYS

As the array sections heat up, they become less efficient, and the power
capability decreases. The solar array capability during the nighttime
portions of each orbit is assumed to be "zero.

The temperature of the solar array panels during the daytime is modeled
as an exponential function increasing over time. The following tempera­
ture constraints are assumed:

Initial Solar Array Temperature:
T init = -90 degrees C

= 183 degrees K.

Final Solar Array Temperature:
T final = Temp. @ approx. 55 minutes

= 100 degrees C
= 373 degrees K.

Average Solar Array Temperature:
T avg = 39 degrees C
- = 312 degrees K.

Using these constraints, solar array temperature as a function of time
is approximated by

TEMP_SOL_ARRAYS = 373-190*EXP(-(t-tO)/18)

Solar array temperature as a function of time is depicted in Figure V-I.

Solar intensity is a function of the distance of the earth from the sun:

k2
INTENSITY SOLAR = k1 + -----­

R**3

= 135 +/- 3.5 mil1iwatts/cm**2

Because of the negligible effect of distance, solar intensity is assumed
to be a constant 135 mil1iwatts per square centimeter.

B-27

320
~

0 .' ..
; 280
\IS .. • CL
E ..
I-

240

200

a 10 20 30 40 50

Time, minutes

Figure V-I Solar Array Temperature vs Time

The following constraints on solar array capability are assumed:

Final Solar Array Power:
P final = Power @ approx. 55 minutes

= 32.5 kilowatts per module.

Average Solar Array Power:
P_avg = 34.2 kilowatts per module.

Using these constraints, solar array power as a function of temperature
is approximated by

3243.3
POWER SOLAR = + 23.8

T

This results in the following model of solar power with respect to time:

3243.3
POWER SOLAR (kilowatts) = ----------------------- + 23.8

373-l90*EXP(-(t-tO)/l8)

B-28

rr

for each of Num Power Modules solar array sections, where t is the time
(in minutes), and to Is the time (in m1nutes) of the start of the cur­
rent daylight period. Solar array capability with respect to time is
depicted in Figure V-2.

41

3:
~

39 C
g ..
u ..

(/I

> 37 :!
<
g,

;1 35
0'
~

33

0 10 20 30 40 50

Time, minutes

Figure V-l Solar Array Capability vs Time

The Solar Array Capability module will create the Solar Power Profile
File, which contains solar array capability data for ea~h 6-minute in­
terval during the daylight portions of each orbit. A report file show­
ing the user all of the information contained in the disk file shall
also be generated in a tabularized format.

Solar Power Profile File - The Solar Power Profile File is a data file
generated by the Solar Array CapabilIty module, containing solar array
capability data for each 6-mTnute time interval during the daylight por­
tions of each orbit. No data are given for the solar array capability
during the nighttime because these values are all assumed to be zero.

The Solar Power Profile File shall be a temporary sequential file, with
variable record-size. There shall be one record for each 6-minute in­
terval during the daylight portion of each orbit during the mission.
The contents of each record shall be as follows.

B-29

ORB Orolt number of the current local noon. The type is
INTEGER and the range is 0 to 9999.

DAY Day of the year referenced to midnight December 31st. The
units are days. The type is REAL and the range is 0.0 to
365.9999.

GMON NOON

DAY NOON

GYEAR NOON

GHOUR NOON

GMIN NOON

Month of the year corresponding to the current local
noon. The type is INTEGER and the range is 1 to 12.

Day of the month corresponding to the current local
noon. The type is integer and the range is 1 to 31.

Last two digits of the year corresponding to the cur­
rent local noon. The type in INTEGER and the range
is 0 to 99.

Hour of the day corresponding to the current local
noon. The type is INTEGER and the range is 0 to 23.

Minutes of the hour corresponding to the current local
noon. The type is REAL and the range is 0.0 to 59.99.

MISSION TIME: Time value of this 6-minute interval relative to the
start of the mission. The units are minutes. The
type is integer, and the range is 0 to 2500.

POWER SOLAR: The solar power capability during thlS 6-minute inter­
val. The units are watts. The type is REAL and the
range is 0.0 to 100000.0.

Battery Capability - The purpose of the Battery_Capability module is to
determlne the battery capability during the nighttime periods of each
orbit. The nature of this problem is much different from that of solar
array capability. The maximum power capability of a battery is usually
very high, and it is undesirable for a battery to be operating at its
maximum power capability. However, operating at this power level is
also unnecessary, and the power capability of the batteries is always
much greater than the amount of power consumed by loads at any given
time. Therefore, reasoning about the maximum power capability of the
batteries during the nighttime is meaningless.

If the EMES is to make intelligent decisions about battery management,
it must reason about such constraints as energy balance and battery
depth-of-discharge criteria. If battery-DOD criteria are not violated,
we can draw as much power from the batteries as we need to as long as
there is enough energy during the daylight to recharge the batteries to
a fully charged state.

Several problems arise, however. First, battery depth-of-discharge is
not a fixed value. Batteries may be able to tolerate a higher depth of
discharge when they are new, or for limited periods during certain mis­
sion phases. Also, not exceedlng an allowable battery DOD is not a suf­
ficient constraint if maximum battery life is desired.

B-30

l!f

For these reasons, reasoning about battery capability should be used
only as a rough measure to guide the scheduling of loads. Afterwards,
the mission timeline can be optimized through the use of energy manage­
ment heuristics. Thus, ~he purpose of the battery capab1lity module is
to provide a rough estimate on the amount of power to be provided by the
batteries during the eclipse portion of each orbit. EMES must use th1s
only as a guideline; that is, the battery capability might not be used
for any given time period, or 1t might be exceeded as a result of the
application of rules that override the guideline by applying more intel­
ligent heuristics.

Therefore the purpose of the Battery Capability module is to estimate
the maximum power consumption of the-loads in the mission which are op­
erating at night. Because this is an estimate, we need one value per
eclipse period. The battery model assumes the following constraints:

Maximum Battery Capability:
CAP_BATT = 30,000 watt-hours per battery

Number of Power Modules:
Num Power Modules = 3

Estimated Battery DOD:
DOD_EST = 20 percent.

Thus, the estimated battery power capability for each orbit is

CAP BATT
POWER BATT (watts) = --------- (Num_Power_Modules)(DOD_EST)

DARK TIME

where DARK TIME is the length of the eclipse portion of this orbit (in
hours) •

The Battery Capability module will create the Battery Power Profile
File, which-contains battery capability data for the eclipse portion of
each orbit for the duration of the mission. A report file showing the
user all of the information contained in the disk file shall also be
generated in a tabularized format.

Battery Power Profile File - The Battery Power Profile File, a data file
generated by the Battery Capability module, co~tains b~ttery capability
data per orbit for the d~ration of the mission. Battery capability for
the daylight portion of the orbit is assumed to be zero.

The Battery Power Profile File shall be a temporary sequential file with
variable record size. There shall be one record for each orbit during
the mission. The contents of each record shall be as follows.

ORB :

DAY

Orbit number of the current local noon. The type is INTEGER
and the range is 0 to 9999.

Day of the year referenced to midnight December 31st. The
units are days. The type is REAL and the range is 0.0 to
365.9999.

B-3l

GMON NOON

GDAY NOON

Month of the year corresponding to the current local
noon. The type is INTEGER and the range is 1 to 12.

Day of the month corresponding to the current local
noon. The type 1S integer and the range is 1 to 31.

GYEAR NOON Last two digits of the year corresponding to the cur-
rent local noon. The type in INTEGER and the range
1S 0 to 99.

GROUR NOON Hour of the day corresponding to the current local
noon. The type is INTEGER and the range is 0 to 23.

GMIN NOON Minutes of the hour corresponding to the current local
noon. The type is REAL and the range 1S 0.0 to 59.99.

POWER BATT The battery power capability for this orbit. The units
are watts. The type is REAL and the range is 0.0 to
100000.0.

3. Initialize Mission Timeline

The Initialize_Mission_Timeline module has the responsibility of ini­
tializing the contents of the mission definition to reflect the space­
craft configuration. The initial contents of the mission definition
are as follows.

First, the overall mission is defined as an event, called Overall Mis­
sion, whose start-time is the beginning of the mission, and whose-end­
time is the end of the mission.

(event Overall Mission nil)
(start-time overall Mission 0)
(end-time Overall_Mission [end-time])

These data items are added to the initially empty Mission Definition
Data list through use of the Add_Data_Item module. -

Next, the system loads that define the spacecraft configuration are
added to the mission. These are loads that are an integral part of the
spacecraft, and must be specified for all missions. These loads can be
found in the spacecraft configuration file (config.sys) located in the
EMES_system: directory.- This file contains one entry, referred to as
the Spacecraft_Configuration_Data list, which is a list of the form

«[load-name-l] [start-time-l] [end-time-l])
([load-name-2] [start-time-2] [end-time-2])

([10ad-name-3] [start-time-3] [end-time-3]))

Here, each [load-name] is the name of a load in the initial configura­
tion, [start-time] is the time this load should be scheduled to turn
on, and [end-time] is the time when this load should be turned off (or
the special symbol "mission-end," which means the end of this mission).
Note that none of these loads should have a "duty-cycle" data item in
their def1nition.

B-32

The Initialize Mission Definition module informs the user that it is
initializing the syste; configuration, and then, for ftach entry in the
Spacecraft_Configuration_Data list, performs the following:

1. Builds a load request, using the Request Load module. This mo­
dule returns a (data. Replace List) pair, where 'data' is the
list of data items wh~ch make up the definition of this load re­
quest (these get added to Mission Definition Data), and Replace
List is an A-list of ([generic-event] • [instantiation]) pairs,
which tells us how the various load-names were instantiated.

2. Creates a new data item of the form

(during [new-event] OVerall_Mission),

where [new-event] is the name of the event which was just sche­
duled.

3. Echoes each new data item to the user, using the Translate Data
Item module, so that the user can see the definition of the
spacecraft configuration.

When all spacecraft configuration load requests have been made, the user
is informed that the initial configuration definition is complete. The
Mission Definition Data list now contains all data items that make up
the initial configuration. The Initialize Mission Definition module re­
turns control back to the Define Mission module.

