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ARSTRACT

A three-man wastewater recovery preprototype subsystem using a hollow fiber

membrane evaporator with a thermoelectric heat pump to provide efficient
potable water recovery from wastewater on extended duration space flights
has been desi gned, fabricated, and tested at one-gravity. Low power, compact-

ness and g ravity insensitive operation are featured in this vacuum distillation
subsystem. The tubular hollow fiber elements provide positive liquid/gas phase
control with no moving parts, and provide structural Integrity, improving on

previous flat sheet membrane designs. A thermoelectric heat pump provides
latent enerqy recovery. Application and integration of these key elements
have solved problems inherent in all previous reclamation subsystem designs.
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FOREWORD

This report has been prepared by the Hamilton Standard Division of United
Technologies Corporation for !.he National Aeronautics and Space Administra-
tion's Lyndon B. Johnson Space Center in accordance with Contract NAS 9-15471,
"Development of a Urine Water Recovery Subsystem".

Appreciation is expressed to the NASA Technical Monitor, Mr. H. Eugene Winkler
of Lyndon B. Jonson Space Center, for his guidance and advice.

Hamilton Standard personnel responsible for conduct of this program were
Messrs. Harlan F. Brose, Program Manager, George J. Roebelen, Jr., Project
Engineering Manager, and Gerard F. Dehner, Senior Experimental Engineer.
Appreciation is expressed to Messrs. Gilbert N. Kleiner, Project Engineering
Supervisor, Edward O'Connor, Project Analytical En gineer and William Perkins,
Project Electrical Engineer.
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SUMMARY

A three man wastewater recovery preprototype subsystem has been designed,
fabricated, and successfully acceptance tested by Hamilton Standard. Low
power, compactness, and gravity insensitive operation are featured in this
vacuum distillation subsystem that combines a hollow fiber membrane evaporaor

with a thermoelectric heat pump . Application of these key elements have solved
problems inherent in previous reclamation subsystem designs. The hollow fiber
elements provide positive liquid/gas phase control with no moving parts other
than the wastewater recirculatirg pump, a condensate removal pump and accumu-
lator, and a condensate cooling pump. Tubular membranes provide structural
integrity, improving on previous flat sheet membrane designs. Thermoelectric
heat pumps provide efficient heat recovery, as well as eliminate moving parts
and equipment noise associated with a vapor compressor. Over 850 hours of
operation processing pretreated urine and pretreated wash water with solids
concentrations reaching 37% have been completed. The rate of production of
high quality potable water averaged 1.0 kq/h (2.2 lb/h) at 29.0 VDC throughout
the testing.

The subsystem was successfully integrated with a microprocessor based controller
which permitted complete automatic control, and a CRT display which provided a
colored display of subsystem flow and key operating and performance parameters.

All control modes, anomoly situations, and failure shutdown operations were
demonstrated.

A computer analytical model of the TIMES has been developed; the parametric
outputs from this model compared closely with experimentally obtained para-

metric data.
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INTRODUCTION

The Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) was con-
ceived in 1977 to provide a water recovery subsystem with minimum mechanical
complexity and positive liquid/gas phase separation. Low power consumption,
automatic operation, compactness, and gravity insensitive operation are
characteristics of this vacuum distillation subsystem that combines a hollow

fiber membrane evaporator with a thermoelectric heat pump that provides latent
heat recovery.

Program Objective

The basic objective of this program is to design, fabricate, and acceptance
test a three man urine water recovery preprototype subsystem to be integrated
with other individual technologies in the area of regenerative life support
and evaluated as a part of a Regenerative Life Support Evaluation (RLSE)
program at NASA/JSC.

Program Duration

This final report encompasses all work performed during the period January,
1978 through December, 981.

Specifications

The basic specification requirements for the TIMES are:

Capable of processing of urine, urinal rinse water, and shower concen-
trated brine of three crew members for 180 days without resupply.

Scheduled maintenance is allowable.

Capable of recovering at least 95% of the water as potable quality water.

Total dry weight to be less than 136.1 kilograms (300 pounds), total
volume to be less than 0.80 cubic meters (28.25 cubic feet).

Specific energy requirements to be less than 334.4 watt hours per kilogram
(152 watt hours per pound) of product water from non-concentrated raw
urine at 26.5 VDC power supply.

Expendable requirements to be less than 11.8 kilograms (26 pounds) to
process 1814.4 kilograms (4,000 pounds) of raw urine.

Process rate to be at least 0.77 kilograms (1.7 pounds) per hour of prod-
uct water from non-concentrated urine at nominal 29 VDC power supply to
the thermoelectric regenerator after thirty days of eight hours per day
operation.

Water loss rate from vacuum purging to be less than 0.014 kilograms (0.03
pounds) per hour.

x
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Process water quality shall exceed the standards recommended by the

National Academy of Science - National Research Council Conmittee on
Toxicology in their Re port of the Panel on Potable Water Duality in Manned

Spacecraft, August,

Basic Description

The TIMES, as illustrated in figure 1, consists of a pretreat section, a
processing section, a postfiltration section, and a control and display.

The pretreat section collects wastewater, mixes it with a pretreat solution,
and supplies the mixed solution to a recycle loop. In the recycle loop

wastewater is circulated throu gh a recycle tank, a heater an the hot side of a
heat pump, a hollow fiber membrane evaporator, and back to the recycle tank.
The separation of the water from the waste solids occurs in the hollow fiber
membranes as water diffuses through the membranes and evaporates as steam from
the outer side of the membrane walls. The steam is condensed in a porous
plate heat exchanger phase separator on the cold side of the heat pump. Heat

is transferred from the condenser to the heat exchanger by the thermoelectric
heat pumps, recovering latent heat ener gy . Condensate is pumped out of the

condenser and through a postfiltration section. The TIMES is an independent
subsystem, with four functional interfaces to the vehicle:

Wastewater Input
Power Input
Clean Water Output
Heat Rejection

The TIMES is designed to produce microhiologically safe potable water by a

sequential application of definite control procedures. Control procedures
designed into the subsystem include chemical pretreatment, pasteurization,
distillation, and final bacteria filtration. Undej all conditions, the
chemical pretreatment fixes the urea and acts to kill bacteria in the waste
storage area and the recycle loop. During steady state operation, the waste-
water is maintained at a pasteurization temperature. The evaporator hollow
fiber membranes provide a positive barrier to passage of bacteria from the hot
wastewater recycle loop into the steam chamber and the condenser during the
distillation process. Bacteria filters in the postfiltration module prevent
the migration of any bacteria which might form in the condensate line.

A microprocessor based controller is used to monitor the various sensor outputs

and supply the required actuation and sequencing signals for the various pumps
and valves to provide automatic operation and control for each of the preset
operational modes. In addition, the controller supplies in puts to a cathode
ray tube (CRT) display module that displays subsystem flow schematics in

multi-colors for each of the various operating modes. A keyboard located at
the CRT display module allows operator control and monitoring of the subsystem.

xi
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CONCLUSIONS

The preprototype TIMES subsystem has been demonstrated to meet or exceed all

requirements for producing potable water from urine and wash water as defined
by the Statement of Work for Development of a Urine Water Recovery Subsystem

per NASA Contract NAS 9-15471 thru Modification 9S.

From a hardware standpoint the TIMES integrates proven components to produce
an extremely simple design exhibiting very competitive weight, power, and
volume. The TIMES consistently produces high quality water and has been
demonstrated to be capable of being maintained, when necessary, with safety

and within acceptable crew time limitations.

This approach to wastewater recovery utilized by the TIMES is particularly
advantageous because it produces microhiologically safe potable water by
providing positive separation between processed and unprocessed water through

a sequential application of definite control procedures. At each component
and interface, the chance of entrance or growth of bacteria was considered
for planned start-up and shutdown modes, as well as for shutdown due to loss
of power. These procedures designed into the subsystem include chemical
pretreatment, pasteurization, distillation, vapor duct liquid entrapment,
and final bacteria filtration. This combination of features combined with a
microprocessor-based controller provides a completely automatic subsystem
having a potential for long life with high relizbility and efficiency.

x	 -
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RECOMMEmOATIONS

The test results and studies of this program have demonstrated that a TIMES
wastewater recovery subsystem can be designed to meet water recovery require-
ments for long-term space missions or for extended on-orbit operations to
avoid launch and resu pply penalties.

In order to optimize the overall desi gn it is recommended that:

The temperature control and water quality improvement changes studied
durin g this program he implemented.

Start-up/shutdown p rocedures he studied to improve fluid isolation
conditions during non-destructive failure shutdown to allow immediate
restart upon correction of the failure shutdown cnndition. The
resulting changes to the hardware should he implemented.

Methods for automatically calculatin g and dis playin q solids concen-
tration in the subsystem recycle tank he studied and implemented.

Methods for recycle tank dumping and recharging while installed in
the subsystem he studied and implemented.

Methods for on-orbit and ground refurbishment of membranes to extend
membrane performance levels he studied and tested.

Methods for optimizing pretreatment usage rate by monitoring recycle
and waste tank pH levels he studied and implemented.

Conduct additional endurance testin g to accumulate more processing
time on the membranes to determine if a life limitation exists under
actual operatin g conditions with urine and wash water.

The present p reprototype TIMES should he used as ap p rop riate for evaluating
the above optimization recommendations. It is further recommended that a
flight prototy pe TIMES be desi gned, fabricated and tested utilizing the infor-
mation learned from conductin g the program reported herein and from the results
of the above optimization effort.

4
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SURSYSTEM nESCRIPTION

The TIMES utilizes a vacuum distillation process for reclaiminq water from

waste fluids, primarily urine. The subsystem includes wastewater collection
and pretreatment, wastewater distillation, and product water postfiltration

functions. Fi qure 2 is a simplified schematic of the desiqn.

Wastewater, pretreated to inhibit urea breakdown and to provide bacteria
control, is heated to a pasteurization temperature of 66°C (150°F) within a

wastewater heat exchan ger in contact with the hot ,function surfaces of a
thermoelectric heat pump. The heated wastewater then passes throu qh a tubular

hollow fiber memhrane (HFM) evaporator module. The outside surfaces of the
membrane tubes are exposed to low pressure. Water diffuses throuqh the tube
walls and evaporates as steam at the tube outer surfaces. Other liquid and
dissolved solid constituents of the wastewater remain within a recycle loop.
The heat of evaporation is provided by the hot wastewater stream circulatinq
in the recycle loop. The sliqhtly cooled and concentrated wastewater is

returned to a recycle tank, passed throu qh a filter to remove any particulate

matter that miqht be present in the loop, and pumped back to the heat exchanger

where it is reheated and recirculated.

Li quid evaporated as steam from the hollow fiber membrane evaporator is made

up by the automatic introduction of preheated, pretreated wastewater from the

waste storage tank. The solids concentration in the recycle loop qradually

increases until 95 percent of the oriqinal water content has been removed and
a solids concentration of approximately 40 percent has been reached. At this

point the recycle tank and filter are removed and replaced with fresh units

and the process is continued.

The eva porated steam is condensed to water on a chilled porous plate surface

thermall y contactinq the cold ,junction surfaces of the thermoelectric heat

pump. The chilled porous plate acts like a sponqe and the condensate passes

throuqh the porous plate into a thermally cooductin q water passaae between the

porous plate and thermoelectric heat pump cold junction contact sheet. This

passa qe is a flow path in a process thermal control coolin g loop discussed

later in this section. The condensed water is then drawn into an accumulator
where it is collected prior to delivery to a postfiltration module.

The tubular hollow fiber memhrane desi gn allows the wastewater liquid feed to

operate at atmospheric p ressure while the steam passa ge operates at the steam

saturation pressure. Free and dissolved gases contained in the hot recirculat-

ing wastewater stream pass through the membrane with the steam and increase the

total pressure in the steam passa ges. periodically these non-condensables are

removed from the subsystem by ventin q the steam passaqes to vacuum so as not to

inhibit steam flow from the evaporative membrane surfaces to the condensing

porous plate.
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A spring loaded condensate accumulator, referenced to vacuum, provides a
suction at the outlet of the condensate removal line. To prevent the outlet
suction from causin g excessive condensate vaporization at the porous plate, a
capillary restrictor, whose function is to automatically produce a compensating
variable pressure drop, is located in the condensate removal line. The com-
pensating variable pressure drop occurs when steam starts to form in the
condensing passa ge due to a suction lower than the saturation pressure. The
steam is withdrawn throu gh the ca p illary restrictor where the volume of the
steam is many times greater than an equivalent mass of li quid water. The flow
rate of the li quid water throu gh the capillary causes an insi gnificant pressure
drop whereas the steam causes enough pressure drop to backpressure the condens-
ing passage and prevent any additional steam from formin g at the porous plate.

Withdrawal of water from the condensate accumulator is accomplished by ener-
g izinq the condensate pump when the accumulator is 75 percent full, as measured
by the condensate accumulator diaphragm position. The pump stops when the

accumulator is emptied to 25 percent capacity.

Process thermal control is provided by means of a coolin g loop. The condensed

product water is recirculated from the condensing passa ge, through a cooling
heat exchan ger where heat is rejected, and back to the condensing passage.
This cooling effect reduces the heat pump cold junction temperature and thus
limits the amount of heat pumped to the hot ,function contacting the wastewater
recycle loop heat exchanger. A temperature controller senses HFM evaporator
inlet temperature and regulates flow of the cooling pump.

Product water delivered by the condensate pump passes through a conductivity
sensor. If unacceptable product water conductivit y is detected, a three-way

reJect valve, which normally delivers the product water to the postfiltration
module, automatically swtiches and transfers the water back to the waste
stora ge tank outlet.

Acceptable product water is filtered •'n a postfiltration module t .hat contains
charcoal and ion exchan ge beds to remove odor and trace amounts of dissolved
ammonia. The polished product water is then pumped to the vehicle potable

water storage tank for crew use.

O
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nESIGN SIIPPIIRT TESTING

cnNFIGIIRATION VERIFICATION

Objective

The objective of this test pro qram is to demonstrate the TIMES process prior
to the desi gn and fabrication of the TIMES hardware usinq a scale model setup
to attempt to uncover problem areas that mi ght not be apparent durin g subsystem
analytical examination.

niscussion

A 1/6 scale model setup was assembled and tested to verify plumhinq confi qura-
tions and further demonstrate process suitability.

The TIMES, as illustrated in Fi qure 3 contains a loop that circulates waste-
water that is heated to the controlled process temperature by the hot junction
of the thermoelectric elements in contact with the wastewater heat exchanqer.
The heated wastewater flows throuqh the inside diameters of the hollow fiber
membranes with a portion of the water permeatin q throuqh the membrane walls
and evaporatin g as steam from the membrane outer surfaces. The wastewater
from the inside diameters of the hollow fiber membranes returns to the waste-
water heat exchan qer for reheatino, and the steam frnm the outer surfaces of
the membranes `lctis to the condenser plate in contact with the cold junction
of the thermoelectric elements where it is condensed. The condensate is
removed for posttreatment and storage.

Fi qure 4 shows the 1/6 scale model hollow fiber membrane eva porator and
thermoelectric re qenerator combination. All elements and orientations of the
final desion except the porous plate are included. Fi qure 5 depicts the
confi quration test setup. Refer to Ap pendix A for the nesign Support Test
Plan section of the Master Test Plan. The configuration ve.'fication testinq
was run in an oven so that ambient temperature could he adjusted to minimize
condensation of product water vapor on the transparent uninsulated plastic
surfaces.

Results

Assembly of the 1/6 scale model setup was completed, and the major packaginq
confiquration and fluid line locations were verified. No problems were un-
covered with the actual process. It was decided that p recise parametric data
could he obtained more efficiently by waitinq for the completion of the
development.component hardware rather than by ex pendin q additional effort with
the scale . test hardware.

4
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MATERIALS CORROSION/nEGRADATION

nbiective

The objective of this test pro g ram is to evaluate and demonstrate suitable
corrosion/deqradation resistance of materials to be used in the TIMES for
exposure to chromic acid pretreated wastewater.

Discussion

All materials and Joining p rocesses that were anticipated for use in the
chromic acid pretreated wastewater loop were identified and are as follows:

Titanium per AMS 4901 with an electron beam weld ,joint
Titanium per AMS 49ni with a fusion weld ,joint
Stainless steel per AISI 347 with a nickel braze joint
Polysulfone, annealed and non-annealed, solvent wiped
Amicon T640 membrane potting compound
Viton V747-75 o-rin g material

Each of the materials and Joinin
g
 processes is described in available litera-

ture as having excellent corrosion/deg radation resistance to moderately con-

centrated chromic acid.

A 66°C (150°F) p retreated urine bath test setu p as i ll ustrated in Fi gure 6 was

assembled. Pretreated urine was added durin g the testinq to maintain bath
level. Solids levels rannin q from 4 to 40 percent were ot,tained during the
testing, and pH level was maintained between 4 and 6. This test se quence was

desi gned to simulate actual subsystem ex posure conditions for a minimum of 180

days.

Figure 7A shows the AMS 4901 titanium with an electron beam weld joint, before

testin
g
 and after 270 days immersion in the test bath. No corrosion or deter-

ioration of any kind is evident under IOX magnification.

Fi gure 7h shows the AMS 4901 titanium with a fusion weld ,joint, before testing
and after 270 days immersion in the test bath. No corrosion or deterioration
of any kind is evident under 1OX magnification.

Figure 8a shows the AISI 347 stainless steel with a fusion weld ,joint, before
and after 27n days immersion in the'test bath. No corrosion or deterioration
of any kind is evident under IOX magnification.

Figure 8b shows the AISI 347 stainless steel with a nickel braze ,joint, before
and after 270 days immersion in the test bath. No corrosion or deterioration
of any kind is evident under 1OX magnification.

8
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Fi qure 9a shows four samples of polysulfone after 210 days immersion in the
test bath. Sample 1 is non-annealed, sample 2 was annealed at 166°C (33n°F)
for 4 hours after machining , sample 3 went through the anneal cycle prior to
machining , and sample 4 was annealed before and after machinin g . All four
samples were dipped in the bonding solvent, methylene chloride, and air dried
overniqht before bein g placed in the test bath. No crazin g was observed in
any of the samples after the solvent dip. Crazing can occur in polysulfone if
excessive internal stress exists when the material is exposed to a solvent; the
anneal is designed to reduce internal stress hut, as evidenced by our samples,
the material was stable as received and had negligible stress introduced during
machining. Examination of all four samples under 1nX magnification showed no
detectable deterioration.

Figure 9b shows a potted membrane header consisting of polysulfone hollow
fiber membrane stubs potted into a polysulfone shell with Amicon T640 membrane
pottin g compound, after 210 days of immersion in the test bath. No detectable
deterioration in either the materials or the bonding joint was observed under
inX magnification.

Figure 9c shows a length of a Viton V747-75 (MIL-R-83248 CU TYI) o-ring after
210 days of immersion in the test bath. No detectable deterioration was
observed under 10X magnification and no measurable chan ges in durometer were
detected.

Emission s pectrographic analysis of the solid residue collected from the test
bath has indicated the presence of the fullowinq elements in the indicated
concentration ranges:

(The instrument categorizes the content of each element of the sample into
the followin g ranges that are s pecified as a percent of the total sample.)

Major (15 to 100% range):	 Na, Cr
Minor (5 to 20% ran ge):	 Ni
Present (112 to 2% ran ge):	 Mq, P, Ca
Trace (0.1 to 1% ran ge):	 Mn, Si, Cu

The results are predictable except
nickel concentration is attributah
used to suspend the samples in the
were replaced with AISI 304 wires.
test program is the fact that high
to 150°F pretreated urine.

for the high nickel concentration. The high
le to the high purity nickel wires that were
bath; the wire eventually corroded away and
Therefore, an additional fall-out from this

purity nickel is unacceptable for exposure

12
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Summary

Testing has demonstrated the suitability of the following materials for use in
chromic acid pretreated urine at 66°C (150°F) for a minimum of 210 days.

Titanium per AMS 4901

Electron beam welded
Fusion welded

Stainless steel per AISI 347
Fusion welded
Nickel brazed

Polysulfone bonded with a methylene chloride solvent--
annealed at 166°C + 2.8°C (330°F + 5°F) for 4 hours

Amicon T640 membrane pottin q compound

Viton V747-75 (MIL-R-83248 CL1 TYI)

Based on these results the tested materials have been demonstrated to be
capable of exceeding the mission requi,,e,,nent of 180 days.

i,
R
^r.
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DEVELOPMENT COMPONENT TESTING

1/3 SCALE THERMOELECTRIC REGENERATOR/HOLLOW FIBER MEMBRANE EVAPORATOR EVALUATION

Objective

The objective of this task is to evaluate the performance of the thermoelectric
regenerator/hollow fiber membrane evaporator combination using hardware con-
sisting of one full size regenerator module (three modules are required for

the full size subsystem) coupled with a full size evaporator containing
membrane surface area equivalent to 1/3 of that anticipated for the full size

subsystem.

Discussion

The 1/3 scale thermoelectric regenerator/hollow fiber membrane evaporator
assembly was installed in the vented oven as described by Figure 10. This
assembly simulates the subsystem insulated process package illustrated in

Figure 2. Refer to the Subsystem Description section of this report for a
description of the process package operation.

Prior to the start of the test air was flowed through the porous plates to
demonstrate that the plates were dry. At the end of the test a bubble-point
check showed the plate to be completely wetted and capable of sealing against
a gas pressure differential of 46.9 kPa (6.8 psi). A porous plate flow test
with a fully wetted plate yielded water flow rates plotted in Figure 11. At a
porous plate pressure differential of 3.4 kPa (0.5 psi), projected flow capa-

bility for the full TER assembly would be 5.6 kq/h (12.4 lb/h) which is
approximately six times the required throughput capacity.

The data obtained durinq transient start-up and run of the 1/3 scale TER/HFM
assembly is contained in Appendix B, Development Component Test Data, and
plotted in Figure 12. During the first 15 minutes of the test, the recycle

fluid temperature drop across the HFM averaged approximately 4.7°C (8.5°F),
the magnitude of the temperature drop indicating the throughput or water
evaporated. Comparing this to the 2.8°C (5°F) design condition indicates

marqin on HFM throughput.

