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ABSTRACT 

A theory for the computation of two-dimensional thrust augmentor performance is 

developed. The flow field is assumed to be incompressible, of uniform density and statis­

tically steady. The flow in and around the augment or is assumed to consist of an outer, 

inviscid part and an inner, viscous part. The outer field is calculated analytically and 

then matched with the inner, viscous field, which is computed by means of integral meth­

ods. This form of analysis leads to a simple and economical approach, particularly useful 

for conducting parametric studies. The theoretical results are compared with recently 

acquired ex~erimental data . 
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NOMENCLATURE 

elements in matrix and right hand side of reduced equations 

characteristic width of turbulent region" 

outer edge of turbulent plane 

shroud perturbation in physical plane 

shroud inner half width 

shroud length 

eddy viscocity scaling constant 

similarity parameter 

primary jet momentum 

pressure 

primary jet sink intensity 

shroud-associated thrust 

x, y velocity components 

Borda velocity 

outer limit of viscous solution 

maximum of excess velocity in viscous region 

approximation to viscous solution 

complex velocity 

complex coordinates in physical, transformed plane 

coordinates in viscous solution 

virtual origin in physical, transformed plane 

wedge length in physical, transformed plane 

In o.s 

diffuser angle 

wedge angle in augmentcr shroud 
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n 

p 

t/J 

T 

thrust augmentation 

velocity potential of outer flow, channel flow, primary jet entrainment 

eddy visco city 

y-projection of diffuser inner surface 

density 

stream function 

Reynolds stress in 2-d boundary layer approximation 

indicates that the function is evaluated in the transformed plane 

indicates the derivative of the function with respect to its argument 
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INTRODUCTION 

A thrust augment or is a device where a high-momentum primary jet undergoes tur­

bulent mixing with a secondary stream inside a shroud. The resulting thrust produced 

by the jet shroud combination is higher than the thrust that would result from the jet 

discharging in isolation. This augmentation of thrust arises from the induced pressure 

distribution on the surface of the shroud and from the fact that the primary jet discharges 

in an atmosphere at lower pressure. 

In this work, effort is focused on two-dimensional augmentors with incompressible, 

statistically steady flow which, in view of their applications, are of particular interest. 

Considerable amount of work has been devoted in resent years to the development of theo­

ries to predict augment or performance. Most of these theories fall in either of the following 

two categories: Those that make use of conservation laws in global form, the so-called con-, 
trol volume approaches, and those that actually attempt to resolve the two-dimensionality 

of the problem. This second category includes approaches based on the direct numerical 

solution of the conservation equations by finite differences or finite elements, and those 

that based on integral methods. 

An essential element in augmentor flow analysis is the viscous-inviscid interaction tak­

ing place between the turbulent primary flow and the turbulence-free secondary flow in 

regions where the mixing has not extended all across the shroud cross section. In earlier 

theories this interaction was considerably simplified by assuming that the still unmixed 

secondary flow was essentially uniform, the pressure being constant on any cross section of 

the shroud1,2. This assumption is acceptable in the case of elongated jet pumps where the 

primary nozzle is located well inside the shroud where the secondary flow can justifiably 

be considered uniform. In the case of ejectors for aeronautical applications however, the 

primary nozzle may be located outside the shroud or close enough to the inlet so that the 

inviscid flow drawn into the device can by no means be considered uniform. In a more 

recent approach Bevilaqua et al 3,4 formulated a theory where such an interaction is taken 
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into account, using panel methods to compute the inviscid flow field and finite differences 

for the turbulent jet mixing. In the work reported here an inviscid potential outer flow 

and a viscous, inner flow are also distinguished. The outer flow is computed analytically 

using a perturbation approach around a straight-walled augmentor, and the inner flow is 

computed with an integral method. A matching of first order between the two flows is then 

performed. This combination of analysis and integral methods makes for a very econom­

ical scheme quite suitable for parametric analysis, where a large number of performance 

evaluations is needed. 

Some of the results are compared with the measurements obtained by Bernal and 

Sorahia5 at the Jet Propulsion Laboratory in Pasadena. 

. , 
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2. VISCOUS-INVISCID AERODYNAMIC INTERACTION 

2.1 Model for the physical problem 

For the sake of analysis, the flow field of a typical two-dimensional ejector will be 

divided in five regions, as shown in figure 1. 