4. Define Mission Timeline

The Define Mission Timeline module allows the user to schedule arbitrary
mission events into the load timeline, and to request the operation of
various loads. The user is provided with three capabilities: Request
Event, which allows the insertion of an event into the timeline, Request
Load, which allows the specification of a load to be operated during the
mission, and Get Event Constraints, which allows the user to specify
constraints on the scheduling of these loads and events. Each of these
functions is provided by a separate submodule. The Define Mission mo­
dule provides the user with a menu-driven interface to each submodule.
This will be implemented as a call to the Select Menu Entry module, w~th
Menu Descriptor equal to Define Mission Menu. Define-Mission Menu is a
global constant with value - - --

("Mission Definition."
(Event • "Request an event to be scheduled.")
(Load • "Request a load to be scheduled.")
(Constraints • "Place constraints on the scheduling of events.")
(show-events • "List the events which have been requested.")
(show-loads • "List the loads which have been requested.")
(Exit. "Return to Mission Development Menu."»

Select Menu Entry is called repeatedly until the value returned is Exit,
in which case control is returned to the Define Mission module. Other
possible values returned are Event, Load, Constraints, show-events, and
show-loads.

B-33

The Define Mission module maintains two global lists:

Current Event List: This is the current list of events that have
been requested. Note that these are not event types, but
instantiations of event types.

Current Load List: This is the current list of loads that have been
requested. Note that these are not load names, but
instantiated load requests.

If the user requests an event, the system prompts for the name of the
event type being requested.

Event type:

The event typ~ must currently be defined in the event library. The user
is then asked for the time the event should be scheduled.

Time to be scheduled:

Legal inputs are

1) [return]: The user does not wish to specify a time.

2) In]: A positive integer that specifies the time the event should be­
gin, relative to the start of the mission. In] should not be grea­
ter than the start of the mission.

3) [nl] ln2]: A time window. The event should start sometime between
[nl] and [n2], which are each positive integers that represent times
relative to the start of the mission.

The event is instantiated through a call to the Request Event module,
which returns a (data-list • Replace List) pair. Data-list is a list of
data items that make up the instantiation of this event, and Replace
List tells us how the various event names were instantiated. The user
is shown each new data item through the use of the Translate Data Item
module, and is asked for confirmation. If the data are not correct,
this event definition is ignored. Otherwise, the new data items are
added to the Mission Definition Data list, and the Current Event List
and Current Load List are updated to reflect the new event-defined
(plUS any subevents or load requests that are part of this definition).
Also added to the Mission Definition Data list are data items of the
form

(during [event] Overall-Mission)
(start-time [event] [start-time])
(end-time [event] [start-time])

"Start-time" and "end-time" data items are added only if the user has
specified start and end times for this event. Here, "[event]" is the
name of the instantiation of this event type.

If the user requests that a load be scheduled, then the system prompts
for the name of the load being requested.

Load name:

B-34

The load name must currently be defined in the load library. The user
LS then asked for the time the event should be scheduled.

Time to be scheduled:

Legal inputs are as described previously for event requests.

The load is instantLated through a call to the Request Load module,
which returns a (data-list • Replace List) pair. Data=list is a list of
data items that make up the Lnstantiation of this event, and Replace
List tells us how the various event names were instantiated. The user
is shown each new data item through the use of the Translate Data Item
module, and is asked for confirmation. If the data are not correct,
load request is ignored. Otherwise, the new data items are added to the
Mission Definition Data list, and the Current Load List is updated to
reflect-the new load request. Also added to the Mission Definition Data
list are data items of the form

(during (load] Overall-Mission)
(start-time (load] [start-time])
(end-time (load] (start-time])

"Start-time" and "end-time" data items are added only if the user has
specified start and end times for this load. Here, (load-name] is the
name of the instantiation of this load request.

If the user asks to add a new set of scheduling constraints, the system
responds with

Type the desired scheduling constraints.
Type each constraint on a separate line.
Type (return] when done.

The user then types the scheduling constraints. The process of getting
the constraints from the user is implemented through a call to the Get
Event_Constraints module, which returns a list of new data items repre­
senting scheduling constraints on the events in this event type. When
all constraints have been input, the system shows the user the transla­
tion of each new data item, using the Translate Data Item module, and
then asks for confirmation. If the data are incorrect, these con­
straints are ignored. Otherwise, the Mission Definition Data list is
updated.

If the user requests to see the list of events to be scheduled, the sys­
tem shows the current value of Current Events List. For example,

Events to be scheduled in this mission:

Rendezvous-and-docking:Event-l
Station-keeping:Event-l
Materials-experiment-sequence:Event-l

Similarly, if the user requests to see the list of loads to be scheduled
during this mission, the system shows the current value of Current
Loads List.

B-35

1

When the user is done, the "exit" selection is made, and the Define Mis­
sion Timeline module returns control to the Define Miss10n module. -rhe
Mission Definition Data list now contains definiti~ns of all loads and
events to be sched~led during th1s mission.

Request Event - TIle Request Event module reads in the Event Definition
File for an event type in the event library, and instant1ates that event
type to form a new event to be scheduled. TIle Request Event module re-
quires the following parameters: -

event name: TIle name of the event type whose definition is to be
read.

event index list: This is the event type index, obtained from the
e;ent lIbrary index file.

load index list: This is the load index, obtained from the load
Ilbrary:index_file.

If the event name cannot be found in the event index list, an error
message is generated informing the user that the result1ng mission de­
finition w1ll be faulty.

If the event name is found in the event index list, the corresponding
event definition file is read. NOW, the event gets instantiated. For
each data item in the definition, we perform the following:

1. If the data item is of the form

(event event name) or
(mission-phase event_name)

(this will always be the first data item in the definition), then it
is instantiated using the Instantiate Data Item module, which will
generate a new event name to be the name of this event. Instanti­
ate Data Item will also create an 1nitial Replace List, which must
be maintained for the duration of the definition ;f this event.

2. If the data item is of the form

(during [event] [name])

where [name] is the name given to the instantiation of this event
name, then [event] is the name of a subevent of this event. In this
case, Request Event is called recursively to define this event.
Then, the "during" event is instantiated with the Instantiate Data
Item.

3. If the data item 18 of the form

(during [load] [name])

where [name] is the name given to the instantiation of this event
name, [load] is the name of a load to operate during this event. In
this case, the Request Load module is called in order to define this
load. Then, the "during" event is instantiated with the Instantiate
Data Item.

B-36

4. All other data items are translated using the Instantiate Data
Item module.

When all data items have been instantiated, the Request_Event module
returns. The value returned is

(data. Replace_List),

where "data" is the list of data items created when defining this
event, and 'Replace List' is the instantiation list created by the
calls to Instantiate Data Item.

Request Load - The Request_Load module reads in the Load_Definition_File
for a load in the load library, and instantiates that load to form a new
load request to be scheduled. The Request Load module requires the fol-
lowing parameters: -

load name: The name of the load whose definition is to be read.
event index list: This is the event type index, obtained from the

event lIbrary index file.
load index list: This is the load index, obtained from the

Toad_1IbrarY_index_file.

If the load name cannot be found in the load index list, an error mess­
age is generated informing the user that the-resulting mission defini­
tion will be faulty.

If the load name is found in the load index list, the corresponding load
definition file is read. Now, the load gets instantiated. For each
data item in the definition, we perform the following:

If the data item is of the form

(load load_name)

(this will always be the first data item in the definition), it is in­
stantiated using the Instantiate Data Item module, which will generate
a new load request name to be the name of this load request. Instanti­
ate Data Item will also create an initial Replace List, which must be
maintained for the duration of the definition of this load request.

All other data items are translated using the Instantiate Data Item mo­
dule. When all data items have been instantiated, the Request_Load mo­
dule returns. The value returned 1S

(data. Replace_List),

where "data" is the list of data items created when defining this load
request, and 'Replace List' is the instantiation list created by the
calls to Instantiate Data Item.

Get Event Constraints - The Get Event Constraints module allows the user
to specify constraints on the relationships between the various events
to be scheduled. The Get Event Constraints module requires the follow­
ing parameters:

B-37

Major Event Name: The name of the event currently being defined.
Subevent Names: The names of any subevents of this event.
Event Load Names: Loads to be operated during this event.

The system prompts the Uder with

Type the desired scheduling constraints.
Type each constraint on a separate line.
Type [return] when done.

The user then types the scheduling constraints. Each constraint is
read, and then parsed using the Parse Constraint Form module. If this
module returns non-nil, then the value returned Is a new data item re­
presenting a constraint on the scheduling of two events. The Get Event
Constraints module returns a list of these scheduling constraints:

5. Assemble Mission Definition

The Assemble_Mission_Definition module is responsible for putting to­
gether all of the information calculated during the definition of this
mission, and for using it to generate a new Mission_Definition_File.

The Assemble Mission Definition module begins with Mission Definition
Data, which will contain all of the data that define the e;ents and load
requests to be scheduled in the mission timeline. The first type of in­
formation that needs to be added is the data that define the orbits in
this mission. The system informs the user that the orbit definition is
beginning:

Defining orbit data for this mission •••

Now, the orbit definition data items are created, using the following
process:

1) The system calls the Init_Orbit_File routine;

2) The system calls Get Next Orbit number, which returns ORB, the num­
ber of the next orbit in the mission. If ORB is negative, there are
no more orbits and we are done;

3) The system calls Get Orbit Start Time, which returns the time at
which this orbit beg~s (i~ minutes), relative to the start of the
mission;

4)

5)

The system calls Get Orbit End Time, which returns the time at which
this orbit ends (in minutes), relative to the start of the mission;

A data item of the form

{orbit ORB window (start-time end-time»

is created and added to the Mission Definition Data list.

B-38

6) The system calls Get Sun Start Time, which returns the time at which
the daylight portion-of this orbit begins (~n minutes), relative to
the start of the mission;

7) The system calls Get Sun End Time, which returns tae time at which
the daylight portion-of this-orbit ends (in minutes), relative to
the start of the mission;

8) A data item of the form

(orbit ORB daytime (start-time end-time»

~s created and added to the Mission Definition Data list;

9) Go back to step 2.

As each new data item is created, it is echoed to the user using the
Translate Data Item routine.

