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PREFACE 

The Human Role in Space (THURIS) study was a 12-month effort to 
(1) investigate the role and the degree of direct involvement of humans 
that will be required in future space missions; (2) establish valid 
criteria for allocating functional activities between humans and 
machines; and (3) provide insight into the technology requirements, 
economics, and benefits of the human presence 1n space. 

The study started in October of 1983 and was completed in September 
of 1984. 

The final report has been prepared 1n three separate volumes: 
Volume I - Executive Summary 
Volume II - Research Analysis and Technology Report 
Volume III - Generalizations on Hu~q Roles in Space 

This document is Volu~e II in the series. It is the technical 
report of the work accomplished and contains the ddta and analyses from 
which the study results were derived. 

The study results are intended to provide info~~tion and 
guidelines in a form that will enable NASA program ~~nagers and 
decision~~kers establish, early in the design process, the most 
cost-effective design approach for future space programs, through the 
optir.~l application of unique huwan skills and capabilities in space. 

Questions and comments regarding this study or the material 
contained in this document should be directed to: 

Stephen n. Ha 11 
THURIS Study Manager 
Code PO 24 
National Aerona~tics and Space Administration 
G~orge C. Harshall Space Flight Center 
(205) 453-419& 

Harry L. Wolbers 
THURIS Study l1anager 

(or) 

McDonnell Douglas Astro1uutics Company 
Huntington neach, California 
(714) 89&-4754 
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Section 1 
IHTRODUCTIOII AIm SUHMARY 

The space project managers and engi neers wi th; n UASA today are faced \'Ii ttl 
a significant challenge. On the one hand, with the Shuttle's attainment of 
operational status, the nation's Space Transportation System (STS) has 
successfully completed one more step toward establishing the permanent 
presence of man in space. On the other hand, the competing demands on this 
nation's limited economic resources are forcing an increasing awareness of the 
need to maximize economic efficiency in achieving the goals and objecti~es of 
future space missions. To meet this challenge, a ratiOfial methodology and set 
of performance and cost criteria are critically needed by space project 
managers and decision makers if they are to design the most cost-effective 
man-machine systems to accomplish specific missions. 

To be of value, these assessment procedures must clearly indicate to the 
decision maker the optimal location of each activity and functional operation 
along the continuum from direct human interventlon and control to independent 
system operations. 

As a point of reference, too often in system d~sign an artificial 
dichotomy is created that attempts to classify systems as manned or unmanned. 
There is no such thing as an unmanned system: everything that is created by 
the system designer involves man in one context or another; everything in our 
human existence is done by. for, o~ against man. The point at issue is to 
establish in- every system context the optimal role of each man-machine 
component. 

To this end, the Human Role in Space (THURIS) Study has ~l) investlgated 
the role and the required degree of direct involvement of humans in future 
space missions; (2) established criteria for the allocation of functional 
activities beb/een humans and machines; and (3) investigated the technology 
requirements, economics and benefits of the human presence in space~ Six 

/ 
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basic categories of man-machine interaction were considered in the study. 
They were Hanual, Supported, Augmented, Te1eoperated, Supervised, and 
Independent modes of operation. These categories are defined in Figure 1-1. 

Manual 

Supported 

Augmented 

Teleoperated 

SupervIsed 

Independent 

UnaIded IVA/EVA, wltn SImple (unpoweredl hand tools 

Requires use of supportong machInery or faCIlitIes to accomplish 
aSSIgned tasks (e g ,m3nned maneuvering unlU and foot 
restraont deVlC~) 

Amplif,cat,on cf human sensory·motor capabIlitIes 
(powered tools, exo-skeletons, etc) 

Use of remotely controlled sensors and actuators allOWing 
the human presence to be removed from the work sIte 
(remote manlpul&tor systems, teleoperators, telefactors) 

Replacement of direct manual control of SYltem operatIon WIth 
computer-dorected furCllons although maintaining humans 
In supervIsory control 

Caslcally Independent self-acluatlng, self.heallng operatIons 
but requiring human ,ntervenllon occas,onally (automatIon 
and art,flc,al Intell,gence) 

Figure 1·1. Categories of Man-Machine Interaction 

The study activity \iaS organized into four task areas, as fo1101-/s: 

TASK 1 - HUHA/l QUALIFICATIOIIS FOR SPACE ACTIVITIES 

The objective of this task was to provide documented information on human 
capabilities and limitations in order to establish guidelines for defining the 
human role in manual, support~d, augw.ented, teleoperated, supervised, and 
independent modes of system operation. 

TASK 2 - SELECTED PROJECT ASSESSf1EIHS 

The objectives of this task were (1) to analyze a repiesentative set of 
space missions in order to identify a generic set of mission activities that 
may in turn be used as a catalog from \~hich a selected number can be extracted 
as applicable to describe any future space mission (Subtask 2.1); (2) to 
develop typical timeline data and mission impact factors for each of the 
generiC activities in order to be able to synthesize and co~pare the viable 
alternative options for accomplishing future mission obJectives (Subtask 2.2); 
(3) to define the hardware and software support requirements associated with 
each activity implementation option to sufficient depth to allow cost data on 
the alternative modes of implementation to be developed (Subtask 2.3); (4) to 

1·2 
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prepare comparative cost data associated with the provision, support, and use 
of various degrees of direct human involvement in future space missions 
(Subtask 2.4); and (5) to develop a methodology for evaluating in qualitative 
and quantitative terms the impact of varying degrees of human involvement on 
the effectiveness and economy of satisfying the requirements of future space 
projects (Subtask 2.5). 

TASK 3 - TECHUOLOGY REQUIREHEUTS 
The objective of this task was to identify the requirements for the 

technological developments that enable and enhance the human role in space and 
to uncover gaps that will need to be considered in both ground-based research 
and development programs and in flight experiments, as appropriate. 

TASK 4 - GENERALIZATIONS ON THE HUMAll ROLES IN SPACE 
The objective of th1s task \'las to summarize (in an easily accessible 
procedural format) the methodology developed during the THURIS study for 
selecting the optimal mode of man-machine interaction in any specific system 
application. To accomplish this objective, the information generated in Task 
1 - Human Qualificaticns for Space Activities, Task 2 - Specific Project 
Assessm~nts, and Task 3 - Technology Reauirements \'/dS used to develop a 
declsion guide to assist space project managers in assessing the relative 
value of the various categories of man-machine interaction in meeting the 
activity requirements of future space systems. 

'The overall study flow is summarized in Figure 1-2. 

In the fol1o\'!ing sections of tnis docurr.ent, the analyses and data 
generated and the results obtained in each of these task areas is presented. 
Section 2 describes the Task 1 analyses, Section 3 describes the Task 2 
analyses, Section 4 describes the Task 3 analyses and Section 5 describes the 
Task 4 analyses. Many different criteria can be suggested as candidates for 
inclusion in the decision process for allocating functional activities between 
humans and machines. As will be described in the following pages, the study 
team hds concentrated on three principal indices: performance, cost, and 
technological readiness as an indicator of success probu~11ity. 

1-3 

MCDONNELL DOtJGL~ 



-I 

Task 1 - Human 
Quahf,catlons 

Benefits 
AnalysIS 

Study Goal - RatIonal 
methodology for optlmlzmg 
human role m space 

Croterla - Performance 
• Cost. RIsk 

Flguro 1·2. Study Methodology 

Assessment 
~'odel 

Prolect Work 
AnalysIs 

Task4-
Fiole 
AllocatIons 

Task 3-
Technology 
P"qulrements 

With regard to perforwance, 37 generic classes of activities were defined 
(see Section 3) that, when cORbined in the required oper~tlonal sequences, 
could be used to describe a broad spectrum of potential ~ace programs. For 
each of these activities and for each category of man-machine interaction 
(manned, supported, augmented, teleoperated, supervised, and independent 
operations), the limiting factors in tems of sensing, information processing 
and motor actions have been defined and the requirements for human involvement 
have been described (see Section 2). 

Some system operational requirements specify performance beyond human 
sensory or psychomoto~ capabilities (e.g., sensing outside the visible band of 
the electromagnetic spectrtlm, force actuation beyond normal human capability, 
or exposure to extreme pressure, temperature, or toxic envlronments). As a 
general rule, however, response tlme was found to be the most generally 
applicable discriminator betl-'/een the manually controlled modes and the 
supervised and independent nodes of operation. If responses in time periods 
of seconds or less are required, then the activity is generally best performed 
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in the supervised or independent modes. Applications where speed of response 
would dictate that the activities be p~rformed in the supervised or 
independent modes might include launch abort procedures and orbital trajectory 
corrections. If allowable response times become minutes or hours, then all 
modes might be applicable and the criteria of cost effectiveness or 
technological readiness would provide the more appropriate basis for selection 
of a particular mode of implementation. 

Witn re'1ard to cost, costing..models l'iere derived (see Sectlon 3) that 
~ic.ided comparative data on the relative costs for each man-mach1ne mode in 
performing each activity, from one to many hundreds of times. It was found 
that some system operational requirewents are of such a low demand that the 
development of automated systems becomes prohibitively expensive in view of 
the benefits achieved. These comparath'e costing data were further refined to 
take into acount the cOlimonality that can exist among the equipment items or 
resources needed to support multiple activities. 

With regard to technolo~lcal readiness. it was found by the stu~ team 
that the level of readiness could provide another useful metric in the role 
allocation decision process. The higher the technological readiness level of 
a given m~n-machlne implementation concept, the nore confidence the 
decision-rlakel' would have that the mission objectives could be met within ti:r:e 
and budget. In other words, the higher the readiness level, the higher will 
be the. probabil ity of mlssion success. 

ror programmatic planning purposes, the schedule risk in meeting progral~ 
milestones is directly dependent upon the readiness level. It was found that 
the tfl~ scale required to achieve a given level of technological readiness 
depends in turn upon the degree of co~~lexity of th2 system to be developed. 
For relatively simple systems, the times required to move froi.1 concept to 
operational readlness may take from 1 to 5 years. This time range often 
reflects the impact of factors other than technical progress on the 
development process, such as political or budgeting constraints or the 
availability of corollary systems required to demonstrate or aid 1n the 
de..-elopment of the item in questl0n. The time requirel:Jent for a more conplci 
syste~ may ta~c even longer. 
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Based upon the analysis described in Sections 2. 3. and 4. a decision 
guide was fonnulated that Gan be used to logically allocate space activities 
to alternative man-machine implementation modes based upon the criteria of 
performance. cost and technological readiness as developed in Tasks 1. 2, and 
3 of the study. Such a guide might take many forms. One procedural approach 
that appears promising, however, utilizes a worksheet format and is described 
in Secti on 5. 
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Section 2 

HUHA" QUALIFICATIOlIS FOR SPACE ACTIVITIES - TASK 1 

The objective of Task 1 was to provide information on hu~an capabilities 
and limitations and on their application to space mission tasks. This was 
accomplished by compiling data on a large number of basic and unique human 
capabilities, defining the limiting factors relevant to these capabilities, 
and by documenting historical precedents and past experience from various U.S. 
and Russian space mission reports. 

2.1 HU1-lAfl CAPABILITY DATA 

A d~tailed list of human capabilities applicable to space mission 
activities was compiled from previous stUdies. human f~ctors texts, and 
biO'lledical references. For simplification purposes tht!se capabilities I"ere 
grouped into thre~ categories: Sensory/Perceptual; Intellectual; and 
Psychomotor/!-!otor. A list of the capabilities exanined under each of these 
three categories is pre~ented in Table 2-1. 

For each capability, a definition was provid~d. its chal'acteristics were 
identified, factors which tend to change or linit the capability were listed, 
and comwents were made regarding the relevance and application of the 
capability to man's role in space. ThlS data is summari1ed for each of the 
basic human capabilities in Appendix A. 

~h11e conSiderable quantitative data were found 1n the literature defining 
sensory discri~ination abilities and the fine and gross motor responses tM~ 
humans are capable of making, the higher level cognitive functions are not as 
precisely defined in terns that can be used directly by system engineers. To 
address thi s problem of defining the "i ntell igent" operations of the human 
ele~ent in man-mach1ne systems. we have borrowed the terminology proposed by 
the eminent psychologist, J. P. Guilford, in his "Structure-of-Intellect" 
model. In exanining the nature of human intelli~ence, Guilford defines the 
dimensions of intelligence in tems of Cognition, Her.lOry, Divergent 
Production, Convergent Production and Evaluat1on. 

,/ 
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Table 2-1 
BASIC HUI1AI~ CAPABILITIES 

A. Senso~/Perceptual and Capabilities 

o Visual Acuity 
• Brightness Detection and Discrimination 
o Color Discrimination 
o Depth Perception and Discrimination 
o Peripheral Visual Detection and Discrimination 
o Visual Accommodation ~ 
• Detection and Discrimination of Tone 
o Discrimination of Sound Intensity 
o Sound Localization 
o Detecti on of Li gilt Touch 
o Tactile Recognitlcn of Shape and Texture 
o Discrimination of Force Against Limb 
• Discrimination ~f Limb Movement and Location 
• Detection and Discrimination of Angular Acceleration 
o Equil i bri urn 
o Detection ao1d Discrimination of Vibration 
o Detection of Heat and Cold 
o Detection and Discrimination of Odors 

B. Intellectual Capabilities 

8 Cognition 
o Hemory 
e Divergent and Convergent Production 
o Evah:ation 

C. Psychomotor/Hotor Capabil ities 

e Production and Applicatlor. of Force 
o Control t)f Speed of Hotion 
G Control of Voluntary Responses 
o Continuous-Adjustment Control (Tracking) 
o Arm/lland/Finger flanipulation 
o Body POSitioning 

Cognition is defined as awareness, immediate discove~ or rediscove~, or 
recognition of information in various forms: comprehension or understanding. 
Information acted upon by the human element can be in the form of figures. 
symbolz, se~antic units, behavioral units, classes, relations, systems and 
transformations. 

The terms cognition and perception overlap to some degree. Both 
perception and cognition are concerned with input info~ation from sensory 
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sources. Perception, however, is concerned primarily with sensory properties 
and with the cognition of figural units. The complete cognitive process 
includes operation with symbolic, semantic, and behavioral concepts as well._ 
Perception is midway along a continuum extending from sensing at one end to 
thinking at the other. It is the process of organizing and interpreting 
sensory inputs based upon past experience. Cognition involves a broader range 
of mental acivity including awareness of semantic meaning and abstra~t 
concepts. 

Hemo!), is defined as inforT"ation retention or storage, with some degree of 
availability of information in the same form in which it was committed to 
storage and in connection with the same cues with which it was learned. 
Hemory is distinguished from cognition per se by the ability ~o recall 
information having once been exposed to the information. Hemory storage. 
however. 1s an essential condition or determiner of cognition. 

Divergent Production can be defined as the generation of new information 
fror.l given infonnation where th'~ emphasis is on variety and quantity of output 
fror.l the same source. Divergent Pro~uctlon 1s re~a~;.;,p creative 
imagination. In this process, iteMS of information are retrieved fror.l memory 
storage and used to generate a number of varied responses. 

Convergent Production is defined as the derivation of logical deductions 
or at least compelling inferences leading to a unique answer or conclusion. 
In convergent production the probl~~ can be rigorously structured, and is so 
structured, and an anSlier is forthcoming without much hesitation. 

Evaluation is defined as a process of comparing a product of information 
with knol'lll information according to logical criteria and making it-decision 
concerning criteria satisfaction. 

Planning and scheduling activities, monitoring flow patterns, target 
recognition. understanding speech patterns. etc •• are examples of the 
cognitive operations that will be required in future space systems. In the 
understanding of speech, for example, peak clipping of the Signal causes 
considerably less intelligibility loss than center clipping. Understanding 
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the relative level of cognitive capabilities of humans in recognizing 
information in alternative fo~s pe~its the system designer to select the 
most efficient design approach for meeting mission objectives. r·lemory for 
procedures, target characteristics, etc., will be essential in long duration 
space missions as will the Diverqent Production operations in problem solving. 
development of alternative courses of action, and improvising in emergencies. 
Convergent Production operations are required in trouble-shooting tasks and 
Evaluation operations will be essential for assessing the level of normal or 
abnormal performance of system elements and, through comparative judgments of 
"greater than," "less then," or uequal to," to direct system operations in the 
most expeditious manner. 

Historically there seems to have been a belief that these "mental" 
operations are the same whetrer they are performed with verbal-meaningful 
information or with visua1-figural information. In fact this is not true. 
Extensive factor-analytical results have proved \~rong the belief that the same 
ability is involved regardless of the kind of infonr.3tion with ~hich we deal. 
Using hundreds of tests of mental activity, Guilford has de~onstrated over 
forty intellectual factors. These factors are related to tasks involving the 
processing of different types of infornation ranging from figures or pictures, 
to sy~bo1s such as letters or nu~~ers, to using words in speaking or reading, 
to responding to the nonverbal inter~ctions in the behavior of other people. 
Tasks may also require dOing different things ~,ith the infonnation such as 
predicting or anticipating outcomes; transforming the info~ation from one 
form to another; organizing or structuring the infonnation into u meaningful 
aggregate, recognizing or establishing relationships between blo or more itens 
by virtue of their COfllilon properties, or deal fng with individual units 0'­

items of information having unique characteristics. Accordingly, the 
description of intelligent behavior must allow for the interrelationships of 
infonnation content and the products of the intellectual activity \litn the 
basic operations themselves (i.e., Cognition, Hemory, Divergent Production, 
Convergent Production, and Evaluation!). 

This multidimensional model of human intellectual activity can be 
visualized as shown in Figure 2-1, where each cell in the multidimen~ional 
matrix represents a potentially unique intellectual activity. If intellectual 
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Symbolic 

Semantic 

Beo,avloral 

Adapted From GUilford, J P The Nature of HUl1'an Intelligence, 
McGraw-HIli, New York, 1967 

Figure 2·1. The S(ructure of Intellect 

abilities and act~vities can be described in tenns of this IIStructure of 
Intellect" Model, and if tasKs to be performed in advanced space systems can 
be analyzed in tenns of these same categories, a pOI'lerful tool becomes 

U 

C 

avai1abl e for defining the intellectual role of the human in system operations. 

11iss10n activities will benefit to a greater or lesser extent by the 
direct, onboard participation of ~an. Of the list of basic human capabilities 
summarized in Table 2-1, seven clusters of capabilities are considered key for 
establishing the extent of man's direct participation in space activities (see 
Figure 2-2). Thc5e key capability clusters are those that should serve as the 
basis for the selection of the hunan to perform a function rather than 
allocating the function to a machine; they are those on which the product of 

tile activity will be directly dependent. The following is a list of the key 
capability clusters, wit~ a discussion of their characteristics and importance. 

Visual Capabilities. Although specific visual capabilities, such as 
visual acuity and depth perception, can be measured and assessed individually, 
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Basic Human Capabilities 

A Sensory/Perceptual Capab.llt.es 

II V.su&1 Acu.ty 
• Brightness Detection and D.scromlnatlon 
a Color DISCrimination 

• Depth Perception and D.scnmonatlon 
II Peropheral VISual DetectIOn snd D.scrom.natlon 
a VISual Accommodation 

• Detection and D,scromonatlon of Tone 
• D.scromlnatlon of Sound IntenSity 
II Sound Locallzat.on 
iii Detect.on of L'9ht Touch 
II Tect.le Recoqn.t.on of Shape Bnd Texture 

II D,scromonatlon of Force A9<lIf"t LlfT,b 
II D,scromlnat.on of L.mb MOllement and Location 
II Detection and D.scr.mlnat.on of All9ular Acceleration 
n EqUilibrium 
• Detection and D,SCrimination of V,brat,o., 
II Detect.on of Heat and Cold 
II Detection and D,scr.mlnat,on of Odors 

B Intellectural c;'pabi1.t.es 

a Cogn.:lon 
II Memory 
II Divergent and Convergent Product.on 
II Evaluat.on 

C Psychomotor/Motor C"pab htles 
II Product.on and Appllcat.on of Force 
II Control of S~ed of Mot.on 
II Control of Voluntary Re<Donses 
• Contlnuous·Adlustment Control (Trac~lngl 
B Arm/Hand/Fon;!r Man,pula\ron 
ioI 60dy Pos.tlonong 

Figure 2·2. I{ey Capab,lItlCs 

almost all are used i~ concert in tasks requiring observation and inspection. 
Visual capabilities \',ere, therefore, considered as a unit capability in this 

evaluation. 

rian would be selectively chosen for tasks requiring visual evaluations, 
when visual capabilities were combined with intellectual capJbilities, 
particularly when a subsequent action is dependent on the evaluation. 
Examples of such tasks include earth observations and laboratory examinations 
of specirren characteristics either unaiJed or \'lith the use of a microscope. 
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Gross Bogy/Limb Activities. Similar to visual capabilities. numerous 
individual capabilities are used 1n concert. without distinction. in tasks 
requiring the use of arms. legs. and body torso for their conduct. For this 
reason a number of psychomotor/motor capabilities such as arm/hand/finger 
control of force. arm/hand/finger control of speed of motion. and body 
positioning were combined into the key capability of gross body/limb 
activities. 

Man would be selectively chosen on the basis of this key capability for 
such applications as complex structural assembly involving infrequently 
repeated functions. and subsystem maintenance particularly when 
troubleshooting was involved requiring the use of convergent production or 
other intellectual c~pabilities in concert with gross body/limb activities. 

Fine Manipulative Activities. This key activity is supported by nu~erous 
sensory modalities such as detection of light touch and tactile recognition of 
shape and texture; it is the fine manipulative activities. however. that 
directly satisfy tas~ objectives. Fine manipulative activities \'/hen applied 
to such fUnctions as animal surgery and dissection and cOh.plex assewbly and 
repair at a workbench u~ually cannot be duplicated by autcrnated devices. Han. 
therefore, is usually essentlal in most tasks requiring this key capability. 

Han~s greatest assets with respect to his participation in space ativities 
are his intellectual capabilities, most particularly cognition. divergent 
proc!uction. conver9..ent production, and evaluation. f.fan~s mtillory. of all 
intellectual capabili~ies. is the one most easily duplicated and surpassed by 
computer activities. Although man~s memory does have some unique 
characteristics which support and reinforce the other intellectual 
capabilities. in space activity planning. man would seldom be selectively 
chosen on the basis of his lremory alone. The other intellectual capabilities 
are. however, unique and are the primary reasons for the human role in space. 

COQnition. Vital to all activities requiring infonnation processing and . 
i nterpretati on. 

Divergent Production. Essential to all tasks requiring a creative or 
innovative approach; plays a unique role in the utilization of man in space 
activities. 
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Convergent Production. Of value to tasks, such as maintenance 
troubleshooting, requiring logical deductions. 

Evaluation. Essential to such tasks as laboratory analyses and the 
engineering evaluation of extravehicular technology experiments. 

The remainder of the capabilities listed in Table 2-1 are normally 
utilized in either an ancillary mode supporting the key capabllities, or they 
are made use of by the task designer when designing the man¥machine interface. 
Illustrative examples of the use of ancillary-capabilities include the support 
that fine manipulative activities receive from tactile capabilities or the use 
of auditory capabilities to receive sound signals or alarms in a particular 
task design. 

The limits of human capabilities may be altered by both environmental and 
task-related factors. Among the most co~~only examined factors are 
atmospherl c stresses--hostil e changes in the i ndl vidua l' sambi ent, breathi ng 
atmosphere. Six such stresses are ldentified in Figure 2-3. The severity of 
the effect of each stress is dependent upon both the intensity of the 
variation and the duration of the exposure. Each of the stresses indicated is 
capable of producing unconscicusness or death with the appropriate combination 
of duration and intensity. The indicated values arc those generally 

ConccntratlOn/ln'e~lty of Stress 

Pe,fo,ma.,ce InJurlou$ or 
Type of St'e55 Degradong Life Threatening 

Decreased 02 
(hYPOXIal 

P02 - 109 mm Hg P02 - 73 mm Hg 

Increased O~ 
(02 toxlcltYI 

P02 - 400 mm Hg P02 - 1500 mm Hg 

Increased CO., Pea;! - 20 rrm Hg Pe02 - 45 mm Hg 
(hypercaprlJr 

IncreasE:-d - 950 F - 120"F 
temperature 
(hypprtherm la' 

Decreased - 500 r - 390 F 
temperature 
(hypother'Tllal 

Atmospheroc - 25 ppm eo - 400 ppm CO 
conta'llination 
(e g. Co) 

Figure 2·3 Llmltlllg Factors - Effects of AtmoJsphcric Stresses on ~lum3n Performance 
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considered to be the least intense that will produce either performance 
degradation or injury with unlimited exposure. 

Atmospheric stresses are usually compensated for by EelS systems, either 
in the spacecraft or associated with the Er~U in EVA. Because of this, 
atmospheric stresses do not commonly restrict activities, but they do add to 
the cost of utilizing man. 

The human is susceptible to environmental stresses other than atmospheric 
and these other stress factors, like atmospherlc stresses, may reach 
intensities that can produce injury or death. Stresses of the type inc:cated 
in Figure 2-4 are not as subject to belng counteracted as are variations in 
atmospheric characteristics and are usually avoided by speclflc approaches to 
spacecraft design characteristics or mission operations. 

The Space Adaptation Syndrome (SAS) or space motlon sickness has occurred 
to some degree on all U. S. space flights since i<lerC"ury and Gemini. In 
addition. 49 percent of the Russian cosmonauts have reported the condition. 
The symptoms are generally the same as those asociated with conventional 
motion sickness. They cccur early in flight, peak at about 24 to 36 hours, 
but may last as long as four days. 

The occurrence of SAS cannot be predicted in any given individual. Once 
adaptation has occurred in flight. however. and it always does, the individual 
is exceptionally resistant, even to challenging exposures. for the rest of the 
flight and for a week or rr.ore postflight. 

Inten51!y of Stress 

Performance InJuriOUs or 
Type of Stress Degrading Life Threatening 

VlbrDtlOn 003 9 $ at 2 g's at 
- 4 to 8 Hz - 3 to 8 Hz 

NOise 80 to 85 dB 100 to 120 dB 

GZ acceleration 2 to 3 g' 5 to 6 g 5 

GX accelerallon 5 to 6 g', 12 to 15 y's 

Light Complex 24 x 105 lumen,/ft 2 

IoniZing radla Ion - > 5 rads/clay 

FlqlJro 2 4. Limiting Factors - Effects of Other Enmonmcntal Stresses on Human Performance 
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The extent to which SAS degrades crew performance has not been measured 
with any accuracy or precision. There is some evidence that dedicated, 
well-trained crelt members \1111 perform successfully despite the effects of 
SASe On the other hand. some activities on previous missions have been 
postponed or cancelled because of SASe Figure 2-5 summarizes preVlOUS SAS 
experience on U. S. spaceflights. Hore definitive information un the effects 
of SAS or prevention procedures are not likely to be released in the im~ediate 
future since all such crel1 data are now considered I~ASA-proprietary. 

Human Duration of Exposure (hoursl 
Capabilities 

Impacted <3 312 1224 2448 48·12 7296 > 96 

V,s,on None Mod Mod Neq Neg None None 
DiScriminatiOn None Mod Mod Neg Neg None "Jone 
Discrimination Neg Mod 51g SI9 SI9 S'9 SI9 
of angular 
acceleration 

Cognition None Mod SI9 Sig Mod Neg None 
Memory None Neg Neg None None None None 
Evaluat.on None Mod S'9 "od Neg None None 
Visual motor Mod S,g Sig Mod Neg Neg None 

trackmg 
Manipulative None Mod Sig SI9 Mod Neg None 

sl Ills 
Body Mod SI9 SI9 Moj Mod Neg None 
posltlon,"g 

Impact Code l--
(Decrease In obsen. ed capabilityl 

None (Nonel 
Negligible (NeDI 
Moderote (ModI 
Significant (S 191 

FIgure 2·5 LImIting Factors - Space Ad<lptatlon Syndrome (Expo'ure to We,ghtlenne:s) 

2.2 HISTORICAL PRECEDEIHS AtJD PAST EXPERIEUCE 
It is one thing to arrive at a conclusion regarding the capabilities or 

limitations of the human for participating in a l'liSS10n activity on the basis 
of empirical laboratory data and deductive reasoning; it is quite another to 
be able to clte specific examples, taken from preVlOUS spaceflight experience, 
of the astronaut accompl,shing precisely what it was predicted that he or she 
could do. To identify creH opel"ations and activities from prior space 
mlssions that could be used to illustrate the hu~an capability to perform 
effectively in an actual mission situation, we examined a large number of 
documents from various sources. These included reports published in technical 
journals, such as Aviation, Space, and Environ~ental Medicine, Aviation Ueek 
and Space Technology, and Spacefl i ght; IlASA 11, 5S1 on Reports; STS f1i S5 ion 
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Debriefings; Experiment Operations Handbooks; and symposia reports. These 
infonaation sources were supplemented by information obtained from debriefing 
interview tapes of the Spacelab One mission and a with personal interview of 
an astlnnaut (Owen K. Garriott) who participated in both the Skylab and the 
Spacelab missions (see Appendix B). Study team members were also present in 
the :~ission Operations Control Center to observe crew performance during the 
STS Flight 4l-C (Solar Max Repair Hission). 

Examples of human activities in space operations were selected from 
Skylab, STS, Spacelab, Salyut, and Soyuz missions and are su~arized in Table 
2-2. They consist of the specific ,niss10n activity, the general crew 
activities involved, comments on important aspects of the operation, and the 
name of the source document from which the information was derived. This 
listing is not meant to be all-inclusive but rather it is intended to provide 
examples of the range of crew activities that are possible in future space 
missions. 

11any other specific examples could have been cited. On Skylab, for 
example, the crew performed servicing operations that \-{ere ne.er originally 
planned or intended to be done in orbit. Leaks in the airlock module cooling 
loops resulted in a condition where Coolanol fluid had to be added. If 
service ports had been provided in the system, it would have been a simple 

matter to replace the fluid. As it was, the crew had to install a saddle 
clamp and puncture a line in order to add Coolanol to the system. This 
potentially iMportant role of the flight crew on a space vehicle is typified 
by the comments, general impressions, attitude and behavior of the first 
Skylab cre\'1 who are quoted as stating, "He cail fix anything given the proper 
tool s in space that we can fix on the ground." The experience by all three 
cre\'{s demonstrated clearly that man is the key link in enhancing mission 
success by retaining, or restoring to service. critical functions. To do this 
the man must have access in both EVA and IVA operations. 

One of the biggest problems in the Skylab EVA repair operations was the 
lack of EVA restraint deyices. One of the very important lessons learned from 
Skylab about EVA operatlons was that the crel" needed the abil ity to get to any 
place on the outside of the vehicle for repair jobs. An important groundrUle 
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Table 2·2. Historical Precedents/Experlen~s as Observej In Previous Manned MISSIon Activities (Page 1 of 8) 

POCUMtNT ~mIQM ~PlvITI [Nq~2[~ Gt'~R[~ !tll.UIJ..U tQ!!!!tm 
A,rospu. ",dle.l 0 Skyhb', Apollo Ttlucopt 0 'o.ltlon ""~m • Slyll!)" Apollo TtIU(CPf u,IIU,r 
AnO( lIoy nJ4 lIount (Al"' In,. canlHor 0 k~.,..,.,,, '-~ - rtqubltd [YA to rt'lllO'V,. rtpliCftrtnt 
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0 ~tf'\~rlr-r;!ta~! t!2I}IJl.gu1~"1 0 ROQ"'rod to ... ...",. t .... 55 It 

• Jw.olftM'nt proceltUrti/schfduln poll'l (11 "hen "Ir poll), l'ftdhss 
0 .,I •• se/lKuA HthlntCil cloth"l tn. ilhth'4 to uch 

Intortl .. • ..... 104 polt 
0 .tGOY'/r~'ac. coY,r1"1 
• Trlftsport IOld" • Twa crn....,,. plrfonwdl npltr 

Icthltr -• On. c",","n 1 .. "" .. 4 It AT" 
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• 1:'1. c...-n posltlonod It 
(VA hitch 

0 (YA tletch cr"""",,, '''t!'\blrd 
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Tabla 2 2. Historlc81 Precedents/Exporlences 8S Observed In PrevIous r.bnned MIssion Activities (Page 2 of 8) 
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• r,.llP_nt ~ro<"'~"""h1lul" • All St,II' , ........ p .. f.,....~ 

• I",pf'ttlcb"~' tlp«r18&"fjt 

• 'ntt1tJII no-,.t. 
0 hcor'd ,I._flU 

• bw:nt l.'IOo!ull' 

'roCt~tt'l1' of u" 0 In'll?~1 DI.~ .. 110,110. • 'lLttU1tLll.1.!.'l~/jC' \ t "'l{~tl I aleC'! "..,110, w"' t,.n,frrr .. ~ tl) 
Styl.~ Llle (SkyhD II. III. 1M IV) 0 hC1.!.Ul..!"~'~1!11..,tl' AvtO!'lttSt'. ~~I .. 'rO(IU:lr, lASP") 
s,tt~n SywGo,h.llt I A.cthlt~It:t'UUt sr"" ctfttr1h"d. 1n4 Uor~4 1ft "uut' 
U$A-JSC Itpoort o:.rlt 104 
JSt~2n I tltlc:thltt/Unt1eit. SY1teo • llood 'Mltln vtn t((""rtd 0'" &11 
M.w~r UU Cr.rlt tOft .. .,,.., S.yle) _U,10", .~ ,,,:>~rttd 

• c.at"'tr/rtpbc, tCQh/«.t~t t,nul Iliitrt .. "u 
• l!lfl,"",~l proctdurU/U"t~"IU 

• 'o,Ulo." t!IO<!"ttl 
I IHrlO'ft ~~u I. 
0 Stou/tt'(on .1 .... flU 

A .. tat \0" Wfft ,n4 I lfilut~nt t. ,,,rey I ft,.., 0 .cth.U/tattllt. ,ystn • TM, c~.rl\toft "u IPt'4rtntl, C!~. ty 
S~I(' hct.noto~y rtf 'act h. hrer Oft \1". Htrit1c" rt"!:IQl. cot'trot 
2t r.Dn ... ·y Itn rte .... trt an4 fMVSh, I Coa"""u,tfr ,roce4111'''' 

.'rror1 of ttoo.. S..aIJll.t·, ICh.Clu1n/oc.,..t loa, I COMPflU4 ... ~"r .net ",.y ~,.t 'c"hU 
sallr 111"(0" I tlfltt\uh/U,..Ift.JU ,yUM .. tt.r U~ to (olhet 0" ttl. ~ottct 
(So,wr 17/5 .. 1r\lt ., o~ .. rlt tOft tf't", .frKt1ft1 tnH~f'lt p..rf"~l'Ice 

• l"'tltct/otu,trl'l 
• .. ,bu/clt •• 1urra" (Ntln, 

"whtt~ Wttk In~ • .'~u'rr6t"t 10 .. '~v!!eft."ll to • t1!:1'1.1U!Js.!.!~ I ,~. cr ... hd \I po.ttlOft th. llitl •• Ie 
!~.c. Ttc~"Iol~, •• Ift..lll1v ,o,Ut~ t .... ular I AdJwU/1lii" .ltetaU I, to ""ct v'. hlttccpf'" ult It 
l~ Jun. 1'1) ttlucoO' ~o. to • a&1functlc" 0 (~\lU dU. the "'floUr 0' V, sohr 4hk 

III tl\. t"UtU-C-1U paint',., 0 Con"I"111.1 .... r.'t prot.""rnl ,Pt. trtv ,,\t~ thl 'tttho"O~f fr~ U·. 'tUCtl, UtY1 Sthl~'~ tl'l.l, 1(.tl.hh,/O'Jtrlt IO'ft' • ,olir TUur(" t"~lPr1"'Atl 0 hnp't tloburv, ,"41u' '11.,.,llu to !!lOr. I«(urattl)' 
(SoyUI lJ/$tlytllt 4) • "rotd .. ,o1wI~1 4,,"10." ..... tnvl ~lto' tt. rCloUl'"i .'rrors -.0 ..... "" 

dill ''''.1),1 U I,. lh .. ''''~p'ort Itructurl' 
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Table ~·2. HIstorical Precedents/Explmences as Observed In PrevIous Manned MIssIon Aeth'.tleS (Page 3 of 8) 

~ ~Im::! 'm'l!! l!:lli:!l m"lc 'mxlm~ ~ 

! ..... lIlt-' 0 ' .... I ...... t u mol' IY 0 &<1 hat,lIolIllI •• ,u .. 0 Styvl It .. ,.,1 ..... T.Y. e_ra 
••• II. Itp I , ... , ... SOy., 11 ~'UI ... .. If.octl .. 
" ... ry Itll ISo,.1 '''.,.11. &SIP • .... _.t "O(t~"U/"M4.'tI 

J •• , ItlS IA,,,., t,"",.. 0 hp.,,· .. tru. ... 'hk •• e1'4 c ... ra Jt_t boa" 
• proed .. ,ol.t~/4Khtoa ht. ,,"'It'''' 

... tltf".t ...... ,.'" 
• Itl'."/IH"'. "''''.'(11 

hUrit(t 
, 0 heo".'NOlu. to'Hrtltf 

I~",,!~,,·t • Av-PZiu\. of .11' ..... '" : ~~HiH~~!. • Soyn l' ,,-..w '.Clytst,. h~pl ....... t 
Vol It." 4 utllltt, "u.t,. .. r taf."..tt •• ~ .. t~.,. e&ur-w,\lOI'II re(,I ... rrull 
A9,II Itll bY' ~" .. , ~U..,.utM ,,...,... 0 1,uPlCtlC¢1f'nt __ "" ...... t ... , nt.1l110 

5&'\'111 S Ca,.r llfS&'1'It S • ,,.. .... to 10 I o"dfC II 1011 .. Ua,1 
).1, 1911, .... ''''nlt 0 =' .. rv.U ... , .. de auurtt.ly p"'-

'1ct1'4 tter&lv..U., c:Oftf1ttOfl' .. t 
•• t .... ". bJ ... _t Ie 09"I_ot 

SoI"fll, .. • S&yw, lJ (Oct 711 .. t_1e • AdJ .. ",II,. .1_." 0 S ....... 14 ~.<l" ..... 11, .. lib ,., It ... J 1::., ..... fa t tt' wtu. • (",t".; .. r"" ""0<,,,,'"1 5& lrvt ! 
IItr Ifll S4Y" 14 (f •• III ...... , Uh'4~ln 

h<l'fIt Hltlrt" 0 Co,r.t,u ~.ta 0 Styv. n "'. ',,,,,t .. t"' Irl"'., • '''flcthet./tt,.,,,,,ta 'It,t ... wn~ In •• I .... tle doc'h, .,.IM 
~.r"h. I. ta,II •• Ittnopt 

• D4tHt cft.l...- ,. "<It .... 
.""dltl_ 

• Iol."..tl.., ._.,,1 .. 
0 "'M.U tradt"', 

'poetlll,ht 0 '''''''Dl, .1 5&1 rrt , 0 ~~::: !:, t:i!~r~: 1 
!rstl'tl 

0 laot' (Oftt"1 trIftH .• rt .. Mel. 
"D,I1 nIl • Pr-o,reu I 110(" vtth 0 'rot"" I Cd ... ,.~.4 , ... S.",r 
,.1 lO 5&lr" • (l .. It) ~ ...... o~.rat t"" ".cocultl uecolIl.lI, C .. ,. "I" 
110 • ,.PJ lw er'" toe'" • C ... """n,II, ''''(f~."'' 5&lrvt I 

•• tout tul', ,,''<<,,,In/OJ.rattfWl' 
0 C.uthattlt.",taU. ,yltta 0 n. tvtcPWttr I,IC«,aft, UII'\'! Oft 

_ .. tlOft tit. UtiflV',s stICH'''' $or~:. 
0 •• ' .. u/s.K.r. a~fI.& .. 'c.1 ICC0r1U""9 to ~ .. o-ttt h tlltr"dt4 

htarhc. 'or trl ... '~rt CMrI:tl611' l~ ."'~"" 
0 1 tao .. ,,..,, 11<. cnt1"tet lon-a-'tln(11(ilh; of orbHal 1'1" 
• T, •• ,J)Or't 1&H,4 Utlto .. , -11071 0' tl\. hunchtl\l 

" to carry o.t usts ,"<I (~r.-
f'fft'fh. r:~tt!ltuttO"l c.f u. ("iT' 
or t~, oa-b-oIrd t.J,ttn .f\~ f~\,Itt· 
.. ftt. to 1I.11:hc dt'(k1llt9 w\tt. u .. 
o,.bU.l "'M2'd co.1Iiltt S.41"wt ., 
Soyllll n. to Glih.r fer tPt, (C\»-
ot ... ",,1 for Us J!CW9r " ... ttt .MI 
dt".,.."t t.~o .. ,. t~"'IJift*ftt • 
• "NrUn 1M tit.,h h for 1 tlt-
".t'P'Qr1. 0' (rev ... 4 f~" sctl'fttUtc 
.lp'Drltl",,. 1M "~''''~fIIU ' 
(OMrlt '" is rf1llt"hut't of ttl. 
~-<I'11 C!6«:ttft-; IItrt h. UN'" 
CH,tt bf'tWf'tn U. umcan,.e-j SQyVI 10 .It' S.'ywt 4 bttwt." 11 Now un .ft4 
It f.b nil I 

• erN MfttllHt tr,",hrn4 '''Hl1ts , ..... '''''1''" I to Stl,.t I. 

0 'roqr.1I I c!tlt .... nd 'fuel. f'(jvtp-
"fit 1M ht;~1fu'. vt"td. l"fft 
'U1H with vult. \l:ft<1CClt'\S. I! .... 
Dl"'blhd .1\4 ,II("wof'd to k,tt \lit 1_ 
ttl, .t:~)'Ief'tt~ 

~~u'l1~,.t • lYA tA.,,~.'tl~ tN UP-I'" • A.:tJ-.U/II1,,. .I .. nt, • (VA obJtcttv. to ""ptct ·o.t:w .. nt 
J .... lua (5&I,.t , [H. 0.. 11. • Acth,U/lnttht. "st ... ,IPIII"'U' cf 511)'11t" to (htt 
,.1 lG I1rn Soyt.t ['11. st", •• "n) o~r.tIOA faulty d~c" t,., ,,'It, ".rto,.. ft1).llr 
I/o • • tOQ;,'y",,,,1cU. h,,,,,..t10. fllfQrt .S Il:ItUury 

• c..t~frlft"Phu tMh/r~;tJ;Qinlt 

• ""POttl~1t"" 0 ~o'c. 1trl: IN hl~ h-Id coler If 
0 t~ ... /t-e:hc. cntr1n9 U.'. IIttl"" eft [YA 
0 Tra"stort IN"~ 

• " .. "<I too .. ",...4 to ,hut .n:t a4Ju,t 
.q1tpltftt " ntClUI")' 

• ·Sfil1-rfifd' spac. suitt. attllu-i 

Sp.auf 1I91'tt • c.".ra t wort ~rh"'ft~. ,,, • Info .... t1Oft pro<tlstn9 • Ie #4. pht Ie' to ltro-9 
AI,I~u't lUI ..".1;"lt.ltn".,n U"wII.D lJ) • 'rebh-~ 1Ohtl\~/dtc1,to" Jrttrrhv ..,U" Cr JDU!>~ ,. I.,,,,,'" 
y.1 10 ..... ,.../\1&t1 .'Ilyl h Sk,h) II lClto .. pilot 
100 • • AdlPtt4 to Ilro-9 I. I to 10 d.y_ 

• All Skylab cr ... _.n .Id~h .;.d 
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Table 2·2. Histollcal Precedents/Experiences as Observed an PrevIous Manned MISSion ActiVities (Page 4 of 3) 

~ !mlll! AmWI ~ill!l.!1U m!!l!J.U 

• "'J"OI04iY \In .try ,hU.-.dlp'''' 
... 11 10 ... ,,~I1 .. 'n." 

• • .... n.l1oul fttUft9. ,_ uMo.fert-
,'1, U"Ctl, shlry ~"" "et." 
.t tt., • 

• .. 'lIPut Oft, or tJtC).&'rMfIt 0'. 
.... tol f ... lt .. , 

S!>Iuf II'hI • '-Mr.1 p.rlonuau t. • l.f .... II •• ~n":tn'..., • It 14opllll •• II hro·, 
"'rt~ lilt wt,,,, I.u"'." (SoY •• lOI • "HI ... ,ohtnt/UthtM Jol.l ~SI • 'ollU ,ffort «tn.' 
'01 21 kl~.1 ., .. "otJliU In,ly,h 
110 ) • ... ,,.tatiOft tt. (oflflnwd. 