Region 1 will be significant when the primary nozzle is located ahead of the inlet. In 

such a case the primary jet develops under the influence of an inviscid flow that surrounds 

it, called secondary flow. The nature of this secondary flow will be affected by the shape 

of the inlet, the suction into the inlet and the entrainment of the primary jet. The growth 

characteristics of the primary jet are intimately connected with the surrounding velocity 

field, giving rise to a strong viscous-inviscid interaction. 

Region 2 is qualitatively similar to region 1. However, the presence of solid walls allows 

for the introduction of the equation of conservation of mass in a simple integral form. This 

fact has an effect in the transition to region 3. 

In region 3 the turbulent primary jet continues to develop under the influence of a 

surrounding potential flow. The main difference between this region and the previous two 

regions is that here the potential flow can be considered quasi one-dimensional. Under this 

assumption a simultaneous solution for both the viscous and inviscid flows is possible. In 

some cases recirculation may exist in this region. Although the methodology described in 

this work can in principle indicate the precise of recirculation, this has not been observed in 

the computations carried out for a practical configuration. In the absence of recirculation 

the turbulent part of the flow reaches the walls of the ejector towards the end of region 3. 

In region 4 the flow field is turbulent all across the channel, and the pressure increases 

gradually downstream due to momentum dissipation. The pressure reaches atmospheric 

value at the end of region 4. 

. Region 5 constitutes the exhaust plume. Here the jet exhaust develops as a free 

turbulent jet and its entrainment contributes to the potential flow field surrounding the 
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device. 

2.2 Mathematical model 

A mathematical model for the problem shown in figure 1 should reflect the stl-ong inter­

action taking place between the turbulent primary jet and the potential flow surrounding 

it and entering into the augmentor. To this end an external, inviscid solution will be com­

puted and then matched with an internal, viscous solution. The external solution can be 

computed using any of the techniques available for potential flows, in the particular ex­

amples analyzed here conformal mapping and a perturbation approach will be used. The 

inner solution will be computed using an integral method. The internal-external matching 

will take place in regions 1 and 2. In regions 3 and 4 the internal flow will be computed 

using integral techniques developed previously6. The presence of wall boundary layers will 

be ignored. This amounts to the assumption that mass displacements by boundary layers 

are not too reevant in the scope of this analysis and that the change of mementum in 

the boundary layer is small compared with the global change of momentum in the main 

turbulent flow. Theoretical and experimental studies of the jet pumps7 seem to bear out 

this hypothesis. 

Figure 2 shows schematically the outer and inner solutions. The outer field is indicated 

by its streamlines, while the inner field is indicated by its velocity profiles. To facilitate 

the derivation of this formulation, an ejector whose shroud consists of two parallel flat 

plates will be considered first. Using a perturbation approach the method will then. be 

generalized to include arbitrary shapes slightly departing from flat plates. 

2.3 The straight-walled augment or 

In this case the ejector reduces to a confining channel consisting of two flat plates. 

The external inviscid flow field can be thought of as consisting of the superposition of 

three different fields, as illustrated in figure 3, where in all cases the domain of the flow is 

extt.rnal to the shaded region. Figure 3a represents the effect of potential flow going into 
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the inlet. This component of the flow will be referred to as the 'Borda component', due to 

its'similarity with the Borda mouthpiece flow field, as will be explained later. Figure 3b 

represents the flow due to entrainment into the primary jet and into the exhaust plume. 

The primary jet entrainment is represented by a distribution of singularities on the axis 

of symmetry. The flow field induced by the exhaust plume is not expected to affect the 

performance of the augmentor significantly, and will not be included in the theory. 