The next type of information that needs to be added is the data that de­
fine the solar array capability for the daylight portions of each orbit.
The system informs the user that the definition of solar array capabil­
ity is beginning:

Defining solar array capability for this mission •••

Now, the solar array capability data items are created, using the fol­
lowing process:

1) The system calls the !nit Solar File routine;

2) The system calls Get Next Solar Time, which returns MISSION TIME,
the next 6-minute interval in this mission, which is an integer rel­
ative to the start of the mission. If the MISSION TIME ~s negative,
there are no more time slots and we are done;

3) The system calls Get Solar Power, which returns POWER SOLAR, the
solar array capability during this 6-minute interval;-

4) A data item of the form

(solar-array-capability MISSION_TIME POWER SOLAR)

is created and added to the Mission Definition Data list;

5) Go back to step 2.

As each new data item is created, it is echoed to the user using the
Translate Data Item routine.

Finally, the data that define the battery capability for the nighttime
portion of each orbit needs to be defined. The system informs the
user that the definition of battery capability is beginning:

Defining battery capability for this mission •••

B-39

Now, the battery capability data items are created, using the following
process:

1) The system calls the Init_BatterY_File routine;

2) The system calls Get Next Battery Time, which returns ORB, the next
orbit number in this-missIon. If ORB LS negative, there are no more
time slots and we are done;

3) The system calls Get Battery Power, which returns POWER_BATT, the
battery capability during thIs orbit;

4) A data item of the form

(battery-capability ORB POWER_BATT)

is created and added to the Mission Definition Data list;

5) Go back to step 2.

As each new data item is created, it is echoed to the user using the
Translate Data Item routine.

This completes the entire mission definition. The system prompts the
user for a file name:

Mission Definition Completed.
What file name will store this definition?

The user inputs the desired file name. The system writes the contents
of the Mission Definition Data list to the named file, which will be in
the mission dir: directory. The system responds with

Done.

The Assemble Mission Definition module halts, and returns control back
to the Define Mission module.

The following sections describe the functions required to interface LISP
to the machine-readable data files created by the Fortran engineering
modules. (LISP can read only text files.)

Orbit Data Interface - The following Fortran-coded routines are required
to allow the EMES system to create LISP data items from the machine­
readable Day_Night_Cycles_File:

Init Orbit File: This function opens the Day Night Cycles File for
input. The function returns 1 if succeSSful, and 0 otherwise.

Get Next Orbit Number: If we are at the end of the Day Night
-Cycles File, -1 is returned. Otherwise, this function reads

the next record from the input file. All data in this record
are shared between this and all of the remaining Orbit Data
Interface routines through the use of a Fortran common block.

B~O

COMMON/ORB DATA/ ORB,DAY,GMON NOON,GYEA..~ NOON,GHOlJR NOON,
1 G~rrN_NOON,REV,GMON_NODE,GDAY_NODE,GYEAR_NODE,GHOUR_NODE,
2 GMIN ~ODE,BETA,GMON SET,GDAY SET,GYEAR SET,GHOUR SET,
3 GMIN-SET,GHON RISE,GDAY RISE:-GYEAR RISE,GHOUR RISE,
4 GMIt{:NODE,DARK_TIME,LIGHT_TlME - -

The Get Next Orbit Number function returns the value of ORB.

Get Orbit Start Time: Calculates the start time of this orbit rela­
-tive to the-start of the mission, using the REL TIME module, and

returns the result.

Get_Sun_Start_Time: Calculates the start time of the daylight por­
tion of this orbit relative to the start of the mission, using
the REL_TIME module, and returns the result.

Get Sun End Time: Calculates the end time of the daylight portion of
-this orbit relative to the start of the mission, using the

REL TIME module, and returns the result.

Solar Power Data Interface - The following Fortran-coded routines are
required to allow the EMES system to create LISP data items from the
machine-readable Solar Power Profile File:

Init Solar File: This function opens the Solar Power Profile File
for input. The function returns 1 if successful~ and 0 ~ther­
wise.

Get Next Solar Time: If we are at the end of the Solar Power
-Profile File, then -1 is returned. Otherw~se, this function

reads the next record from the input file. All data in this
record are shared between this and all of the remaining Solar
Power Data Interface routines through the use of a Fortran
common block.

COMMON/SOLAR DATA/ ORB,DAY,GMON NOON,GDAY NOON,GYEAR NOON,
1 GHOUR_NOON7GMIN_NOON, MISSION:TIME,POWER_SOLAR -

The Get Next Solar Time function returns the value of
MISSION-TIME:-

Get Solar Power: Returns POWER SOLAR.

Battery Power Data Interface - The following Fortran-coded routines are
required to allow the EMES system to create LISP data items from the
machine-readable Battery_Power_Profile_File:

Init Battery File: This function opens the Battery Power Profile
File for-input. The function returns 1 if successful7 and 0 -
otherwise.

Get Next Battery Time: If we are at the end of the Battery Power
-ProfIle File~ then -1 is returned. Otherwise, this function­

reads the next record from the input file. All data in this
record is shared between this and all of the remaining Battery
Power Data Interface routines through the use of a Fortran
common block.

B-4l

COMMON/BATTERY DATA! ORB,DAY,GMON NOON,GDAY NOON,GYEAR NOON,
1 GHOUR_NOON,GMIN_NOON,POWER_BATT- - -

The Get_Next_Battery_Time function returns the value of ORB.

Get_Battery_Power: Returns POWER BATT.

B. SHOlv MISSION DEFINITION

C.

The Show_Miss ion_Definition module allows the user to get a listing of
all of the information in the definition for a mission. The user is
prompted for the name of the file that contains the definition of the
mission to be shown. The system looks for the file in mission dir:,
and reads the contents of the mission definition file. Each piece of
information in the mission definition is a data item to be inserted
into working memory. The Translate Data Item module is used to print
an English description of each of these data items. The Direct_User
Output module provides the user the option of showing the mission de­
finition on the terminal, sending it to a disk file, or sending it to
the line printer.

GENERATE MISSION REPORTS

The Generate_Mission_Reports module allows the user to generate reports
summarizing various important characteristics of a mission. Several
different types of reports are permitted: Power Capability, Event Sta­
tus, Load Profile, Power Margin, and Battery DOD. Each of these report
types is generated by a different Generate_Mission_Reports submodule.

The Generate Mission Reports Module provides the user with a menu-driven
interface to-the various mission report submodules. This will be imple­
mented as a call to the Select Menu Entry module, with Menu Descriptor
equal to Mission Report Menu. -Mission Report Menu is a global constant,
with value - - --

("Generate Mission Reports."
(Power. "Report Mission Power Capability.")
(Event • "Report Mission Event Status. ")
(Load. "Report Mission Load Profile.")
(Margin. "Report Mission Power Margin.")
(DOD. "Report Mission Battery DOD.")
(Exit. "Return to Mission Development Menu."»

B-42

1.

Select Menu Entry is called repeatedly until the value returned is Exit.
Other possible values returned are Power, Event, Load, Margin, and DOD.
In each of these cases, a call to the appropriate submodule is made.

Show Power Capability

The Show Power Capability module allows the user to obtain a graphic re­
presentation of the power available for each 6-minute time slot for the
duration of a mission. The user is prompted for the name of the mission
definition file. The system looks for the file in mission dir: and
reads its contents. All solar-array-capability and battery-capability
data items are summarized to obtain the solar array output profile for
each daytime period, and the battery capability for each nighttime per­
iod. If no such data items exist, the user is not~fied. The solar ar­
ray and battery degradation factors are taken into account only if they
are present in the mission definition (that is, only if this mission
definition has already been processed by the expert system). Otherwise,
degradation factors are assumed to be zero. The data are shown graphic­
ally using the Graph Mission Data module. The Direct User Output module
provides the user the option-of showing the data on the terminal, send­
ing it to a disk file, or sending it to the line printer.

2. Show Event Status

The Show Event Status module allows the user to obtain a tabular summary
of all of the event requests in a mission definition. This is useful
for mission definitions that have not yet been processed by the EMES.
The user is prompted for the name of the mission definition file. The
system looks for the file in mission dir: and reads its contents. For
each event request, the user is sho~, in tabular form,

1) The name of the event request;

2) Whether this is a mission phase, a load request, or an arbitrary
event;

3) The load or type of event requested;

4) Whether or not this event has already been scheduled;

5) The time of this event (a time relative to the start of the mission
if this event has already been planned, or the time window in which
this event must be planned).

The Direct User Output module provides the user the option of showing
the event status on the terminal, sending it to a disk file, or sending
it to the line printer.

B-43

3.

4.

5.

Show Load Profile

The Show Load Profile module allows the user to obtain a graphic repre­
sentation of the power consumed by loads for each 6-minute time slot for
the duration of a mission. The user is prompted for the name of the
mission def~nition file. The system looks for the file in mission_dir:
and reads its contents. First, the system looks for load requests that
have not yet been scheduled. If any are found, this mission file has
not been processed yet by the EMES. Otherwise, all resource-consumed
data items that represent power consumed by a load are summarized to ob­
tain the load profile as a function of time. If no such data items
exist, the user is notified. The data are shown graphically using the
Graph Mission Data module. The Direct User Output module provides the
user the option of showing the data on-the terminal, sending it to a
disk file, or sending it to the line printer.

Show Power Margin.

The Show Power Margin module allows the user to obtain a graphic repre­
sentation of the power margin for each 6-minute time slot for the dura­
tion of a mission. The user is prompted for the name of the mission
definition file. The system looks for the file in mission dir: and
reads its contents. First, the system looks for load requ;sts that have
not yet been scheduled. If any are found, this mission file has not
been processed yet by the EMES. Otherwise, all resource-available data
items that represent power margin are summarized to obtain the power
margin as a function of time. If no such data items exist, the user is
notified. The data are shown graphically using the Graph Mission Data
module. The Direct User Output module provides the user the option of
showing the data on-the terminal, sending it to a disk file, or sending
it to the line printer.

