WpsA 777- 5624

NASA Technical Memorandum 86011

NASA-TM-86011 19850004008

Numerical Studies of Unsteady
Transonic Flow over an Oscillating

Airfoil
W.J. Chyu and S.S. Davis

October 1984

ey q eamg ~ R
rmmasty :
[ R R I v “
[N N t 4 N
ab i V. au s

LAMCLTY 2770
LiZz/RY °

INASA
L

Space Administration



NASA Technical Memoradum 86011

Numerical Studies of Unsteady
Transonic Flow over an Oscillating
Airfoil

Chyu,

W. J.
S. S. Davis, Ames Research Center, Moffett Field, California

NASA

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035



3-1
NUMERICAL STUDIES OF UNSTEADY TRANSONIC FLOW OVER AN OSCILLATING AIRFOIL

W J Chyu and S S Davis
NASA Ames Research Center, Moffett Field, California 94035, U.S.A.

SUMMARY

A finite-difference solution to the Navier-Stokes equations combined with a time-varying grid-generation
technique was used to compute unsteady transonic flow over an oscillating airfoil. These computations were
compared with experimental data (obtained at Ames Research Center) which form part of the AGARD standard con-
figuration for aerocelastic analysis A variety of approximations to the full Navier-Stokes equations was used
to determine the effect of frequency, shock-wave motion, flow separation, and airfoi1l geometry on unsteady
pressures and overall air loads Good agreement 1s shown between experiment and theory with the l1imiting
factor being the lack of a reliable turbulence model for high-Reynolds-number, unsteady transonic flows.

SYMBOLS
a speed of sound XY physical Cartesian coordinates, normalized
by ¢
c chord length
o angle of attack
cp specific heat at constant pressure .
o amplitude of airfoil oscilliation
Cp pressure coefficient normalized by
omai Y ratio of specific heats
¢h o nth complex component of Cp per I3 coefficient of thermal conductivity,
P radian of o normalized by «*
e total energy per unmit volume normalized £sn computational coordinates in streamwise
by p.a2 and normal spatial directions
J Jacobian of transformation between physi- o density normalized by ¢,
cal and computational coordinates, )
J = (Exny - Eynx) yA ;lrst and second viscosity normalized by
k reduced frequency, wc/2U_
T time variable, 1 = ta_/c
M Mach number
T,.T,.,+T,, Skin friction
p pressure, normalized by p_a2 XYy Ry
Subscripts
Pr Prandt] number, ucp/x*
@ free-stream value
Re Reynolds number, p,a.c/u,
m mean value
u,v Cartesian velocities, normalized by a,
Superscripts
U, free-stream velocity
* reference value
INTRODUCTION

The proper computation of unsteady, transonic viscous flows around an oscillating airfo1l remains an
outstanding and i1mportant problem 1n fluid dynamics An efficient and complete analytical capability to
predict the flow would find 1mmediate applications 1n the treatment of aerocelastic (flutter and buffet) and
control-response analyses for both fixed- and rotary-wing aircraft. The theoretical analysis of transonic
flows 1s complicated by the presence of mixed subsonic and supersonic regions within the flow field For the
unsteady flow field, such as that surrounding an oscillating airfoil, additional considerations are needed
to treat time-dependent aerodynamic loads caused by moving shock waves and boundary-layer interactions At
Ames Research Center, studies related to these problems have been conducted 1n recent years, both theoretically
and experimentally, to predict and clarify many aspects of these flows.

The physics of unsteady, transonic flow can be simulated at various levels of 1nviscid and viscous
approximations  For those cases 1n which viscous effects dominate, computations based on the Navier-Stokes
equations are needed. Beam and Warming (Ref 1) report on an efficient i1mplicit numerical algorithm for com-
pressible viscous flow in which an implicit factorization scheme 1s used Steger (Ref 2) applied this tech-
nigue to the unsteady, compressible Navier-Stokes equations, using the thin-layer approximation In Ref 3 he
numerically demonstrated the dynamic phenomena of transonic buffet and aileron buzz  Recently, Chyu et al
(Refs 4-7) applied a related numerical method for analyzing unsteady, transonic flows over an oscillating
airfoil, the method combined the numerical technique reported by Steger with a new and efficient time-varying,
grid-generation technique suitable for the treatment of moving airfoils. The method was recently applied by
Horiuty et al (Ref. 8) to the analysis of transonic flows over an airfoi1l with osciilating flap

The purpose of this paper 1s to summarize the results of a 6-year effort 1n the Ames Aerodynamics Research
Branch to measure and calculate unsteady transonic flows By using certain data sets identified by AGARD as a
standard configuration (Ref 9}, a series of increasingly complicated unsteady transonic flow cases will be
analyzed The effects of frequency, flow separation, and airfoil geometry will be studied, and 1t will be
shown that increasingly complex flows demand 1ncreasingly sophisticated equations to correctly model the flow
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pattern. The computed results presented here also show that the differences between the full and thin-layer
Navier-Stokes equations are not significant for this class of flows.

NUMERICAL PROCEDURE

A numerical procedure 1s briefly described for computing the unsteady flow field induced by an oscillating
airfo1l 1n transonic flow The development of the equations, finite-difference algorithm, boundary treatment,
and grid system follows closely that developed in Refs. 1, 2, and 6.