·ft"l .'J. (,ft ..... 00'/111 .. 
.... 11 b"" • 

• 1_<10<1 .. -0., d~V' 1\.&, bun 
"r .. ft~'. tI.u",u Oft t •• Itn' NY 
., l'UUt'ott t ...... "Mlulftn' ,.r 
IIR" .f .,.11-bt"'1 hn to '''Oro ••• 
• v.t wort .st ftd luff,,. 10001Y ... 
w,.. '"\11':" Oft N4'CI' 1ft4 btol&f ... 
teal rtu.re" .rt4 ch.Ultd Oft th. 
filiI .. "Il~ Uood .f V ...... 11 
., u. "nh •• rt'j •• rto,,", ,.,.rt, of 
t ....... , lh.a ... cOf't(IIoIct.d t.c ........ 
1~IClI .. ,..' .. ou Aplrt f .... 
t~t U. "'1 l'tt(:lU.ry to trl"S'.!' 
all tho equl_ftt .... ,c~ SOYOI 10 
flo' '"""~t 10 tb. ~ lyot •• rIIltI .. 

\ 
SUtlM.-

Sl>fuflh~1 • ..... I..-.t to ~"'I' do/fill •• • '1.!,!Ht~H1'1~~M'~;1 flil. • Seyvr lliSllyvl , ~.Irn ~'"'I' ef 
J.lr Itli f •• 1 toot (SoyIIr lUklyul " J!.l!!!.ts. ! C.h, .. lYw futl 'tift' 
,.1 21 '"",,,n .,rll lin, • C~alc.&tl iltfor:eUOII .. , • Ct"ftrv./ .... r1tr p"o(K¥rel' • Cofl.t4 II ptrt.rll. tlilte. 

"htrJ .. l'J/~Ir:t I 0-'1 .. ,...,.tl,., nttrogtft ;n 'rOta ful 
• e..c\hlt./hn\'ft,t. trite. 

D-p'.,.ttCcA e InGh. ""U,. 1~C' stlttf!ft (OIP.!!ltl 

• Otu:t c~ .. r., I. 'hI' or .bo-.t "._Cft CI'Itir cf trultr to 
((,~U'(tf\ at4 h HQ1r'" 'ultl tan 

• 1~1_.t Pn><O<I.rt,'sc""d.,,, 

• a,lnn/ucn, &;:I(~_tCl' • 1,1"'" ... 1 to othor two t.r.k$ 
Iftttl'"fu. 

• , ... "t/rr"HI ' .... "1119 • Yf1't notj' t.J.nt to sp.et tn. C"\I'1:t' tII't" .Uro1t" 

SJ>a<tlllt~1 • Ct'plor--t 0' '"(h~l. • ActhU.t',.tUU. Syttf. 0 !Alf\1;t • 'fth'Ull hI te:l to d."ttt 
Dc. to-)" IU, • .... "11.· .nt."", c,cr.thw. ,.t",.t'<&I1, 
Yol 21 (~IJ.t "'r01rtu " • It4JuU'tHe"" 11ttNftl1 
~ .. II a C~"I"tt '"'0"..,.\1:)111 • Grovnd COfttrol utt Itn4 P't1,.u • 

• COftf t~Yf:rl I, proc.lS.,r,,' (&tft:Hn,..,td caM]O cnft) TY ca_r" 
lCht4"ln/cnratlDu to (ht,,..'''' prc!tIN 

• (leploy/r,t,.",t IPPCr"tj. 

• Clluet Chllll,_ tn 'hU or • .~tt centrol of th. t'ld'o 1111-
<ondltl ... ICOp. IIIO'fHatftt .tld Uil 'rKt\Oft ef 

a IItlQ 1..-~""t prot .-durn Is flead .. 1ts ttl utl'fi.ftl k'U u"tt~td '1"0-. 

• 'relll .. sohh''ijU.,H'M IrovDd (01\t"l 
_d I .. /d.t ..... Iy'" 

Spoctf I '9't 0 ",,,,".-4 rtl4l1r. ""ftt"."c. • p~.u!!(~...uill • SoYUI 1-4 erN Il' ~ro1' __ ~ for 
Atrll nu Arod schnlHtc 'lurtu"l, • '-Ctl ... u-/'"UIU. ,,.,tew rt;t.'r '''''''t''''"'t Cfl S"yut " 
Wol 2J (Soy"Z l"/~ly.t " oP.ra.UO'ft 11 S-tlyd , h 'Mt Clutl. th •• ut 
•• S "O";rtU 12) • AI lou,tt/.nt 9"/4t ItrU~.t. of the uri.,· 

• (0."I"""wlI""1 pre<.eu.ns/ 
IthHil.ll.I/:,ror,t • 6ft, • S~U factory .Ip.rtlllntl .lso 

a O".cth.t,/t.n:II",.t. Iyst .. p1l1'l",4 
op.nt'cn 

• Dhpb.- ~.ta 

• lapl,.,,,t procHv""/lct'Jldul., .-

sn·l Orbtter • ,""nutl control of IIQW .Ah-IS • .CJ"st'.II~ •• 1r .... U • Curl., ""t .1010 ptrl04 <Abln 
Mlnhn hpo,.t to obt,'n utltt'! ",.a,... .tr • tnlCir'Golt to" prO(."hv .... ,. .'r '),IlM f.alhli to rnpl)l\4 
JSC IlJl. (Srs·l) • In".,tlcbune 
.... ~",t ltsl • 'r"tll" lo1.1"9/4"htoft • l~.rltl.l. cal.,tor ,.,t It 

.... ht/dU.I.,llrl " - 4)1 II' 
-sn - OIlS 

• SyUM did not rupoll': Ul\ttl erN 
·phu".,· Utt "'''''''9 Jr bYNU 
.... h. tJII th .. 1,,11 """,, .. "oSU10" . 
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Table 2·2. Historical Precedenu/Experiences as Observed 10 PrevIous Mannod MIssion Activities (Page 5 of 8) 

~ ~Im~ ~~TI'ITI l!!D.~IRlt 4mXllIU ~ 

SIS·I Orbll" • ActwUtDft of o .. «rrtd. coat"' • COft' ,ra/y.,II)' "tee,CII'''' • Stir trachr ''''wU.rt not cyc.1h9 
tUntoli hport to Opt" sauU", _ lOt ,,"KUlu/oPfr.t tCft, 091. 1M ,'ou4 U "Pined 
JSC 11111 t .. ,ltr (SIS-II • O."ft, pro<~ur.'I"tltdullSl 
"'v.,t 1111 op,rlt ton, • erw ..... lyu4 ,robl,.. ,hutt'r 

• l~l ... nt prO(._.,r"/'d~td"ln H\ rtlPoM'ftf to IMto cofttrol 

• 'robl,. sohln9/drc "'Oft 
..... n./d.U IM'"h • ~ftVl' .."rrh1'. 0' shutt., br erN 

,.ltd :'('0,1.-

-
Sp.(tlll'~t • C .......... Ul ... 01 ,,, .. lie • C_ItlI, I., ...... tI •• • Th, ''',~t be, •• II tho II .... , 
D<1.~or lUI "'" 10. Ih' _fit 0' • lnfo,..,1t ttHt pr('<,n "t .... 10, 1M .1I4.d j.,1 ,It or Ihfl 
•• 1 '9rICiIIv" (So ,,..1 'I • In,,,,,, ,lot""." kinin .. • ,.oIi' ....... I.'/4.ehl .. 

Dlktfti/dAt& .".1)'111 • lh. c...-v DOftitom t~. pre,,,,,, 0' 

• "'""It I .. ,,,., tM lror..fr, 'tllon Ind ,pctl to '.plrts 
, .. fo""r.,. ''ac101091, .trt".lt.llre 
.!WI othor Ohelpll ... 

• The erN WIry .ccur.l.ly ","H1,ttif 
Wf"'¥flt _,.141 hi war'oul 9row'"t .re, 

S~CI"19ht • (mt" .. e, nool" .. tM • tutlili~.'2~'II!£! £! £!l!uU • """tt Uti tlft.lctor IIAHuI'IoCtfOfl.4, UII 
Ochh.I1U ' .... -f ,_....,. 'Ittttor • lftlPect/otntf"Y1 U"'" WI .bli to dh.ut1llbl. th. untt. 
Vo' (SO'l"'t " • Probl .. lohtn,/dl''''_ fll"'OIII •• ta t.o ruhct ttt .... ,-.. ""II9".U ••• Ir'" , ... tloned p.rt .!WI Nu>.I, It 

• ..1tau/ucurt uch,,'e.1 
I.urt.ct 

$TS 2 O~It., • CIT .. 'I ........ ' • £cthu.lI.ttlIU >"tes • alspl" ... It ,1 CIT failed do,lII1 

.""'Oft Rtl>Ort (SIS-21 ~r.t'Cft fttoOl1>lt _r.lI ... , 
J5C n.u • .... J.U/.II'. ,I_II 
,.Drury 'Ul • (o •• Itt/dls(OM,,1 ,IKt.l .. l • C ............. '.Il~ •• It 

'at.rhe. 

• hac t "'ah/t.,., ... t. Iyd_ • Crw ",I.e" 1111 .... It "lth 
eptnttftll Chpl., .ott 1m> .rt ,tdl'" 

• r.othtr/ .. ~1 ... 10011/""'_1 

• l.,lN!t"t ~rot.t::ltrtt/""M~"l" 

• 'o,ltlon _.10 

• l.l ... "I,uyr. l1li'(1\1,,1(11 
'"ttrlul 

• .~ .... .,..,.1. 
• !.ror./ucor' 11 ..... "t 

SIS" 011>11., • hut If Ct"I" na l' ,tre"tt • A<I, .. t.II.ltlatt >,., •• • O.r'II1 4",2 US OPl"t',,-s. Ihe 
M",1Oft h;H)rt bNlhr o,.r&t '0' £JI1 "",ht/elb<N " CUll" ctrc.tt 
JSC II'~' (STS-l) • Ccl'tfttct/dhco"'lftut .lectr.cal brtd .• r ~.nH 
h~l'1lIry nil 'Merh,. 

• J",f)fet/ebu"'l • CrN nut '"alar 

• Prvl>ltll ,0h'n~/~.c"l ... 
IICklnV/41t1 ••• "sls • , .. Itt I •• ~rt.k .. "4 •• t .. h. 

pn>bl .. -
• Tro.blt .~ootln9 11.,.104 ~r.ble. 

-- -- to .Hu,h. ,,,,.r'fllt ""'\of b ... r1b"'" 
sa·, CrlllI .. • iif-tlr~Ga~ ,..,ttc, "pI Ita .. • Ac.thu.ltnU tate ,ytt ... .-CRT 414 .ot rl,p"'4 t ••• try ..... ~~-I 
III1"ton If,crt _'It ($TS·3) op.,.t tOll .t hybo.rd 
lSI: lelll • Coftl t nLI'fIr1f'l ,roc.".I,,",/ 
Ju •• n62 Ic".4"1,, • erev ,trfo"..d ... Uvnct1oa p .. oud\tru , Ccr"",ct/dhcon,. .. ,t IIHtrf,.1 

1f'1urfaee • 'ro~l" halated to Huck .... yboard 

• Cucth.U/t.,..h\lt. ,,.,ttG ,,,ltc' 
op, ... tloft 

• 0",,,. prou·dll .. n/uhHvl., • !.wttc.~ nphuil froe aft 'l,.tO.rd .. 'OIUlon ~"h 

• 'rob1 ... 'Ohtn9/dwchto'l • S.bltlhtr4 ."Itrh el .. r.4 probl ... 
Nt h-;/dlt. 111"',., h 

• Ce hUt/'Hur. _ch.ft'n' 
,,,UrIne 

• IttIO'" IIOdv 11 

STS') Orbllir • -'ctult~C>ft 01 r'l'l0a4 ~1 , Acthttl/,,,Uhtt 'rUn • 'hi of ,,. "1.,10101 ha., ,. III IIOw1l 
Mintan _.po .. t (1' .. ) u .. ru (r ... operlt 'ooft , .. r,I,.I'elt 
JSC 18)'8 null '"attr a-~ e~n4' • Cor,I 1 rw1,,·r , '''1 ~r:lcfdurnl 
J\I'" 1981 ua.,.. start .~ sto, , Shth ca .. " tloPp~d • ctrtwh 

(SIS·l) • Ott" t e'\I"91 tft Hat. or brllhr 
cond 1t 1011 

• In'PtU/(llIurvl • Bruhr ",u nut 

• C .... n fat ltd t=r ,too Oft (CMfNf'ld 
trOll erN 

• tOI 0' 111. ro. 011 bt'orr ....... 
'tcpptd 
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Table 2·2 Historical Precedents/Experiences as Observed In PrevIous Manned MISSion ActiVities (Page 6 of 8) 

~~ I!mIQ~ mlYIII l!lli:m mI'I; mmTI!~ rn!1!U 

SU·] OrllIU. • CloII"" ., ,IYI •• d port 400' 0 ~'lhal.II.\tIaU .,,1 .. 0 ~.hot .. IaIIN IIU •• pproal ... UI, 
"'utOl'l It~rt ~lu.I" tt,II •• dvrt ... Ial'~ oP,rlt to" Zl ~" ., orlllU, I. hll-... 
JSC 11341 c I .. vro (STS-]I 0 C •• fI~ ... ", ,roc"'.ro./ Ililtad. 
Ju •• lUI SChvdvl" 

0 D.U.I .~.t' I •• hl. or 0 Crov "or'lftl. I. 10,-". Ililiud. 
c ... I tI ... 

• 1 .. 1_.1 pro<tdv"I/"~.d.l. a Crov ttcycl .. coor 
a In" .. I/.~ .. r ... 

a Doo. , ... OIs'.ll, cloltd ,.d lal.hed 

STS-] Orll't" • Tr.",at,,'on of y.t,. on • ~cl ... t.ltol\ I,t. ,,,t .. • STS·] COl's .. It ',Ihd I. 1 ..... 11 
IIIhitOft I.port "tr,I'n e-rew (~ -vtlt\. . ~.rat'oa 
JSC 13).1 (STS·ll 0 [ __ IClt. '.""..IICtI 0 IIftIt _Id rlClIv. S'tn,I 
J ••• Ual • C ...... tldlsc ... ut .!tct.'ul 

"'terrace 0 •• port .. NlfuftcttO'l to ,round 
a Dllcth.tf/ttnLi"-ite ,y1\,. (04Itr01 

cOftdIt I •• 
a DeUc t chJftge lit u. it or 0 I&tL,,'" ro,I.}td 
• concl tt ton 
• 6Ith.r/r.p het too h/.q" I pl'll-nt • IIftIt f.I" 10 t ... ,.11 

laplHfflt proCtdu,n/sc:t'lldyl. 
0 •• t .. u/lieur, .. ,hantu' 0 $p.jr. U::CU was dlfploytd ,ruf 

tntfr'u, (oteUrtutiOfts .... 1". rnH·,d 

SL-I Clotr.II .... 1 • "I\.r.' vorl ~rfonuft(t 1n • Jntontlt 'Oft ,rou" 1ft9 • STS-9ISl-1 
Sy.ltas w14Jht Jenn .. " 0 'robl .. ,0hlngldtcll'ctI 
hbrf.f '"I ISIS·t/SL-II ... U .... /d.U ••• IYIIt 0 All CrtW .. \hlt, C.rl ... ""1 ' ••• or 

O"",r un . bG d,,1- .,., too tu., to 4:t 
occll.,UuUon 10 It .. 9 

0 0 .. 10 •• ed to ,,,lIuUIt to r ..... , 
tho first 4., or two ,hould ~. ,1._ It I ... vork oc\hlt, porl04s 

- 0 t •• ~ Ct'N _r "~rttd Ih.t It 
toot bttw .. n two '1'4 thr ... d'),S to 
'''''y .. ,II .. tll. 10 Zlro t 

SL-l "1'0.111 .... I 0 trydro<]o. 10 .rlAl I ...... tor 0 Dtt.ct ttul~. fit stat. or 0 STS-t/Sl-I 
$y,hO\ (STS-tlSl) coM I tlt"ft Nur c-n4 .t ,,'niet") trN 'ou~d 
OrbrltllA, • 1",1.",rt prG<ti!urtt/tchtd.'" ~)'Cro<].n '0 drlnt'''1 ... Ior 

00.-" nn · 0 100 ...... tlo' pre«nln? 
0 Pro::'l" salwln,/dtc'stOft 0 Crow 'OCIro.h'" ..... , 0' 1I\,.<tlnl 

IIIt1lO9/d.ta ,n.ly.1t "rcirog.A 'rOil whr - -
SL-I OI>orlllo.al 0 LOUIt ftohu 'roo strvctwr. 0 O.ttel 'h"~' ,. ,hto or 0 SIS-flSl-l 

Syn .... I. ~II t,.,.r I two I\o\lr con4lt'o,\ Crev c~Strved loud .o".s 
a.brlt',n, IAlI .. "" (SU..,/SL-II 0 h'o~t'Oft PF"'OCt"f"9 0 .. _. nn 

0 J",p.ct/cbslrYe 0 hU ... t.~ al fO .~ 1t,,1 
0 Probh .. Uhht;/dKh1on 

aet hg/dlU Ina'1S Is 0 TMu?H 10 '- c.lo.llln, wi" hot! 
cold [I"S 

0 .... h •• ern I ... h.d 

Sl·1 0;0 ... 11 ... 1 0 "I .... dlffl.vlt, ,. ""'.'°1 • D,tut chlft-:-- tn stltl Or" • n!·"Sl·I 
SyU •• n orlllur ~I'h ISIS-!lSl-l) condltl •• Hot •• 41f11,ult to .. I .... 
hbrltft nl • R. hUI/ucure ... ,frlI,,'ul D •• __ • itO] hurtact • I"tdual spr1ng Unstoa til h.tch 

• .""' .... ,"p1u. eo.erin, Dt("."". 
0 '.n'bl. (u.,onll .... ) de It. P 

Aeron 1"4t,'* 

Sl-I O<<o,Hlo .. I • " .. nUll ,.,for'Wltnce cf Ortlttl' • Acthlt.I\"Ufati lytle. • STS-tlSl-l 
Sr·h ... ......... 1.9 (SIS-9ISl-l) op.r.t 10ft '.rfort'i;!ltd 216 e.".uurs on"'1trb1t 
O.,br" ftf 9 • ~Jull/.I ;n .h"""U 

hctobtr llel • COCf""IiJ"tcatt '",tornitton 0 ,. 0' 2U -.an'u .... " wert rul ",.. • ConftraJ'IfrUy proctdLlresl ch.nus/ •• dlt 10 .. 
sch'dlll1t1/e-;rent 'ons 

• Oucthah/U,..tnat. IyslM • t.rtnt to orttt.r erN 
aptnl tOft 

• II'IfcnNt1on prouts'"9 • "c~n4 .utOlWt Ie NIt.unr'n\"! I. 

• 'rebl .... ,ohln11~fch1011 "'tun 
~tf"9/dIU .n.l)'s1l 

Sl·l OPtr.\lo".' • hvhtcft tft proudurn • Acth;t."ftU1att IV',t .. • Srs·tlSl-1 
:t)'stf1'l' Sl~-"$L-I Optrat Ion 
hbrh' tnt • Con:t\l,.,luta 'nfom.6t1cn 0 N"" ."4/0" rrwiSrd pro(t"~ur" I\ot 

Co.Nt; .. ltCl • (cn(1ra!wtrtfy rroudurnl tood prltllct 

• Ouctlntt/ttralh.tt S)'ltC"'W 

i 
Opt"t ion • hun of COP'''"' to ertv 

2·17 



Table 2·2. Historical Precedents/Experiences s, Observed In P(evlous Manned MIssion ActIVIties (Page 7 of 8) 

~ elm£!! '.TlWI 00 \Iill.illlliLilll!lllll ~ 

• lapl ..... t ,roc ••• rn/IChtdvlts 

• I.fo_tt ... procu.I., • Trll" Ind vn 10 sit. 

• In,pect/obu ..... 

Sl-\ O;>or.tl .... 1 • I .... ~ of fI.l. physIc. • A<thU.llnttht •• ,1100 0 ~TS-tr.L-\ 
SyU_ (cot .... , up,rt .. "t tft nil op.r.thlll fl.'. phy,lcs •• por' .... 1 did ""t co 
Cebrltlt., tI .. (SlS-trsL-I) 0 MjwU/IlI," .I_otl wel1, toot lOft~tr than elp .. ctt~ 

D"KWr un 0 c~.I'Il. I.f.,.,.tt"" 
0 ~"<lh.I./I .... IMt. 'wst .. • flvtd co'_ portletl ., tlp.r .... t 

_rott .. ha' d.II ... ltw , Dell .. proc ...... "" ...... ' .. ' 
.plntt"", • e'N Inl.,hcod with '1 .11 T ; 

• Ctltct , ... .,. I. st.t. or to ' .... r.t. ,lotIi. _I"utlonl 
.... ~ltl .. 

• 11III1_t proc", .. I,,,ht4.'n • hllfrl_t obJ •• th. ""111ed 
• I.f ...... t' ... proc." lot 
I l",ptet/Hun. 

• ' .... , .. ,.IYI.,/d .. I"OII 
.... kt.-~/.lt. l~ly'h 

SL" Ooeratlo ... ' I ~Ia ...... ,_ftt S,st .. (I<':S) I Ccnllnll .. ,II, proc":.rnl I STS·"Sl·1 
\"t_ f.II .... (S1S-t/SL-I) \(f'I".lt1/,~r&t. te," Wul. 11> •• ,_01 S"I'" (loWS) ... d 
D.brt.ftft, 0 Rao •• /nZllIu.. cow.r'n, ,rcbltes by rdtv 4. by", 1 "" 

, Dec ldIor 1911 I Iopllt,"I ... IVrfiC. (Ntlftls .. lttl., ~ .... "ute 

I (st'Nt .. tllat c, ... II. '.n to I.otd 
",lng \It\ 

Sl·1 Cpor.tI .... 1 I &MI ... I ,,1104.11., of ... ~ • A\I ... t'l,u'~.l4lltr'b.U • STS-t/SL-l 
Syst ... STS-t/Sl-l • et.ftn. pn<.durn/ICMdulul Won ICl,"_le4 12 .r Oft. IZ ~r 0" 
D.~r"lI .. ~,.tl .. , 

D ..... r 191) • liII'l_.1 ,roc"" .. s/lchtll.lu 0 n-I crow ..... "',PV with scbod.to .0<1 
0 IIU,.,.,c.'/c~un. rKau.M DO (N~. 

, . 
0 STS·' cr .... c ..... lI<I., ,ontlts • 

tilt,,, cMltttr (~It Iho tralftil' 
II I .h., •• IPtelalhl ( .. II.' .... 
for cOIll'nt."C1) 

AyhttOft ""I:,k • 110<'4 .. ",I .. roq.l,.. 'or • Gathtr/rcplact tc-oh/~'lft~"t 0 :rS·tr.L-l 
, s.~tc. Ttcttnoto-:)' STS-9ISL-l III. "l.'\t .. • Stort/rt"Cc~ .1e~!'tt -
C'e.ctci).&,. 1'. n:'l '''wnHiltlena 0 501'111,.1 ... "~I.\I'" 0 'I~ ~r"", freo two ,.yl.d , 

.',,'en ,p,dalhU for 1\h 
'lt1eftct, hwnt'utbn, 

.--' . 
1.'It'Oft 'hd. • ht'.r'~t ntu;. fer .... nr.". • ~, I STS-tISL-I 
, SP<'I TKhnoloqy .f ""h'''i .f 01004 thro .... ' 0 Act hat./l.lttlle Iysl .. 
m_er It. un le4y ISH-Jlst'l) op.enl1en I lolt,..1 blood fl ... '" ... , ..... 

I Apply/r..." ... btlltWdlc.' letJJor Ilptrh.ftt 

• tolll.totlnlllOfrtpl!y.tllIl" • Con'1r:1.,.,rH't pro(edt.l"'/ 
IU.1trcMlttt" Itr'tirteJ. tctltduln/op.rlt '0." 
to~ S.~n4 ~y ... " •• I Ducth.tl/tart!ltMte s)'Itea 
rlSulttftt fr'Olfl "'tern.al bloo4 o,pe,.t ,"" 
flow I Crcod",,.cod. ClUa 

0 D"~hy(lt. 
I t.th,r/npbcI tGOh/tqJ'~nt 
0 Store/rrc(!f''I1 .hacftt 

A.ht1O't 1tttt • Fat 1.,.. 0' fIOetr'e caw', • A<th.U/loltlato 'VII ... 0 STS·tlSL-1 
.. Sp .. ,. TKhnol09't ({,.triUft upert.nt) 6.1 ce.ralten 
Cecitllbtr 11, lUl (STS-tr.L·l) • tClfMW.U\tute 'ftrCnJ4lto,\ 0 not,1, c .... ,. lGo .... ') .114 lila 

I Corn hte dati clu.Ue J&-.d 

• 5-tCoM e.ISttt. j .... 4 on • Cuct h~t./tenat"lh l't'ltl!'D 
lSI. f,_ of ctl-J Opt,.t t03 • JSC ground H"lItd to le''', (lMr. 

• C.sH •• r/n,lIu tooh/fQut,mrt In wnNny &nd to SlS ... '/SL·1 erN 

• Il:IOlf'Mrt pro<f'd.,lres/ul'ltd",,, 

• In\ptC t/c~urvr • A.p.a'r proc,dwrn vorktd cut in 

• 'rtChtM N"';luhthn of obJ"U rul It .. It JSC 

• 'rcbl ... 'Iohil'1Nuhton 
Mlt.'nq/d.tI '"th'" • JSC ,round erN d,.h.d. 'h,:2 

• ',hl'St/uUlre ,.,(haniu' ind ..... 'Ud fUt;ht erN throu9h 
'nUr",r prCKtdurtl to np.tr to Ja. 

• PHlICu,/rtp.Ut ca.".rln9 

• hl.y"d to err .... to .,hct rrp .. 'r 

• C ..... r. put tICk all II •• by f\,~ht 
erN 

A.ht ten Wuk • heeYll 0' ..,"unctt(\C\~n, • Conn.et/dhco"'nKt .lInr1u) • STS·"SL·l 
, S:;>.ce hthrt01Q1' hoth,.,..1 furftlu', 'fller"e. 
~ec_or It. Itn cltet,tc.1 IYlle'll frt'tl I c..lhor/rrpl ... l .. h/.cioi~I"Oi.1 0 ~ttrh1s schnee rack ero!Jle1l1 

.... hrlah schnel red. 0 I .. pf< lI.bu ..... - Stu,k Ntrrhl u!!I;lh 
t4 rntare tlpnte.t'nt to • Prob 1te loh1"9/",c1l1o" - '.cuUJI hd. 
ePlntl~1 tUtus Oft eat,'oQ'/d6h Iftll" h .. 11Ie\d(al short 
ST$·trsL·' I ~~ ... eo<:.I. 

• • ....,n/rt'lac. co .... 't"1 

218 

/ ' 

r 

r 
! 

I oC .... 



l' 
Table 2-2 Historical Precedents/Experiences as Observed an PrevIOus Manned MIsSIon Activities (Page 8 of 8) 

~ mm. A~TI!JTI Itnum c:~lR" AmnTIU ,_rHos 

I O'l boArd dle, ••• tle ehltt .... t a.4 
- ,Ioet,lul bypo" (holatl.,) br 

crtW u," "'Jority of I1ptr\aPlt 

hlnlonl'lft , 'epalr of h19h rate 4ah , Acthat.lI.lthto 'yll .. I STS-tlSl"1 
to SPlCO Ttchn.lon roc.nltr a. SIS-tlSl-1 Optrlt tOft 
0 .. -., It. Itl3 I C.n.tet/dhc ...... t ,Ioctrlcil I "I,h rato dlt. rlconl.r fa 11 04 ell 

tnterhe. 5th dl, 
I klCthlh/ta .. IMte .y.t ... 

Oil' rat t01 • hc.rod .. ope ... - 1 ral1l" fo"1Id to 
I h.poet/ot"nl '- .tuck , ,","10ft .... I"'lItlo. of "Joct 
I 1_ .. /I'9jIIICI coo .. l .. • 10111" fro .. 

I hit .. rnt.rod 

A.',t1on .. uk • ... hl ... of rI ... pIIy.l., • I.e tlntoll. It tat •• y,t .. • Sn-t/Sl-I 
, 5,plC' Technol091 at:M!u 1 •• Ipert .. nt Oft opt,.t1oa 
keMller It. lte3 SIS-tlSl-1 • • I locole/a" I,n/dl st.lbuto I .1014 phy'ICI _.1, 1Io*.I ... t ... 

• C_IClII hfo .... tlOft ••• rll ... probl_ 
I C_.et/dl" ..... t f,"14 

1I'1t .. rhc. • Sr ..... d "" .... I d .. ll04 _"lco-
• eeanhatl/t, .. ' .. t •• yot .. tla., 

""crltl .... 
I • 1I,ht c,..., I~P lIl' fl. 

STS al-C I leqy1r ... "t for erN to eon'''' • !!!Ml!L!!!1t.o.stl~rl!l'n! !l"!!! I A n,h, of r-hotQfr.ph\. TV rKOrdtn9' 
fll~~t C,..., tar Ird ,hatO'lrapll the hoo.y- ~~ aMi two t",crahr. Iilll'I1Un"ftnt, wr. 
leport c .... Itrutt"rt crolt04 by I P.(!Ollvr(lo t'c.',)~ .. ct. Oft tb, •• OCUI'"' 
~y"84 Itlllin hoMr'"' .... ". In • ~...!!1ill 

wt;htltn tnwtrONWRt • AtllwlltllnlUatt ."t •• • the c,.... foun4 t~ ••• per,_t ... t. 
ot'erat 'Oft tnt.,utlll1 all4 .ntortaln'o, 

• ktKt e~ln~. I •• tato H' 
condItIo. 

• , .. Itlon 1OOd,1. 

sa 11-( • .~., ..... t for Oft-o"'lt • Irl"H':~r~ v"tl'§d~~ I 'ntt1c"I"i cf t"l. f'FI WI I"udtt'cut 
F lItht Cr ... r.~.1rs of the Soh,. • Conf\mlwtrUy f:!rcu4,,",' and .nlbl~ cr~.r plut"#,fnt 
hport KI.i...". spacecraft "t'.,duln/c,?frlt tOM "U"' .. fnetlo", of .'" 1"tta of U.t 
110,"114 • COf'nttt/c2hc.O"Intct ehctrlc.l 4 .. IrO<l .... hlll 

hhrful 
I G.tther/rt;lilact tooh/t1"'pMftt • Tht ~I .'d,d the n:hc....,.nt .tu'tom 
• 'olU'en ... --dul1 .n4 h ."" f(lufti tMt 1N",~u'ttr'"; th. 
I "',ul/nnr. IMChlft'ul ~ 1b ~"h Wli rtO Il:r'ODtn 

'nttrhel 
I RC1W)Y' ftiOdul. , Thl (VA CI~ .. r tool VOlrt:" very w1' and 

• EtflQvt/nphc. cont'n, Ihoa14 b, cons'~rrt'd a ,tandu'd tool 

• Transport I ... d.~ 

SIS 41-( • Utlll .. t'.n .f 10.'11 thru.hr • tQf-W'c.!!!1!.tQ-ry trlltlJ.!!.i • NIl! .... f1_ with Ittl'ud. hold 
Flight CrN u.1' l1~'\ts dyrtrt; U,. - • IntorNtt"n proCfntf'l9 
hl'ort d~ktn9 1,,4 lhi)Ututton • Prob1~ lOhtn9/dechtoft • thrv\tt,. (UI ItghU h'.dtuh whf'ft 

~y 1984 ItU"'llU Nktng/dl.ta Inllys" thrush" Irc au:t6UtlcAI1y ftrtttg to 
N'ntltn d,,'nd tUft",:. 

2-19 

. -



1 

/' 
/ 

for any future manned system would be that the crewmen have equipment and 
suitable restraint and mobility~fas to go anywhere on the interior or 
exterior of the vehicle while in orblt. 

The presence of crewmen and the availability of manpower to correct 
problems and maintain equipment should result in a lower weight system 
overall. As an example, Skylab estimates (made after the failure of the 
orbital workshop solar wing to deploy automatically) indicated that a manual 
deployment Mode for the solar arrays would have produced a 15 percent weight 
savings in that subsystem. 

In both the Apollo Telescope Hount and the Earth Resources Experiment 
Package Payload on Sky'ab, the crewmen proved inval~able in assisting and 
directing the pointing capability of both these experiments. The crewmen 
greatly enhanced the quality -of the data retrieved by being ab-lt'! to -observe 
the overall situation and direct or point the experiment at the areas of 
interest. It is in this area of making selective executive decisions that 
man's role is irreplaceable. 

On Sky1ab it was found that the space limitations that a man experiences 
here on Earth due to gravity did not necessarily apply in orbit. For example, 
the large food lockers (in excess of 6 cu ft and ever 250 lb) were ve~ 
readily relocated in zeIo gravity by one crewman working alone as c~m~ared to 
four men required on the ground. 

In the debriefings, all crewrr.en agreed that zero gravity \1111 1 n the 
future allO\-I the designer of an orbital system more freedom in selecting 
volumes and weights for the crewmen to manipulate. One crehman made the 
slatement that it would have been fedsible in space to relocate an object the 
size of the film vault. (The Skylab vault wa~ in excess of 12 cu ft and 
weighed approximatey 3,000 lb.) 

Examples of these past experlences drawn froJ:1 previous mission:3 Here 
valuable not only in confirMing man's capability to perform specific 
activities in space but also in establishing a basis for developing a generiC 
set of activities in Task 2 that could be used to describe future missions. 
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Section 3 

SPECIFIC PROJECT ASSESSI~ENTS - TASK 2 

The oojectlve of Task 2 was to deflne and descrioe a structured apprcdcn 

for optim1Zlng the role of humans and humans supported by mclcllines in carryin9 

out tne requirel,lents of selected space proJects. To accompl iSrl tnls 

OOJect1ve, a gener1c hst of act1v1t1es was l1erlVeJ (Section 3.1) that coulJ 

oe used to Jescrioe any future space miss10n. TnlS list of activ1t1es was 

cor,1pareJ to the human performance capaoil iti es and 1 imitat1 ons sUIi1l11dri zeJ 1.1 

TasK 1 to detennine the degree of human invol vement that can reasonaoly De 

expected to De associated witl1 each of the indi vidual activit1es. Past 

experience suggests that the util1zation of the cdpab1lities of tne hUulan 

element in the implementat10n of any man-macnine system is llmiteJ only by the 

creat1 ve imag1nat10n of tne system designer, witn only a few except10ns. Tne 

princlpal limting factor in the duect 1nvolvement of tile nW,lan 1n system 

operatlon 1 stile flnite nwailn response tlrne assoclateti w; tn tne perfOrll1dnCe of 

any actlvity or taSK. AccorJlngly, in Section 3.2 ranges of response tlmes to 

Oe expected in tne performance of eacll actl Vl ty are presenteti for eacn of tne 

loan-macnine modes, from direct manual l:1vol vement to inJlrect or independent 

systems operatlons. Tnese t1mellne data I'lere deriveJ frolll r.tany sources 

incl UtJ1tlg prior. system operatlOns, researcll data, simulatIons and eng1neeriny 

analyses. 

In Section 3.3, tne supporting equl pnent and resources neeJed to ililpl el~er.t 

edch actlvity in eacl1 mode of man-machine interactlOn are identifled. In 

SeCtlOn J.4, the economlC factors and cost of equlp~ent anJ other dctlvlties 

associated vl1tn provld1ng, support1ng. and utllizlng IlUInan capabilities in 

advar.ced space miSSlOIlS are 1dentlfied and qUdntlfleJ. 

In Sectlon 3.b, a metnod 1S presenteJ for evaluatl~Y in qualltative anJ 

quantltatl ve terms tile cost effectl veness of varYlng degrees of hur,Jall 

111vol vement in meetlng the requ1re,oents of future space proJec~s anli 1n1ssions. 
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In ~der to derlve a generlc 11St of activlties that could oa used to 

describe dlly future space ml ssi on, varl ous space proJects were analyzed. Tile 

analyses entailed the deflnitlon of tne various levels of events used to 

descrlbe a given mission. It was recognized that each project could require 

one vI more missions to be perfonneJ. In the cases examin~ eacn mission was 

broken dOHn to tne sequence level to describe tile detailed operations for tile 

91Ven mission. As illustrateJ in Figure 3-1, tile sequences were then furtner 

deflned tllrough the ldentificatlon of the activltles tilat Iliade up eaclI 

operatlonal sequence. Once the activity level events were Jeflned lt was 

found that a great deal of cOlllnonal ity existed among the various operational 

sequences and tile missions. In other \'1ords, the same baslc actlVltles \'1ere 

fuund to oe requlred in dlfferent operations and 1n different mlSSlons. The 

activities were !Jrouped t0ge~~er to elimlnate redundancy. The oOJectlvc ~ias 

to develop a flna1 list or basic or generic activitles, eacll witn unique 

cilaracteristlcs, tnat wilen coralline!.! coulJ be used to descrloe any fllture Spdce 

missloRS. 

BdSed on the level of Jetalled lnfonl1a'tion currently aVdllaole, tile Spdce 

Platfonn ffilSSlons were selected for the initial analysis of activitles. The 

Space Platfon~ (Figure J-2) proJect was a conceptually deslgned free-flYlng 

FIgure 3-1. Project AnJlym (Leve!s of DefInitIon) 
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FIgure 3·2. Space P/3tform System DesIgn Concept 

platform tnat could provide serV1ces such as electrical pOI'Ier, thennal 

control, and communiCctt1ons dnd data Ilandl ing to a IHde range of i"ttaclled 

payloads. In scneduled revislts by the Space SII'Jttle, opportumties were 

provlJeJ for utillzatlon of the human presence in maintenance. servlcing, and 

repd1r as well as in the lnltlal deployment and/or asser,lbly of payloads. Tne 

source of 1nfonnation ut1lized in the analysis of tile Space Pldtfonn mlssions 

was the HUAC Phase B Space Platform stuJy reports (Reference 70). i3ased upon 

tIllS inforl.latlon, the Space Platfonil missl0ns were divldect into tllelr 

respectl ve sequences and tllen the sequences were further cdtegorizeJ into the 

detailed operatlonal act1Vltles. TOls analysls may oe founJ 1n Appelld1x C-l. 

Tne analysls of tne Space Platfonn (Figvre J-3) resulted 1n tile 

llientiflcatloll of flve mlSS10n cdtegorles. Eacll of tile respactlVe mIssions 

was defined oy tne sequence level events required to perfonn tllose l:tiss10ns. 

As can be seen at the sequence level, several events may occur 1 n more thdn 

one mission. For example, tile bertning operdtlor: between tile Space Platfo",1 

and Space Snuttle not only app~ars in tile pdylo1d reconfigurat1on m1SS1on dS 

3·3 
/ 

MCDONNELL DOUGL9---

• 



/ 
i 

/ 

I 
/ 

,r 

Sequence 

Activity , 
W 

D,scor.nect 
Payload/PS 
Umbilical 

Figure 3-3. Space Platform Project AnalySIS 
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snmm. but also in tile inltial deployment and ma1ntenJnce mi:;s10115, as l\fell as 

evolutlonary growth missions. The reason is that 10 order to perforl:l tn05e 

1011ssions, lt lS required tnat the Space Platfonn and Spdce Shuttle be bertl1eJ 

togetner. Tile sequence .level operations are tnen furtller defined I)Y 

lJentlfY1ng tne activities necessary to acr.omplish thdt operdtlOn. As stateJ 

previollsly, these identifled act1 vitles were eXd'llined and cor.lllined Imere 

appropriate. On the oasis of this analysis, 27 generic dctlvitles wer~ 

derl ved. 

Tne Genertc Actl vity List contlnued to expand as otller space projects lIere 

analyzed. Tile additlonal space projects that were eXdlillneJ lncl uded the 

AJvanceJ X-ray Astrophysics Facillty (AXAF) study; Skylao loi5510115 froln SL-2. 

S~-3 and SL-4; Space Station ffi15sion mojels; and L1fe Sciences Laooratory 

m1SS10n5. Tne analysls of tne 11fe SClences project (Flgure 3-4) centered 

dround tnree ldentifled mlssions as slJown in Flgure 3-5. These missions I/ere 

al1.llyzeti at tile sequence I evel and each seqence in turn I~as reJefl ned into lts 

odsic actlv1t1es. An lnterestll1g note dunng tillS analYSls \~as that even 
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Figure 3-4. Life SCiences Dedicated Laboratory 
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Figure 3·5. Life SCiences Laboratory (Project AnalySIS) 
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thouyh the sequence 1 eve 1 e vents were notdl.> 1y different for eactl 1 i fe sci ence 

miSSIon tnere was once again considerable commonality alllong the activities 

requIred In tne different miSSIon elemt!nts. Tne analysis of the lIfe sciences 

project mdY be found in AppendIX C-2. Another infonnation source \thiclI WdS 

utilized in !Ilese andlyses was tne lur study of AutolnatlOn, Roootlcs, an.! 

r·1acnlne Intelligence Systems (AI{AlHS) study (References 67,68.69). This 

study ilad liefl ned some ..i.30 "Generic Functi ona 1 £1 ements II and tllese functi ond 1 

elements uere also matched against tile listing of lieneric Activities. 

AS each new source of miSSIon data and/or mission actiVIties was eXdlillneJ, 

the previously defined generIC actIvities were matched against the new 

infonnation. If a specific actiVIty could not easily be described by one of 

tile prevIously defIned generic actl vlties, a new actl vity category was 

ldentifled for Incorporation into the generic actIvity list. 

Tile analyses of tl1ese space proJects down to tne activity level oas 

resulted in the identIfication of the 37 unique activities. It IS our oelief 

toat this set of gpneric activities will prove to oe a useful tool in 

descrIbIng the operatIonal sequences required in the broad spectrum of 

potential space missions anticl pated In tne COtn1lly decades. 

Descriptions of eacn of the .37 benerlC Activities follow: 

1. Acti vate/Inlti ate <;ystem Operati on. Those events and/or COhll:Jdlld 

sequences Involved in the activatIon or ln1tializatlon of a space baseJ systen 

or sllDsystelo. 

2. Adjust/Align Elements. Thuse adJustment actIvitIes involvej In sucn 

operations as aliynll1ent of optIcal elements, fllle tunlng of preclsion 

el ectroni C equi ll11ent, antenna pointl ng, and remote camera fOCUSing operatlons. 

3. Allocate/Asslgn/Distribute. Those activities involving the 

reallocatIon, or redistrlbution of resources: e.g., the redistributlon of 

power, coolant flow, etc., to sens1tlve SUJsystem equl~ent to reflect 

operational needs or contIngency operatIons. 

4. Ap~y/Remove iliomedlcal Sensor. Those unIque actlvltles a~socfdteJ 

With the lnstallatlon/removal and cleamng of sensors usej to Obtdlll 

DIOll1edlcal data from a test subJect. 

S. t.or.Jl~unicate Infon.1dtlon. rtlose actiVIties lnvol vlng tile e:;tablislllllent 

of tile communlcatlons llnk and tile transmlSlon of information from one source 
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to another. It 1 ncl udes the verlla I or Vl sua 1 ; ntercnange between tl10 cre,'Men 

as w~l1 as the electronic trdnsf~rence of sClentiflc lnfonnatloll from a space 

prooe to a terrestrial-baseJ user. 

O. Compensatory Tracklng. ThOse activitles invol vlng continuous control 

adJustments to null an error signal against a fixed reference. 

7. Compute Oatd. Tflose actl vi tles requiring d lOecllanlZcd form of lata 

processing such as in structural analyses, cOr.1putation of positions of 

celestial oodies. or otner fonns of nu~erical computdtions. 

d. Conflnn/Verify Procedures/Sclledules/Operatlons. Tnose actlVitlcs 

invol vlng the assessment of l-iI1etl1er or not a prior event has ln fact been 

accomplished (SUCll as a syster,l verification o· cneckout >, or a proceJure 

satlsfiea, or a scnedule met. 