Show Battery DOD

The Show_Battery_DOD module allows the user to obtain a graphic repre­
sentation of the battery depth-of-discharge for each 6-minute time slot
for the duration of a mission. The user is prompted for the name of the
mission definition file. The system looks for the file in mission dir:

"and reads its contents. First, the system looks for load requests-that
have not yet been scheduled. If any are found, this mission file has
not been processed yet by the EMES. Otherwise, all battery-DOD data
items are summarized to obtain the battery depth-of-discharge as a func­
tion of time. If no such data items exist, the user is notified. The
data are shown graphically using the Graph Mission Data module. The
Direct User Output module provides the user the option of showing the
data on the-terminal, sending it to a disk file, or send~ng it to the
line printer.

B-44

VI. MISSION EXECUTION

The Mission_Execution module allows the EMES to inspect a misslon time­
line, schedule any unscheduled mission events or load requests, and make
sure that no resource requirements or energy management constraints have
been violated.

The mission execution process proceeds as follows:

1) The user is prompted for the name of the file containing the mission
definition. The system looks for this file in the mission dir:
directory;

2) The user is required to input solar array and battery degradation
constants. Each of these numbers is expressed as a percentage.
Total solar array power available for consumption by the loads is
equal to a fraction of the output of the solar arrays at any given
time, depending on the amount of solar array degradation. Battery
degradation is used in a similar fashion. These constants are use­
ful for simulating a spacecraft in a degraded mode;

3) All of the information defining the current mission is inserted into
the working memory structure of the expert system. The expert sys­
tem is given the top-level goal of inspecting the mission timeline,
and execution begins;

4) The expert system inspects the mission timeline, checking for incon­
sistencies or constraints that have been violated. For more infor­
mation on the operation of the expert system, see Section B;

5) When the expert system finishes, the modified mission timeline is
output to a new file, which now contains a new mission definition
with no inconsistencies.

One mode of operation of the energy management expert system expected to
be common is as follows:

1) The user runs the expert system on a given mission definition, as­
suming a spacecraft operating under normal conditions;

2) The expert system produces a new, consistent mission timeline;

3) The user runs the expert system again, using the newly created mis­
sion definition, but with the spacecraft operating in a degraded
mode.

In this way, the user can see the decisions the expert system makes to
compensate for a loss of power in the spacecraft.

The following sections describe several important aspects of the design
of the energy management expert system (EMES).

B-45

A. KNOWLEDGE REPRESENTATION

Knowledge representation decisions are important in any artificial in­
telligence application. They involve deciding which knowledge is re­
quired by the system to do reasoning, as well as how it is best repre­
sented.

One of the key factors being considered in the EMES is the representa­
tion of values that change over time. The time granularity of informa­
tion in EMES is 6 minutes; events that occur less than 6 minutes apart
are indistinguishable as far as time. All information in EMES that
changes over time is given a time tag; that is, it is given a property
that indicates the time period over which that information is true. All
times are given in minutes and are relative to the start of the mission.
Each time tag can take one of two forms:

1) [n], where [nJ is a positive integer representing some 6-minute
planning interval. This means that the tagged event is true only
for that instance in time (which is actually a 6-minute interval);

2) ([min] [max]) is an ordered pair of positive integers. This format
is used to represent arbitrary time intervals. [min] is the begin­
ning of the time interval and (max] is the end of the time interval.
Both values are rounded to the nearest 6-minute time slot.

Note that the 6-minute granularity of time in the expert system is not
hardwired into the encoded rules--it is encoded in the representation
of declarative knowledge residing in the mission definition file. For
example, solar array capability is given for every 6-minute time slice.
The expert system cannot reason about solar array capability any more
precisely.

The load management problem is characterized to the expert system as a
scheduling problem. The system is presented with events to be scheduled
(mission events, load requests) and a set of constraints between events.
This allows us to use the same set of rules to reason about constraints
concerning mission phases and constraints between load requests. The
problem becomes an energy management problem by encoding further con­
straints on the scheduling of events and the allocation of resources.
For example, one constraint on the allocation of power (a resource) to
various loads (consumers of power) is that battery depth-of-discharge
should be minimized (an energy management constraint).

The advantage of characterizing the problem in these terms is that the
problem is generalized and can now handle the allocation of resources
other than energy. This makes the system more realistic. For example,
other scarce resources that can be reasoned about dre astronauts and
computer time. This makes the system more realistic in its scheduling
of the loads that require these resources (in addition to power).

B-46

1.

All knowledge input to the expert system is encoded as a single piece of
LIST structure (in the LISP sense) of arbitrary length and complexity.
To ensure consistency of representation, the system modules that define
loads and events create data items that abide by certain representation
conventions. The rules in the rule base dre designed to recognize these
conventions. The following sections describe of the major data types
(conventions) used throughout EMES.

Representation of Loads

The following data items are used to describe a load to the EMES. Data
items of the form

(load [load])

declare a load to the system. For each load, the expert system requires
a data item of the form

(power-consumption [load] [value])

which states that the peak power consumption of the load with name
[load] is [value] watts. To declare which bus in the power system the
load is connected to, a data item of the form

(bus-connection [load] [bus])

is required, where [load] is the name of the load, and [bus] is the bus
to which the load is connected (either critical, low power, or high
power). The data item

(duty-cycle [load] [cycle])

is used to describe loads that have a known duty cycle, where [cycle]
is the number of minutes the load will be turned on for each load re­
quest. Loads that do not have a known duty cycle, or that need to be on
throughout the entire mission, do not require a duty-cycle data item.
The data items

(continuous [load])
(interruptable [load])
(restartable [load])

are used to tell whether the power to the load must be continuous (for
a given load request), whether the load can be interrupted, or whether
the load can be interrupted and then restarted again. Note that these
data items are disjoint (one and only one of these exists for each
load). The data item

(subsystem [load] [system])

indicates which spacecraft subsystem the load resides in, or, for ex­
periments, what the nature of this experiment is (science payload,
commercial payload, or technology development payload).

B-47

Finally, data items of the form

(producer [load] [resource] [quantity])

are used to indicate that a [load] is the producer of a given [quantity]
of some named [resource], and data items of the form

(consumer [load] [resource] [quantity])

are used to indicate that a [load] is the consumer of a given [quantity]
of a named [resource].

Note that these data items only describe some of the general features
characteristic of a wide variety of loads. Much of the information used
in load management will be more subtle information that is idiosyncratic
to a particular load or class of loads. This type of information is re­
presented as procedural knowledge peculiar to the load management task,
and resides directly in the rule base itself.

2. Representation of Events

The following data items are used to represent events and relationships
between events. Data items of the form

(mission-phase [event-type])
(event [event-type])

distinguish between event types. Event-types tagged with "mission­
phase" are major mission events (such as stationkeeping or rendezvous
and docking), only one of which may be scheduled in any particular time
slot. All other event types are tagged with "event." These are usually
groups of loads that execute in some sequence relative to each other to
perform a specified task.

Data items of the form

(event [event] (load-request [load]))
(event [event] (mission-phase [event-type]))
(event [event] (event [event-type]))

are used to distinguish between the various types of event instantia­
tions the system must reason about. Events of type "load-request" are
requests for the operation of some load. Events of type "mission-phase"
are instances of a mission phase. All other events are instantiations
of some other event type. In these data items, [event] is always an
atomic name assigned to an event that is unique to this event in the
current mission.

Data items of the form

(start-time [event] [time])
(end-time [event] [time])

B-48

tell the system when a particular event is scheduled to begin or end.
Remember that the [time] may either be a single time slot or a time
window.

A scheme for representing the relationships between events has been de­
rived from the work of [Allen 1983]. This scheme is concerned with rea­
soning about events with respect to time. The data items we will be
using to represent relationships between events are of the following
form:

(conflict [eventl] [event2])

(simultaneous [eventl] [event2])

(before [eventl] [event2])

(after [eventl] [event2])

(precedes [eventl] [event2])

(follows [eventl] [event2])

(starts [eventl] [event2])

(finishes [eventl] [event2])

(during [eventl] [event2])

(overlaps [eventl] [event2])

The two events must not occur in
the same time interval.

The two events occur at exactly
the same time.

[eventl] occurs before [event2].

[eventl] occurs after [event2].

[eventl] itnmediately precedes
[event2] •

[eventl] immediately follows
[event2] •

The start of [eventl] is the
same as the start of [event2],
but [eventl] finishes first.

The end of [eventl] is the same
as the end of [event2], but
[event2] starts first.

[eventl] occurs sometime during
[event2] •

The occurrences of the events
overlap.

The above data items are all used to perform temporal reasoning (rea­
soning with respect to time) on the events to be scheduled. Some may
represent original (user-defined) constraints on load or event requests;
others are created during the process of reasoning about the placement
of events in the timeline.

3. Representation of Simulation Data

The expert system requires an internal representation of the simulation
data produced by the engineering modules. This section describes the
data items that provide the desired internal representation.

B-49

Data items of the form

(orbit en] window ([timel] [time2]))

describe the beginning ("[timel]") and end ("[time2]") of each orbit
number

("[n]"). Here, [timel] and [time2] must be atomic times (and not time
intervals). Similarly, data items of the form

(orbit [n] daytime [window])

describe the daylight time interval for each orbit.

The maximum solar array capability for the solar arrays is given by
data items of the form

(solar-array-capability [time] [quantity])

One data item of type solar-array-capability is given for each 6-minute
time slot during the daytime for the duration of the mission. Solar
array capability during the nighttime is assumed to be zero. The data
item

(solar-array-degradation [percent])

is used to calculate how much of the total solar array power is avail­
able for use by the loads. This data item is also useful for describing
a spacecraft with a given percentage of solar array cells inoperable.

Similarly, the maximum battery capability is given by data items of the
form

(battery-capability [orbit-number] [quantity])

One data item of type battery-capability is given for the nighttime of
each orbit for the duration of the mission. Battery capability during
the daytime (recharging) is assumed to be zero. The data item

(battery-degradation [percent])

is used to calculate how much of the total battery capability is avail­
able for use by the loads. This data item is also useful for describing
a spacecraft with a given percentage of battery cells inoperable.

Finally, data items of the form

(battery-DOD [time] [percent])

are calculated by the expert system for each 6-minute time slot during
the nighttime for the duration of the mission so the system can reason
about depth-of-discharge criteria.

B-50

4. Representation of Resources

The following knowledge is used to reason about system resources. It
is important to remeober that power requirements for the various loads
and power capability of the batteries and solar arrays are eventually
reasoned about as resource problems.