Governing Equations

An 1mplicit finite-difference scheme was used to solve the full time-dependent compressible Navier-Stokes
equations 1n conservation-law form. The numerical algorithm adopted for this study 1s the Beam-Warming
spatially factored scheme. The application of the algorithm to the Navier-Stokes equations subject to the
general transformation, & = £(x,y,t}, n = n{x,y,t), r =t (F1g 1) 1s present 1n the Appendix

For turbulent flows, the viscosity coefficient 1s computed using the two-layer, Cebeci-type eddy-viscosity
model reported by Baldwin and Lomax (Ref 10). The main features of the Baldwin-Lomax model are the determina-
tion of the eddy mixing-length scale based on the local vorticity In the present work, the instantaneous
vorticity 1s calculated after each time-step of computation

Boundary Conditions

On the outer boundary of the grids, free-stream conditions were applied On the airfo1l surface, the

Cartesian velocities are
(“) R ] | M
v SNy Ex V- g

where the contravariant velocity components U and V are defined as

U=5t+EXU+EyV, V=nt+nxu+nyv

and

€p = X &y - Yeby o Np T XN T Yy

with x. and y. determined from local airfoi1l surface velocities For viscous flow, the no-slip condition
requires that U =V =0 at the airfo1l surface

For 1nviscid computations, a tangency condition 1s 1mposed on the airfoil surface by setting V to zero,
and U 1s determined at the body surface by a linear extrapolation from the flow field determined at the
previous step. At the trailing edge of the airfo1l, the Cartesian velocities u and v are set equal to x.
and yr, respectively, to satisfy the Kutta condition., The surface pressure 1s determined from the normal
momentum equation 1n both the 1inviscid and viscous computations

Grid Generation

Stationary grids were first constructed for the airfoil at its extreme angle-of-attack positions Grids
at 1ntermediate angles of attack were obtained from those at the extreme positions by spatial interpolation
The extreme-position grids were generated by numerical solutions of elliptic equations (Refs 4 and 11) This
technique permits grid points to be specified along the entire boundary of the computational plane In F1g 1,
the boundary 1s indicated by a curve a-b-c-d-e-f-g-h-1-a 1n a physical plane that encompasses the airfoil,
wake, and far-field Application of the method then generates a smoothly spaced, non-overlapping grid at the
interior points,

In the present work, boundary points were specified at fixed locations along the airfoil, with grid spac-
ing clustered near the leading and trailing edges of the airfoi1l and near the shock-wave position. The grid
points on the wake (a line, ab or de, 1n F1g 1) were chosen to lie on a third-degree polynomial arc tangent to
the bisector of airfo1l at 1ts trailing edge and returning to the airfoirl centerline at the downstream outer
boundary  This procedure aligns the grid points 1n the wake with the approximate 1nitial and final directions
of the wake flow (Fi1g 2), which was found to improve the efficiency of the flow-field computations. Finally,
grid points at the free-stream boundary are chosen to l1e approximately 8 chord lengths above and below the
airfoil and 8 chords upstream and downstream of the airfo1l leading edge. The outer boundary points remain
fixed 1n space for all angles of attack This general approach of fixing the outer boundary points permits
treating an airfo1l oscillating in the proximity of a wall, a second airfo1l, or a flap oscillating behind a
fixed airfo1l, as was done 1n Ref 8.

Once the grid 1s specified on 1ts boundaries, an elliptic solver 1s used to generate a smoothly spaced
grid at the interior points This grid 1s then re-spaced, or clustered, along & = const lines (lines moving
away from the airfoil), using the weighted coordinate-stretching technique advocated 1n Ref. 4

Allowing the airfo1l surface to vary within a stationary outer boundary requires that a new grid be
generated at each time-step of the computation To reduce the computational effort needed to repeatedly
generate the grid, a novel grid 1nterpolation scheme was devised (Ref. 4). Grids were generated at the
extreme angle-of-attack positions of the prescribed airfoi1l motion, using the elliptic equation and the weighted
coordinate-stretching techniques described previously, these grids were then stored. Grids needed at 1inter-
mediate airfo1l patterns were found from interpolation along the circular arcs that were assumed to represent
the locus of the grid-point movement The radius of curvature for each point of the grid was taken as the
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distance between the grid point and the fixed pivot point about which the airfo1l was oscillating. With the
radius of curvature and the extreme positions known, the center of curvature was then computed for each grid
point. Grid points for i1ntermediate values of the angle of attack were found from a linear interpolation of
arc length along the curves defined in this manner. This method of grid i1nterpolation eliminated entanglement
of coordinate lines during the airfo1l motion, even within the dense grids 1n the boundary-layer region. An
example of the grid patterns generated by this interpolation method 1s shown 1n Fig. 2. Grids simlar to those
used 1n computations obtained at the extreme angle-of-attack positions are shown in Figs. 2(a) and 2(b), and

an 1nterpolated grid 1s shown 1n Fig 2(c).

Complex Representation of Surface-Pressure Variation

The time variation of the surface-pressure distributions 1s expressed in terms of 1ts Fourier components.
The harmonically varying angle of attack can be expressed as
a(t) = o + Re(d e‘”t)

where Re represents the real part of the complex argument. The Fourier series representation of the surface-
pressure coefficient 1s

0

c ,t) = n ~ Tnuet
p(x/c t) Cpm(x/c) + :E: Re[Cp,a(x/c)a e ]
n=i
where Cpm(x/c) 1s the mean value of the local surface-pressure coefficient and [Cg’&(x/c)] 1s the nth com-

plex component of the local unsteady pressure coefficient, per radian The real and maginary value of G,z
can be expressed as

Re[C] s(x/2)] = (C3/a)cos 4,

and

Im[Cg’&(x/c)] (63/6)51n ¢n

where CB 1s the nth harmonic unsteady pressure (real) and ¢, 1s the nth harmonic phase shift between
the angle of attack and the pressure response.