2.3.1 The inlet suction field 

This is the field shown in figure 3a. It will be assumed that it can be approximated well 

by the so-called Borda mouthpiece flow. This is the flow field produced by suction into a 

semi-infinite channel made up of parallel walls and such that the flow inside the channel 

becomes uniform infinitely far downstream. According to both the Borda mouthpiece 

solution and flow field measurements in parallel wall augmentors, the velocity distribution 

of the inviscid part of the flow inside the shroud becomes almost uniform within a short 

distance from the inlet. The adoption of the Borda mouthpiece solution also has the 

advantage that it can be used as a basic solution in a perturbation approach to deal with 

inlets of rather general shape. The flow field of the Borda mouthpiece can be found using 

conformal mapping. Define the complex velocity potential such that: 

v= d~ 
dz 

(2.1) 

If a mapping z = f(w) can be found where the potential is known, 2.1 can be expressed 

v = d~ dw 
dw dz 

(2.2) 

In our case we will identify z with the physical plane and w with a transformed plane, 

where the complex velocity potential can be calculated immediately. Due to symmetry, we 

will consider only half of the channel, as seen in figure 4. Using the Schwartz-Christofeln 

theorem, the shaded region in the z plane can be mapped conformally onto the upper half 
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of the w plane. The upper half of the z plane can be considered the exterior of a degenerate 

triangle of sides 1-2, 2-3, 3-1. The Schwartz-Christofeln theorem gives the transformation 

in integral form for the exterior of a polygon on the upper half of the w plane: 

(2.3) 

where Ct, C2 are complex constants, wi are the locations of the transformed positions of 

the vertices of the polygon, numbered in counterclockwise sense, and Cii are the internal 

angles at such vertices. At most three wi's can be specified. If a vertex transforms to a 

point at infinity, its corresponding term will be absent from the product in 2.3. applying 

2.3 to the degenerate triangle of figure 4 we have 

! w-l 
z = Cl ----;;;--dw + C2 

Then the transformation is 

Proper orientation and scaling requires Cl = ~; C3 = i7r - 1, then 

z = .!.(w -lnw + i1r -1) 
1r 

(2.4) 

(2.5) 

(2.6) 

The logarithm in 2.6 has a phase angle in the range-1r < 0 < 1r. To compute the velocity 

potential in the w plane, we consider the value of the potential infinitely far downstream 

in the z plane: 

4J6 -+ tL6 Z for x -+ 00; 0 < y < 1 (2.7) 

where tL6 will be called "Borda velocity". The corresponding point in the w plane is the 

origin. In the vicinity of w = 0 we can neglect w in 2.6 to get: 

- tL6 
4J~ = -- lnw 

1r 
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This means that in the transformed plane the velocity potential is the one produced by a 

sink at the origin of intensity 2U6. The complex velocity of the Borda mouthpiece in the z 

plane is then given by: 

(2.9) 

2.3.2 Flow induced by primary jet entrainment 

To estimate the effect of the primary jet entrainment on the potential flow, consider 

a turbulent jet developing in an arbitrary inviscid field. The outer edge of the turbulent 

jet is described by the function d(x), whose magnitude will be assumed small compared 

with any characteristic length of the inviscid flow, t(x) being a function of order 1. Now 

lets assume that the inviscid flow is described by a stream function defined as follows: 

d¢ = udy - vdx (2.10) 

Then the governing differential equation and the boundary conditions for the inviscid flow 

field are: 

¢(x,oo) = ¢oo 

¢(x, €t(x)) = €g(x) 

(2.11) 

Here €g(x) represents the flux that crosses the edge of the jet, expressed as a function of 

x. Assuming now an expansion of the form: 

(2.12) 

and expanding ,p(x, €t(x)) in powers of €, the following two problems for ,po and ,p1 can be 
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formulated: 

and 

t#o(X,oo) = t#oo 

t#o(X,O) = 0 

t#l(X,OO) = 0 

et#l(X,O) = eg(x) - et(x)t#oy(X, 0) 

IT now we define the velocity profile of the jet to be given by 

at#o () 
tL = ay + tLl F X, Y 

(2.13) 

(2.14) 

(2.15) 

the right hand side of equation 2.14c represents, up to order e, the flux involved in the 

second term of the velocity profile described by equation 2.15. Then an alternative way of 

writing equation 2.14c is: 

(2.16) 

IT now, as done in reference 6, the excess velocity in the jet is represented by a Guasian 

exponential, equation 2.16 can be written: 

(2.17) 

IT ( I~:E) « 1, this equation becomes: 

(2.18) 



The boundary condition represented by this last equation can be restated in terms of 

a source distribution on the :c axis of local intensity: 

(2.19) 

Then the ,pI part of the solution consists of the flow field induced by the source distri­

bution given by 2.19. In the case of the re augment or, this will be the component of the 

field shown in figure 3b. 