Data items of the form

(resource-provided [producer] [resource] [time] [quantity])

are used to represent sources of system resources. "[producer]" is the
entity (for example, a system component) that makes the resource avail­
able for consumption. "[resource]" is the resource produced, "[quan­
tity]" is the amount produced, and "[time]" is the time slot for which
it is produced (possibly an arbitrary time interval).

Data items of the form

(resource-available [resource] [time] [quantity])

are used to represent the amount of a given resource that is available
for consumption at any given time. All "resource-provided" data items
cause resources to be available until they are allocated to a consumer
of that resource.

Data items of the form

(resource-required [consumer] [resource] [time] [quantity])

are used to represent resource constraints on loads or events. For ex­
ample, these data items can represent the power requirements of a load,
as well as the astronaut requirements for a mission event.

Finally, data items of the form

(resource-consumed [consumer] [resource] [time] [quantity])

are used to signify that a given amount of some resource has been al­
located to a given consumer (something that requires that resource)
during a specified time period.

Using this representation, the expert system can attempt to satisfy
every request for a resource (every data item of type "resource-re­
quired") without violating the constraints on the amount of resources
available at any give~ time.

B-51

B. EXPERT SYSTEM LOGIC

The E~mS takes a goal-directed problem-solving approach to the energy
management task. Mdny factors interact to provide a unique approach to
reasoning about energy management, load scheduling, and constraint sat­
isfaction. The most ~mportant of these are descr~bed ~n the following
subsections.

1. Control Structure

EMES uses the rule-based control structure provided by the HAPS inter­
preter. Because this control structure is not standardly found in rule­
based systems, the HAPS control structure will be described briefly.

The HAPS system provides a goal-directed, forward-chaining control
structure for guiding the problemrsolving process. This is effected
through the repeated application of a set of recognize/act cycles. For
each cycle, the following set of operations is performed:

1) Goal selection - At any given time, HAPS has a set of goals to pur­
sue, arranged in a hierarchy. At the beginning of each cycle, this
set of goals is examined and one is selected to be the focus of at­
tention for the duration of this cycle;

2) Rule selection - The system determines which rules in the rule base
are relevant to solving the current goal. For a rule to be appli­
cable in this cycle, it must have all of its conditionals satisfied
in the context of solving the current goal. The set of all applic­
able rule instantiations is known as the conflict set;

3) Conflict resolution - The system must select one rule from the con­
flict set to apply in this cycle. A set of conflict resolution pro­
cedures is used to choose one rule instantiation, which now becomes
the current instantiation;

4) Rule application - The chosen rule is applied by executing the ac­
tions it specifies. These actions usually make changes in the
system environment, such as creating new goals or inferring new
facts about the world.

The system halts when it has achieved all goals in the goal hierarchy.
The goal-directed nature of the HAPS control structure allows the EMES
to decompose the energy management problem into subproblems in a dynamic
fashion. That is, although the system creates different goals for each
mission, the behavior of the rule base will not be adversely affected.

For more information on the HAPS system, see Chapter XI, which provides
an introduction to HAPS, or consult [Sauers 1984].

B-52

2. The Goal Hierarchy

The E~mS uses goals to direct the problem-solving process. Goals repre­
sent tasks to be performed, problems to be solved, or states to be ac­
hieved. When a mission is executed, the expert system is initialized
with one top-level goal--to L~spect the mission timeline. As rules in
the rule base are applied toward the solution of this goal, goals re­
presenting subtasks may be created.

Goals in EMES are intended only as a guide to the higher level reasoning
processes. For this reason, only a few different types of goals are
permitted in EMES (that is, a small number of goals in relation to the
number of rules expected in the rule base). The major advantage in de­
signing the EMES system in this fashion is that this type of design re­
sults in a loose coupling of rules in the rule base to goals in the goal
hierarchy. Briefly, this means that the system is more modular and
easily extensible. This notion will be discussed further in Subsection
3.

Because of the relative scarcity of goal types available for the pro­
blem-solving process, most of the goal types defined in EMES are
general and highly parameterized. The most important EMES goal types
are:

(GOAL-TYPE
OBJECT: Inspect-Timeline)

The top-level goal given to EMES is of type Inspect-Timeline. When El~S
is inspecting a mission timeline, it searches for

1) Events or load requests that have not yet been scheduled;

2) Energy management constraints that have been violated;

3) Scheduling constraints that have been violated;

4) Resource constraints that have been violated;

5) Energy management considerations that have not been optimized;

6) Resources that have not been allocated in an optimal fashion.

The occurrence of anyone of these conditions indicates that the cur­
rent mission timeline is not satisfactory. Thus, the expert system must
modify the existing timeline so the offending condition is no longer
true.

(GOAL-TYPE
OBJECT: Schedule-Event
EVENT: =event-name
TIME1: =early-time
TIME2: =late-time)

Goals of type Schedule-Event are used when EMES needs to schedule an
event with an inexact start time (a start time that is a window). Goals
of this type require several parameters:

B-53

=event-name : the name of the event to be scheduled. This can be
the name of a mission phase, a load request, or an ordinary
event.

=early-time : the earliest time (relative to the start of the
mission) at which this event can begin.

=late-time : the latest time at which this event can begin.

Rules that fire in the context of Schedule-Event goals will consider
such factors as availability of resources, scheduling constraints, and
energy management constraints.

(GOAL-TYPE
OBJECT: Un-Schedule-Event
WHY: =justification
TIMEl: =start-interval
TlME2: =end-interval)

Goals of type Un-Schedule-Event are used to remove an event from the
timeline. The parameters required are

=justification : a description of the condition which resulted in
the need for an event to be rescheduled.

=start-interval : the beginning of the time interval during which
the offending condition is true.

=end-interval : the end of the offending time interval.

Note that goals of this type do not specify the event that needs to be
unscheduled. This is because the condition that caused the unscheduling
requirement may result in a choice of events to be unscheduled, or may
require the unscheduling of several events. Examples of the types of
justifications possible are:

(conflict load-l event-I)
(resource-exceeded power)
(energy-constraint-violation battery-DOD)

The unscheduling of an event usually results in the removal of an event
from the mission timeline, and a request for that event to be resche­
duled (either during the original start-time window specified by the
user, or a modified start-window produced by EMES).

The goals in the goal hierarchy will be pursued at runtime in a depth­
first fashion. Thus, the HAPS goal selection strategies will be set
appropriately. This decision was made because of the relative scarcity
of goal insertion. When a new goal is inserted into the hierarchy, it
requires an immediate shift in focus of attention.

3. Conflict Resolution

In a rule-based system, the process by which one rule is selected from
the set of all rules that can be applied on any given cycle is known as
conflict resolution. Some common conflict resolution strategies are:

B-54

c.

refraction: Each instantiation of a given rule can be applied only
once.

recency: Rules that match the most recently asserted data items are
preferred over rules that match old data items.

specificity: Rules that test more conditions are preferred over
rules that test fewer conditions.

randomness: A random rule is preferred over all others.

Most expert systems employ a conflict resolution strategy that is a com­
bination of the above strategies designed to minimize the number of
times the randomness strategy needs to be applied.

The conflict resolution process to be used by the EMES will be a sequen­
tial application of the following:

refraction: Do not fire the same instantiation of a rule more than
once at the same goal.

subsumption: If rulel is a special case of rule2, then prefer
instantiations of rulel over instantiations of rule2.

randomness: Prefer a random instantiation over all of the others.

With this conflict resolution procedure, the randomness strategy will
be the one that most often selects a single rule. This strategy will
be used in EMES to ensure loose coupling of rules in the rule base.
That is, if more than one rule is able to fire on a given cycle, it
usually should not matter as to the order in which the rules are ap­
plied. As long as the rule applied is relevant to the current goal, it
will be logically correct to fire that rule.

This approach to the design of the EMES system will increase the degree
of modularity of rules in the rule base. That is, rules must test suf­
ficient conditions to guarantee the correctness of the rule because we
cannot rely on the conflict resolution process to ensure that rules fire
in the correct sequence. The advantage of this technique is that the
resulting EMES system is readily extensible. New rules can be added to
the rule base without harmful side effects on the existing rules. This
means we will be able to increase the amount of expert knowledge con­
tained in EMES more easily than in traditional expert systems.

THE RULE BASE

Several types of rules required for operation of the EMES have been
identified. The most important classes of rules are described in the
following subsections.

B-55

1.

2.

3.

Scheduling Rules

Scheduling rules are rules that ensure scheduling constraints are not
violated when a new event is scheduled into the mission timeline. For
example, if load-l is required to operate before load-2, the scheduling
rules would ensure this COllstralnt.

Scheduling rules fire in the context of Schedule-Event goals. When an
event is to be scheduled, the expert system maintains a set of time in­
tervals during which it is legal to schedule that event. Scheduling
rules are designed to update that set of time intervals in cases where
the event to be scheduled is constrained by an event already on the
timeline.

If more than one scheduling constraint applies to an event, scheduling
rules will be designed so the correct set of legal time intervals for
the scheduling of this event will be created independent of the order
in which the various scheduling rules are applied.

Resource Management Rules

Resource management rules ensure that resources are allocated in an op­
timal fashion. Several types of resource management rules are required.
One type recognizes resource management constraints that have been vio­
lated. For example, the power requirement of the loads scheduled for a
given time interval cannot exceed the power available during that time
interval. A second type of resource management rule recognizes situa­
tions in which, although the amount of an available resource has not
been exceeded, a different allocation of that resource would have been
more efficient. For example, it is desirable to minimize the load aver­
age of an onboard computer system.

Resource management rules operate on the set of legal time slots avail­
able for the scheduling of a load request in much the same way as sche­
duling rules. If more than one resource management constraint applies
to a load request, resource management rules will be designed so the
correct set of legal time intervals for the scheduling of that load re­
quest will be created independent of the order in which the various re­
source management rules are applied.

Energy Management Rules

Energy management rules ensure that energy management constraints are
not violated. Some energy management rules place constraints on the
scheduling of loads. For example, loads with a high peak power consump­
tion should not be scheduled during the eclipse period of an orbit.
These rules behave in a fashion similar to resource management rules in
that they update the set of legal time periods for which a given load
can be scheduled. Other energy management rules are optimization rules.
For example, if we are trying to optimize battery lifetime, we should
minimize battery depth of discharge. Optimization rules place priori­
ties on legal time periods for scheduling a load, and are used to choose
the best of all legal scheduling slots.