This initial testinq of the Evaporator/Regenerator combination indicated that

the hardware as configured performed properly for 10 to 15 minutes after
start-up but performance quickly decayed and eventually stopped within 30
minutes after start-up. Testing with the TER removed and a water cooled con-
densing coil substituted indicated that the performance rate can be made to
fully recover by momentarily applying a vacuum source downstream of the water

cooled condensing coil. Applying the vacuum upstream of the water cooled

condensing coil results in no recovery of performance.

The sere; of tests with the water cooled condensing coil indicates that the

noncondensible gases in the system are being swept to the condensing areas by
the steam flow; the steam is removed by condensation and the noncondensible
gases are left in the condensing chamber to build up and eventually blanket
the condensing surfaces. Exposure of the chamber to vacuum for a short period
of time vents the accumulated noncondensible gases and allows continuation of
the steam condensation.
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FIGURE 10

TFR/EVAP nEVFLOPMENT COMPONENT TEST SETUP

16



IES
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The TER design was modified to add ports in the condensin g chambers for the

removal of the noncondensihle gases.	 Testin g of the development hardware

with the modified TER demonstrated that removin g noncondensihle gas directly

from the TER va por passa ges p roduces a confi guration that maintains the HFM

temperature drop above 2.8°C (5°F) during steady state operation.	 The temper-

ature differentials across the membranes, the urine heat exchan ger, and the

thermoelectric elements were as anticipated, and the condensate water delivery
rate checked out to verify the thermal balance of the subs ystem.	 The removal/

bleed rate of the noncondensihle qas/water vapor was approximately 2.7 x 10-5

R	 ` kq/h	 (6x10-5 lb/h).

Testino with the pressure controlling capillary restrictor on the condensate

removal	 line showed that this confi guration operates extremely well, with a

typical product water (condensate) production rate at 26.5 VnC thermoelectric

volta ge with unconcentrated urine of 5 ml/minute. 	 This rate translates to

0.90 k q/h	 (1.98 lb/h) for the full	 size subsystem.

r,' Results

Testin g of the thermoelectric reqenerator/hollow fiber membrane evaporator

assembly with the ca pillary tube restrictor has been run with the thermoelec-
tric elements at 26.5 vnC and at 29 .11 vnc with urine recycle loop solids
concentrations up to 21%.

The membranes were tested for processing rate after ap p roximately 240 hours of
F. operation (the equivalent of 3n 8-hour days) usin g non-concentrated urine at
G" 29 VOC.	 The procession rate was 3% lower than the specification requirements

and the membrane area of the full size unit was increased accordingly.

Product water removal pressures were investi gated and it was determined that a

pressure range between 10.3 (1.5) and 13.8 kPa 	 (2.0 psia) would provide the

required product water removal 	 rate and allow the accumulator to he sized for

this ran ge while still	 allowin g a reasonable mar gin for mechanical 	 tolerances,

Product water samples have been analyzed and except for sli ghtly elevated

oroanic carbon levels and ammonia levels, the product water appeared acceptable.

These impurities will he removed by the posttreatment charcoal bed and ion

exchan ge resin had,	 respectively.
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URINE LOOP RFCVCLF. PUMP

Oh,iect i ve

The objective of this task is to performance and endurance test the urine loop

recirculation pump prior to incor poration into the subsystem, The pump is to

he run continuously in pretreated urine at varyinq solids concentrations for a

period of 90 days.

niscussion

This test was performed to verify the durability of the Micropump P/N 12A-31-
316-80647 for use in the TIMES subsystem. The pump was run in pretreated

urine at WC (15n°F) for a period of 90 days at which time the pump was

leakaqe and performance tested, and subjected to disassembly and visual

inspection to determine the 90 day deqradation.

The endurance test setup is shown in Fi qure 13, and the pump leaka qe and pump

performance test setu ps are shown in Fi gure 14. Endurance testin g was run

using WC (150°F) pretreated urine with a solids concentration ran q inq from

to 40%. Table 1 summarizes the test results. As can he seen frc,m the test

results, the flow degradation after 90 days is 36%, resultin g in a flow value

of 152 kq/h (336 lb/h). This value exceeds the 136 kq/h (3nn lb/h) value

assumed as the required subsystem flow. The loss in flow was attributed to

internal leakage.

Fi qure 15 shows the qears
drive near shaft has been

inch) and the driven gear
inch). This wear could he
the "off-the-shelf" shaft

quirements. The end faces
material.

and end faces of the pump. The diameter of the
worn from 0.318 cm (n.125 inch) to 0.267 cm (0.105

shaft from n.318 cm (n.125 inch) to 0.292 cm kO.115

 reduced by selectin g a harder shaft material, but

is sufficiently durable to meet our subsystem re-

show a wear pattern with very little removal of

Results

Rased on the endurance testin g performed during this task, it may be concluded

that the selected urine loo p recirculation pump will perform as required for a
minimum of 90 days continuous operation.

20
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Table 1

IIRiNE LOOP RECIRCULATION PUMP LEAKAGE AND PERFORMANCE

nneratin q
Pump Tima
(nays)

Flow
kq/h (@ in3.4 kPa

(lb/h (A 15 psid)
negradation	 Pump Current

(X)	 Amps 0 27 VnC

Locked Rotor
Internal	 Leakaqe
kq/h O 69.n kPa

(lb/h 0 psid)

0 (new) 238 (525) ---	 1.3n 12.2	 (27)

49 217 (478) 9	 1.30 50.3	 (111)

qn 152 (336) 36	 1.05 56.2	 (124)

Subsystem
Specification 136 (300) ---	 --- ---
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SIIRSYSTFM nESIGN

The preprototype TIMES subs ystem has been desi gned to conform with all require-

' -	 ments of NASA Statement of Work for nevelopment of a Urine Water Recovery
P

	

	 Subsystem, November 1977, contained as Exhibit A in NASA Contract NAS 9-15471,

Urine Water Recovery Subsystem.

e	 OVERALL SUBSYSTEM REOUIREMENTS

General nesiqn Requirements

The operational lifetime for individual components and the overall subsystem

is 6 months minimum, occurrin q anytime within 2 ,years of hardware delivery to

NASA. Scheduled maintenance, includinq replacement of individual parts, is an

allowable approach. Provisions are incorporated to provide external buffered

analnq si gnals to allow remote monitorin q and/or recordin g of all subsystem

sensor outputs.

Specific nesiqn Requirements

Specific desi gn requirements are:

Capable of processino of urine, urinal rinse water, and shower concen-

trated brine of three crew members for 180 days without resupply.

Capable of recoverina at least 95% of the water as potable quality water.

Total dry wei qht to he less than 136.1 ko (3nn lh), total volume to he

less than O.80 m3 (2R.25 ft3).

Specif i c eneray requirements to be less than 334.4 W-h/kq (152 W-h/lb) of

product water from nonconcentrated raw urine at 26.5 VnC power supply.

Expendable requirements to he less than 11.8 kq (26 lb) to process.

1814.4 kq (4000 lb) of raw urine.

Process rate to be at least 0.77 kq/h (1.7 lb/h) of product water from
nonconcentrated urine at nominal 29 VOC power supply to the thermoelectric

reaenerator after thirt y days of eiqht hours per day operation.

Water loss rate from vacuum pur qinq to be less than 0.014 kq/h (0.03

lb/h).

Process water quality shall exceed the standcrds recommended by the
National Academy of Science - National Research Council Committee on

Toxicoloqy in their Report of the Panel on Potable Water Oualit,y in

1.	

Test Facility Services

Facility services available at JSC for the TIMES subsystem are:

25
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Power	 29 + 2.5 vnC
11"AC, 1 Phase, 60 Hz

115 VAC, 1 and 3 Phase, 400 Hz

Water pumped nitroqen with pressure selectable to 3448 kPa (5(10 psia)

Industrial distilled water (0.5 megohm-cm)

Chilled water at 7.2°C (45°F)

Hydrogen with pressure selectable to 2n4.8 kPa (15 psiq)

Space vacuum simulation
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The hulk of the subsystem analysis activity occurred durin g the preliminary

design and desi gn phases of the TIME', p rogram. Subsequent support activity

provided component redefinition durinq develo pment and then evaluation of unit

test performance at the end of the program.

As part of the preliminary desi gn activity , trade studies were conducted and

focused on the systems confi guration and sizin g. In particular, these studies

evaluated the pressure control scheme, the temperature control scheme, a

heating insulation study, and sizin g of the thermoelectric regulator (TER),

hollow fiber membrane (HFM), and the pumps and tanks. With these results, the
thermal control study defined in detail the dynamic control characteristics,

and the system performance information was used to generate the system operat-
inq logic. As the basis for defining the system operating characteristics, a

system computer proq n was generated and approximately one hundred program

cases were run to provide the basic trade study curves and parametric informa-
tion. Subsequent development activity modified the value of some of the

parameters, but the initial preliminary design effort provided a valid baseline

for performance-based decisions. Figure 16 outlines the scope of the computer
program and Analysis Memo 78-92 defines it in detail. (The Analysis Memos are
contained in Appendix C.) The program cases are listed in Memo 78-107 and the

results are documented in Memo 78-104.

The most si gnificant trade studies involve the schematic selection of the

temperature control and evaporator pressure control schemes. In the TIMES
process, the heat required to vaporize the wastewater in the evaporator is
drawn from the wastewater flow in the recycle loop. The heat is then recovered
and pumped back into the recycle loop as the purified steam condensed on the
porous plate in the TER. In addition to the process heat, which is conserved,
there is heat addition due to the power required for the heat pump, and there

is heat leak from the hot recycle loop. Even if the heat leak were exactly

balanced with the pumpin g power required at 26.5 VDC, the heat pump ineffi-
ciencies at 29 and 31.5 VDC would cause net heat addition to the system.
Therefore, an active thermal control scheme is required. Coolin g could be
implemented either in the hot recycle portion of the loop or in the cold
condensate portion. if the cooling is accom p lished in the recycle portion,
the heat pump must pump the process heat plus the excess heat to he rejected.

Witi; roolin q accomplished on the condensate side, only the process heat need

he pun t ed. Since there is a power penalty associated with pumpin g the heat,
it is desirable to pump the minimal amount of heat. Therefore, the system
design objective should he to minimize heat leak on the recycle portion of the
loop and provide all the heat rejection on the cold condensate portion of the

loop. This lo gic provided the basic thermal control scheme in which the

packa ge is heavily insulated and in which cooling is accomplished by recircu-

latinq the condensate throu gh an external air-cooled heat exchanger. As can
be seen in the computer runs, the most efficient operation occurs with high

evaporator temperature. However, there is a tendency with excessive tempera-
ture for the urea to break down into ammonia. Since it was believed that
11.1°C (160°F) should he the upper operating limit, 65.6°C (150°F) was selected

as the control set point so that excursions could he tolerated. The control
trade study then selected a proportional inte gral control scheme and defined

the constants for that scheme.
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TIMES

INPUT

OUTPUT

VARIES COOLANT FLOW

TO CONVERGE ON

CONTROL TEMPERATURE

SOTIME

URINE LOOP HEAT BALANCE

CONVERGES ON THFM-OUT

PUMP 1	 I	 TERHFX	 I	 TANK

BALANCES TER AHFM
HEAT )LOUT	

CONVERGES ON PRODUCT	 HEAT LEAK
MASS FLOW RATE	

FLOW BY VARYING TSTEAM

TER

BALANCES	 16 TER	 NODES,

URINE TEMP,	 CONDENSATE

TEMP, HEAT AND POWER

CONVERGES ON VOLTAGE BY

VARYING CURRENT

TERNOD

BALANCES EACH TER	 NODE

VARIES OR A OC TO CONVERGE

ON TH A TC

TED

CURVE FIT FOR TED

PROPERTIES

F.

CALCULATES PRODUCT FLOW

AND URINE TEMPS

SIX NODES

URINPP

CURVE FIT FOR URINE

PARTIAL PRESSURE

FIGURE 16

PROGRAM LISTING TREE FOR TIMES
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With a condensate side cooling scheme, the temperature control interacts with
the p ressure control and water delivery schemes. To understand the interaction,
the physics of the pressure control must he understood. The steam cavity
pressure floats to balance the vapor flow throu gh the HFM a gainst the heat
flow throu gh the TFR. The link between the two is the water pressure tempera-
ture-saturation relationship. Althou gh not necessarily accurate, for purposes
of basic understanding , the HFM can be considered to be permeable membrane.
Thus the though put is p roportional to the permeability and to the difference
between partial pressure of urine and the partial p ressure of water in the
steam cavity. At a constant inlet temperature as the urine concentration
increases, the saturation pressure of water in the recycle loop decreases.
(Memo 78-93 contains the urine properties.) Since the drivin g p ressure has
decreased, the steam pressure in the steam cavity must also decrease to main-
tain throu ghput. Also, as the premeahility chan ges, the steam cavity pressure
floats to a new value to maintain throughput. This characteristic is partic-
ularly stron g with Nafion in which the permeability is a function of the
solids concentration. It can thus be seen that the steam cavity pressure and
the water throu gh put will float as the solids concentration and permeability
vary.

Steam in the steam cavity condenses on the porous plate which is thermally
cou pled to the cold ,junction of the thermoelectrics in the TER. Thus the cold
,junction assumes a temperature corres ponding to the saturation p ressure of the
steam in the cavit y . Since the hot ,function of the thermoelectrics is equal
to the urine temperature which is controlled to a fixed value, the steam
saturation pressure-temperature relationshi p sets the temperature difference
across the TER. The heat throu ghput of the TER is linked to the condensing
steam flow via the latent heat of vaporization. As seen in Figure 17, for
constant volta ge the TER heat transfer/temperature difference performance
characteristic is a linear relationship. As the heat flow decreases, the
temperature difference increases. Considering the interrelationshi p between
the TER and the HFM, the pressure dependence can he established. As the steam
pressure decreases, the HFM throu ghput increases and the TER throughput
decreases. Conversely, as the steam p ressure increases, the HFM throughput de-
creases and TER throu ghput increases. Since steam pressure is the link between
the two units, it must float or he controlled to balance the throughput. The
steam and product water p ressure is approximately 13.8-20.7 kPa (2-3 psia).
Since the product water must be delivered to water tanks back pressured to
137.9 kPa (2n psia), the water delivery scheme interacts with the pressure
control scheme.

As part of the p reliminary desi gn activity, several p ressure control schemes
were evaluated. They are as follows:

delivery Pump Speed Control - A pump's delivered pressure head is a
function of rotatin g s peed. Thus pump speed control car. be used to
indirectly control the condensate delivery p ressure. However, since the
delivery flow rates are small, 2.2-6.6 kq/h (1-3 lh/h product flow) and

ti ght control band 1.4 kPa (0.2 psi), was re quired, it was decided that
this control scheme re quired an excessive sensitivity. It was therefore
eliminated.
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Product Water Pressure Regulator - This scheme would maintain the steam
chamber  pressure .y contro	 na the water pressure downstream of the
porous plate by means of a pressure regulator. This pressure regulator
would be at the inlet to the water delivery pump. This scheme was

rejected due to the cost and com plexity associated with the pressure

regulator.

Constant Neat Pump With ControlR ass - This is essentially the same as
the first scheme except that a contro led variable pump b ypass would be

utilized to control the feed pressure to the pump. Again, as in the
first option, the control sensitivity would provide an excessive compli-
cation to the system.

Accumulator - In this ap proach pressure control is maintained by utilizing

as e— ssentially constant pressure accumulator to provide the product water
reference pressure. As the accumulator fills, liquid level sensor in the
device turn the pump on and off to provide delivery to the external
tanka ge. This approach utilizes extremely simple control lo gic. The
accumulators are simple in construction, with sprin gs providing the

pressure set points. As an added feature, this a pproach has easily
changeable set points. As a result, for hardware simp licity and for

development program advanta ges, it was selected as the baseline pressure
control scheme.

It was initially considered that a sli ght partial pressure of nitrogen,
approximately 1.7 kPa (0.25 psi), might he needed to provide the pressure

drop required to flow condensate throu gh the porous plate. However, in de-

velopment, it soon became apparent that the non-condensahle gas concentrated

above the plate, thereby choking steam flow. niffusion calculations supported
the contention that nitrogen or air blanketin g the porous plate would provide

drastic reduction in throu ghput. Several techniques of preventing this con-
centration were evaluated, including a recirculating steam flow. However, the
selected approach utilized a burp control scheme to eliminate the non-conden-
sables and a ca pillary tube to fine tune the back pressure control. The burp
control vents the steam chamber on a periodic basis to eliminate the non-
condensables. The vent rate is sized to maintain the steam losses less than
the 0.014 kq/h (0.03 lb/h) maximum allowable. With the capillary tube, the
accumulator pressure is set at approximately 1.7 kPa (0.25 psi) lower than the
minimum expected steam pressure. The tube is then sized for a 1.4 kPa (0.2

psi) pressure drop at the maximum liquid flow and maximum accumulator pressure.
For any other condition, the tendency is to provide a lower than required

pressure upstream of the capillary. This would then cause flashin g in the
feed tube to the capillary. However, one percent flashing will create suffi-
cient vapor to dramatically increase the capillary pressure drop. It will
thus raise the upstream pressure to the saturation conditions, thereby tending

to minimize flashing. Therefore, the capillary tube provides a self-regulating
control scheme in which the condenser pressure is maintained at saturation
conditions with significantly less than one percent flashing. This scheme

worked successfully during develo pment testing. As part of the preliminary

desi gn effort, approximately six coolinq concepts were considered. Signifi-
cantly later in the program, additional refinements were considered and will
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he dealt with in detail in the section entitled "Improved Temperature Control."
Since it is described there, the coolina s ystem trade studies will not he
reported on at this point. The selected baseline cooling scheme was picked
for its simp licity. It consisted of recirculation of the condensate through
an external heat exchanger with temperature control achieved by modulation of
the recycle flow. Thus the cooling was achieved at the most o ptimum point,
namely, the condensin g side of the TER. The external heat exchanger was sized
to provide the required heat rejection utilizing the cahin circulation airflow
of approximately 0.188 m/s (37 ft/min). This also corresponds to a natural
convection heat flow in an earth gravity environment. Temperature control is
achieved by varyin g the flow rate through the condenser section and through
the heat exchanger. The flow variation was achieved by pulsing the fluid at
various time intervals. As the urine temperature exceeded its 65.6°C (150°F)
set point, the flow would he increased and conversely a decrease in temperature
would prompt a flow decrease. The control logic was based on a proportional
plus integral scheme. nifficulty in implementin g the scheme was due to the
very low flow rates re quired for cooling, less than 55.6 kq/h (26 lb/h). With
the large heat exchan ger and the low flows, there were very long time lags
associated with this system. It worked ade quately during development, but an
improved scheme is desirable.

Once the schematic configuration was finalized the preliminary design studies
were directed towards sizin g the TER, HFM, heat exchan ger, tanks, and pump.
Thermoelectric devices have an optimum coefficient of performance (COP) for
this application at a pproximately O.R vnC impressed voltage. Considering the
26.5 VnC minimum volta ge available for the TIMES, an optimum thermoelectric
module would consist of a series strin g of 32 thermoelectric chips. This then
sizes the baseline TER module. As part of the optimization, computer analyses
predicted the performance of two, three and four TER modules in conjunction
with various permeabilities and areas for the HFM, Since two TER modules
could not meet performance for any of the conditions studied, this configura-
tion was eliminated as a viable option. Fi gure 18 shows the specific energy
for three and four TER modules. As can he seen in that figure, for all cases,
the specific energy with three modules is significantly less than with four
modules. Since s pecific energy is the major criteria for desi gn selection,
three TER modules were haselined. Additionally, since the difference in power
amounted to approximately 20 watts and the wei ght increase for the fourth
module would be insianificant compared to the 20 watt power penalty, three
modules were further validated. The basic requirement for the HFM sizing is
that the subsystem be capable of delivering a product water flow of 3.8 kq/h
(1.7 lb/h) from non-concentrated urine with a supply volta ge of 29 VOC. The
computerized sizin g haled on the Amicon memhrane is shown in Figure 19. An
area of 0.35 m2 (3.75 ft 2 ) was initially accepted to provide performance with
some mar gin. With the subsequent shift to the Nafion membranes, the unit was
resized based on the same criteria.
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The basic water recovery and solids concentration model is used to determine
the solids concentration at chan ge-out to meet the 95 percent water recovery
requirement. Figure 20 details the initial baseline water model which consis-
ted of a mixture of urine, urine flush water, and brine. This is a total of
8.9 kg (19.65 lb) of water per day at a 3.1 percent solids concentration.
This effect on final solids concentration can be seen in Figure 21, which
shows the final solids concentration as a function of re quired recovery and
the solids concentration in the raw feed. At the TIMES model of 3.1 percent
solids concentration, the solids concentration in the recycle tank at chan ge-
out will be 39 percent to achieve an effective water recovery of 95 percent.
As can he seen in the fi gure, the TIMES model is more stringent than that used
for RLSE and not quite as stringent as using raw urine. The final solids
concentration information was then used to size the system tankage. Figure 22
itemizes the size of each tank and the sizing rationale.

A heater trade study is p resented in Memo 78-109. This provided the basic
operating mode for the system during quiescent mode, sized the heaters, and
sized the system insulation.