9. Connect/~lsconnect Electricdl Interfdce. Those actlvltles requlrlng 

the completl0n or teliilindtion of an electrical lnterface. Tney may involve 

util i zation of 011 nd-rnated/self-al ; gnl n9 connectors, mul tHurn scre,I-Jrl ve 

interface plates, or simlldr devices. 

10. Connect/Disconnect Fluid Interface. Tnose actlvlties requlrin~ the 

completion or termlnation of a fluid interface. They may involve utilizatl0n 

of ~ Simple pluy In, sleeve lock co~nectlon, multiturn scre~ drive interface 

plates, or slml1ar devices. 

11. Correlate Data. Those actlvities lnvolvlng the iJentificatlon of 

poSltl ve or oegatl ve relatlonshl ps or co,mlonal ities al;1ong data sets sucil as 

organ1zdtlonal structures, cnardcterlstlcs, or processes. 

12.' Deacti vate!Termlnate System Operation. Toose events and/or co..,manJ _ 

sequences invol ve...! in tn<: teni1lnatlon or deaetl vatlon of a space-odsed systc,lI 

or subsystem. 

13. Decode/Encode Odta. Those activlties invo1vln:J tile conver.slon of 

ddta lnto elther lts anginal forul or lnto a form comp,ltible for 

trd'1SlnlSS10r.: e.g., co~ertlng trdllSI:lltteJ digltize:.i data into its original 

analoy form or dlgitlzln~ analog data for trdnsmlSS10n to tne ground station. 

14. Define Procejures/SchcJulcs/Uperdtlons. Tnose activltles involvlng 

loglcal deductl0ns or convergent productlon leaJlng to developacnt of 

proceJures, scneJules, or operatlons wah preJlctable outcOr.les. 

l!l. Vepl OJ /Hetract Appendaqe. TtlOSC dct i Vl tl es associ ateJ \~i til tile 

extcnsl0n of cl narJware el el.lent to a posltion where lts assigned functlon ca~ 

be realizeJ, or conversely, the stol'llng of that ndrd~/are element based on tas~ 

completlon or safety conslderatlOns. 
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10. Detect Change in Stdte or Condition. rhose activities where tne 

departure of a parameter from its orlginal or referenre state or condition 1S 

required to be sensed or observed. 

17. Uisplat Data. Tnose activities i~volvln~ the presentation of 

infonlldtion/dat,! by visual, auditory, or tactile means. 

lB. Gather/Replace Tools/£qui pnent. Tl10sc acti vities invol ved in tile 

ootdining or in tne return 109 of tools or equipnent USN to perfon:l a specific 

task such as collecting or replacing maintenance tools or donning/doffing tile 

I~anned ,·Ianeuverlng 1I0lt (I-I:~U). 

19. Handle/Inspect/Examine Livlng Organlslns. Tnose activitles involvlng 

the unlque operations associated with worKiny \'l1th living orgaOlsrns. These 

activities involve the mdnipulation and general handling of aniffidls rangln~ 

from stroking to inspectlng or examining anatornictli characteristics. 

20. Implement Procedures/Schedules_. Those activities invo1vln!:l tile 

instituting and carrying out of pr~cedures or schedules (such as updating a 

r.liSS10n model/schedulei as distinguished from activating or lnltiating system 

operations. 

21. Information Proces5ing. Those acti vities invol vin9 the categorlZing, 

extracting, lnterpolating, itemizlng, taoulatlng, or translating of 

i nfonnatlon. 

22. InspcctlODserve. Tnose activaies lnvo1vlng the critical appraisal 

of events or obJects. They may lOcl ude the ven flcation or the identl ficatlon 

of d particular element SUCIl as dal1lage inspection of a returnin;) OTV, tile 

observation and ldentl ficatlon of a cel estial ODJect, or the behavior of a 

llvlng organlslll. 

23. I·leasure (Scdle) PtlYsical ~imensions. Tnos~ activities involving tile 

estllnation or appralsal of a JlmenSlon agalnst a graduated standard or 

crltenon. 

24. Plot Data. Those actlVlties invo1vlng the mapplng, dlsplaying, or 

locating of data by means of a speci fled coordinate system. 

25. Position Mojule. Those actlvitles involvlng the posltlonlng of a 

component lnto a deSlred orlentatl0n: e.g., lnstalling a neli cOr.1ponent. or 

tiltlng d payload lnto lts launcn orlentdtion. 

26. Precisl0n IIlnlpulatl0n of ObJects. Those actlvltles illvo1v1ng tasks 

Hlllcn requ1re a nign degree of IOdnual dexterity 1n orJer to be accolnplishe.J 

sucn as the assel.lbly/dlsdsser.lDly of small intricate r.lechtlnisms or tile 

installation of I~edsure,nent sensors, i.e., strdln gauges, th(!n.1ocouples, etc. 
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27. Problem $olving/Uecision I~aking/Oata Analysis. Those judgmental an.! 

sometimes creatlve activities lnvol'/ing the dral'ling of inferences or 

conclusions through the use of cosnition, convergent or divergent product1ol1, 

memory, and comparative evaluation. functions to be perfoffilel1 may include 

analyzlng, calculating, choosing, compdrlng, estiIRating, or planning. 

2~. Pursuit Tracking. Those activities involving continuous control 

ac.JJustsnent to match actual and desired signals Ithen tne desired or reference 

signal is continually changing. 

2~. Release/Secure ~ecnanlcal Interface. Those activltie~ involving tne 

IRanipulat10n of a mechanlcal interface rang1ng from a simple one-handeJ, 

over-center latch application to a hign torque, multlturn threaJed fastener. 

1·lay involve manipulation of I.lultiple fasteners arranged in various patterns or 

configurations. 

30. ~emove 11odule. Those activitles invol ving the physical extractl0n or 

removal of a component after the mechanical, electrical, or thennal interfacec; 

have been releasea or ctisconnected • 

.31. Remove/Replace Covering. Tnose activities involving the removal or 

reinstallatl0n of an access coverlng or a protective covering as requlred to 

~ain access to system elements or to cover tnem up upon completion of the \'wrK. 

32. Replace/Clean Surface CoatinQs. Tno~e unique activities involving 

tile restoratlon of d degraded/contamlnated surface coatln!;! suen as replaC1n!:l a 

radlator's tilenllil coating or cleanlng an optical systertls vlelnng surface. 

33. Replenlsl1l1aterlals. Those activltles involvlng the resupplYlng of 

consumaol es such as refuel1ng a sp-lcecraft, rechat"ging an optics cryo-based 

coollng system, or providing fOQ!j suppl ies to all animal hoUl n9 fdCl ~ ity. 

34. Store/Record Element. Those actlvlties involv1ng the recorj1~g or 

stordge of 1 tems for ooth snort-tenn and long-tern perioJs: e.g., 

recording/storage of experimental data or tellporary storage of a blomedical 

salnple. 

Jo. Surg1cal 11anipulations. Those actlvltles, SUCI1 as a surglcdl 

procedure or a dlssection lncluding tlssue sample acquisitlons, that require a 

l11gh degree of sodll and knowledge as well as manual dexterity 1n o("d~r to be 

dccompll shed. 

36. Transport Loaded. Tnose activities involving tile conveYlng of a 

Pllyslcal ODJect oy SOfilC transportation devlce from one location to another: 

e.g., the transporting of a cOlnponent Vla a cre~,.man or a reJilote mampulator 

system. 
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J7. Transport Unloaded. ThOse activities involving the movements of an 

unloaded i nJi vidual or device from one location to anotller: e.g., the 

move~ent of a crewman to a worksite wltnout carrying tools or equ1pment, or 

tne I:lovement of a remote mani pul ator system wi tn notlli n9 attacned. 

Fi gure 3-6 identHi es the sources from wni Ch eacn of tile generi c s p-3ce 

activlties that compose the final 11sting was deriveJ. 

J.l ,HSSIOIJ TII1ELl NES 

Once a generlc set of activlties had been established that could be used 

to describe any future space misSlon, the next step was to establish the 

reldt+¥e appl1cability and value of the alternative man-Inacnine mwes in 

accomplisning these activities, both indlvidually and in composite as might be 

dictated by a specific set of mission requlrements. In order to estaollsil the 

degree of human fnvolvement that could reasonably be expected to be associated 

with each of tne indivldual activitles, tnree sets of performance crlteria 

were considered: the first set was the range of performance times requireJ to 

Q:CO~pll Sh the task; tne second set ~/as the requi rements for huraan in '/0 1 ve,nent 

in terns of sensory/perce~tual, lntellectual and PSYChor.lOtor f· . .mctioilS; and 

toe tOl rJ set was the lllilltl n9 factors 1 n nUlndn 1 nvol veJ.lent in tenllS of the 

human response capabi11ties for senslng. information processing. and Motor 

actions. 

kn addresslng the criterlon of perfonnance time requir~nents, miSSlon 

timeline data avallable from prior space mlsslons, lab_oratory ~tudies, systelll 

sllnulations and engineerin~ Jeslgn studies were utllized to estdDliso a 

reference set of timel i ne data for each actl Vl ty and for each category 0 f 

man-machine lnteraction • 

. 
Tne categorles of ulan-maclnne lnterdction are oaseJ upon tIle nU1lan 

operator's level of partlcipation in the performance of the task and were 

deflned as fo11olls: 

i'1anual. Unaided IVA/EVA, witn simple (unpowereJ) IlanJ tools 

Supported. Use of supporting machlnery or facilitlcs requircj to 

dccomplisn asslgned taSks (e.g., manned maneuvering units, foot restrdlnt 

devices. etc.) 
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Source 

GeneriC Space ActIVIties (1) 121 131 LIfe 
AXAF Sky lab Space Space ARAMIS SCIences 

Plalform SIal Ion Stuey IMIT} Laboratory 

1 Activate Initiate System Operation 0 • • • 0 • 
2 Adlust/Allgn Elements • 0 0 • 
3 Allocatet Assign' Diet r Ibute I) • • 0 • 
4 Apply/Remo,. BIomedIcal Sensor 0 • 0 0 

5 Communicate Inform~Jtlon • • • • • • 
6 Comp~nsatory TrJcklng • 0 

7 Com put'! Data • • • • 0 • 
8 Confirm/Verify PrOCedlJft:'stSchf'dulesiOperatlons • 0 • • • 
9 Connect, Disconnect Electrical Interfac .. 0 • • • • 

10 Connect/Disconnect FlUid Interfa'Ce • • • • 
11 Correlate Dala 0 • • • 0 

12 Deacllvale/Termlnate System Operallon • 0 • • 0 • 
13 Decode/Encode Da" 0 • 0 

14 Define Procedurps/Schedules/Operatlons • • 0 0 • 
15 Deploy/RetracI Appendage e • 0 • • 
16 Detect Ch,lnge .n State or Condlllon 0 • • • 
17 Display Data • 0 0 0 e 

18 Gather/Replace Tools/EquIpment 0 0 " I) • ., 
19 Handle/lnspect/Examme LIVing Organisms 0 

20 Implement Proct'dures,Schedules 0 e • 0 0 

21 Information Proc€.ssmg 0 0 0 • 
22 Inspect/Obsen e 0 • • 0 0 

23 Measure (Scale) PhySical O.mf'nSIOtlS 0 0 

24 PIOI Data 0 • • • 
25 PosItIon Module 0 • 0 0 0 0 

26 PrpClslon ManlplJla',on of Objects 0 • 
27 P'oblem SolVIng/DeCISIon Makong/ 

Datd AnalYSIS 
0 • • • 0 

28 PursuIt Tracking 0 • 0 • 
2-9, Re!"'ase Secure fI.'echaflical Interface S • • e • 0 

30 Remove "'odule 0 0 0 e • 0 

31 RpmC"vt"/R eplace COVCf'tr'k] 0 0 • 0 

32 R~prace Clean Surface Coatln9~ • • • 
33 Replenish MatenalS " • V 0 0 

34 S'urp/Rec('lrd EI- m ... nts 0 0 • 0 e 

35 Surgical r ... 1.:Hllpulatlons • 
36 Transport Loxtcd • 0 0 0 0 • 
37 Transport UnlOlcled • e • 0 0 

III Includes EREP und ATM Act,v,t,e. 

(2) Include~ ACtivities Derl\led from the AnalysIs of Space Platform Ground System Data \1anagement Study 

I' 
\ . 131 Includes 330 Ge~e"c Fu lCtlonal ElemLnts Derived from the Geosynchronous Platform Arivanced X Ray Astrophyslc. 

Factlltv Teteoperator Mdneuvt'lrlng Systt!m and Space Platform 

I 
L 

I 

Figure 3 6 List of Generic ActiVities ... 
/]' I 
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Augmented. Jlmpllflcatlon of Iluman sensory or motrr capabIlities (pol/ered 

tools, exosl<eletons. electron mIcroscopes. etc.) 

Teleoperated. llse of remotely controlled sensors and actuators allo'llin~ 

tile Iluman presence to De rt;JiloveJ from tile IlorK site ( relilotel:ldni pul ator 

systems. teleoperdtors, telefactors) 

SupervIsed. t{eplacement of Jirect manual control of system operatIon WIt.1 

cowputer-Jlrectej 

from ~rollnJ-OdseJ 

Independent. 

functIons although maintaining numans in supervisory control 

or orDital-based work statIons 

Udslcally lnJependent self-actuating, se1f-lrealln~ 

operdtlOns out re~U1r1ng IlUlilall InterventIon occaslOllally (relIes neavlly on 

dutrnnatlon and drtificldl Intelligence) 

SWllfnary tllUel1ne profiles, as snOlill in FIgure 3-7. \(ere prepareJ for eac.! 

of tile J7 actIvIties to depIct tne range of times assocIated WIth eacl1 moJe of 

hlal1-.ndCllllle Interaction. Tne tirael1ne profIles for each of the 37 actIVitIes 

mdy be founJ In Appendix I). In eaen case. the tlmellne profiles were 

constructeJ 1 n dccorJallce .n tn the fo 11 O\~l ng grounJ rul es: 

Man Mdchme 
CategorICs Time Scale 

~% 0 S,,,,".r Task \J th Actual 
Manu~1 ! On Orhlt Pedormance-

- o Slm,lar Task Pertormed ,n a 
~§ Spac~ S,mulat'o~ 

SupporJed 8) 12 0 Enq,nee"nc Estomate n.,en 
on DeslQn or Operatronal 

~ E.pe"."c
p 

Augmented 
4 8 ,\ /lm/'err are rcfcrc!lUs to 

sou",s (se< Al'pclld,t DI 

~ 
I 

Teleoperated I 
1 2 ®[!3J I 

SupervISed I 
Ground I 

I 

~00 
I 

SupervlSf'd 
On Orbit 

Indepondent 
0(2)k0> 
C I 1 1 1 1 1 I 

OC~Egt 10 20 30 40 50 1 2 4 6 8 

, s~o"': I Minutes Hours 

I 
Figure 3·7. TYPical ActtVlty Tlmelme Profile Actmltc/lmtl3te System Operatlcn 
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• All of the generic space actl vit les encompass events tllat will be 

perfonned on-orbit. 

• Tne range of tlme for accomplishing a task is deflne:i by a mlnlHIUhl tasK 

time and a maXlmum task time based on specific tasks identified during the 

analysis of previous space prOJects (references cited). 

o The tlmes are based elther on actual space performance (0). a space 

slmulation (0). or on engineering estimates derived from conceptual deslgns 

or from sllmlar operational experiences (O). (The numbers \'lithin the symbol s 

designate tne speciflC data sources. rnese sources are listed in Appendlx D.) 

e Those actlvities that \iere determlned to require dlrect hu,nan 

1 nvol vement for accompll snment will not be considered for supervi sed or 

independent appllcatlons. 

• Operatlons in the manual category will De limited to 50 minutes based 

on evaluations associated with manual fatigue levels and span-of-attentl0n 

limits. 

e for actlvlties tllat require support equipnent. ;c is assumej that the 

crewmen have a \'Iorking/operational kno\'l1edge of that equi(1ilent and special 

tra1ning 1S not required. 

An lmpartant conslderatlon wilen eval uat; n9 tnanua 1 tasK perfonnances is 

Whether or not times d1ffer for accompllshing slmilar tasks 1n the EVA as 

cOlnpareJ to the IVA mode of operat10n. 

In order to provlde a baS1S for estimating the tlmes for accampl isl1ing 

dctl V1 ti es 1 n eacn of these moJes, comparatl ve data \tere needed on fi ne ant1 

coarse r,lotor actlvltles to be performed in zero g both Hith and \'11thout a 

pressurized SUit. Since sucn data was not readily availaole from actual space 

flights, \le elected to develop tnese dat..:. by analyzlng video tapes taken in 

tile 110AC and the JolSfC Neutral Buoyancy Simul ators dur1 ng the past year. In 

1 !18J. HDAC perfonned tliO seri es of Neutral Buoyancy Tests in Hhi cil the same 

maintenance and serV1Cl ng tasks were perforlned. Tne fi rst test was performeJ 

1n SCUt3A only. Willch equates to tile slmulate.:i IVA enV1ron;nent. T\1e second 

test senes involved pressure-SUlted sUDJects, \'illlCn Slmulated tne EVA 

enV1 ronment. By cornpdri ng task performance tlli1eS for d representatl ve 

selection of tasks requ1rlng floe and coarse motor dctivlt1es under silnul~tej 

zero 9 (neutral buoyancy) uhen using a pressure unit and Ilhen using scuba 
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equipnent only, it was believed a reasonaole basis of relating IVA and EVA 
tasK times could be obtained. It was llypotllesizeJ that tne scuba perfonl1ance 
would De equivalent to an IVA perfonnance in zero g. 

As an example of coarse mo ,r Inovelnents, a handcranking operation sucn as 
mlgnt be invol veJ in deploying an dppendage was selected. Observatl0nal data 
were avallable from the video tapes for three crank radii (3 inches, 6 inches, 
and 9 inches) for a series of scuba and pressure suit trials. 

In slmilar fashl0n, observational data related to fine motor lilovements­
were available under eacn condition for two tasks: (1) mating and dematlng 
electrical connectors, and (2) removing and installing fluid interfaces. 

Figure 3-8 plots the average times observed (Table 3-1) under each 
operational mode for the various crank radii. Table 3-2 summarizes the 
average times observed for the tasks requiring fine motor movements. 

30 

i3 20 

26 
EVA 

~ 
V--

IVA 

~ 
r 23 

-c: 
0 20 
0 

~ 
~ 
E .:: 
'" '" " i 
<t 10 

o 
o 3 6 9 12 

Hand Crank Handle Radius (on ) 

Figure 3-8. Coarse Motor Movements 
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Table 3-1. IVA and EVA Task Time ComparISons 
(Coarse·Motor Movements) 

Average times 
(sec) 

Task IVA EVA 

Manual nand Cf8nk 

3'lnch radius 20 21 

6'lnch radius 22 24 

9-lnch radius 23 26 

.&.verage 

: /' 

Ratio 
EVA/IVA 

105 

109 

113 

109 

From this observational data, it was concluded that the times for 
performing coarse motor movements should be roughly comparable for most IVA 
and EVA operations (Table 3-1), although as may be noted in Figure 3-8, the 
greater the movement required (as in the case of turning a crank with a nine 
inch radius), the greater the discrepancy becomes between the IVA and EVA 
performance times. The differences observed are undoubtedly due to the 
restrictions in pressure suit articulation. In the case of fine motor 
movements, (Table 3-2) the EVA operations seem to take about 1.5 ti~cs 
longer. This difference can be attributed to the sensitivity and dexterity 
di fferences bet\'leen the 910yed versus the ungloved hand. 

Table 3·2 IVA Jne: EVA Task Time ComparISons 
(FlOe-Motor Movements) 

Average 
times 
(sec) Rallo 

Task IVA EVA EVA IVA 

Electrical connectors 
Coax - 6 turns, threaded 19 31 163 
Bayonet - 120-deg lock and unlock 9 14 175 

FIUI::l Interlace 
Remove 10 13 130 
Install 14 20 1 14 

Average 153 

It is believed that the tlm~line data derived from the neutral buoyancy 
chambers is a very reasonaul~ approximation of the actual times that will be 
experienced in zero g. To substantiate this hypothesis, the Skylab EVA tasks 
were reviel'{ed by the study team. Table 3-3 compares the planned times based 
on neutral buoyuancy simulations on the ground and the octual times ooserved 
in space for ten composite EVA tasks On Skylab 2, 3, and 4 for which data were 
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Table 3-3. Skylab EVA Tasks 

EVA Planned time- Actual tlmr J. time 
events (minutes) (minutes) (minutes) 

1 45 35 -10 
2 248 203 -45 
3 105 96 -9 
4 448 391 -57 
5 275 270 -5 
6 156 161 +5 
7 388 394 +6 
8 442 413 -29 
9 212 209 -3 

10 323 319 -4 

Total 2642 2491 - 151 

Overall - 6% under estimate (15112642 minutes) 
r , 

available. Out of a total of 2642 mimltes of pl cnned operations, the actual 
EVA times totaled 2491 minutes or 6% less (faster) than had been allocated. 
Based on this prior experience, it was concluded that the time estimates 
derived from the recently conducted neutral buoyancy simulations provide 
reasonable estimates of on-orbit perfo~ance times, at least to the level of 
precision required for the THURIS stuqy. 

In ViE." of the data suggesting: (1) the general compatibillty of IVA and 
EVA performance times; (2) the validity of neutral buoyancy data as a basis 
for estimating performance times in zero gravity; and (3) the high probability 
that an 8-psi EVA suit requiring no prebreathing time will be available in 
time for missions now in the conceptual design stage; it was concluded that no 
differentiation ~"ou1d be required beb'leen IVA and EVA for the purposes of a 
first approximation of performance times. The design decision as to whether 
EVA or IVA \-[ou1d be required in future systems will be established by 
prograrltllatic criteri a otner than performance times. Accordingly, the timel i ne 
pl'ofiles appearing in Appendix 0 do not differentiate bebleen the IVA and the 
EVA modes for the manual, supported, and augmented categories. 

In addition to performance times, the other crlteria considered in 
defining the applicability of the various modes of man-machine interaction 
were (1) the requirements for human involvement in terms of 
sensory/perceptual, intellectual, and psychomotor functions, and (2) the 
limiting factors in human involvement in te~s of the human response 
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capabilities for sensing, information processing, and motor actions. The 
human capability data developed in Task 1, and described in Appendix A, 
provided the information used in tois definition process. Figure -3-9 

summarizes in matrix form the human c~pabilities defined in Section 2 that are 
required to perform each of the generic space activities. 

An attempt \~as also made to identify the role that each of these 
capabilities played in each of the generic space activities; and, by assessing 
the importance of this role, to gain some understanding of the benefit of 
man's onboard participation in each activity. In some instances, the generic 
space activity could be applied to a broad range of mission activities, som~ 
of which would benefit significantly from man's participation an~~ers of 
which would benefit very little or not at all. For most, however, a 
reasonably precise eV(lluation could be made. Table 3-4 presents the t'esults 
of this assessment of the benefit of man's participation in each of the space 
activities. 

The activity timeline profiles found in Appendix 0 also indicate the 
requirements for human involve~ent as well as the limiting factors in human 
involvement for each of the man-machine categories. The limiting factors 
noted on these timeline profiles reflect the human capability classifications 
that could be exceeded by the requirements of the specific activity. In these 
cases, additional support would be required from the machine elements in terms 
of enhancing the setlsing, information processing, or motor actions of tlje 
human o~erator. Where limiting factors are exceeded, a transition into a more 
mechanized man-machine category will generally be required in order to obtain 
the optimal task performance cor.siderations. 

As an example of the issues considered at this point in the analysis, 
Figure 3-10 presents the timeline profile and notes the human capabilitie~ 
requi red and thf' 1 imi ti ng factors associ ated \'1ith the vari OUS man-machi ne 
categori es for the at;ti vity titl ed "Rel ease/Secure Mechanical Interface". The 
ranges of tifiles for accompllshing the activity have been determined from 
speciflc applicatl0ns. Activities in the manual category for example could 
involve tasks ranging from simple, one-handed over-center latches to numerous 
multiturn captive fasteners that could be arranged in various patterns (see 
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4 ApplY'Remove B,omed,cal Sens(\< 

5 Communicate Information 

6 Compensatory Tracking 

7 Compute D3Ia 

8 Conflrm'I; enly Procedures/Schedules 

9 ConnectlD,sconnPCt Elect"cal Interlace 

10 Connect'D,sconnect F'uld Interface 

11 Correlate Dat3 

12 Deactl ... atefTermtnate System Operation 

13 OecodDfEncode Data 
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20 Implement Procedures!Sched~les 
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24 Plot Data 

25 POSI"O~ Module 

26 PreCISion Manipulation of Oblf'ct~ 

27 Problem Solving/DecISIon Making! 
Data Aralysls 

28 PursuIt Tracklnq 

29 Release/Secure Mel.hanlcal Interface 

JU Remove Module 

31 Remove/fleplace Coverong 

3:7 Replace/Clean Surface CO"lllnQ~ 

33 R"'ple-nlsh r .. 1atcrnls 
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Table 34. Benefit of Man's ParticipatIon an Space Activities (Page 1 of 21 

No 
Generic tpace 

activity 

1 I.ct'vate Inillate 
system operation 

Key 
capabilities 

utilized 
In man's 

partlcl"atlon 

Evaluation 
V,s,on 
Mampulatlcn 

V,s,on 
2 Adjust align elements Cognltoon 

EvalualiOn 

3 "lIocate assign Cognillon 

Benefit of man's ontx)3rd participation 

Equipment 
canba 

elimll'ated 

Yes 

No 

Performance 
of activity 

Is Improved 

Probability 
01 mission 
success Is 
Increased 

In some cases Negligible 

I, some cases No 

In some cases 

Overall 
benellt from 

man's onboard 
participation 

Beneficial 

t Jot slgnlf,cant 

Rationale 

Automatlca'ly act'Vated :;ystems Will 
predominate 

Most alignment C?eratlons w,th,n 
Man 5 capabilities 

Pnmanly ,ulomz'!!d operations diS" ~ute Convergent Prco:! 
-------~--~-----+-------~------+-----~--------~----------------~ 

Ao-"Pty ,.,.nove CogMlon Not """.~::'Ia Yes Yes Essen~a! Operatons cannet eaSlIy be 
" blOmec'.cal sensors M;!!1!pUla!lon """" • automaU!d 

5 Commum('ate Cognition No i~ some cases No Not significant CommunicatIOn IIOk established 
Inforrr,at,on VISion automatically 

6 Compensa'ory 
tracking 

7 Compute data 

"~nlt'on 
(valJahon 
VISion 
Manlpulahon 

CogOlt,on 
EvalualiOn 

Conform v6nfy Cognotlon 
8 procedures. [valuation 

schedules operaliOns 

Ccf1rwc!.~$COI1tlect 
~ elednc<;! Itl!Itrlaoos 

~'d;:;conrl"¢l 
1~ fliJid lr';::rl::::1lb 

11 Correlate data 

Vll:iOtl 
0<00$ fhlof I-J::. 
1A.¥l:Dt'~~ol1 
EV3iUa' ,()ll 

ViSJOO 
Gtcas I \:)!or Act 
M<>.rupu'::--m 
EvoJ(l;lt't;1\ 

COC)nitlon 
Evaluallon 

Deactivate terminate Manipulation 
12 VI~lon 

systeM operation Evaluation 

13 Decode encode data Cogl11liOn 
Convergent Prod 

Dp,ol' l"CCC~"'C5! Cogn'~cn 
14 schoou'es.o~t.~ons D'ver~enl Prod 

15 Deploy retract 
appendage 

V,Sion 
Gross Motor Act 

Ct-an:'tO;> 
E,"J!~!ion 

V.siCII 

MCUONNELL DOIJGLd 

No 

No 

Yes 

No 

No 

Y~s 

Yes 

I~ 

No 

Yes 

Yes 

In sO'1"le cases M,nlmal 

In so""'l ca.<es 

No 

In some cases 

3,19 

Neglg,ble 

No 

In some 
cases 

Not Sl9n1flcanl 

Not significant 

Not slgnlf,cant 

Not slgnlflcarl 

Not Slgnilicant 

BenefiCial 

eBn~C;i'}Qf 
es~("~cl 

Ben~';:cQ1~ !Q' 
ElS~«I\'lt 

H.ghly dependert on nature of 
tracking task Null,fy,ng error sognal 
could be automatic 

Man Will play negligible role In most 
data computation 

Man would usually function In a 
backup role only 

TytlICZI L'tJzall~ of man's basle 
ca;:aoMes 

T)'}'!CallJt'&zt/tlCO of ('I.an S b~!.!c 
cap:±'~lm 

Man I'oould usually function In a 
backup ro'e only 

Automatically deact,valed systems .... ,it 
be the norm 

Computer f:JncIIO~ only 

It':.'tJv tf .S wOOlly d~dent en rrt"J1 s 
In\el!ectu.:;l ca:;"bJ<tl!l5 

Seldo'll re~ea'ed ccl",lIes are poor 
candlda'es for a'J'cmallOn 

S3'on;I';c,;;:~~;nOI1 ch1.,.l;1,..,-.ct~~ 
Jot ilCr,lfj(Y 

!~t~ih~~A~'!'i'l st<~;!:mcl~';j It; 
!tn ,1,0:31"" 
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Table 3-4. Benefit of Man's Participation 10 Space ActivIties (Page 2 of 2) 

Key Benefit of min S onboard partlclpallon 

capabIlities p"".,,, I Overall 
uUltzed Equipment Performanco 01 mission ~nefltlrom 

Genetic space In man c can be 01 actIvIty success Is man S onbosrd 
No activIty participation eliminated Is Improved Incrt;st'd partIcIpation Rationale 

VIsICll 

22 1r.~oo:;sf\'Q' 
CO';MIOtI Yes Ycr. Yn figt1ly bCl1l~h:-~1 I.~n·' Ulllctr.-e ot!,i!!'\<il«)I'.$ SUpeflQf 
Cva:ua!lOO 10 aut.."Il1"eo ~M~'"9 
o.~~IProd. 

23 
Moasure (sca'e) V,StO'l 

I~ some cases No lin sOlT'e E)(Ine'loa' (I' some M~n IS best a·tema'r.~ '" ~ 
pt>ys,ca' d'me'lS'ons lE\alual~ cases cas~s s,luallOns 

24 ip'ct dala GogO'11On !No IMn,mal ~ : l.vl S'Q",llca~1 Pnm~rlly 3 t.OtT""i.'Ule' '\. "=t'C'l 

iV'St().1 I lin sorre 
t. 

25 POSitIOn moduld I Eva,va'lOn In some cases lin some cases I Bene!tc.al Ii)< SOrT'S I.'an s bere',llllgh'y ceC'e""~~ en 

Gross MOlor Act cases I actlVll>es I type 01 aCI'v1'f 

Pr=ion VtSIOt1 M:n s rnnn:pu!.w". sl<tll3 t='o~ ~ 
2$ tnM:plJ~of Mal'IP'J!;::On Yes Yt'S YC$ 1,1051 olton es$t'l\lOll 

¢Jptcated tot 6.'J~'Il2:i: ~~ 
~s Cogn.too 

ProbI3'11 so/mg' 
Cot)n.lion , 

Z'T ~ma.:.~~ Otverganl Prod. Yes Yes Yes Essental Ikn esse:1'"..d trt <:t!cl.:n 
Convl'S',)m Plod-

_1)'''8 E ~ altlU!lo'l 

29 PUf$ull tracXlng Gogo",on 
I ManiDulal'On 

M,'llrrJI Yes IMlnlmal Coulj be Stg~,f.ca'lt Depe"1dent 0.' spec',: 1"<lO<~ 13.5" 

VI~:lIl 

~ 
~~'\ecure G'~ ~l~lOr k1. Yes YM Yes s...~!!f.00l1i> E'w~'Y tJ\<;XatO!l cl I"".:!t! S 
roo....~l~..l('.G M:!Jl':)Vb;!;on e£w.W:! cap3!;l!lt'~ In ~t$ act\~ 

Evct.a!..~ 

V's.cn I 1'1 some I Bere',Clallo' SO'I'e ~'a' S bene' I t>ogn~1 d-tot'<"'~ en 30 Re"'o.e modu'e E.a'uailon lin some ca~es 1'1 SO'Tle cases 
C35e I m"SIQn aCI Vlt es !)pe 01 aci>V'ti IG'oss ~lolo' Act 

18('"e'--:'all~r SOMe I 
Remo,e ,epl.l:e VISIOn In SO'Tle IcO\e, 'emo'11 Man s !;ere',t l'.h'Y c .. ~~t en 31 E't'a'ua t ,oJ'1 f'l sc~e cases In SO'l'e cases lcove-tng G,oss ,,"elo. Act cases 'ep'JCE"'ent taSk cha'~;:';>f's':S 

a:t ,,!feS 

Re.~C'ca.-t 
V~StO'1 

8~'ICM;! 10 Inlre~.J.~ 01 O!t":\' .... ~) .. .,. 32 E.aluat~ Yes Yes Y~ 
sw .... -e ccatl!'g~ G'O! s Moter Act ~er.n~ aulOMat:OO . 

VI!"!CO 
BertrlCsllO OGg'% 0: ~..:~ Is ~~ C'l 33 RSP'enis,,\ male-tets e.a>';;)ltOIl Yes In s:r;.e ClJ.e'S Yes es.si!OL.aI n.'\~$eOfl~ G:r..,s /,1o!::r ,!::I 

34 I Store record £-te'Tlent Ie :>gMlon No NQ Nu NOI S _" foea'i 
Man 5 PJrl':';l.3t~~ cf t~~'1 O"iII,n 
Iso'a'l'd cases 

t"slon 3S Su:7...<11 /ar,"?Ulat-on Not aw'.ca!k Yes Yes Essen!ll A.c: .... ~ nol ~rcpr~, ~ r...~.at.cn 

I 
nm, ... ptJl£l:ons 

.t.~~ltOll .-
3S !TransC'Ort load~d or IVIS 'n I~ sOlT'e Cepc~e!"t 01 

Chara::trnsl cs Cl t~;'S C;, \3i' In SO'l'C cases In SO"1e CJses ~ !~"a'a:le"SI CS oj 37 lu"OlCed 
ICogl'I,on cases 

tlS~ 
elterSl\et; lor t~s 2C''\'~'( 

I 
. G 055 P~olor Act 

! Snadcd actIvit,es <:re those V¥htlh dIrect huma'l partlCJpatlon is consIdered most ben,.1,ctal or ~:!.s~rltlal 

Figure 3-11). Actillities such as these ,-qJire primarily sensory/perceptual 
and psychomotor capabilities in order to accomplish thp assigned task. nle 
physical action for accomplfshing the task is the limiting factor since 
exerting high torques could be required. In the "Supported" man-~JChlne 
category a crCl'iI1lan in restraints might perform the task with a manual ratchet 
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wrench. However. if the force required to manipulate the mechanical interface 
requires more torque than the crewman can exert, then the action 
classification for that category is a liniting factor. In this case the 
activlty \'lould require augmentation in the form of a powered hand tool. 
Examples of tasks that might fall in the uSupervisedu category lnvolve 
commanding and monitoring mechanized mechanical interface actlvations such as 
the shuttle payload retention latches or launch restralnt devices (see Figure 
3-11). The on-orbit supervised category requires sensory/perceptual as \tell 
as lntellectual capabilities on the human's part even though the action itself 
might be accomplished by re~ote control. 

3 • .3 HUf1AN SUPPORT REQUIREMErHS 

Once the capabilities and limitations of each man-machlne mode have been 
establlshed and their impact on the performance of each activity identified, 
the next issue to be addressed is to determine the relative cost of each of 
the applicable modes of imple~entation. Assuming that two or more alternative 
implementation concepts will be feaslble for accompllshing a speciflc 
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activity. the determining factor in the mind of the system engineer becomes 
the question of cost. Accordingly, the resources and support equipment needed 
to accomplish each acttvity in each of the feasible man-machine modes was 
identified to a sufficient depth to allow comparative cost data to be 
developed. 

The initial compilati~n of the resources and the support equipment was 
derived in conjunction with the timeline analyses described in Section 3.2. 
In addition, several past and ongoing space proJects such as the Skylab 
missions and the Unmanned Space Platform missions were reviewed to ensure that 
the final listing of resource needs and support equipment represented all of 
the most pertinent items. 

The support eqv~pment necessary for the various man-machine modes included 
Facilities; EVA Support Items; Tool Kits and Mechanical Support Equipment; 
Command, Control, Communication, and Data Management Equipment; Orbital 
Mobility Systems; and Operating Systems Soft\'tare. Table 3-5 lists the 
specific support equip~ent items identified in each of these categories. For 
reference purpose' the paragraph nUlT'bers in Section 3.4 of thi s report tha t 
contain the costin~ '~fonmation pertinent for ea~h ite~ in Table 3-5 are noted 
parenthetically on tht: ..able. 

To provide a basis for estimating the relative costs of alternative 
man~machine modes, a specific operational example \'1as selected for each 
activity. The example chosen was one for which a deSign concept "las already 
avallable or one that in fact had been implemented in a previous program. Th~s 

same example was then used for each of the man-machine mod~~ ~hat was 
applicable to the performance of a specific activity. For comparative 
purposes, this provided a common base for identifying the support requirements 
and for assessing the relative level of support necessary for each nan-machine 
mode. Since the obJective was only to deterQine the relative cost of 
implementing each mode, the use of a corrnnon example was believed to be 

adequate to provide a meaningful basis for co~parison. While either simpler 
or more complex examples than those chosen would change the absolute magnitude 
of the support requirements and their associated costs, it was reasoned that 
the relative costs of the alternative man-machine categorles would remain 
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Table 3-5 

.J 
/ 

SUPPORT EQUIPI4EIH LIST FOR COSTWG VARIOUS MAU-MACHINE HODES 

A. 

A1. 
A2. 
A3. 
M. 
AS. 
AG. 

B. 

Facilities 

Space Station Facility 
Ground Control Center, Baseline System 
Payload Control Center, Baseline System 
Data Handling Facility, Baseline System 
TracKing and Data Relay Satellite System (TDRSS) 
Unmanned Platform Basic Resources 

EVA Support Items 

Bl. Extravehicular Hobility Unit (EHU) 
B2. 
83. ' 

c. 

Manned Haneuveri ng Uni t (~tMU) 

Remote l1anipulator System (RMS) 

Tool Kits and Mechanical Support Equipment 

Cl. Power Tool, Portable 
C2. Tool Kits. Hanual 
C3. Gas Recbarge Kit 
C4. Fluid Recharge Kit 
C5. Test Set. Alignment/Calibratlon. Portable 
CG. 
C7. 

Test Set. Electrical Checkout 
Surface C~ltlng/Refurbishment Apparatus 

C8. Support Equipment. Experiment Specific - Category A 
C9. Support Equipment. Experiment Specific - Category 8 
Cl0. 
Cll. 

C12. 
C13. 
C14. 

Support Equipment. Experiment Specific - Category C 
Support Equipment. Experiment Specific - Category 0 
Cherry Picker wlth Hork Platform (R!'1S) 
Restraints to Support ~'anned Activlties 
Life Sciences Experlments Tool Klts 
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(3.4.1 ) 
(3.4.2) 
(3.4.2) 

(3.4.2) 
(3.4.3) 
(3.4.7) 
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(3.4.5) 
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Table 3-5 
SlIPPORT EQUIPMENT LIST FOR COSTING VARIOUS MAIl-MACHINE MODES (Continued) 

D. 

Dl. 

02 • 
03. 
04. 
05. 

06. 

07. 

08. 

09. 
010. 

01l. 
012. 

013. 

014. 

015. 

016. 

017. 

018. 

019. 

020. 

02l. 
022. 

023. 

024. 

025. 

Command, Control, Communication, and Data 
Management Equipment 

Control/Display for Remote Gimbals 
Control/Display for Remote Cameras (TV and Photo) 
Automatic Adjustment for Control of Remote Equipment 
Voice Interco~~unication 
Control and Display Activation and Nonitoring 
Equipment, Keyboard 
Hardware for Accepting Remote Commands 
Display and Software for Record Keeping, Procedures, 
Schedules. and 1,1aintenance 
Computer Programmed for Command and Control of a 
Specific Function/Task by Artificial Intelligence 
Encode/Decode Data Equipwent 
Data Computation and Reduction Equipwent 
Input/Output Data Buffer Equipment 
Central Timing Unit 
USSC Interface l1anagenent Unit 
Remote Units 
cm·1S Central Un; t 
High-Rate Recorder 
Low-Rate Recorder 
USSC-II Computer 
Ku-Band Communication Equipment 
S-Band Communication Equipment 
Low-Gain Antennas 
RF Transfer Swftcn 
Support Instrumentation/Sensor Equipment 
Tel emetry Uni t 
Payload Command and Data Acquisition Unit 
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Table 3-5 
SUPPORT EQUIPMENT LIST FOR COSTING VARIOUS ~~-MACHINE MODES (Continued) 

E. 

El. 
E2. 

Orbital Mobility Systems 

Orbital Maneuvering Vehicle (O~tV) 

Orbital Transfer Vehicle (OTV) 
E3. Telepresence r~anipulator System (TMS) 

F. Operating Systems Software 

Fl. User Interface 
F2. Facility Readiness Test (Integration) 
F3. Dynamic Scenario Profile Generation 

Command Generation 
Telemetry Data Handling 
Input/Output 
Test Data Generation 
Data Base Generation/11aintenance 
Data Reduction 
Support Software 

(3.4.8) 

(3.4.9) 

F4. 
F5. 
Fo. 
F7. 
Fa. 
F9. 
FlO. 
Fll. Software tor Con~and and Control Hardware Controlled from a Remote 

Ground or Orbital-Based Work Station 
F12. Software for Ccw.puter Programmed for Cow~and and Control of a 

Specific Function/Task by Artificial Intelligence 

essentlally constant regardless of the level of complexity of the task 
required. Slnce only relatlve costs were to be determined, this line of 
reaSOnl ng pennitted different examples to be used l'I'ith different acti vitles. 

To a~d in the process, an evaluation sheet, shown in Flgure 3-12, Has 
developed. For each of the genenc actlvltles, a specific example ~/as 

select~d to analyze for each of the appllcable man-machlne categories. Tne 
support equi pilent ltems were tllen ldentl f1 cd that woul d be requ1 reJ in order 
to accofilpll sh the ass 1 gned task in eacll man-machl ne category. For exampl e. 
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ACTIVITY ~IlJtUlER: 1 

ACTIVATE/INITIATE 
SYSTEH OPERATIo/~ 

/ , , 
I 

t / '\ 1/ 
,I 

SUPPORT EQUIPHEllT REQUI REMENTS 

CATEGOr.IES OF rVlN-HACHINE IIlTERACTIOIIS 

I 
I E SUPERVISED L N 

S A E 0 
U , U 0 ~ 

E 
P G P P 

H P M E G E 
A 0 E R R 0 N 
N R N A 0 R 0 
U T T T U B E 
A E E E ~l I N 
L 0 0 0 0 T T 

HUMAN SUPPORT EQUIPMEtrr REQUIRED (SEE TABLE E-1) 

A1 A1 A1 A1 
C8 C8 C9 C10 

C13 C13 05 
D6 

I V A 

A1 A1 A1 
B1 B1 B1 
C8 C8 C9 
C13 C13 C13 

E V A 

EXNlPLE - Actwate Ca~,~rd/T. V. IMage Gathering EQUl pnent 

MANUAL - 35 r.lill Camera 
SUPPORTED - 351m Camera wlth Auto Advance 
AUGIIEUTED - 35r.Jm Camera Wl th Auto Timi ng Sequence 
TELEOPEP~TED - RMS TV Camera 
SUPERVISeD GROUIID - TV Ca'Tlera 
SUPERVISEn OIl-0PBIT - TV Canera 
WDEPENDEtli - Satell lte Ir.1age Equlpnent 

·ConSldered as one ltem of support equlpm~nt 
08 - Computer Hard\~are 
F12 - ASsoclated Software 

Figure 3,12. TYPical Support EqUipment Evaluation Sheet 
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referring to Figure 3-12, the specific example selected for "Activate/Initiate 
System Operation" is tne "activation of camera/TV lmage-gathering equill11ent." 
Accomplishing this task in the manual category through an EVA mode of 
operation involves four items of support equipnent. Referring to Table 3-5, 
the four items required were identified as fo11O\'/s: 

Al - Space Station Facility 
Bl - Extra vehi cul ar Hob11 i ty Uni t (mU) 

C6 - Support Equill11ent, Experiment Specific, $10,000 
(35mm Camera £quipnent) 

C13 - Restraints to Support rlanned Acti vities 

This support equipment identification process continued through the rest 
of the applicable man-machine categories. 