B-56

4.

5.

6.

Goal Satisfaction Rules

Goal satisfaction rules determine when an EMES goal has been successful.
For example, a goal of type Un-Schedule-Event is successful when the
reason for the unscheduling requirement (the justification) is no longer
true. Goal satisfaction rules declare the current goal to be success­
ful. This indicates that the system is free to pursue another goal in
the hierarchy lthat is, change its focus of attention).

User Interface Rules

Some EMES rules must interface directly with the user when the expert
system must make a decision that is out of the ordinary. For example,
if a given load cannot be scheduled in the interval the user originally
specified in the mission timeline, the expert system may be able to
schedule the load somewhere outside of the specified window. In this
case, the user must confirm this decision.

User interface rules are also required for recovery from error situa­
tions. For example, the user may want to ignore a load request that
requires more of a given resource than other spacecraft components can
ever produce.

User interface rules can communicate directly to the user from either
the IF: portion of a rule, or the THEN: portion of a rule. In either
case, the interface is through an external LISP function call. In in­
stances where the user is required to select among a given set of alter­
natives, the interface will be through the Select_Menu_Entry module.

Examples

This section provides examples of rules that will make up the energy
management system. In some cases, the rules have been simplified for
the purpose of illustration. Each sample rule is expressed in the HAPS
language formalism.

(PRODUCTION loads-consume-power
CONTEXT:

(OBJECT: Inspect-Timeline)
IF:

{event =name (load-request =type»
(power-consumption =type =watts)
(start-time =event =interval)

THEN:
(resource-required =name power =interval =watts»

This rule is one of the rules that allows EMES to reason about power as
a resource. It describes a load as a consumer of the power resource.
Another rule that allows the system to reason about power as a resource
is:

B-57

(PRODUCTION sclar-arrays-provide-pOlier
CONTEXT:

(OBJECT: Inspect-Timeline)
IF:

(solar-array-capability =time =watts)
(solar-array-degradation =percent)

THEN:
(resource-provided solar-arrays

power =time (*times =watts (*diff 1.0 =percent»»

This rule describes the solar arrays as a producer of the power resource. The
amount of power produced by the solar arrays depends on both the maximum solar
array capability and the percentage of solar array degradation.

(PRODUCTION conflicting-events
CONTEXT:

IF:
(OBJECT: Inspect-Timeline)

(conflict =eventl =event2)
(during =eventl =event2)
(start-time =eventl =timel)
(start-time =eventl =time2)

THEN:
(GOAL

OBJECT: Un-Schedule-Event
WHY: (conflict =eventl =event2)
TIMEl: =timel
TIME2: =time2»

This is a simple scheduling rule that recognizes that if two conflicting
events have been scheduled during the same time interval, one of them
must be unscheduled. Thus, the THEN: portion of this rule sets up a
new goal whose object is to Un-Schedule one of the events.

(PRODUCTION generic-resource-constraint
CONTEXT:

IF:

(OBJECT: Schedule-Event
EVENT: =name)

(event =name (load-request =type»
(consumer =type =resource =quantityl)
(legal-time-interval =name (=min =max» :1
(resource-available =resource (=timel =time2) =quantity2)
(*lessp =quantity2 =quantityl)
(*greaterp =timel =min)
(*lessp =time2 =max)

THEN:
(*remove :1)
(legal-time-interval =name (=min =timel»
(legal-time-interval =name (=time2 =max»)

This is a resource-management rule that fires in the context of a Sche­
dule-Event goal. This rule recognizes that a load cannot be scheduled
during a time interval if it requires more of some resource than is
available during that time interval. The set of time slots that are
legal for the scheduling of this load is updated so it does not include
the bad time interval.

B-58

VII.

A.

B.

SYSTEM SUPPORT MODULES

This section describes selected system support modules that are used as
utility functions by many of the individual modules throughout the EMES.

ADD DATA ITEMS

The Add Data Item function adds a new data item to the Mission Defini­
tion Data list. The Mission Definition Data list is a global-"tconc"
list-(LISP list structure that permits efficiently adding new elements
to the end of the list) that collects mission definition information as
it is obtained. The Add_Data_Item function requires two arguments:

Data Item to Add: The data item to be added to the mission model.
Translate Flag: A boolean flag that tells us whether or not to

automatically show new data items to the user.

The Data Item to Add is added to the Mission Definition Data only if it
is not already there (that is, if this is a new data item). If it is a
new data item and Translate Flag is true, the data item is also shoWn to
the user via the Translate Data Item routine. The Add Data Item func­
tion returns "t" if the data item was added to the Mission Definition
List and returns "nil" otherwise.

DIRECT USER OUTPUT

The Direct User Output module allows the user to choose which device to
send output to.- The user may choose to sent output to terminal, to a
named disk file, or to the line printer. The user makes his selection
through the use of a menu, implemented as a call to Select Menu Entry,
with Menu_Descriptor equal to - -

("Send output to "
(tty. "The Terminal.")
(file. "A Disk File.")
(printer. "The Line Printer. "»)

The Direct User Output module returns the port to which the output
should be sent.- If Select Menu Entry returns "tty," the Direct User
Output returns "nil." Other possible value returned by Select_Menu
Entry are "file" and "printer." In the case of "file," the user is
prompted for the name of the file, the file is opened for output, and
the resulting port is returned as the value of Direct_User_Output. In

B-59

c.

the case of "printer," the file "EMES printer:emes.tmp" is opened for
output, and the resulting port is returned as the value of Direct User
Output. The VMS logical name "EMES printer:" must be set up to point
to the print queue of the desired line printer (for example, "LPAO:").

INSTANTIATE DATA ITEM

The Instantiate Data Item module is used to transform a data item that
describes an event type or a load into a data item that represents a
constraint on an event. Several parameters are required:

Data Item to Instantiate: The data item to be instantiated.
Replace List: A list that tells us which terms in the data

need to be modified when the data item is instantiated.
member of the Replace_List is of the form

(generic-event. instantiated-event),

item
Each

and indicates that the generic load or event-type
"generic-event" is now to be instantiated using the name of the
new event "instantiated-event."

When a data item is instantiated, all instance-dependent data items
(those that can change between instances of an event) must be modified.
These data types are currently data items that specify the relationships
between events (for example, "after" or "during" data items).

Data items that declare a load or event type to the system must also be
instantiated so they create declarations of instantiated events. For
example, the data item

(load star-lab)

would be instantiated to

(event EVENT-37 (load-request star-lab))

Notice the creation of a new event name, EVENT-37, that is created
through a call to the New Event Name module. Whenever a new event name
is created, the Replace List will also become modified so it includes
the new event name. For example, suppose that, before the creation of
EVENT-37, the Replace_List was

«life-sciences-lab • EVENT-36)
(materials-processing • EVENT-35)
(solar-optical-telescope • EVENT-34))

B-60

After the creation of the new event, the Replace_List becomes

«start-lab. EVENT-37)
(li£e-sciences-lab • Ev~NT-36)
(materials-processing. EVENT-35)
(solar-optical-telescope • EVENT-34»

The Instantiate Data Item module returns a

(data-item • list)

pair, where IIdata-itemll is the instantiated value of the input data
item, and lllist il is the updated Replace_List.

D. NEW EVENT NAME

The New Event Name function creates a new event name. One parameter is
required: the name of the load or event-type being instantiated. Also,
the value of Event Instantiation List, which is global to this module,
is accessed and modified. The Event Instantiation List is of the form

« [namel] • [nl])
([name2) • [n2]) ...
([nameN) • [nN]»

Each lI[name)1I is a load name or event type, and each [n) is the number
of times this [name] has been instantiated in this mission. In this
way, the new event name generated can be derived from the generic event
name and still be unique to this mission.

For example, if the load being instantiated was IIstar-lab,1I and the
value of Event Instantiation List was

«life-sciences-lab • 1)
(materials-processing • 3)
(solar-optical-telescope • 1»

the new event name generated would be

star-lab:Event-l

and the value of Event Instantiation List would be changed to

«star-lab. 1)
(life-sciences-lab • 1)
(materials-processing. 3)
(solar-optical-telescope • 1»

The New Event Name function returns the name of the new event.

B-6l

E. REL TIME

The REL TIME module is a Fortran-coded module that calculates the time
of a mi;sion slot relative to the start of the mission. The following
parameters are required:

GYEAR NOONl Last two digits of the year corresponding to the
local noon of the initial mission orbit. The type is
INTEGER and the range is 0 to 99.

GMON NOONI Month of the year corresponding to the local noon of
the initial mission orbit. The type is INTEGER and the
range is 1 to 12.

GDAY NOONI Day of the month corresponding to the local noon of the
initial mission orbit. The type is INTEGER and the
range is 1 to 31.

GHOUR NOONI : Hour of the day corresponding to the local noon of the
initial mission orbit. The type is INTEGER and the

range is 0 to 23.

GMIN NOONl Minutes of the hour corresponding to the local noon of
the initial mission orbit. The type is REAL and the
range is 0.0 to 59.99.

GYEAR NOON2 : Last two digits of the year corresponding to the local
noon of the mission orbit whose time is to be calcu­

lated. The type in INTEGER and the range is 0 to 99.

GMON NOON2

GDAY NOON2

Month of the year corresponding to the local noon of
the mission orbit whose time is to be calculated. The
type is INTEGER and the range is 1 to 12.

Day of the month corresponding to the local noon of the
mission orbit whose time is to be calculated. The type
is INTEGER and the range is 1 to 31.

GHOUR NOON2 : Hour of the day corresponding to the local noon of the
mission orbit whose time is to be calculated. The

type is INTEGER and the range is 0 to 23.

GMIN NOON2 Minutes of the hour corresponding to the local noon of
the mission orbit whose time is to be calculated. The
type is REAL and the range is 0.0 to 59.99.

The REL TIME module calculates the number of minutes between the start
time of-the mission and the time slice to be determined. An integer
representing the number of minutes is returned.