Rased on the system sizes selected during preliminary design activity, the
systems analysis design activity culminated in definition of the performance
ranges and the initial operating lo gic. The performance ranges are defined on
the flow chart in Fi gure 23 and the initial operatin g logic is defined in Memo
78-117. This is a compendium of the information that provided the basis for
the system design.
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URINE FLUSH BRINE

WATER	 5.91	 kg WATER	 1.73 kq WATER	 1.00 kg
(13.02	 lb) (3.81	 lb) (2.21	 lb)

SOLIDS	 0.26 kg SOLIDS	 — SOLIDS	 0.018 kg

(0.57	 lb) (0.04	 lb)

6.17 kg	 1.73 kg	 1.02 kg

(13.59 lb)	 (3.81 lb)	 (2.25 lb)

TIMES

8.92 kg

(19.65 lb)

• 3.1% SOLIDS

°IGURE 20

DAILY WATER RECOVERY

1
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HOLDING	 1245 CM3

(76 IN3)

PRETREAT	 7212 CM3

(440 IN3)

WASTE STORAGE	 19668 CM3

(1200 IN3)

RECYCLE	 8850 CM3

( 540 IN3)

q 	 ACCUMULATOR	 164 CM3

(10 IN3)

FIGURE 22

TANKS

4;

. 1.25 KG (2.75 LB) WASTEWATER

7 PUMP-OUTS/DAY

. PROCESS 1816 KG (4000 LB)

WASTEWATER

. 19.5 KG (43 LB) WASTEWATER

2 DAYS A HOLDING TANK

3.6 KG (8.0 LB) SOLIDS

15 DAY CAPACITY

0.5 MINUTE PUMP-OUT

8-15 MINUTE DWELL
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HARNARE DESCRIPTION

The basic preprototype TIMES subsystem, as described by the subsystem block
diagram shown in Fi gure 24 and the subsystem parts list in Table 2, consists

of a collection packa ge, a process packa ge, a controller, a driver box, a CRT

display, a keyboard, a floppy disk drive, and an electrical harness set.

Table 3 is a complete listin g of all TIMES components. with the exception of

the mixin g tank, the pretreat tank, the waste stora ge tank, and the condensate

cooling heat exchanger, the entire subsystem has been d gsi gned to operate in a

zero-gravity as well as-a one-gravity environment.

Package Description

The subsystem package arrangement less the CRT display, keyboard, and floppy

disk drive is shown in Figure 25. The CRT dis play , keyyhoard, and floppy disk

drive package arrangement is shown in Figure 26.

Collection Package

The collection package, whose overall dimensions are 43.8 cm (17.25 in) wide

hn5 68.6 cm J27.0 in) dee p by 63.5 cm (25.0 in) hi gh with a volume of 0.191

m (6,74 ft ), contains the wastewater collection and pretreatment components
and the posttreatment components. Table 4 is a collection package parts

list, with the components plumbed as shown in the TIMES schematic, Fi gure 2.

Components are grouped for the best compromise of simple plumbin g and main-

tenance accessihility. The packa ge frame consists of aluminum channel sec-

tions bolted together with simple support brackets and panels as required.
All fluid and electrical interfaces terminate at the rear surface of the

ackage.

Process Package

The pro^ess packa ge, whose overall dimensions are 48,3 cm (19.0 in) wide by

63,5 cm (25.n in) deep by 88.9 cm (35.0 in) hi gh with a volume of 0.273 m3

(9,62 ft ), contains the processin q components. Table 5 is a process package

parts list, with the components plumbed as shown in the TIMES schematic,

Figure 2. Components are g rouped for the hest compromise of simple plumbing,

maintenance accessibility, and thermal isolation. The packa ge frame consists

of aluminum channel sections bolted to gether with simple support brackets and

panels as required. The entire process packa ge, with the exception of the

condensate coolin g heat exchanger item 211, is thermally insulated from ambient

air. Additionally, the thermoelectric regenerator item 401, is thermally

isolated from the process packa ge interior ambient. All fluid and electrical

interfaces terminate at the rear surface of the package.

Controller

The controller, whose overall dimension ar
(17.12 in) deep by 17.8 cm (7.0 in) hi gh w

ft 3 ), contains the micro p rocessor based co
and similar low level circuit functions ar
that is shown in Figure 27. Lo gic level s

power control elements packa ged within the

is located with the basic TIMES subsystem

e 43.2 cm (17.0 in) wide by 43.5 cm

ith a volume of 0.033 m 3 (1.18
ntrol system. Signal conditioning
e also contained within the controller
i qnals from the controller drive
separate driver box. The controller

packa ge as shown in Figure 25.
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Tahle 2
TIMES SIIRSYSTEM PARTS LIST

Collection Packa ge SVSK9756?

Process Packa qe SVSK967A

Controller SVSN97811

nriver Rox SVSK97812

CRT Dis play SVSK1n3179

Keyboard SVSK10317A

Floppy nisk nrive SVSK103177

Electrical	 Harness SVSK97814

Ref: TIMES Instaliation nrawin q	SVSK96787
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Item No.

100

101

103

104

105

106

107

108

110

111

112

113

114

115

17

119

121

122

123

124

125

126

Table 3
TIMES COMPONENT LIST

Description

Pretreat Metering Unit (incl. check valves)

Manuel Drain Valve

Waste Inlet Valve, Electrical

Recycle Loop Flush Diverter Valve

Input Cheek Valve

Mixinq Tank Expulsion Valve

Relief/Check Valve, Feed Inlet

Re,;ect Recycle 'lalve

Septum, Condensate

Septum, Multlfilter Inlet

Septum, Multifilter Outiet

Manual Flush Valve

Vacuum Control Valve, Control Pressure

Vacuum Control Valve, Raise Pressure

Check Valve, Condensate Delivery Pump

Isolation Valve, Condensate

Manual Isolation Valve, Multifllter

Manual Isolation Valve, Process Pka. Condensate

Manual Isolation Valve, Concentration Sensor nutlet

Manual isolation Valve, Concentration Sensor Inlet

Restrictor, Orifice, Holdin g Tank

Restrictor, Orifice, Concentration Sensor

Pert Number

SVSK97814

Whitey SS44S6

SVSK102756-103

SVSK102756-104

Circle Seal 232-T1-6TT-,1

SVSK102757-106

Circie Seal 232-T1-6TT-8

SVSK102756-108

SVSK96716

SVSK96716

SVSK96716

Whitey SS-4456

Valcor V44700-124

Valcor V4470O-:24

Circle Seal 232-T1-4TT-.1

SVSK102757-119

Parker 4Z-V66J-SS

Parker 4M4Z-V4AR-SS

Hoke 7122G4Y

Hoke 7122G4Y

SVSK102805-125

SVSK102805-126

43



®
TECHNOLOGIES
DURO^4oa
@VM 0 SVHSER 7236

44
	

0

or
	 w

Table 3 (Continued)
TIMES COMPONENT LIST

Item No. Description

127 Restrictor, Orifice, Filter

128 Restrictor, Capillary , Condensate Delivery

129 Restrictor, Capillary, Vacuum Control

130 Check Valve, Condensate Recycle

131 Manual	 Isolation Valve, Collection Pkq. Condensate

132 Manual	 Isolation Valve, Accumulator Vacuum

133 Maintenance Ouick Disconnect Valve--Recycle Tank

134 Maintenance Ouick Disconnect Valve--Filter

135 Maintenance Isolation Valve, HFM Inlet

136 Maintenance Isolation Valve, HFM Inlet

137 Maintenance Isolation Valve, HFM Outlet

138 Maintenance Isolation Valve, HFM Outlet

Part Number

SVSK102805-127

SVSK102805-128

SVSK102805-129

SVSKID2807

Parker 4M4Z-V4AR-SS

Parker 4Z-V66J-SS

SVSK95685-221

SVSK95685-221

HOKE7115G6Y

HOKE7115F4Y

HOKE7115F4Y

HOKE7115G6Y
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Table 3 (Continued)
TIMES COMPONENT LIST

Item No. Description Part Number

200 Waste Storage Tank SVSK96683

201 Pretreat Chemical Tank SVSK96682

202 Pretreat Mixing Tan'	 (Holding Tank) SVSK96681

203 Recycle Tank SVSK96710

204 Recycle Tank Heater SVSK96730-7 (incl. on
Item 203 Dwo.)

205 Product Water Bacteria Trap, Upstream SVSK96720-103 (incl.	 on
Item 206 Dwq.)

206 MuItifiIter SVSK96720

207 Product Water Bacteria Trap, Downstream SVSK96720-103 (incl.	 on
Item 206 Dwq.)

208 Reject Recycle Bacteria Tra p SVSK96720-103 (incl. on
Item 206 Dwg.)

209 Urine Preheater SVSK97505

210 Filter SVSK96796

211 Condensate Cooling Heat Exchanger SVSK96791

212 Condensate Accumulator SVSK96713

213 Ambient Air Bacteria Trap SVSK96718

^I
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Table 3 (Continued)
TIMES COMPONENT LIST

item No. Description Part Number

300 nuantity Sensor, Pretreat OemXM 800-3-SS-SS-1-12
(incl. on Item 201 Dwq.)

301 Ouantity Sensor, Mixinq Tank OemXM 800-3-SS-SS-1-12
(inci. on Item 202 Dwq.)

302 Ouantity Sensor, Haste Storaqe OemXM 800-3-SS-SS-1-12
(incl. on Item 200 Dwq.)

303 Concentration Sensor H.F. Instruments Ltd.
Model ORT-200 Sensor Module

304 TER Outlet. Temperature Sensor SVSK86443

305 Porous Plate nifferential Pressure Transducer Tavis Model P105,
0-2 PSID

306 Conductivity Sensor SVSK97533

307 Recycle Tank Temperature Sensor SVSK96710-8 (incl. on
Item 203 Dwq.)

308 HFM Inlet Temperature sansor SVSK85443

309 HFM Outlet Temperature Sensor SK85443

310 Filter Differential Pressure Transducer Tavis Model P105, 0-4 PSID

311 Controller SVSK97811

312 Ouantity Sensor, Condensate Rourns Model 5108, 5000ohm,
2.25" Travel, Linear
Potentometer (inci. on
Item 212 Dwq.)

313 Steam Pressure Transducer TaAs Model P105,
0-16 PSIA

314 Evaporator Liquid Sensor SVSK95637

315 Oriver Box SVSK97812 (lncludinq
Item 303 and Item 306
Electronics)

316 HFM nifferential Temperature Box SVSK101112
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Table 3 (Continued)
TIMES COMPONENT LIST

Item No.	 Description Part Number

400 Urine Recycle Pump SVSK102747

401 Thermoelectrical Reqenerator SVSK95545

402 Hollow Fiber Membrane Evaporator SVSK95638

403 Condensate Delivery Pump SVSK102747

404 Condensate Recycle Pump SVSK102788
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FIGURE 26
CRT DISPLAY, KEYBOARD, AND

FLOPPY DISK DRIVE
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Table 4
COLLECTION PACKAGE SVSK97562 PARTS LIST

Item No. nescription

100 Pretreat Meterinq Unit (incl. check valves)

101 Manual nrain Valve

103 Waste Inlet Valve, Electrical

105 inlet Check Valve

106 Mixing Tank Expulsion Valve

107 Relief/Check Valve, Feed Inlet

108 Reject Recycle Valve

lln Septum, Condensate

111 Septum, Multifilter In1Lt

112 Septum, M,,Itif11ter nutlet

113 Manual Flush Valve

117 Check Valve, Condensate nellvery Pump

119 Isolation Valve, Condensate

121 Manual	 Isolation Valve, Multifilter

125 Restrlctor, Orifice, Holdinq Tank

131 Manual	 Isolation Valve, Collection Pkg. Condensate

132 Manual	 Isolation Valve, Accumulator Vacuum

Part Number

SVSK97814

Whitey SS44S6

SVSK102756-103

Circle Seal 232-T1-6TT-.1

SVSK102757-106

Circle Seal 232-T1-6TT-8

SVSK102756-108

SVSK96716

SVSK96716

SVSK96716

Whitey'SS-44S6

Circle Seal 232-T1-4TT-.1

SVSK102757-119

Parker 4Z-V66J-SS

SVSK102805-125

Parker 4M4Z-V4AR-SS

Parker 4Z-V66J-SS
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Table 4 (Continued)

COLLECTION PACKAGE SVSK97562 PARTS LIST

item No. Description Part Number

200 Waste Storage Tank SVSK96683

201 Pretreat Chemicrl Tank SVSK96682

202 Pretreat Mixino Tack (Holding Tank) SVS:96681

205 Product Water Bacteria Trap , upstream SVSK96720-103 (incl. on
Item 206 Dwq.)

206 Multi fiiter SVSK96720

207 Product Water Bacteria Trap, Downstream SVSK96720-103 (incl. on
Item 206 Dwq.)

208 Reject Recycle Bacteria Trap SVSK96720-103 (inci. on
Item 206 Dwq.)

212 Condensate Accumulato- SVSK96'l13

300 Quantity Sensor, Pretreat GemXM 800-3-SS-SS-1-12
(incl. on Item 201 Dwg.)

301 Ouantity Sensor, Mixing Tank GemXM 800-3-SS-SS-1-12
(Intl.	 on Item 202 Dwg.)

302 Ouantity Sensor, waste Storage GemXM 800-3-SS-SS-1-12
(incl. on Item 200 Dwq.)

306 Conductivity Sensor SVSK97533

312 Quantity Sensor, Condensate Bourns Model 5108, 5000ohm,
2.25" Travel, Linear
Potentometer (incl. on
Item 212 Dwq.)

403 Condensate Delivery Pump SVSK102747

--- Frame SVSK97562-100

--- Miscellaneous Fittings and Tubes ---
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Table 5

PROCESS PACKAGE SVSK96789 PARTS LIST

Item No. Description Part Number

104 Recycle Loop Flush niverter Valve SVSK102756-104

114 Vacuum Control Valve, Control Pressure Valcor V44700-124

115 Vacuum Control Valve, Raise Pressure Valcor V44700-124

122 Manual	 Isolation Valve, Process Pka. Condensate Parker 4M4Z.V4AR-SS

123 Manual Isolation Valve, Concentration Sensor Outlet Hoke 7122(34Y

124 Manual Isolation Valve, Concentration Sensor Inlet Hoke 7122G4Y

126 Restrictor, Orifice, Concentration Sensor SVSK102805-126

127 Restrictor, Orifice, Filter SVSK102805-127

128 Restrictor, Ca p illary, Condensate Delivery SVSK102805-128

129 Restrictor, Ca p illary, Vacuum Control SVSK102805-129

130 Check Valve, Condensate Recycle SVSK102807

133 Maintenance Quick Disconnect Valve--Recycle Tank SVSK95685-221

134 Maintenance Quick Disconnect Valve- .Filter SVSK95685-221

135 Maintenance Isolation Valve, HFM Inlet HOKE7115G6Y

136 Maintenance isolation Valve, HFM Inlet HOKE7115F4Y

137 Maintenance Isolation Valve, HFM Outlet HOKE7115F4Y

138 Maintenance Isolation Valve, KM Outlet HOKE71)i:6Y
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Table 5 (Continued)
PROCESS PACKAGE SVSK96789 PARTS LIST

Item No. Description Part Number

203 Recycle Tank SVSK96710

204 Recycle Tank Heater SVSK96710-7 (1ncl. on
Item 203 Dwq.)

209 Urine Preheater SVSK97505

210 Filter SVSK96795

211 Condensate Coolinq Heat Exchanqer SVSK96791

213 Ambient Air Bacteria Tra p SVSK96718

303 Concentration Sensor H.F.	 Instruments Ltd.
Model DRT-200 Sensor Module

304 TER Outlet Temperature Sensor SVSK85443

305 Porous Plate Differential Pressure Transducer Tavis Model P105,
0-2 PSiD

307 Recycle Tank Temperature Sensor SVSK96710-8 (incl. an
Item 203 Dwg.)

308 HFM Inlet Temperature Sensor SVSK85443

309 HFM Outlet Temperature Sensor SVSK85443

310 Filter Differential Pressure Transducer Tavis Model P105, 0-4 PSID

313 Steam Pressure Transducer Tz.-ie Model	 P105,
0.16 PSIA

314 Evaporator Liquid Sensor SVSK95637

316 HFM Differential Temperature Box SVSK101112
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Table 5 (Continued)
PROCESS PACKAGE SVSK96789 PARTS LIST

Item No.	 Description

400	 Urine Recycle Pump

401	 Thermnelectrical Regenerator

402	 Hollow Fiber Membrane Evaporator

404	 Condensate Recycle Pump

---	 Frame

---	 Insulation

---	 Miscellaneous Fittings and Tubes

Part Number

SVSK102747

SVSK95545

SVSK95638

SVSK102788

SVSK96789-100

SVSK96789-200
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The driver box, whose overall dimensions use 4 , cm (17.0 in) wide by 43.5 cm

(17.12 in) dee p by 13.0 cm (5.12 in) hi gh with u , 'ume of 0.024 m 3 (O.86

ft 3 ), interfaces with the controller and uses low puwer signals from the
controller to actuate relays that switch AC and nC power, as applicable, to
control the operation of the various subsystem component pumps, valves, etc.
The driver box shown in Figure 28, also contains the electronic circuitry for

conditioning the si gnals from the wastewater recycle loop concentration probe

and the product water conductivity probe. The driver box is located with the

basic TIMES subsystem packa ge as shown in Fi gure 25.

CRT Dis p lay, Keyboard, and Floppy nisk Drive

The CRT display, keyboard, and floppy disk drive, shown in Fi gure 26, are

mounted in a GFF. console and are arran ged to integ rate with the NASA/JSC

Regenerative Life Su pport Evaluation program master control consoles. The

keyboard key arran gement is shown in Figure 29. Ilse of this keyboard is

discussed in detail in the Subsystem Analysis section.

Control and Display Description

Fi gure 30 is a control and display block dia qram. The function of the

control and display portion of the subsystem is to provide automatic control

24 hour monitorin g of subsystem pr-' *t water output and conductivity, auto-

matic shutdown, and subsystem per',	 ce monitoring.

The multi-colored cathode ray tube (_..f) display format shown in Fi gure 31

provides a continuous readout of system mode, any subsystem anoriolies or

advice system status, and o perations instructions. Any one of six visual

isplays of a ppropriate data can be selected. These are:

- Mode Selection Table (Fi qure 32)

- Operation Dia gram (same as Performance niaqram except without performance

data) - ryt.rformance Diag ram (Fi
g
ure 33)

- Performance Table With Limits (Figures 34 and 35)
- Performance Plot of Water Production Rate (Fi gure 36)

- 'laintenance Dia g ram (Figure 37)

In addition, if an anomaly occL i, an anomaly readout together with an anomaly

light, either white, yellow or 	 d is displayed. White for a low level indi-

cation of abnormal occurrence, yellow for a caution, and red for a warnin g and

indicating the fact that the system is automatically being shutdown. An

audible alarm accompanies the red anomaly light.
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DISPLAY

O
)PERATING
SYSTEM

FLOPPY DISC
DRIVE

MASS
MEMORY

KEYBOARD

q q 

C3

0

q q 

C3
0

q q q

000

INSTRUMENTS CONTROL ELEMENTS
(VALVES, PUMPS, ETC.)SUBSYSTEM CONTROLLER

BUFFERED
INSTRUMENTATION

OUTPUT

FIfIIRE 3M

CONTROL ANTI MISPLAY BLOCK MIAGRAM
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Selected
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Echo, Computer FeedbacH Computer Options

FIGURE 31
CRT DISPLAY FORMAT
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The display provides maximum essential information at a glance and requires
minimum interp retation and trainin g for monitorin g or subsystem control. The

microprocessor controller provides automatic sequencing, dynamic control,
failure detection and isolation, processes instrumentation si gnals, calculates
and plots product water production rate, and plots product water conductivity.

Control of the subsystem is strai ght forward and requires minimal instruction
for operator usage as control is accomplished by inputting commands designated
on the CRT display using the keyboarc shown in Figure 29.

Four operatin g modes, normal shutdown, start, automatic, and standby are
provided. The logic summary for these modes is shown in Table 6. Also

shown is the failure shutdown mode and the conditions that initiate failure
shutdown. Logic programmed into the controller automatically initiates a 10
minute hollow fiber membrane evaporator transient flush with unconcentrated

urine from the waste stora ge tank before the subsystem can be shutdown; this

flush eliminates the possibility of solids precipitation in the membranes during

shutdown by removin g the potentially high solids concentration recycle loop
fluid from the membranes. When the subsystem is in the automatic mode accum-

ulatin g wastewater, the controller will initiate wastewater processing when the
waste storage tank reaches a predetermined full level, process until a pre-
determined low level is reached, transient flush, and place the subsystem back
in the accumulatin g sub-mode.

Subsystem cumulative on-time is record by an elapsed time meter mounted on
the driver box. nn-time for the current run is displayed on the CRT on page

of the performance tables.

Component nercription

The hollow fiber membrane evaporator, the thermoelectric regenerator, and the
control and display modules are state-of-the-art components incorporated into
the TIMES subsystem and will be described in detail in the following paragraphs.
Other TIMES components are either modified off-the-shelf items or designs

based on existing components.

Hollow Fiber Memhrane Evaporator )
>

The hollow fiber memhrane evaporator, 	 item 4n2, as shown in Fiqure 38 con-

sists of two ma.ior parts, the cartridge assembly and the liquid trap and

sensor assembly. 	 Eighteen hollow fiber membrane cartridges, each containing

92 Nafion membrane tuhes retained at each end by round elastomeric headers, 1

r are mounted in a cylinderical	 polysulfone and titanium hollow fiber membrane
assembly.	 The total	 active membrane area is 	 1.95 m2	 (3024 in 2 ).	 Titanium end

caps at ach end of the assembly provide inlet and outlet headers for the j
wastewater mixture circulating through the inner diameters of the tubular 1
hollow fiber membranes. 	 A central	 standpipe in the assembly vents the outer

diameters of the membranes through the center of the wastewater inlet header

to the upstream portion of the liquid tra p and sensor assembly.	 A hydrophobic

teflon screen with liquid sensor electrodes at	 its a pex is contained in the
assembly.	 The screen allows steam to flow throu gh it while trap p in g and

sensin g any liquid breakthrough that mi ght exist from a failed membrane con- =

dition.	 After the steam passes through the liquid trap and sensor assembly it

is routed to the thermoelectric regenerator strim inlet tubes. 1
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The cartrid ge assembly is readily ren,:,)vable from the subsystem for maintenance

by isolatin q the hollow fiber membrane evaporator urine inlet and outlet lines
usinq maintenance valves, and unholtin q the cartrid ge assembly from the liquid
trap and sensor assembly.

Thermoelectric ^egenerator

The thermoelectric reqenerator, item 401, as illustrated in Fioure 39, contains

three identical wastewater heat exchanger/thermoelectric heat pump/steam
condensinq modules packa ged in parallel. For packa g inq convenience the inner
module shares steam headers with the inner side of the outer modules.