In the Supported mode, the system might include a motor-driven advance. 
In the Augmented mode, toe adjustment of the lens opening and timing sequence 
might be automated. In the Teleoperated mode, the camera \~ould be adjusted by 
re~ote command. In the Supervised mode, the initiation of the picture 
sequences would be corrmanded from a remote location but the activation of all 
operations would be preprogranr.led. In the Independent !'lode, the system l'lould 
be activated by a self-contained sensor system. 

Although the performance times for IVA and EVA operat1ons were judged to 
be similar as discussed 1n Section 3.2, the support equip1'ent items necessary 
for IVA and EVA operations were ~~ua11y different. Accordingly, both IVA and 
EVA support requirements were identified when applicable, as illustrated in 
Figure 3-12. 

Tne 37 activity support equip~ent evaluation sheets will be found in 
Appe,.dix E. Each sheet contains the table of required support equipfi1cnt items 
for each of the man-machine categories for both IVA and EVA modes of operation 

where appllcable. Also the specific examples that were chosen to represent 
the generic space activity are indicated on the sheets for each of the seven 
man-machine categories. 
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The development of comparative cost data for use in evaluating the 
economic advantages and disadvantages of the alternative modes of man-macnine 
i nteracti ons consi sted of bw steps. These steps were to (1) identify the 
significant factors influencing space activity costs, and (2) establish a 
usage cost methodology for all elements included in thesE identified cost 
factors. The activity support requirements described in Section 3.3 provided 
the initial definiton of the cost factors. Once a cost methodology ~as 
established, the reiative cost differences in accomplishing each of the 
generic classes of activities by each of the alternative man-machine modes 
could be determined. 

Activity support requirements were found to fall into two general groups. 
T~ese two groups can be identified as (1) time related and (2) 
frequency-of-use related requirements. The time related group is 
characterized by the requirement for a support element to be used over an 
estimated activity timeline and includes use of the space station facility, 
the ground control and data handling facilities, the tracking and data relay 
satellite system, and the EVA support items. The frequency-of-use related 
group is characterized by the requirement for a multiuse support item needed 
to perform an activity and includes tool kits and 
meChanical sl'pport equiJlnent; command, control, co:nmunication and data 
management equipment; unnanned platform basic resources; orbital mobllity 
systems; and operati ng sjstems soft\'iare. 

The approach used to develop usage cost methodology for the above listel 
support requirements is described in the following paragraplls, starting with 
the tlme related group followed by the frequency-of-use related group. 

3.4.1 Space Station Facllity 
No flrm guidelines or charge policies for developlng operational user 

costs ln tile Space Station era are currently avallal>le from government 
sources. Accordlngly. the general approach taken in thlS study was to 
establish a mission-related lncremental cost as the basis for charging space 
actl vltles requiring dlrect human lnvol ve,nent at the space station. The 
incremental cost \/as defined as the cost diffel'cnce betHeen full 
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&ai ssion-support capabil ity and "zero mi ssion" man-i n-space-only capabil i ty. 
The basic space station sizlng parar.1eters (cre\'I size. number of modules. 
electrical power. communlcations data rate, and thermal contr~l) were defined 
for both a full capabl1ity IOC station and a hypothetical "zero mission" 
station that supported no payloads and was required only to r.1alntain itself in 

orBit. The differences in ctesisn parameters between the "zero mission" and 
tne "full capability" configuratlon are illustrated in Flgures 3-13 and 3-14. 
Activity costlng factors are presented in Table 3-6. 

The 11DAC computerized space faci1 ity cost prediction model I'las then run 
with these two sets of values to establish the incremental cost assoclated 

with the support of potential users or specific missl0ns. The cost difference 
between tne zero capability and the full capability facility was adjusted to 
exclude design and development cost assuming that nonrecurring cost should not 
be included when developing a baseline for estimating user charges. A 
ten-year life was assumed for the hardware represented by the resulting 

HabitabIlity 
Module 
Crew SrZe· 8 

Reboost -----~ 
System 

66 kW Power Control 
Data Management 
300 Mbps Communtcatlon 
48 kW Thermal Control 

Figure 3·13. Space Station (Full Capability) 
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Habitability 
Modul& 
Crew SIZe - 2 

Reboost 
System -----4-

13·kW Power Control 
Data Manaoement 
25 Mbps Communication 
32·kW Thermal Control 

OP"C{": '~ 
•. ...._.". '-\ • 't 

OF PO" • '''': _, ,.1 , 

LogistiC" 
Mod~le 

Command 
and Control 
Module 

F':lure 3·14. Space. :tlon (Zero MIssIOn) 

Table 3-6 
ACTIVITY COSiH:G FACTORS 

, \ 

4 Pressurrzed MOdules 

Habltab,llty 
Module 

Cost elements tha~ are p~imarily a function of time use (cost/minute) 

o Space station facilitles and logistics operations 
o Ground control and data handling facilities 
a Tracking and data relay satellite sy~te~ 
o EVA support items 

Co~t elements that are pri~arily a function of number (N) of uses (cost/use) 

• Tool kits and mechanical support equipment 
o Co~~and. control, communications and data management equipment 
o Unmanned platform resources 
o Orbital mobility systems 
o Operatlng systems soft'dare 
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incremental space station facility cost. A straight line amortization results 
in an average cost per year which when divided by available operating 
man-hours per year yields a cost of $10,427 per operating hour for manned 
utilization of the space station pressurized volume and utility services. 
This calculation is illustrated in Table 3-7. 

Tabl e 3-7 . 
PRESSURIZED VOLur,1E AND UTILIT Y SERVICES COS TO ) 

zEim fULL 
CAPABILITY 

S i4\TION 
IHSS!ON INCREr~ENTAL 
STATION COST 

6 6 6 
($ x 10 ) ($x.10) ($ x 10 ) 

Simulator/Developnent Hardware 1380 794 586 

Fll ght Harc1\'Iare 2244 1366 878 
Total 3624 2160 1464 

Amortlzed Incremental Cost = $146411 = .$146.41-1/yr 
10 years 

"ost Pet' Oparating Hour = 314fi.4rV,tr = glO,427/hr 
14,040 hrs/yr(2) 

(1 i Productlon cost only; excludes design and develop:11ent cost. 
(2) 6 men x 9 Ilrs/day x 5 days/llk x 52 wks/yr = 14.040 hrs/yr. 

A similar incremental cost approach was used to estimate logistics 
operations (replacement s;lares, consumab1es, maintenance, and repairs) 
associated ~/ith the space !;tation facility. ThlS resulted in a cost of 
$12.201 p~r operating hour for space station logistics operations. The HDAC 

cost model run generated the values for thlS calculation and these values are 
summarized in Table 3-8. 

The incremental cost for lOglstics transportation was determined by 
allocating the Space Shuttle f11ght cost in proportion to the ratio of 
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Table .3-8 
LOGISTICS OPERATIONS COST 

FuLL ZERO 
CAPA8ILITY IHSSIOU 

STATION STATION 
6 6 

($ x 10 ) (S x 10 ) 

~eplacement Spares & Consumab1es 261.5/yr 129.7/yr 
Ifaintenance & Repairs 

Total 

Cost Per Uperatlng Hour = 

97.81.1!:. 58.3/t,r 
359.3/yr 188.0/yr 

$171.3:1/yr = $12.201/hr 
14.040 hrs/yr 

I NCR£~lE rJr AL 
COST 

6 
(S x 10 1 

131.8/yr 
39".5/yr 

171.3/yr 

logistics operavions incremental cost to full capability cost with a further 
cost-sharing adjustment. This res~lte~ in a cost of S9,402 per hour 
calculated as follows: 

Assuming 20% sharing wlth other payloads and 4 STS flights per year; 

Total Cost = Sl3611/flt x 80% x 4 flts/yr = $275.2H/yr 

Allocation factor (from logistics operations) = S17l.3M = 48% 
$359. 311 

Incremental Cost = $275.211/yr x 48% = $132H/yr 

Cost per Operating Hour = S132M/yr = $9,402/hr 
14.040 hrs/yr 

In addition to the three Major elements of space station facil1ty cost 
described above, estimates were added for use of airlock and safe haven 
resources to complete tne space station facility usage charge. Based on data 
contained in the IIOAC cost data bank, these two items were estimated at $164 
per hour and $328 per hour, respectlvely. The sum of all flve elements 
amounts to $32,522 per hour (or $542 per minute) for use of the space station 
facility. This value is summarlzed in the Table 3-9. 

3·33 

MCDONNELL nOlJoB' 



~ • e __ _ 

, 

--. 
: 

\ 

--

/ 

. , 

Taole 3-9 
SPACE STATION FACILITY 

COST PER OPERATING HOUR FOR ACTIVITIES REQUIRHli DIRECT HU~IAN 

INVOLVEMENf IN SPACE 
(1984 Doll ars ) 

Pressurlzed Volume & Utl1ity Servlces 

Loglstics Operatlons 
Loglstics Transportation 
Alrlock 
Safe Ha yen 

Total Space Station Facility 

3.4.2 Ground Control and Data-Handling Facilities 

$10,427 

12,201 
9,402 

164 
328 

~32,522 

-, 

Tnis category within the tlme-related group includes the ground control 
center, payload control center, and ~ata-hand1ing facility. The ti~e-re1ated 
charges for use of these facl1ities is based on a ten-year amortization of 
production cost plus annual operatl0ns cost allocated over the estinated 
a'1nua1 ani1abi1ity time. The production and operations cost data \~ere 
obtained from the MDAC Space Platform Ground System Study*. An examille of the 
usage charge calculation for the ground control center is as follows: 

Amortized Production Cost 
Annual Operations Cost 

Total Annual Cost 

S3.874M £ 10 yrs = $ 0.387M 
3.345l1 

$3.73211 
Annua 1 Ava i1 ab i1 i ty Ti me = 480 mi nutes per day (8 hours) x 5 days per \~eek 

x 52 weeks per year = 124,800 minutes 
Cost per j·linute = $3. 732:1/yr = $30/min 

124,800 min/yr 

* Ford Aerospace and Comunlcatlons Corporation, ~e Platform Gr-ound 
Sys tern Study t Oasell ne Data Package, prepared under r·:DAC Contrac t 
NAS8-33955, July 1982 (see Reference 70). 
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Costs per minute for the other two facility items were calculated in a 
similar manner. The results of these calculations are summarized in 
Table 3-10. 

Tabl e 3-10 
GROUND CONTROl. AND DATA-HANDLIliG FACILITIES 

US£~ S£I{VIC£ CHMGE PER [11 NUTE 
(1984 Dollars) 

1 • Ground Control Center, casel1 ne System 
2. Payload Control Center, Basellne System 
3. Data Han~11ng Facil1ty, Basel1ne System 

3.4.3 Tracldng and Data Relay Satellite System (TDRSS) 

$30/,ni n 

46/mi n 

11 /m1 n 

The time-related charge for use of the TORSS is $110 per minute. This was 
obtained from the UASA Hanagement Instruction, IITracking and Data Relay 
Satellite System (TDRSS), Use and Reimbursement Policy for Non-U.S. Government 
Users," I-larch 1983. 

3.4.4 EVA Support Items 
This category within the time-related group includes the Extravehicular 

110bility Unlt emu). the Hanned 11aneuvering Unit (Nl1U), and the Remote 
r1anipulator System (R11S). The time-related clldr"ges fol'" use of these items 1S 
based on a ten-year amort1zation of production cost plus annual operations 
cost allocated over the estimated annual availability time. An example of the 
usage charge calculation for the Ef.1U is as fol101'1s: 

Amortized Production Cost S2.0:1!. 10 yrs = S .2H 
Annual Operations Cost 2.01\ 

Total Annual Cost $2.2~1 

Annual Avallab11ity Time = 1)40 minutes per day (9 hours) x 5 days 
per week x 52 weeks per year = 140.400 minutes 

Cost Per {~inute = $2.2N/yr = S15.67/min 
140,400 min/yr 
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Costs per minute for the other two items ,,,ere calculated in a similar 
manner. The results of these calculations are summarized in Table 3-11. 

Tab1 e 3-11 
EVA SUPPORT IT£HS USER SERVICE CHARGt: PER rlINUTE 

(1984 lJoll ars ) 

Extra vehi cul a r 1101>11 i ty Un; t (EI1U) 

Hanned Haneuveri ng Unl t (HNU) 

Remote !-Iani pul ator System (Rj"'S) 

(1) Contacts \"11 tIl JSC Personnel (1983 - 19134). 

(2) Quote from Spar Ltd •• Canada, 1983. 

3.4.5 Tool Kits and Hechanical Support Equipment 

S15. 67/mi n. (l ) 

53.33/min. (1 ) 

121.00/min. (2) 

This first category within the frequency-of-use related group includes 

special tools, test sets, refurblshn.ent kits, restraints, etc •• which could be 

used to support a number of different activities and would probably be reused 

many times during their operational life. The cost per use for these items is 

based on an approach that employs a quantity-adjusted a~ortization of unit 
production cost combined with a dollar-value-adjusted operations cost. The 
following equatlon is use~ to estimate the usage charge for the equipment 

items as a funct{on of 'number of anticipated uses. 

Cost/Use = c + O.25CO. t3 

where C = initial production unlt cost of ltem 

where N = number of times an activl ty is performed usi ng the item 

TIle flrst term of tnis equatlon represents an amortlZatlon of the ln1tlal 
unlt cost (cost olvlded by nU~Der of uses). It wl1l be noted that the nu~ber 

of uses (N) 1S aJJust:!d by an exponent whose value is 0.848. This adJustment 
is appl1ed to account for the grellter rlsk of equip.lent fa1lure and potentldl 

replacement as the ltem lS continually used anJ refurtnshed over its entlre 
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useful life. The 0.848 exponent 1S related to a 90~ cost-reduction curve 
which is corilmonly used in cost/quantity relationships. In the present 
application, doubl1ng the number of t1mes an activity 1S perfonned results in 
an average cost which is 90% of the previous cost. As an example, a change in 
frequency from 10 to 20 (a factor of 2) would reduce the average unit cost as 

follows: 

(2°·848) f 2 = 0.90 or 90~ reduction 

ApplY1ng this approach to the computat1on of equ1pment cost amortizat1on 
results 1n a progresslvely greater value for the amortlzatlon of lnltlal cost 

c:)l11pdred to a stra1ght-line all10rtizat1on sChedule, as the number of uses 

increases. 

The second term of this equatlon represents a recurring operatlons cost 
per use for maintenance and refurblshment, calculated as a percentage of 
in1tial equipment cost. The scaling adjusbaent applied here (the exponent 
whose value is 0.8) results in a decreasing percentage of lnitial cost as the 
1nlt1al cost becomes larger. Tn1s rationale allows for an adequate 
refurblshment charge for a relatively 101-1 cost item and also prevents an 
exceSS1ve cnarge being appl1ed to a very high cost item. As an exa~ple, the 
percentage charge on a S10,000 1tem 1S approx1mately 4% \~hereas the percentage 
on a $10,000,000 item 1S only about 1'.t. ihese percentages are JudgFlent 
fact?rs based on related analys1s from prevlous stud1es. Thp base produc~lon 
urnt cost data c:nd data sources for all Hems ln tIllS category are SL.iilMar1zeJ 
in Taoll? 3-12. 

J. 4. 6 COfilf"and, Control, COfil!11Unl CiA ti on, and Da ta l'l~nagement EgUl p:1ent 
Tn1s frequency-of-use category 1ncludes control/dlsplay panels, ~omputers, 

keyboards, data storage equ1~ent, intercom devices, servo actuators, 
encoders, decodet's, and support lnstrumentation. All are assuf,lej to be 
rnu~t1use 1telns capable of support1ng a number of dlfferent aC1vitles. The 
same cost per use equation descrlbed under Tool K1tS and Hechanlcal Support 
Equipnent 1S used to est1mate the usage charge for these 1tems. The base 
productlon Unlt cost data and data sources for all items 1n tllis category ~re 
SUIili11arlzed in Table 3-13. 

3·37 
/ 

MCDONNELL DOIJGL~ 
~ '-' 



/ 

tJ'1 I 

- .. _--

\ 

"""~-- '. 

/ 

Table 3-12 

TOOL K ITS AND HECHAIU CAL SUPPOR r EQU IPHE NT 
PROOUCTIOI1 UNIT COSTS 

1. Po\~er Tool, Portable 
2. Tool Klts, Manual 
J. Gas Recharge Klt 
4. Fluid Recharge Kit 

(1984 Dollars) 

5. Test Set, A11gnment/Calibration, Portable 
b. Test Set, ElectrTcal Checkout 
7. Surface Coating/Refurblshment Apparatys 

8A. Support Equipment, Experlment Speclf1C 
8d. Support Equ1pment, Experiment Specific 
8C. Support Equipnent, Experiment Speclfic 
81l. Support Equi poent t Experiment Specifi C 
9. Cherry Picker wlth Ilork Platform (RNS) 

10. Restrai nts to Support 1,1anned Activl ti es 
11. Life SClences Experiments Tool Kits 

$ 52, OuO ( 2 ) 
16,000 (2) 
76,000 (1) 

152,000 (1) 
315,000 (1) 
210,000 (1) 
456,OuO (1) 
10,000 (3) 
50,000 (3) 

250,000 (3) 
1 ,000,000 ( 3 ) 

645,OOU (2) 
124,000 (2) 
34,000 (3) 

(1 ) tlcDonnell U·ougl as Astronauti ~s Company, Power System Desi gn Concept Study, 
Phase C/O Cost Estimate, DR-6 Final Report, Contract ~~8-33955, June 1981. 

(2) Essex Corporat1on, Analysis of Large Space Structures Assembly, I~SA 
Report rlo. 3751, December 1983. 

(3) 11cDonnell Douglas Astronautics Company, In House Studies and Engineenng 
Jud9:nent. 

3.4.7 Unmanned Platform Basic Resources 

TIll s .category provlJes a usage charge for the basic resources port1on of 

the unmanned platform (subsystem capab11ity not requireJ to support payloads) 

where unmanned support is requlred to perform a particular activ1ty. The f1UAC 

cost model predicts a total platform production cost of S304.6b mill ion or 

$036.466 mill10n per year asuming a ten-year amortlZation. Tne ratio of 

platform Subsystem pOlier requ1 rements to total power requirements is 

2.5 kw/14.0 kW or 0.17857. ApplY1ng th1S ratio to the $36.466 mill10n per 

year total results 1n an allocation of 36.512 IIlil1ion per year for platform 

basic resources. 

A current platform miss10n analys1s shows an average of 1260 actlv1ties 

per year invol v1ng platform usage. The average cost per use based on these 

values 1S $6.5l2H/126U = $b163/use. Applying tile quantity aJjustment exponent 
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Table 3-13 

COi1HAtJD. CONTROL. CO,1IWtJICATION, AND DATA tlANAGEMENT EQUIPilENr 
PRODUCTION UNIT COSTS 

-~.. ,1984 Dollars) 

1. Control/Display for Remote Gimbals 
2. Control/Display for Remote Cameras (TV and Photo) 
3. Automatic AdJustment or Control of Remote Equlpnent 
4. Voice Intercommunlcatlon 
5. Control and Dlsplay Activatlon and I~onit"'ring 

Equipnent, Keyboard 
6. Hardware for Acceptlng Remote Commands 
7. Display and Software for Record Keeping, Procedures. 

and Schedules Maintenance 
8. Computer Progranuned for Command and Control of a 

Specific Functlon/Task by Artlficial Intelllgence 
9. Encode/Decode Data Equlpment 

10. Data Computatlon and Reduction Equi pment 
11. Input/Output Data Buffer Equlpment 
12. Central Tlming Unlt 
13. NSSC Interface Management Unit 
14. Remote Units 
15. CDt1S Central Unit 
15. Hlgh-Rate Recorder 
17. Low-Rate Recorder 
ld. NSSC-II Computer 
19. KU-Band Communication Equipment 
20. S-8and Co~nunlcatlon Equipnent 
21. Low-Gain Antennas 
22. RF Transfer SWltCIl 
23. Support Instrumentat'on/Sensor EqUl pnent 
24. Tel emetry Urrtt 
25. Payload COhlmand and Data Acqulsitlon Unit 

.$155,000 
108,00U 
608,000 
381,000 

175,000 
75,000 

200.000 

1,521,000 
68,000 

380.000 
141,000 

1,305,000 
770,000 
324,000 
567,000 

2,4113.000 
495,000 

1,521,000 
7,029,000 
1,570,000 

405,00U 
81,000 

3.108,000 
68,000 

432,000 

(1) 
(l ) 
(1) 
(2 ) 

(1) 
(J) 

(1) 

(1) 
(3 ) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 
(1) 

( 1 ) 14cOonnell Doug1 as Astronauti cs Company, Power System Desl gn Concept Study, 
Phase C/D Cost Estlmate, DR-6 Final Report. Contract r~S8-3395b. June 1981. 

(2) 11cDonnell Douglas Astronautlcs Company, tlanned Orbltal Systems Concepts Study. 
Flna1 Report - Progral:J111atlcs for Extended Duratlon foIisSlons. Contract 
IJASU-31014, Report No. MDC G5919, September 1975. 

(3) 11cDonnell lJouglas Astronautlcs COI;]pany, Payload ASS1St Ilodu1e (PM) Program, 
Actual Cost Experience for Slmi1ar Items. 
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of 0.048 descrioed under tool kits results in a calculated first use (C) of 

$2.2 ml11ion as follows: 

c ..: $5168 

c = $2.2 mill ion 

The general equation for cost per use as a functlon of number of uses (N) 

is tnen 

Operations cost was estimated to be 25% of the production cost 

re1ationsnip or 

$0.550H 
,p.848 

3.4.8 OrIn ta 1 HObll1 ty Systems 

ThlS frequency-of-use categorJ includes the Orbital !·laneuverlng Vehlc1e 

(OMV), the Orbital Transfer Vehicle (OTV), and the Teleprpsence Manipulator 

Systelil (T14S). These are all complex, expensive systems that \'Ii11 be designed 

for ml!lti pl e appllcati ons and 1 arge numbers of uses. The cost per use for 

tllese 1 te:ns is based on an approach slmll ar to that described under Unmanned 

Platform 8asic Resources. A ten-year amortlzation of productlon unlt cost was 

again used along with an assllj~ption of 250 uses per year. An example uSlng 

the ms shows tile following calculatlons: 

Amortized Annual Productlon Cost = $41.0 milllon .. 10 years:: $4.hl/yr 

Average Cost Per Use = 34.111 f 250 :: S16,400/use 

Calculated Flrst Use (C) :: S16,400 x 250°. 848 :: Sl.771~ 
Operatlons Fi rst lise :: 0.25 x $1. 77111 :: $0.44311 

These calculated values aQount to U.0432 and 0.0108 tiQes production 

cost as follows: 

Product~on First Use 

Operatlons Flrst Use 

/ 
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= $1.77111 '" $41.00011 = 0.04032 

:: SO.443M f S41. OOOi1 :: 0.0108 
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Since the same ten-year amortization and 250 uses per year is used for all 

three items in this category, the following general equatlon can be used to 

estimate the usage charge for tnese ite~s as a function of number of 

anticipated uses: 

Cost/Use = 
O.0432C 
tp·848 + 

O.Oluae ;po 8~8 

where C = lnitia1 production unit cost of item and N = number of times an 

actlvity is perfonned using the it~. 

The base productlon unl t cost data and data sources for the three i telilS in 

thlS category are summarized in Table 3-14. 

Tab1 e 3-14 

ORBITAL ItOBILITY SYSTEr1S 

PRODUCTION UNIT COSTS 

(1984 0011 ars ) 

1. 0,'blta1 l>1aneuverlng Vehlc1e (Oi4V) 

2. Orblta1 Transfer Vehicle (OTV) 

3. Te1epresence 14anipu1ator System (Tl1S) 

(1) Contacts with JSC Personnel (1903 - 1984). 

(2) Consensus of Prevlous NJ\SA and Contractor Studles. 

$ 65,000,000 (1) 

131 ,000,000 (2) 

41,000,000 (3) 

(3) tssex Corporatlon, Ana1ysls of Large Space Structures Assemo1y, NASA 

Report tJo. 3751, December 1983. 

3.4.9 Uperatlng Systems Software 

Software ltens are also cnarged as a function of number of uses, but a 

S11ght1y dlfferent approach Has employed and may be described as follows: 

Cost/Use = C 
N + 0.S5C 

NO. i34d 

\~t/ere l. = inltia1 softHare developnent cost and N = nunbcr of tme5 an 

act1vlty 15 performed using the softl'/are element. 
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Tne first term of tllis equation represents a straight-line amortization 
of tile lnitial software developnent cost. Although the general cost analysis 

!:Iroundru1 e was to amortize prc,1uction cost only, software does not have an 

identiflao1e productHln cost and its deve10p.lent cost is considered compara:'le 

to hdrdwar~ production cost as a base for amortizatlon. The sofb/are items 

included in support requ1rements are all general, mu1timission systems and do 

not include payload-specific software. No cost/quantity adJustment was 

app11ed for risk of fa11ure since the hardware adjustment did not appear 

applicable in tile case of repetltive use of software. The second term of the 

equatlon represents ~ recurr1ng operat1ons cost-per-use for software 

malntenance. Data from the 1982 Space Platform Ground System Study indicate 

tMt software ma1ntenanre at a nominal 100 uses over 10 years amounts to aoout 

110% of original software deve10pnent cost. Since software maintenance is 

related to time as well as number of uses, it was assumed that the m;nlmUill 

soft''Iare mal ntenance charge for one use over ten years woul d be 50% of the 

nomlna1 lO-year cost, or 55~ of initial software developnent cost. ThlS 

startlng value was scaled in relatlon to quantity using the same 0.848 

exponent appl1cation descrlbed under equ1pment cost amortlzatlon. This 

results in an lncreasingly greater total software maintenance operations cost 

as tne number of uses lncreases. The base software development cost data and 

data sources for this category are sumrnarlzed 1n Table 3-15. 

3.4.10 Cost Ilethodology Application 

Appl1cation of the above descrlDed cost methodology, shown scnematlcally 

in Flgure 3-15, consists of (1) obtainlng inputs of support requlrement 

elements from tne act1vity definition sheets and mean t1mes to perforlO from 

tile actlvity tlmel1ne sheets, (2) running the appropriate equations with the 

appl icable unit cost and cost per hour data for a representatl ve number of 

t1mes perfonned, and (3j p10ttlng tile composite cost/quantity calculations in 

the fonn of curnul ati ve cost versus frequency of use curves. The results of 

the cost methodology a~plicatlon consist nf 37 sets of cost curves which 

surnmar1Ze, for eaCh of the 31 genenc space actlvltles, the relative economlCS 

associated \'lith the performance of each actl V1ty b.t the seven alternatl ve 

hlodes of man-machl ne i nteracti on. All 37 sets of cost versus frequency of use 

curves are presented 1n Appendix F. Two variat10ns in the data rlotted are 

presented for each acti V1 ty. Tile fl rst vari ati on excl udes operati ons costs 
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1. User Interface 

Table 3-15 
OPERATING S YSTEl1S SOFTwARE 
SOFTHARE DEVELOpr~EtJT COSTS 

(1984 Dollars) 

2. Facility Readiness Test (Integration) 
3. Dynamic ScenarlO Profile Generation 

4. Command Generation 
5. Telemetry Data Handling 
b. Input/Output 
7. Test Data Generation 
8. Data Base Generation/i,1aintenance 
9. Data Reduction 

1U. Support Software 
11. Software for Conunand and Control Hard~'1are Contro11 ed 

from a Remote Ground or Orbital-Based liork Station 

$ 1,654,000 (2 ) 

1,654,000 (2 ) 

6,565,000 (2 ) 

3,283,000 (2 ) 

4,911 ,000 (2 ) 

1,654,000 (2 ) 

465,000 (2) 

956,000 (2 ) 

465,000 (2) 

956,000 (2 ) 

8,478,000 (1) 

12. Software for Computer Program~ed for Command and 
Control of a Speclfic Functlon/Task by Artificial 
Intel11gence 16,956,000 (1) 

(1 ) 11cDonncll Oougl as Astronautl cs Company, PO\'ler System Desl gn Concept 
Study, Phase C/O Cost Estlmate, OR-6 Final Report, Contract 

NAS8-33955, June 19d1. 
Ford Aerospace and Communications Corporatl0n, Space Platform Ground 
System Study, Basel ine Data Package, prepared under 11DAC Contract 

NAS8-33955, July 1982. 

associated with equifIaent refurbisllment, platform operations and maintenance, 
orblta1 mobi11ty systems operatlOns, and software malntenance. The second 
varlatl0n lncludes these operatlons costs along wlth all applicable 
time-related usage charges and frequency-of-use related production cost 
a~ortlzatl0n charges. The lncluslon of operations costs probably represents a 
more equltable approach to establ1shing user charges. The data excluding 
operatlons cost are presented to recognize the current general1zed level of 
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Figure 3-15. THURIS Cost Methodolo!lY 
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operations cost analysls and provlde an easy means to s~~-~~ -cost 
data result1ng from future detal1e~ operations analysis. 

Fi gu:-e 3-16 1 11 ustrates the a pp1 i catl Oil of the cost metnodo logy for one of 
the 37 generic space activitles, "Imp1ehlent Procedures/Schedules. II The 
activity definltioJl and time11ne sheets (see Appendlces 0 and E) for this 
activity identify the specifi~ support requirement itews and mean tiQes to 
perform this activity 1n each of the seven modes of man-f'lachine interaction. 
The costs per use for time-related items (see Figure 3-15) are calculated as 
t .. e product of the mean time to perform (from the actlvity timellne sheet) and 
the app11cao1e cost per hour or minute (from Sections 3.4.1, 3.4.2, 3.4.3, and 
3.4.4). The costs per use for frequency-of-use related ltems (see Flgure 
3-15) are calculated using the applicable production unit costs or software 
costs entered lnto the appropriate equatlons docu~ented 1n Sections 3.4.5, 
3.4.6, .3.4.7, 3.4.8, and .3.4.9. Cumulative costs are calculated for all 
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Figure 3·16. ActiVity 20-lmplementatlOn Procedures/Schedl.:es Cumulative Cost vr. 
Rejletltlons Includrng Operations 

specified ltems at representative quantities of 1, 2, 5, 10, 20, 50, 100, 500, 
1000, 5000 and 10,000 to provide sufficient data points to plot the composite 

cost versus frequency-of-use curves for each of the seven man-machine 
interaction modes. 

3.4.11 Observations 
Although the implementation costs for each individual activlty in each 

man-machine interaction ~ode are somewhat different, a rather significant 
observation is that the cost level for direct human involvement (manual, 

supported, augmented, or teleoperated modes) generally remains considerably 

lower than the cost for remote human involvement (supervised and independent 
modes) over a large number of times that the activity might be performed (1 to 
1000 times). As may be noted on Figure 3-1~. the cost differentials were 
generally observed to span two orders of magnitude when only a few activations 
are required (1 to 10) but narrowed to one order of magnitude when the number 
of activations approached 1000. For the most activities, the manual mode can 
be performed in a relatively short time period (less than 1 hour) with only 
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minimal inexpensive support equipment. The $32,522 per hour space station 
facility charge, although a significant factor if lengthy times are involved, 
remains at a relatively low cost le~el for short time periods until the 
frequency of use approaches 1000. Performing activities in the independent or 
teleoperated modes requires, 1n most cases, a relatively expensive initial 
investment in support equipment and software which does not compare favorably 
with the manual mode unless amortized o'ler a large number of uses. 

Variations from the patterns observed in Figure 3-16 occurred for a few 
activities where unusual equipment or timeline 
a particular mode of man-machine interaction. 
high cost for Activities 36 and 37 - Transport 

requirements were specified for 
For example, the relatively 
Loaded/Unloaded (see Figure 

3-17) in the teleoperated mode occurs becausQ t~e average time to acomplish 
this class of activity with a teleoperator was estimated to be 60 minutes as 
predicated upon the timeline data of Subtask 2.2. Another example is Activity 
32 - Replace/Clean Surface Ccatings (see Figure 3-18) where the manual and 
supported modes also become relatively costly when the number of times the 

loo°Tr==================~lr--------~r---------l 
------- Manual 
• - -- Supported 
-. ...-.-...- Al!~mented 

• _ _ • ~ Teleonerated 
_ • • _Ill _ •• _ Supervised - Ground 

100 • Supervlseo - On Orbit 
_ ... _'" _Independent 

." ... 

......................... 

.. ' 
" 

.' " 
1+'" 

.' .' .. ' 
.. ' .. ' 

.. ' .' .. .,' 

Number of Times ActiVity IS Performed 

.. ' 
.' 

.' 

.. ' .' ~., 

Figure 3·17. ActiVity 36 - Transport Loaded Cumulative Cost vs. Repatltlons Including Operations 
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Figure 3-18 ActiVity Number 32 - Replace/Clean Surface Coatmgs Cumulative Cost vs. Repetitions 
Includmg Operations 

activity is to be performed lncreases to one hundred or more. Again. this,was 

due primarily to the average time (150 minutes) required for this activity in 
tne manual mode as derived from the timeline tata developed in Subtask 2.2. 

A principal criterion used to identify the critical technology issues to 
be consider~d 1n Task 3 is t~e need to improve productivity and to thereby 
reduce the cost of future space operations. One of the highest cost 
activities identified to date, espec1ally in the supervised and independent 
modes of operation, is Activity t~umber 27 - Problem Solving/Decision l~al~in9' 
and Data Analysis (Figure 3-19). The cost in th1S case is due in large part 
to the requirements for relatively expensive sensors, instrumentation, and 
software needed when operat1ng in the supervised and independent modes. This 
suggests the nee~ for a better undbrstanding and coupling of artificial and 
human intelligence and the development of techniques for the effective 
utilization of Uexpert" systems. On the other hand, in Activity 3l (see 
Figure 3-17), the high cost of the manned and supported modes suggests the 
need for improvements in the process tachrology for cleanlng optical surfaces 
and/or coatings i~ space. 
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FIgure 3-19. ActiVIty Number 27 - Prool~m Solving/DecISIon Making/Data Analysl. Cumulatlye Con 
vs.. RepetitIOns IncludtnQ Operations 

3.5 EVALUATION 

In Section 3.1. a gener1c set of mission activit1es was described ~ased 
upon a review of past and proposed space missions. This gener1c set of 
activlties wa: des1gned to provide the bUllding blocks from which f~ture space 
mlssior.s could be synthesized. In Section 3.2. comparatlve timeline data for 
each of the basic actlv1tles were developed. In Section 3.3, the support 
equipment requircl~ents assoc1ated with each activ1ty implementatlon option 
were ide1t1fied and this 1nfornation 1n turn was used in Section 3.4 to 
prepare comparatlV€ cost data associated with the prov1s1on, support, and 
utilization of various degrees ~f direct human involvement in future space 
misslons. 

Tne techn1ques descrlbed and the informJt1on developed in the precedlng 
sectlons provlde the frarnewor~ for developlng a methodology cO~PJratlve 
costlng. It 1:> intended that tins netnodology prov1de a basi,; for eVdluatlryg 
the lnpact of vlrying dC3rces of hUr.1J.n invol vemcnt on the effcctl'vt!ness and· 
econor.1Y of satlsfying the requirements of future space proJects. In 
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accomplishing this goal. it was believed that the comparative data would be 
most useful if they were expressed in a tabular or graphic format. Factors 
that need to be considered ir. formulating a strategy for evaluating the impact 
of varying degrees of hUman involvement in satisfying the actlVity 
requirements are (1) the performance limits associated \iith dir~ct or indirect 
human involvement. (2) the number of times a specific activity is to be 
performed, (3) and the number of aifferent activities that are required to be 
performed in the operati ona 1 sequence bet-ng exami ned. The 1 imi ti n9 factors on 
direct human involvement are primarily associated with sensing (whetncr 
stimuli are within or outside of the range of human sensory capability); 
infonnatlon processing (whether or not the complexlty of the lnformatlQn to be 
proce~~ed requires supplemental aids); aod action (whether or not the action 
required is within the range of human motor responsesi. These limiting 
factors are well documented. as di5cussed in Section 2 and can be addressed in 
cnecklist fashion in the initial conceptual design phase of the progralJ 
development process. 

In many cases, alternative modes of man-machine interaction could satisfy 
performance requirements. The issue then becomes one of cost; i.e., ~hich of 
the appl~cable man-machine modes of interaction is the most cost effective. 

In addressing this ;ssue. the most important factors are the nUr.1hel' of 
tlmes a speciflC actlvity is to be performed, and the number of diffcr~nt 
actlVities that are required to be perfonned in the operational sequence. 
Conventional wisdom would susgest that even if a glven activity \~ere capable 
of belllg performed in a manull mode. the cost of a man/hour or man/r.linute in 
space is so high that lf that activity l1ere required to be repeated a n!.l~er 
of times, a cross-over point would qUlckly be reached wherr it would be ~~st 
cost effective to implement a mot'e automated approach to the activity 
perforl;'lance. In sir.111 ar fashian, it can be reasoned that the human operator is 

basically a single channel mechanism and cannot be expected to pel'fom 
multlple activltles sil~ultaneously although the actlvltles might bt: p';lofJMed 

sen ally 1 f the perfonnance t me pen:11 ts. 

In order to provde d comparative base for eXalnlnlng the cost 
cffecti"PllP'Ss of tne varlOUS man-r.1aClllne Inodes and to establlsh the cress-over 
pOlnts where one moje becones more cost effectlve than anotner, It WdS 

3·49 



) 

y 
\ , ", , 

\ 
\ 

'-

\ ) 
\ 

\ 

\ 
\ 

\ 

\ 

, \-

· , I , .- ---

believed desirable to equate the reldtive cost of perforning each activity by 

each of tne mo.:1es of implementation to a COIi1fl1on dollar base, and to thereby 

establlsh a famlly of equal cost cUl"ves based upon the fo11ol-l1ng relatlonshlp: 

£0 '';1 t ion ----
One 

(A) 

Cost for Performing 

an Activity "N" 

Tlmes in tne 

Oi rect Hanua 1 Hade 

= 

(8 ) 

Cost for Performing 

an !\ct1 Vl ty "N" 

Tir..cs 1 n an 

I nd 1 rect i10d e 

If A > B. then an indirect mode should be considered. If A < B. then 

a direct mode should be consider"XI. If A = B. the decision must be based on 

other criteria. One additlonal factor must be considered 1n establish1ng 

these cost relationsllips. hOI~ever. and that is the total number of actlvlties 

requ1red 1n the operational sequence. In dealing with the cost of direct 

manual 1 nvol vement in the performance of any set of acti vai es. the mo<;~ 

slgOlflcant factor is the crew tlme requlred anJ the cost per unit of crell 

tilne. 

The more actlvltles that are raqu1red. the more tlme 1S requlreJ. and th~ 

hlgner the cost. ThlS is true of the Inanual. supported. aug;;1ented and 

teleoperated moJes of operatlon. In the case of the operatlonal modes IItH~r~ 

the hltma'llnVolvement 1S more lndlrect (l.e., the superv1sed-g,·ound. tile 

s upervl sed -on-orb 1 t. and tile 1 ndependent modes). the prl nc 1 p.ll contr1 Dutor to 

tne cost of performing a set of act1vltles 1S more directly dependent upon th~ 

cost of the resources and the support1 ng equl pnent 1tems r~qul red to perfcl'l'1 

each actlv1ty In orblt rather than upon the time requ1red to accomplisn tile 

actlvlty. This means thdt In the moJes requinng Indlrect hurnart lnvolveilent. 

the reductlon of cost due to the potentlal of shdrlng COr.lf.l0n equlpTIent 1te"1S 

and co~non resourLes can be a s1gnlf1cant factor 1n the cost equatIon. 

A COI01:10n find1ng 1n prev10us stuoles has been that tllere IS a great cteJl 

of COlTIlDOna 11 ty aillong the equi p'Ient Hems reqlJi red to support a broad spectru.1 

of ~lSS1ons. or space act1v1t1es. That lS, the fIrst few act1Ylt1es exan1neJ 

w111 wtroduce a number of nell equi p;lent requi relOents. TIll s equi poent. 

tlOrleVer, 15 also founlJ to be requ1red by other act1v1tles. As nCI'" actlvlties 
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are analyzed, fe\~er and feller additional or unique equi jl1Ient Hems are 

uncovereJ. The list of unique items of support equipnent grows in a 

negatively accelerated fashion until af~er some point a plateau is reached and 

tne analysls of additional activlties leads to no major changes in the total 

lllventory of support equ1J:xnent required. As illustrated in Figure 3-20. tnis 

tYPlcat trend also has been observed in the present study. As may be seen 

from Flgure 3-20, the initlal activlty consldered requlred 12 items of support 

equlpnent. Eacll additlona1 activlty contnbuted only a few more items of 

support until after tI,e 21st activlty. no addltional equlpnent Hems were 

addeJ to the lnventory and the cOIIL'lIonallty plot reached a plateau. A standard 

f.1DAC-11cAuto curve-fittlng program was used to develop tile best fltting 

equation to describe thlS commonallty curve. In this process. a number of 

equatlons lIere examined including tnose for a log-log linear curve. a true 

power curve, a i inear--curve flt, an asymptotlc po,ver function, a 

seni1og-1inear relation, a llnear-semilog relation. an exponent ·al curve, and 

21 . 10 , . 
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a quadratic curve. Of these. tne best fitting curve describ1ng the study data 
\'/as found to be a quadratic equation in the followin-g fonn: 

Y = 9.8327 + O.76922X - O.012938X2 

where Y 1 s the numbel' of equ1 pnent items requ1 red. and Xis the number of 
activlt1es required in the m1ssion. The coefficient of detenn1nation for th1S 
relat10nsnip (R2) was 0.96293. 

Recognlzing the fact that most operat10nal sequences.to accompllsh miss10n 
obJect1ves require a number of d1fferent activit1es and recognizing that many 
individual support iterns would be cormoon to more than one activity. it was 
bel1eved to be des1rable to lnclude the commonality factor and to compare the 
rel ati ve cost of perform1 n9 a 9i yen act1 vity in each of the man-mach1 ne modes 
(manual. supported. augmented. teleoperated. supervised. or independent) as a 

function of the number of dl fferent acti vities required as \>Iell as by the 
number of t1mes each activity 1S to be repeated during the operat10nal 

sequence. 

If it 1S assumed that there 1S a d1rect relat10nship bet~een the 
1mplelilentat10n cost fol' accompllshing a specific act1v1ty and the nurilt>er of' 
supporting equipnent items requlreJ (l.e., the Activ1ty Implementation Cost lS 

a funct10n of the number of equlpment items rpquired), then a cost correct1on 
factor to allow for the comi11onal1ty of equ1pl'ent needs among lIlultlple 
actlvlt1es can be established as follows: 

Nu,·mER OF EQU I PI'IE NT 
f ITEMS REQUIRED FOR 

= "N" ACTIVITIES 

l 
II t I WI ~ 

f ITEMS R~QUIHED FOR 
A SINGLE ACTIVITY 

MCDOfllNI!LL DOUGLc;:t 
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COIMONALlTY 
COST CORI{ECTlOtl 
FACTOR FOR 
~ULTIPLE ACTIVITIES 

[
COi'lllONALITY COST ] 
CORRECTIVE FACTOR 

= 

= 

,I 

9.8327 + O.76922AN - O.012938AN 2 

9.8327 + O.76922A1 - O.012938Al 2 

9.8327 + O. 7922AN - O.01293i3rl/J 2 
1 U. 59 

Table 3-16 11sts typlcal values of the Commonality Cost Cotrectlon Factor 

as a functlon of the number of activities requlred in the operatlona1 sequence. 

A re1at10nshi p can then be establ ished to compare tile cost effectl veJless 

of alternative man-machine modes by taklng the data on the estimated costs of 

perform1ng a speclfic activ1ty for any number of repetitions in each 

man-macnine raode, as described in Sect10n 3.4, and applying the fo110\'I1ng 

assumptl0ns: (l) The cost for performing multiple activlties in the 

man-machi ne moJes requi ri ng d 1 rect manual i nvo1 veillent (manual. supported, 

augmented, teleoperated) 1S directly proportlOnal to tile number of dlfferent 

activ1t1es requlred, and (2) tne cost for perfonning mu1t1ple activities in 

the man-Mdchine modes reqUlr1ng lnd1rect manned involvement (Supervlsed anJ 
Indepe~dent) can be descr1bed by a quadratic relationshlp as illustrated in 

F1gure 3-20. 