B-62

F. SELECT MENU ENTRY

The Select_Menu_Entry Module is a utility that provides a general menu­
driven user interface. All software nodules that require menu selection
from the user will interface with the user through this module.

Select Menu Entry is a LISP function of one argument, referred to as
Menu Descriptor. Menu Descriptor is a (Menu Name. Menu Entries) pair,
where Menu Name is a string representing the-name of this menu, and
Menu_Entries is a list of descriptors for the individual menu choices.
Each menu entry is a (Menu Selection Name • Menu Selection Text) pair.
When a call to this module-is made, the Menu Name is print;d on the ter­
minal, followed by the possible menu selections. Each Menu Entry gets
a number, after which is printed the corresponding Henu Selection Text.
Then, the user is prompted for his selection, which must be an integer
corresponding to one of the Menu Entries. Select Menu Entry returns
the Menu_Selection_Name corresponding to the selected menu entry.

For example, suppose a call to Select_Menu_Entry was made, with Menu
Descriptor equal to

(IILibrary Development."
(Load Library. "Load Library Development.")
(Event_Library • "Event Library Development .")
(Exit. "Return to Top Level Menu."))

Then, the following is an example of menu-driven interaction with the
user:

Library Development.

1. Load Library Development.
2. Event Library Development.
3. Return to Top Level Menu.

Menu Selection: 5

? Bad menu selection.
? Menu selection out of range.

Library Development.

1. Load Library Development.
2. Event Library Development.
3. Return to Top Level Menu.

Menu Selection: 3

In this case, the Select_Menu_Entry function would return the value
"Exit. "

B-63

G. TRANSLATE DAIA ITEM

The Translate_Data_Item routine prints an English description of a data
item to be used by the expert system. Three arguments are required:

Data Item to Translate: The value of the data item to be translated.
Tran;late-Co~text: An atom representing the context in which this

data Ttem is being translated. This is used so the same data
item can translate several ways, depending on the context value.

User Output Port: The output port where the English translation
should be written.

The Translate Data Item routine merely does a case analysis on the type
of the Data Item to Translate (that is, the first term in the data item)
to find the-translation procedure. Thus, Translate Data Item must have
a translation procedure for each type of data item to be-translated. If
there is no translation procedure for a given data item, no English de­
scription of the data item will be printed. Any individual translation
procedure can refer to the Translation Context during the translation
process. An unrecognized Translation Context is ignored, and a default
context is assumed.

For example, suppose the Data Item to Translate was

(before ite~l item-2)

Then, if Translate_Context was "load," the English translation might be

"Ite~l must operate before item-2."

whereas the same data item, in Translate_Context "event," might be

"Ite~l must occur before item-2."

Translate Data Item returns It' if a translation was made, and 'nil'
otherwise:-

VIII. SYSTEM BLOCK DIAGRAMS

This chapter provides block diagram descriptions of the major software
modules in the Energy Management Expert System.

B-64

A-l.
A-2.
A-3.
A-4.
A-5.
A-6.
A-7.
A-B.
A-9.

A-10.
A-ll.
A-12.
A-l3.

4

The Top-Level Executive.
Library Development Module.
Load Library Development Module.
Event L1brary Development Module.
Mission Development Module.
Define Miss10n Module.
Orbit Definition Module.
Power Capability Module.
Define M1ssion Timeline Module.
Assemble Mission Definition Module.
Generate Mission Reports Module.
Mission Execution Module.
Menu Structure Overview.

3

6

Library
Development

VIII-1 The Top-Level Executive

B-65

4

VJJJ-2 Library Development Module

Figure V1JJ-3 Load Library Development Module

B-66

VIII-4 Event Library Development Module

5.1 52

Show MIssion
Definition

VIII-S Mission Development Module

B-67

5.11

Orbit
DeflOitlon

VIlI-6 Define Mission Module

VIlI-7 Orbit Definition Module

515

B-68

VIII-8 Power Capability Module

5.1.4

5.1.4.1

Request
Load

VIII-9 Define Mission Timeline Module

B-69

VIII-I0 Assemble Mission Definition Module

5.3.1

Show
Power
Capability

5.3

VIII-II Generate Mission Reports Module

B-70

5.3.5

6

VIII-12 Mission Execution Module

VIII-13 Menu Structure Overview

B-71

IX.

l'
I

FILE STRUCTURE OVERVIEW

The energy management expert system (EMES) will be integrated into the
environment of the VMS operat~ng system so the underlying file struc­
ture is transparent to the user. The following VMS logical names re­
present directories used by EMES:

1) EMES system: This directory contains files referenced by the inter­
nal EMES system. The user does not need to directly access these
files at any time during execution of EMES;

2) load lib: This is the load library directory that contains files
defining all of the various-loads known to the system;

3) event lib: This is the event library directory that contains files
defining all of the various event types known to the system;

4) mission dir: This is the directory that contains all of the mission
models defined so far. The mission dir: will be the directory from
which the EMES is being run (usually, the user's home directory);

5) EMES_temp: This is the directory that contains all temporary files
required during execution of the EMESy. The EMES temp: directory
will be the directory from which the EMES is being run (usually,
the user's home directory);

6) E~ES source: This directory contains the source code for the EMES,
incl~ding the EMES rule base;

7) EMES main: This is the main EMES directory that contains the execu­
table EMES image and the compiled rule base. It is likely that the
EMES main: directory will be the same as the EMES_system: directory,
although this is not required.

The intended directory structure is shown in Figure IX-I.

In addition, the following files are referenced by the EMES:

1) event library definition file: This is the file that contains the
definition of-an event type in the event library. One such file
exists for each defined event type. The name of each of these files
shall be of the form '[file name].def'. Each of the event library
definition files is a LISP text file, and shall be located-in the
event_Iib:-directory;

2) event library index file: This file contains an index of the event
types-currently defined in the system. This file is a LISP text
file, and is only for internal use by EMES. The name of the file
shall be eventlib.idx, and the file shall be located in the EMES
system: directory;

3) load library definition file: This is the file that contains the
definition of a load in-the load library. One such file exists for
each defined load. The name of each of these files shall be of the
form n[file name] .def. n Each load library definition file is a
LISP text file, and shall be located in the load lib:-directory;

B-72

Figure IX-l EMES Directory Structure

4) load library index file: This file contains an index of the loads
currently defined in the system. This file is a LISP text file,
and is only for internal use by EMES. The name of the file shall
be loadlib.idx, and the file shall be located in the EMES_system:
directory;

5) BatterY_Power_Profile_File: This file is generated by the Battery
Capability module. It contains the battery power profile for a given
mission. The Battery Power Profile File will be a machine-readable,
temporary, sequential-file.- The name of this file shall be
batdata.dat, and the file shall be located in the EMES_temp: di­
rectory;

6) Solar Power Profile File: This file is generated by the Solar
Array-Capability module. It contains the solar array power profile
for a-given mission. The Solar Power Profile File will be a
machine-readable, temporary, sequential file.- The name of this file
shall be soldata.dat, and the file shall be located in the EMES
temp: directory;

7) Day Night Cycles File: This file is generated by the Eclipse Sun
Profile m~dule. -It contains orbit definition information for-a
given mission. The Day Night Cycles File will be a machine­
readable, temporary, sequential file: The name of this file shall
be sundata.dat, and the file shall be located in the EMES temp:
directory; -

8) spacecraft-configuration-file: This file contains the information
necessary to initialize a mission definition so it contains the
initial configuration of the spacecraft. This is a LISP text file.
The name of this file shall be config.sys, and the file shall be
located in the EMES_system: directory;

B-73

9) Mission Definition File: This file contains the data that defines
a mission to the EMES. One such file exists for each mission defi­
n1t10n. The name of a Mission Definition File is obtained from the
user. Each file shall be located in the iission_dir: directory.

Finally, the following is a list of miscellaneous files that will be
provided as part of the EMES:

1) emes.exe. This is an executable LISP image that contains the com­
piled EMES code. This file will reside in the EMES main: directory;

2) emes.stb. This is the symbol table required by the emes.exe execu­
table LISP Unage. This file will reside in the EMES main: direc­
tory;

3.) emesrules.hps.
EMES rule base.
rectory;

This is the file containing the source code for the
This file will be located in the EMES source: di-

4) emesrules.o. This is the compiled version of the EMES rule base.
This file will be located in the EMES_main: directory;

5) hapszt.exe. This is an executable version of the HAPS compiler re­
quired to compile the EMES rule base. This file will be located in
the EMES_system: directory;

6) hapszt.stb. This is the symbol table required by the hapszt.exe
executable LISP image. This file will be located in the EMES_sys­
tem: directory;

7. emes.com. This is a VMS command file that sets up all of the logi­
cal names and other miscellaneous symbols required to declare the
EMES file structure to the VMS environment. This file should be
called from the user's login.com file so that the EMES environment
is automatically set up each time the user logs in.

B-74

x. LISP OVERVIEW

The LISP programming language is a high-level language frequently used
for Artificial Intelligence applications. LISP provides a uniform re­
presentation scheme for both programs and data. This allows LISP pro­
grams to be manipulated and modified by other LISP programs just as if
they were ordinary data.

The LISP language is designed for the manipulation of symbols. The
entities manipulated by a LISP program are called symbolic expressions.
(LISP programs are also symbolic expressions.) LISP provides two main
primitives for the creation of symbolic expressions: atoms and lists.
An atom is a sequence of characters, such as

symbol-l
has-property or
lis t-of-express ions

Atoms are used as the names of LISP variables, the names of LISP func­
tions, and as symbols representing arbitrary concepts. A list is a se­
quence of symbolic expressions, enclosed in parentheses. Thus, the
following are examples of LISP list structure:

(list of expressions)
(list-with-one-atom)
(more (complex (list «(structure»»»

B-75

The LISP language is a functional language. That is, every program in
LISP is implemented through the use of functions that are applied to
arguments. LISP provides a method for evaluating symbolic expressions.
When an atom is evaluated, it is considered a variable, and the value
of that variable is returned as the result of the evaluation. When a
list is evaluated, it is considered to be an application of a function.
The first item in the list is the name of the function to be applied,
and the remaining terms in the list are the arguments the function is
applied to. Each argument is evaluated recursively before the function
call is made.