This flow field can also be computed with conformal mapping. Under transformation 

2.6 the sink distribution given by 2.19 transforms into a distribution on the e axis. If dqp 

is the differential sink strength at position eo; the corresponding induced velocity in the z 

plane is: 

(2.20) 

with 

(2.21) 

since 

(2.22) 

the resulting velocity in the z plane is: 

(2.23) 

where ej indicates the origin of the primary jet, and el the end of the external region in 

the channel. These quantities can only take negative values. Hence the only singularity in 

2.23 occurs at eo = w. It is hot possible to integrate 2.23 analytically. The integration can 
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be carried out numerically by discretizing qp. Since qp depends on the inviscid solution, an 

iterative process is needed to solve for this discretization. 

2.3.3 Flow field inducad by the exhaust plume 

This part of the analysis can be done along the same lines as the entrainment of 

the primary jet. However, the flow induced by the exhaust jet is not likely to affect the 

potential flow in the proximity of the inlet, which is the most important area as far as 

performance is concerned. Since the objectives of this study is performance evaluation, 

the exhaust field has not been included. 

2.3.4 Viscous solution 

The inner, viscous solution is obtained by applying an integral method to the time 

averaged flow quantities. A detailed description of the method is given in reference6
• 

Making use of the boundary layer assumptions and neglecting the component of stress due 

to molecular viscosity, the equation of conservation of momentum in the x direction is: 

au au 1" au 1 dp 1 or r(u)=u-+- -de+-----=o 
ax ay 0 ax p dx pay 

(2.24) 

and the equation of conservation of mass: 

(2.25) 

To solve this equation a suitable representation for u( x, y) valid from the primary 

nozzle exit to the exhaust nozzle exit plane is postulated in the manner shown in figure 4. 

Such a representation is of the form: 

(2.26) 

In this equation uo(x), Ul(X) and b(x) are unknown a priori. This representation also 

implies that the boundary layers on the inner side of the ejector walls are ignored6 • The 

Reynolds stress T is represented by a kinematic eddy viscosity model of the form: 
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l' au -=v, -
p ay (2.27) 

• 
w here v, is assumed to scale in the following way: 

(2.28) 

Here k is supposed to be a constant whose approximate value can be determined either 

by comparison with experimental results, or by requiring that the theory should reproduce 

already known results exactly. The requirement that the integral method should yield a 

rate growth of b = 0.1 when applied to the two-dimensional turbulent free jet leads to a 

value of k of about 0.0283. Comparison between computed and measured inner flow fields 

in ejectors suggests that this value should be slightly larger. Values of k of up to 0.035 can 

be used without visible effects on the global aspects of performance, such as total mass 

flux and thrust augmentation. Substituting now 2.26 and 2.27 into 2.24 it is possible to 

obtain a system of n independent reduced equations by taking n moments of the operator 

r( u) as follows: 

(2.29) 

Equations 2.29 plus conservation of mass constitute a set of four non-linear ordinary 

differential equations relating the functions Uo, Ul, b, p and their derivatives. In matrix 

form: 

(2.30) 

In regions 1 and 2 this system reduces to a system of 2 equations for Ul and b, since the 

matching conditions pruvide U o and thus the preSEure through the application of Bernoulli's 

11 



equation. Hence in regions where the outer flow is known the last two equations are 

disregarded and the system to be solved reduces to: 

(2.31) 

This two-equation system is only applied to region 1, while in region 2 the entrance 

and exit parameters are estimated by conservation considerations. In regions 3 and 4 the 

system is solved for all four variables. 

2.3.5 Initial conditions for the inner solution 

In this model the primary jet is idealized as a point source of momentum with no mass 

of its own, emerging from the so-called virtual origin. The location of the virtual origin 

is not known with certainty, and appears to be influenced by the conditions in which the 

experiment is conducted8,9. 

Absence of precise knowledge of the virtual origin amounts to an uncertainty in the 

present results which becomes less significant as the primary nozzle width decreases. In 

these calculations the virtual origin is assumed to coincide with the exit plane of the 

primary nozzle. The calculation is begun at a point slightly downstream of the virtual 

origin. The values of band Ul at this point are computed as if the primary jet had evolved 

as a free jet in still air, and by requiring that the momentum of this free jet be equal to 

do U~j' where do is the primary nozzle width. 