RESULTS
Experimental Measurements

A series of experimental measurements has been carried out i1n the 11- by 11-Foot Transonic Wind Tunnel at
Ames Research Center. In these experiments, a NACA 64A010 airfoil and an NLR 7301 airfoi1l underwent small-
amplitude harmonic oscillations n pitch about various pivot axes located along the airfoi1l chord (Refs. 9
and 12-17) The test Mach numbers ranged from 0.5 to 0.8, chord Reynolds numbers from 2 5 x 10° to 12 5 x 108
were obtained. Unsteady pressure distributions were measured on the airfo1l during the course of the oscilla-
tions, and unsteady aerodynamic forces and moments were obtained subsequently from integration of the pressure
distributions., The cases of interest for the present study of the NACA 64A010 airfoil had the airfoil oscil-
lating about a pivot at x/c = 0 25, with an amplitude of oscillation, a = 1°, and a mean value of the pitch
angle oy = 0° and 4°  (With the pitching axes fixed, the pitch angle 1s equivalent to the instantaneous
angle of attack of the airfoil ) The range of reduced frequency of the oscillation, k, was taken from 0.025
Eo 0 20,)and the Mach and Reynolds numbers were held fixed at M, = 08 and Re = 12 x 10%, respectively
Table 1).

For the NLR 7301 supercritical airfoil, the airfo1l was caused to oscillate 1n pitch about a pivot at
x/¢c = 0 4, with an amplitude of oscillation a = 0.5°, and a mean value of the pitch angle, on = 0 37°, The
range of reduced frequency k was taken from 0.05 to 0.2, and the Mach and Reynolds numbers were held fixed
at M, =075 and Re = 11.4 x 10%, respectively (Table 1).

Computations and Code Performance

Both 1nviscid and viscous unsteady computations were carried out for the flow conditions previously out-
lined Viscous computations were based on both the thin-layer and the full Navier-Stokes equations The
computational grids have a common outer boundary located 8 chord lengths above and below the airfoil leading
edge with the airfoil at o = 0. The domain of the grid in the upstream and downstream directions was set to
8 chord lengths from the airfoi1l leading edge.

A grid having 139 x 49 points 1n the ¢ and n directions, respectively, was used throughout the computa-
tion on the Cray-XMP computer at Ames. The airfoil configurations were described with 117 grid points The
computations were started from a steady-flow solution obtained at neutral position of airfoil oscillation,
computations were continued through three cycles of oscillation to reach a periodic solution.

Including the viscous terms requires additional computational effort per grid point, and the fine mesh,
needed to resolve the boundary-layer region, necessitated a smaller time-step than the one used in the 1nviscid
computations. Decreasing the frequency of the airfoil oscillations also requires an increased number of
1terations per cycle to maintain the time-accuracy requirement of the Courant number For airfoil oscillations
at a reduced frequency, k =0.2, the computation required 2620 1terations per cycle, whereas at k = 0 05
and 0 025, the computation required 4320 1terations per cycle. With vectorized codes on the Cray-XMP Computer,
the required computational time per 1teration for 139 x 49 grid points was 0.3 sec for the full Navier-Stokes
code, 0.22 sec for the thin-layer Navier-Stokes code, and 0.17 sec for the 1inviscid computations.
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instantaneous Surface-Pressure and Shock-Wave Excursion
Case  NACA 64A010 at Tow 1ncidence, o = 0° + 1° cos wt, k = 0.025 and 0.20 (Table 1, F1g. 3).

Computed and experimental surface-pressure distributions, obtained as the airfo1l angle of attack varied
harmonically from 1° to -1° at k = 0 2, are shown 1n F1g. 3. Computations are shown for the thin-layer form
of the Navier-Stokes equations. Results are presented for only one-half cycle of oscillation, since the
motion 1s symmetrical. At the extreme angle of attack, o = 1°, a supersonic region 1s evident on the upper
surface that terminates 1n a shock at x/c = 0 55, As the angle of attack decreases, the flow speed gradually
decreases on the upper surface, with corresponding increases in pressure At the same time, the shock strength
decreases, as evidenced by the decrease of the pressure rise at the shock By contrast, the flow speed on the
lower surface of the airfo1l 1ncreases, resulting in reduced surface pressures and a reversed flow pattern
The comparisons of the computational results (with free-stream boundary condition) and the experimental mea-
surements show that the computed pressures ahead of the upper-surface shock are underpredicted. The studies
reported 1n Refs 18 and 19 and the computation with the experimentally measured wali-pressure boundary-
condition of Refs 8 and 20 1ndicate that this underprediction of the pressure 1s 1n part a result of the wind-
tunnel-wall 1nterference The pressure distributions downstream of the shock where the flow 15 not separated
are well predicted

Computed and experimentally measured time-variations of the local pressure coefficient on the upper sur-
face of the airfo1l for a complete cycle of oscillation at k = 0 025 and O 20 are shown 1n Fig. 4. In this
case, results from all three forms of the equation (i1nviscid, thin-layer, and full Navier-Stokes) are all 1n
good agreement The surface pressures display sinusoidal variations ahead of the shock wave (points A, B,
and C), and nonlinear variation n the shock region (point D). The pressures also show hysteretic variations
at the higher frequency, k = 0 2. Significant hysteresis 1s evident at point D 1n the shock region where
the pressure undergoes a jump (1ndicating the passing-over of the shock wave) during decreasing angle of
attack and smooth-pressure recovery during increasing angle of attack The computational results shown in
F1g 4 using the i1nviscid and viscous approximations are all 1in good agreement with experimental data that
indicate that viscous effects are small 1n these flow regimes

The loc1 of the computed and measured shock-wave excursions are depicted i1n Fig 5, which shows that the
shock moves linearly with the airfoil motion and travels over approximately 7% of the chord with the midchord
as neutral posttion {approximately) The trend of the excursions 1s well predicted by either the inviscid- or
viscous-flow computations. The results of the viscous computation, however, agree better with the experimental
data

Case  NACA 64A010 at high incidence, a = 4° + 1° cos wt, k = 0 20 (Table 1, F1g 6).