Fioure 40 shows a cross section of an individual module which contains R

single urine heat exchan ger with an identical hardware buildup on each side.
Steam from the HFM evaporator enters the passaqes in the steam header and
condenses on the porous plate. Meat flow from the condensin g steam to the cold

side of the thermoelectric elementsis by conduction across the thickness of
the pin fin collector plate located between the porous plats and the thermo-
electric elements. The nfii fin side of the collector plate is held against
the porous plate allowiro the condensate to he w'.thdrawn from the porous plate
and collected within the cavities between the pin fins. The condensate -'s
either removed from these cavities as product water or recirculated through
the external condensate coolinq heat exchan ger and returned to the cavity for
temperature control purposes.

Heat removed from the porous plate is pumped by the thermoelectric elements to
the p in fin wastewater heat exchan ger where it reheats the wastewater mixture
nrior to return to the HFM evaporator.
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MAINTENANCE

The TIMES has been designed to operate for a minimum of 6 months without
requiring maintenance of any kind except for the changeout of the item 203

recycle tank and item 210 filter that is re quired when the solids concentration
in the wastewater recycle loop reaches 39%. Probe type maintenance quick
disconnect valves items 133 and 134, res pectively, have been incorporated into
the recycle tank and the filter designs to allow rapid spill-free changeout of
these two item.z.

Althou gh no maintenance within the 6 month period is anticipated for the item
402 hollow fiber membrane evaporator, series shutoff valves and couplings have
been incorporated in the recycle loo p inlet and outlet lines of this component
to allow spill-free removal for the inspection of the membranes if desired.
The actual life of the membrane cartridge is yet to be determined, but is
expected to exceed 5 years.

The charcoal and ion exchange resin in the item 206 postfiltration module has
been sized for 6 months of operation, at which time schedued maintenance is
required. Removal of this component requires the disconnection of Swagelok
type fittings in the product water line.

Complete detdils of all maintenance operations for the TIMES are contained in
the Operations and Maintenance Manual SVHSER 7237.
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SUBSYSTEM FARRICATION

Table 7 identifies the principal items in the p rep rotot ype TIMES and shows

whether they are make, buy, or GFE items. The TIMES subsystem package assembly
is assembled usinq 0.635 cm (1/4 inch) and 0.953 cm (3/8 inch) stainless steel

tubin q , as appropriate, and Swa qelok or equivalent stainless steel fittings.
Components are located to facilitate maintenance, to allow manual positioninq
and visual monitorin q of valves, to minimize line lenqths and crossover points,

and to locate all interface connectors on the back side of the package.
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Tahle 7
TIMES PRINCIPLF.	 ITEMS DESCRIPTION

Item No.	 Part No. Part Name Remarks

100 SVSK97814 Pretreat Meterin q unit Modified Buy

2n0 SVSK96683 Waste Storaqe Tank Make

201 SVSK96682 Pretreat Chemical Tank Make

202 SVSK96681 Pretreat Mixinq Tank Make

2n3 SVSK96710 Recycle Tank Make

205, 207, 2nR	 SVSK96720 Bacteria Trap,	 Liqu;d Make

206 SVSK9672n Multifilter Make

209 SVSK97505 Preheater Make
r

21n SVSK96795 Filter Make

211 SVSK96791 Condensate Coolinq H/X Make !^

E 212 SVSK96713 Condensate Accumulator Make

213 SVSK96718 Bacteria Trap, Air Make

303 --- Concentration Sensor Buy p

304, 308, 309	 SVSKA5443 Temperature Sensor Buy

If

I

305, 310,	 313	 --- Pressure Transducer Buy

306 SVSK97533 Conductivity Sensor Buy

5

311 SVSK97811 Controller Make

f
315 SVSK97812 Driver hux Make

316 SVSK101112 Differential Temperature Box Makey

400 SVSK102747 Urine Recycle Pump Buy

401 SVSK95545 Thermoelertric Re qenerator Make

402 SVSK95638 HFM Evaporator Make

403 SVSK102747 Condensate Delivery Pump Buy

' 404 SVSK102788 Condensate Recycle Pump Buy
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Table 7 (Continued)

TIMES PRINCIPLE ITEMS nESCRIPTION

Item No.	 Part No.	 Part Name	 Remarks

---	 SVSK97562	 Collection Packa qe	 Make

---	 SVSK96789	 Process Packa qe	 Make

---	 SVSK103179	 CRT nisplay	 Buy

---	 SVSK103178	 Keyboard	 Modified Buy

---	 SVSK103177	 Floppy nisk nrive	 Buy

---	 ---	 Frame, CRT	 GFE
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SUBSYSTEM ACCEPTANCE TESTING

URINE VERIFICATION TESTING

Ob,iecti ve

Post-assembly verification testin g is conducted on the completed water recovery
subsystem to verify subsystem functionality and to demonstrate that all the
contractual desi gn, subsystem performance, and fabrication specifications are
met. Subsystem s pecific energy requirements, wei ght, volume, p rocessing rate,
water loss to vacuum, consumption of expendables, operation, endurance and
p roduct water quality are demonstrated to verify acceptability. As a minimum,
the cumulative time at test condi'ions during this task is to he equivalent to
30 ei ght-hour days (240 hours).

Summary

The TIMFS was operated for a total of 30 eight-hour days (2 40 hours), employing
a feed of pretreated urine havin g dissolved solids concentrations averaging
4,0%. The recycle tank was changed out once d4rinq the 240 hours, when the
dissolved solids concentration reached 37.n% in the recycle loop, which is
e quivalent to 93% water recovery from the pretreated urine feed.

Performance data were collected at 26.5 and 29,0 volts nC while processing
unconcentrated and concentrated urine. The s pecific ener gy at 26.5 VnC for
unconcentrated urine was 157.3 W-h/kq (71.5 W-h/1n), and the processing rate
after 30 ei qht-hour days was 0,88 kq/h (1.95 1h/h) at 29,0 VnC and with urine
concentrated to 27% solids content. Water loss from vacuum purgin g averaged
0.0059 kq/h (n.013 lb/h) over the test period, and expendables amounted to
0.88 kn/100 kq (0.8A lb/100 lb) pretreated urine. These results are compared
to the test requirements in Table 8.

With the exception of pH, water q uality met or exceeded the standards recom-
mended by the National Academy of Science - National Research Council, Committee
on Toxicology in their Report of the Panel on Potable Water Oualit y in Manned
Spacecraft, Au gust, 197 (contained in Appendix A of t is report for those
onst tuents actually analyzed. Table 9 compares test results with the
requirements of the standard.

Test Description

The subsystem test setup is schematically
D, Acceptance Testin g Test Data, contains
was initially charged with distilled water
29.0 VDC. The two btartup sub-modes occur
log ic summary, Table 6. The. subsystem was
mode, and performance was maintained with
The steady state condensate production rat
0.77 kg/h (1.7 lb/h) and all suhmode opera
was then placed in the 'STANDBY' mode.

illustrated in Fi gure 41. Appendix
the test log sheets. The subsystem
and put in the 'START' mode at
red in accordance with the TIMES
then put into the 'AUTOMATIC'
readin gs taken every 15 minutes.
e was verified as bein g g reater than
tion was confirmed. The subsystem
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Table 8
URINE VERIFICATION TEST RESULTS SUMMARY

Parameter/Condition
	

Requirement
	

Results/Condition

Total test time
	

240 h
	

240 h

Specific eneray/26.5 VDC

Ilnconcentrated Urine

Processin q rate/29.0 VDC
Ilnconcentrated I1 rine--240 h

Vacuum purge water loss

Expendables

334.4 W-h/kq

(152 W-h/lb)

0.77 kq/h
(1.70 lb/h)

0.014 kq/h
(0.030 lb/h)

0.65 kq/100 kq

(0.65 lb/100 lb)

157.3 W-h/kq
(71.5 W-h/lb)

0.88 kq/h O 27% solids
(1.95 lb/h)

0.0059 kq/h
(0.013 lb/h)

0.88 kq/100 kq

(0.88 lh/100 lb)

Water Recovery	 95%	 93%
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Table 9
URINE VERIFICATION TEST WATER ANALYSIS

SAMPLES

SPECIFi- POST-
nF.TERMINATION CATION NON-POSTTREATED TREATED

Ilrine Solids S 4.4 30.n 37,0 12.7 26.5 20 4-8 4-8

DH 7.n-8.0 3.7 7.3 6.9 3.5 3.7 6.9 3.9 5.7

Resistivity (Megohm-cm at .012 .003 .003 .006 ,(109 .007 .016 .042
25°C)

Total	 Solids, Pam 500 5.5 3.7 3.n 2.4 3.0 2.4 3.6 246.4

Orqanic Carbon, ppm 100 55 76 75 68 80 72 68 402

Inorganic Carbon, ppm 1 20 21 2 2 In 5 6

Cadmium as Cd, Dab 10 45 <10 <10 RO <10 <10 <10 <30

Chromium as Crt6 , D ph 100 <10 <10 <10 <10 <10 C10 <10 C10

CopPer as Cu, p ph 1000 <10 <10 <10 <10 <10 <10 <10 <10

Iron as Fe. pph In00 45 <10 <10 15 <10 <10 <10 <10

Lead as Ph. Dpb

Maqnesium as Mq, ooh 60 <10 10 80 15 <10 <10 <10

Manganese as Mn, Dph Inn <10 <10 <10 <10 15 20 <10 <10

Mercury as Ho, ppb

Nickel	 as Ni, nab ion <10 <10 <10 <10 980 <10 <10 <10

Potassium as K, ppb

Silver as An. Dob

Sodium as Na, o p h <10 <10 <In <10 <10 <ln <10 Ion

Zinc as Zn, ppb

Ammonia as N. Pam 5.0 0.27 41.3 47.3 0.52 5.75 21.8 0.31 2.64

Fluoride as F-, n pb 20nn 105 15 22 80 55 <10 30 <10

Nitrate as N, DDh

Sulfate as 504 - 2 , ppb

Chloride as Cl-, pph 250001 115 85 260 50 <50 325 <50 3840

Conductivity µmho/cm 80.n7 334.65 352.18 169.78 115.4 137.19 63.75 23.64

II
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The subsystem was recharged and tank level readings were taken to calculate a
mass balance, and then restarted. Warning, failure, and shutdown sensor
operation was then verified as indicated in Table in. The performance was
again checked to ensure that the production rate was at least 0.77 kq/h (1.7
lb/h) and that the s pecific energy was less than 334.4 W-h/kq (152 W-h11b) at
26.5 Vnc.

The distilled water was then drained from the holding, waste storage and
recycle tanks. Fresh urine, pretreated with 4 ml/liter of chromic/sulfuric
acid mix, was added to the recycle and waste storage tanks. By mutual agree-
ment with NASA, raw urine was substituted for the urine/urinal rinse water mix
called out in the contract. This was done ti permit comparisons with other
urine p rocessing suh3ystems. The subsystem was placed in the 'START' mrde and
allowed to reach the ;:ubmode 'REAn y '. This determined the warm-up time with
the recycle heaters. Subsystem heat-u p without the heater was delayed until
the baseline test. Roth warm-up time checks will be discussed in the Baseline
Test section.

The test continued automatically until the calculated solids content reached
37.n% in the recycle loop . The subsystem was then shut down, the recycle loop
filter chan ged, and the recycle tank removed, emptied and recharged with fresh
pretreated urine. The test resumed, and continued until the 240 hour point
(30 eiqht-hour days) was reached.

f y

	

	 All data was recorded hourly for the first ei ght hours
least twice daily thereafter. A mass balance between

€ maintained, and water samples were taken upstream and
filtration module at seven different dissolved solids
the 240 hour test. Samples of the recycle liquid were
calculate the dissolved solids concentration and check
that were recorded is presented in Table 11.

of operation and at
input and output was
downstream of the post-
concentrations during
taken every 24 hours to
PH. A list of readings

niscussion of Results

Performance

The performance data are presented in Figure 42. The data represent readings
taken at 24-hour intervals throughout the test, as well as several more points
near scheduled subsystem operational mode changes (such as recycle tank change-
out).

The processing rate decreases as recycle solids increase due to the solution
vapor pressure lowerin g effect, as well as the decrease in water permeability
through the Nafion membranes caused by the increased concentration of dissolved
s pecies. The data matched predicted performance as seen in Figure 43 where
the curve represents the normal operating characteristic of the subsystem.

C L	
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Table 10
SENSOR CHECKOUT

ITEM LOW LEVEL TRIP HIGH LEVEL TRiP WARNINGS/SHIITOOWN

1) Mixine Tank O.S% R6.5% (Actuates 96.0% Yellow
Rlowdown)

2) Waste Tank S. ft (Initiates fi7.5% (Recycle Pump 72.5% White
Flush) nn) 91.5% Yellow

3) Pretreat Tank --. ... (1.0% Yellow
4.5% White

4) Recycle Tank 62.20C (144-F)	 (On) 65.6% (150°F)	 (Off) 66.9°C (156-F;

Heater rnntrol (Failure Shutdown)

5) Recycle Tank/HFM inlet --- --- 21.7°C (71-F)
nett. Temp. Sensor (Failure Shutdown)
Failure

6) HFM Inlet Tema. --- --- 71.70r. 	(161-F) For 5 Min.
(Failure Shutdown)

7) Liouid Rreakthrou4h --- --- Wet
(Failure Shutdown)

R) Recycle Filter AP --- --- NO kPa (0.0 psid)
(Failure Shutdown)
26.20 kPa	 (3.80 psid) White
27.24 kPa (3.95 psid) Yellow

4 ) Accumulator 251. (Pump nff) 75% (Pump On) 100% For 10 Min.
(Failure Shutdown)

In) Conductivity --- 450 Wmho/cm (Recycle ---
Valve To Recycle)

11) Processino Rate --- --- %0.5 ke/h	 (1.1 lb/h) White

12) Shutdown Mode --- --- Hhite

!i

d
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`	 Table 11

DATA READINGS

Readin qs	 Comment

TIME Actual Daily Time

THFM
Feed Inlet Temperature At The Hollow Fiber Membranes

TREr,YCLF.
Recycle Tank Temperature

AT 
HEM

Feed Temperature Differential Across The Evaporator

PSTEAM
Steam Pressure At Evaporator

;PPP
Porous Plate Differential Pressure

AP Recycle Loop Filter Differential Pressure

V Subsystem In put DC voltage

A Subsystem Total Current

PROD RATE Water Production Rate

AVG PWR Average Subsystem Power

TER PWR Thermoelectric Regenerator Power

SPEC, FNGY Specific Energy At Operatinq Voltaqe

CORR SP F.NGY Specific Enerqy Corrected to 26,5 VOC

PROD COND Product Water Conductivity

SOL CONC Feed Solids Concentration

WASTE TANK Waste Tank Level

ACCUM Accumulator Vacuum

PROD pH Product Water pH

BURP VOL Water Loss To Vacuum purge

ACTUAL H2O DEL Measured Ouantity Of Product Water

WATER DEL Subsystem Calculated Ouantity Of Product Water

URINE ADDITION Ouantity Of Feed Added To Subsystem
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t

WHt
0.010.

W
W 0.

u u
s
7

s
^

O.00S 0.

Z>
s
>

u u
^	 0.0 s 0

ND
JON
W
J
u
a
u
W
K
F
s
WusW

?0

l0

e

RUM TIME (HOURS)

FIGURE 42

IIRINF VFRIFICATIrN TEST PFRFnRMANCE

85



tMrMD
TECHNOLOGIES
M&AM r.
MMo °u

SVHSER 7236

1 N

O
O

v

J N
4 w.
U C
•+ W
H
W
W
Uc a

o mW 6S S
r-

F

v

V!
O W Z

N F-

O
Y
N
C
L"m W

:11
dN O

O

O

.^ n n C O ^ C

0a

0

N0
J
O

O NN ^
x
wU
O
W
d

O
.r

O

O
	

01	 co	 w	 N	 Q

31V2 9NISS330dd WOWIXVW 30 1N33HU

.^	 FIGURE 43

URINE VERIFICATION TEST
RELATIVE PROCESSING RATE

86	 O i



i

as

^x

'C T-
	

i .,e.-. ......

^ Oo M^	 SVHSER 7236
^4G^nl S&

The recycle tank was chanqed-out at 37.0% dissolved solids accumulation. The
target concentration for 95% water recovery was 39% for the design concentra-
tion of 3.1% dissolved solids in urine/urinal rinse water. Due to the effect
of withdrawing recycle loop samples, and the time involved boiling the sample
to determine the actual solids concentration, the 39% solids tank change-out
point was incorrectly projected and the actual solids concentration was there-
fore lower. There was no observed undissolved solids residue on any of the
tank surfaces or in the concentrated recycle fluid; the elevated temperature
in the recycle loop provides high solids solubility. This is an important
feature of the TIMES, since considerable solids concentrations can thus be
tolerated without causin g any solids deposition problems. After recharging
with fresh pretreated urine, the processing rate returned to 1.11 kg/h (2.45
lb/h! at 29.0 VDC or 92% of the value at the start of the urine testing. This
represents a nearly complete processing rate recovery if the controller's
processing rate calculation band of +6% is considered. This band is generated
because calculated rates are the average of the previous four readings, updated
every 15 minutes. This effect can be observed in Fi gure 44, which is a
photograph of the actual TIMES controller plot of processing rate vs. time.

The specific energy at 26.5 VDC for unconcentrated urine was 157.3 W-h/kq
(71.5 W-h/lb) and the maximum value was 240.9 W-h/kq (109.5 W-h/lb) at 37%
solids. Projected to 40%, this value would have been 249.0 W-h/kq (113.2
W-h/1b). This is significantly below the specification of 334.4 W-h/k q (152
W-h/lb for unconcentrated urine, and reflects the result of the relatively
high processinq rates attained by the subsystem.

For the remainin g 80 hours of the test, the system voltage was reduced from
29.0 to 26.5 VDC and at the 240 hour point, the processin q rate with 27%
recycle solids was 0.74 kg/h (1.53 lb/h), which is equivalent to 0.88 kq/h
(1.95 pph) at 29 VDC. Using the subsystem operating characteristic, this
would project to 1.26 k q/h (2.78 ib/h) at 29 VDC for unconcentrated urine.

Water Ouallty

The water analysis shows that the posttreated product water was of excellent
quality throughout the test.. The high ammonia levels found in the raw product
water collected at higher dissolved solids concentrations ,lid not affect the
posttreated product water quality.

A sharp conductivity rise that occurred at 25% solids concentration was brought
under control by increasin g the quantity of pretreat added to the urine in the
waste storage tank. This served to bring the recycle loop pH down, thereby
inhihitin q increased ammonia evolution which was primarily responsible for the
conductivity rise. The slightly low PH level in the posttreated product.water
is attributed to residual dissolved carbon dioxide and trace carryover.of
hydrogen chloride. It is recommended that pH levels he more closely monitored
so that the quantity of pretreat added can he adjusted in order to control
recycle loop pH, and simultaneously optimize expendables usage.
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URINE BASELINE TESTING,
s

Ob,iective
5

The purpose of the baseline test is to establish the exact o perating charac-
teristics in earth gravity conditions. The testin g establishes subsystem
endurance, component maintenance or replacement re quirements, and determines
subsystem suitability for inclusion in future fli ght systems.

The cumulative test time at test conditions is to he e quivalent to 30 eiqht-hour
days (240 hours), and the subsystem is to process urine produced by three crew
men in 30 days with system maintenance allowed, except for the processing module.

Summary

The TIMES, after completing the 240 hour verification test, was operated for a
total of 30 eiqht-hour days (240 hours), employin g pretreated urine feed
having dissolved solids concentrations avera ging 3.8%. The recycle tank was
changed out once during the 240 hours, when the dissolved solids concentration
reached 37.7% in the recycle loop , which is equivalent to 93.5% water recovery
from the pretreated urine.

Performance data were collected at 26.5, 29.0, and 31.5 VnC while processing
unconcentrated and concentrated urine. The specific energy at 26.5 VDC for
unconcentrated urine was 158.4 W'-h/k q (72.0 W-h/lh). The processin g rate after
the first 4 hours of steady state operation was 1.2n kg/h (2.65 lb/h) at 29.0
vnC for unconcentrated urine, and 0.86 kq/h (1.90 lb/h) at 29.0 VOC after 240
test hours with urine havin g 11.5% dissolved solids. Water loss from vacuum
Pur

g
in

g
 averaged n.n35 k q/h (0.077 lb/h), and expendables amounted to 1.15

k q/100 ko (1.15 lh/inn lh) p retreated urine. These results are compared to
the test requirements in Tahle 12.

With the exception of pH, water quality met or exceeded the standards recom-
mended by the National Academy of Science - National Research Council, Committee
on Toxicology in their Report of the Panel on Potable Water Oualit in Manned
S acecraft Au gust 19	 (contained n Appendix A of this report for t ose
const tuents actua y analyzed. Table 13 compares test results with the
requirements of the standard.

nisassembl,y of the subsystem after completion of testing did not reveal any
degradation in functional capability or condition that would prevent 180 days
of operation.