2.3.6 Viscous-inviscid matching 

The matching is carried out in region 1 by setting 

Uo(X) = tI(x - Xii iO) (2.32) 

where V = Vb + Vp. Satisfaction of this equation would require an iterative procedure to 

compute Vp (2.3.2). A way to avoid this iteration, is to simply ignore the tip component 

of inviscid flow. This would introduce a change in the augmentation ratio of the order of 
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2%. which justifies neglecting this contribution. In principle the matching process can be 

extended into regbn 2, however, the primary jet is fairly thick in this region. For this reason 

it is best to treat region 2 globally, without resolving the detailed velocity distribution. This 

is possible since, once the matching in region 1 is completed, the conditions at the beginning 

of region 2 become known, and the enforcement of mass and momentum conservation in 

integral form gives the conditions at the exit of region 2. This approach accounts for the 

viscous-inviscid interaction in region 2 in an indirect manner. From the end of region 2 on 

the calculation concerns itself with the viscous solution only. 

2.3.7 Exit pressure matching 

In addition to the viscous-inviscid matching, there is also a process leading to the 

matching of the exit pressure, which should equal the atmospheric pressure. This is done 

by considering the exit pressure as a function of the intensity of the momentum source, 

and using Newton's method to find the root of: 

(2.33) 

Hence, 

(2.34) 

The derivatives in 2.34 can be approximated by finite differences and in most cases 

convergence is achieved within five cycles. 

2.4 Augmentor of arbitrary shape 

The generalization to augmentors of arbitrary shapes concerns the outer flow only. 

If the shape of two-dimensional augment or deviates slightly from a straight channel, a 

perturbation analysis on the transformed plane can be carried out to compute the outer 

potential flow. 
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Consider an ejec',o1" shroud as shown in figure 5. The cowling can be seen as described 

by the functions e/l(x) and e/2(x) In the case that these functions take on values much 

smaller than unity, transformation 2.6 will map the cowling into the shape described by 

ej(e), where e « 1. The fact that ej(e) departs slightly from the axis allows for the 

linearization of the boundary conditions in the w plane, and this leads to simple integral 

form solutions for the perturbed velocity field. The perturbed problem would require the 

solution of integral equations if it were formulated in the physical plane directly. We will 

first look at the perturbed Borda component of the velocity field. Using again the concept 

of stream function, the boundary value problem in the upper half plane can be written: 

(2.36a) 

(2.36b) 

(2.36c) 

The condition at infinity reflects the sink at the origin of the transformed plane and 

assumes that the perturbation of the velocity field produced by the displacement ej( e) 

vanishes at infinity. Transfering now the boundary conditions to the e axis we have: 

(2.37) 

Assuming the expansion tP = tPo + eVh, and substituting 2.35 we find the following 

problems for tPo, tPl: 

at 00 

and 

14 
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(2.3Sb) 

(2.3-Sc) 

(2.39a) 



- a1/l1 -' a1/lo - a21/10 
ef ae (e,o) = -ef ay (e,o) - ef aeay (e, 0) 

v't -+ const at 00 

(2.39b) 

(2.39c) 

The first problem yields the Borda mouthpiece solution for the straight channel case, 

hence 

U6 -1 '7 1/10 = -- tan -
'If' e (2.40) 

The second problem can be solved by looking at its boundary condition 2.3830, which 

after making use of 2.39 can be expressed: 

(2.41) 

Since a:~l = -V,1/I1 will correspond to the flow field produced by a source distribution 

on the e axis given by: 

(2.42) 

- -Now it is necessary to express f and f in terms of f and e. The real and imaginary 

parts of transformation 2.6 are 

'If'y = '7 - tan-1 ~ + 'If' 

Focusing on equation 2.42, it is clear that for e of order 1, 

t -1 f O! f 
an e e 
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For e -+ 0, I -+ 0 since all the points in the channel downstream at infinity map to 

the origin in the transformed plane. Substituting y by 1 - Eli in 2.42, we have: 

I -e = tan(1rE/i + f) (2.46) 

where Ii takes the value of 10 for e> 1 and of 11 for e < 1. As x -+ 00. 