This case 15 different from the previous case of low-incidence flow mainly 1n respect to the mean angle
of attack, 1t 1s concerned with a flow strongly governed by shock-wave/boundary-layer interactions and a moving
shock wave with greater strength variation (cf Refs. 16 and 21 for detaiis). The test also showed that for
k = 0 2, shock-1nduced separated flow 1s present for most angles of attack

Computed surface-pressure distributions based on both of the viscous (full and thin-layer) assumptions are
shown 1n F1g 6 as the airfo1l angle of attack 1s varied from 5° to 3° and back to 5° For 1nviscid computa-
tions, only typical 1nstantaneous pressures at a = 5° are shown in Fig 6(a), for the pressure distributions
retain about the same features during the angle-of-attack variation and are not 1n good agreement with the
experimental data Also shown 1n F1g 6 are the experimentally measured pressure distributions. Within this
angle-of-attack range, a supersonic region 1s evident only on the upper airfoil surface, whereas, on the lower
surface the flow remains subsonic. Only a typical Tower-surface-pressure distribution 1s shown 1n Fig 6(a),
for 1t does not vary significantly with airfoi1l motion

An examination of the experimental data 1n Fig 6, starting with the airfoi1l leading edge on the upper
surface, shows that the pressure decreases rapidly within a short distance from the leading edge
(x/c =0 ~ 0 05) to a fairly level plateau The computed results of this plateau pressure level by both the
1nviscid and viscous models are all in fairly good agreement with one another, 1n spite of the large discrep-
ancy among the theories 1n the region downstream of the shock wave This indicates that downstream effects,
including shock-wave discontinuities and shock-wave/boundary-layer interactions have T1ttle effect on the
plateau pressure {or supersonic) region of the airfoil In a manner symlar to that of the low-1ncidence case,
the computed pressures ahead of the shock are underpredicted 1n part because of the wind-tunnet-wall 1inter-
ference Recent experiments show that the interference was more significant as the incidence of the flow to
the airfo1l 1s 1ncreased (Refs 18 and 19).

The comparisons of the inviscid computations and the experimental measurements show that the shock
strength 15 overestimated and that the computed shock wave 1s positioned too far downstream when the inviscid
theory 1s used The computed results with the full and the thin-layer Navier-Stokes equations showed no sig-
nificant difference 1n the magnitude of instantaneous surface pressures Although the location of the shock
wave differs by about 0%-3% of the chord, neither computation gave consistently closer agreement with experi-
mentally measured surface pressures over the entire range of the airfoil oscillation.

Also shown in F1g 6 15 the measured upper-surface-pressure distribution, 1t shows an aft-shock pressure
recovery A slow pressure recovery 1s typified by a pressure distribution with a large bump behind the shock
wave, such as those shown 1n Fig 6(a) for « = 5°, a fast recovery 1s typified by a smooth pressure increase,
such as those for a =3 13° (F1g, 6(h)). The aft-shock pressure bump 1s indicative of probable flow separa-
tion 1nduced by the shock-wave/boundary-layer interactions, whereas the fast pressure recovery indicates
probable attached flow on the airfoi1l surface behind the shock wave. Steady flow interferograms obtained by
Johnson and Bachalo (Ref 21) on the same airfoil under the same flow condition show extensive shock-induced
separation for o = 5° and attached flow for o = 3° (unpublished data) in the aft shock region. The measured
pressure variations aft of the shock wave 1in Fig 6 show that a slow pressure recovery {indicative of separated
flow) 1s maintained for most of the angle-of-attack variation, except 1in the upward motion of the airfo1l when
the angle of attack 1s varied from 3° to 3 13° Fairly good agreement between the computed and the measured
pressure recovery was obtained with the Navier-Stokes equations Although the transition angle of attack
between the slow and fast pressure recoveries (indicative of separated and attached flow, respectively) 1s not
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accurately predicted, some of the important effects of the shock-induced separation and the shock-wave/
boundary-layer interactions are clearly demonstrated by the aft-shock pressure distribution 1n Fig 6.
Typically, Fig. 6(b) depicts a slow aft-shock pressure recovery at o = 4 87°. The corresponding computed
1nstaataneous velocity vectors depicted 1n Fig. 7 show shock-induced separation at the same angle of
attack.

Figure 8 shows instantaneous pressure distributions on the airfoi1l upper surface when the angle of attack
1s increasing or decreasing and passing through the neutral position o = 4°. The results exhibit a substan-
t1al phase shift of the pressure relative to the airfoil motion, the shock positions differ by about 10% of the
chord, and the flow aft of the shock 1s separated during decreasing angle-of-attack motion and 1s attached
during increasing angle-of-attack motion.

The loc1 of the computed and measured shock-wave excursions are depicted 1n Fig. 9, which shows that the
shock travels over approximately 13% of the chord length, with the neutral position at about x/c = 0.45,
In this figure, some of the important features of unsteady transenic flow at high incidence are depicted. For
a flow without separation, such as the case of low flow-incidence (F1g. 5), and in accordance with inviscid
theories, the shock wave moves downstream with increasing angle of attack. In this case, however, the shock
wave 1n1ti1ally moves downstream with increasing angle of attack (from 3° to 5°), but starts to move upstream
at 4.8° owing to the occurrence of flow separation, as was indicated 1n Fig. 6(1) and 6(a) by the appearance
of sTow aft-shock pressure recovery. It appears that this important "retrograde" shock motion cannot be pre-
dicted with inviscid transonic theories.