Test nescription

The test setup was identical to that used for the verification test and is
schematically illustrated in Figure 41. The holding, waste stora ge and recycle
tanks were drained of any concentrated urine residue from the verification
test. The holdin g and waste storage tanks were charged with fresh, pretreated
urine, and the subsystem was placed in the 'START' mode. Upon attaining 'REAny'
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Table 12

URIK7 BASELINE TEST RESULTS SUMMARY

Parameter/Condition Requirements Results/Condition

Total Test Time 240 h 240 h

Specific Fnerqy/ 334.4 W-h/k q 158.4 W-h/kq
26.5 VnC--Unconcentrated (152 W-h/1b) (72.0 W-h/lb)
Urine

Processinq Rate/ 0.77 kq/h n.R6 ka/h M 11.5% Solids

29.0 inc--Unconcentrated (1.70 lb/h) (1.90 lh/h)
Urine--240 h

Vacuum Pu ŷ qe Water Loss 0.014 k q/h 0.035 kq/h
(0.030 lb/h) (n.n77 lb/h)

Expendables
	

0.65 kq/00 kq	 1.15 kq/100 kq
(n.65 lb/100 lb)	 (1.15 lb/inn lb)

Water kecovery
	

95%
	

93.5%
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PETERMINATinN

Urine Solids 1

ON

Resistivity (Meaohm-cm
at 25°C)

Total Solids, Dom

nroanic Carbon, omn

inoroanic Carbon. Rpm

Cadmium as Cd, Cob

Chromium as Cr* 6 , Cob

Copper as Cu, Cob

Iron as Fe, Cob

Lead as Ph, Rob

Magnesium as MO. pph

Manganese as Mn, ooh

Mercury as No, oph

Nickel as Ni. Cob

Potassium as K, oph

Silver as An, Cob

Sodium as Na. pph

Zing as Zn, nob

Ammonia as N, oph

Fluoride as F', ooh

Nitrate as N. ppb

Sulfate as Sna-2 , Cob

Chloride as Cl'. Cob

Conductivity pmho/cm

aw

Table 13
URINE BASELINE TEST WATFR ANALYSIS

SAMPLES

SPECiF1-
CAT10N NON_POSTTREATEn POSTTREATEn

7.5	 21.0 2R.0 34.0 7,5 21.0 28,0 34,0

7.0-00 3.6	 3.5 3.6 5.A 5.0 4.3 3.9 4.0

.007	 .Ons .006 .nrA .003 .007 .007 .0n5

inn 1.3	 4.n 4.1 20 1.1 54.3 29.1

inn 37	 56 53 24 6 20 24 40

A	 22 22 31 2 17 18 23

10

loo	 <10	 <10	 <In	 <10	 <10	 <10	 <10	 <10

lnno

Irmo

ion In 2n 10 is 20 <10 20 In

ion <10 <1n <ln an <10 <10 <in <10

soon	 160	 770	 4500	 Won	 430	 1125	 1400	 9000

2nno	 7n	 125	 An	 13	 An	 ins	 85	 23

250000	 110	 275	 150	 260	 650	 1000	 700	 750

134.7	 197.6	 173.6	 175.7	 12.0	 146.5	 145.3	 184.1
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91
wr

a

,r.

Ir



®UNrrEM/WW
b	 SVHSER 7236INNE o

status, the subsystem was placed in the 'AIIMMATiC' mode with the volta ge set
to 29.0 VnC.

The water production rate was monitored after the first four hours of steady
state operation to ensure that the value was a minimum of 0.77 kq/h (1.7
lb/h). The subsystem was operated until 37.7% solids accumulated in the
recycle loop, and then the recycle loop filter and the recycle tank were
changed-out and charged with fresh pretreated urine. The subsystem was brought
hack to a steady state condition and the test continued until a total of 240
hours were accumulated.

Readings were taken at leas t once per hour durin g the first eight hours, and
at least twice daily during the remainder of the test. Water samples were
taken at four different solids concentrations during the testing, for both raw
and posttreated product water.

A number of startup and shutdown conditions were manually selected at the end
of the test to comp lete the determination of heatup times for the 'START' mode
with and without the recycle tank heater.

Discussion of Results

Performance

The data presented in Figure 45 represent steady state performance at 29.0
vnC, except for two points at the high (31.5 VnC) and low (26.5 VDC) voltage
levels of TIMES o peration. For the first 24 hours, the subsystem was manually
cycled between startup and shutdown four times, so no readings are presented
for this period. It is seen that the initial steady state baseline processing
rate is approximately equal to the initial value established at the beginning
of the verification test and therefore represents full throughput recovery for
the membranes after a return to unconcentrated urine input. However, the rate
of decrease of the processing rate after 100 hours is greater than that seen
in the verification testing. This step change in the processing rate is the
first indication of mar ginal porous plate operation, which became an acute
problem after a hi gh temperature shutdown that occurred during the subsequent
wash water testing (the porous plates are further discussed in the Wash Water
Testing section of this re port). The presumption that the porous plate effec-
tiveness was decreasing is sup ported by the observed increased vacuum purge
water loss occurring simultaneously. For the entire test, this loss averaged
0035 k q/h (n.n77 lb/h), but for the first 100 hours, it averaged only 0.012
kq/h (0.027 lb/h).

The reason for the decreased porous plate effectiveness is attributed to a
small amount of raw feed carryover observed in the purge water at this point
in the test. Examination of the hardware failed to uncover a leak in the
urine/steam interface. Suhseauent testing with wash water indicated a problem
where the silicone rubber tube headers were allowing raw feed to leak into the
steam chamber under certain operational conditions in the testing; the leakage
problem may have been occurrin g at this point in the baseline testing and would
have been the source of the contamination. The header problem is discussed
further in the Wash Water nemonstration Testing section.
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3.Ŵ.^ WS

u m

N i	 •

W00.6
N i

WO 1.u
o ei u .
CN
6

001
0••N

•
o. oL

d
0.

0

C

i

93

•	 .I1 ^i1^ •4	 7;

MmrES
	

SVHSER 7236

ORIC= '
OF pC4C.ii ,.

RUN TIME (HOURS)

FIGURE 45

URINE BASELINE TEST PERFnRMANCF.



94

_4

®HM MD SVHSER 7236

ORIGINAL R%':'.

OF POOR QL'AF Yo ^

RUN TIME (HOURS)

FIGURE 45

URINE BASELINE TEST PERFORMANCE

0.06
m
x

a	 ^
x	 m

0.05
^	 NN
N	 mN	 J
^ 0.04-^

W
C	 ^W	 ^

s 0.03	 Wm
W	 ^m	 ^
p^	 6

0.07	 z

^	 u

u
a 0.01

NO
JON
WJ

YWC
H2W
Y
W6

d



UNITED
TECHNOLOGIES

^ ^ ry^ 

Illl(711Iu1111L51^ @96

@Vagagam
SVHSER 7236

The recycle tank was chanqed-out at 37.7% solids, which was sli ghtly earlier
than anticipated because the subsystem had to be shutdown to inspect for leaks
as mentioned in the previous para graph, and therefore, did not reflect an
inability to concentrate the solids to a greater de gree. After the recycle
tank chanqeout a si gnificant processing rate recovery was observed, but the
rate for unconcentrated urine at this point was 17% lower than at the start of
steady state baseline testing, reflectin g the degraded porous plate condition.
At the end of the 240 hours, there were approximately 12% dissolved solids in
the recycle loop and the processin g rate was 0.86 kq/h (1.90 lb/h) at 29.0 VDC
This projects to 0.97 kq/h (2.14 lb/h) for unconcentrated urine using the
subsystem operating characteristic.

As expected, specific energy corrected to 26.5 VDC shows a steady increase as
the solids concentrate in the recycle loop. The levels are elevated over
those obtained in the verification test primarily because of the decreased
average processin g rates durin g the baseline testing. But again, a large
decrease in the s pecific energy is evident after the recycle tank was changed
out, and averaged 176.7 W-h/k q (80.3 W-h/1b) at 26.5 VDC during the last 40
hours of the test, with solids concentratin g to 12%.

Water Quality

Conductivity levels shown in Figure 45a remained fairly constant at 150 µmho/cm
after the initial rise. After the recycle tank chan qe-out, the average value
was 82.5 mho/cm.

Water qualitl was excellent except for the ammonia levels which, due to the
acidic pH conditions, were not bein g controlled by the ion exchange bed in the
postfiltration module. This condition will be corrected by the use of a
different ion exchan ge resin as discussed later in the Water Quality Improv ,^-
ment section.

Subsystem Operation

The results of the heatup times required during the 'START' mode with and
without a recycle tank heater are presented in Table 14. As can be seen, the
time required to reach a 'READY' submode without a heater is twice that
necessary with the recycle tank heater.

nisassembl y of the evaporator at the end of the test did not indicate any
obvious degradation of the components and materials. There was a thin deposit
of residue on the tube header faces and titanium plenum section, but it was
easily removed with a gentle water spray. Although difficult to see, some
trace residue was observed on the tube internal walls but was not considered
si gnificant. There was no absolute way to assess the condition of the porous
plates, and with sufficient flushin g using distilled water to remove the
suspected contamination, the plates appeared to recover their capacity.
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Tahle 14
HEATUP TIMES

TIME TO

'READY'

THFM INLET TRF.CYCLE TANK SURMnnE

TEST CONnITION °C (°F) °C	 (°F) (MINUTES)

No Recycle Tank Heater Initial 37.9 (100) 62.8 (145)

Final 54.4 (148) 61.7 (143) 1n0

Heater On At Start Initial 36.1 (97) 62.R (145)

Final 64.4 (149) 62.8 (145) 49

Heater Off At Start Initial 37.2 (99) 65.n (149)

Final 64.4 (148) 62.8 (145) 47

V
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WASH WATER nEMnNSTRATION TESTING

Objective

The objective of this test is to determine the feasibility of and performance
for shower wash water processing by the TIMES subsystem. The equivalent of
30 days of shower wash water from 3 crewmen (30 days x 3 men x 8 pounds per
man-day = 720 pounds) are to he processed.

Summary

The TIMES subsystem after completing the urine verification and baseline
testing was operated for a total of 371 hours usin g two different synthetic
wash water mixtures, and was able to process water at an avera ge rate of

0.97 kq/h (2.13 lb/h) at 29 VnC, with an avera ge specific energy of 163.7
W-h/kq (74,4 W-h/1b) at ?6.5 VnC. A total of 328.9 kq (725 lb) of water was
Processed. aver the course of the testing , manual and automatic start-ups
and shutdowns were executed and several coolin g schemes were investigated.

Vacuum purge water loss avera ged O.n15 k q/h (0.033 lb/h).

With the exception of pH, water quality met or exceeded the standards recom-
mended by the National Academy of Science - National Research Council, Committee
on Toxicology in the Report of the Panel on Potable Water quality in Manned

Spacecraft. August 1.	 (contained n Appendix n t s report 	 or t ose

constituents actua{lyanalyzed. Table 15 compares test results with the

requirements of the standard.

Test nescrintion

The subsystem was confi gured in the same manner as for urine testing. Refer
to figure 41. A baseline water test was run first to establish the post-
urine performance levels and thereby assess the condition of the membranes.

A synthetic wash water mix with 0.1% dissolved solids was made based on a
formulation provided by NASA and shown in Table 16. Chromic/sulfuric acid

pretreat was added to 5 gallon tanks of the mix in the proportion 4 ml/l or
80 ml/5 gal, the same dosin g employed durin g urine testing. The test data
included all of the customary information as well as readouts from thermocouples
strapped externally to the Thermoelectric Re generator (TER) heat exchanger

inlet and outlet tubes, to the condensate line u pstream of the capillary tube,

and downstream of the cooling loop heat exchan ger pump. nata points were

taken about every 4 hours.

After 240 cumulative hours and 194.1 k q (428 lb) of water were collected, a

hi gh temperature malfunction occurred. As a result, the TER was disassembled,
and new porous plates havin g a higher throughput were substituted for the

ori ginal plates to determine the impact on performance. Simultaneously, three

thermocou ples were installed on one cold side pin-fin plate at different
locations, and one thermocouple was attached to the adjacent steam passage
wall. This instrumentation provided more accurate temperature data, so the
external thermocouples were eliminated. In order to evaluate another NASA

app roved cleansin g agent candidate, a second wash water mix was introduced,

which used a soa p rather than a detergent.
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WASH WATER TEST WATER ANALYSIS

netermination Specification Samples
Posttreated Non-posttreated

PH 7.0-8.0 4.1 3.8

Resistivity (Megohm-cm .024 .017

at 25°C)

i

Total Solids, ppm 5n0

Orqanic Carbon, ppm 100 27 60

Inorganic Carbon, ppm 13 1

Cadmium as Cd, pph in <10 <10
;i

- Chromium as Cr+6 , ppb inn <10 60

Copper as Cu, ppb Iona <10 <10

Y
r
Q Iron as Fe, pph innn <10 65

^

F Lead as Pb, pph <10 <10

Ma gnesium as Mq , ppb <10 In
t

Manganese as Mn, pph Ion <10 <10	 t

Mercury as Ho, pph <10 <10

Nickel	 as Ni, ppb inn <10 <10

Potassium as K, ppb <10 00

Silver as A q , ppb <10 <10

Sodium as Na, pph 50 <10

Zinc as Zn, pph <in <10

Ammonia as N, ppm 50nn <10 <10

Fluoride as F-, pph 20n0

{ Nitrate as N, ppb <50 <50

R
Sulfate as 504- 2, pph 4onn 4500

Chloride as Cl-, pph 2500(10 2740 550

Conductivity µmho/cm 42.35 58.30

Urea, ppm 1.5 1.5
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Table 16
FnMULATInN FOR SYNTHETIC WASH WATER

Amount
Reaoent Added Per

Rea qent State 50 Gals

Ammonium Hydroxide 290 Aq. Solution 17.60 cc

nextrose Anhydrous Powder 2.514 q

Lactic Acid 85% Aq. Solution 28.766 q

Potassium Hydroxide Pellets (Contain 8.895 q
10-15% Water)

Sodium Chloride Crystal 34.633 q

Sodium Lauryl Sulfate Powder 69.644 q

or (M-11 Emollient Soap) (Liquid) (69.644 q)

Ilrea Crystal 12.112 q
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At the 256 hour and 208.2 kq (459 lb) mark, subsystem operation was evaluated
with air-coolin g instead of liquid coolin g to determine if this mode of opera-
tion was possible and as efficient. Fans were installed in the top cover of
the processing package and run continuously, drawing ambient air in through
the lower rear of the package and blowing it out at the top. This served to
cool the box and recycle tank and thereby effect temperature control. After
two days, fan control logic was installed, along with a box partition to
effectively isolate the cooling effect at the recycle tank. Air-cooling was
used until the final six hours of the test, when liquid cooling was again
employed.

Water samples were taken during the second wash water portion of the test, and
posttreated samples were passed through a test bed of strong acid ion exchange
resin in order to determine its effectiveness for ammonium ion removal.

niscussion Of Results

Performance

Performance data is presented in Figure 46. The water baseline production
rate averaged 1.04 kq/h (2.30 lb/hr) at 29.0 VOC and represents a 5% increase
in rate compared to the previous data point for the subsystem operating with
unconcentrated urine. The decrease and subse quent recovery of the production
rate observed during the first 60 hours of the wash water test with the deter-
qent is due to the evaporator tube membrane characteristics. As the wash
water mix was introduced, the production rate decreased due to the establish-
ment of an equilibrium state between the membrane and constituents in the mix,
which are known to reduce water transport through the membrane. However, the
detergent action of the mix cleaned the trace solids deposits left over from
the urine tests from the tube internal walls, causing an increase in water
throu ghput. Once the tube walls were clean, the production rate stabilized at
a constant level of 1.02 kq/h (2.25 lb/h) as predicted. This same effect
would have been noted with the soap mixture.

The test proceeded automatically until 68.0 kq (150 lb) of water were collected.
At this point an abnormal high temperature shutdown occurred that was a result
of an undetected recycle pump failure because the flow sensor normally used
for pump failure detection had been removed for repair. The external thermo-
couples on the urine exit lines indicated almost 99°C (210 0F), whereas the
subsystem would have normally shutdown at an evaporator inlet temperature of
71°C 1 1600F). it is entirely likely that TER temperatures were considerably
higher than 99°C (2100F), since with no pump or condensate flows, heat transfer
was by conduction alone from the powered-up TER to the evaporator inlet
temperature probe. Subsequent testing showed degraded performance which was
directly attributable to the high TER temperatures or 'hakeout'.
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Refore the TER was actually removed and disassembled, a temporary improvement

in performance was observed after in-place cleaning with isopropyl alcohol.

It was thought that the lauryl sulfate in the synthetic mix was being converted
to lauryl alcohol by the acidic pretreat solution, and in one way or another

was contaminatin g the plates. The isopropyl alcohol was used to dissolve any
lauryl alcohol that might be contaminatin g the plates and thereby making them

non-wettinq , as well as flow restrictive. Since the improvement was only
temporary, it was clear other contaminants were present.

Upon disassembly and checkout, it was observed that the porous plates were
indeed contaminated not with lauryl alcohol, but with non-volatiles that could
only have migrated to the plates at the high temperature, causing condensate
throughput flow capacity to be substantially reduced. In order to provide a
greater flow capacity while still maintainin g the wetting characteristics (as
defined by bubble point tests) necessary for successful porous plate operation,
new plates were manufactured and installed into the TER. The final character-
istics represented a 2n fold increase in flow ca pacity , at a reduction in

bubble point of approximately 2 to 1. Figure 47 illustrates these operating

characteristics in detail.

After the replacement plates were installed, an emollient soap was substituted
for the lauryl sulfate in the wash water formulation to determine the effect
on subsystem performance usin q a soar rather than a detergent.

System performance improved upon resumption of the test and production rates

avera ged 1.11 kq/h (2.44 lb/h) at 29 .n vnc compared to an initial rate of 1.04
kq/h (2.30 lb/h) at the very be ginning of the wash water test. This increase
is attributable to the increased throughput of the porous plates.

In order to evaluate an alternative cooling mode, the controller cooling logic

was modified sli ghtly and fans were installed in place of the liquid phase

heat exchan ger. The processin g rate decreased to an average value of 1.03 kq/h
(2.26 lb/h) at 29.0 VnC with this coolin g mode. Simultaneously , temperatures

recorded on the cold plate were n.5-l.n°C (1-2°F) hi gher than for liquid
cooling. If we consider that the permeability coefficient for the membranes
is a function of the partial pressure difference of water vapor across the
walls, then a decrease in OP created by a higher cold plate temperature (hot
side temperature is constant) accounts for the lower processing rate. Reflect-

inq this change in rate, the specific energy at 26.5 VOX was noticeably dif-
ferent for the two cooling modes and averaged 173.8 W-h/kq (79.0 W-h/1b) and
151.8 W-h/kq (69.0 W-h/lb) for air and liquid cooling respectively . The fans

employed were test items, and an actual unit would be much more efficient
having a power draw of 1 watt on the average, so the specific energy reported
uses this value and not actual power draw. As expected, the 0.5-1.0°C (1-2°F)
%T across the TER produced a ne gligible chan ge in TER power, since the semi-
conductor temperature characteristics represent second and third order effects.
The subject of air coolin g versus liquid cooling is discussed in detail in the
Improved Temperature Control section of this report.

Water loss to vacuum purgin g avera ged o.n14 kq/h (0.03 lb/h) over the latter
phase of the test, because the purge timer cycle had been doubled to tw i ne a
minute. Before the high temperature problem, the loss had averaged 0.0077 kg/h
(0.017 lb/h) at a purqe rate of once every minute.
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Water Ouality

The results of the water analysis are presented in Table 15. Throughout the
test, product water conductivity remained at 120 µmho/cm or less, and the pH
averaged 3.5 to 40. An initial rise to 100 µmho/cm can be attributed to the
equilibrium of the dissolved solids with the membrane. As the membrane
equilibrium concentration of chemical s pecies from the mix is reached, trace
quantities of volatile hydrogen chloride (MCI) as well as the urea decomposi-
tion products NH and CO are carried along with the steam and redissolve in
the condensed product. Because trace MCI carryover is de pendent on feed water
pH, the acidic wash water mix (pH - 1.5) resulted in recovered water having
low pH values; however, the wash water mix initially had only 0.1% dissolved
solids (of which urea represented 7%), so the total carryover was minimal, and
a stabilized value for the conductivity and pH was reached dur i ng this testing
where dissolved solids concentrations never reached 1.5%. Since the TIMES
posttreatment filters are sized for recycle loop feeds with up to 50% dissolved
solids, no additional hardware is necessary to provide high purity product
water while operating with wash water.

The trace total chromium observed durin g the analysis probably resulted from
leakage caused by the silicone tube headers that degraded near the end of the
test.

t`	 Subsystem Operation

`

	

	 After the test was completed, the evaporator was removed and disassembled for
inspection. The silicone rubber plugs used to header the Nafion hollow tube
membranes were obviously de graded on the exposed front face. Removal and
dissection of the plugs indicated that the internal ribs serving as seating
and retention grommets for the tubes were also deteriorated. The materials
compatibility testin g had shown no deterioration of an unstressed silicone
rubber coupon during 72 day exposure to pretreated urine. Reevaluation of the
initial materials compatibility testing methods compared with the actual testr

	

	
conditions, indicate that during subsystem testing the total exposure time to
the pretreat liquid was r eater, the subsystem test plugs were stressed, and
in the case of wash water testing, the pH of the pretreated liquid was con-
siderably more acidic than that of the materials compatibility test liquid
(pH = 1.5 vs. pH = 4.0 respectively). Durin g a normal mission profile the
TIMES subsystem would see a relatively consistent mix of urine and wash water
and would not encounter the stron g acid condition that occurred during wash
water testing. nue to the extent of the deterioration, it appeared desirable
to incorporate a more acid compatible header material to extend the assembly
life. Two materials, Viton-GF, and Hypalon, are much more acid resistant and
appeared to have acceptable physical properties including stress life and
reasonable softness. An evaluation program for these two materials concluded
that Viton-GF would best ensure long term stability and was therefore chosen
as the proper headerinq material for the membranes. This change has been
incorporated into the subsystem.

All Viton-A parts such as o-rings in the evaporator which are exposed to the
feed water were not deqraded.
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The tube membranes themselves were in excellent condition and showed only a
slight degree of set in the portion headered by the plugs. They retained
their original tensile strength, flexibility, and other dimensional properties
after 850 total run hours and approximately 6 months of exposure to urine and
wash water feeds. The tubes appeared transluscent since there were no internal
areas where permanent fouling had occurred and the tube membranes will be used
in subsequent testing.
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CONCUISIONS AND RECOMMENDATIONS

Urine Testing

Operating with the pretreated urine mix, the subsystem's processin g rate of
0.97 kq/h (2.14 lb/h) after 480 hours of operation exceeds the contract
requirement of 0.77 k q/h (1.7 lb/h) at 29.0 VDC for unconcentrated urine. The
average rate for unconcentrated urine over the course of testing was 1.13 kq/h
(2.49 lb/h). The specific energy at 26.5 VDC for unconcentrated urine averaged
161.1 W-h/kg (73.5 W-h/lb) over the verification and baseline testing period.
Water recovery avera ged 93% due to premature recycle tank chan ge-outs, and
would have surpassed 95% without any problem arisin g from the high dissolved
solids concentration. since no preci pitates were found during the change-outs.