I 
- -+ tan 1rEJ,· e ' (2.47) 

Since 1rE/i(X) is small for all values of x, 2.46 says that for e -+ 0, 2.44 is also a good 

approximation. Assumption 2.44 is certainly safe for large e. If 2.46 is assumed to hold 

for any positive value of e, we find: 

(2.48) 

Neglecting 1'/2 in 2.43 we find: 

(2.49) 

From 2.47 and making use of 2.48 we get: 

(2.50) 

With 2.49 and 2.47 the source intensity becomes: 

(2.51) 

Hence the resulting ·perturbed Borda component of the velocity potential in the trans­

formed plane will be expressed as: 

tL6 1 100 

4J6 = --In w + -2 q(eo) In(w - eo)deo 1r 1r 0 
(2.52) 
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and, after substitution of q( eo) by its expression 2.50, the corresponding complex velocity 

in the physical plane is given by: 

(2.53) 

2.4.1 Convergence conditions 

. Requirements for the existence of the integrals in 2.52 need to be specified. To this 

end the behavior of EI near e = 0 and e = 1 will be investigated. 

For small e, equation 2.43 can be written: 

1rX = -In Je2 + f12 (2.54) 

replacing j with f1 in 2.46 we have that 

(2.55) 

substituting in 2.53 we find, for e -. 0 and x -. 00 

~ -rz 
~,..,.e (2.56) 

This means that the slope of the inner side of the shroud should vanish at least like 

e-n at infinity in order for the first integral in 2.52 to converge. This is not a restriction, 

since I = 0 beyond the nozzle exit plane. Now we analyze the behaviour of Ii close to 

e = 1, to do so, y is replaced by 1 - Eli in 2.42 to obtain: 

(2.57) 
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and 

In the proximity of e = 1, 70th « 1, expanding 2.56 one finds: 
" 

(2.58) 

(2.59) 

To relate 11 to e for e -. 1, consider an expansion of eli about x = 0 in the form 

(2.60) 

Between 2.58, 2.42 and 2.43 we find 

(2.61) 

Defining now 

/}. = 1 - e, (2.62) 

replacing 2.61 into 2.60 and expanding both sides we find: 

(2.63) 

Neglecting the higher order terms on the right hand side, equation 2.62 can be solved for 

(2.64) 

since for /}. > 0, 11 > 0 the right sign in the square root in 2.63 is positive, then: 

(2.65) 
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substituting 2.64 in 2.58 we find that: 

(2.66) 

This implies that the second integral in 2.52 also exists, since the singularity at e = 1 

is cancelled out. It is important to recognize that this conclusion depends on assumption 

2.59, which presuposes a cusped shroud leading edge. Since one is interested in the flow 

field at some distance from the leading edge, and since this conclusion is not limited to 

small 8, this assumption does not constitute a restriction in practical cases. 

2.4.2 Resulting outer potential flow field 

The resulting outer field will contain, in addition to the perturbed Borda component, 

the flows induced by entrainment into the primary and the exhaust plume. In a strict sense 

the flow due to entrainment should be computed on the basis of the perturbed cowling 

shape. However, the difference between entrainment fields resulting from a calculation 

based on the perturbed cowling shape and another one based on the straight:'walled cowling 

shape can be neglected in this approximation. With this in mind, and leaving out the 

influence of the entrainment by the exhaust, the resulting outer flow in the physical plane 

is given by: 

(2.67) 

2.4.3 Thrust augmentation 

Thrust augmentation is usually defined as the ratio of the thrust produced by the 

augment or to the thrust that would be produced by the primary jet discharging adiabat­

ically, in isolation and in an environmnent at atmospheric pressure. The computation of 

the thrust augmentation in our case is simplified by the fact the flow is incompressible. 