The results of the "thin-layer" computations shown in Ref. 6 differ somewhat from those shown 1n Fig, 6.
In the present computation, grid spacing was densely clustered near the airfoil surface (about two grid points
in the sublayer) to more accurately compute the eddy-viscosity terms in the turbulence model.

Case NLR 7301 at low incidence, « = 0 37° + 0.5° cos wt, k = 0.05 and 0.20 (Table 1, Fig. 10).

Figure 10 shows data for a flow that differs from the previously considered flow 1in terms of airfoil
geometry, pitch-axis location, and amplitude of oscillation. The NLR 7301 airfoil was designed for "shock-
free" flow and 15 an example of a relatively thick (t/c = 0.165) modern supercritical airfo1l (Refs. 22
and 23) Experimental data show that the flow was shock-free at M, = 0.75 as the airfoi1l was held fixed at
a = 0.37°, At off-design condition, as in this case, experimental data in Fig. 10 show that a weak shock was
evident on the airfoi1l upper surface.

Both the computed and the experimentally measured pressures show small variations, relative to the cases
of the NACA 64A010 airfoil previously studied, because of the oscillatory motion. Thus, only the instantaneous
pressures at the extremes of angle of attack are shown in Fig. 10. The pressure variations in Fig. 10 show a
pressure rise to a plateau level 1mmediately after the leading edge owing to the blunt and thick leading sec-
tion of the supercritical airfoil. Unlike the conventional airfoil, wavy pressure distributions are shown 1n
Fig 10 wn the plateau region (x/c = 0.1 ~ 0 6). The time-variation of the computed and measured local pres-
sures in the plateau region also show small unsteady pressure fluctuations (or higher harmonic component) 1n
addition to the overall pressure variation, indicating that the supercritical airfoil 1s very sensitive to the
unsteady effects from the flow field. Although these small pressure variations 1n the plateau region are not
computationally well predicted, the computational results 1n F1g. 10 show the general feature of the pressure
typical to the supercritical airfoil. Comparison of pressures at the extremes of angle of attack between the
two frequencies (k = 0.5 and 0 20) 1ndicates that the pressures are less sensitive to the airfo1l motion at
higher frequency. At lower frequency, k = 0.05, only those pressures 1n the plateau region are affected by the
airfoil motion.

Harmonic Analysis of Unsteady Pressures

Both computed and measured unsteady pressures have been expressed i1n Fourier components up to and includ-
1ng the third harmonic  The higher harmonic components are not presented in the following figures since the
modal content decreases rapidiy with increasing mode number Distinctive features of the pressures depicted 1n
Figs. 11-14 are discussed 1n the following paragraphs

Case. NACA 64A010 at low incidence, o = 0° + 1° cos wt, k = 0.025 and 0.20 (Table 1, Fig. 11)

I1Tustrated here are the basic characteristics of the unsteady surface pressure for the conventional
airfoil as 1t 1s subjected to a flow with small flow-incidence or a weak shock-wave/boundary-layer interaction
or both. The mean-pressure features a distribution similar to those of steady flow, and 1s reasonably well
predicted except 1n the shock region, where the viscous computations show closer agreement with the experimen-
tal data.

Examination of the higher frequency (k = 0.2), 1n-phase (Re) and out-of-phase (Im) components 1ndicates
that the pressures forward of the shock wave (x/c < 0 5) contain both components i1n about equal magnitude.
Pressures behind the shock wave, however, contain mostly out-of-phase components. In the low-frequency case
(k = 0.025), pressures in front of the shock wave contain more 1n-phase than out-of-phase contributions,
whereas behind the shock wave both components are small and of about the same magnitude. The out-of-phase
components for both frequencies, k = 0.025 and 0.2, also show that the component 1n front of the shock 1s 180°
out-of-phase with those behind the shock, and a rapid phase shift abruptly takes place at the shock. At both
frequencies, the real and imaginary components shown 1n Fig. 11 and the measured data for other frequencies
(Ref. 9) exhibit similar distributions over the airfoil surface and indicate that the variation of the compo-
nentsi1s a$prox1mate1y 11near with the frequency in the flow for which shock-wave/boundary-layer 1interactions
are minimal.

Case. NACA 64A010 at high incidence, « = 4° + 1° cos wt, k = 0.05 and 0.20 (Table 1, Fig. 12).

The_high-1incidence flow (am = 4°) considered here differs from the low-incidence case (ay = 0°) 1n the
mean angle of attack and 1s characterized by dominant shock-wave/boundary-layer interactions. The mean
unsteady pressure shown in Fig. 12 exhibits a rapid decrease from the airfo1l leading edge to a plateau pres-
sure level ahead of the shock. It also shows an abrupt pressure jump at the shock region followed by a slow
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pressure recovery {1indicative of separated flow). Only the mean values of the pressure computed with 1nviscid
assumption for k = 0.2 are depicted in F1g 12. It shows that the predicted shock position 1s too far
downstream.

Examination of the harmonic components of the pressure for the high-frequency case, k = 0.2 1n Fi1g. 12,
indicates that the upper-surface pressure 1n front of the shock wave contains both in-phase (real part) and
out-of-phase (imaginary part) components of about equal magnitude, however, the pressure immediately behind
the shock wave (x/c = 0.6) contains mostly 1n-phase components Toward the airfoil trailing edge
(x/c = 0.6 - 0.9), the pressure 1ncreases gradually in 1ts in-phase and rapidly 1n 1ts out-of-phase components
In the trailing-edge region, the pressures contain mostly out-of-phase components. The variation to these
harmonic components behind the shock distinguishes the present case from the previous case (low-incidence flow)
shere the flow behind the shock wave 1s attached and the pressure contains only the out-of-phase components

