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Abstract

In this paper we consider the Chandrasekhar equations arising in optimal

control problems for linear distributed parameter systems. The equations are

derived via approximation theory. This approach is used to obtain existence,

uniqueness and strong dlfferentiability of the solutions and provides the

basis for a convergent computation scheme for approximating feedback gain

operators. A numerical example is presented to illustrate these ideas.
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Introduction

It has been noted by a number of authors [4], [7], [10], [15] that

Chandrasekhar type algorithms can significantly reduce the computations

necessary to calculate optimal feedback gains for linear quadratic control

problems when the number of inputs and outputs is small, relative to the

dimension of the state space. These algorithms were initally developed for

finite dimensional linear time invariant systems [7], [8], [15], [16] and

later extended to various infinite dimensional systems [4], [10], [19],

[20]. It has been observed [4], [10], [18], [20] that the Chandrasekhar

algorithm when applied to certain distributed parameter systems affords a

significant computational reduction, often even greater than in the finite

dimensional case. Therefore, it is worthwhile to consider the numerical

aspects connected with the solution of the Chandrasekhar equations in infinite

dimensional spaces.

Before one can develop an approximation theory for these equations, it is

necessary to first examine certain basic questions such as existence,

uniqueness and regularity of solutions. The question of existence has been

addressed by Casti and Ljung [I0] for general time invariant systems

(including certain boundary control problems) and extended to time varying

systems by Baras and Lainiotis [4]. Sorine [18], [19], [20] developed

existence, uniqueness and differentiability results for a special class of

parabolic systems and noted in Reference [20] that uniqueness is much more

difficult to obtain than existence. All of the papers cited above utilize the

variational framework of J. L. Lions and formulated the Chandrasekhar

equations in differential form. Distributional derivatives were used to

define the equations and solutions which often can complicate convergence

analysis of numerical schemes.
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In the present paper we present an approach to the Chandrasekhar

equations that is based on approximation theory. We restrict our attention to

time invariant control systems with bounded input and bounded output

operators. As a result we obtain existence, uniqueness and smoothness of

solutions to integral versions of Chandrasekhar equations for distributed

parameter control systems that include delay and hyperbolic systems not

covered by Sorine_s results [20]. Moreover, sufficient conditions for

convergence of general approximation schemes is estabillshed.

2. The _andrasekIlar Equations

Let H ,U and A be Hilbert spaces. We denote by L(X,Y) the Banach

space of bounded linear operators between the Hilbert spaces X and V,

endowed with the uniform operator topology. Throughout this paper we assume

that A is the generator of a _-semigroup S(t) on H , B _i (U,H),

V _ L(H,A) and R _i (U,U) is self-adjoint and satisfies _Rn _ m > 0. Let

Q € L(H,H) be defined by Q = V*V where V* is the adjolnt of the

operator V.

The linear time invariant quadratic optimal control problem is to choose

u(.) E _(0,T;U) that minimizes the cost functional

T

J = f (ly(s)m_ + <Ru(s),u(s)>)ds (I)
0

subject to the constraint that

=Az(t)+ Bu(t) (2)



-3-

z(0)=z0 (3)
with output

y(t) = Vz(t). (4)

Solutionsto (2), (3) are always definedto be mild solutionsgiven by

t

z(t) = S(t)z 0 + f S(t - s)Bu(s)ds (5)
0

Under the assumptions stated above, it is known (see References [II]. [13])

that there exists a unique _(.) £ L2(0.T;U) that minimizes J. Moreover.

the optimal control is given bY

_(t) = -R-IB*_(t)_(t) (6)

where _(t) is the unique solutionto the operatorevolutionequation

E(t) = fTs*(n - t)[Q - _(,)BR-IB*H(n)]S(n - t)d_ (7)
t

and _(-) is the optimal trajectory generated by _(-) (see References [13],

[14] for details). It is shown in References [II], [13], [14] that the

operator [A - BR -1B*_(t)] generates an evolution operator U(t,s)

on H and

_(t) = ITu*(n.t)[Q + _(_)BR-IB*H(,)]U(,.t)dn (8)
t
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A formal differentiation of equation (7) (or (8)) yields a Riccati operator

differential equation. However, the meaning of such a differentiated form of

the equation must be precisely defined. In the papers by Casti and Ljung [I0]

and Baras and Lainiotis [4] distributional derivatives are used to obtain

strong solutions. Sorine [20] used a similar approach. However, Sorine was

also able to obtain regularity of strong solutions for the special case that

A generates an analytic semigroup. This is an important matter since the

derivation of the Chandrasekhar equations presented in References [I0] and

[20] make heavy use of the differentiability of H(t). We shall avoid many of

these difficulties by concentrating on an integral version of the

Chandrasekhar equations. The special form of the equations can be exploited

to obtain existence, uniqueness and some regularity properties of the gain

operators.