The shroud will produce thrust due to the integrated effect of the presure acting on its 

surface. The computation of the resulting force on the shroud will be carried nut first 
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on an augmentor with parallel, infinitely thin walls. In this case all the forces acting on 

the shroud are concentrated at the leading' edge as a result of infinite suction acting on 

an infinitesimal area. To compute this force we apply Blassius theorem to the indented 

contour '1 sketched in figure 6. Neglecting the effect of entrainment into the exhaust jet, 

the force acting in the leading edge will be given by: 

F - 1. i (dl/J6 dl/Jp) 
2 

d --~ -+- z 
2 6 dz dz 

(2.68) 

This equation contains the Borda component of the external flow and the flow in­

duced by the primary jet entrainment. It cannot be evaluated exactly because l/Jp is not 

known analytically. An approximate solution for equation 1 would require to provide an 

approxhnation for qp, however it is possible to show that the effect of l/Jp on cp is usually 

not important. To estimate this effect, lets represent the primary jet entrainment by a 

single sink located at the virtual origin, of strength qp, where qp is the entrainment into 

the primary jet between the origin and the inlet plane. Then we have: 

(2.69) 

Since in the neighborhood of the leading edge the velocity induced by entrainment is 

significantly smaller than the Borda component of the potential flow, equation 2.67 can be 

approximated by: 

(2.70) 

In the proximity of z = i we get 

(2.71) 

Substituting in equation 2.69 and carrying out the integration we find 

(2.72) 
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where T is equal to 2F. Notice that F is real, which indicates the suction force acts parallel 

to the x axis. 

The augmentation ratio is given by: 

Defining now the parameter KG 

T 
1,0=1+-. 

mJ 

K= 2ut 
m· 1 

and approximating qp by the product Ut, b taken at the inlet plane, 

(2.73) 

(2.74) 

(2.75) 

In practical cases the term containing (Utb)inld is of order 0.2, which indicates that the 

effect on 1,0 due to primary jet entrainment is fairly small. 

In the case of a shroud of arbitrary shape, the computation of leading edge suction 

force cannot be achieved using Blasius theorem because the potential b.l/J6 is known only 

approximately, and singular behavior in such cases is known to lead to wrong values of 

suction forces1o • Nevertheless it can be argued that equation 2.71 is also valid in the general 

case. The first term in the right hand side of 2.71 can be interpreted as the momentum 

flux infinitely far downstream in the two-dimensional channel used to get the basic outer 

solution. As seen in figure 6, the general case can be treated by assuming that sufficiently 

far downstream the inner flow develops in a channel coincident with the basic parallel­

wall channel. Hence the momentum flux infinitely far downstream will be identical in 

both cases. If the shroud has a diffuser with projected vertical area 0, and defining the 

non-dimensiona.l pressureG p = ~, the net thrust augmentation becomes: 
. pu. 

1,0 = 1 + ~ (1 + ! pdO) (2.75) 

where the ccntribution due to the primary jet entrainment has been left out. 
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3. RESULTS AND CONCLUSIONS 

3.1 Wedge-shaped augment or 

An ejector shape of practical significance is shown in figure 7. The shroud is character­

ized by a wedge-like inlet of angle 0 extending to the distance x·. The main mixing part 

of the channel has parallel walls and the diffuser has arbitrary shape. The study of this 

problem is important in that it will provide an understanding of some of the effects of inlet 

shape on the performance. The analysis done here will reveal to what extent a divergent 

inlet affects performance through the viscous-inviscid interaction with the primary jet. In 

this particular case the terms in equation 2.52 can be evaluated analytically. In order to 

do so, expressions for Ii and Ii have to be found in the transformed plane. 

We have; for small 0: 

(3.la) 

(3.lb) 

Now identifying f"J with j(e) in equation 2.47 and then substituting in equation 2.43 

we get: 

1f'X = e - In e - In (3.2) 

With the assumption that eli « 1 everywhere, 

(3.3) 

Since, according to 2.65, e/i"-J (I - e)20 for small 0 and e - 1. 

(3.4) 

22 



Hence the logarithm in 3.2 can be linearized in the range 0 to 1, and the following 

guadratic equ'ation for Tr€/i is found: 

(3.5) 

solving for Tr€/i: 

(4.6) 

The positive sign in the square root is required to obtain positive Tr€/i for e ~ 1. If 

now expression 3.1 and 3.6 are substituted in 2.52 we get: 

(4.7) 

earring out these integrations and expanding the integrand of the last integral for 

small 0 we find: 

v, + ~V, = _u6_1 __ OU6-w- [_I_In _e·.....;.(_I_-_w-=-) 
w - 1 w - 1 TrW e· - W 

(4.8) 

This equation gives an algebraic expression for the perturbed outer field. It can also be 

seen as a first order expansion in powers of o. It is important to notice that the expansion 

of the square root in the last integral of equation 4.7 requires, due to the logarithm in 

the numerator that x· should be ~bout unity. If this were not the case, the full integral 
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as in 4.7 should be used. In the case discussed next x· = 1. Figure 7 shows the thrust 

auimentation as a function of the wedge angle. We see that there is essentially no change 

of the performance for different angles. This result suggests that the particular details of 

the inlet shape don't have a first order effect on the thrust augmentation. 