Figure 48 shows the change in processing rate for unconcentrated urine at 29.0
VOC over the 480 hour test period. The 20% decrease of the processing rate is
attributable to the loss of throughput capacity for the porous plate and not to
any permanent foulin g of the membranes. Figure 49 illustrates the change in
the processing rate as dissolved solids concentrate in the recycle loop. Also
shown for comparison is the theoretical curve based on the e f fect of solids
concentration va por pressure depression and Nafion permeabilit y . The theoret-
ical curve represents the subsystem operatin g characteristic and the plot
clearly shows how actual data followed that characteristic. Figure 50 shows
the recycle loop solids concentration profile for first urine concentration
cycle during verification testin g. This is a typical concentrating profile
for the subsystem operating on urine, since it includes several manual shut-
downs and subsequent system flushes. For totally steady state operation, the
recycle tank chan ge-out frequency would be equivalent to 14 mission days at
the desi gn three crewman li quid waste input rate of 8.91 kq/day (19.65 lb/day).

More expendables (pretreat solution) were required than originally specified
due to the use of raw, undiluted urine in place of a mix of raw urine and rinse
water. The raw urine feed averaged 3.6% a;ssolved solids in contrast to 3.1%
in the ori ginal model, and this higher level required more pretreat to maintain
a sufficiently low pH in the water storage tank and thereby effect pH control
in the recycle loop. The rather crude volumetric method of introducin g pretreat
solution could be modified, resultin g in less pretreat consumption, by employing
continuous pH monitoring of the recycle loop and waste storage tank, and using
this signal to feed the optimum amount of pretreat into the raw urine charge.

There was no observable corrosion of any materials at the end of the urine
testing. The hollow fiber membrane evaporator assembly, includin g Nafion
membrane tubes, silicone rubber tube headers, and the titanium/polysulfone
structural components were in excellent condition. There was no g ross pre-

cipitate buildup evident in the recycle loop plumbing , filter housing, recycle
tank, or other urine handling components. Some trace residue could be seen on
the membrane internal walls and headers, but it was easily removed with clean
water, and therefore not Considered a problem.
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Wash Water Testing
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A total of 370 hours was accumulated on the subsystem during this testing,
hours. Fi gure 51a shows the relative processin g rate based on initial
memhrane/suhsystem throughput over the course of the urine and wash water
testing. There are six cycles evident, including four concentrating phases
for urine, and two steady state runs on low solids concentration wash water.
With the present subsystem configuration, operatin g on wash water, a processing
rate of at least 1.02 kq/h (2.25 lb/h) at 29.0 VOC seems maintainable over long
periods of time due to the slow increase in concentration of wash water dis-
solved solids.

First a deterqent and an then emollient soap were used in the wash water mix
during different portions of the testing, and there appears to he no reason why
the subsystem would not satisfactorily operate with either cleansin g agent. The

premise ori ginally made with res pect to performance was that urine and wash water
would present two extremes of water reclamation operating conditions expected for
TIMES.

This premise was vrrified by the production rate data obtained during the sub-
system operation on wash water. The data matched the ex pected values based on
urine testing performance, if the urine results were extrapolated to cover 0.1%
solids. Thus, it is clear that both pretreated wash water and urine interact
identically with the membrane material, resultin g in performance being dependent
on dissolved solids concentration only, and not on the chemical nature of the
wastewater feed.

The silicone rubber headers retaining the membrane tubes showed si gns of de gra-
dation near the end of the test; it was decided that a Viton rubber substitute
should he employed as a header material since Viton has been extensively tested
durin g the design su pport testin g portion of this pro gram and has exhibited
excellent compatahility to acidic solutions. A Viton-GF formulation has been
selected and is now incorporated into the subs ystem design.

Midway throuqh the test new porous plates were installed in the Thermoelectric
Reqenerator. An order of magnitude increase in thouqhput flow capacity has been
realized with these new plates, while still retaining the necessary wetting
characteristics.

Water Oualit.y For Urine And Wash Water Testing

Posttreated product water was of excellent quality, but anomolous ammonia re-
sults were obtained. Five maior components are plotted in Fi gures 52 and 53
for non-posttreated and posttreated samples taken durin g urine testing, and it
is seen that some ammonia levels were hi gher in the posttreated water.
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These curious results are explained fully in the Water Quality Improvement
section of this report, but basically result from the pH limitations of the
Ionac CC ion exchange resin used in the posttreatment multifilter. As the
product water pH decreased, more exchange sites in the bed were deactivated,
resulting in replacement of the absorbed ammonium ions by hydrogen ions, hence
higher ammonia levels were generated. As recommended in the Water Quality
Improvement section of this report, a change to a strong acid ion exchange resin
will drastically lower posttreated product water ammonia levels.

Thoughout the testing, pH of the recovered water was low, undoi6tably the result
of the highly acidic waste feed. As previously explained, more volatile hydrogen
chloride carries over with this condition, resulting in low pH levels in the
recovered water. Better pH control of the waste feed should resolve this problem.
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A mathematical computer model was written to simulate the operation of the
TIMES water reclamation subsystem. It assumes the use of an integral con-
troller so that only steady state responses from the subsystem are obtained.
The model is flexible enou gh to incorporate changes in major design parameters
as well as environmental conditions with little difficulty.

The input data set allows a choice of sixteen parameters, of which ten were
chosen and fixed throughout the runs, while six were adjusted to simulate a
number of different operational conditions which occur with TIMES. By manip-
ulating the values of certain selected parameters, the effects caused by
altering the cooling mode, for example, could be investigated, even though no
direct provision is incorporated into the main program to allow this change.

A typical run for concentrated urine presents a data summary as illustrated in
Fi gure 54. Additional information concernin g the nodal analysis of the
Thermoelectric Regenerator (TER) and Hollow Fiber Membrane (HFM) evaporator
are not included.

The actual TIMES urine and wash water o perational data are correlated with
computer predicted values in Table 17. Several parameters merit some
comment:

UA- this represents the subsystem heat transfer coefficient, but can be
adjusted to simulate 100% liquid coolin g , partial liquid and partial air
cooling , or 100% air cooling.

PA- this represents the membrane mass (water) transfer coefficient, and was
selected on the basis of bench test evaluation. It can be adjusted to
accommodate the coefficient's dependence on solids concentration by
keeping membrane area fixed and varyin g the permeability constant.

It can be seen from Table 17 that the %.iputer model simulates subsystem
operation quite well. Runs #1 and #2 rep resent wash water feeds and the
correlation is very good. The 29.0 VDC (#1) data point correlates better than
the 31.5 vnc point (#2) with respect to processing rate, but still the differ-
ence for run #2 is less than 10%. Run #3 represents a urine data point and
again correlation is excellent; the parameter PA has been reduced by 50% to
simulate the Nafion water transport characteristic.

These three runs use a simulated liquid coolin g mode, which in the computer
model is a variable flow coolant loop affectin g the TER cold side temperature.
Run #4 approximates an air coolin g mode utilizing heat transfer from the TER
hot side (primarily the recycle tank) to the environment; UA has been increased
to match the total ex pected heat load. Run #4 shows that the program predicts
a reduction in the processin g rate which is indeed observed in actual TIMES
data collected during the wash water testing.
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- SYSTEM DESCRIPTION -

NUMBER OF TER MODULES E5 3
—'TANK HEAT TRANSFER COlFFICYENT. U5 —• I.SD

VOLTAGE INPUT TO TER 15 29.0
AMBIENT T2MPERATUFd I5 70.0
FRACTION 	 TANKSOLIDS IN TA IS 0.400 _ _ _ _ _ _ _ _ _ _ _ _ - _ _

- ` - TEMPERATURE OF FEED URINE IS 130.0
FRACTION SOLIDS OF PEED URINE IS 0.040
MEMBRANE AREA IS 21.000

RM MULTIPLIER 15 1.000
CONVEROINO "Fr" TOM i5 150 .0

"EFFECTIVENESS 
Of 

COOLER"I5 0.5000-
COOLER AMBIENT TEMP E370.0
NO 

NUMBER 
OF ITERATIONS 15 10

SUN HAS BEEN COMPLETED +-+++

2HOLLEM UNITS ARE USED

PROPERTIES OF URINE LEAVING HFM
--- TEMPERATURE 2 _%4S;39____

FRACTION SOLIDS - 0.40017
MASS FLOW URINE - 405.06

-NOPEBTLES OF URINE LEAVIND'RECIRCULATINGTAN(
TEMPERATURE - 144.56
FRACTION SOLIDS - 0.40000
MASS FLOW URINE - 405.63

PROPERTIES OF URINE ENTERING PUMP
TEMPERATURE - 144.45
FRACTION SOLIDS - 0.19000

- - - - _MASS FLOW "URINE'-- 467749- -. - - ` - - - - -. - - - - - - -

PROPERTIES OF URINE ENTCRLN0 TER
TEMPERATURE - 144.72
FRACTION SOLL9S-2^:39550"
MUSS FLOW MINE - 407.53

TEMPERATURES OF MINT AND STEAM FLOWS BETWEEN TER AND MFM
- - - URINE TEMP"s- 150:07- " -	 .'-	 - - - - - .

$7EAM TEMP 2 130.20

COOLANT OR CONDENSATE FLOWS THROUGH TO
1KM FLOW OF COOLANT-IN's^-20:728—TEMPIRATURE'TI00:7r--
MASS FLOW OF COOLANT OUT • 11 . 992 TEMPERATURE - 129.89

ELECTRICAL POWER TO TER a	 154.0 WATTS

HEAT LEAK FROM THE MIT •	 261.0 BTU/NR

NET HEAT VTO SYSTEM a	 21.

CURRENT INTO TEOS - 1.770E AMPS

+++++ RATER RECLAIMED FROM URINE IS 1.665 LSS PER HOUR +++++

	

_ -- POWER / PRODUCT WATER RATE 2	 92.51

FIGURE 64

TYPICAL cnmPUTER MODEL RUN
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nESIGN ANn PERFORMANCE IMPROVEMENTS

WATER QUALITY IMPROVEMENT

Objective

The high temperature o peration of the urine water recovery subsystem causes
some ammonia to carryover into the product water in the preprototype subsystem,
and even though the relative quantity of ammonia is low, it is desirable to
reduce or eliminate it altogether.

The objective of this study task is to investigate and evaluate techniques
that would result in the reduction of the ammonia concentration level in the
water recovered from the TIMES urine processing unit.

Approach

The task of reducin g ammonia concentration levels in recovered water was
evaluated for several general techni ques that attacked the problem from
different directions. Rasically, ammonia levels can he decreased either by
treating the urine input in the collection or recycle loop, or by posttreating
the product water itself. From a systems analysis standpoint, each technique
has its advantages and disadv mtages and these are addressed in the study.
A number of system options were investigated with consideration given to 1)
the ease of integration of each into the existing TIMES, 2) electrical power
penalties, and 3) use of consumables and/or hazardous chemicals.

Candidate npc.criptions

There were five basic candidate techni ques investigated from which a preferred
method was selected. They are listed below:

1. Urea decomposition - from bulk urine
a)	 thermal decomposition
h)	 enzyme hydrolysis
c )	chemical reaction

2. Urea complexation/filtration

3. Ammonia catalytic removal - from urea decomposition
a)	 urine loop vapor l iquid/gas separator or membrane
h)	 product va por steam

4. Ammonia removal via strong acid ion exchange resin

S.	 Ammonia decomposition by ozone/ultraviolet radiation

A detailed description for each candidate is now presented.
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1.	 Urea Decomposition - From Bulk Urine

Ona way to reduce ammonia levels in the product water is to eliminate
urea as the source, or at least diminish its contribution. Because
nearly 98% of all the ammonia in urine/water systems is generated by
urea decomposition, the objective of this technique is to accelerate the
urea breakdown process in the urine recycle loop, or the collection loop,
and withdraw the decomposition products before they permeate through the
membrane evaporator. The advantages are twofold; namely, the ammonia
carryover rate can be maintained at a constant low level as total dis-
solved solids are concentrated in the recycle loop, and consequently, the
recycle tank change-out frequency can be lengthened, resulting in in-
creased overall water recovery. The advantages are realized for the
recycle loop because as the solids concentration increases (including
urea), a point is reached where the rate of urine/urea introduction into
the recycle loop equals rate of urea decomposition. From then on, the
urea concentration remains constant, while other dissolved solids still
accumulate. Alternatively, if urea is allowed to decompose in the urine
collection loop instead of the ;-ec ycle loop, less urea is available to
enter the recycle loop, which a gain ultimately leads to lower ammonia
carryover and decreased tank change-out intervals.

Urea decomposition can he accelerated in several ways: thermally, by
elevatinq the system operation temperature; catalytically, through the
use of the enzyme urease; or chemically, by reaction with strong oxidizinq
aqents.

Thermal Decomposition

Urea is present in concentrations of up to 50% of the total dissolved
solids in human urine, and it decomposes to ammonia and carbon dioxide
through the action of bacteria, or by hi gh temperatures. Most urine
processinq systems employ a pretreat solution consisting of bactericidal
and acidic components which inhibit urea breakdown as well as fix any
dissolved free ammonia in the ammonium ion form. In addition, if elevated
operating temperatures are required, a maximum of 66°C (150°F) is generally
estahlished in order to prevent the thermal decomposition mechanism from
occurring to any siqnificant de qree. If the goal is to eliminate or
reduce the urea concentration in the urine, then the above mentioned
decomposition pathways can he exploited.

Work done by Shaw and Bordeaux l for urea decomposition in aqueous media
resulted in the determination that the reaction is 1st order with respect
to urea. In acidic solution the reactions are as follows:

NH2CONH2 (Urea) —14. NH4 +CNO-	 (1)

CNO- + 2H+ + 2H20 RA-4 NH4+ + H2CO3
	

(2)

l W. Shaw, J. Bordeaux, "The Decomposition Of Urea In Aqueous Media,"
J. Amer. Chem. Soc., 77 (1955), 4729-4733
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Reaction (2) is complete at room temperature in sufficiently concentrated
acid solution. A plot of acid concentration versus NHq + production is
shown in Fi qure 55.

The rate equation for the first order decomposition is:

_ dU . ktU

where 11 is in the urea concentration
urea concentration with time, and kt
constant in units of h- 1 . The ammon
the relation:

(3)

in moles/liter, at is the change of
the temperature dependent rate
fa generated is simply related by

10013 = 2 dU	 (4)

W

As stated, under acidic conditions the ammonia produced is converted
immediately to the ammonium ion, NH4

An Arrhenius plot of rate constant versus temperature (K) is shown in
Fi qure 56 and the data is arran qed more conveniently in Table 18.

The rate constants presented are sufficiently accurate for urine-urea/
water systems because it-was shown that varyinq ionic stren qth did not
affect the rate constant at 90°C to any observable deqree. So in effect,
we have the overall conversion in acid solution:

NH2CONH2 + 2H30+ —t-2NH4+ + H2CO3

The NH3 and CO2 distribution curves are shown in Fi qures 57 and 58,
respectively and give the relative proportions of each species present
in the solution as a function of pH. Thus at pH = 5, we expect to see
only a small fraction of the dissolved ammonia as undissociated NH3,
whereas carbon dioxide will exist primarily in the undissociated form,
or H2CO3.

With this information, a TIMES application can be envisioned that
creates a situation where the urea decomposition rate is made equal to
the urea introduction rate into the recycle loop. At low temperatures
there appears to be no way to breakdown the urea at a practical rate.
Since the recycle loop necessarily is heated in order to establish the
desi qn water evaporation rate, it is this loop where urea decomposition
could profitably be accelerated.

For TIMES, usinq a processin g rate averaqe of 0.90 k q/h (2 lb/h) would

yield a urea in put of 0.30 moles/h (0.0113 lb/h), 0.0051 k q/h assuming a
urea concentration in urine of 2%.
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Table 18

I1REA DECOMPOSITIOM RATF COMSTAMT

or
	 'r k	 (h -I )

60	 (140) 7.56 X 10-4

70	 (15R) 2.99 X 10-3

80	 (176) L39 X 10-2

90	 (194) 4.32 X 10-2
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Since the urea mass balance can be expressed as a function of urea
concentration and recycle loop volume as:

Ilin = A x Ue(%) x V(1)

where Ue is the equilibrium urea concentration, Uin is the urea input
rate in moles/h, and A is a proportionality constant, it is clear that
the volume can be increased (most easily by changing the recycle tank
volume) in order to reduce the urea concentration necessary for dynamic
equilibrium. In addition, if one considers that TIMES can, and probably
would, be operated on other than a l0n% duty cycle, a number of design
options are obtained and presented in Figure 59.

The graph shows that at the present operating temperature of 150°F, 100%
duty cycle, and recycle loop volume of 12 liters (0.424 cubic feet), the
urea concentration would never reach an equilibrium point over a normal
operating cycle where 42% total solids accumulate (21% urea) before the
recycle tank is changed out (this corresponds to 95% water recovery). A
practical operatin g point could be achieved by running TIMES at 71°C
(160°F), and 33% duty cycle, keeping the present volume, because then
the urea concentration would stabilize at 19%. A significant improvement
would be obtained by operating at 77°f, (170°F) and 33% duty cycle, which
gives an equilibrium point at 8% urea. Considering the undesirable
increase in wei ght and envelope of a recycle tank twice the size, it
would not seem p ractical to decrease the urea equilibrium value by this
means.

The effect of duty cycle on the process is easily explained. At a given
equilibrium concentration of urea, there is an exponential decay in the
decomposition rate during the off-duty cycle since breakdown is proceeding
while no urea is entering the loop. For a 33.3% duty cycle, the urea
decomposed during the 16 hour off-time equals the amount decomposed during
the 8 hour on-time, and thus the effective decomposition rate for a 24
hour period is twice the on-time rate. This would allow the system
volume to be decreased by 1/2 in order to achieve the same equilibrium
urea concentration as the 100% duty cycle.

Furthermore, as the other dissolved solids concentrate in the recycle
loop, the water production rate decreases, accompanied by a like decrease
in urine input, this in turn lowering the urea input rate. Since at a
given temperature the decomposition rate constant is fixed, the equilibrium
concentration of urea would necessarily shift to a lower value than the
initial point established by the given temperature, volume, and duty-
cycle.

The most practical operational point would he where the equilibrium urea
concentration is minimized, since that results in a longer time period
between recycle tank chan ge-outs. If it takes longer for the other
dissolved solids to concentrate to 40%, e. g., the overall water recovery
is improved since fewer tank changes mean the remaining 60% water is
dumped less often. Another advantage is improved water quality, since
the ammonia generated is directly proportional to urea concentration.
At the equilibrium point, the urea concentration remains constant, and
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therefore the NH3 carryover would be fixed as well. With time, the
equilibrium value decreases as stated before, allowing water quality to
actually improve with respect to NH3 contamination.

Once the operational parameters are selected for practical urea breakdown,
other s ystem conditions must be adjusted to remove the ammonia generated.
At the equilibrium point, the resulting dissolved ammonia would cause a
PH > 10.5 to arise. Allowing this much NH3 to accumulate would result in
unacceptable carryover. So, a means must be provided to remove any NH3
as soon as it is formed. Because of the relatively small quantities of
NH3 being generated, no bubbles would form, and therefore normal liquid/
gas separation is not possible. Thus, permeable membrane separation would
seem to be the only feasible method. According to Cole 2 , for aquo-ammonia
systems the best membrane is one in which NH3 is very soluble while water
vapor is not. Nylon 6 and Zytel were shown to be favorably permselective
to NH3, but lacked sufficient throughput. Celluose acetate was suggested
as another candidate. However, selectivity could be sacrificed for
increased throu qhput, allowinq the use of a material which has excellent
gas transport properties. Table 19 gives the gas permeahility for the
various major constituents of concern for several membrane materials.
Since we are talkinq about aqueous systems, the permeation rate for
dissolved, undissociated NH3 would be a fraction of its gas phase
permeability, but relative comparisons can still be made among membrane
materials. Material selection and design of this zero-gravity separator
would involve another study at the very minimum, and probably laboratory
testing ?s well. The separator would have to be located upstream of the
evaporator, i,^^d must he able to quantitatively remove ammonia in a single
pass. Physical dimensions of the package would have to be minimized
since space in the present system confi guration is limited, and this
means a very efficient memhrane is needed with respect to throughput/
active area.

v

One concern with the memhrane separator would be the loss of water vapor
alonq with NH3 if the permeants are dumped overboard. Therefore, the
separator sizin g would have to trade-off maximum ammonia throughput
capacity with the need to minimize water loss, keepinq in mind this
water loss can also be offset by savinqs accruin g to less frequent
recycle tank change-out intervals.

To summarize, thermal decomposition would only he practical for the urea
in the recycle urine loop. If the present subsystem confiquration is
retained, the operatin g temperature would have to be increased from 66
(150) to 77°C (170°F) in order to create a condition where the urea
concentration stabilizes at 8%. To date, TIMES operation at 77°C (170°F)
has not been demonstrated. A membrane separator would be necessary to
-emove the qenerated ammonia at some point in the recycle loop downstream
)f the urine feed inlet, and before the evaporator. The membrane mater-
ial would have to he chosen and evaluated for ammonia/water va por selec-

Cole, E. Genetelli, "Pervaporation of Volatile Pollutants From Water Using
lective Hollow Fibers," J. Water Poll. Cont. Fed., 42, (1970),R290-R298
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tivity and ammonia throughput, as well
environment existing in the urine loop.
are known so a materials study would he

as compatibility in the corrosive
No obvious membrane candidates

necessary.

Enzyme Hydrolysis

The enzyme unease catalyses the hydrolysis of urea to ammonia and carbon
dioxide accordin g to the general enzyme reaction scheme:

a) enzyme + substrate - enzyme-substrate (ES)
b) ES + H2O - enzyme + product A + product R

The rate of reaction during the initial phase depends on the amount of
enzyme present as lon g as the amount of substrate remains in excess and
conditions are constant. If the amount of enzyme is held constant, the
rate is influenced by the substrate concentration, product concentration,
temperature and pH. This is seen in Figures 60, 61, and 62, respectively.