The express~on presented as, Equation One above can be modlfied to include 

the commonallty factor and the locus of points deSCi'lblng the boundary where 

1t is equally cost effectlve to implement the activity requlrements by eittler 

of tliO man-maC(l1ne modes can be determined as follows: 

COST FOR PEI{FOIMItJG tJU,'.h3ER OF 

AN ACTIVITY "N" TIllES X DIFFERENT 

I N THE DIRECT ,·lANUAL ACTIVITIES 

:-10UE 

COST FOR PERFOPJ·1I NG 1 
= AN ACTIVITY fltI" X 

Tl,1ES HJ AN INDIRECT 

1l0UE J 

COJl.'iJ l-JALI TY 

CORRECTION 

FACTOR FOR 

MULTIPLE ACTIVITIES 

2 9.8327 + O.76922AN - O.01293dA N The l.omrnonallty Correction Factor 1 s eql'al to: -------~-----'""'"'-
1 O.5~ 
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Table 3-16 

COf~rtONALITY COST CORRECTION FACTORS 

Number of Actl vities 

1 

2 

J 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1 6 

17 

18 

~ 

20 

21 

22 

23 

24 

25 
30 

35 

/ 

McnONN"LL DOlJa~~ 

Comnonality Cost Correction 

Factor 

1.00 

1.07 

1.14 

1. 21 

1.27 

1.33 

1.39 

1.45 

1.50 

1.55 

1.60 

1.65 

1.69 

1. 74 

1. 78 

1.81 

1.85 

1.88 

1. 91 

1.94 

1.96 

1.98 

2.00 

2.02 

2.04 

2.01 

2.u7 

3-54 

/ 

Rel ati ve 

Cost/Acti vit,l 

1.00 

.54 

.38 

.30 

.25 

.22 

.20 

.18 

.17 

.16 

.15 

.14 

.13 

.12 

.12 

.11 
.11 
.10 

.10 

.10 

.09 

.09 

.09 

.08 

.08 

.07 

.06 

~ 
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I. where AN represents the number of different activities. It should be 

cautioned that the baslc quadratic equation was deri ved from the data obtained 
in the current study and sllould be used only within that frame of reference. 
If the number of actlvitles should slgnificantly change. the optlmal 
descriptive equatlon should be reestablished b~sed upon a new set of limiting 
values. 

Using this approach, equal cost curves fer the manual mode compared to 
each 01' the other man-machine lffiplementation modes were plotted for each 
actlvlty as illustrated in Flgure 3-21. When considered individually, each of 
tnese curves represents the locus of equal cost points for various 
comblnations of the_total number of unique actlvities required and the number 
of repetltions anticlpated for a specific activlty. Above or to the right of 
speciflc curves. it is more cost eff~ctive to use the man-machine mo:1e noted 
and below or to the left of a specific curve, it is more cost effective to 
conslder the use of a manual mode. 
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FIgure 3·21. Equal Cost Curv~s for Manual ActIvatIon as Comparl'd to Each of the Other Man·Machlne 
Impl~mentatlon r •• odes. ActIVIty 29 -- Release/Secure Mechanical Interface. 
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~hen all of the individual curves are plotted together as a family, the 
areas bounded by the individual curves define the regions where each specific 
man-machine mode is the most cost effective. Figure 3-22 portrays these 
regions of applicability. As illustrated in Figure 3-22, if onl) the one 
activity were required to be performed, it would need to be repeated thousands 
of times before it would be cost effective to provide some degree of automdted 
support (i.e., the supervised mode of cperation). On the other hand, if a 
total of 16 activities I"ere required to be performed to accomplish the mission 
objective, and if the number of times Activity 29 was to be performed were 
only two hundred, designing the mission objective to be accomplished in the 
supervised mode becomes an attractive option. 

40 

35 

Independent 
30 

g 
~ 25 
0 

oct 
C 
~ 
.: 2U 
0 
'0 

~ 15 
E 
" 2 

10 

5 
Supported 

0 
10 10,000 100 1,000 

NumLer of RepetItIons of Each ActivIty 

Figure 3·22 Activity Number 29 Release/Secure Mech.anlCJI Interface 

From these graphic presentations of the equal cost curves, it can be 
concluded that if each man-machine mode is equally capable of meeti~g the 
performance requirements of a group of activitles. lt generally is more cost 
effecti ve to impl ement the acti Vl ty in one of the di rect manual modes 
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(including supported or augmented) than in an indirect mode (supervised or 
independent). It is only when a series of 30 or more different activities is 
required to be repeated hundreds of times each, that the indirect ~odes of 
operation become the more cost effective modes. 
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SectlOn 4 
TECH1.DLOGY REQUIR8~Errrs ANlJ TASKS - TASK 3 

The objectives of t!1is task were to (1) identify the requirel;Jents for 
tecnnology developments needed to enable and enhance the human role in space 
activ1ties, and (2) uncover gaps that may exist 1n current technology 
development plans that will need to be f1lled to reallze the full operatlonal 
potential of ~dvanced manned space system~. 

(naol ing tecnnology development can be described as those specific 
developnents necessary to provide the basic capaoility required to meet 
specific mission goals and objectives. Enhanc1ng technology describes tl10se 
researCh anj development proJects that are supporti ve of tile major enabling 
technologies. The enhancing technologlcal developments generally lead to 
standardization and improvements in productivlty includlng perfonnance, cost 
effectiveness and risk reduction. 

A review of NASA plann1ng documents has led to the concluslon that the 
current plans which lLl\SA is HI the process of developing and executing in 
support of the enabling technolog1es for future space programs do incluJe the 
major issues of concern. tJo "shm~ stoopers" I/ere found that would precl ude 
the Jevelopment of a manned space platform capable of su~;:;ortln~ the neeJs and 
objectives of a Droad spectru~ of future mlssions. On the other hlnd, a 
number of areas, which mlght be tenned "enhanclng technology," were ldentifled 
where gaps in support exist and l¥here supported researC/l and developcent 
act1vities could greatly enhance the accompllsr,l.lent of a H1Je rao3e of 
missions in a more cost effective manner. 

4.1 TECH NOLOG Y RElJU !R£,'lDITS 

In tne i1entiflcation of requirements for the technolog1cal developlents 
tnat enabl e and enhance the huma'1 rol e HI future space operatlOns, four 
sources of information were utllued. Tnese I~ere as follo.~s: 

A. I-lASA Spdce Systems Technology I·lodel - 5th ls:..ue, January 1984. 
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8. ResearCh and Technology Objectives and Plans (RTOPS), 1983-84, as 

a va 11 ab 1 e from NASA Centers. 

C. NASA Space Stat10n Task Force 111ssion Requirement \.lorking Group (tIRWG) 

110del of tne potential ~pace Station missions for the years 1991-2000-. 

D. The 37 generic activit1es defined in Task 2 of the THURIS study. 

Source A provlded an organizatlOnal frame\~ork for technology planning, 

source 8 provided the 1 i st of the research and technology object; ve~ uhf ch are 

currently sCheduled to be addressed, source C provlded a time reference for 

detennHling when speci fic operational capabil ities \'iere needed, and source D 

def1ned tile specific man-maChine activities that uill be requlred in 

accomplishing the operational objectives defined in source C. By considering 

each of these references in relationship to the others, it becomes posslble to 

surface those activ1t1es most in demand and to assess the timeliness of tv\SA's 

planned and ongoing R&D projects as well as to identify areas of R&D coverage 

t~at may currently appear to be inadequate to support the Srace Station 

related missions of the 1991-2000 time period. either 1n scope or in technlcal 

focus. 

The f1 rst source of 1 nformati on exami ned was the NASA Space Systems 

Technology 140del.(1) This seven-volume document represents a vltal element 

of t:le nat10n l s space tecnnology program planning and implementatlon process 

and 1S a companion to the NASA Long-Range Plannlng Document. It is updated 

annually. Although the Space Systems TeChnology model covers all technlcal 

areas, tile areas of SpeCl flC 1 nterest to the THURIS study were those deal ing 

with the human factors elements of manned systems. 

Tilree types of human factors operations are described in the Space Syster.1s 

Technology Hodel. The first class of operations includes "hands-::on" tasks 

perfonned at creu statl0ns located l'lith1n the habltab1e portions of the Iilanned 

space fac11ities. Technology needs of these work stat10ns lnclude displays, 

(1) NASA Space Systems Technol091 l·lode1, F1 fth Issue dated January 1984. 

NASA-Office of Aeronautics and Space Technology, Code RS, i!ashington, 

D.C. 2U540. Issued under tne authcrlty of Stan R. Sadin, Deputy 

01rector, Program Development, OART/RS. 
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software advances, and man/machine task allocations. The cre\'I \lork station 

needs include designs employing emerg1ng display and control technology. "user 

fri endly" interfaces, artl fi C1 al lntell i gence, computer-aided probl em solvi n9, 

and dsslstance to tne crew 1n decls10n-making actlvlties. 

The second type of human factors operations is "hands-on" tasks performed 

oy the crel'l dUrlng extravehicular activities. Here the enabling technology 

requ1rements address "next generation" EVA work systems, improved tools, 

transfer aids and procedures. Typlcal products of these technologies include. 

low-fdt1gue/long-durat1on space suits, gloves and accessories, force-aided 

tools and flxtures, restraints and mObil1ty aids, and situation and work 

status displays. 

Tne third type of human factors operations is joint man-machlne 

teleoperations, and includes technology focusing on the operator's \'lOrk 

station, interface equipnent and end-effector/actuator units. Elements of the 

work station include controls, operational displays, status monitoring 

displays, and control-display dynam1cs. Interface equipment issues include 

transmlssion of signal s betHeen operator and effector. The remote 

end-effector/actuator lssues address senslng, manipulating, and mobl11ty at 

the rerilote slte. An overall issue is develop1ng the technology which enables 

tne extensi on of tile human motor and sensory presence 1 ncl ud 1 ng botn tne 

Psycl1Orilotor and the human intellect. A feu examples of teleoperations 

applications include Shuttle-attached manipulators, free-flY1ng satelllte 

servlcing units, and automat1c assembly machlnes. 

The second sourLe of inforrilat1on exam1ned by the TIlURIS study team was 

those current Research and Technology ObJectives and Plans (RTOPs) available 

as of Aprll 1934 frolll the NASA centers that consldered human factors enaol ing 

technologles. These IHOPs were arranged lnto the three types of operatlonal 

conslderatlons ldentl f1 ed from the Sp"lce Systems Tecimology Hodel (Source 

lb. l); i.e., (1) ~station deslgn, (2) extravehicular activity, and (3) 

teleoperatl0ns. The proJected status of the outputs of these researCll areas 

was quant1f1ed in tenns of the level of technology readlness expected fro~ 

eacl1 proJect bet~leen the present tlme and the IOC of a Space Statlon 
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(approximately 1991). The readiness levels are defined on a seven-point scale 

as shown in Table 4-1. A list of the projects, their assigned NASA lead 

center, and their proJected status is shOlin in Tables 4-2, 4-3, and 4-4, and 

further sUfllllari zed on Fl gure 4-1. 

The thl rd source of i nformati on exami ned by the THURIS study team \~as tile 

currently evolvIng space mission descriptive data being generated for the 

Table 4-1 Technology Reat!mess Levels 

LEVEL 1 BASIC PRINCIPL£S OBS£RVED AND REPORTED 

LEVEL 2 CONCEPTUAL OESIGN FORMULATED 

LEVC:L 3 CONCEPTUAL DESIGN TESTED M~L YTICAV_ r OR EXPERIf'lEUTALL Y 

LEVE .. 4 CRITICAL FUIICTION/CHAAACTERISTIC OEHDNSTAATION 

LEVEL 5 Ca-IPJl£kT /BREADBOARD TESTEO I N RELEVA~ EIIV 1 RO/l>lt:llT 

LEVEL 6 PROTOTYPE/E'IGI'iEERING HODEL TESTEO IN RE .. EVAUT DIV o"''4EUT 

LEVEL 7 EII:i: I£ERW; /'IOOEL TE" TEO SPACl 

LEVE~ a FULL OP::Rftll(,,,~L CAPABILITY (FOC) 
(BASELII£1l IUTU r;;ODUCTION uo;..>IGN - LEVlL a) 

Table 4-2. Crew Station DeSign Rel3~ed Projects a Id Status 

TECHNOLOGICAL REA~INESS LEVEL 
(1-7) & DATE PROJECTIOII 

- ADVANCED lflFO'?r.ATlorI PROCESSING SYSTEM (6) ,.,Nt 85 
FLIGHT OL'roNST~'TIOa (AlPS) - JSC (7) DEC 88 

- MICROPROCESSOR CGliiROLLED MW!r\NIS~1S - JSC (3) AUG 87 
- AUTO/,!.ATED SUBSYSTU! /4,MIAGEI',UH - JSC (5) ocr 8) 
- CREW STA TI 011 Hl!/i.!Jl Fr,CTOllS - JS( (3) FEB 86 
- SPACE STATION DATA ~)W~AGEtrHT SYSTEM - JSC/GSFC (3) JUN 85 
- MAN'S ROLE IN SprCE I1AIIiTENANCE - r.SFC (7) OCT 86 
- "'All/MCH I liE IIITERFI',(E DES I GH 1 ECIlNOLOGY - MSFC (6) APR 85 
- HABITABIl ITY TECH~.:;lOGY - I',sFC (3) SEP 86 

(APPLICATIO~ Of THURIS RESULTS) 
- INTFRACTIVE HU~tJl FftCTORS (TD~X 2~70) - MSFC (7) JULY 1991 
- EARTH OBSERVATlml I:ISTRUMErn TECHNOLOGY <TD:1X 2260) - LRC (7) JULY 1992 
- HABITATION TECH1lGLOGY <TDMX 2520) (7) JULY 1991 
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Table 4-3. Extnfttlle"l~t ActivIty RII.t&d ProftCU and Statui 

TtCllltOLOGICAL READINESS LEYEL 
(1-7) , DAT£ PROJECTro~ 

- lAS[R AJIITHR£nTR Ie PlAPPING SYSTEM - JSC (4) OCC 86 

- GlaTt [KD [FF[CTOR - JSC (5) FEB £6 

- EVA rlMfRIC woruc STATlO!i ArID k[STRAIHTS - .IS( (6) OCC 86 

- ERJ HEADS UP DISPlAY - JSC (5) .lUll 85 

- lIiFJ!f SlR[I;GTH MD muoll roOf'. - .IS( (5) FlAY a7 

- STRUCTURAl. ASSE1t5tY D£lllI'.STRATJo., UI'U{It{HT - RSFC (7) JIll 85 

- f'lJDL'lM COltSTRL'CTiOIt/PWtIPUtATOll S£RYICIIIG - K'SFC «(j) ",.\11 87 

- OOBITA!. ECUIPl'lHT (RMSfER TECHHIO!.[S - KSfC (1) Jro'l 86 

- t£PlOmJH/ASS[F.Bt'(ICO!HRIr.:!:~ iITzV. i~l - IRe (7) JULY 1992 

- lARCE spr'(E AlH[hM TWilaOGY CHm 7210) - JPl (]) JUly 1992 

Teble 44. Tllooptfetlom Rellted Pro,tCU ,nd Statui 

- tID PlATFORM./REMDTE SERVICInG - ftSFC 

- SPt.CE PlATHlRn ElPfIlDM!l.ES P.£SUPIU - !'!SfC 

- SATEllITE I~D SYSTEMS SERVICI~G - nsFC 

- TElE~ES(fl{( IDilX STATI~ - ~fC 

TEOiHOLOGICAL READINESS LEVEL 
(1-7) & DATE pnOJECrrON 

(5) DEC 85 

m M'R 88 

(6) JA.'1 87 

(6) .rut 87 

- AIiV1JKED Cf:fjlTA!. S£RVICII.'G T[CtlUOGY EXPERIP.flnS - flSFC m AUG 86 

- TElEPRESH{[ TECI!:tClOGY (TMX 21;6:1) - J?l (7) J:Jl 19;} 

- SATflll IE SfF.VIClhli TECfll::l.l"GY (TOO 2550> - PtSfC m JUl 1991 

- AN SfRVICI1:G TW::;QOGY CW-a 257Q) m JUt 1991 

Spdce Station ,1isS1(\n.Requira.1ents Working Group (MRWli) Hission l~oJe1. The 

11!{IIG is the part of the Space Station Task Force assigned the responsibility 

for defining a model mission, schedule, and set of requirements for tne 

l~9l-2UOO tlme frame. Within the model at the pres~nt time are seven 

technology develolJl1ent missions directly associated ~/ith IUlnan factors 

enabling technologles. Tflese Missions are also included on Tables 4-2, 4-3, 

and 4-4, and are identified by the TOl'lX designator in parentneses following 

the project tltle. 

The 37 generlc actlvities defined in TdSK 2 of the THURIS study were 

correlated wittl space station crew task a55ign,n~nt5 invol ving 16 mlSS10n 
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parameters. These parameters included (1) the location or-the -werk (IVA. 

EVA); (2) tne involvement of the crew with the mission equipncnt (e.g., 

initial setup and Checkout. daily routine operations, p2rfodic operations less 

frequent than daily mission equfpnent maintenance. repair operations. an,i 

response to cllange and unexpected events); and (3) the pl aces where the work 

is perfonlled relative to eight space station functional elements. These space 

station functional elements include pressurized modules. attaChed payloads in 

unpressurized areas, command. control. and c~nmunicatfons (e3 ) functions, 

deployment/construction/dssembly functions, proximity o~ions, and payloaJ 

staglng for earth return. The descrtptions of the functional elements defined 

by the HR..Ili are summarized in Table 4-5. 

The results of correlating the generic activities to the space station 

r.lission parameters are displayed in Figure 4-2. An entry in the boJy of the 

matrlx indicates that for a particular crew activity and mission parameter 

intersection. a mission-related neN 1-S established"; -tnspection of the nur.tDer 

of mission parameters associated with each of the activities shows that \mile 

all activities are required in various locations to support future missl0ns. 

11 out of the 37 activities are in most demand. Tnesc eleven activities 

(indicated by a count of 15 or 16 in the total colUr.1n of the matrix) include: 

adJuc;t/align elements; CO;rfh'Jnicate infomation; confinn/verify 

procedures/schedul es/operati ons; gatller /repl ace tool s/equi Jl11ent; impl er.len t 

procedures/schedules; inspect/ooserve; pOSition module; problem 

solVing/decision making; release/secure mechanical interface; transport 

loaded; ('nd transport unloaded. 

4.2 TECHt-lOLOGY GAPS 

Technology gaps can arise frof;) one factor or a conbination of three 

f~ctors: (1) need for increased perfonnance capabillty, (2) schedule 

incompatibillties, and (3) costs associated with (l) and (2). 

A gap in technology can exist either when the capability to perform a 

certain action is totally lacking or \'ihen the capability to perfonn a given 

aetlon is questionable and associated with a risk factor which lS 

unacceptable. 

4-7 

MCDONIVI!LL DOUO~ 

.. -----_._-._- . -



Tabl e 4-5 
HANtlEO STATION ELE.~EUT FUNCTIOtlS 

1. Pressurized Laboratory 
A pressurized crew station module will provide po\ier, low gravity. and 
long duration cre~ support for conducting laboratory work and operational 
support. Payload elements m~ be integrated directly into the module. 

2. Attached Payloads 
ProvlS1on \~11l be made to accolliilodate payload elements exterior to the 
pressuri~ed module. Llmlted resources plus periodic crew tending anJ 
servicing ",ill be provided. Resources could inclu:1e command, control, an:! 
data nandling. 

3. Command, Control, and Communicatl0ns Support 
,Provls1ons Wl11 De made wlthln tile space station system to re'llotely 
c~ar~. control, monitor, throughput. and preprocess data for free-flyers 
and platfonlls. 

4. Deployment, ASSeMbly, Construction 
The space station system wl11 provide support capability for constructlon. 
assemoly, and deployment. This support implies all required service 
devices such as manipulators and 1-1r1Us. 

5. Proxiulity Operations 
Payloads cap"ble of maneuvering tllctilsel yes within a reasonable distance of 
tne station will be maintained. serviced and checked out. Reasonable 
distance is defined as that llmited by capabil1ty of EIIU or a small 
proximity operatlons vehlcle (PUV). 

6. Remote Haintenance, Servicing, Checkout, and Retrleval 
Payloads, remote from the space statlon. can be r.1aintd.lned/serviced and 
chec~ed out via a remotE'y operated service vehicle. Servicing could be 
provlded on tne payload at its locations or the payload could be 
retrieved. serllfced, and returne-d. The space statlon 1 ike~'1ise provides 
for cOlXlanding. controll1ng. malntaining. and servicing tile serVlce 
vehicle. . 

7. Payload In~egration and Launch 
Payloads/sdtcllltes requirlng transfer to other orblts can be brought to 
the space station by the Shuttle Orbiter, inte9rat~d with a transfer 
stage. and launChed. The transfer stages could be co~~anded and 
controlled from the space station. These stages could be either 
expendable or reusable. Reusable transfer stages can be based at the 
~pace station. serviced. maintained, and refueled. Expendable stages 
could be stored and servlced. 

d. Payload Sta[ing for Earth Return 
Payloads, experlwental samples, or captured samples requiring return to 
earth can be delOated. prepared and stored unt11 placed in tIle Orbiter for 
return to earth. Tms function also includes tile preparation of payload 
equq:ment for return at the conclusl0n of its mlSS1on. 
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Space Statl0'1 MISSion Par,met.rs 
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1 Ac".a"ilnl'ID'e Syllem O~r'100n X X X X X X X X X X X X 12 

2 Ad,ult,AIogn EI.m~nfS X X X X X X X X X X X X X X X X 16 
J Alicea,!' I AS"fjn, D'ltrlbute X X X X X X X X X X X X X 13 
'I Apply R~ove BlomNlal Sen,or X )( X X X & 
5 Commun'CJltp It'lft)fmaf.on X X X X X X X X X X X X X X X X 16 
6 Compen .. 'Dry TrackIng X X X X X X X X 8 
7 CompUto Data X X X X X X X 7 

a Con',rmlV.,,'y Proe:eduresl X X X X X X X X X X X X X X X X 16 
SCMdules'OP<'r a"on, 

9 Connec,/D.seonnect Electr.cal X X X X X X X X X X X X X 13 
In,edolCe 

10 Connectl Dlsconn~ct Flu,d Interface X X X X X X X X X X X X 12 
11 Correlate Dala X X X X X X X 7 

12 Duct.vatelTerm,na,,, System X X X X X X X X X X X 11 
Oper",on 

-13 DecOde/Code Oala X X X X X 5 
14 Oe""" Procedures:Schedules' X X X X X X X 7 

Oper.I.on, 

15 OepIOy,R.tract App@ndag!! X X X X X X X X X X X X X 13 
16 Dftect Chan<;e In Sta,e or X X X X X X X X X X X X 12 

ConditIon 

17 D,splav Data X X X X X X X X X X X 11 
IB G.th .. /Replace1oolstEQu.pment X X X X X X X X X X X X X X X 15 
19 Handlt/fnspeoctiExamtne LIve X X X X X 5 

OrganIsms 

20 Implement Procedur~/Sched.Jles X X X X X X X X X X ,( X X X X X 16 
21 Information ProcesSing X X X X X X X X X X X II 

22 Inspect/Ob",r •• X X X X X X X X X X X X X X X 15 
23 Measur. IScale) PhysIC;al X X X X X X X X X 9 

Oiment,ons 

24 Piol Data X X X X X X 6 
25 Position r'o'1ooule X X X X X X X X X X X X X X X X 16 

26 Prpc lion Manopulal.on of Oblects X X X X X X X X X X X X 12 
27 Problem Solvlnq/De-eI'lon Makln!i! X X X X X X X X X X X X X X X 15 

Oa la Ana I YSI S 

28 Purswt Tracking X X X X X X X X 8 
29 Release/Secure Mechanocal X X X X X X X X X X X X X X X X 16 

Interface 

30 Remo.e Module X X X X X X X X X X X X X 13 
31 Remo",,/Replace Co •• "ng X _X X X X X X X X X X X X 13 
32 Reploce/Clean Sur'ace Coat.ng X X X X X X X X B 
33 Replenosh M3tf".', X X X X X X X X X X l< 11 
34 StorelRecord Element X X X X X X X X X X X X X IJ 

35 Surgical Mar'IIDutatlons X X X X X 6 
36 TLlnsporl Loaded X X X X X X X X X X X X X X X X 16 
37 Transport Unlc.oded X X X X X X X X X X X X X X X 15 

FI91ue 4-2. Correlation of GenerIc ActIvitIes &nd Space Station MI!SICn Pan:mcters 
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A gap in tecnnology can oe identified if the technology reaJiness level 
does not meet schedule constraints for implementation. 

A gap in technology can also arise when the costs assoclated with 
estal>1ishing tile capability to perform an action at a specific time in the 
future puts the specific action outside of the limits of economical 
viability. Often these cost factors can be the predominant drivers in 
determining the feasibility of a gfven tecnnological approach. For example, 
the technology exists to producc_ flawless gem-quality diamonds of very large 
size. The cost of this production, however, is such that the synthetically 
produced end product would be priced above the present market for natural 
diamonds with equivalent characteristics. 

One of the more important indicators of the level of technology risk is 
the time required to progress from one level of technical readiness to tne 
next until ultimately fully operational capability (FOC) is achieved. 
Typically the period of time to progress from level 2 to FOe ranges fro~ eight 
to twelve years, depending on the c~~plexity of the element being developed. 
The readiness levels leading to FOe are noted on Figure 4-1 for each of the 
enabling technologies currently included in NASA-Research and Technology 
Objectives and Plans and for ~hich a full-scale develop~ent is the ultinate 
objective. As a general observation, those projects associated uith EVA and 
teleoperations reach FOe fruition in a time dO'l1ain consistent ~/ith the IDe of 
the space station. Hence, activities depending upon the successful completion 
of these projects can be accomplished with a reasonable and acceptable level 
of technical risk. For the IVA work station related projects,~owever, the 
risk assessment acceptability is less clear. 

To illustrate the complexity to be anticipated in the design of IVA work 
stations, consider the Advanced Solar Observatory. The Advanced Solar 
Observatory CASO) mission is one of the more complex of the missions described 
in the MR~IG data set. The payload equipment includes the solar soft x-ray 
telescope, the pinhole occulter. and the solar optical telescope. ASSigned to 
be accorr;;Jodated by the 2a-1/2-degree co-orbiting platform, the payload will be 
periodically maintained and refurbished by a station-based remote servicer. 
As an option, the payload could also be accommodated as a free flyer or as a 
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space station attached p~load. Other options being evaluated include final 
assembly and checkout at the station prior to placement in operational orbit. 

The two station crewmembers assigned to the mission will need to be 
: specially trained and will operate 8 hours each day. The crew will view three 
i-video displ~s at an IVA work station for real time operation of the mission. 

I 
L 

! 
I: 
C 

r 
V- --

In order to enable and enhance the scientific objectives of the mission, the 
design of the crew work station which supports this mission needs to be 
efficient from an operator's pOint of view, user friendly from a man-machine 
intellectual interchange point of view, and "expertK from an information 
sharing and data recall and exchange point of view. 

The Advanced Solar Observator,y illustrates a key point. As the 
sophistication of future payloads increases, there will be an accompanying 
shift in crew support skflls/requirewents. A transition occurs from the more 
physical tasks to the more intellectually oriented \'1ork activities wfth the 
progression of time. This pattern appears to be analogous to the industrial 
development ~namic wherein the blue collar worker changes to a white collar 
worker as the transition from production of goods to provision of services 
takes place. 

An HRHG mi ssi on even more comp1 ex than the ASO is the Sol f.r Terrestri al 
Observatory (STO). As defined by the HRWG, this mission is planned for a 
first flight in the 1991-1992 time fraw.e with a mission duration of 730 d~s. 
The STO mission calls for operations of 90 d~ys per year or about one week 
,each month. The general objectives of the mission are to study space plasma 
atmospheric interactions utilizing observations of natural and induced 
atmospheric emission~~ to exploit the natural plasma laboratory of sYJce. 
The specific obJectives are to investigate the influence of an electron beam, 
an arc jet, and a neutral gas plu~e on the high-altitude atmosphere, including 
the production of artificial aurora. In addition, radio waves are transmitted 
from the pqyload in the HF and VLF bands and received in the HF band. 
AtmospheriC effects in the visible and UV are to be observed with a video 
camera. Solar monitoring instruments are also planned to be included, as well 
as an x-ray telescope. 

4·11 
". 

MCDONN6!1.L DOlJaL~ 

• 



In order to appreciate the complexity of the STO mission, it is 
appropriate to describe the ele~nts of the payload. The objecti~es are met 
by an electron beam of energy 1 to 20 ~ev with 1 to 25 kilowatts of power, a 
helium or argon magneto-plasma-Qynamfc arc-jet wfth 2 to 10 kilo9ra~s per 
pulse, 250 ev particle energies, a charge current probe from the OSS-T 
satellite, and possibly a neutral gas plume. This collection of science 
instr-uments is called SEPAC, (Space Experimt:/ot with Particle Accelerators). 
The electron beam accelerator (EBA) will be designed for ultimate po~tlevel' 
of some hundred kilowatts, allowing for substantial growth in objectives. The 
power radiating radio frequency facility is called WISP (Waves in Space 
Plasma) and consists of a VLF transmitter operating in the 1 to 30 kilohertz 
band, an HF transmftter. and a receiver operating from 0.1 to 30 megahertz. 
Tne dipole antenna subsystem radiates VLF and HF and receives the HF signals. 
Antenna elements extend 150 meters in each of two opposite directfons with 
tip-to-tip distance of 300 meters. The cornmon operating research equipment 
assembly controls antenna retraction and extension. 

The complete payload package includes the SEPAC, WISP, and AEPI (video 
camera) f nstruments together with a Sol ar r~oni tor package and the x-ray 
telescope. Subsatellites and instrum~nt probes are also required. The 
payload is visualized as being contained on one or more pallets which include 
the science instruments. an antenna support structure, and a berthing adapter 
assembly for attachment to the Spac~ Station. Integration hardware for 
providing power, thermal control, Signal transfer, and electrfcal distribution 
is assemDl~d on the pallet(s). The integration hardware includes an active 
themal loop. 

The baseline scenario calls for one week per month of intensive operation 
of SEPAC and WISP \Iith the assumption that one (SEPAC or WISP) is in a passive 
mode while the other is active. Coordinated (interleaved) .pulses of SEPAC and 
WISP would be desirable. A growth option includes operation of SEPAC and IHSP 
at the same time if resources permit. The video camara is included to observe 
the effects of SEPAC and WISP, primarily. It is required for all SEPAC 
operations and some HISP operations. The camera is normally pointed along the 
magneti c f1 el d towai'd any auroral spot formed by e:ni ssi on from the SEPAC 
and/or HISP units. The camera is to controlled by the Space Station crell. 
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An operator's console within the pressurized elements of the Space Statlaa 
is visuali~ed as being used to monitor health and safety of the mission 
equipment. to provide quick-look data reduction. and to issue commands. 
Support equipment for SEPAC and IUSP is to be mounted at the crel., work station 
in addition to the control electronics for these instruments and for the 
SUSIM. the x-ray telescope. and the AEPI. Displays are to provide output data 
including the video results from AEPI. The operator's console will also be 
used to control instrumented sub-satellites. Crucial to the success of the 
mission will be ~le efficiency of the crew/mission equipment functional and 
operational interfaces as embodied in the selection and implement~tion of the 
design features of the work station. 

As the emphasis changes 1n the workplace. as illustrated by the ASO and 
the STO missions, the design of the ere,., work stations must also change to 
reflect the change from the physical to the intellectual. To more effectively 
utilize human intelligence. a better match is required with machine 
intelligence and with NexpertN systems. Activities important in IVA for these 
advanced missions are Adjust/Align, Communicate Information, Confirm/Verify, 
Implement Procedures. Inspect/Observe and Problem Solving/Decision Making/Data 
Analysis. 

The successful impl ementati on of the MR~!G Advanced Sol ar Observatory and 
Solar Terrestrial O~servatory missions will be highly dependent upon the 
development of work stations that (1) communicate f1uentl~~ith humans 
(speaking, writing. drawing, etc.); (2) assist in interactive problem solving 
and inference functions (deductive reasoning); and (3) provide knowledge base 
functions (information storage, retrieval. and "expert" systems for support). 
In ordel' to develop these worl~ stations of the future, ho~{ever. a better 
understanding is required of human intellectual capabilities and how they 
function in different operations (such as convergent production. divergent 
product"ion, memory, cognition. or evaluation) and \-/ith different contents 
(such as pictorial or figural. symbolic. semantic, and behavioral elements) in 

J 
order to obtain specific products (implications, transformations, etc.). Even 
when people don't sp;ak the same language they can com~unicate to some degree 
using gestures, facial expressions, etc •• because they share common biological 
structure, needs, and common patterns of thought and behavior and knowledge of 
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the world. A n~ed exists for a more Nnatural A language for man/machine 
communication using interfaces that are congenial and transparent for the 
average person. The use of voice interactive controls and displays offers 
considerable promise for enhancing man/machine communications. 

With regard to the issue of technology readiness and risk assessment, the 
schedule of project accomplishments shown in Figure 4-1 suggests that the EVA 
enabling technologies appear to be adequately planned 1n order to support the 
space station scheduled IOC in 1991. This view is further supported by the 
fact that the EVA equi pment, for the most part, is of the Ncarry-onll as 
opposed to the IIbuilt-inli character. Carry-on equipment items are more easily 
ac~o~nodated than are mission and payload equipment items which must be 
incorporated in the basic_~tation design. For this reason carry-on items can 
be integrated into the station build-up sequence later in the life cycle than 
can mission and payload equipment items. 

In contrast with the EVA technologies, the IVA technologies are an 
integral part of the basic design of the space station. At the outset, this 
would suggest that the IVA capabilities and work stations would need to be 
frozen in design several years before the start of the build-up and launch 

I ' 
-1, sequence for the station modules and elements. On the other hand, these worl~ 

stations must be designed to b~ capable of meeting the needs of a continually 
changing set of mission requirements, some of which (for example, the ASO and 
the STO missions) will place an extremely complex set of operational demands 
on the control/display configurations of the work station. This scheduling 
consideration strongly suggests that a technological gap exists in the work 
station related projects and planning. It is further suggested that these IVA 
related technology developments need to be focused on designs which are 
adaptive and transparent to emerging design improvements. allowing for both 
hardware and software updates to be made to the basic work station even after 
the work station is operational. 

Tre human being represents a remarkably flexible and adaptable system. 
The human can learn to operate and function effectively in many nonoptimal 
work environments. It has been said that system designers often utilize the 
human component in a man-machine system as a glue to hold the rest of the 
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system together. The real issue to consfJer fn the development of work 
stations is to increase the productivity of the human fn order to enhance his 
value to the mission. In order to increase human pr~ductivity we must 
continue to develop our understanding of the cognitive processes involved in 
work station design and we must contin~e the developm~~f aids and 
techniques that can be used to enhance human productivity. Some of the 
specific issues related to work station design tr.~t fall in the domain of 
"enhancing" technology and can be considered as technology gaps at the present 
time are as follows: 

A. Nature of Human Intelligence. Continuing effort should be directed 
toward developing a better understanding of the nature of human intelligence 
in order to deyelop work stations permitting more effective use of human 
intellectual capabilities. 

By taking advantage of ongoing work in the behavioral sciences 
oriented toward developing paradigms of human intellectual processes and 
operations, the relationships of these processes to different contexts and to 
different products can be used to establish specific goals for technological 
developments to enhance the huwan role in space. Three areas of research and 
development should be emphasized: 

1. Development of systems that comw.unicate fluently with humans 
through speaking, writing, drawing, etc. Interfaces must be congenial and 
transparent for the average person. 

2. Development of problem solving and inference functions utilizing 
automated classification techniques, multispectral image exploitation, and 
artificial int~lligence applications for sensor data fusion. To date 
artificial intelligence has been of limited value in formulating optinal 
combinations of sensory data because specific combinations are based upon the 
needs and experiences of specific users. 

3. Development of knollledge base functions or so called "expert" 
systems util izing the efficient storage and selective retrieval of 
inform~tion. Much of the current work in the behavioral sciences is oriented 
toward examining the differences between experts and novices in activities 
such as pl~ing chess, solving problems in physics, or in computer 
programming. The general finding is that most differences seem to be 
qualitative rather than quantitative, i.e., differences in approach rather 
than in the amount of processing or searching done. While processing roles 
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can be speeded up for novlces, by replicating expert strategies, results to 
date suggest that we are a long way from being able to painlessly and 
instantly make a novice an expert in any given field. 

B. t~easurement of Human Productivity. Continuing effort is required to 
develop valid measures of human performance an~ rroductivity. ~he as~~nt 

and/or evaluation of human-machine systems is impossible without techniq~es to 
accurately measure human performance in the operational environment. Such 
measurement techniques are necessary to provide objective data that can be 
used to improve operational procedures and system design concepts. A problem 
especially common to human factors evaluations is that the measurement 
techniques proposed often modify, bias, or otherwise change the behavior being 
observed. The most pel tinent w~ of avoiding this form of "instrumentation 
error" is to develop and validat~ performance measurement techniques that do 
not interfere with the behavior being observed. Techniques such as remote 
movement-sensing devices, voice stress analyzers, and other indirect or 
secondary behavioral measurements offer promise of providing noninterfering 
performance measurement capability. Before such techniques can be 
meaningful:y employed in the operational environfTlent, hm't'ever, they need to be 
validated to ensure that they indeed measure what they are purported to 
measure. This will require laboratory and field studies under controlled 
conditions. 

Another research area of considerable current interest and one that 
bears directly on the human role in future space systems is the area of 
"cognitive ergonomics II or mental workload assessment. While man's 
physiological performance limits are fairly well defined. his mental workload 
limits are less completely understood. It is known that excessive mental 
workload negatively affects human operators in both their physical and 
psychological well-being. The effect of stress on cognitive perform~nce tends 
to manifest itself in a narrowing of the span of attention, inadequate 
distribution and switching of attention. forgetting of proper sequences of 
actions, incorrect evaluations of Situations. slowness in arriving at 
decisions, and failure to carry out decisions made. Questions regarding the 
amount of stress a human operator can accept before performance deteriorates 
or breaks down need to be resolved, and measurement and predictive devices 
need to be developed. Hental l\'orkload shoJld be one of the major criteria 
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upon which decisions covering the acceptability and effectiveness of 
man-machine systems are made. 

Recent research on the use of (1) the P-300 evoked cortical (brain) 
response potential (ERP). and of (2) sinus arrhythmia as potential indicators 
of cognitive performance levels shows promislng results. 

These and other similar issues relating to the measurement of human 
performance bear directly on the technology requirements and planning for 
hardware and system design. and on the operational and procedural 
recommendations for augmenting and optimizing the human role in space. 

C. Critical Incident Analysis of Human Performance. Continu1ng effort 
is requi red to investi gate and understand the causes of the IIhuman error" in 
space system operations as well as incidents of exceptional performance. in 
order to identify and classify the causal factors and to establish guidelines 
for the design of future space systems. 

It is recognized that the capability for direct human int~rvention 
can enhance the reliability of advanced systems. However, precise 
mathematical modeling of hu~an performance in the context of establishing the 
reliability of complex electromechanical systems is an elusive goal. A more 
logical approach i~ to focus on case stu~ies of either exceptional behavior. 
or conversely on human error in performance, a:1d to diagnose the factors 
contributing to the exceptional behavior, or con.arsely the causes of the 
errors. By better understanding the causes of human error and/or the factors 
leading to exceptional perfo~ance through the analysiS of previous incidents, 
we can recommend procedures that permit the human to enhance system operations 
by reducing the risk of system failure. 

D. Space Stati'on Horksllop. Continuing effort is required to develop the­
technology needed to provide an organized. integrated, on-orbit maintenance 
depot-wor~shop for the space station. This requires developing the tools and 
devices for use in zero-g as \'lell as the integrated workshop concept. The 
tools include lathes, milling machines. grinders, welding machines. and \~ork 
benches. 

To date, on-orbit maintenance and repair has been limited and 
generally ad hoc. A permanent space station will require and provide the 
unique opportunity for extensive real-time orbital malntenance of the station 
itself. its ancillary systems, ar.d various satellites. To support such a 
range of requi rements. an on-orbi t, rna; ntenance depot-~/orkshop technology must 

4-17 
/ 

MCDONNELL OOUGL~ 



{ \ 

be developed. Standardization of hardware cannot be guaranteed: therefor~~ 
the maintenance-servicing facility must be flexible in its capabilities, yet 
sufficiently organized to acco~odate varied spacecraft functions. Special 
tools and techniques must be developed to complement the planned standard tool 
kit approach. Fabrication must be considered as a possibility. large-vehicle 
restraint techniques, support lighting, and typical shop facilities (air. 
power fluids, etc.) must be considered. 

E. Visual Displav Develop~~nt. ContinUing effort is required in the 
development of visual display terminals since it i~s anticipated that just as 
today, 80~ of the information required by future space crews will be obtained 
through the sense of sight. Whether video displays or other visual media are 
used; fssue~to be addressed include such items as the consideration of the 
following: 

0 Surface Screen Polarity and Color 
0 Surfaee Screen Reflections/Filters 

• Display Positior.s 
0 Display Luminance 
e Display Figure-Ground Contrast 
0 Character Design 
0 Information Content Formatting 
0 Fl icker 
0 Ambient Illumination 
0 Types of Tasks 
0 Time Constraints for Utilization of Specific Visual Displays 

4.3 TECHNOLOGY PLAtt 
NASA has recently i nsti tuted a human factors research program to ensure 

the timely availability of man-machine interface design technology for the 
space program. Past experience, as well as automation technology forecasts, 
point to a need for the human's unique capabilities in a maximally effective~ 
and efficient program to utilize and to exploit the potential of space. 
However, the high cost of each man-hour in space, the difficulty in handling 
injuries, and the adverse public senti~ent that would result from mission 
failures require that humans in space be provided with maximJlly effective and 
safe tools, procedures, and work stations. 
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The goal of NASA's space human factors program is to develop the 
technology for (1) determining which tasks should be done by humans and which 
by automation~ (2) determining which human tasks should be done in the 
shirtsleeve environment of the spacecraft and which in the EVA environment 
wearing spacesuits; and (3) development methods for designing safe, effective 
tools, procedures, and crew stations for astronaut use. The program to 
accomplish this is called manned systems and is divided into the following 
elements: 

A. Basic Methodology 
B. Crew Station Design 
C. Ground Control/Operation 
D. Teleoperations 
E. Extravehicular Activity Support 

Basic methodology encompasses the development of hUman factors techniques, 
methods, data bases, and standards to design and evaluate human/syst~m 
interfaces for use in space anthropomet~. methods for formatting support 
documentation, and methods for allocating tasks--to humans and to automation. 

Crew station design focuses on developing methods and techniques for using 
advanced display and control technology (e.g., flat panel displays, 
touch-sensitive panels, voice recognition/synthesis, etc.) more efficiently. 

Ground control operation encompasses the development of techniques for 
designing ground control stations requiring few human controllers and solving 
the human implications of'transferring operations (e.g., assembly, test, and 
launch) from the ground to a space station. 

Teleoperations focuses on the development of man-machine interface 
requirements of teleoperators (remote manipulatiun devices). This includes 
visual and tactile feedback to the human, as well as information input methods. 

Extravehicular activity support encompasses the development of improved 
tools, procedures, and work stations for the suited astronauts and the design 
of equipment for ease of servicing by extravehicular activity. NASA's current 
EVA system uses a "SOft" spacesuit that operates with a pure oxygen atmosphere 
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at 4.2 pounds per square inch (psia) absolute pres~ure and a Portable Life 
:;~ppo.!t System (PLSS) that uses LiOIt cartridges for carbon dioxide remove.l, .. 
bottled oxygen at 6,000 psia for gas makeup, and a water boiler that vents 
about 2 pounds of water per hour for heat rejection. 