For example, one function defined in LISP is "quote," which takes one
argument and does not evaluate it. The argument itself is returned.
Another LISP function is "car," which returns the first element in a
list. Thus, when LISP evaluates the symbolic expression

{car {quote (a b c»),

it must perform the following sequence of operations:

1) "quote" is a special function that returns its argument without
evaluating it. Thus, "{quote (a b c»" is an application of a
function that returns the value "(a b c);"

2) "car" returns the first element of a list that, in this case, is
the result of the evaluation of the "quote" function. Thus, the
"(car •••)" expression returns the value "a."

LISP provides methods for allowing the user to define new functions.
These functions can be used just as if they were functions defined by
the LISP system. LISP programs are developed by writing a sequence of
functions. The programs are executed by calling these functions in a
given sequence (one function may call another when it is evaluated).

The LISP programming language is the language of choice in the AI com­
munity for several reasons. First, knowledge is easily represented in
a symbolic fashion. LISP programs can reason about the world by in­
specting symbolic representations of facts that describe the world.
Programs can also inspect other programs or write new programs. This
mechanism allows a LISP program to learn as it executes. Finally, the
uniformity of the LISP formalism allows programs to be constructed
quickly, while at the same time encouraging the structured programming
style.

B-76

XI. HAP S OVERVIEW

HAPS (the hierarchical, augmentable production system) architecture is a
sophisticated tool developed by the Martin Marietta artificial intelli­
gence unit to allow the rapid construction of rule-based systems in
real-world environments--that is, in uncontrolled environments that re­
quire the use of tremendous amounts of both knowledge about the applica­
tion domain and expert knowledge about problem-solving in that domain.

One of the major advantages this system has over the traditional produc­
tion system implementations is the notion of goal directedness. HAPS
has a separate memory structure called goal memory, which contains a
hierarchy of goals the system must achieve. Because all rules must
apply in the context of some goal; HAPS rules are expressed in the form

IN some particular goal context,
IF a given set of conditions is true
THEN perform this set of actions.

The system is initialized with a top goal, and the overall system ob­
jective is to achieve this goal. On each cycle, a set of modifiable
goal selection strategies is used to select the current goal, which be­
comes the system's focus of attention for that cycle. When a rule is
applied toward achieving a goal, it can declare that goal to be a suc­
cess or a failure, or it can cause the goal to sprout subgoals.

Another characteristic of HAPS is the ability to construct hierarchi­
cally structured levels of working memory. Data items can be declared
local to a particular goal. This means they are available for the solu­
tion of that goal and its subgoals. When a goal is achieved, there is
no longer any need to keep the local data associated with that goal.
Thus, working memory is not cluttered with data items no longer needed.
This scheme also allows each goal to have its own world model. This
permits the simultaneous pursuit of mUltiple problem solutions that
might ordinarily interact with each other to produce inconsistencies.

Similarly, HAPS introduces the notion of production hierarchies. Under
this scheme, a rule set can be loaded into the system at runtime and de­
clared local to a particular goal. This rule set is available for the
pursuit of that goal and its subgoals. Furthermore, these rule sets can
be loaded in by another rule, allowing the production hierarchy to be
extremely dynamic. The major advantage of this scheme is that it allows
HAPS to function without a decrease in level of performance in very
large expert systems because only a small fraction of the entire rule
base needs to be processed at any given time.

HAPS is provided with a modifiable set of goal selection strategies
(used to select the current goal) and conflict resolution strategies
(used to choose between competing rules). Because these strategies are
modifiable, the user can tailor the needs of the system to individual
applications. These strategies can also be changed by rules in the rule
base, allowing the system to modify its behavior in response to changes
in its environment.

B-77

Finally, HAPS is equipped with a set of alternate memory structures that
can be used to store data items in the same way as standard working me­
mory. Examples of types of alternate memory structures are tables and
arrays. These structures make HAPS easier to interface with other ex­
isting software systems. Also, the operations performed on these struc­
tures (for example, pattern matching) are designed to allow HAPS to more
easily interface with real-time changing data.

In summary, the HAPS system is equipped with many features that make it
applicable to the development of large, sophisticated expert systems ~n
real-world domains.

XII. REFERENCES

[A11en 1983] James F. A11en and Johannes A. Koomen: "Planning Using a
Temporal World Model." Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, Karlsruhe, West Germany, 1983.

[Brown 1969] R.H. Brown: "Mission Planning As Affected by Sun-Orbit
Plane Relationships." AIM Paper No. 69-129, AIM 7th Aerospace
Sciences Meeting, New York, NY, January 1969.

[Sauers 1984] Ron Sauers and Jonathan Bein: HAPS Reference Manual,
Forthcoming Martin Marietta Technical Report, 1984.

B-78

APPENDIX C - ENERGY MANAGEMENT EXPERT SYSTEM TEST PLAN

The following pages contain the software test plan originally submitted
to Marshall Space Flight Center in December 1983. This software test
plan will be used in testing and validat~ng the Energy Management Expert
System (EMES). This appendix is included in this report to satisfy the
requirements of the contract statement of work.

I. INTRODUCTION

This appendix outlines the test plan that will be used to verify correct
operation of the energy management expert system (EMES). The EMES test­
ing will be conducted in several phases:

1) Concept design validation - The detailed design specification for
the EMES software will be reviewed to ensure that the system design
addresses the functional requirements specified in the EMES require­
ments document;

2) Engineering software validation - The engineering software used to
simulate spacecraft orbit, solar array capability, and battery power
capability will be tested and verified;

3) Mission development software validation - The mission development
software, which allows the user to develop mission models to be
examined by the expert system, will be tested and verified;

4) Rule base validation - The expert system rule base, which encapsu­
lates the knowledge used by the payload operations director in order
to perform load and energy management tasks, will be verified;

5) Demonstration - The EMES will be demonstrated at Marshall Space
Flight Center (MSFC).

The individual phases in the testing and validation process are de­
scribed in the following sections of this appendix.

C-l

A. CONCEPT DESIGN VALIDATION

During the concept design validation phase, the detailed design specifi­
cation for EMES will be examined by in-house software engineers and art­
ificial intelligence researchers to ensure that the design meets the
functional requirements as described in the EMES Requirements Document.
Namely:

1) The software design must give EMES the capability to provide the re­
quired electric power to the user loads under normal and degraded
modes of power system operation;

2) The design must allow EMES to optimize the use of available power;

3) The design must include a scheme for determining the sequence of
operation of all electrical equipment in conjunction with basic
mission operation activities and requirements;

4) The design must show how energy management heuristics can be used
by EMES to extend the life of such critical power system components
as the batteries;

5) EMES must be designed so it can to be extended to handle future con­
cerns such as real-time onboard power system automation;

6) EMES must be able to incorporate the operational constraints of
other subsystems as they are defined.

The EMES design is subject to final approval by MSFC.

B. ENGINEERING SOFTWARE VALIDATION

During the engineering software validation phase, the engineering soft­
ware modules will be tested to ensure that they provide reasonable simu­
lations of spacecraft environment and power capabilities. The specific
functions involved are:

1) Orbit data calculation - The EMES engineering software must ade­
quately simulate the orbital configuration of the spacecraft. This
will allow accurate calculation of the amount of time per orbit the
spacecraft is in the earth's shadow for the duration of the mission;

2) Solar array capability - The EMES engineering software must provide
an adequate simulation of the amount of power available from the
photovo1taic components of the power system for each time interval
during the daylight portions of the mission;

C-2

I • T'
3) Battery power capability - The EMES engineering software must

provide a battery model sufficient for the EMES to be able to
intelligently reason about energy management constraints and the
nighttime power capabLlity for the duration of the mLssion.

To verify the correctness of the engineering software, a testbed
containing a sample orbit configuration shall be developed, and the
engineering modules will be executed using the data in this testbed.
The results will be represented graphically and Lnspected by Martin
Marietta power systems experts.

C. MISSION DEVELOPMENT SOFTWARE VALIDATION

During the mission development software validation phase, the software
designed to build load and event libraries will be tested, along with
the software used to construct mission models. This software will be
tested along three dimensions:

1) The development software will be tested by Martin Marietta load
management experts to ensure that capabilities are provided to
accurately describe system loads, mission events, and operational
constraints required to specify real-world mission timelines;

2) The development software will be inspected by Martin Marietta
software engineers to ensure that the interaction between the
system and user is well defined, and that the system is both robust
and user-friendly in these interactions;

3) The resulting mission models produced by the development software
will be Lnspected by internal artificial intellLgence researchers
to ensure that the representation of the mission is both consistent
and readily amenable to the rule-based reasoning requirements of
the EMES system.

D. RULE BASE VALIDATION

During the rule base validation phase, the EMES rule base will be
thoroughly tested to ensure that it behaves in the manner specified in
the EMES requirements document. This requires the following process:

1) Design of a realistic mission model by a previously identified
human expert in the energy management domain;

2) Execution of EMES on the test mission model;

C-3

E.

3) Comparison of resulting modified mission time line with that produced
by the human expert;

4) Modification and augmentation of the rule base to incorporate in­
creasingly intelligent heuristics. Steps 2 through 4 will be iter­
ated until the performance exhibited by EMES is approved by the hu­
man expert;

5) Repetition of the above process with a new mission timeline;

6) Repetition of the above process with the spacecraft operating in in­
creasingly degraded modes. The human expert must confirm that EMES
allows the system to degrade gracefully with decreasing power cap­
ability.

Note that the process of iteratively refining the rule base to incorpor­
ate increasing amounts of expert knowledge is standard practice in the
development of rule-based expert systems.

DEMONSTRATION

The final phase of testing and validation is demonstration at MSFC. The
EMES will be ported to the MSFC computing facilities. Extensive testing
will be performed to ensure that the behavior of the system is correct
in the new computing environment.

The software demonstration will be conducted in two separate phases.
First, the EMES software designers will provide a brief demonstration
of the major capabilities of EMES using a predefined mission model.
EMES will be executed on this mission model twice--once with the space­
craft in a normal mode of operation, and then with the spacecraft in a
degraded mode of operation.

Then MSFC will be given the opportunity to execute EMES, creating a new
mission model from the load and event libraries built into the system,
or using new load or event definitions. The final software demonstra­
tion is subject to approval by MSFC.

C-4

End of Document