The effects of frequency can be evaluated by comparing the harmonic components of the pressure for both
k =005and 02 1n Fig. 12. This comparison indicates that the surface pressure at the lower frequency
k = 0 05 contains mostly i1n-phase components. In the shock region, the in-phase components at the lower
frequency are 180° out of phase with those at the higher frequency Toward the airfoi1l trailing edge, the
-n-phase components rapidly decrease at the lower frequency, whereas they exhibit the opposite trend (gradu-
aliy decrease) at the higher frequency. These nonlinear variations of the harmonic components with frequency
differ distinctly from those previously considered 1n Tow-1incidence flow, particularly in the shock wave and 1n
the aft-shock separated regions of airfoil surface They also show strong nonlinear variations with frequency,
thus reflecting the complex effects from shock-wave/boundary-layer interactions and shock-induced separation

noit

Pressure variations on the lower airfoil surface in Fig. 12 do not exhibit variations as rapid as those
on the upper surface. The harmonic components of the pressure show a nearly linear variation from the leading
t. the trailing edges of the airfoil

Case NLR 7301 at low 1ncidence, a = 0 37° + 0.5° cos wt, kK = 0 05 and 0.20 (Table 1, Figs. 13-14).

The case considered here differs from the previous studies 1n the airfoil geometry Figure 13 shows a
plateau in the mean pressure that 1s reached rapidly from the blunt leading edge of the thick airfoil and that
15 sustained up to the region of rapid compression {but not a shock) on the airfo1l (x/c = 0 6). The mean
unsteady pressure 1n the aft-region of compression exhibits a rapid pressure recovery that indicates an unsepa-
rated flow

The harmonic components of pressure show that the pressure 1n the fore section of the airfoil contains
both 1n-phase and out-of-phase components of about the same magnitude (as in the NACA 64A010 1n high incidence
flow, and at k = 0 2 only, Fig 12) The magnitude of these components 1s significantly increased at about
60% of the chord, a result of the occurrence of rapid compression.

Comparison of the harmonic components of the pressure for both frequencies, k = 0 2 and 0 05, indicates
that the out-of-phase components do not diminish at a lower frequency, but remain at about the same magnitude
in both frequencies This 1s contrary to the case of the conventional airfoil (Figs 11 and 12). The 1n-phase
components, however, show an increase 1n magnitude at a lower frequency that 1s comparable to that seen 1n the
case of the conventional airfoil.

The computed magnitudes of the harmonic components (Fi1g 13) exhibit only the qualitative trends of the
experimentally determined pressure variations However, 1t should be noted that the computation assumed
uniform free-stream boundary conditions and the wind-tunnel-wall effects were not taken 1nto account Measured
pressure signatures, on the other hand, can be affected by the wind-tunnel-wall interference (Ref 8) and by a
small change 1n free-stream turbulence level 1n different wind tunnels (Refs 16 and 22) Experiments show
that the pressure 1s also sensitive to geometry even at such small protuberances as a pressure transducer 1in
the shock region The mathematically smoothed, measured airfoil profile used 1n the present computation could
Tead to the discrepancies.

The phases of the complex pressure components for both frequencies, k = 0 2 and 0 05, are shown 1n
Fig. 14, good agreement with experimental data 1s shown The figure also shows that phase varied gradually n
the leading section of the airfoil and jumped abruptly at x/c = 0 6.

Surface pressures on the airfo1l lower surface were not experimentally measured However, the computa-
tional results shown in F1g. 13 show that the harmonic components are minimal on the rear half (concaved por-
tion) of the airfoil lower surface for the flow conditions investigated.

The overall pressure distributions displayed in Figs. 13-14 show that the unsteady air loads on the
supercritical airfo1l are distinctly different from those on the conventional airfoil

CONCLUSION

The ab1lity of a Navier-Stokes code to compute unsteady transonic flow over an airfoil 1n oscillatory
motion has been 1nvestigated 1n conjunction with a series of tests conducted in the 11- by 11-Foot Transonic
Wind Tunnel at Ames Research Center. Two airfoils were considered, a conventional (NACA 64A010) and a super-
critical (NLR 7301) section. The study of the conventional ajrfo1l disclosed that the unsteady flow field
and the related aerodynamic load, both 1n cases of low and moderately high flow incidence, were fairly well
predicted The computed results successfully and distinctly demonstrated the nonlinear aerodynamics character-
1zed by the shock-wave/boundary-layer interactions and frequency of the airfo1l motion The 1nviscid Euler
code was shown to be adequate only 1n the case of low-incidence flow, or for the flow tn which viscous effects
are minimal  For the supercritical airfo1l, only the computed mean unsteady pressures and phase of the
Fourier components are 1n good agreement with the experimental data The harmonic magnitudes of the pressure,
which are experimentally, as well as theoretically, shown to be extremely sensitive 1n the transonic regime
for supercritical airfoils, are predicted 1n a qualitative manner only The difficulties 1n correlating com-
puted results with experimental data i1n this case could be attributed to the sensitive characteristics of the
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supercritical airfoil. In summary, the Navier-Stokes code demonstrated fairly well 1ts capability of modeling
the nonlinear, unsteady aerodynamics for a supercritical airfoil.

The Navier-Stokes computations with and without the thin-layer approximation showed no noticeable differ-
ence 1n the magnitude of instantaneous airfoil surface pressures, except i1n the location of the shock wave,
which differs by 0%-3% of the chord. Neither computation gave consistently better or closer agreement with
experimentally measured surface pressure. A substantial difference 1n shock position was shown in Ref. 6,
where nsufficient clustering of the grid was made in the sublayer of the turbulent boundary layer 1n the
thin-layer Navier-Stokes computations.