Characteristically for enzyme reactions, there is an optimum temperature
PH where the rate is maximized. Within a few pH units of the optimum,
the loss of rate is reversible, but pH's beyond those points leads to
permanent deactivation. At the minimum temperature, the reaction proceeds
very slowly, but the enzymes are not at all damaged. At the other
extreme of maximum temperature, the rate goes to zero and the enzymes
can be destroyed as well. Within these limits, the rule of thumb is a
doubling of reaction rate for every 10°C (18°F) change in temperature up
to the optimum as long as the enzymes are not dama ged. For urease, the
optimum pH is 8.0 and a temperature of 20°C (68°F) is generally recom-
mended.

As a means of maintaining a constant enzyme concentration, the enzymes
can be tra pped in a suitable matrix, and are then characterized as being
immobilized. Work done at Martin Marietta Corporation investigated the
immobilization of urease using nylon nettin g impregnated with an acrsld-
mide gel solution. It was found that with time enzyme activity decreased,
primarily because of loss of bound enzyme from the structure with varying

storage conditions. nther entrapment schemes include porous hollow fibers,
spun fibers, covalent bondino, and microencapsulation.

In order to avoid the disadvantage of having another consumable for
TIMES, immobilized urease would be preferred over any other means by
which the enzyme is continuously added to the urine. This necessitates
desi gning a suitable apparatus which would retrofit on the present
subsystem, and the most practical design would be another holding tank
or canister. In addition, the temperature and pH criteria for urease
suggest that the urine should contact the immobilized unease in the
urine collection loop before any pretreat is added. As the hydrolysis
proceeds, the ammonia and carbon dioxi de formed would have to be removed
at some point in the canister (or tank) before the urine enters the
mixing tank. Since the reaction rate at room temperature is approxi-
mately two orders of magnitude less than the thermal decomposition rate
at 66°C (150°F), fairly large amounts of immobilized urease would be
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needeJ for complete urea decomposition to occur in the re quired time
frame. Furthermore, the actual amount must be sufficient to offset loss
of bound enzymes and resultant loss of activity as mentioned above.

Thus, the drawbacks associated with immobilized enz ymes are: the low
reaction rate, which necessitates an additional holding tank, vented to
relieve decomposition gas pressure buildup; the potential loss of activ-
ity with time. The latter process would have to he further investigated
in order to establish the optimum means of entrapment and stabilization
for the TIMES confi guration and operational parameters.

Chemical Reaction

Urea can be decomposed to N p and CO by reaction with certain strong
oxidizing agents such as hypochloriies. Sodium hypochlorite MOO)
usually is obtainable in li quid form but presents a fire hazard and is
generally unstable. Far more suitable from a stability and handling
standpoint is calcium hypochlorite (Ca(OCI) ) which is used in powdered
form. However, addin g water (or urine) to Ory, soluble, hypochlorite
almost certainly would generate chlorine gas, so an insoluble powder
would be more desirable. An insoluble, chlorinated compound that could
perform the same oxidation function is trichloroisi:cyanuric acid. It is
fairly inexpensive since it is used as bleaching agent in detergents,
and in a dry hed form, could he employed in the urine inlet line to
react with the urine/urea. The large quantity of oases that are generat-
ed would have to he vented.

From a design viewpoint, the insoluble acid would have to be loaded into
a canister throu gh which incoming urine would have to pass. A means of
assuring that the qases generated are vented and do not backflow into the
urinal would have to he determined, and at frequent intervals the canis-
ter would have to be replaced because of the depletion of the acid. The
most significant disadvanta ge would he the weight of material needed,
which is over 90,7 k q (200 lh) ror a 180 day, 3 man design point.

2.	 Urea Complexation/Filtration

An efficient way of dealing with urea would be to completely remove it
from the urine, without generating decomposition by-products, p rior to
introduction of the urine into the recycle loop. A practical means
mi ght be to hind it u p chemically, so that it can he removed via a
filtration anoaratus.

This binding up, or complexation, could be accomplished by attaching a
soluble polymeric molecule to the urea, thereby significantly increasing
its effective size and molecular weight, and then filtering the urine
tnrouqh a microporous membrane, that would not otherwise restrict the
flow of any s pecies in the urine, including uncomplexed urea.

'pa
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Use of this techni que for Cu+2 and Fe+2 ions, 12, and phenol, where each
of these species was compiexed with a suitable polyacidic macromolcule,
was shown to gi Jye at least an 80% rejection, except for phenol which had
a 25% rejection .

Rejection was defined accordin g to the reaction:

R a 1 - Mn+
T^f otal

where Mn+ is the free cation concentration, and MTotal is the total
concentration of cation available. After combining the polyacid and the
cation in solution, the following equilibria are established:

LH	 j L- + H+

L- + Mn+ ^_'
— LM(n-1)+

where LH represents a licand grou p on the polymer chain.

Considerin g urea, a suitable polyacid would have to be chosen that
ensures complete complexation would occur over the pH range of pretreated
to raw urine, and an ultrafiltration membrane would have to be selected
which would allow sufficient urine throu qhput, while rejecting the urea
complex. The disadvant?ies therefore are 1) another consumable would
have to be added to the system, and 2) a filtration apparatus would have
to he selected, desi gned and retrofitted.

3.	 Ammonia Catalytic Removal

The objective of this method is to completely remove the available free
NH3 with a sin gle or dual reactor system and oxidize it to N2 and H2O.
This approach is applicable to the present TIMES configuration, or to a
modified desi gn where urea decomposition is accelerated. There are a
number of options, depending on where and in what form the NH 3 is removed.

A - Treats Entire Product Vapor Stream Catalytically

The schematics are shown in Figures 63 and 64. This urine loop would
operate as presently , with pretreat added to the urine as it is collected.
Steam is generated in the evaporator at 0.90 kq/h (2 lb/h) along with
trace amounts of NH3, but instead of going directly to the condensing
plates in the Thermoelectric Regenerator (TER), the evaporant is mixed
with 5% 02, either from air or some other source. This mix is then
heated from 66 to 249°C (150 to 480°F) and passed into an oxidizing
catalyst bed consisting of 0.5% Pt on alumina pellets. From the bed, the
products includin g N20 are partially cooled by a re generative heat ex-
chan ger, and then air cooled to 63°C (145°F). The products enter the
TER, where the steam is condensed as usual on the cold plates, while the
non-condensible gases are treated in either of two ways: 1) The products,

3 0. Nguyen, P. Aptel, J: Neel, "Application Of Ultrafiltration To The Concen-
tration And Separation Of Solutes Of Low Molecular Weight," J. Membrane Sci.,
6, (1980), 71-82
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N2, N20, as well as some H2O vapor, 02, and CO2 are dumped overboard by
the TIMES burper as non-condensihles; 2) The non-condensibles exiting the
TER burper would be further cooled to 18°f, (65°F) (to condense additional
Hp0 vapor) by passage through an air cooled heat exchanger. From there,
the mix would enter a re generative heat exchanger followed by a second
reactor containing a dissociation catalyst (0.5% Ru on alumina) heated to
449°C (840°F). Here, N20 breaks down to N2 and 02. Besides the reactor,
the major disadvantage here is the additional hardware necessary for
preheatin g and postcoolin q the product vapor and gases.

The source of 02 for the oxidation reaction can be either cabin air or
02 generated from some other source. If cabin air is utilized, venting
the non-condensihles to vacuum via the burper results in total consump-
tion, whereas emp loyin g the dissociation reactor provides a means to
reclaim some of the air. Water electrolysis as a means of 02 generation
was investi gated but the hardware is complicated, water is consumed, and
the specific energy penalty is excessive at all but the minimum NH3
production rates.

A tabulation of the mass and heat balances for both a pproaches is
presented in Table 23 using a back calculated NH3 production rate based
on actual H2O analysis data from TIMES operation on urine. The maximum
NH3 level found in the H2O was 50 ppm, but 100 ppm was used in the
construction of Table 20 in order to have some margin.

It can he seen that because of the lar ge H2n/NH3 ratio, almost all of the
energy lost is in the partial heat recovery after the oxidation reactor.
Even if the regenerative heat exchan ger effectiveness is 0.50, the net
increase in s pecific energy is still 44 W-h/kg (20 W-h/lb) at this point.
Whether the dissociation reactor is used or not makes very little differ-
ence in terms of specific energy for NH3 levels of 100 ppm or less.

R - Treats Urine Recycle Loop Vapor Catalytically

This approach involves strippin g dissolved NH3 and CO2 directly from the
recycle loop. The two gases are urea decomposition products, and their
production rate can be accelerated by raisin g the recycle loop temperature
20°C(35°F). once formed, the dissolved gases would have to be removed
using a membrane separator, which as previously discussed, has to be
microporous so that sufficient de gassinq ca pability is obtainable, and
sized so that water va por loss is minimized. Use of a microporous material
allows the differential p ressure across the device to be less than the
system generated P across the homo geneous Nafion membrane used in the
evaporator, while still ensurinq quantitive removal of NH3 and CO2 (micro-
porous material permeability is generally much greater than homogeneous
material for the same P and given permeant).

Since the goal is to maximize NH3 removal, PH should be as high as possi-
ble in order to establish a favorable NH3/NH4 + ratio. This could he
accomplished by reducing the amount of pretreat in the waste tank or by
eliminating it altogether. The latter presents bacteria growth problems,
however. Fi gures 65, 66, and 67 illustrate the urine vapor treatment
approach.
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Table 20

AMMONIA REMOVAL PRODl1CT VAPOR STEAM

Location/Process

Preheat
nx-Reaction
Post-Cool* 1

Post-Cool* 2
Preheat
niss-Reaction
Post-Cool* 3

Total

With Electrolysis

Total

S ecific Energy
^q	 p_ 1

+88.00	 (+40.00)
- n.44	 (- .20)
-44.nO	 (-20.nO)

- 0.03	 (- 0.01)
+ 0.18	 (+ 0.08)

0.022	 (- 0.01)
- O.n8R	 (_ 0. n4)

+ 1.87	 (+ 0.85)

Option Subtotal	 Reference
W- / q	 W-h lb

+43.60 (+19.80)	 Fiqure 63

+ 0.05 (+ 0.02)	 Fi ou re 64

+44.10 (+20.00)

+46.00 (+20.85)

*Assumes Heat Exchanqer Effectiveness = 0.5
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Once the NH3 and CO2 by-products are stripped from the urine loop, the
NH3 is catalytically removed via the oxidation method described previously.
The maJor difference here is that much less water vapor is involved. The
oxidation reaction products are subsequently vented overboard along with
any residual water vapor, which is a disadvantage from a water reclamation
efficiency standpoint.

This water loss can be mit •'gated if, instead of venting all the products
overboard, the water vapor is condensed via an additional heat exchanger
and added to the main production stream after collection in a liquid/gas
separator. Thus, two additional pieces of hardware are necessary in
order to reclaim otherwise lost water.

If ver;`in q the oxidation reaction products is not desirable after exiting
the oxidation reactor, the products can be post-cooled and introduced
into tie dissociation reactor after passing throu gh an air cooler and
regenerative heat exchan ger as previously described.

The mass and heat balances for the urine vapor treatment approach are
presented in Table 21 using the maximum expected NH3 production rate
based on urine/urea levels. This is used since it is assumed the process
can be driven by temperature to breakdown all the incoming urea, and
that the membrane separator can he sized to remove all the NH3 formed,
thus driving the urine loon equilibrium as expressed by the relation:

H+ + NH3 t N1:4+

Ir the direction of NH 4+ conversion to NH3. In order to compare the two
catalytic ammonia removal a pproaches Table 22 combines the data from
Tables 20 and 21. Processinq NH3 in the recycle loop appears to be more
favorable than from the steam side. As is seen, the exothermic reaction
during the oxidation process can make this approach very efficient
depending on reactor design. Fi qure 68 is a sketch of an integrated,
dual reactor geometry that would make good use of available energy while
considering the various temperature differentials of the processes. The
reactor could he designed so that the Ist preheat cycle requires a heater
all the time; with exothermic reaction, heat is transferred to the cooled
product stream before it enters the preheat section of the dissociation
reactor. A second heater would be required to boost the temperature up
further.

4.	 Ammonia Removal With Ion Exchanqe

(Ise of the present TIMES ion exchange resin for posttreatment of product
water was dictated by the large total absorption capacity as stated in
the manufacturer's performance data. The Ionac CC resin consists of
carboxylic functional groups in the hydrogen form, and therefore is
classified as a weak acid resin. It is only recommended for use where pH
> 5. At pH levels lower than 5, the acid group is mostly undissociated
leaving only a small percentage of active sites available for exchange.
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Location/Process

Preheat
Ox-Reaction
Post-Cool*
Condensinq

Preheat
niss-Reaction
Post-Cool*

Total

Specific Ene -qy
-	 q W-h/1

+10.6 (+ 4.8)

-56.5 (-25.7)
- 5.7 (- 2.6)
-12.8 (- 5.8)

+18.0 (+ 8.2)

- 2. q (-	 1.3)
- 9.2 (- 4.2)

*Assume Heat Exchan qer Effectiveness,
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Table 21
AMMONIA REMOVAL PROnUCT IIRINE LOOP VAPOR

Option Suhtotal
W-h/kq	 (W-h/lb)

-51.6	 (-23.5)
0.0	 ( 0.n)

+ 5.9	 (+ 2.7)

-45.7	 (-2n.R)

= 0.5

Reference

Fi qure 65
Fi qure 66

Fi qure 67
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Looking at some actual TIMES data in Table 23 for before and after
posttreatment, we see.trends that can be explained in terms of the weak
acid resin characteristics. Samples #1 and 2 show pH and NH 4+ increasing
as the conductivity decreases. This is saying that at a pH - 3.5, Via
resin wants to be predominantly undissociated and therefore tends to
remove H+ from the water at the expense of releasin g NH4+ previously
bound. This causes the conductivity to decrease since the equivalent
conductance of H + compared to NH4+ differs by 5 to 1. For sample #4 a
PH - 5.8 causes the resin to remove NH4 + from solution and release H4,
causing the pH to decrease, NH4 + to decrease, and the conductivity to
rise. Sample H3 is probably a transition point and shows both trends.

A bench test was performed with an ammonium salt in the concentration and
PH range found in actual TIMES water analysis data. One batch each of
2.5 and 50 mq/1 NH4+ (from (NH4)2 SO4 ) and pH = 4.5 was percolated through
equal dry volumes of Ionac CC and Rohm & Haas IR-118H resins. The
latter is a strong acid resin that can be used over the full range of
PH, but which has less total capacity than the weak acid resin. Analyses
were performed on the resin effluent and the results are shown in Table
24. It can be seen that the stron g acid resin is > 94% effective in
removin g NH4+ ions at that low a pH, while the weak acid resin shows
minimal activity, being <401 effective at high NH4 + levels and <8% at
low NH4+ levels.

Sizing

The Rohm & Haas IR-118H stron g acid action exchange resin has a dry total
capacity of 5 meq/q . If we use 3 ppm NH4+ as the average TIMES raw
product water level, and assume a mar gin of 3 ppm for additional total
cations, then for 180 days of operation 1604 kg (3537 lb) wastewater,
0.110 kq of dry resin are required. Under the quasi-static flow condi-
tions on TIMES, resin swellin g is 100% from the dry state.

S.	 Ammonia Oxidation Ry Ozone/Ultraviolet Radiation

Ozone (03) p retreatment alone oxidizes a substantial amount of dissolved
organics in water. Low intensity ultraviolet (tJV) radiation, when coupled
with ozone in,iection, excites ozone and intermediate or ganic radicals
which improve the oxidizing power of ozone to the extent that essentially
complete conversion to Cn 2 , H2O, and NO3- is attainable. With respect to
ammonia, the overall reaction would be:

NH3 + 03	 NO3- + 3H+.

The oxidation is usually accomplished in a stirred tank with ozone sparged
in, and the water is irradiated by a UV source located in the tank. On a
wei ght basis, 0.91 kq (2 lb) of ozone are required for every 0.46 kg (1
lb) of oxidizable species. UV radiation in the wavelength range of 180
to 400 NM, with intensities of 1-5 W/m3 (28-142 W/ft 3 ) has been shown to
he effective experimentally. Unfortunately, ozone operation is very
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Table 23

TIMES WATER ANALYSIS

Ammonia As Nitroqen	 Conductivity
PH
	

( ppm)	 (,umho/cm)
	

Sample

Non-Posttreated	 3.6 n.16 135	 1
3.5 0.17 198	 2

3.6 4.50 174	 3
5.8 15.n0 176	 4

Posttreated	 5.8 0.43 12	 1
4.3 1.12 147	 2

3.9 1.40 145	 3
4.n 9.00 184	 4
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Table 24
ION EXCHANGE RESIN COMPARISON TEST RESULTS

Ammonia As Nitroqen Conductivity Percent
Sample (pph) pH (µmho/cm) Reduction

Feed pl 55000 4.6 308 --

Ionac CC 33750 4.9 295 3R.6

IR-118H 765 2.6 696 98.6

Feed 02 2230 4.5 34 ---

Ionac CC 2070 5.8 25 7.2	 it

IR-118H 125 3.7 71 94.4
T
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inefficient (<In%) with res pect to power, and requires pure oxygen or air
at a dew point of <-51°C (-60°F). Approximately 5% of the 02 is converted
to 03 and this for an average ammonia level of 3 ppm in the product
water, and a 0.91 k q/h (2 lb/h) processing rate, 0.0027 kg (0.006 lb) of
oxyqen per day is re quired. If air is used as the oxygen source, 0.014
k q (0.03 lh) (air) per day is required, and must he vigorously dried
prior to use with a canister of desiccant, for example. The biqqest
disadvantage here is that the amount of ozone required is small but no
excess is desired, especially since ozone is stable in an acidic environ-
ment. At low ammonia levels, this would be difficult to achieve. UV
lamps are usually mercury-filled and this is a potential problem on
spaceraft. On the positive side, since the expected levels of ammonia
are low, a unit could be constructed compactly and therefore would present
no retrofittin g problems.

Conclusions And Recommendations

A summary of the operational criteria for the five candidates is given in
Table 25. Of all the ap proaches, the sim p lest and most effective for the
present TIMES desi gn configuration is the substitution of a strong acid resin
for the weak acid ty pe in an additional posttreatment canister. The ion
exchange bed is a passive device, re quiring no electrical power. For a 180
day mission, only 0.11 k q (0.25 lb) of material is needed to reduce the
expected ammonium ion concentration in the TIMES raw product water to levels
much below the potable water standard for spacecraft (5 ppm). The only
disadvantaqe to this is the finite ca pacity of the bed and its ability to
absorb a l l ,rations, not ,lust ammonium ion. Beinq potentiall reqenerable, it
is not considered do expendable. A relatively small 394 cm 3y (24 in3 ) bed can
be sized to easily handle the total load of positively charged ionic contamin-
ants expected for a typ ical mission.

While urea decomposition and ammonia removal schemes offer other advantages
such as a real decrease in dissolved solids, the overall complexity, additional
hardware, and power penalties associated with these approaches render them
unsuitable when compared to the ion exchange technique. If the present
subsystem confi guration was changed for reasons such as temperature control
improvement, it is possible that urea thermal decomposition with venting of
the product gases miqht then be Justifiable. From the practical standpoint,
if ammonia removal by catalytic oxidation and decom position is to be considered,
it would be more useful on the steam side than urine side of t5e evaporator.
However desirable an add-on reactor used to remove any ammonia carryin g over
in the product vapor seems, the data in Table 25 have shown it to be impractical.

Enzyme hydrolysis and chemical decomposition do not offer any significant
advantages other than zero power consumption, since it is the additional
expAndahles needed, the complications of qas generation, and the bacteria
growth that demand the most consideration from an engineering viewpoint.

Urea complexatior, while preventinq decomposition, is another solids accumula-
tion problem of a different sort, and the necessary separation steps and
hardware introduce additional complexities when retrofitted to the present
subsystem confiquration.

148	

O



UNITED
TECHNOLOGIES
Gt &HOIL40O m
@7,%[OEPMDO

SVHSER 7236

N

L L
A dN Y
xx

MEEA q Q
+

rO:LY Y LU d
9 ^ O
6 W O.

LdC yO NNA ^y C
L N UL L

NEy
A L L L
L LEyEy a E C c

W Z S N ^ Z VJ
f NYZ VC ^N C

^ ^ LN 4 G
d S ¢
q GV N NC NC N
~ ^ c.: U CW O L

H6 t•1 SC ^ NL 2 Z
GZQu Nd

tA
E
uu4

dNAN dd L

A Yc d c
F cqap NXW CILL XC

O
M N
NG ^E d VC ^ E O

^ d d N C dA G Z C> L
^ f W S L'A
L dC L
L ^

a
dM
Ac
L No vc
u ei i

o u

LOnA>

L^ o
d y
y L

C= dL ¢O
Y d AU C J
A N >6 C

1 LL Y CO A N u ^
L L Y

uzcq̂. o c
6 AN c d¢	 C' d N N

CCq
N L X G

z L Mr ^ E v A O d p

A O Z L \ L C K 4 A A
p O C JN L T L O C

C C y N J C 1' C: C U

N NC C
N N N
Z Z LC,,

7 CV C NZ ct Z ^: Z

r

Nc

6

O

7

c

L
dM
LL
c L
H N
C ^
4 U

vZ
Y.

Z
u	 NA	 c

L
6	 C

,C	 NO N dy	 >, N
M	 q Ld	 Y G
c ^ 4 E
O y	 A dL q	 uL	 C VIq ydL r
^ y	 q

Nc
i

6

dCC
C1	 ^.CC	 LqL	 C

u	 N
X	 > >,LL	 AL qc	 ye	 m

149

_ _. ______. __^__._^_____—	 .._.	 _	
..^ ice- •	 +'.