A -hard· suit is now under development that can operate within an internal 
pressure of 8 psia and is er.pected to afford improved mobility and 
reliability. This suit is expected to eliminate the need for prebreathing 
oxygen to purge nitrogen from the wearer's body fluids before EVA operations. 
The most difficult problems are expected in development of a MOl'e compact PLSS 
that incorporates a regenerable carbon dioxide removal subsystem and provides 
thermal control without venting water. 

As was described in Table 4-1, seven levels of technology readiness can be 
used to define the relative level of maturity of a given concept. The time 
scale required to achieve each level of technolo9ical readiness depends in 
large part upon the degree of complexity of the system to be developed. For 
relatively simple systems, the ti~2S required to mov~ from ievcl one to level 
seven may take from one to five years. This time range often reflects the 
impact of factors other than technical progress on t'le development process, 
such as politic~l or budgeting constraints or the availability of corollary 
systems required to demonstrate or aid in the development of the item in 
question. An example of the develop"~nt path for a simple system is 
illustrated in Figure 4-3. The devices in this case are small electrical 
connector tools to be lIsed in changing orbital replacement units (ORUs) on a 
space platfona. During neutral buoyancy tes~s at MSFC in 1981 the need for 
such tools was identified. The steps from conceptual design (level 2) to 
testing an engineering model (level 6) took about one year. To proceed to the 
next level of testing an engineering model in space and then to obtain full 
operational capability (FOC), approximately 30 months ~/ill be required because 
of Scheduling and STS manifest constraints. 

The time requirement to move from level one to level seven for a more 
c~plex system may take from 10 to 20 years. An example of the development 
path for a more complex system is illustrated in Figure 4-4. The system 
illustrated is an ElectrophJretic Production Unit currently under development 
at McDonnell Douglas. Although thp potential of electrophoresis as a 
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Figure 4 3. Development Path for Electrical Connector Tools 
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separation technique has been known since the turn of the century. the 
specific application and value of a space-based system was initially conceived 
in the period between 1972 and 1974. By 1975 a conceptual design (level 2) 
had been developed anti engineering model s \~ere developed and tested (level 6) 
in the 1979-81 time period. The first test of the engineering model in space 
occurred on STS-4 in June of 1982. Tests Iti11 continue through 1984. Tile 
development of a full-scale production facility in all probabi~ity will depend 
upon the availabili~y of a man~~d space station with a current estimate of FOe 
in 1992. Similar examples of the time required for technological advancement 
can be dra ... m from the historic data of other complex space systems. The 
concept of building and launching a diffraction limited IR-VIS-UV orbiting 
telescope was advanced in the early 1960s. Over 20 ye~rs will have elapsed 
between the early conceptual desi gn (level 2) and the aclli evement of full 

operational capabl1ity of the space telescope in 1986. 

This composite experience is summanzed in Figure 4-5. This experience 
when related to the space station development schedule and to the technology 
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gaps identified in Section 4.2 provides a frame of reference for creating a 
technology plan for advancing the human role in space. 

Using NASA's human factors research program as a guide, issues dealing 
with Basic Methodology can be considered to reflect a technology readiness 
level of one. Issues dealing with Crew Station Design reflect a technology 
readiness level of two. Issues dealing with Ground Control/Operation reflect 
a technology readiness level of three. Current Teleoperations r~search and 
development programs also reflect a technology readiness level of three. 
Extravehicul ar Acti vi ty Support programs are currently quite far along and 
could be considered to be at level four or level five. 

In Figure 4-6, estimated time-phased technology readiness levels of the 
five areas which were identified iFrthe THURIS stu~ as representing 
developments needed for the enhancement of crew work station designs are 
plotted to show their relationship to the Space Station Reference Schedule and 
the current NASA Human Factors Research Program categories. 
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Figure 4-6. A Tlme-Ph3~d Technolo:lY Plan for Critical Areas of Enhancing Techno/o!lY 
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Figure 4-6 suggests the recommended timetable for implementing systematic 
studies of these research areas including ground (levels 1 to 4) and flight 
(levels 5 to 7) experiments that should be pursued in order to accomplish the 
backbone supporting research and technology needed to support manned spa~e 
operations in the coming decades. 
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Section 5 
GENERAlIZATIONS ON HUMAN ROLES IN SPACE - TASK 4 

The objective of Task 4 was to integrate the analyses and results of the 
three preceding tasks into an easily accessible procedural format that can 
provide space project managers and systems engineers with a logical b~sis for 
deciding. early in the conceptual design process for advanced systems. which 
space activities can most efficiently be conducted by manned. supported. 
augmented. teleoperated. supervised. or independent operations. 

We have learned from the U.S. and Soviet* space programs to date that (1) 
systems can have indefinite operational lifetimes in space lithey are 
designed to permit the contingency of in-flight repair and maintenance; (2) 
structures too large to be launched inta~t can be constructed and assembled on 
orbit using man's unique capabilities; and (3) the flexibility and creative 
insights provided oy the crew in situ significantly enhance the proba~ility of 
successfully achieving mission objectives. 

) 

The ability of the crew to manually assemble delicate instruments and 
components and to remove protective devices such as covers. lens caps. etc •• 
means that less rugged instruments can be used as compared to those formerly 
required to survive the high launch-acceleration loads of unmanned launch 
vehicles. As a result. complex mechanisms secondary to the main purpose of 
the instrument will no longer need to be installed to remove peripheral 
protective devices or to activate and calibrate instruments remotely. With 
the crew members available to load film. for example. complex film transport 
systems are not needed. and malfunctions such as film jams can be easily 
corrected manually. The time required to calibrate and align instruments 

*The Soviets have been reported to rely heavily on manned involvement in order 
to repair equipment and subsystems with serious shortcomings in reliable and 
trouble-free serVlce life. 
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directly can be as little as 1/40th of that required to do the same job by 
telemetry from a remote location. In general, physicai articulation and 
movement constraints in teleoperated systems resu1t in performance times that 
are up to ten times longer then if the same tasks could be performed directly 
by human operators (Reference 20). 

With the availability of extended-duration manned missions. specific 
experiments and operations no longer will need to be rigidly planned in 
advance. but can change as requirements dictate. One of the greatest 
contributions of crews in scientific space missions can be in reducing the 
quantity of data to be transmitted to Earth. One second of data gathered on 
SEA SAT. for example. required one hour of ground-based computer time for 
processing before it could be used or examined, or a value assessment made. 
Scientist-astronauts in situ could determine in real-time whether cloud cover 
or other factors are within acceptable ranges before recording and 
transmitting data. 

The astronaut can abstract data from various sources and can co~bine 
multiple sensory inputs (e.g •• visual, auditory. tactile) to interpret. 
understand. and take appropriate action. when required (see Figure 5-1). In 
some cases the human perceptual abilities permit signals below noise levels to 
be detected. Man can react selectively to a large number of possible 
variables and can resp(nd to dynamically changing situations. He can operate 
in the absence of complete information. He can perform a broad spectrum of 
manual movement patterns. from gross positioning actions to highly refined 
adjustments. In this sense, he is a varia~le-gain servo system. 

Thus. ~ith the advent of manned platforms in space. there are alternatives 
to the expensive deployment of remotely manned systems. with their operational 
complexity and high cost of system failure. Long-term repetitive functions, 
routine computations or operations. and large-scale data-processing functions 
can be expected to be performed by computers capable of being checked and 
serviced by crews in orbit, just as they are now serviced in ground 
installations. In addition. the normal functions of the terrestrial shop. 
laboratory. and production staff will find corollary activities in the work 
done by the cre\'/s manning the space platforms of the coming generation. 
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l-ten 
Surpass Present Day Machines in the Ability to 

o Sense or Detect Minimum Amounts of Visual and Acoustic Energy 

o Recognize and Interpret Patterns of Light and Sound 

e Improvise and Use Flexible Procedures 

o Store Large Amounts of Information Over Long Periods and Reca1l 
Relevant Facts at Appropriate Times 

• Reason Inductively 

o Exercise Judgment 

Machines 
Surpass Man in the Ability to 

o Respond Rapidly to Control Signals 

o Apply Great Force Smoothly and Precisely 

o Perform Routine Receptive Tasks Reliably 

o Store Information Briefly and Erase Co~pletely 

o Process Information Deductively, Including Ability for Computation 

o Handle Highly Complex Operations - r~any Tasks at Once 

Figure 5-1. Machines Are Extensions of Manis Capabilities 

When assessing the relative value of the various categories of man-machine 
interaction in accomplishing the objectives of future space missions, many 
different criteria can be suggested as candidates for inclusion in the 
decision process. 

The criteria of performance, cost, and mission success prQbabilltj 
(prograM confidence) are the princlpal factors that program or project 
managers and system engineers use in selecting the most cost-effective 
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approach to meeting mission objectives. The decision maker must base his 
judgment on knowledge that a particular implementation option Cdn or cannot 
meet the performance requirements in terms of such factors as force, sensory 
discrimination, speed, and accuracy. If it can meet the performance 
requirements, can it do so within the system environmental constraints of 
temperature, pressure, radiation. atmospheric constituents, mass limitations, 
acceleration disturbance limits, etc.? In many cases, more than one 
implementation option can meet the performance requirements, and it is then 
necessary to examine the relative costs and success probability associated 
with each approach. While the final selection in the tradeoff between an 
acceptable probability of success and the resultant cost must rest with the 
decision maker. the intent of this study was to provide a frame of reference 
in which the interrelationships of these pertinent parameters can be made 
visible, and from which rational or informed decisions can be derived. 

With regard to performance, 37 generic classes of activities were defined 
(see Section 3) that, when combined in the required operational sequences, 
could be used to describe a broad spectrum of potential space programs. For 
each of these activities and for each category of man-machine interaction 
(manual, supported. augmented, teleoperated, supervised, and independent 
operations), the limiting factors in terms of sensing, information processing 
and motor actions have been defined and the requirements for human involvement 
were described. As a general statement, response time was found to be the 
most generally applicable discriminator between the manually controlled modes 

,and the supervised and independent modes of operation. If responses in time 
periods of seconds or less are required, then the activity is generally best 
performed 1n the supervised or independent modes. In the UActivate/Initiate 
System OperationU or "Information Processing" activity classifications, for 
example. applications where speed of response would dictate that the 
activities be performed in the supervised or independent modes might include 
launch abort procedures and orbital traject~!~ corrections. If allowable 
response times become minutes or hours, then all modes might be applicable and 
the criteria of cost effectiveness or success probability would provide the 
more appropriate bases for selection of a particular mode of implementation. 

With regard to cost, costing models were derived (see Section 3.4) that 
provided comparative data on the relative costs for each man-machine mode in 
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performing each activity, froM one to many hundreds of times. These 
comparative costing data were further refined to take into account the 
commonality that can exist among the equipment items or resources needed to 
support multiple activities (see Section 3.5). 

In developing an estimate of success probability, the study team initlally 
considel'ed two issues. Cne was the issue of human reliability and how the 
hU~4n can best be used to increase mission success probability; the second was 
the impact of the state of technological readiness on mission success. 

In reference to the issue of human reliability, considerable work has been 
done in the last twenty years in attempting to de~elop quantitative indices of 
human reliability. Swain, (1977)(1) and Swain and Guttman, (1980)(2) have 
developed techniques for calculating the reliabil ity of co:r.plex man-machine 
systems such as nuclear power reactors by mathematically integrating human and 
machine error information. Hammer, 1972(3), provided human reliability 
ratings for over 50 specific manual tasks such as installing gaskets, 
installing lockwires, removing Marmon clawps, loosening nuts, etc. Recently, 
the U.S. tJ:.wy~s Sea System Com;nand has prepared a "Human Reliability 
Prediction Systel:1 Users ~lanual"(4) for use in estimating the impact of human 
reliability in electronic maintenance and serviCing tasks directed toward 
improving mission equipm~nt availability. 

Although precise analytic techniques exist wh~n predicting the reliability 
of complex mechanical or electrical systeli.s with components of knOltn 

Cl) S\'min, A. D. (1977). Error and Reliability in Humln Engineering. In 
B. Wolman (Ed.) "International Encyclopedia of Psychiatry, Psychology, 
Psychoanalysis, and tleurology (Vol. 4, pp. 371-373). New York: Von Nostrand 
Reinhol<l. 

(2) Swain, A. D., and Guttman, H. E. (1980). Handbook of Human Reliability 
Analysis with Emphasis on Nuclear PO\~er Plant Application (NUREG/CR-1278). 
Washington, D.C., U.S. Government Printing Office. 

(3) Hammer. Willie, Handbook of System ~nd Product Safety, Prentice-Hall I 

Inc., Englewood Cliffs, N.J., 1972. 

(4) U.S. Department of the Navy. llul:1an Reliabil ity Prediction System User's' 
r~anual, Sea Systel'ls COrmlilnd, Wa~hington, D.C., December 1977. ' 
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reliabilities, and ~ome success as noted in the references has been achieved 
1n predicting human reliability factors in certa~n well structured tasks, 
considerable caution must be exercised in attempting to treat the analysis and 
integration of human and machine error in a manner analogous to the techniques 
used in dealing with physical sY$tems. The basic problem is that human errors 
are fundamentally different from machine errors. When a physical component 
fails, the system is usually designed so that the failure is isolated and 
doesn't affect other components. When humans make a mistake, 
resulting frustrations may increase the likelihood of subseque~t errors. 
Machine failures generally require human intervention to rep~ir or replace the 
failed component. On the other hand, humans can monitor their own performance 
and can often correct tnei~ own errors before they affect system performance. 
In physical systems, rp1undant components are assumed or designed to be 
independent and by being placed in parallel networks, can increase system 
reliability. Redundancy in crew size or presence, however, does not 
necessarily increase reliability and in fact the social interactions among 
crew members can lead to COrmlon conclusions that may in fa·;t be wrong. On the 

""Other hand, the human's perception of the 1f~elihood of tIle fan Jre of 
specific components can lead to a greater sensitivity and awareness for 
impending failure and the potential for anticipating correctiVe actions. 
While mathematical modeling of human performance may be possible in well 
structured tasks, the precise mathematical modeling of human performance for 
systems in the very early conceptual design phase is an elusive goal. 

On the basis of past experience (see Figure 5-2), the basic rule when 
designing new systems should be to consider the human element not in terms of 
being a component in series with other system elements and having a specific 
numeric value of reliability, but rather as an element functioning in parallel 
with the machine components. The human element can enhance system operations 
by reducing the risk of system failure through the utilization of human 
perfonnance capabilities to provide parallel or redundant resources in t:he 
form of maintenance/servicing, repair/replacewent, ind reprogram~ing of the 
machine elements. 

Based upon tOday's state of kno\'iledge of human capabilities and 
limitations it \'/as concluded that human reliability remains a difficult 
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Machine CharacterIStics 

• Component failures generallv independent 

• ReqUIres rep.ilr or replacement t-V external agent 

• Parallel (or redundant) components assumed to 
be Independent 

• ":::thematlcal models can describe machine reliability 

Human Characteristics] 

• Tend to compound errors 

• Capability for self-correctlon of errors 

• Social Inleractlons lead to common and perhaps 
erroneous perceptIOns 

• Variable gaIn settongs on error s~nSltlvlty 

ConclUSions I 
• Difficult to establish meaningful reliability goals bv 

mathematlcallv combining human error data woth 
machine reliabIlitY data 

• Enhance probability of success bV placong human 
elements and machine elements In parallel 

• Machines monltc;.r humans and humans manage machmes 

Inputs~ r.hn ~ Outputs 
~ Mach.ne ~ 

Most DeSirable 

Less DeSirabie Inputs~achme ~ Outputs 

Figure 5·2 Reduction of Risk - The Issue of System Reliability 

concept to quantify, especially when dealing with the very early ptOeliminary 
design phase of,~dvanced systems. Accordingly it was believed that further 
exploration of human reliability as a numeric indication of the success 
probabil i ty of various modes of man-machi ne interaction \1oul d not be warranted 
and in fact woul d be beyond the scope of the present study. Obvi au sly tile 
system designer will find it beneficial to enhance mission succe~s probability 
whenever possible by prov!ding redundancy in all critical systems and by 
including the capability for on-orbit servicing and repair. If this approach 
to advanced system design is followed as a basic design philosophy, it \1aS 

reasoned that a mare immediately useful metric for assessing the success 
probability of alternative man-machine modes could be based upon the state of 
technological readiness of the alternative implementation concepts. This then 
was the approach that the study team followed. 

As described in Section 4 of this report, seven levels of tech~ology 
readiness can be established as follows: 

Level 1 Basic Principles Observed and Reported 
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tT 
Level ? 
Leve-l 3 
Level 4 

Level 5 

Level 6 

Level 7 

Level 8 

.f 

Conceptual Design Formulated 
Conceptual Design Tested Analytically or Experimentally 
Critical Function/Characteristfc Demonstration 
Component/Breadboard Tested in Relevant Envfronment 
Prototype/Engineering Hodel Tested in Relevant Environment 
Engineerfng Model Tested in Space 
fUll Qperational £apabi11ty and (FOC) Base11ned Into Production 
Desfgn 

Technology designated as off-the-shelf or otherwise reflecting current 
operational capabilities would be considered as FOC. 

Figure 5-3 summarizes the expected relatfonships between technological 
readiness levels and time. Silnple Systems may be defined as requiring 

o Implementation of a singular action. 
o Operations generally independent of other functions. 
c Unique applications although basic princfples well understood. 
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Level 1 
Lewl2 
Levell 
Level 4 
Level 5 
Level 6 
Level 7 
Level 8 

Trchnologlcal Readlneu Levels 

Ba1IC prmclple1 observed and reponed 
Conceptual deslqn formulated 
Conceptual deslq ... tested analytically or experimentally 
Critical function/characteristic demonstrat'on 
Compenent/breadboard tested In relevant environment 
Prototype/engineering model tested In relevant en\.lronmtJl1t 
Engineering model tested In space 
Full Oper3tlo'"lal CDpab.hty (FOC) 

10 15 20 
Yea., to Full Operational C8pob,hty (FOC) 

Figure 5-3 Time ReqUired to Reach Vallous Technology Readiness levels 
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An example might be a ratchet wrench which is required to remove and install 
mechanical fasteners. Most manual and supported modes of man--mach1ne 
interaction would fall into this cate~ory. 

l40derately Complex Systems may be defined as requiring 
• Hultiple interacting functions or actions. 
• Complex control logic or networks. 
• Basic implementation techniques similar to previously developed 

systems. 
An example might be a computer work station which provides data computation, 
correlation, and plotting capabilfties. t~ost augmented, teleoperated, and 
some supervised modes of man-w~chine interaction w~uld fall into this category. 

Complex Systems may be defined as requiring 
• Hultiple interacting functions or actions. 
G Complex control lngic or networks. 
• Reduction to practice of design concepts. (Comparable system has not 

been developed.) 
An example might be a remotely controlled satellite servicing system capable 
of self-actuating or self-healing operations in response to external stimuli. 
Host remo~e1y super~;sed and independent man-machine interactions would fall 
into this category. 

Based upon the criteria of performance, cost, and technological readiness 
,as developed in Tas~s 1, 2, 3, and.4 of the study, the study team has 
attempted to formulate a decision guide that can be used to logically allocate 
space activities to alternative man-machine implementation modes. In 
developing this decision guide, we recognized that such decisions are highly 
dependent upon the time period in which a given system will be implemented. 
That is to say, the capabilities to support man in space will continue to 
evolve as will the other technologies including the applications of artificial 
intelligence and the advanced development of micro- and macro-manipulators. 
Furthermore. the index numbers (performance times, cost data, technological 
readiness, etc.) used in the decision process at this point in time can be 
expected to change as better information becomes available from future studies 
and from operational experience. Accordingly, the decision model suggested 
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below should be con~idered as still in the evolving stage and should be viewed 
in that context. Even so, it is believed that the procedure as outlined will 
prove to be useful in the early conceptual design process to help decision 
makers formulate a strategy for selecting an initial reference design 
configuration. As the design con~~pt crystallizes, it would be anticipated 
that the design solutions ",'auld be iterated to take advantage of the better 
data on perform3nce, cost, and success probability that become available as 
the design matures. In some cases, it may also be expected that the preferred 
mode of implementation will change in later stages of the preliminary design 
process as better design data are developed. 

With these caveats in mind, and recognizing that the guide might take many 
forms. a simplified schematic of the decision process is presented in Figure 
5-4. In order to accomplish the steps in this decision process, a worksheet 
format has been prepared as illustrated in Figure 5-5. An example of hOI'l this 
worksheet might be utilized 1s illustrated in Figure 5-6. 

Identlfv act,vit es reqJlred In system operatIon 

Id~ntlfy mo~..machlnQ modes meeting p~rformance 
requoremenu of each actIvIty 

Dltermlne mon cost-effectIve mod~ for each ectlvltv 

EstImate state of te~"nologlcnl read,ness for the most 
cost-effectIve mode fo' each actIvIty 

Rank each man-m3chon~ mode accordong to the number of 
",ctIVOIiCS for whIch It II th' most cost-effectl\e ~pproJch 

Select mode WIth h,ghest applicab,lity (rank) 

Select mode WIth next 
h,ghest applIcability (rank 
as determlMd on Step 5 

Figure 54. DeCISIon Process for Identlfymg the Man-Machmo Mode to Use In tho Initial Conceptual 
DeSign Effort for An Adviinced Splice System 
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~ Man Machine Categories ,.. 
~ 
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" " OJ ~, ~l 
"0 .... .. 

uct Z~ :E ~ ct ~ .: ... a: u ... > 

Actlvlly Name A B C 0 E F G H I J K L 

1 Actlvatellnltlate System Operation -- ---- _. 
2 Adlust/Allgn Elements r-- -- t--- -_. - - - - - ~- - --- f--
3 Allocate/Assign/Distribute 

t-- -- - - - -- -- - 1-
~ Apply/Remove Biomedical Sensor 

~ - ._- --f--5 Communicate Information -- -

6 Compensatory Tracking --- - - -
7 Compute Data - - - :;;:: - - -- --- -8 ConflrmNerlfy Procedure/Schedule/ 

OperatIOns - - t--- --- - - -
9 Connect/Disconnect Electrical < 

Interface - -- t--- --- - - ---- -10 ConnE.ct/D,sconnect Fluid Interface 
11 Correlate Data 

- - -- f-- == -
12 Deactivate/Terminate System 

Operation -- - ----13 Decode/Encode Data 
--~- -- t--- -- - -~ -- --14 Define Procedures!Schedules! 

OperatIOns -- - --- 1--- --- $ 
15 DeploylRetract Appendage 
16 DelPet Change III State or Condition - ---- ---
17 Display Data - -- - -- -- -- -- --- -- -
18 Gather/Replace Tools/EqUipment 

1-- -- --- --- -- r-19 Handle/Inspect/Examine L,v,ng - --- -~ ~:i~~ 

-~: Organisms ! ~'-Y - ' -:;. 

20 Implement Procedures/Schedules 
- - - -- - - ---

,21 InformatIOn Processing - - - '--- - - - -- - ---r--22 Inspect/Observe 
23 Measure (Scale) PhYSIcal DimenSIons - - --- t---

- --
24 Plot Data = - - --- ----25 PosItion Module t= 
26 PrecISion MaOlpulatlon 01 Objects - f- -- - - -- f-27 Problem SolvinglDeClslon Making! 

Data AnalYSIS 

t 
f-- - -

23 PUrsUit Tracking 
29 Release!S»cure MechaOlcal Interface 

- --->-

30 Remove Module f 
31 Remove!Replace Coveting 
32 Replace!Clpan Surface Coatings - -- - -- --
33 Replenish Materials - --- --
34 I Store/Record Element 
35 Surglc<ll ManipulatIOns --- -- - - --- ---

-- -36 Transport Loaded - -37 Transport Unloaded 

Summary Data M l>< N 0 P Q R S T U V W 

~ 
Number of Times Selected OJ 

c:J Man Machine 
> 

~ OJ 
~ ?. ...J 

Categories Not ::: .. ~ '" 0: E t; 0: OJ 
Appropn3te to c:: OJ ;?> c: 0: ~-= ActiVIty Impl~mentatlon -;; ~..;: t:_ 

"0 ~ a>- x 0 
0 o ~ .. '" ~ 0 '" 0 ... ::!a: o.u :!z 

Figure 5-5. Worltsheet for DI:flO1I19 the Hum:m Hole In Space 
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Space Platform 
Payload No.2 

Activity Name 

'_1 Activate/Initiate System Operation 
2 Adjust/Align Elements 
3 Allocate/Ass,gn/D'strobute 

!"2!f I P .. rsuorrrac~ong 
29 I Rele3se/Secure MechanICal Interface 
~! Remove Modu'e 
31 RemolletReplace Covering 
321 Replace/Clean Surface Coatings 
33 Replen,sh Mate .. al. 
J.1 I Store/Record Element 
35 Surgical Manopulatlons 
36 ! Transport Loadpd 

Summary Data 

NA • Not Applicable 
to thiS MISSIon 

l:::::J Man Mac!>lne 
Catogoroe. Not 
Approproate to 
ActiVity Implementation 

Figure 5 6 Example of Worksheet Procedure 
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Number 01 Times SeI<'Cted 

been In using this worksheet, seven modes of man-machine interaction have 
selected to represent the steps along the continuum from direct manual 
operation at one extreme to completely independent self-healing, 
self-actuating systems at the other. Tnese modes are designated as manual, 
~upported, augmented, tel eope'ra ted, supervi sed-ground, supet'vi sed-orb it, an d 
independent and were defined 1n Section 1 of this report (sec F1gure 1-1). 

Examples of the nomogrdphs that are to be used wHh the lIorksheet are 
illustrated in Figures 5-7 to 5-10. The cost numbers in these nomographs'are 
based upon production and operations costs only (as described in Section 3.4) 
and do not include design and development costs. It ''las assumed that llASA 

will most llKely not include nonrecurring costs ,~hen developing user charge 
pol1cies for ddvanced space systems. 

The cost charges for the activities to be conducted 1n the direct manual 
modes (manual, supported, aug,l1cnted, and teleoperated) ''lore based primarily on 
a cost per unit time factor. On this basis, the delta costs for EVA over IVA 
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Man MachIne 
Categones TIme Scale 

Manual I I 

Supported b 
Augmented 

I 

F 
Teleoperated 

I I 

SupervIsed 
Ground c::J 
Sup&rvlsed I 
On-OrbIt c:::J 

I 
Independent I i 

I I • 
0" 0: ;. E ~ 1 10 20 30 40 

Seconds A-mutes 

Figure 5-7. Re/e::~e/Secure rJlechanrcallnterface 
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FIgure 5 8 T,me ReqUIred to Advance Level of Techn%glcal ReadIness 
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were negligible when compared to the overall cost of manned space cperations. 
Thus, it was not found necessary for the initial approach to selecting the 
baseline operational modes to determine whether the activity would be done by 
IVA or EVA. The issue of IVA or EVA can be resolved later in the design 
process based on more detailed performance and operational requirements, and 
not by cost per see 

To determine the man-machine category to consider in the initial 
conceptual design of a space system, six key questions need to be addressed. 
The suggested procedure for answering these questions is illustrated below. 

~ Which of the 37 unique acivities are involved in meeting the 
~ mission objectives? 

1. Place a check mark in column A of the worksheet (Figure 5-6) by each of 
the 37 activities that are required for accomplishing the mission 
objective. 

2. For each activity checked in column A, estimate th~ number of times that 
activity will be performed during the mission and enter the numeric 
estimate in column B. 

3. Add the number of checks in column A and enter total in Box ~,. 

Which modes of man-machine interaction can meet the performance 
reqUirements of each activitl? 

1. Consult the timel ine charts fo:md in Appendix 0 that are associated I'lith 
each activity checked in colum~ A (see sample Figure 5-7). Place a check 
in each of the man-machine categories. columns C through I. that could be 
used to satisfy the mission requirements, basing your judgment on: 

• Time requi rements for performi ng actl vi'ty. If the response time 
required is seconds or less. the indirect modes (supervised or 
independent) would be preferred. 
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• Limiting factors that may restrict human invo1vem~nt. If limiting 
factors on human involvement are noted on the time1ine charts it may 
be helpful to consult the Human Capability Data Descriptions in 
Appendix A. 

EJTEP 3 Which man-machine mode represents the most cost-effective 
approach to the performance of each activity? 

1. For each activity. checked in column A of the worksheet. circle the check 
mark in column C through I that represents the most cost-effective 
man-machine implementation mode, as determined fran each set of cost vs 
number-of-times-activities-is-performed curves (see sample Figure 5-9). 

a What is the state of technological readiness for the most 
cost-effective man-machine modes identified in Step 3? 

1. For the man-machina mode circled in columns C through I. estimate the 
techno1cgical readiness level (see Figure 5-8) and enter this value in 
col tsnn J of the worksheet. 

2. Find the medi~n level of all of the technological readiness values entered 
in column J and enter this median value in box U. This median value 
defines the overall technological readiness of the aggregate of the 
proposed implementation concepts for the r.1ission being analyzed. 

6 I~hat is the relative degree of applicability (ranI<) of each 
man-machine mode in accomplishing the mission objective? 

1. Enter the total number of circled check marks in columns C through I in 
boxes U through T re5pectively. These totals indicate the relative degree 
of applicability of the alternative man-machine modes. 

~ Which mode should be considered as the baseline for initiating 
~ the conceptual design of thG system? 

1. Starti ng with the most frequently occurri ng mode (boxes N through T on 
worksheet) proceed through the iterative process irdicated in Figure 5-4. 
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2. The present technological readiness level of each man-machine mode should 
be estimated using the criteria listed on Figure 5-8. 

3. For the man-machine implementation mode circled in cotumns C through I for 
each activity, determine from Figure 5-8 the number of years required to 
advance from the present technological readiness level to a technological 
readiness level of 7 and enter in column L of the worksheet. 

4. Enter the maximum value in column L in box W. This value represents-the 
estimated development time required to achieve the highest level of 
technological readiness (minimum risk) for the most cost-effective 
implementation. 

5. Continue the iterative process until an acceptable baseline mode is 
established. If no single mode is found to be acceptable, it may be 
necessary to select a combination of modes that represents the minimum 
number of modes required to achieve the mission objectives within the time 
constraints imposed. 

Other factors to be considered in formulating the initial conceptual 
design of an advanced space syst~~ are the issues of reliability and cost 
penalties associated with using alternative approaches to increase the 
technological readiness level and to thereby increase the success probability. 

~Iith regard to enhancing operational rel i abil 1ty, it is recommended that 
~nerever possible a manual mode be identified for each activity as backup to 
the prime mode selected. It is suggested that this backup mode be the least 
complex level of man-machine interaction (categories C through I) that can 
meet the performance and technological readiness requirements. 

If multiple man-machine modes are determined to be required to accomplish 
the mission objectives, an overall estimate of the technological readiness of 
the system can be made by finding the median of the readiness values entered 
in column J of the worksheet and recording thi: median value in box U. 
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To assess the cost impact of increasin~ the technological readiness level 
(Success Probability) identified in box U. the following procedure could be 
utilized. 

1. Enter Figure 5-8 \lith the desired time to IOC. Determine the 
man-machine modes that can achieve the highest technological readiness levels 
within the time to IOC. 

2. For the activity with the lowest technological readiness rating in 
• 

column J. examine columns C through I to determine if any of the modes with a 
higher rating as identified in Figure 5-8 can meet the activity requirements. 

3. For those man-machlne modes that have higher technology readiness 
1 eve 1 s. for the acti vi ti es bei n9 c onsi de red , use Fi gure 5-9 to determi ne the 
cumulative costs to perform each activity for the number of time~ identified 
in column B. 

4. Using the cumulative dollar value for the man-machine mode having the 
lowest cost value as ·he denominator, compute the relative cost ratios for the 
applicable modes. 

5. Determine the commonality correction factor for the specific activity 
fr~~ Figure 5-10 based upon the total number of activities required in the 
operational sequence (box M on worksheet). (Refer to Table 3.5-1 for the 
derivation of this correction factor.) 

6. ~!ultiply the cost ratios determined in St!O'p 4 above by the correction 
factor determined in Step 5. This value gives an approximation of the cost 
increase ratio required to achieve a higher level of technological readiness 
for accomplisning the specific activity being considered. E~ter this value in 
coJumn K. 

7. Repeat Steps 2 and 6 for each activity where the technological 
readiness factor is less than 7. 

8. For all activities where the technological readiness is 7, en~er the 
value 1 in column K. 

9. Find the average of the values in column K and enter in box V. TRe 
value in box V is an estimate of the relative increase ir program cost 
required to accomplish the mission objective with the minimal risk (highest 
level of technological readiness). 

The procedural methodology outlined above has attempted to provide a 
technique for logically dete~ining early in the conceptual design process for 

5-18 
/ 

MCDONNELL DOC.JO~ 

.. 1 

l 

[ 

I 
I 

-



I 
/ 

I 

/ 

rj 

I' 
I 

a new space system which of the various modes of man-machine interaction c&n 
be used to most effectively perform the activities required. 

Our analyses to date have confirmed once again the conventional wisdom 
I that the human role in future space systems will draw heavily upon the 
l. intellectual capabilities and the sensory/perceptual capabilities of the human 

observer. Of all of man's sense modalities, vision is the most important for 
future space applications. Man's capabilities for recognizing information in 
various forms and comprehending or understanding (cognition). his capabilities 
for creative imagination (divergent production), his ability to rigorously 

I 
1_ 

structure problems and develop solutions (convergent production), and his 
ability to make decisions (evaluation) will continue to be essential 
ingredients in future systems. ~tany examples from experiences on previous 
space missions illustrate these capabilities. 

Performance, Cost, and Success Probability (technological readiness) 
remain the principal criteria in determining Hhere along the continuum, from 
direct manual intervention to independent oPQratfons, the mis~ion requirements 
of future space programs can best be met. Oy defining a generic set of 
activities from which systems m~cting future mission requirements can be 
synthesized. and by assigning performance. cost, and technological readiness 
metrics to each of these generic activities, a-mechanism becomes available for 
developing a logical rationale for optimizing-the m~n-machine interface. 

By use of the methodology developed in this study, it will become possible 
to establish early in the design process the most cost effective design 
approach for future space pr'ograms, th)'ough the optimal applicati on of uni que 

\~ human skills and capabilities. 
I 

i: 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Senso~/Perceptual Capabilities 

HUMAN CAPABILITY - Visual Acuity 

Definition: Visual acuity is the ability of the eye to see fine details: the 
resolvlng po~er of the retina with respect to details of the Image. 

Various aspects (types) of visual acuity have been described; these include: 

o Minimum perceptible acuity - The ability to see small objects 
against a plain background. 

8 Minimum separable acuity - the ability to see objects as separate 
when they are close together 

o Minimum distinguishable acuity - the ability to distinguish 
irregularities and discontinuities in the contours of an object. 

Charucteristics: Visual acuity is commonly expressed in terms of the ~inutes 
of visual angle subtended by the detail being discriminated. 

o The average normal eye can distinguish features that subtend 1.0 
minutes of arc, which is equivalent to 20/20 vision on the Snellen 
chart 

o The threshold for minimum perceptJal acuity is 0.008 minutes of 
arc; for minimum separable acuity, 0.4 minutes of arc; and for 
minimum distinguishable acuity. 0.8 minutes of arc. 

Limiting Factors: The effectiveness of visual acuity is affected by the 
fo 11 OWl ng 11 ml tl ng factors. 

8 Intensity of illumination 
o Amount of contrast between the target and the background 
o Duration of the presentation 
o Speed of motlon of target 
o Location in the visual field 
o Wavelength of the illumination 

Comments: The characterlstics and limitations of visual acuity will be more 
lmportant than any othel' aspect of visual capabilities in deternining mi\n's 
role in space opel"ations. Acuity plays a significant role in such activities 
as target detection and selection, accurate align~nt. and pattern recognition. 
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HU~1AN CAPABILITY DATA 

CAPABILITY CATEGORY - Senso~/Perceptual Capabili~ies 

HUHAN CAPABILITY - Brightness Detection and Discrimination 

Definition: Brightness detection is the ability of the eye to identify light 
at very low intensities; br1ghtness discrimination is the ability to detect a 
change in the brightness of a li9ht source or the difference in brightness of 
two or more light sources. 

Characteristics: Brightness is commonly measured in terms of millilamberts 
TriiCT ~lhlCh 1 S a measure of luminance. 

o The rods or cones in the light-adapted eye can detect luminances as 
low as 0.004 mL 

8 Rods in the dark adapted eye can detect luninances as low as 
0.00001 ml 

o Discrimination can be expressed in terms of the just noticeable 
difference (jnd) by the formula: jnd (in %) WB/BX100, where WB 
= the change in brightness, and B = the initial brightness. 
Generally, a difference of approxililately 10% is required to 
identify a brightness change. 

limiting Factors: The follO\</ing factors can affect the threshold of 
brightness detection and discrimlnation. Although detection and 
discl'lrination are both affected by most of the factors, they are not 
necessarily affected equally by all factors. Limiting factors are listed 
belO\'/ 1n association with the capability that they more strongly affect. 

13 DetectlOn 
- Wavelength of stimullis 
- Previous lig~t exposure of observer 
- Duration of prior exposure 

• Dis~rimination 
- Shape and size of stimulus 
- Region of retina stimulated 
- level of illumination on test 

Comments: Brightness detectl0n and discrimlnation are involved in 
astronomical ohservation and in some aspects of pattern recognition. The dark­
adapted eye is very sensitive in comparison with mechanical light detectors. 
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HU~AN CAPABILITY DATA 

CAPABILITY CATEGORY - Senso~/Perceptual Capabilities 

HUMAN CAPABILITY - Color Discrimination 

Definition: Color discrimination includes three different perceptions which 
m~ be defined separately. 

• Hue discrimiration - The ability to detect the smallest difference 
1n wave length of two test fields. 

c Brightness discrimination - The ability to detect a change in the 
bri ghtness Of a 1i gilt source or the difference in bri ghtness of blo 
or more light sources (previously defined). 

o Saturation discrimination - The ability to detect small differences 
in the percentage of I'/hlte lig~t in two fields of identical hues. 

Characteristlcs: The characteristics of brightness discriminat;on are 
descr1bed under "Brightness Detection and Discrimination". Saturation 
discrimination is usually considered too difficult to measure for the 
determination of accurate thresholds. 

Hue discrimination will vary with the wavelength. The s~allest differe~ce in 
wavelength that can be detected as a difference in hue when biO fields are 
preser,ted are: 

Color -
Blue 
Green 
Yell 0\1 

Orange 
Red 

Smallest Difference in Wavelength 

2.5 millimicrons 
1.0 ni~limicrons 
3.3 millimicrons 
1.5 nillimicrons 

20.0 millimicrons 

liMitin~ Factors: The following factors can affect the thresholds of color 
dl scnmlnatlon. Although most factors will have an effect on each of the 
perceptions (hue, brightness, and saturation) the ones presented are 
particularly related to hue discrlmin?tlon. 

o Color of light source 
o Color of light reflected frorn-nearby surfaces 
a Level of illumination 
• Surface reflectivity characteristics 

Conrnents: The capability of color discrimination is involved in nany 
operatlonal and maintenance tasks, since switches, Hires, and ducts tend to be 
color coded. Ordlnarily, however, the situations will present no challenge .) 
capability limits. 
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Hur·1AN CAPABILITY DATA 

CAPABILITY CATEGORY - Sensory/Perceptual Capabilities 

HUHArl CAPAOILITY - Depth Perception and Discrimination 

Definition: Depth perception and discrimination may be defined in one of the 
To II OIH n9 ways. 

a The esti~ate of the distance of an obJect from the observer 

o The estimate of the relative distance of b/o or more objects frola 
the observer 

" The difference in parallax corresponding to the minimum distance 
two objects can be displaced along the line of sight and stlll be 
recognlzed as being at d1fferent distances. 

Characteristics: Judgment of absolute distance is very inaccurate, judg~ent 
of relatne d1stance 1S, hO\~ever, very accurate. Angular dlfferences as small 
as 2 seconds of parallax can be detected. The value of una1ded binocular 
vision in depth perception is greatest fer' distances less than 20 feet. 
Oeyond thlS distance ~onocular cues of textural gradient, perspective, light 
and shadol/, interposition of objects, atmospheric attenuation, etc. are of 
primary importance in judging depth or distance. Ilith optical aids such as 
binocular range f1nders, stereopsis can be used to judge relative distances at 
Much greater ranges. 

Li~iting Factors: The following factors can affect the accuracy of depth per­
ception and discrlm1nat1on. 

o Distance of objects frOM eye 
o Absence of obJects of known size for com?arison 
o Atmospherir condltlQOS 
o Illuminatlvn intenslty 
o Stlmulus size 
o Honocular versus binocular cues 

Coments: The capabillty of depth perception has played. and continues to 
play, an important role in cre\." involvement in space operations. 110 dlffi­
culties have been expenenced by cre\'Ir.1en 111 the use of depth perceptlon. It 
may be concluded that tYPlcal space operations do not normally challenge the 
limits of this capabil1ty. Important examples of tasks p~rforned by Cre\'/r,len 
in space which rely heavily on depth perception include: Apollo docking with 
lunar lander and Apollo dock1ng with Skylab, operation of the Shuttle renote 
manipulator systcm, and the usc of the manned mancuvcrlng unlt in translatln~ 
to a remote target, e.g., solar max satellite. 
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HUMAN CArABIlITY DATA 

CAPAOIlITY CATEGORY - Sensory/Perceptual Capabilities 

HU~1At1 CAPABILITY - Peri pheral Vi sual Detection and Di scrimination 

Definition: Perlpheral visual detection and discrimination may be defined as 
the abl1lt/ to perform specified visual tasks with the visual stir.ulus located 
in various parts of the vl~ual field other than in the central area, i.e., 
with the lMage in varIous locations on the retina. 

Characteristics: A large number of parameters must be considered in 
lOent;tYlnq the capabilities and limitations of peripheral visual detection 
and d1 scnmnation. The folloW1 ng table ident1f1es many of the lnvolved 
factors and illustrates limits that have resulted from tasks in the mil1tary. 

limitinr Factors: The following factors can alter the values of both the 
hor1zon al and vertical angular llmits of peripheral visual detection and 
discrim1nat1on identified 1n the previous table. 

• Brightness of visual object 
o C~ntrast of the object ~Il th its background 
o Color of the object and color contra~t 
o Duration of exposure 

Comnents: Perlpheral v1sual.detection and discrininat10n are basic in normal 
vlsual operations and are, addltlonally, dlrectly involved in a large number 
of space tasks such as target location, rendezvous and dock1ng, and tracklng. 
r'lan's capab1litles 1n thlS category are limited, hOl,ever, particularly in 
situat10ns involvtng the dark-adapted eye. The involvenent of man in a space 
act1v1ty based on hlS peripheral v1sion capab1llties would seldom be at a 
level below independent or supervised. 
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HORIZONTAL LIMITS VERTICAL LIMITS 

Temporal Naval 

Amblnocular Binocular Field Field 
TYPE OF FIELD AND Field Field Angle Angle 

MOVEMENT PERMITTED FACTORS LIMITING FIELD (each side) (each side) Up Down 

a Moderate movements of head Range of fixation 60° 45° 
and eyes, assumed as 

, 

Eyes 18° right or left Eye deViation (assumed) 15° 15° 15° 15° 
150 up or down Peripheral field from pOint of 95° (45°) 460 67° 

fixation 

Head 45° right or left Not penpherdl field from central 110° 60°· 610 840 

fixation 
30° up 0; down Head rotatmn (assumed) 450 450 30°· 30°· 

Total penpheral field (from central 
line) 

b Head fixed 
Eyes fixed (central position Field of penpheral vIsion (central 9So 600 460 670 

Wit h respect to head) flxdtlon) 

c Head fixed Limits of eye devIation 74° 55° -- 48° 66° 
(= range of fixation) 

Eyes maximum deViation Peripheral field (from point of 91° Approx (5° 18° 160 

fIxation) 

Total peripheral fIeld (from central 165° 600 • 660 820 

head ""Ie) 

d Head maximum movement Limits of head motion 720 7.1.0 

1 

80°· 900 • 

(= range of fIxation) 
Eyes fixed (central with Pertpheral field (from POint of 9.5° 60° 460 67° 

respect to head) fixation) 

Total perlpherdl field (from central 1670 132° 1260 1570 • 

body!tne) 

e MaXimum movements of Limits of head motion 720 72° 80° - 90° 

head and eyes MaXimum eye deViation 74° 550 48° 660 

Ranqe of fixation (from central 1460 127° 1280 156() 

body line) 
Peropheral field (from POint of 91° Approx (5°) 180 160 

fixation) 

Total peripheral field (from central 237° 132° 146° 172°· 
body line) 

• Adapted from Wulfeck, J W ,et ai, VIsion In Military AViation, WADe Technical Report 58-399, 1958 
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HUt,tAN CAPABILITY DATA 

CAPABILITY CATEGORY - Sensory/Perceptuai Capabilities 

HUHAN CAPABI LITY - Vi sua 1 AccorT.1odati on 

Oeflnltion: Visual accommodation is the ability to bring to focus on the 
retlna obJects located a short distance from the eye. 