Let K(t) =R-IB*_(t) where _(t) satisfies (7) (or (8)). The goal is

to derive a set of equations that allows one to solve for K(t) directly

without first solving for _(t). We state here without proof the following

theorem.

Theorem I. There exists K(t) € L(H,U) and L(t) € L(H,A) such that

for each z _ H

K(t)z = fTR-IB*L*(B)L(q)zdn (9)
t

T

L(t)z = vs(r-t)z - f L(_K(n)S(q - t)zdn (I0)
t
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for 0 _ t _ T. Moreover, K(t) and L(t) = VU(T,t) are the unique strongly

continuous solutions to (9), (I0).

The representation (9), (I0) can be exploited to establish the following

result.

Theorem 2. If z g H, then K(t)z is continuously differentiable.

Moreover, if z € D(A), then L(t)z is differentiable and

d K(t)z = - R-IB*L*(t)L(t)z (II)

A ^ A

d L(t)z = L(t)[A +BK(t)]z (12)_-_

for 0 < t < T.

Note that (9) can also be used to establish the differentiability of the

Riccati operator. Under the additional assumption that z g _(A) it can be

shown that _(t)z is a continuously differentiable solution to the

differentiated form of the Riccati equation. Although detailed proofs of

these theorems will appear elsewhere, it is worthwhile to outline the approach

in order to make a few observations about computational algorithms for

approximating K(t).

Definition I. A strong approximating sequence for the control problem

defined by equations (1)-(4) is a sequence (AN,BN,vN,R N) such that

AN,BN,R N and QN = [vN]* VN are bounded operators satisfying KRNH _ m > 0,

QN > 0, BN . B strongly, RN . R strongly, QN + Q strongly and the

operators AN generate C0-semigroups sN(t) satisfying
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sN(t)z + S(t)z and [sN(t)]* *z + s (t)z

for all z g H, uniformly for t g [0,T].

Observe that the assumptions on (AN,BN,vN,RN) in the definition of a

strong approximation sequence are precisely those conditons used by Gibson

[13], [14] (except for the boundness assumptions on AN) to establish strong

convergence of solutions to approximting Riccati equations to the solution

_(t) of (7). For the case of a finite dimensional control space U, this

strong convergence implies uniform convergence of the gain operators (see

Theorem 6.2 in Reference [14]). However, in order to take full advantage of

the factorization of Q = V*V additional assumptions on the convergence of

VN will be needed. Therefore, we state an additional condition.

Hypothesis I. The operators VN converge strongly to V.

Note that strong convergence of QN to Q does not imply strong

convergence of VN to V and, conversely, Hypothesis I does not imply strong

convergence of QN to Q. In most examples we have considered, Hypothesis 1

is easily established.

Consider the approximating system of Chandrasekhar equations

KN(t) = fT[RN]-I [BN]_ [LN(n)] _ LN (_)dn (13)
t

T

LN(t) = _sN(T - t) - f LN(n)BNKN(n)sN(n - t)d_ (14)
t
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where (AN, BN,vN,RN) iS a strong approximating sequence. Since AN is

bounded it is straightforwardto show that (13), (14) has a unique strongly

continuoussolution. We state the followinglemma.

Lemma I. If there exists a strong approximating sequence (AN,_,vN,_)

such that Hypothesis 1 is satisfied, then the Chandrasekhar equations (9),

(I0) have a unique strongly continuous solution K(t), L(t) and

KN(t) . K(t) strongly, LN(t) + L(t) strongly.

This result can be establishedby a slight extensionof Gibson'sresults

in Reference [13]. Lemma 1 not only provides existenceand uniqueness,it

provides sufficientconditions for the convergenceof numericalapproximation

schemes. The only remaining"hole" in proof of Theorem 1 is to establishthat

there always exlsts strongapproximatingsequencesthat satisfyHypothesisI.