<6

SVHSER 7236

UNITED
TECHNOLOGIES
G'.1&HIDLUOO nM
WARP& o

____	
_0 ,1

150

Ammonia decomposition in the product water by ozone/ultraviolet li ght treat-
ment involves an a pparatus with an or	 generator and ultraviolet lamp.
Roth are characterized by high power on -imption, and include hazardous
materials in their operation, namely ozo. itself, and mercury va por from the
11V lamp.
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UnIlin TRAP IMPROVEMENT

Oh,iecti ve

The ori ginal li quid carryover tra p downstream of the hollow fiber membrane

evaporator is sensitive to small amounts of condensation that could falsely
indicate liquid carryover.

The objective of this task is to evaluate and implement means of improving

the li quid trap and the carryover indicator to eliminate unwarranted failure

shutdowns.

niscussion

The liquid trap confi guration as originally desi gned consists of a teflon

screen cone with its apex positioned down in a gravity field, located in the

steam passa ge between the hollow fiber membrane evaporator and the thermo-

electric regenerator. Refer to Figure 69. Any liquid that might he present

in the va por leaving the evaporator tends to collect at the apex of the cone,

due to gravity in a g ravity field or vapor flow in a zero- qravity field, and

is sensed by the electrical p robes of the liquid carryover indicator located

in the apex. A problem occasionally occurs with this design where small

droplets can form from condensation of va por on the membrane tubes durin g the

shutdown mode when the membrane tubes are flushed with room temperature
unconcentrated urine. Experimental evidence obtained durin g subsystem acce p

-tance testing shows that these droplets of liquid in the evaporator shell

caused during shutdown are sufficiently volatile during subsystem start-up

decompression, and perhaps even durin g norma l operation, to be drawn out of

the shell and onto the teflon screen cone li q uid carryover indicator where

they indicate a subsystem failure condition which initiates a subsystem

failure shutdown. Durin g normal operation the dro plets reva porize and

free li quid is present in the shell onl y during a failure condition, such
as a leak in a membrane tube or a membrane header; a subsystem failure
shutdown is then required. nurin q shutdown the liquid supply to the membrane

tubes is shut off and the hollow fiber membrane evaporator shell is repres-
surized thereby preventin g si gnificant quantities of li quid from leaving the

evaporator and overloadin q the teflon screen liquid trap. A liquid trap and

carryover indicator desi gn that permits the accumulation of a small quantity

of condensed liquid in the evaporator shell durin g shutdown and startup, but

protects the thermoelectric regenerator condensin g p lates from carryover of

'the potentially contaminated li quid in the case of a failure condition is

required.

The liquid trap and carryover indicator desi gn has been revised to provide

protection in both one- gravity and zero-qravity situations. Refer to Figure
70. The inlet tube has been capped and extended into the evaporator shell,

and vertical windows have been milled near the top of the tube. The windows
are covered with a hydrophobic teflon screen that is held in place with bands

of hydrophobic teflon shrink tubin g . nurinq one-g ravity or zero-gravity

operation the vertical teflon screen covering the windows kee ps the %tnlatile

droplets from accumulatin g at the windows, thereby preventin g liquid carryover

to the carryover indicator and causing a failure shutdown si gnal. During an
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FIGURE 69

ORIGINAL LIOUIO TRAP CONFIGURATION
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IMPROVED LIOUIO TRAP CONFIGURATION
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actual malfl:nctinao when excessive liquid is present in the eva porator shell,

small quantities of li quid will he drawn through the teflon window screen
when the li quid level is hi gh enough in one-q ravity or sufficiently blocks off

the screen in zero-gravity to overcome the hydrophobic i ty of the screen, and
will trip the liquid carryover indicator in the teflon screen cone, causing a
fail safe failure shutdown. The hydro phobic teflon shrink tubing bands protect
the teflon window screen from zero- g ravity migration of the liquid to the area

of the window screen thereby preventin q an unwarranted failure indication.

This imp roved desi gn has been implemented into the TIMES subsystem.

A further desirable feature whose implementation is beyond the scope of this
task would be the addition of sensing elements inside the eva porator shell at
the base of the inlet tube to sense the presence of a small quantity of liquid
in the shell and report its presence. This si gnal would cause a "white flag"

indication, print out a messa qe "liquid in evaporator shell", and print out
advice "no corrective action required". When the liquid disappeared as it

would during normal operation, the white flag and messages would disappear.
If the li quid did not disappear within 30 minutes of start-up, the white flag
would chan ge to a ,yellow flag and the advice messa ge would change to "check for
liquid leak". At that point the operator could opt to shut down the subsystem
if the liquid quantity in the evaporator shell kept increasing, and replace the
maintainable evaporator assembly.

154

(DI



r

UNITED
®N

WO
GtES

^irC^1G:1^D SVHSER 7236

IMPROVEn TEMPERATURE CONTROL

Objective

The original TIMES subsystem utilizes a large passively air-cooled heat exchanger

to remove the excess heat generated by the process. The objective of this task
+	 is to determine and evaluate means to reduce the size or eliminate the need for

this heat exchanger.

Rackground

In the TIMES process, the heat required to vaporize the urine in the evaporator
is drawn from the urine flow in the recycle loop. This heat is then recovered

and pumped hack to the recycle loop as the purified steam condenses on the
Porous plates in the TER. In addition to the process heat which is conserved,
there is heat addition due to the power re quired by the heat pump and by the

fluid pumps. In addition„ there is heat leak from the hot recycle loop. Since
the heat leak and the valve and fluid pump powers balance, there must be heat
rejection from the subsystem equivalent to the power consumed by the thermoelec-

trics. This varies from ap p roximately iS2 W (450 Btu/h) at 26.5 VDC to 205 W
(700 Btu/h) at 31 VnC. In the baseline TIMES, heat rejection is accomplished by
recirculating condensate through an external air-cooled heat exchanger and back
to the condenser section. This cooling circulation flow is varied to maintain a
65.6°C (150°F) inlet temperature to the HFM. The external heat exchanger is
cooled by either cabin circulation or natural convection, since the air velocities
associated witn either are a pproximately n.13 to 0.20 m/s (25 to 40 ft/min).

However, these low velocities result in poor heat transfer coefficients requiring
approximately 3.25 m2 (35 ft 2 ) of heat transfer area to reject the 205 W (700

Btu/h) throuqh 28°C (50°F) temperature difference. The lar qe natural convection

cooled heat exchanger is unwieldy from a packagin g point of view, contains a
large liquid hold-up volume, and has inherent long time constants. To simplify

the operatin g and packaging considerations associated with the cooling scheme,
it is desirable to determine and evaluate attractive alternates. It is the
object of this study to do that evaluation.

Results

As part of the trade study, eight different temperature control options were
evaluated. These are described and evaluated briefly in Table 26. The evalua-
tion was based on the predicted specific energy required for each concept and on
general operating considerations. Tables 27 and 28 define the parameters in the

s pecific eneray calculations at 26.5 and 29.0 VDC res pectively. As a result of
this study, there are several system options that require further activity. The

primary candidate for temperature control is usin g a fan and reduced size heat

exchan ger combination in place of the present natural convection unit. This
results in a much smaller unit with only a very small increase in specific

energy. A second candidate offers the potential of greatly simplifying the
subsystem. In this technique, defined as Option 8 (Fixed Steam Pressure), the
temperature and pressure controls are eliminated and the temperature is allowed
to float. A third candidate defined as Option 7 (Modulated Suction Pressure)
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also eliminates the liquid coolin g loop but does provide thermal control. The
condensate removal suction p ressure is controlled as a function of HFM inlet
temperature using a variable rate pulsating valve in the condensate removal
line, thereby regulatin g the quantity of product water removed directly as
steam. A fourth candidate defined as Option 5 (Finned TER) also eliminates the
cooling loop. Temperature control is obtained by adding condensin g sections to
the TER. These condensin g sections are cooled by forced airflow rather than by

thermoelectric cold ,functions. The forced airflow is modulated as a function

of HFM inlet temperature. The hardware modifications required for this option
regulate it to a second generation hardware category.

Except for the primary candidate, these candidates all require test evaluation
before they can be considered viable.

niscussion

In general, the potential coolin g schemes for the TIMES can be grou ped into

three classifications:

1. Cooling of the hot side urine recycle loop
2. Cooling of the cold side condenser loop
3. Removin g the heat as steam in the product water and condensing it

externally.

Each of the three basic schemes were used as baseline for defining eight operat-

in g options. Each of these options was evaluated based on both specific energy

consumption and on operatin g considerations. A performance computer program was

utilized to evaluate the throu ghput for each and thereby calculate the specific
energy. In general, specific ener gy considerations will favor the second and
third scheme defined above. Roth of these remove heat either on the cold side
of the TER or in an external condenser. Specific ener gy will be higher for any
concept which utilizes heat rejection on the hot side of the TER. For hot side
heat rejection the excess heat must be pumped by the thermoelectrics up to the
higher temperature recycle loop . A power penalty must he P a id for pumpin g this
excess heat.

A detailed discussion of each of the eight options follows. Table 26 summarizes

the options and Tables 27 and 2R define the specific ener gy at 26.5 and 29.0 VOC
for each one of the options. In general, at 29 VOC the production rate is
higher than at 26.5 vnC, but the power penalties increase at a faster rate.

Option 1 - Baseline-Convector-Fiqure 71

In the baseline TIMES thermal control confi guration, the condensed product

liquid is recirculated through an external heat exchanger to achieve the re-
quired heat rejection. The recirculation flow is modulated to maintain the
required temperature control. Modulation is achieved by pulsing the recircula-
tion pump. The external heat exchan ger is cooled by either natural convection

in the earth gravity environment or by forced air cabin circulation in the
spacecraft. For either one of these design points, the air velocity is in the
order of 0.13 to n.20 m/s (25 to 40 ft/min). The low heat transfer coefficients

result in a large heat exchan ger with a face area 45.7 cm (18 in) by 76.2 cm

(30 in) and a fin depth of 5.1 cm (2 in). These fins are welded to a backing
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plate upon which a serpentine tube carries the recirculation flow. The large
heat exchanger and the low condensate flow rate result in long fluid transport
times through it. With the pulsed fluid pump approach, the flow advances
through the tubin g approximately 10 percent with each pulse. This results in
control'system operating difficulties and the potential of vapor lock in the
heat exchanger. This concept works but an alternate is desirable. One alter-
nate considered initially was to use the existing package surfaces and/or the
water tank surfaces for heat rejection. However, this would still require high
surface temrpatures pproximately 48.9°C (120°F), and large surface areas,
app-oximately 3.25 m (35 ft 2 ). The recirculating cooling flow does, however,
contain an advantage in that it tends to sweep out non-condensable gas from
passa ges that would otherwise have to he drawn out with the condensate. As
,summarized in Table 26, this option exhibits the lower specific energy of any of
the alternates, but the packa gin g and operating characteristics make it wise to
seek alternates.

Option 2 - Cold Side Recirculation - Fan Assist - Figure 72

This option is quite similar to the Option 1 baseline except that forced air
cooling is utilized in the external heat exchan ger. A small low power 1 m3/min
(35 ft /min) fan is close coupled to the heat exchanger to provide the convec-
tion. By utilizin g forced air, there is a heat exchan ger size reduction of
greater than 1C:1 from a face area of 45.7 cm (18 in) by 76.2 cm (30 in) to a
face area 17.R cm (7 in) by 17.8 cm (7 in). This size reduction should eliminate
some of the development problems encountered in the baseline system. However,
it maintains the advantages of liquid recirculation in the condensate passages.
Furthermore, since the package contains its own cooling fan, it is not dependent
on cabin circulation or p lacement. Temperature control can be achieved by the
recirculation pump flow. Since this concept is identical to the configuration
tested except for the means of removing heat from the air side, there is a very
high confidence in this concept's success. Furthermore, with a low cooling
airflow, 1 m 3/min (35 ft 3/min) and a low pressure rise 0.5 cm (0.2 in) of water,
the low power consumption (5 watts) results in a low specific energy. The only
disadvanta ge to this concept is that due to the low condensate cooling flow rate,
a non-standard heat exchan ger will be required. This heat exchan ger would be a
typical spacecraft design but would be relatively expensive for a development
program. In summary, since this concept exhibits low specific energy and minimum
technical risk, it is the primary candidate for thermal control of the TIMES.

notion 3 - Hot Side Fan - Cooled - Figure 73

In this a pproach coolin g is accomplished by forcing ambient air circulation over
the hot surface of the recycle loo p . A 1 m3/min (35 ft 3/min) fan is included to
provide the airflow, and baffles are p rovided to direct the flow over the hot
surfaces of the recycle tank. The 65.6'C (150°F) temperature control is achieved
by varyin g the fan flow inresponse to the temperature sensor at the HFM inlet.
Flow variation can be achieved utilizin g either a variable speed fan or by
pulsing a single speed fan. This concept exhibits high specific ener gy because
the TER must pump the excess heat as well as the p rocess heat. With the elimina-
tion of the cooling recirculation loop, there is no flow to clear potential non-
condensable gas pockets from the pin fin area behind the condenser porous plate.
Although it is a simp le concept, the high specific ener gy renders this concept
undesirable as a primary candidate.
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OPTInM 2
COLD SIDE RECIRCULATION--FAN ASSIST
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} ,	 Option 4 - nucted TER - Figure 74

This approach is very similar to Option 3 in that it uses forced air to cool
the p rocess package elements. HFM inlet temperature is controlleJ by varying

the cooling airflow. In this concept the fan blows the ambient air through the
exposed TER surfaces in an effort to achieve some cold side coolin g. A duct
from outside the insulated packa ge enters the package and encases the TER before
exiting back to ambient. Thus the air flows between the individual thermoelectric
elements providing direct cooling at the energy source. A high heat transfer
efficiency is achieved because the thermoelectric elements expose a lar ge surface
area to the air stream. However, this confi guration also yields the biggest
negative feature, namely a high pressure drop. Utilizing the lowest possible
flow, 0.43 m /min (15 ft /min) pressure drop, 12.7 cm (5 in) of water results in
a fan power consumption of 30 watts. This yields a quite hi gh specific energy,
and for this reason the concept is rejected.

Option 5 - Finned TER - Figure 75

In this concept two additional condensing sections would be added to the TER.
r

	

	 Instead of bein g meted to thermoelectric elements, these condensing sections
would have external fins which extend through the packa ge insulation for air

Ci.

	

	 cooling. An external variable s peed fan would provide variable flow rate over
these fins to achieve modulated temperature control. Although this approach
exhibits a very low specific energy, it is a relatively complicated thermal
desi-i and would require substantial modification to existing hardware. The

complication results from the steam cavity then-modynamics with two different
sink temperatures in the same vapor cavity. since steam will preferentially
condense on the coldest surface, there is a very strong tendency for an imbalance
in the steam flow to each of the sections. This concept exhibits low specific
energy but further evaluation is required to develop an acceptable confidence
level.

Option 6 - Vented Steam Cavity - Figure 76

As opposed to the orevious a pp roaches, which provide direct cooling of either
the hot or cold side of the TER, this and the following approaches utilize a
different technique. They remove energy from the TER/HFM assembly in the form
of live steam which is condensed in the product water delivery line external to
the central processing packa ge. The flow rate of steam which is condensed
externally is modulated to balance the excess heat generated by the heat pump.
In these concepts a mixture of live steam at the steam cavity saturation con-
ditions is drawn from the TER in parallel and mixed with liquid product water.
This mixture then flows through an air-cooled heat exchanger and condenses
before continuing on to the product water accumulator. 'For each one of these
concepts, a 1 m 3/min (35 ft 3/min) fan provides the forced air convection through
the external heat exchan ger. In this particular approach (Option 6), live steam
is vented directly from a steam cavity upstream of the porous plate to the product
water line downstream of the capillary tube. The combined flow then enters the
condensin g heat exchan ger. Pressure control in the condensate passages is
achieved by the self-re gulatin g capillary tube approach. A pulsed burper valve
in the steam line modules the steam flow withdrawal rate to maintain HFM inlet
temperature control. This is a simple approach with a lower specific energy. By
bypassing flow from the steam passages around the porous plate, non-condensable
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gases that would otherwise be "burped" overboard are passed through to the
condensate line eliminatin g the positive phase separation at the porous plate.

Thus the accumulator and the pump must be desi gned to accommodate non-conden-

sables. This is undesirable and would cause error in the current quantity
measuring approach. For these reasons and in particular for the desire that
the porous plate be utilized to achieve phase separation, this concept is

rejected.

Option 7 - Flashing Condenser - Figure 77

This approach is quite similar to Option 6 except that the puslinq valve is
located downstream of the porous plate in parallel with the capillary tube.

When the steam valve pulses open, it momentarily reduces water pressure under

the porous plate causin g a portion of the condensate in the condenser to
flash. It thus causes evaporative cooling of the condenser. The steam valve

pulsing frequency would be modulated to maintain HFM inlet temperature control.

Althou gh the steam cavity pressure would momentarily drop durin g the valve

pulsing the capillary tube would provide pressure control during the period

when the control valve is closed. Since the percentage of valve open time is
quite small, effective pressure control during the period when the control
valve is closed. Since the percentage of valve open time is quite small,
effective pressure control would be achieved by the capillary tube. The low
specific energy and simplicity of this concept makes it desirable. Further

testin g is required to fully evaluate this temperature control scheme.

Option 8 - Fixed Condensate Passage Pressure - Figure 78

Similar to Option 7, this ap proach achieves coolin g by venting energy in the

form of steam from behind the porous plate in the condenser. However, it is
markedly different in that it eliminates the capillary pressure control and

the precise HFM inlet tem perature control. With the capillary tube eliminated,

the pressure in the condenser and in the steam cavity will e qual the accumulator

pressure of 13.1 to 15.8 kPa (1.9 to 2.3 psia). This will then set the TER
temperature at 51.1 to 55°C (124 to 131°F). The hot side urine temperatures
will then be allowed to float in response to variations in voltage and solids
concentration. At the minimum accumulator pressure condition of 13.1 kPa (1.9

psia) and with a 26.5 VOC voltage input and fresh urine in the recycle loop,

the HFM inlet temperature will settle out at 57.2'C (135°F). Under the worst

combination of voltage, 31.5 VOC, and solids concentration 40%, the maximum HFM

inlet temperature would be 68.3°C (155'F). As can be seen in Tables 27 and
28, the low temperature 57.2°C (135°F), is not so low as to seriously impair
specific energy. Conversely, since the maximum temperature is less than the

71.1°C (160°F) limit established previously, this is acceptable. This approach

is attractive because it g reatly simplifies the operatin g system by eliminating

the capillary tube pressure control and the active HFM inlet temperature
control. The change in accumulator pressure during the fill cycle will result

in saturation temperature changes in tle condenser and transient temperature

response unknowns in the recycle loo p . These unknowns must be fully evaluated

by a test program.
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SIIRSYSTEM DELIVERY

The followinq hardware was shipped under this contract to NASA/JSC.

TIMES Collection Packaqe Assembly SVSK 97562
TIMES Process Packa ge Assembly SVSK 96789
TIMES Controller SVSK 97811
TIMES Driver Box SVSK 97812

TIMES Console (GFE Frame)
CRT SVSK 103179
Keyboard SVSK 103178
Floppy Disk Drive SVSK 103177

Electrical	 Harness SVSK 97814
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DOCUMENTATION

The followinq list defines the contract documentation re quired and the docu-
ments submitted in res ponse to the data requirements for this pro gram test by
Hamilton Standard.

nRL

Item No. Name Document

1 Report, Monthly Progress Submitted Monthly

2 Plan, Proqram TIMES-03 dated February 17, 1978

3 Plan, Master Test TIMES-12 dated Au gust 21, 1978
Supplemented September 9, 1979

4 Report, Final SVHSER 7236 dated January 1, 1982

5 Technical	 Information Release No Reports

6 Report, Financial Manaqement Not Required

7 nrawings, En q ineerin q and January, 1982
Associated Lists

8 Manual, Familiarization and SVHSER 7237 dated January, 1982
nperation

9 Analysis, Failure Mode And Effect TIMES-EM-08 dated October 30, 1978

10 Manual, Maintenance and Repair Combines' with DRL Item No. R

11 Lists, Nonmetallic Materials TIMES-EM-07 dated October 27, 1978
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QUALITY ASSURANCE

The objective of the Quality Assurance Program was to search out quality

weakness and provide appropriate corrective actions. Duality assurance
considerations were included during the TIMES Water Recovery Subsystem
Design, engineering evaluations, procurement and fabrication activities.
All vendor-supplied items were checked out and inspected per engineering

instructions prior to assembly into the subsystem. Prior to delivery of
the hardware, a First Article System Inspection (FASI) was held. The
review committee consisted of senior engineering, reliabi l ity and quality

personnel.
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RELIABILITY

The TIMES Water Recovery Subsystem, as concepted, has a high inherent
reliability. The TIMES membrane evaporator and thermoelectric regenerator

are passive devices.

The urine recycle pump has been extensively tested and will perform as re-

quired for a minimum of 90 days continuous operation.

The water quantity measurement and delivery equipment consists of a pump

and a calibrated accumulator. The cyclic operation of the accumulator is
estimated at 3600 cycles per month. This results in a pump on-time of only
30 hours per month. At this low usage rate, this equipment would not be

considered limited life items.

The condensate cooling pump is identical in design to the condensate
delivery pump, and the on-time is less than 30 hours per month, so it too

is not considered a limited life item.

The Failure Mode and Effects Analysis (FMEA) was completed as a part of
this program and submitted to the NASA/JSC.
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SAFETY

Safety was a consideration in design of the TIMES Water Recovery Subsystem
because of the presence of corrosive liquid waste in the subsystem. During
the design of the subsystem, safety was enhanced through simplification, and
automatic failure detection and shutdown. The following safety features in
the hardware and/or subsystem were incorporated:

1. Two dedicated overtemperature sensors and one pressure sensor to initiate
automatic subsystem shutdown.

2. A single failure in one component will not cause successive failures in
other components.

3. The controller provides automatic hands-off operation and automatically
flushes the subsystem during any shutdown with unconcentrated feed from
the waste storage tank.

4. A visual warning is provided during any abonormal condition.

5. All interfaces and connectors are clearly labeled.

6. Circuit breakers are incorporated to protect electrical equipment.

7. In all connectors the hot connector is a female socket.
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