CharacteristlCS: Visual acco~modation is limited to objects located no closer 
than approxlmately six inches to the eye (in adults). 

Limltlng Factors: Factors that can affect the abillty of an individual to 
vlsually acconmodate with reference to objects located at various distances 
from the eye include the age of the individutl and the characteristics of the 
visual median. 

Conments: Although visual acco~modation plays an important role in nany of 
the tasks associated with space operations, e.g., detailed workbench repair, 
visual lnspection and examination of biological specimens, it is not expected 
that space actlvltles lIill impose any unique challenges to this capabillty. 
The sane visual aids that would be used in terrestrial tasks would be 
simllarly applled in space. 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Sensory/Perceptual Capabilities 

HUMAN CAPABILITY - Detection and Di scrimination of Tone 

Def;ni tion: 

--~, 

o Tone Detection - The capability of the ear to detect sounds of small 
int~nsity. The threshold of tone detection is the smallest intensity 
(1 c:'1est amount of energy) at a qi ven frequency that can be dete~ted 
(intensity is measured in decibels [db] where db = log dynes/cm~). 

• Tone Discrinination - The capability of detecting just noticeable 
ditference (Jnd) in the change in the frequency of a stimulus. The 
threshold of tone discrimination is the mini~um amount of change in 
frequency that can be detected with a probability of 0.5. 

Characteristics: 
o Ihe threshold for tone detection will vary with the frequency of the 

tone in approximate accordance with the following table. 

Frequency (cps) db 
10 :ro-

100 -30 
500 -60 

1000 -65 
2000 -70 
5000 -60 

10000 -45 

8 Regarding tone discrimination, there is generally no ability to 
perceive a change in frequency in sounds whose intensity is below 
-20 db. 

o For sounds above 20 db, a frequency difference of 3 cycles per 
second can normally be discriminated for tones below 1,000 cycles 
per second. 

o . For tones above 1000 cps, the just noticeable difference (jnd) is 
usually about 0.3% of the frequency of the tone. 

Limiting Factors: 
o lone Detection - Factors tending to affect the capability to detect 

low intensity sounds include: 
- sound frequency 
- age of listener 
- previous exposure 
- background tones or noise 

o Tone discrimination is affected by the same fectors as tone 
detection and, additionally, is influenced by: 
- the loudness ~f the tones 
- duration of the tones 
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Co~ents: Sounds are frequently used as audito~ signals in space mission 
operations, and sounds of different frequencies are used to impart different 
types of information. Tone detection and difcrimination are, consequently, 
necessary capabllities among space crehmen; thresholds are, however, never 
approached and th~ ~apability is, therefore, not challenged. Additlonally 
malfunctions are frequently detected initially by the crehman noticing the 
advent of a new sound or a tone change in an existing sound. This auditory 
capabll ity is useful, but \-/oul d not normally be considered in operations 
planning. 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - $cnso~/Perceptual Capabilities 

HUMAN CAPABILITY - Discrimination of Sound Intensity 

" 

Definition: Sound intensity discrimination identifies the ability to detect a 
change 1n the loudness of a sound. The threshold of discrimination is the 
just noticeable difference (jnd) of loudness change (energy change) to the 
loudness (energy) of a sound. 

Characteristics: Sound intensity discrimination is strongly dependent upon 
both the tone and loudness of the initial (test) sound. At frequencies 
between 500 and 5000 Hz a difference of less than 1 db can be detected for 
sound intensities between 10 and 60 db. 

Limiting Factors: The fo11o\'ling factors can affect the jnd of a change in 
sound lnten~l~ 

o Sound frequency 
o Sound intensity 
o Age of listener 
o Background noise 
o Previous exposures 

Co~nts: Discrimination of sound intensity is not expected to be a widely 
used capability among crew personnel. Sound intensity discrimination often 
works in concert "ith visual capabilities in docking or other continuous 
adjustment type tasks but it will probably not be of much importance and ,,/nl 
not be challenged by man's activities in space. 
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HUfrtAN CAPABILITY DATA 

CAPABILITY CATEGORY - Senso~/Perceptual Capabilities 

HUI-1AN CAPABILITY - Sound Localization 

'I 

Definition: Sound localization is the ability of a subject to perceive t~e 
di recti on from which a sou'nd arri ves. 

Characteristics: Sounds with frequencies up to 500 Hz call usually be located 
wlthln approximately 10-12 deg. Sounds with higher frequencies (e.g., 3000 
Hz) can be located only withln about 20 deg. 

Limiting Factors: The accuracy of sound locali~ation can be affected by the 
followlng factors: 

o Direction of the sound in relation to the median plane of the head 
o Frequency of the sound 
o Loudness of the sound 
o Knowledge of tha characteristics of the sound 

Comments: Sound localization is a factor in the normal behavior and 
activltles of an individual but should not become important in defining the 
role of man in space operations. Tasks involving man would not be expected to 
depend upon, emphasize, or challenge this capability. 
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HUr~-N CAPABILITY DATA 

CAPABILITY CATEGORY - SensorY/Perceptual Capabilities 

HUf.1AU CAPABILITY - Detection of Light Touch 

Definition: Detection of light touch is the ability to detect and to loc~te 
tHe appllcation of a small a~ount of pressure to the skin surface. This 
capability may a1 so be defined in terns of "two-point thresho1 dOl: the abi1 ity 
to detect t\'/o pressure poi nts as separate when the di stance between them is 
small. 

Characteristics: The threshold for the detection of light touch varies 
extensively wlth the area of the body tested. The two tables included below 
illustrate this condition. 

Thresholds for the Detection of Light Pressure 

Body Region 

Finger Tip 
Back of Finger 
Front of Forearm 
Back of Hand 
Abdomen 
Back of forearm 
Sole of foot (Thick Area) 

Amt. of Pressure Required 
for Detection (gms/mm2) 

3 
5 
8 

12 
26 
33 

250 

Threshold for Two-Point Discrimination 

Body Region 

Finger Tip 
Trunk 
Tongue 
Back of Hand 

Distance Bet\1een Points 

2-3 IJlj;l 

60-70 mm 
1-2 m:n 
35-40 mm 

Limitinq Factors: The factors \,Ihich can affect the threshold of detection of 
llght touch incfude tile follo\ling: 

o Body region stimulated 
o Rate of stimulus onset 
o Duration of stimulus application 
e Skin temperature 

Comments: Detection of light touch, particularly as it contributes to fine 
manipulative skills, is one of the prlncipal capabilities that establishes 
man's role in space. A number of activities Hhich have been identified as 
candidates for sp~ce conduct, such as small animal dissect:on and surgery and 
repair and assembly requiring precise and exact manipulations, cannot be 
performed ~ithout man's direct involvement. 
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HUrlAN CAPABILITY DATA 

CAPABILITY CATEGORY - Sensory/Perceptual Capabilitles 

HUMAN CAPABILITY - Tactile Recognition of Shape and Texture 

Definition: Tactile recognition is the capability of perceiving and 
understanding the form and distinctive characteristics of objects by touch 
sensors only. 

Characteristics: Tactile sensitivity may be used to distinguish the shape of 
various objects if the shapes are not similar to each other. Although no 
general limitations have been identified, extreme care has been used in the 
development of control knobs that may be recognized by touch alone and wo"ld 
not be confused with each other. Tactile sensitivity may also be used in 
identifying textures, as long as the textures are sufficiently distinctive. 
For example. smooth, fluted, and knurled surfaces can be accurately 
discriminated but different patterns and depths of knur1ing and f1utir.g are 
more difficult to distinguish from each other. 

Limiting Factors: Practically. tactile recognition is generally a function of 
tfie Tlnger tlpS. Some factors, which tended to limit tactile sensitivity such 
as the area of the body stimulated, are not applicable in this instance. Skin 
temperature. however. \'4i11 tend to affect tactile recognition to the same 
degree that it affected sensitivity. Additionully, the ~loved hand is 
generally less capable of recognizing shapes and surfaces than the skin 
surface directly applied to the object. An exception to this may occur in 
regard to roughened surfaces ,,,herei 11 the materi a 1 of the glove woul d catch on 
the raised elements of the surface. 

COr.r:1ents: There are feH, if any. space-related tasks for which man would be 
selected or rejected because of his tactile recognition capability or its 
limltations. This capability is frequently recognized, hO~/ever, in the coding 
of controls by shape, size. and texture. Requirements for this type of coding 

, may be found in numerous human factors design handbooks. 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Sensory/Perceptual Cdpabi1ities 

HUMAN CAPABILITY - Discrimination of Force Against Limb 

Definition: Discrimination Qf force against limb is the capability of sensing 
relatlve amounts of force and changes in force acting against an extreMity. 

Characteristics: The capability of judging relative amounts of force or 
reslstance actlng against the movement of a limb is usually measured and 
expressed in tenns of "difference 1 im~nu whi ch is the average difference in 
force that can just barely be detected; thus, two forces have to differ (by an 
amount greater than the limen to be detected as being different. 

From the results of experiments. it appears that the hand/arm and foot/leg are 
quite similar in their capability to judge differences in force; also the 
capability of the hand/am to judge differences in linear forces ''las similar 
to the capability of Judging torque forces. The difference limen is much 
greater for forces of less than 5-10 pounds than it is for forces greater than 
ten pounds. 

(Difference Limen as a Proportion of Force) 

Force in Pounds 

1 
5 

10 
20 
30 
40 

Linear Force 
Foot/Leg Hano/Arn 

0.10 
0.07 
0.05 
0.O~5 
0.0"4 

0.21 
0.10 
0.08 
0.07 
0.06 
0.06 

Torque Force 
tLand/Arm 

0.24 
0.09 
0.07 
0.06 
0.06 
0.05 

Lirr.itinq Factors: The fol1ouing factors can affect the accuracy of 
OT5crlminatl~orce against limb. 

o Amount of force 
c P~sition of subject 
o Fatigue 

COmMents: The capability of discriminating force again$t limb is ~ost 
frequently utilized in control manipulation. The operator of a control can 
sense both movement and force through his proprioceptive sense. Force and 
movement are, therefore, the primary sources of contrr1 feedback. This 
capability is consequently used to advantage in the design of controls rather 
than in the selection or rejection of humans in specific space operations. 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Sensory/Perceptual Capabilities 

HUHAN CAPABILITY - Discrimination of Limb Hovement and Location 

Definition: Discrimination of lirrb movement and location 1s the capability to 
sense the rate and direction of movement of a lir.:b and to identify its fina1 
location without visual cues. 

Characteristics: With training, blind positioning movements can become 
reasonably accurate. A blind positioning movement is one in which an 
individual moves a hand or foot in free space from one designated location to 
another without benefit of visual cues, such as reaching for a control device 
when the eyes are othen-/ise occupied. Accuracy is greatest for positions 
directly in front of the operator. The follo\,/ing table illustrates the 
decrease in accuracy in terms of the average distance of hits from the center 
of targets positioned at various positions with respect to an operator. 

Left Right 
1350 900 450 00 450 900 1350 

2.8" 2.4" 2.6" 1.8" 2.2" 2.4" 3.0" 450 up and outl'lard 

2.6" 2.4" 2.2" 1.1" 2 .,11 
.t. 2.2" 2.5" shoulder level 

2.8" 2.2" 2.0- 2.0" 2.0" 2.4" 450 dOHn and outl'lard 

Tests related to discrimination of limJ movement and location were performed 
by Skylab astronauts but the results were inconclusive and difficult ~o 
interpret. 

Limiting Factors: Factors that tend to limit the accuracy of discrimination 
of limb movement and location include: 

e Position of target relative to subject (as shown in the above 
table) 

o Posture and orientation of subject (Hhen an individual is sitting 
or standing on ~ tilting platform, as opposed t~ sitting on a level 
seat, inaccuracies increase rapidly and non-uniformly.) 

• Training 

Comments: This capabil,ty does not appear to be a pacing factor in the 
selectlon of man fOI' specific roles in space. 

MCDON~LLDOVOL~ 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Sensory/Perceptual Capabilities 

HUMAN CAPABILITY - Detection and Discrimination of Angular Acceleration 

Definition: The capability of detecting the onset of angular acceleration and 
changes 1n the magnitude of angular acceleration 1s usually defined in terms 
of the physiological threshold which is the smallest ~mount of angular 
acceleration, or a change therein, that can be perceived by an individual. 

Characteristics: Under ideal conditions, the limits of perception of angular 
mot1on (angular acceleration) are dependent upon-two factors: (1) the angular 
acceleration applied; and (2) the time over I'lhich the angular acceleration is 
applied. In general, for an angular acce1era~ion to be sensed by the 
horizontal semicircular canals, the product of the acceleration and the time 
of application of the acceleration must be equal to or greater than 
approximately 2.5 degrees per second. Thus, if a oerson ''Iere subjected to a 
horizontal angular acceleration (yaw) of 2.5 degrees per second2 fOl' a 
1-second period, he would barely be able to perceive angular motion. If, 
however. the angular acceleration were 5.0 degrees per second~, it would 
require only 1/2 second of this acceleration to enable the person to perceive 
angula~ motion. On the other hand, if he were subjected to a 0.25 degree per 
second acceleration, it would require at least 10 seconds of this 
acceleration for h1m to be able to perceive motion. This concept is referred 
to as t~u1der's lalo.. and 1n equation form is 

aT = 2.50 /sec. 

The absolutely minimum acceleration that can be perceived by the horizontal 
canals, when a theoretically infinite time of application is allowed, is equal 
to 0.0350/sec. 2• It is generally believed that the ~ertical semicircular 
canals are s~mewhat more sensit1ve than the horizontal, and under those 
circumstances 

aT 2.5° /sec. 

for the vertical canals. We must always remember, however, that '~ulder's 
constant (2.So/sec.) holds true only under certain ideal conditions (i.e., 
in sltuations similar to the experimental conditions under which Mulder's data 
were obtained). In real-life s1tuations the threshold ~ay varY considerably, 
depending upon the state of arou~a1 or upon the wotivatlons of the lndividual. 

Limiting Factors: Factors that can influence the sensitivity of detecting the 
onset of and changes in angular acce1eratlon include: 

Q Which semicircular canals (horizontal, vertical, frontal) are 
st1mu1ated 

Q A previously applied anguldr acceleration 
o The presence or absence of ,10n-labyri nthine cues. 

Corrrnents: The capability to detect and discriminate the cnset and magnitude 
of angular accelerations is involved in the use of the MMU (Manned Maneuverlng 
Unit) and similar devices. Angular acceleration sensitivity I'/ould not be 
expected to be cha1lenge~ by any rol~ of man in sPJce operations. A more 
COr.Jr.1on concern of man's involverrent with angular acceleration is the 
detrimental effects of excessive angular accelerations. 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Sensory/Perceptual Capabilities 

HUMAN CAPABILITY - Detection and Discrimination of Linear Acceleration 

Definition: The capability of detecting the onset of linear acceleration and 
changes 1n the magnitude of linear acceleration is usually defined in terms of 
the physiologlcal threshold: the smallec;t amountor linear acceleration, or a 
change therein, that can be perceived by an individual. 

Characteristics: The absolute thresholds of linear acceleration sensitivity 
(otoJlth tunctlon) are measured in two ways: 1) a change of 1.5 degrees in 
the direction of linear acceleration acting upon the otolith organs can be 
perceived under ideal conditions; and 2) a change of 0.01 g (9.8 centi~tsrs 
per second per second) in the length of the linear acceleration vector acting 
upon the otolith organs has been reported to be perceptlble. 

Limiting Factors: Factors whicn can influence the sensitivity of detecting 
the onset of and changes in linear acceleration include: 

• The original directlon of the stimulus • 

o The original strength of the stimulus. 

o The status of the receptors with respect to adaptation. 

Comments: The capability to detect and discriminate the onset and Magnitude 
of l1near accelerations is involved in docking procedures and similar 
operations. linear acceleration sensitivity would not, in all likelihood, be 
challenged by nny role selected for man in space operations. A more common 
CClcern of man's exposure to linear accelerations is the detrimental effects 
the supra-threshold Gx• Gy , and Gz accelerations associated with 
launches, l~ndings, and spacecraft tumbling. 
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HUAA~1 CAPAtHLITY DATA 

CAPABILITY CATEGORY - Sensory/Perceptual Capabilities 

/ , 

HUMAtl CAPABILITY - Detection and Discrimination of Vibration 

Definition: The capability to detect vibration and to discriminate among 
var10US v1bratory frequencies and amplitudes may be defined as the conbinat1on 
of frequency and amplitude at ''Ihich repeated tactile stimuli cease to be 
identified as discrete events and are sensed as a continuous (vibratory) 
sensation. 

Characteristics: Although the perception of locally applied vibratory stimuli 
1S consldered to be a cutaneous sense, a part of the vestibular apparatus, the 
sacculus is thought to participate in the perception of whole-body vibration 
exposures. The t~rcsho1d for vibr~tions applied tangentially at the finger­
tips is approximately 10 Hz at 10- G and 800 Hz at 0 3 G. Whole-body 
vibrations become barely perceptible at about 2 x 10-~ G at frequencies 
between 3-7 Hz. The threshold of-perception rises rapidly for frequencies 
lower than 1 Hz and higher than 10-Hz. 

Limiting Factors: Factors which can influence the sensitivity of detection 
and discrimination of vibration include: -

o Amplitude and frequency of the vibratory stimuli (discussed under 
"Characteristics") 

o Direction of vibratory stimul1 with respect to the body surface 
being stimulated 

Co~ents: The capability to detect and d1scriminate vibration is generally 
lnvolved in humJn performance; it is nct, however, a capability that would be 
emphasi:ed in assigning human roles in space. Of more interest to man 1n 
space is the effects of vlbrati'on on human performance. 

/ 
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HUw\U CAPABILITY DATA 

CAPABILITY CATEGORY - SensorY/Perceptual Capabilities 

HUMAN CAPABILITY - Detection of Heat and Cold 

/ 

Definition: Heat and cold are detected by sensors in the skin which respond 
to an lncrease or decrease in the skin temperature in that area. The 
threshold for temperature detection is the smallest rise or fall in ~­
perature that can be detected. 

Characteristics: The adequate sti~ulus for both warmth and cold is heat. 
t01d is not a positive quantity. and temperature does not have the dimension 
of energy. The threshold stlmulus for cold receptors is a fall in temperature 
at the rate of O.004oC per second and, for warmth receptors. a rise of 
O.OOloC per second. both continuing for three seconds. The thermal sense 
organs record not the temperature of objects. but the temperature of the skin 
at the depth at which the receptors are situated. Hence. they are stimulated 
by internal heat as well as by the heat of the environment. The most im­
portant temperature is the temperature of the skin. Objects having a tem­
perature close to the physiologic zero. i.e •• ihe temperature of the skin, 
elicit neither warmth nor cold sensations. On the other hand, even wann air 
falling on wann skin, such as with fever, arouses sensations of cold. 

LiMiting Factors: Factors ~hich tend to influence the sensitivity of heat and 
cold detectlon include the follO\ting: 

o Area of the body stimulated 

o Pre-stlmulus skin tem~erature 

o Adaptation 

Co~nts: Some space station operations may benefit from man's ability to 
detect temperature changes as Hell as temperature quality and quantity; these, 
ho ... ·ever. would customilrlly be unplanned situations and not the type that would 
define a role for man in their conduct. Hore cor.:monly, interest is centered 
on man's ability to tolerate temperature changes rather than his detection 
threshold. 

" 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Sensory/Perceptual Capabilities 

HUMAN CAPABILITY - Detection and Discrimination of Odors 

Definition: The ability to detect and discriminate odors is a function of the 
olfactory mc~brane which lies in the superior and posterior part of the nose. 
It is stimulated by substances in the air which are volatile. at least 
slightly water soluble. and iipid soluble. In order to reach the olfactory 
merrobrane most substances must be drawn into the nose \'11 th purposeful 
inhalation which is greater in volume and flow rate than normal resting 
respiration. 

Characteristics: Absolute olfactory thresholds vary considerably. depending 
upon the method of ~easurement. but agree in indicating very high 
sensitivity. For example. artificial mus~ can be detected at a concentration 
of only 0.00004 mg. per liter of air and mercaptan at 0.00000004 ~g. per liter 
of air. Although the threshold concentrations of substances tt.at evoke smell 
are extremely slight. concentrations only 10 to 50 tires above the threshold 
values evoke maximum inte~sity of smell. This is in contrast to most other 
sensory systems of the body, in \'1 hi ch ranges of detection are very 1 arge, 
50.000 to 1 in the case of the eye and even much greater in the case of the 
ear. 

It appears, therefore, that the smell sense is concerned more with detecting 
the presence or absence of odors rather than \O/ith quantitative detectlon of 
their intenslties. S.'llell can adapt within a few seconds to a fm'l ~lnutes 
until it is alnost extinguished. After adaptation has taken place, the 
s~nsitivity of the olfactory cells returns gradually to normal over a period 
of many minutes. 

limiting Factors: ~actors which tend to limit the sensitivity of odor 
detection and dl scrmination I nclude the follo\"1i n9: 

It Uature of the stimuli 
o ~1ethod of stimulus presentation 
o Condition of the olfactory epithelium 
o Adaptation 

Co~ents: The capability to detect and discri~inate odors is useful in the 
detectlon of contaminants in air. water, or food; and. in some instances. in 
identifying substances by smell. The use of thlS capability by man in space 
would. however, be a chance event; it \'lOuld not be a part of planned l:1ission 
operatl0ns. In addition odor detection is easily extinguished by adaptation 
or overload; discrlmlnation of indivldual stimuli in a mixture is poor; 
detection is non-dlrectional, and significant training is required for 
accurate identiflcation. 
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HUMAN CAPABILITY DATA 

___ ~CAPABILITY CATEGORY - Intellectual Capabilities 

HUMAN CAPABILITY - Cognition 

Definition: Cognition may be defined as awareness. immediate discove~ or 
rediscove~. or recognition of information in various forms: comprehension or 
understanding. Information acted upon by the human element can be in the form 
of figures, symbols, semantic units. behavioral units, classes. relations, 
systems and transformations. 

Characteristics: Th~ terms cognition and perception overlap to some degree. 
Both perceptlon and cognition are concerned with input information from 
sensory sources. Perception, hO\"ever, is concerned primarily with sensory 
properties and \-lith the cognition of figural units. The complete cognitive 
process includes operation with symbolic, semantic. and behavioral concepts as 
well. Perception is midway along a continuum extending from sensing at one 
end. to thinking at the other. It is the process of organizing and 
interpreting sensory inputs based upon past experience. Cognition involves a 
broader range of mental activity including awareness of semantic meaning and 
abstract concepts. 

Limitin2 Factors: Factors which tend to change the effectiveness of cognitive 
activltles lnclude: 

o State of arousal 
o Sensory overload 
o EnvlronMental stresses 
o Fatigue 

Co~ents: Planning and scheduling activities, monitoring flow patterns, 
target recognitlon, understanding speech patterns, etc., are examples of the 
cognitive operations that wil 1 be required in future space systems. In the 
transmission of speech,for example, peak clipping of the signal causes 
considerably less intelligibility loss than center clipping. Understanding 
the relative level of cognltive capabilities of humans in recognizing 
information in alternative forms permits the system designer to select the 
most efflcient deslgn approach for meeting mission objectives. 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Intellectual Capabilities 

HUMAN CAPABILITY - Menory 

Definition: Memory is defined as the retention or storage, with some degree 
of availability of information in the same form in which it was COmRitted to 
storage and in connection with the same cues with which it was learned. 
Memory storage, however, is an essential condition or determiner of 
cognition. Memory is distinguished from cognition per se by the ability to 
recall information havi ng once been exposed to the i nfonnation. 

Characteristics: Information storage is of two distinct types: long-term and 
short-term. Short-term memo~ storage capacity is generally limited to about 
eight individual items. The human generally organizes stored information in 
terms of sensory modality (visual, audito~, etc.). The most significant 
storage problem occurs because of the potential interference between old 
("held") information and new items that present themselves during the holding 
period. This accounts for the frequent "reversal errors" in infomation 
processing. As a general principle, human memo~ is more effectively utilized 
as a means ~f orienting and sequencing information than as a deposito~ for 
i so 1 ated data or syr..bo 1 i c i terns. 

Limiting Factors: Factors which tend to change the effectiveness of memory 
functions incluae: 

o State of arousal of the human system (alertness) 
o Environmental stresses 
o Organization/disorganization 
o Cumulative disruption 
o Fatigue 
o Traini ng 

Co~ents: Memory will be e~sential in long duration space missions for 
procedures, target characteristics, etc. 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Intellectual Capabilities 

HUMAN CAPABILITY - Divergent and Convergent Production 

Definition: 

• Divergent Production - is related to creative imagination. In this 
process, ltecS of information are retrieved from memo~ storage and 
used to generate a number of varied responses. Divergent 
Production can be defined as the generation of new inforMation from 
given information where the emphasis is on variety an~ quan~ity of 
output from the sa~e sourc~. 

o Convergent Production - is the derivation of logical deductions or 
at ledst co~pel1ing inferences leading to a unique answer or 
conclusion. In convergent production the problem can be rigorously 
structured, ann is so structured, and an answer is forthcoming 
without much hesitation. 

Characteristics: The conception of divergent-production abi11t;es came about 
through investigation of certain hypotheses regarding the c~mponent abilities 
most relevant to creative performance. A factor of fluer.cy was expected, and 
three klnds of fluency were found; a factor of flexibnity was expected, alld 
two kinds !',ere found; and an expected factor of originality materialized. 
Later, in a study of planning abilities, a factor of elaboration was expected 
and was demonstrated. 

But factors of fluency and flexibility have been found in nonverbal tests as 
\lell as in verbal tests. Search among nonverbal tests revealed the parallels 
essentially complete in figural and symbolic areas of lnformation alongsice 
those in the semantic catego~. The three kinds of fluency are concerned with 
the products of units, relations, and systems; the two kinds of flexibility 
are concerned with classes and transformation, into which catego~ originality 
fits; and elaboration has to do with i~plications. 

Utillzation of DP abilities is observed in tasks that involve the production 
of information, in quantity and in variety. and sometimes with alterations in 
that information. Experimental work has demonstrated the forms and conditions 
needed for optimal utilization of these abilities. 

Limiting Factors: The limiting factors which are associated with divergent 
and convergent production are similar to those associated with other 
intellectual capabilities. 

Co~ents: Divergent production operations are required in problem solvlng, 
development of alternative courses of action, and improving in emergencies; 
convergent productlon operations are required for troubleshooting tasks. 
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HUMlUJ CAPABILITY DATA 

CAPABILITY CATEGORY - Intellectual Capabilities 

HUMAN CAPABILITY - Evaluatfon 

Definition: Evaluation is defined as a process of comparing a product of 
information wi th kno~m information accordi ng to logical criteri a and maki ng a 
decision concerning criteria satisfaction. 

Characteristics: It has been found that evaluative abilities may be neasured 
by tests that call for either absolute judgment of the yes-no, disjunctive 
type or relative judgments of the "I'/hich-is-best" type. The forner probably 
has the advantage of providing better experimental control of what is measured. 

One of the most important issues when considering the use of this capability 
in system operations is the definition of the kinds of criteria for judgment 
that are required in the tasks to be accomplished. The more precise .criteria 
of identity, consistency, and similarity work well in some instances; it is 
not certai n whetl1er they can be universally appl ied aoong the r.lany different 
task applications. In experimental studies. tests with looser criteria of 
various kinds have been variously successful. indicating some breadth of 
generality with respect to criteria for evaluation. No criteria of an 
aesthetic or ethical character have bepn applied. It is possible that 
aesthetic or ethical judgments involve new dimensions of evaluative behavior. 

Limiting Factors: Limit1ng factors which are associated with evaluat10n are 
slml1ar to those associated wlth other intellectual capabilities. 

Comments: Evaluation operations will be essential for assessing the level of 
normal or abnomal perfonnance of systef.l clements and, through comparative 
judgments of "greater than." "less than," or "equal to," to direct system 
operations 1n the most exped.itious manner. 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Psychomotor/Hotor Capabilities 

HUMAN CAPABILITY - Production and Application of Force 

Definition: 1.4.uscle force is a function of the following. 

o r~uscle Tension - Huscle tension is maximum ,-,hen the length of the muscle 
is greatest and momentarily there is no change in length. tljuscl e force 
decreases as the muscle shortens and as its rate of shortening increases. 

o Mechanical Advantage - Power is applied at the point of muscle attachment 
(i.e., the long bones are the lever arms, and the joints are the 
fulcrums). Thus, for example, when muscle force of extension 1S applied 
at the elbo\'l, pOI-fer is greatest "Ihen the elbow- is flexed. HO\'lever, 
optimum mechanical advantage occurs at the midpoint of full elbow travel. 

Optimum mechanical advantage more than compensates for the shortened 
muscle, therefore providing maximum strength at the midpoint. Human 
muscles in maximum contraction can exert considerable force (as much as 
1000 Ib, 453 kg), but such forces cannot be fully utilized directly 
because all muscles work at some mechanical disadvantage, thus reducing 
output but increasing rate of movement. 

The production and application of muscle force also includes the fo1lm-.fing 
aspects: 

o Strength: The maximum force that muscles can exert isor.lctrically in a 
single voluntary effort. 

o Isometric strength (static): The maximum force that muscles can exert 
when muscle length remains constant during contraction. 

o Isotonic strength: The maXlr.lum force that r.lUscles can exert '-/hen muscle 
tension is kept constant. 

o Concent"i e force: The force exerted \-/hen the musel e is shortened against 
an external resistance. 

o Eccentric force: The force exerted uhen the nuscle lengthens passively 
against an external force. 

o Effort: Physiological strain, both static and dynamic. 

o Work: Dynamic effort (i.e., force times displacement). 

o Endurance: The ability to continue \lork or exert force. 
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Characteristics: Data are available relating maximum muscle strength to a 
number of factors including body build, body position, limb p~sition, and age. 
Values of interest may be found in ~ost human factors design handbooks and are 
too numerous to be repeated in this document. Selected examples are given.- -
below: 

0 Hand grip strength 

0 Back lift 

0 Finger pull 

• Forearm 1 i ft 

0 Benc.:h 

0 Pedal force 

0 lever Force (seated) 

0 lever Force (standing) 

o Hand Cranking 

e lifting Forces 

o lifting and Carrying 

134 1bs (mean of U.S. Air Force, 
personnel) 

male 

350 1bs (mean of males) 

8 1bs 

60 Ibs 

21 Ibs 

60 lbs (from a seated position) 

45 lbs (fore-aft), 18 1bs (lateral) 

130 Ibs (away from body). 120 lb~ (toward 
body) 

40 inch-1bs {plane of cranking perpendicular 
to operator1s frontal plane, 35 inch-lbs 
(plane of cranking parallel to operators 
frontal plane) 

66 1bs (floor level to knuckle height) 62 
lbs (knuckle height to shoulder helghtj. 60 
lbs (shoulder height to arm reach) 

95 lbs (36 inches above floor) 
75 1us (48 inches above floor) 
50 1bs (60 inches above floor) 

I) floving large Objects 150 Ibs (with no structural push-off support) 
149-194 lbs (with structural push-off 
support) 
(The value is dependent upJn the distance of 
the object from the support and on the 
height of the force plate.) 

o Endurance Haximum muscle force can be exerted for no 
longer than approximltely 30 seconds, after 
which it begins to decrease rapidly. At one 
minute it is about 60% of maximum; at 2 
minutes, about 40%; and at 4 minutes, 
slightly better than 25%. After four 
mi nutes endurance decl i nes more slOl'lly so 
that at 10 minutes it remains at about 18% 
of maximum. 

Limiting Factors: Factors that can aff~ct the maximum amount of force that 
can be proauced by muscular activities Include the fo1101,,;ng. 
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• Age and sex 

• Body build 

o Thermal envi ronment 

o Acceleration 
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In general. adult females are only about 
two-thirds as strong as adult males. 
In tenns of age. indlviduals have maximum 
strength between the ages of 30 and 40. 
Usually there is a rapld development in 
strength between the ages of 13 and 19, and 
this development slows somewhat between the 
ages of 20 and 25. This is followed by a 
slower increase in strength to the maximum 
betwf ~,~ 25 and 30 years of age. People 
begln to lose about 10 percent of their 
strength by age 40, 15 percent by age 50, 20 
percent by age 60, and at least 25 percent 
by age 65. 

As a rule. people with larger body builds 
have more strength, although less powerfully 
built individuals may require less oxygen 
for a given task requiring strength. 
Slender persons often are best at performing 
rapidly fatiguing tasks involving strenuous 
exercise. Physique does not necessarily 
correlate \,/ith the abl1 ity to perform 
moderate exercise. Uormal persons usually 
show a 30 to 50 percent increase in strength 
after about 12 weeks of training. 

Strength is affected by health. diet, and 
the use of drugs, and strength often varles 
with diurnal conditions (e.g •• people 
usually have maximum strength at about 
midmorning). 

Heat ~ffects strength adversely (e.g.,when 
temperatures exceed 850F (290C), 
especially under conditions of high 
humidity). In general, however, low 
temperature has little effect except in 
terms of body mobility and flnger 
dexterity. When individuals become 
acclimated to a hot environment, they 
generally gain back a great deal of their 
normal strength. 

Although accelerations up to 5 g's do not 
affect strength, endurance is affected. Arm 
movements are effective up to about 6 g's, 
and wrist and flnger mOVEMents are effectlve 
up to about 12 g's. Practical 
considerations lnclude the following: 
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o ~motiona1 Condition 

Forces acting against the direction of 
acce1eration are decreased. 

Forces acting with the direction of 
acce1 erations a,'e increased. 

Forces acting perpendicular to the direction 
of acceleration are least affected. 

Strength may increase under stress (i.e., 
fear, panic, rage, or even excitement). 
However, skill and accuracy generally are 
degraded. 

It has been demonstrated that, with 
hypnosis, pull with forearm flexion may 
increase as much as 26 percent. Increases 
may also occur when the maximum effort is 
preceded by a pistol shot or when the 
subject shouts during the effort. 

Gen~rally speaking, psychological rather 
than physiological factors d~ermine maximum 
strength in the "real world". . 

It has been noted that wnite-collar Horkers 
generally are about 10 to 20 percent weaker 
than manual or blue-collar workers. The 
implicatiQns is that the latter are used to 
a rougher and more strength-demanding 
environment. 

Comments: Two of the more important factors in determining the amount of 
force that an individual is able to exert in a given situation are body 
position and limb position. 

o Body position 

MCOONN",L'-oouaL~ 

When individuals are not restricted in terms 
of body position and are provided \lith 
appropriate supporting and/or anchoring 
facilities, they generally will assume a 
position from which they can apply their 
maximum forr.e capability. However, this 
does not necessarily mean that this is 
always the best position for maintaining 
lesser force applications for extended 
periods of time. 
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• Limb position 

" 
MCDONNELL nOUGL~ 

Since there is usudlly a reciprocal response 
during force applications (e.g., lifting, 
pushing, and pulling), it is important to 
provide appropriate support and anchoring 
conditions, such as a flat, leve: floor or 
deck; ~ solid, stable seat and seat 
backrest; or a footrest. 

Both limb position and direction of force 
application are iMportant variables in 
determining the amount of force an 
individual can apply. Handgrip forces 
generally are greater if the gripping task 
is close to the 1ndividual's body than if it 
is at arm's length. Arm strength is greater 
if the individual can push against a 
back rest or footrest. Haximum 1 eg force 
occurs when the individual's knee is 
slightly bent (in a seated position with the 
leg just "short" of maximum extension and 
with the ball of the foot at approximately 
the same level as the individual's 
buttocks). Haximum am force occurs when 
the force can be applied approximately at 
shoulder level. For the seated individual, 
pull force is greatest when the object is 
positioned at nearly naX1mum arm length; 
push force is greatest when the object 1S 
positioned at about half the full arm 
extens10n. 

Lifting capabilities depend on the size, 
shape, and gripping characteristics of the 
package being lifted and on the distribut10n 
of weight within the package. For example, 
a package that is too large to allow the 
individual to ~/rap his 0" her ams around 
it, to grip it securely, or to offset poorly 
distributed weight (the package's c/g 1S too 
far from the individual's own c/g) cannot be 
1 i fted or earn ed ~Ii thout the probabi 1 ity 
that the individual will drop it. will lose 
his or her balance, and/or will suffer 
strain and possibly some semlperrnanent or 
permanent i nj ury. 

Selccted strength eapabilitles for various 
lifting and force-application sltuations are 
provided on the followlng pages. Since some 
of the data pertaln only to adult males. a 
good rule of thur:1b for applying the 
guidel1nes to females is that fCr:1ales 
genera l1y are about one- thi rd \'leaker than 
males. 
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These factors become all-important in the almost frictio~less environment of 
space. Handholds, footholds and body restraints become the key to any task 
requiring strength application. Strength values determined in a one-g 
environment must be extrapolated with caution to the wJightless environ~ent 
since similar anchoring and body positioning is often difficult to obtain. A 
compendium of values is not available for the zero-g situation.,,-

Of course, moving lar!i~ objects in space is much more simple. No limits have 
yet been set on the mass of an object l',hich is practical to maneuver and 
translocate in space. Size, restricting both visi;ility and positioning, 
appears to be much more of a constrai nt than mass. 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Psychomotor/Motor Capab11ities 

HUNAN CAPABILITY - Control of Speed of Motion 

Definition: The most easily identifiable and measurable manifestation of 
control of speed of mot10n is reaction time or respon3e time. Th1S czpability 
is generally considered at two levels. Simple reaction time 1S the shortest 
t1r.1e betlleen the moment a sensory receptor 1S stimulated and the tir.le SOr.1e 
body elem~nt reacts. The measurer.lent of slmple reactlon tlme, however, 
typically involves a def'I~~c! response, such as pressing a key, which allows a 
comparison of the reactio~ time of various sensory channels to be included in 
he r.leasurenent. Complex reaction tlme is a demonstration of the capability ln 
which infolr.1atlon-processing time is included in the r,.easurement. Customanly 
the subject is asked to recognize one Stir.1Ulus from ar.1ong sevel'al and to 
respond by selecting one of several response modes. 

Characteristics: Response t1me may be considered a function of several 
factors, 1 nclUdl ng: 

• The sensory chann€l through which the stimulus is in1tiated. 

8 The signal or stimulus characterlst1CS. 

o The complexity of the signal. 

• The signal rate. 

G Whether anticipatory provisions are present. 

• The response mode, e.g., the body member used. 

Tests involving key response have demonstrated the redctlon times for various 
input chC1nnels (e.g., hearing, 0.15 sec; touch, 0.16 sec; and sight, 2.0 
sec) • 

The follD\~ing estiMates have been made regarding the several components of a 
conplex reaction. T1me: Stimulus detect10n and neural transit ti~e, 
0.1 !,ec; brain recognition time, 0.4 sec; decisio r,-'I1aking tme. up to 
4.0 sec; and motor respor.se time, 6.0 sec. 

Ot~c~ generali:ations of interest include the following: 

o It generally takes about 20 percent longer to respond WIth the fe't 
than with the hands. 
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o The preferred hand is usually about 3 percent faster than the 
nonpreferre.d one. 

o Everyone has a refractory period of about 2 to 3 seconds, 
regardless of a stimulus demand rate, which means that a second 
stlmulus arriving within 0.5 seconds will be treated together wlth 
the fi rst. 

o Simple reaction times usually can be reduced by as Queh as 40 
percent by providing an alerting signal. 

Limlting Factors: Factors which tend to limit control of speed of motion and 
alter response time include the following: 

• Signal intensity: The greater the intensity of the signal, the 
faster will be the reactlon time. 

o Signal anticipation: ~hen the signal is anticipated, reaction time 
is typically shorter. 

• Practi ce: Reacti on time tends to be reduced \'1ith practice. 

o Pacing: If operators can set their own pace, they can often react 
faster to known signals. 

" Signal quality: Operators generally can react faster to a 
high-pitched sound, a brighter light, a larger visual target, a 
lrnger-duration slgna1. and a signal emanating from a partlcular 
1 ocati on. 

" 
0 

0 

0 

0 

" 

Li~elihood of signal appearance: The least likely signals will 
have tre longest reaction times. 

Signal fonnat: \4hen slgna1s are arranged sequentially or are 
meaningfully groupe~. reactlon time is typically shortened. 

Overload: Although an operator can adjust to excessive slgna1 
rates by relying on mer.10ry for short bursts. total response fallure 
may occur when rates are too high for' too long. 

Number of response choices; e.g., 1 choice, 0.20 seconds; 7 
choices, 0.60 seconds. 

Reach distance. 

End point control and preciSion (in contradistinctlon to the end 
pOlnt be1ng autom~tically controlled). 

o Added manual force requlred by response. 

o Distractlon. 
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• Physical and psychological stress. 

o Workplace constraints. 

• System feedback. 

, ----- ----

Comments: Control of speed of motion, response time, and reaction time are 
essential elements in crew tasks. In general, this capability has its most 
significant impact on task design. So~e operations, however, which involve 
extremely brief response times would be inappropriate for man's involvement. 
These usually must be identified on a function-by-function basis. 

.' 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Psychomotor/Motor C~~abilities 

HUMAN CAPABILITY - Control of Volunta~ Responses 

\-

Definition: Voluntary control of movement is part of the perceptual-~otor 
process lnvolving coordination between ~ne or more sensors, the brain, and the 
musculoskeletal system. Voluntary movements are generally classified as 
tension movements or ballistic movements. Tension movements are slow intense 
movements created by the contraction of antagonistic muscle5 operating one 
against the other with unequal tension. Ballistic movements are free and 
generally ~ore rapid, since the simultaneous operation of an~onjstlc mu~les 
~ \!It'na 'l'lt'fl'n mum. 

Characteristics: Because of the complexity of voluntary response control, few 
specific tests and ~easurements can be devised which accurately deflne lts 
characteristics. The following generalizations may be used to better 
understand the capacities and limltations of the capability. 

o Sensorimotor control between any of the sensory chann~~~~-~ 
hands is generally more accurate and reliable than that between the 
sensory channel and the feet. 

• Hand and arm movements coordi nation is better \~hen these movements 
are close to the body and sym~etrical. 

• Arm movements that progress forward and/or away from the body are 
More accurate than arm movements that are directed toward th~ 
body. The same is true of leg movements. 

o Right-har.ded individuals are more proficient at making clockwlse 
moveMents than at Making counterclockwise mover.~nts; left-handed 
individuals are just the oppcsite. However, all people make 
clockwise movements better with the right hand, and 
counterclockwise movements better with the left hand. 

o Generally, a person can rotate hi s or her hand and \-/rl st more 
precisely in one direction t~an another. 

o Multiple arm and/or leg translato~ movements are more efficient 
when they are similar, i.e., moving the left hand to the left or 
forward I'/hile at tne same time movlng the rlght hand to the right 
and fon~ard. 

o A person can apply force more accurately to two 5iPlultancously 
operated controls when the controls are located symmetrically wlth 
respect to the body and uhen the directions of f,lOVement are simllar. 
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• Uhen separate and different kinds of controls are operated 
simultaneously, there is a high probability that the operation of 
one or another control will suffer in terms of operator input 
efficiency. 

o Combined movements, suc:, as trying to push and precisely rotate a 
control at the same time, almost invariably introduces inaccuracy 
in one of the motions. 

• Excessi ve di spari ty beth'een b/o manual operati ons often resul ts in 
a complete breakdown of the sensorimotor response of one of the 
acti vi ti es. 

c Continuous feedback is desirable in order for most control 
movements to remain optimiled. that is to maintain an accurate 
direction, force appllcation, and/or rate of movement. 

• 

• 

On the basis of proprioceptive feedback, individuals judge extent 
of movement more accurately than movement lorce applied, and force 
more accurately than duration of movement. 