Defining AN to be the Yosida approximation AN NA(NI - A)-I (for N

sufficientlylarge so that N _ p(A)) and letting VN = V, BN = B,

RN = R, the resultingsequencesatisfiesall the conditionsof Lemma I. It is

important to note that Yoslda approximatesprovide a tool for establishing

Theorem 1 and lead to a numerical scheme that is convegent. However as a

practical matter, Yosida approximates do not generally lead to efficient

numerical algorithms. Therefore, in practice it is worthwhile todevelop

other approximatingschemesthat satisfythe sufficientconditionsin Lemma i.
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3. A Numerical Example

We illustrate the power of the Chandrasekhar algorithm by applying the

averaging approximation scheme (see References [2], [3], [14]) to a simple

delay-differential equation model of the two-dimenslonal airfoil shown in

Figure I. We note that the averaging scheme has been shown to satisfy the

sufficient conditions for convergence (see References [2], [14]). In order to

make efficient use of the structure of the problem, the Chandrasekhar

algorithm was combined with F-reduction techniques [12] ,[17] to obtain

reduced order approximations.

A complete dynamic model for the system in which the elastic motions of

the structure are coupled with the motions of the surrounding fluid results in

a functional differential equation of neutral type (see Reference [6]).

However, for this paper we shall use a simplified model based on the

generalized Jones type approximations of the Wagner function described in

[5]. The parameters used for the numerical examples below were obtained by

applying the parameter identification scheme developed in [5] to experimental

wind tunnel data. The resulting model is a flve-dlmenslonal delay-

differential equation of the form

x(t) = Aox(t) + AlX(t - r) + Bu(t) (15)

x(s) = @(s) -r < s < 0 (16)

with output

y(t) = Cx(t). (17)
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In this model x = col(h,a,h,a,F), where h is the plunge, a is the pitch

angle and F represents a generalized aerodydnamic "lag state." The initial

data was taken to be constant on [-r,0]. There is one control so that B is

a 5 x I matrix and C = diag(cl,c2,c3,c4,c5). The matrices A0 and AI

are 5 x 5 with the only nonzero entry in AI in the last row and last

column. In particular, the time delay r = .05 and

B

-4.2106 -31.2446 -4473.27 -3704.37 3.06111

.5302 -8.0098 563.315 -7391.14 -1.15822

AO : 1.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0

-2.1187 1262.16 -2250.91 -32863.5 -256,508

B
m

AI(5,5) = -47.00, Al(i,j) = 0, (i,j) # (5,5)

B = [-81.6087 192.589 0.0 0.0 678.182] T

R = I0.0

C = diag[ /_.0 5_.0 I_.0 I_.0 i].

The initial state is the constant function

@(s) - [-.80 .50 .055 .029 50.0]
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and the control chosen represents a downward force applied at a point along

the airfoil. All integrations were performed using a standard fourth order

Runge-Kutta method with a fixed step size of h = .001. The Chandrasekhar

algorithm was applied to the approximating system to obtain the gains KN(t).

The resulting closed-loop system was integrated forward to calculate the

optimal control and response. The system was initially solved on the

interval [0,.25]. The results of the closed loop response (continuous line

graph) and the unforced system (A graph) appear in Figures 2-6, and of

particular note is that all closed loop responses approach zero as t . .25.

In Reference [I] where a similar problem was treated, high frequency

oscillations were obtained near t = .25 which may be due to numerical

instabilities.

The strengthof the Chandrsekharalgorithmand F-reductlonis revealedin

a simple count of equations. The averaging scheme used divides [-r,0]

into N subintervals and approximates the "history" of the equation by

piecewise constant functions (see References [2] and [14] for details).

Simulations of the above model were performed with N = 2,4,8,16,20 and

convergence was obtained at N = 16. (The results in Figures 2-7 are for N =

16). The averaging scheme results in an ordinary differential equation model

that has 85 states. The gain, KN(t), is usually calculated by solving a

matrix Riccatl differential equation, and for N = 16 this necessitates

solving 3655 equations. However, when the Chandrasekhar algorithm and F-

reduction are applied, the number of states is reduced to 21, and it is

necessary to solve only 126 equations to obtain KN(t). In this case, the

calculation of the gain, state, and control took approximately ii seconds on

an IBM 3081.
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We comment here that the Chandrasekhar equations were also integrated on

the interval [0,I] to obtain the steady-state gain. In this case excellent

performance was also obtained when the loop was closed.
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Figure 1
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Figure4
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