The present code uses an eddy-viscosity model for the turbulent boundary layer that was developed using
simple steady-flow experiments. For unsteady, high-incidence flow for which viscous effects dominate, an
improved turbulence model 1s surely required. However, the demonstrated capability of the code has important
mmplications for applications 1in aeroelastic and control-response analyses and in the study of wake-airfoil
interactions.
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APPENDIX

The Navier-Stokes equations 1n Cartesian coordinates can be written as (Ref. 2)

2,3 + 9,E + ayF = Re"I(3,R + 3,3) (A1)
where
p pu oV 0 0
- ou k. puz+p e puv k- Tyx 5. Ty
pv puv pvi+p Ty Tyy
e u(e + p) v(e + p) Ry Su
where
Ty = (A + 20)u + Avy
Tyy = u(Uy +vy)
Ty (x + Zu)vy + Auy
Ry = utyy +vr, + kProt(y - 1)7s,a?
S, = utyy + VT + kProi(y - 1)'1aya2
p=(y- 1)[e - %-p(uz + vzﬂ
a? = y(y - 1)[% -3 (s vzﬂ

and the Stokes hypothesis A + (2/3)u = 0 1s assumed. Equation {Al), subject to the general transformation,
£ = £(x,y,t), n = n(x,y,t), and 1 = t, gives

3G+ (E-R)+a(F-S)=0 (A2)

where

q/J
(6 * 5,E + 6,510
= (n,Q + nE + nyF)/J

m O
n

and chain rule 1s applied to stress terms such as txx = (A + Zu)(gxug + nxp) + A(Eyvg + nyvy), etc. The
viscous dissipation vectors 1n Eq (A2) are

R

“1na=1(;r R <
d7 Re™ (g R + gys)

§ = J7Re"H(n,R + n,S)

where

i = [0,1 Rl.]T » S = [0,1 ssh]T

xx*Txy? xy**yy

The viscous vectors, R and §, contain terms that are functions of (3,9¢) and (ﬁ,dg), and are written as

R(G.4,.4)) = R (4,3,.) + R, (6,4
3(3.9¢,9,) = 5,(2.q;) +5,(4,4))
where _
0
a,u, +a,v
R, (d.4,) = Re™H™2 hEovE
azuE + QZVE

P (u2), + R () *agwv), +ayly - 1)7a?),



- 0 -
R LEL IR Y
R,(8,3,) = Re™2y™ noh
Yl + Y2Yy
Y1 Y2 -
7 (W) (V) +vuvy + oy byl - 1)7HR2)
- 0 -
R YU, toy,v
§,(d,4,) = Re"1? veo e
YauE + YZVE
Yi ., Yo o, -1(a2
7 (W) + 5 (V) + v, +ygvup vy - 1)7H@%),
0 ]
R - Bu_ + 8,V
§,(4,4,) = Re™H7 " "
ByU, * B,V
B, 2 Bs 2 17,2
7 (W) 5 (V) r(uv) + 8, (v - 1)7H(a%)
Here,
- 2,4 2 = 2.4 2 = 4
o = uleg +367) B, = wlny +3n}) vy = wlegny *+360))
a, = u(g2 +3¢2) B, = u(nZ + 7 n2) = ule,n, +36E.0,)
2 x 3%y 2 x 3y Yo T MG T3 Sy
a, = FEE B, = & nn =u(en, - 260
37 3 5xby 3 3 Ny Yy T OHSyMY T3 SxTy
- - - - _ 2
ap = kPrTM(el 4 el) 8, = kPrTHnL #nl) v, = ulgyny - 3 Epn,)
Ys © KPr‘l(gxnx * Eyny)
In terms of the viscous terms ﬁl, ﬁz, §1, §2, Eq (A2) 1s reduced to
5.+ 9.k + 3, F = ag(fz1 +R,) + an(s1 +5)) (A3)
A solution to Eq (A3) can be obtained by using a single-step temporal scheme (Ref. 1)
an _ 8 At An At ~n B8 an L1 2 3
AQ T+3 3. 8G" + T+3 3.9 * ¥ 5 Aq + 0[( 3 B)AT + AT ] (A4)
where ag" = &n+1 - ", 4" = 4(n at), and n denotes the nth time step of computations The wmplicit

trapezoidal scheme takes 6 = 1/2 and 8 = 0 1n (A4) which results 1n truncation error 0(at3), and the
mmplicit Euler scheme takes 6 =1 and 8 = 0 which 1s 0(at?). The mmplicit trapezoidal scheme was used 1n
the present computations.

Applying the scheme {A4) into Eq (A3), one obtains a solution to the Navier-Stokes equations

~n _ 68 A n an ol =n 8 en A z 5 6 n
=1 +TB [85(-AE + aRY + aR7) + o (-oF" + AST +a80)] + T‘f;ﬁ [ag(-E + R, +R,)
+an(-F 45+ 80" + 2o ad™ 4 00(6 - F - B)art + 4] (A5)

en

En+1 -

where AE" =

and E™? = £(§""), etc  The finite-difference form of §" 1s &?'J at x = 1 Ax
and y =1 4y

The flux vector increments (aE", af", Aﬁl, Aﬁz, A§1, a8,) are nonlinear functions of g, and are linear-
1zed by using Taylor series expansion.