3.2 Straight-walled augmentors 

The theory is now applied to an augment or with a shroud consisting of two thick flat 

plates, as shown in figure 8, and the results are compared with the experimental findings 

reported in reference 5. Although such ejectors have thick walls, the results of the previous 

section suggest that the walls could be idealized as thin flat plates. This was done to obtain 

the results shown below. 

Figure 9 shows the calculated and computed velocity distributions in the inner flow 

for the ejectore sketched in figure 8, taken at the shroud inlet and exit stations. Here the 

horizontal component of velocity is presented in dimensional form; this is done by rescaling 

the computed non-dimensional velocity in a way that mj becomes identical to the measured 

primary nozzle thrust. The computations were carried out with two different values of the 

eddy visco city scaling factor k. Values of k larger than 0.0283 seem appropriate. Although 

there is a visible change in the velocity distribution between the two cases, global quantities 

ruch as thrust augmentation are practically the same. This indicates that, within limits, 

the choice of k is not critical. Figure 10 shows the effect of the position of the primary 

nozzle on performance for the same augmentor. We see that, in the absence of separation, 

the optimum position of the primary nozzle seems to be close to the inlet plane. The 

agreement with experiments appears to be extremely good in this particular case. Figure 

11 shows computations for an augment or obtained by attaching a diffuser to the one 

shown in figure 8, also reported in reference 5. Dependence of performance on diffuser 

angle is shown, where the negative contribution of the pressure acting on the vertical 

projection of the diffuser area is indicated by the spacing between the augmentation curve 

and its leading edge suction component. We see that this detrimental effect becomes 
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more pronounced at large diffusion angles, but in none of the computed cases appears to 

offset the positive contribution to augmentation, as a result of which the augmentation 

ratio increases monotonically with area ratio. The predicted value falls within 8% of the 

measurements. 

In figure 12 the diffuser area ratio was kept constant as the length of the diffuser was 

varied. We see that under this conditions the performance changes very little. This result 

would indicate that the design of the diffuser could be based on boundary layer separation 

criteria only. 

The effect of overall length to width ratio of the augmentor, for varying diffuser angles, 

is illustrated in figure 13. In these computation the efficiency of the diffuser appears to be 

weakly dependent on augmentor length. 

3.3 Conclusions 

A methodology for the calculation of two-dimensional ejector performance has been 

developed, which, combining analytical and integral methods, allows for a fast and eco­

nomical computation. Typical computation times are of the order of two to five seconds 

on an IBM 3081 processor. The most important limitation in the internal flow treatment 

is given by the modelling of the Reynolds stress. Although the eddy visco city model used 

here appears satisfactory for global estimations, further improvement, particularly in the 

local quantities of the flow field should result from upgrading the stress model. Predicted 

performance falls within ten percent of measured values and can be considered reasonable. 

Regarding augment or performance, the main observations are: 

1. In the absence of separation, the particulars of the inlet do not have a first order effect 

on performance. 

2. The optimum position for the primary nozzle lies close to the inlet plane. 

3. Considerable changes in the scaling factor k for the eddy visco city are felt much more 

strongly in the local velocity distribution in the inner viscous flow than in performance. 

4. For a fixed overall augment or length and fixed diffuser area ratio, diffuser length does 
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not have a significant effect on performance. 

5. As the diffuser area ratio increases, the augmentation appears to increase monotoni­

cally. 

6. The efficiency of the diffuser ~, depends very weakly on'the overall length of the 

augmentor. 

Further research in this area will focus on improved modeling of the outer flow and 

matching process, improved Reynolds stress description and on an inner flow formulation 

that accounts for compressibility and temperature effects. 
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Figure 2. Inviscid and viscous flow fields 
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Figure 3. Components of inviscid flow field 
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Figure 6. Computing lea.ding edge thrust 
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