AE™ = A" 49" + 0(ac?)
(A6)
AF™ = 8" Aq"™ + 0(at?)

where AN = (s€/5)", 8" = (5F758)", or 1n detail



[ ko I ky l k, | 0
—u(kyu + k,v) + k92 | -(y - 3)ku + ky + kv | -(y - 1)kyv + kyu | (y - 1)k,
Ror§-| Vurkav) vhao? | -O-Dkudky | -t-shavrke rhku ] - Dk
(ku+kv)(-3Y—+24;){(ﬁ-qﬁz)k1 I(Ips-d»z)kz vtk + v +
i | - (v-1)(k,u + k,v)u | - (v - 1)(k,u + Kk, v)v | i
where % = (1/2)(y - 1)(u? + v?), and
ky = £t » k, = Ey 3 k, = gy for A
k°=nt, k1=nx, k2=r|.y for B
Likewise, the linealization for Aél and A§2 gives
oR) = B" A" + K Aag + 0(A72)
8] = Q" A" + (" a : + 0(at?)
where B" = (3R /aq)n g (aRllaq ", a" - (a§2/a&)", and (" = (aéz/a& )" The linearized Aﬁ? and Aég
the above can bd further reduced to® n
oRY = (P - R)" aq" + 2 (R 20)" + 0(a?)
(A7)
a8 = (@ - L))" 2" + 3 (L a9)" + 0(ar?)
where kg = 35K and En = an[n. The viscous matrices K, [, p - RE’ and § - En are presented below.
B 0 | 0 | 0 | OT
-h,u - hyv | h, | h, | 0
LR or (@-fy mRet _ Pewzhy LM b e 10
h,,(- € 42+ v2) : (hy - h)u +hy : (hy = h,)v + h,u : h,
- hyu* - 2huv-hv | l |
where
hy=e;» hy=oay, hy=a,, h,=qa for K,
hy=8, h,=8,, h,=8,, h, =38, fFfor L,
3a da 3a da
= = 2 =32 = P - K
h, 3T h, T h, 3 h, 3 for P KE ,
and 38, 38, 38, 28, .
hl-'—a-n—, h2='3—n—, hS_W’ h"=_3_n— for Q-Ln,
The spatial derivatives aR ./3€ and a8 ./3n nvolve cross derivatives 32( )/stan, 1n order to use a
spati1ally factorized scheme, these terms aré time- lagged as
aRG = aR]™Y + 0(a1?)
(A8)
887 = 487" + 0(ar?)

1

Substitution from the linearized flux vector increments af", AF", Aﬁ s AS (A6 and A7) and the time lagged
flux vector increments AR} and AS“ (A8) to Eq. (A5) gives

f+8d

AT

[a(A-ﬁ+K)"-a

¢ \n 2 ~Nn
- + -
EK + 3 (B Ln) anLni}Aq

Teugé+§1+mﬂ+a4i+§ SM + 25 [0 (68,07 + 3 (25,07

+ 1 Aﬁn : 0[(9 - %— - s)Arz,(é - e)Arz,Aﬁ] (A9)

mn
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Here, the notation of the form [2¢(A-P + R:)I" ad" mplies 3 gL(A-P+R)Ma d"1, etc  For second order
accurate scheme & should be set to o, ang for first order accurate scheme 6 be set to zero.

e_thin-layer approximation neglects terms aEK . aE(R +Ry)s 0n8,, <P+ Re, -Q + Ly, and
Implementation of a spatially factored scheme 1n the left hand side of Eq. (A9) gives

35(AR )n + 3n(a8,)" in Eq. (A9).
n on 8 A
[a(A-P+K)-a’K]}{I+1+Tﬁ

{“ ;

where LHS (A9) denotes the left hand side of Eq. (A9).

[an(ﬁ -4+ En)" - a:i"i}aa" = LHS(A9) + 0(at?)

The following computational sequence 1s used to obtain the Navier-Stokes solutions

{I trvg L (A-PeR)"- a2k ]}Aq = RHS(A9)
{I + “ (e (B -Q+C)"- a;i"]}nd" = 8" (A10)
anﬂ. = an + Aan

Equation (A10) can be simplified by assuming that the transport coefficients are locaily constant, or
=P+ K- = -Q+ =0

The simpl1fied form of Eq. (Al0) 1s thus

{1 + 1‘~‘ AT R (A - aEK)”]}E = RHS{A9)

{1 + -T L, (8 - 3 L)"1} =Ta“

~n+ ~ ~
FUACIRFU BRI
In the present computation, the time-lagged viscous term 3; (AR yn- Yy 22 S )™ was neglected, reducing

the order of the time-accuracy in the computation of d1ss1pat1on terms from second to first order The final
numerical algorithm constructed for the computations 1s thus first-order time-accurate for the dissipation and
second-order time-accurate for the convection terms i1n the Navier-Stokes equations. The spatial derivatives
1n the equations were kept second-order accurate. This brief derivation differs from those of previous
investigations by including all the relevant terms of the Navier-Stokes equations (Eq (Al))



TABLE 1. EXPERIMENTAL DATA THAT WILL BE COMPARED WITH COMPUTATIONAL RESULTS

Airfoil Flow incidence| M, Re x 107¢ a,» deg|d, deg |k, wc/2U, | Pitching axis, x/c
NACA 64A010 | Low 0.8 |12.0 0 1.0 0.025 0.25
0.8 |12.0 0 1.0 0.20 025
High 0.8 |12.0 4 1.0 0.05 0.25
0.8 |12.0 4 1.0 0.20 0.25
NLR 7301 Low 0.75}11.4 0 37 0.5 0.05 0.4
0.75111.4 0 37 0.5 0.20 0.4
9 f
n &= Emax

h 1
' h 9 f
n
—_— ¢
a b c d e

F1g. 1. Physical and computational planes.
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Abstract
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pared with experimental data (obtained at Ames Research Center) which form
part of the AGARD standard configuration for aeroelastic analysis. A
variety of approximations to the full Navier-Stokes equations was used to
determine the effect of frequency, shock-wave motion, flow separation, and
airfoil geometry on unsteady pressures and overall air loads. Good agree-
ment is shown between experiment and theory with the limiting factor being
the lack of a reliable turbulence model for high-Reynolds-number, unsteady
transonic flows.
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