Although visual control is more ir~portant while an individual is 
learning a new perceptual-Motor task, as performance becomes 
habltual, proprioceptive feedback may become the more important 
feedback resource. 

o When less than 0.5 second per movel;,.;nt is required, blind movements 
are as accurate as when us:ng visudl positioning. 

o When the rate of moveMent is constant, accuracy diminishes as the 
interval between Movements increases. 

o It takes about 0.04 seconds to develop maximum tension. 

limiting Factors: Factors that tr-nd to affect the speed and accuracy of 
voluntar), response control include the folloHing. 

oMenta 1 set. 

o Practice and training. 

o Motivation. 

o Physlcal characteristics of the \'lOrkplace. 

o Envlronmental factors. 

o Fatlgue. 

Coments: Tasks reqU1rlng highly reflned and coordlnated MOVefl1ents are most 
often a 11 ocated to man because of the techn; ca 1 dl fficul ty and cost of 
produclng machines that dre capable of slmilarly refined moven~l1ts. This 
capability is the governing factor or is signlflcantly involved in the 
a5signment of man to numerous roles in space opcratlon. 

/ 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Psychor.lOtor/f1otor Capabil ities 

HUMAN C~oABILITY - Continuous-Adjustment Control (Tracking) 

Definition: In continuous adjustment or tracking tasks some input specifies 
the deslred output; this may be constant or variable. The input is typically 
received directly from the environment. If the input is sensed mechanically, 
it may be presented to operators in the form of signals on a display. The 
input signal is commonly referred to as a target. and its movement is called a 
course. The target can usually be described math!matically and shown 
graphically. The input, in effect, specifies the desired output of the 
system. The output is usually brought about by a physical response with a 
control mechanism. In some systems output is reflected by some indication on 
a display commonly called the controlled element. 

Characteristics: In continuous-adjustment control tasks, control 
ettectlveness depends on, at least, the following factors. 

e The ability of the operator to anticipate what is going to happ~n 
when he provides input to the system. 

o The ability of the operator to predict what will happen when he 
makes specific system inputs. 

o Feedback on a timely basis about \-that is happening as the operator 
makes control inputs. 

o How much dlfferentlation. integration. and/or algebraic addition 
the control and display task requires of tfie operator. 

o How well the specific control and display devices provide 
compatible relationships between the operator's sensory. perceptual 
and motor and physical characteristics. 

Two types of tracklng tasks are generally recognized: 

o Pursuit tracking - A tracking task in which the operator's control 
and display system provides separate indications for input and 
output; i.e., the operator makes inputs into the control and then 
to a display element to follow a target. 

8 Compensatory tracking - A tracking task in which input and output 
signals are presented to the operator in terms of a d,fference 
beb/een the system and the operator's control inp,Jt. 

/ 
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Limiting Factors: Factors which can affect the effectiveness of the control 
lnclude the following: 

• 
0 

0 

0 

0 

The duration of the delay between inputs • 

The amount of noise in the system. 

The relationship beb/een control and display direction and rate of 
motion • 

Controller force requirements. 

Relationship of the position, direction, and range of movement of 
the contro11er with the operator's musculoskeletal system and 
operating posltion. 

o The number of controls requiring integrated operatlon. 

• Operator's fatigue. 

Comments: Humans have proven themselves most competent and efficient in 
certaln continuous-adJustment tasks. such as rendezvous and docking 
activlties. particularly "/hen sufficient preview of the "track ahead" is 
available. A blanket statement cannot be made regarding the allocation ~f 
continuous-adjustment tasks to man or machine. Each situation should be 
judged withi n itself to determine 1 f the factors are present \,/hich lIill pemi t 
man to perform effectively. 
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HUMAN CAPABILITY DATA 

CAPABILITY CATEGORY - Psychomotor/Motor 

HUMAN CAPABILITY - Ann/Hand/Finger Hanipulation 

Definition: This human capability describes the ability to accomplish tasks 
lnvolvlng flne, detailed. and precise movement of the fingers, hands and arms. 
such as those used in handling small items and specimens. assembllng small 
parts. and in fine adjustment of controls. 

Characteristics: Because of the varied nature of manipulative movements. no 
quantitatlve data have been developed concerning their characteristics or 
limitations. The following generalizations have been made regarding finger 
dexterity and control operation accuracy. Although certain people develop 
considerable dexterity with practice. the average person is able to perform 
certain types of control manipulations more accurately than others. 

• Rotatlunal manipulation is more accurate than sliding manipulation 
or movenent of thumb or finger wheels. although the latter is more 
accurate than the sliding manipulation. 

o Rotation in the horizontal plane is generally more accurate than 
rotation in the vertical plane. alt"')ugh the horizontal accuracy 
depends on the ability of the operator to rest his or her hand on 
the adjacent surface. 

o h pencil-sized joy stick is manipulated more precisely than one 
requiring a full fist grip. and the accuracy is increased 
significantly if the operator can rest his or her arm on a nearby 
horizontal surface. 

o An L-shaped handle is more accurately positioned than a round knob. 
such as a doorknob. 

limiting Factors: Factors which tend to influence-the effectiveness of 
manipulative movements include: 

e light intensity. 

0 Temperature. 

0 Training (familiarity with task) • 

0 Alertness/Fatigue. 

0 Design of work area. 

COrTr.lents: Nan's manipulative Skll1s are among his maJor assets \'lith respect 
to hlS role in space operations. tJumerous tasKs, partlcularly those 
associated with the operation of research laboratorles, require manipulative 
Inovements WhlCh would be extremely difficult (if not impossible) and costly to 
automate. 
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HUMAU CAPABILITY DATA 

CAPABILITY CATEGORY - Psychomotor/f.1otor Capabi 1 ities 

HUMAN ~APABILITY - Body Positioning 

Definition: In this context, body positioning refers to setting up the body 
as a work platform in a coordinated fashion. The function includes 
neuro-muscular facilitation, muscular strength, and proprioception. 

Characteristics: The only definitive values that have been developed relative 
to booy posltloni~g are those associated with the limits of body movement from 
various positions. These are termed functional dimension of the body and are 
available in human factors handbooks. Values are customarily presented in 
terms of population percentiles, e.g., 5th, 50th, and 95th percentiles. 

Limiting Factors: Task-associated body positioning accomplished in the l-g 
environment ~il1 be altered significantly in the weightless environment. The 
restraint system, including footholds, handholds, and torso restraints, 
available for the task will, to a great extent, govern the approach taken for 
body positioning. Under certain conditions significant limitations may t'e 
placed on performance because of this dependency on available restraints. 

A second factor associated with extra-vehicular operations is the restrictions 
placed on body posltlOning by the ENU. Rigorous human factors design 
principles must be incorporated into the configuration of any system and its 
components that is a candidate for EVA maintenance or repl~cement 1n order to 
be responsive to the restrictions on normal body positioning. 

Comments: Body positioning and the limitations imposed by the space situation 
mUSt be considered in any allocation of tasks to man which require whole-body 
invol vemel;lt. 
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Interview "lith Owen K. Garriott 
April 10. 1984 

1. Based on your Skylab and Spacelab experiences. what are the lessons 
learned or technology gdPS that should be considered in defining the 
hUman role in future space systems? 

A fairly complete su~ary of my observatlons on Skylab appeared sEveral 
years ago in SClence (18 Oct 1974. Vol. 186. pp 219-226) (see Reference 
33). I have also prepared a summary of SpJcelab I events and lt appears 
in the July 13. 1984 issue of Science magazine (see Reference 34). These 
observations should be of interest to you. Technol03Y has improved froo 
the lessons learned on Skylab and muc~ of it has been built into Spacelab. 

The use of a computer ln particular in Space1ab \-/as very helpful for 
schedul i ng and other types of activiti es. There was no such computer on 
Skylab. 

The Spacelab \-/as not designed to be repalred by the creH because of lts 
short duration misslon. Things dld tall, however, and we had to agaln 
prove that [;lan lias capable of developlng vlOrkarounds and flxlng thl ngs 
"/hen they break. 

2. What have been your observations on the Space Adaptation Syndrome? Can 
the crew maintain their ability to work while experiencing these 
conditions? Can they mentally override the discomfort? 

In ny experlence, not everjone has been subJect to thlS syndrome. For 
example, on Skylab only two indivlduals suffered noticeable effects. In 
any event, hOI'iever, \"hen the crell is gOl ng through thi s time we shoul d 
try to keep thelr \'lOrkload to a mimmum. Physical actlVities are not 
impalred by SAS but r.lental activities do suffer because of the lethargiC 
state that SAS can lnduce untll adaptatlon occurs. ThlS state of 
lethargy can last 2 or 3 days. 

/ 

MCDONNELL DOUGL~ 

- •• '"'· ...... _. ____ r ______ "' __ 

62 

'""'" --~-
-.. -



~ \ , 
I 

I 1 
(rj 

/ 

/ 

, , 

. \. -- 'i 
" I 

, I '\ 
.J • I 

'f ,-' 

I 

!~ 
, f j 

i" 

3. When performing a manual tasK. what did you find to be the preferr~d body 
orientation? Did you use your hands or feet to ground out torques? 

On the general subject of restraints, I strongly recommend the use of 
foot loops which enable the crewmen to have both hand~ free for work 
purposes. \lhi1e \'lOrking, you normally have a check11st 1n one hand and 
are using your other hand to fllP sWltches or whatever. I recommend the 
addi ti on of many more loops for Spacel abo The foot loop'. are nice 
because you can use them for restraint, but \-/hen not in use they lay flat 
and are not an obstruction on the floor. With reference ~o body 
orientat10ns for perfoming tasks, it doesn't really r,latter 1f youlre 
~pside down or not Just as long as you Ire 1n the same orientatlon as the 

panel you' re I'/ork1 ng at • 

4. It has been reported that the deployment of the camera in the Space lab 
Airlock was a difficult operdtion. Is this a task that migh~ be bett~r 
done in the automated mode I'ather than manua 11y? 

f1anual deployment was not bad, the hard part Has latching the 5 or so 
doglegs to secure the hatch (th1S requires about SO lbs of fo~ce to 
accompllsh). ~lth regard to mak1ng lt automated rather than manual, 
"Absolutely not!!". As an example, during a shift change (In Space1ab, 
was coming on and the first order of bUS1ness \/as to deploy the alr1ocl... 
The Shlft gOlng off had 'lnstalled a locklng pln in the dep1oYr.1ent 
mechanism, but didn't pass that informatlon on. Ilhen I attempted to 
crank it I irrmediately felt sonething was \-/rong and had to I.ake up the 
cre~lTilan who went off. If automated, sOr.1ethi ng cou1 d have been damaged. 
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s. In your experience, how realistic are the proposed tfmelfnes for future 
sp4ce station ofssfons; e.g., the COG concept of each person workfng 
9 hours/day. 5 dtys/week? 

Ground prepared pre-~ission tirnelines are so~etiMes good and so~etfnes 
not. tor easy predictable activities like system activations or 
deactivations, flipping switches. or other things along those lines. the 
tf~e1fncs arc good. HO~/ever. tfMelfnes for experir:'ents like fluid 
physics were off bj{ about a factor of three and this uas because the 
experiMent required real-ti~e reactions in order to accomplish the 
experiment. As a result of this the mission specialists had to do what 
they could during the scheduled mission tmes and they had to add an 
extra day Just to finish the experiment. ExperiMents can't always be 
accurately siMulated in advance when dealing with unknown results. Work 
schedule~ for the 10 day mission were good based on 12 hours/day and 
shoul d not be char:;ed. I don't particularly care for 5 daYS/Heck and 9 
hours/day. I suggest scheduling for 9 hours, but having the shifts run 
for 12 hours. f.ly rationale is that you have to div1<!e 24 hours evenly 
either by 2 or 3 Wh1Ch results in 12 or 8 hour shifts respectively. 

6. Do you have any observations on any other limiting factors on hu~~n 
involver,~nt that should be considered when planning future ~issfons? 

I don't have any particular observations relative to hunan li~iting 
factors. Intersocial activities are important for missions like Skylab 
or Space Station. When you Hark in such close quarters it's important 
for the indlviduals to have separate sleep areas so they have a place to 
go to be by the!'1selves. Another i~portant area is that the cre~1 Hho 
works together needs to trdin together. Everyone in the team needs to 
know what ev~rJone's work responsb1lities are and ~mat the person's 
feelings and weaknesses are. For example. tmC has an engineer flying on 
the next shuttle, but very few people 1n the astronaut office know who he 
is. However, he has been working with the crew and the" knOll him, 
hopefully!! Also. schedule 1 hour/day for exercise. 
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7. Can you cite any critical events that have occurred in previous missions 
that fn turn will help define th~ human role in future missions? 

In-flight repair of Skylab not only saved the program from near disaster 

but also was an essential eler.1ent in the coopletion of most of the 
€xperinental objectives. 

(Ed. note - Owen Garriott's article entitled "Si:ylab Report: rtan's Role 
in Space Research", Science, 18 Oct 1984, Vol. 186, pp. 219-226, gives an 
excellent su~ary of the critical events that required hunan 
partlclpation durlng the Skylab olssions.) 

Spacelab as well benefited froo the human presence. A substantial amount 
of the experimental operations and data "Iere saved through the innovative 
naintenance and repair capabilities inherent in the crew. For exaople. 
the High Data Ratc Recorder (HORR) tape transport janoed and was cleared 
by hand. In preparation for flight. no naintenance training for this 
failure was provided. but the crcII was helped by having becot'le far.1i1iar 
with the unit during tralning for a tape change. On the other hand, one 
experiocnt used a sr.1all tape recorder to generate vlsual inages to 
present to one eye in a vestibular test. Although the tape recorder 
janQed, the crew was instructed not to attempt a repair. Postflight 
inspection revealed that the probleM could have been readily fixed. 

The flexibility and innovatl0n represented by having the cre~1 available 
is a resource \ihlCh should be capital ized upon. HO\lever, prefl ight cre\'I 
training should include general famillarization with almost all ooving 
equipncnt iteos • 

/ 
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8. One of the most important issues in designing future mission operations 
is to make proper utilization of human intelligence whether on the ground 
or on orbit. Do you have any comments in this regard? 

Man's presence is important for conducting various types of experiments. 
The crewnan perfo~ing the experiment may not be an expert in the field 
of study for that task., but he is able to interact with the ground-based 
PI's and still be able to obtain good data from the experiment. An 
analogy might be the crewman serving as the end-effector for the 
PI/Remote Hanfpulator. Both Skylab and Spacelab are good exar.lples of 
this type of interactlon. 

9. Are there anY specific aids and/or support equipment that in your mind 
could Significantly increase the effective utilizat~on of human 
intelligence in space? 

Contro 1 sand dl spl ays need vast improver.lents t/hich can better util i ze the 
hu~n. The dynar.lic evolution of software can be lncorporated to provide 
better details rather than the present 2 dinensional TV dlsplays. A lot 
of development is required in thlS area. 

,10. It has been suggeste~ that a dJsplay systern that could pictorially 
pinpoint the crewmvn's/exparimenter's location with respect to the earth 
would be very useful in order to knoH what to do and when to do it prior 
to the target appearing. Is there a need for such a display? 

It is very inportant for the crewnen/experimenter to know where his 
relative position is "lith respect tJ the earth. For example, the ground 
track data at rlission Control "is not available on orbit. For Spacelab \Ie 

had an electronic instrument (frOM a Silicon Valley company) Nhich sho\led 
where ue \'1ere plus we could input lnformation for specHlc targets p1us a 

feu other bell sand Hhistles. J. Young l1ked it so much that it may fly 
on all flights from here on out. 

/' 

fWCDONNI!LL DOClOLfi;:---
66 

~~ - - -~--- ~-------"-. --- '. 
," " 



1 , . 

! , 

11. How adequate have the IVA lighting facilities been to date? How does 
Spacelab compare to Skylab in this respect? 

Lighting was good on toth Skylab and Spacelab wlth no light problems 
anywhere. Since we know what the interior design is. it can be pocked up 
on the ground to deterni ne the necessary 1 i ghti n9 requi rements. Hot Much 
else to say about this. 

12. Are there any fur.c~fonal limits to human perfOrMance in space that you 
can foresee? 
a. Limits based on human senses and motor limitations? 
b. Limitations restricting humans ability to use their senses or mntor 

capabilitfes at a given time due to: radiation exposure; debflitating 
effects of zero-g, i.e. muscle atrophy; etc. 

With reference to tile first question, I can't think of any scheduled 
activlties that were compronlsed by human limits. 

My feelings on radiation exposure are that people should not and will not 
be €xposed to high levels of radiation. The effects of long-tern 
exposure to zero-g are signified by thr loss of muscle tone in the 10~ler 

body. Therefore, phYsical training is required in order to keep those 
nuscles in shape. tty opinion is that 1 hour per day for physical 
training is sufficient. rieuror:luscular weakness is not evident in space; 
it is cnly noticed after return to Earth. 

/ 
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OBSERVATIONS DURIUG THE 
SOLAR MAX REPAIR fl1SSI011 

During STS FLight 41-C (the Solar Hax Repair Mission) two THURIS Study team 
menbers, R. J. Dellacamera and S. M. Chucker, were present at the I1ission 
Operations Control Center at JSC, to observe the crew performance and 

-
interaction during thi~ mission and to obtain data/information pertinent to 
the continuing definition of the human role in space. 

STS Flight 41-C was launched on Friday, April 6, 1984, and b'as scheduled to 
perform two prirnary missions. The first was to deplcy in orbit the IlASA/LRC 
Long Duration Exposure Facility (LDEF) and the second was to capture, repair 
and redeploy the Solar f.laximum Spacecraft (srr-I). 

The fi rst schedul ed EVA I'las set for SundilY, 4pri 1 8, I'lhere the cr:wmen I'lere to 
capture the SHH by means of the Banned Haneuveri n9 Uni t cr~lU) t stop the 
spacecraft's lO/sec rotation and pennit the RI·tS to capture the SH:1 and 
install it in the Flight Support Stand (FSS) I~here the naintenance activities 
would take place. They were then to change out the failed attitude control 
module which would ha'le concluded the first EVA. However, the retrieval 
operation did not proceed as planned. lJelson and ~is H!1U approached the 
spacecraft and matched its rotation rate, but when the T-pad impacted the 
trunnion, the jal'ls did not release and he bounced off the satellite. n·1O 
other attempts ,,,ere made; hOHever. those too were unsuccessful. One other 
attempt was nade to stabilize the satellite's motion and that was to grab one 
of the solar arrays and stop the rotation. Although this attempt was 
unsuccessful. it was later found to have improved the solar array-to-sun angle 
thus al10wlng the batteries to achieve a 10~ recharge. The unsucces3ful 
attempts to retrieve the SHH resulted in an increase in the satellite's 

/ 
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rotation rates from lO/sec in roll only, to la/sec in roll and pitch and 
O.60 /sec in yaw. The HMU retrieval was discontinued because the available 
propellant was approaching a red line condition. At this point, the EVA was 
tenninated in order to re-evaluate the repai'· mission alternatives. 

OBSERVATIOIl - These unsuccessful atte~pts could have been successful if the 
human operator could have manually triggered the jaws in the T-pad mechanism. 
Risk of failure could have been reduced by desi~ning for redundant manned 
operations. 

The decision lias made to attempt an RHS rotating grapple of the spacecraft, if 
the r-otation rate coul d be reduced. The Payload Control Center activated the 
spacecraft's torquer bars in order to stabilize the vehicle. Since this 
operation requires 24 to 36 hours, thr! Shuttle initiated a separation burn to 
conserve fuel rather than having to station keep. 

On Tuesday, April 10, the Shuttle approached solar max to attempt the rotating 
grapple. By this time, the spacecraft had been stabilized to a O.50/s~c 
rotation in the roll axis and had a slight coning angle of abou~ 150• The 
RHS went into a cor.rnunications bl."ckout region just as the Rr1S grapple 
operation began. lIhen comunications \"ere reestablished'tlle cre\~ indicated 
they had ca.Jtured the spacecraft. 

jhe baseline mission schedule \'1as modified and the second EVA, scheduled for 
. lIednesday. April 11, was ch~nged to accomplish all of the repair activities at 

one time. The actual repair operation went ve~ smoothly since the cre~~en 
had perfonned these tasks several times during the IIHF training sir.1tIlations. 
The maintenance interfaces manipulated by the crewmen \~ere as fo110\~s: 

Attitude Control Hodule -
The mechanical attad'u":1ent conslsted of 2 large Acme bolts each 
tightened to 100 foot-lbs and requiring 8 revolutions to undo the 
interface. The electncal interface \~as accomplisrcd through a 
self-aligning, blind-Mated connection. A special battery-powered 
torque wrench tool r/as used to access the Acme bol ts. 

/ 
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Coronagraph's l~ain Electronics Box (!1EB) -
-

A hinge had to be attached to the MEB to allow the box to ~wing out 

to provide access to the 11, O-series electrical conne~tors. These 
connectors were he1 d dOlm with a total of 22 screws requi ring 4 turns 
each. There was d special pOI-{ered screwdriver set used to rer:love 
both the electrical connectors and mechanical attach~ents. Uhen the 
new I1EB was inst~lled it again interfaced with the hinge to allow 

access for installing the electrical connectors. The reattach~ent of 
the electrical connectors made use ~f spring clips rather than the 22 
screws. 

Van Hoften cOr.r:lented after removing the ACS l:1odule that the torque wrench tool 
worked very well. 

03SER'/ATIOI/ - lIith proper tool s, any task that can be accamp1 i shed by a hUr:la:'1 

operator on the ground can be accomplished in orb1t. 

During this EVA operation, the Hikon 35r.l~ camera experienced a filn jam. 
Ilelson removed the thennal covering, removed the pOlter drive and unjanmed the 
frar.le that Has stuck (whl1e in the EIlU). He then reversed the process, 
reasser.lbled the unit, an0 was thereby able to salvage the 35~ photos. 

OBSERVATIOII - Hunan ingenuity can be used to handle contingency operations, 
develop liorkarounds an~ increase mission success probability. 

Van Hoften reported that about sm of the solar array cells I'lere delaminated. 

Iteam'ihil e, the ground \'las recei vi ng good po\~er i ndi catic!1s from the spacecraft. 

OBSERYATIOIl - Human Sensory/Perceptual processes can sense and detect changes 
in state or condition that Houl d be very difficul t to "instrument for renote 
monitoring. 

A photo recon of the satelllte was perfonned for about 3~ minutes. The 
crell"1lan was 1n the manipulator foot restraint {i'lFR) for this operatlon. 

/ 

... CDO,.,. .... L DOUG .. §)' 
B·l0 , 

, -., Q 
iii 



r 
r 

I" 
I 

I 

i 
I 
L 

onSERVATIO!1 - The success of this operation was hlghly dependent upon the 
effectiveness of the comnunication interaction between the EVA and IVA crewmen. 

The crewmen performi ng the SfU1 repai rs ended up about an hour ahead of 
schedule. The timelined mission was to take about 4 hours and 50 minutes, 
while in actuality they cOr:1pleted the mission in just under 4 hours. 

OBSERVATIOtl - Timeline data derived from ground based and neutral buoyancy 
Slmulations are accurate enough to be used for mission planning purposes. 

After the repairs were completed, the spacecraft was checked out to verify 
that the Modules had been properly installed. To do this. the ground 
acti vated the heaters in the two ne\'i modul es and they recei ved a posi ti va 
indication that they \~ere functioning. During this time Van Hoften took the 
opportunity to perforo some additional evaluations of the !1HU's operation. 

OBSERVATIOlI - The capability of the human operator to redeflne procedures. 
operations and/or schedules to take advantage of fortuitous opportunities for ' 
data gathering can significantly enhance the value of technology development 
Missions. 

The second EVA was then te~inated after a successful repair misslon. The FSS 
rotated the spacecraft around to provide access for the Rr1S. The RtlS then 
grappled the spacecraft and lifted it from the FSS. At this point. the ground 
co~anded the deployment of the TDRS antenna on the Sl1~ and the spacecraft was 
released. 
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CBSEqVATIOH - The classes of generic space activitIes (as developed in the 
THURIS study) which were observed during this mission included the follo\~ing: 

1. Activate/Initiate System Operation 
2. Adjust/Align Elements 
3. Connunicate Information 
4. Confirm/Verify Procedure/Schedule/Operations 
5. Connect/Disconnect Electrical Interface 
6. Deactivate/Terminate System Operatlon 
7. Define Procedures/Schedules/Operations 
3. Deploy/Retract Appendage 
9. Detect Change in State or Condltion 

10. Gather/Replace Tools/Equipment 
11. Implement Procedures/Schedules 
12. Inspect/Observe 
13. Heasure (Scale) Physical Dimensions 
14. Position Module 
15. Precision :lampulation of ObJects 
16. ?:-ob1em Solvlng/Dec;s;on :laklng/Data Analysis 
17. Re1 ease/Secure i1echanica1 Interface 
18. Re~ove Module 
19. Remove/~ep1ace CoverIng 
20. Store/Record Elenent 
21. Transport loaded 
22. Transport Unloaded 

8-12 
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Appendix C-l. SPACE PLATFORM PROJECT (Page 1 of 4) 

HISSIe. .. OPERATIONAL SEQUENCES 

InItial Deployment Extract from Cargo Bay (Shuttle) 

Berth 

Deploy Appendages 

Attach ~iT6ad 

System VerIfIcatIon Check 

Separate 

Payload Peconflguratlon Close PrOXImIty OperatIons 

Berth 

Payload Exchange 

;' 
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OPERATIONAL ACTIVITIES 

Release lon~eron latches 
lift SP from Cargo Bay 
Deploy Certhlng r~chanlsm 

Lower SP t~ -'rthing PosItion 
Insert Trunn.ons into Longeron Latches 
Close Longeron latches 
Mate SP/Crblter Ur.bilical 

Deploy Antennas 
Acqulre/Autatrack TORS 
OrbIter to SP Communications 
ftevate Radiator 
Deploy Solar Arrays 
ActIvate TCS and EPS 
Checkout TCS and EPS 
OrbIter to SP Power and Cooling 
Begin SP CMG Spinup 

In-Bay C~eckout af Payload 
Release longeron latches 
LIft Away Fran Cargo Bay 
Maneuver Payload to BerthIng Port 
Bertlt-'l"aylaad to Port 
Hate Payload/SP umbIlIcal 
Payload to SP Power/CoolIng 

BegIn Payload Operations 
SP VerIfIcation Operation 
En~ Payload OperatIons 

Orblter/S? to SeparatIon Attituce 
OrbIter to Internal Power/CoolIng 
OrbIter to Intprnal CommunIcatIons 
DIsconnect Orblter/S? U~bllical 
InhIbIt SP CfAG's 
Release Longeren latches 
II ft/Release SP From OrbIter 
Enable SP CMG's 
Orbiter/SP Sep'n Burn Sequence 

Retract SP Solar Arrays to 10: 
Retract SP RadIator 
OrbIter Approach to 200 Feet 
VerIfy SP OK for DockIng 
OrbIter Approach to 40 Feet 

InhIbIt OrbIter PRCS 
InhIbIt Orbiter VRCS and SP CMG's 
Lower SP to Bert~lng PosItIon 
Insert TrunnIons into Longeron Latches 
Close Lon~eron Latches 
Mate Orblter/SP UMbIlIcal 
Extend SP Solar Arrays to lOG: 
Extend SP Radlator 
OrbIter to SP TORS Comm 
Orbl ter to SP Power/CoolIng 
ActIvate SP WG's 

Payload to Interndl Power/CoolIng 
01sconnect Paylead/PS ~blllcal 
Unberth Payload 
Transfer to Storage Port 
Berth on Storage Port 
In-Bay Chec~out of Payload 

, 
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AppendlX C-1. . SPACE PLATFORM PROJECT (Page 2 of 4) 

MISSION 

MaIntenance 

EvolutIonary Growth 
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OPERATIONAL SEQUENCES 

Stow Old Payload 

Separate 

Close Prox1m1ty Operations 

Berth 

l1odu1e Exchange 

Separate 

Close PrOXlmlty OperatIons 

Berth 

r10dule InstallatIon 

C3 

OPERATION~L ACTIVITIES 

Release longeron Latches 
LIft Awal From Car90 Bay 
Maneuver Payload to BerthIng Port 
Berth Payload to Port 
Mate Payload SP ~bl1ical 
Payload to SP Power/Cooling 
Payload Checkout 
Unberth Payload 
Transfer to Cargo Bay 
Insert TrunnIons into longeron latche$ 
Close longeron latches 

Orblter/SP to Sep'n AttItude 
Orbiter to Internal Power/CoolIng 
Orbiter to :nternal TORS Comm 
DIsconnect Olblter/SP ~bl1lca1 
InhIbit SP CH':;'s 
Release Longeron Latches 
Lift/Release ~P From Orb1ter 
Enable SP CP.G's 
Orb1ter/SP Sep'n Burn Sequence 

See P/L Reconflgurat10n 

See P/L Reconf1guration 

Pre-Ma1ntenance Activ1ties 
Gather Pequ1red Tools 
Haneuver to Ma1ntenance locat10n 
GaIn Access to Old Module 
DIsconnect E1ectr1ca1 Connectors 
Undo mechanIcal attach~lent 
ReMOve Old Module 
Transport Old ~:odu1e to Cargo Bay 
Attach Old M~dule to CarrIer 
Pel"ove flew Moc' .. le From Carner 
Transport r.ew Nodu1 e to Maintenance 

loca t1 en 
Install new ~~dule In MountIng Pos1t1on 
Secure P.echanlcJ1 Attachment 
Connect E1ectr1cal Con~ectors 
Replace Access CoverIngs 
Transport to Cargo Say 
Replace Tools 
Post MaIntenance Act1vlt1es 
System VerIfIcatIon 
See P/L Reconflgurat10n 

See P/L Reconfiguration 

See P/L Rpconf1guratlon 

Gather Tools 
Maneuver to Module Spares Carr1er 
Remove New Solar Array WIng From 

Carrier 
Transport to Storagp Port 
Berth to Storage Port 
Ma~euver to Starboard Solar Array WIng 
DI~connect Electr1ca1 Connectors 
Undo Hccharllcal Fasteners 
Rc~ovc Old Solar Array Wing 
Transport Old S/A W1ng to Spares 

Carner 
Attach Old S/A I/Ing to Carner 
r1anell.rer to Storage Port 
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MISSION OPEMTIONAl SEQUEIIC~5 

Separa te 

HI SSlon Free-Flyer Ops Capture Oa ta 
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OPERATIONAL ACTIVITIES 

Remove Ilew 51 A 1J1 n g 
Transport New S/A WIng to Installation 

Position 
Install S/A Wing 
Secure MechanIcal Attachments 
Connect ElectrIcal Connectors 
Maneuver to Spares Carr er 
Remove Battery ChargIng Pack 
Trar~port to InstallatIon PositIon 
GaIn Access For Hodule InstallatIons 
Install Battery Chargers in MountIng 

POSltIO'lS 
Secure Hechanlcal AttachMents 
Connect ElectrIcal Connccto(~ 
Maneuver to Spares CarrIer 
Remove Battery Regulator Pack 
Transport tn !~stallatlon PosItion 
Install Batte.y Regulators In MountIng 

POSitions 
Secure Hech~.ical Attach~~nts 
Connect ElectrIcal Connectors 
Ma1euver to Spares CarrIer 
Remove Battery Pack 
Transport to Installation POSItIon 
Install Uatterles In Hountlng PosItIons 
Secure Mechanical Attachments 
Connect ElectrIcal ConnectJrs 
Replace Access CoverIngs 
~~npuv~r to Spares Carrier 
Remo\e New S/A WI~g FrOM CarrIer 
Transpcrt to Storage Port 
Berth to Storage Port 
Maneuver to Port SIde S/A WIng 
Dlscornect Elect'lcal Connectors 
Undo Mecha~clal Fasteners 
Remove Old S/A WIng 
TranJport 01 d S/A IIlng '0 Spares Carrier 
Attach Old SIA WIng to CarrIer 
Maneuver to Stc/age Port 
Remove /lew S/A WIng 
Transport /lew S/;., WIng to InstallatIon 

POSItIon -
Install S/A WIng 
Secure I~chanlcal Attachments 
Connect Electrical Connectors 
Transport to Cargo Bay 
Replace Tools 
System VerI flcatlon Check 

See P/l Reconflguratlon 

Pecelve and C~unt Blocks 
Block Error Check 
DeblOCk and I'o<!ss Store 
TransmIt to Preprocessor 

Receive Data and Store 
Reverse Tape Pecorder Data and 

Prepare to Batch 
Extract Data and Establish 

ObservatIon Sets 
Correlate and Append AnCIllary DJta 
ArchIve and Transnlt to User or 

ProcessIng FaCIlIty 

1 



Appendix C-1. SPACE PlATrORH PROJECT (Page 4 of 4) 

HISSIC'l 

ilhn "aslon 

Ci'ERAT IO'lAL SEQUE!ICES 

Analyze OD.trvatlons (Peal TI~el 

CallbrHlon 

locate Observations 

Analyze Health and Safety (Oil) 

Define 11stnuncnt Tlnellne & Connand 

Schedule I'~neuvers 

Schedule Observation 

Analyze Hlssion Tlnplfre 

Sc~cdul e Pesourtes 

Integrate Connands & Schedules 

Co~and TDRSS, Platform, 
Payload & Instrurents 

Relay Co~unlcat,on 

Platfom C & eH 

Payload C & OH 

C5 

OP[PATION~L ACTIVITIES 

Bufft'r I/O 
Dnplay Data 
EnhJnce OHa 
Analyze Data 

I~stnuoent RJdl~trlc Correction 
Instnu~ent Gec~~trlc Correction 

Platfo~ Polntlrg Correctlcns 
Payload Pointing Corrections 

Phybacl: DaU 
['~co"1'Iutite and Llnlt C~ccl 
[.track H&S Subset and Scale 
Output and Olsplay Processed Data 
~ard Ccpy and Plct Data 

Define Payload Tlmellne, Ccnnands & 
POinting Profile 

Define Platfo~ Housel:eeplng & 
Science Support ConnJnds & Tlnelfne 
Define Instru~ent Constr.fnts on 

l'>Jneuvers 
Define Payload Requfrenents & 

Constraints 
Est~bllsh PlatfOrM I'~neuver Proffle 
Establish Oayload MJneuver Profile 

Establish Platforo Co-'a~~ il~ellne 
Est~bllsh Payload Connand Tinellnp 
Establish InstrL-ent Co~~nd Tl~ellne 

l~entify Platfo~ hesource Constraint 
VIolations 

l~entl(Y P~ylo4d Pesource Vlolatlens 
~esolve Conflicts 
Define TDRSS Tl~es & Services 
Defl ne 'IASC0'4 TI'"Ies & Services 
Conflrn Screcules 
Res~lve Conflicts & Changes 

Develo~ & TI~e Correlate U~l'nk 
~ Real Tine Co~~nd Peo~le 

Constra,nt Cheek Inte~rated Con~nd 
load 

Ac~uire Co~unlcation Links 
U~llnk ~~nory l03ds 
Perfo~ & Harage Real TI~e Co~~ndin9 

Provide Links & Serv,ces 
link ~SGT to DCr 
Ac~u,re S? ~F leek 
rF Quality Creeks & Dc~odulate rata 
Bleck & Forward Data 
E~o~e Payloa1 OJta Strea~ 
Correlate & Ercoce AnCillary Data 
~4Itiple~ & hF OJta 
Decode & Distribute Platfcro & 
P~ylo~d Connand & Connard loads 

Synchronize & [reode $cns~r Dlta 
[~tr~ct Qufel Lcct Cb5ervJtlo~ OJt4 
Syn~hronlze & (rtcde H~S Cdta 
Ta9 $ Output Cat4 to P~yload C & OH 
process Instru~nt COMnJrods & C~dnd 

loads 



AppendIx C-2. LIFE SCIENCES RESEARCH PROGRAM (Page 1 of 6) 

HISSIO'j 

I. Study Of Bone Oe~lnerallzatlon 
In Zero Gravl ty 

/ 

,l\.fLDONf\lCLL DCJUG"~ 
""-" 

OPERATImiAL 
SEQUEI~CES 

A. Maintain & 
!'.cnltor Rat 
Colony 

OPERATIONAL ACTIVITIES 

1. Visually Inspect rats within habitat 
a. Hale direct ylsual Inspections. 
b. Inspect video i~4ges of rats. 

Z. ExaMine displays of habitat envlron~ntal 
para'netel s. 

4. Call up envtronnental data. 
b. Evaluate data with respect to 

requl red ranges. 

3. Inspect records of food and water 
consul"ptlon 

a. Call up records for specl~ent on 
CRT. 

b. Co~are records with nomal 
consumption data. 

4. Evaluate anImals health. 

s. Process urIne samples 
a. ReMove urine collector 
b. Keasure urine \olun-~ and deliver 

aliQuot to container. 
c. Place container In freezer -

check freezer temeprature 
d. Recora"data on appearance of urine 

and s~-nple size. 

B. ~easure Mass 1. Transfer rat froM habItat to S~ 
of Rats a. Pe~Nve habItat fro~ holdIng 

C AcqUIre, 
Precess, and 
Store Rat 
Blood San-pIe 

eG 

faClIi ty. 
b Place habItat In workbe~ch. I 
c O?en ha~ltlt ar.d rp~o~e rat 
d Trallsfcr rJt to SM."::> module and I 

secure 
e. Attach restraInt module to S~RD. 

2 Opera te S"'"~~. 
a. ActIva.te S~~J. 
b Pead d15plaj of rat's ~~ss and 

record. 

3. Return rat to holding facility. 

Acquire blood 5a~le and centrifuge 
4. PeT.Ove rat fro~ habItat at 

wor~bench" 
b. Place rat In restraInt unIt 
C Apply tall re~ter. 

2 Acquire blood s.-~l. and centrIfuge 
a. Pel"o~e bIOG~ sd~ple frc~ tall veIn 
b Transfer s~~le to centrIfuge tube. 
c. Return r3! to habItat In holdIng 

fac III ty. 
d. Centrlf~;~ blood ~a~ples 

. . 

• I 

• -

~ 
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AppendIx C-2. LIFE SCIENCES RESEARCH PROGRAI-1 (Page 2 of 6) 

HISSIO'I 

;' 

",COO'\/N#L( D(JtJGL~ 
-~ 

OP[RATlO/1AL 
S"[QtJErlCES 

D. Sacrifl ce 
Rats, Acquire 
and Store 
tissue 
Sarnple~ 

E Analyze Blood 
and Urine 
SaMples 

C7 

O?(AATlO'IAL ACTIVITIES 

3. Store Saft.ples 
4. Draw off plasMa from tubes. 
b Record volume an~ transfer to 

stora;e tubes 
c. Store se~ples In freezer - note 

freezer te~peratures 

1. Prepare rats fo~ dlssectlo~. 
a. Remove rat from hablt~t In workbench 

enclosure. 
b. Return habitat to holding unit. 
c. Place rat I~ gUillotine restraint 

SystE'M 
d Guillotine rat. 
e. ReMove rat fro~ ~ulllotfne 

restraint s/ste~ and secure to 
dissection board 

2. Dissect rat and remove tissue saM~les 
a. Dissect rat and remove saMples of 

intereH. 
b. ReMOve sa~ples and place in holding 

contalrers. 

3. Freeze sz~les and store. 
a Transfer sarples fro~ saline 

solution to cryogeniC coolant. 
b. Re~ve sa~les from cryogenic 

freezer and store in freezer. 
c DIscard rc~alns Into waste 

Managerent systeM. 

Analyze sa-;>les 
a. Re~ove sa~ples from freezer and 

thaw 
b. Transfer sarples to analyzer 

conta Iners. 
c. Place sa~ples In analyzer and 

l;ctlVJte 
d. Operate analyzer. 
e Exanlne and ~ecord results. 

2 Study results. 
a. Exa~lre data for lnterral consis-

tency. 
b Cc~pare data to norr31 values 
c. Co~pare data to expected changes. 
d. I'ake Ju~g'l'ents abcut bone loss 

In zero graVIty. 
e log conclusions and diSCUSS With 

terrestrial P.I 's 

3. Plan subsequent experl~e~ts 
a. Dete~lne If changes warrant 

alteratIons In exp protocol. 
b Detemlne laboratory ~u~port 

capabilities. 
c. Plan logIstics 



r ...... ... 

Appendix C-2. LIFE SCIENCES RESEARCH PROGqA~ (Page 3 of 6) 

MISSlorl 

II. Study of ~~tabollC Work In 
Zero GravIty In fiUl'lJI1S 

/ 

MCI~ONI'ttICLL DOUOL~ 
--...:...,; 

OPERATlOUAl 
SEQUENCES 

F. Perfo"" 
Histological 
AnalySiS 

A Set Up 
ExperIment 
for Metabollc 
Experiment 

B Prepare 
Subject for 
~(!tabollc 
TestIng 

OPE RATIONAL ACTI V ITI ES 

Prepare tiSSUe! 
a. Pc~ve tissue and trim for mounting 

on 1:11 croto':'!: 
b. l!tbed tissue in paraffin 
c. Hount tissue block on microtoMe 
d. O~erate mlcroto~ 
e. Mount tls~ue slices on microscope 

sl ides 
f. Conduct staining procedure 

Z. Examine tissues under microscope 
a ~ount slide on ~Icroscope!. 
b. Focus microscope 
c. Examine tissue for abnormalities. 
d P~otograp~ vIews of Interest. 
e. Pecord flndinss and discuss with 

terrestrial P I 

J. Study results 
4. Exa,lne data fo internal consis-

tency. 
b. Co~are data to normal values. 
c. COT~are data to expected changes. 
d Hake judgTents about bone loss 

In zero gravity 
e. Lo~ conclUSIons and diSCUSS WIth 

terrestrial P.l 's 

4 Plan subseqycnt experl~nts 
a Cetc~lne if changes wdrrant 

alterations In elp protocol 
b. Deter-Ine laboratory support 

capablllt1es. 
c Plan logIstics 

Prepare bIcycle ergometer 
a. Re~ve fro, stor~ge and as~e~ble. 
b. Checkout functions and calIbrations. 
c Introduce workload progra~ into 

ergometer ~Icro~ocessor. 

2. Set up cardiovascular ~onjtorlng system. 
a. EstablIsh approprIate 1nterconnec­

tions dTong systen corpo~ents. 
b. Chec~out functIons, operatIons, 

and calibrations 

3. Set u~ ~tabolic ~on1torlng systeM. 
a EstablIsh approprIate 1nter­

connectIons ~~~n9 systeM co~ponents. 
b Checkout functIons, operatIons, 

and c~liberatio~s. 

1. ~easure r~ss of subJect 
4. POSitIon subject in body mass 

measurCT~nt deVIce (r~'.D) 
b. Act1vate and operate 6MMD 
c Peae ~ass frem B~~J display and 

record. 

C8 

. I 
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Appendix C-2. LIFE SCIENCES RESEARCH PROGRAH (Page 4 of 6) 

MISSION 

I' 

I\-tCDo"¥"",rLL DOllGL~ 
'"~ 

OPERATIONAL 
'if U[I,CES 

C. Monitor 
Metabolic 
Work 

o j:,nalyze 
Metabol ic 
Experlnent 

OPEPATlDrlAL ,iCTlVITIES 

Z. Arply sensors to subject. 
a. Subject electrode locations on 

subject. 
b. Prepare and apply eleclrodes. 
c. Attach electrode leJd system 
d. Connect lead syste~ and check 

IntegrIty of asse~blies. 

3 Fasten, adJLst, and checkout respiratory 
mask and va he. 

a. PosItion Mask and fasten head straps 
b. Adjust mask to faCIal anatomy of 

su~ject. 

c j:,ttach valve and hose to ndsk. 
d Check mask for flow and leaks. 

1. Monitor cardiovascular function. 
a Check heart rate display. 
b. Evaluate heart rate with regard 

to work load. 
c. ExamIne [CG waveforn 
d. Identify rCG abnorMalities 
e. Actuate oscl11oscop~ camera. 
f. Check operatIon of strip chart 

recorder 
9 Assess status of subject 

2 Monitor l'1etabollc para~ters. 
a MonItor 02 consumptIon/C02 produc­

tIon 
b Evaluate netabollc rate with regard 

to workload 
c. Assess status of subJect's 

physIcal ccnditlonlng 
d. Ckeck co~outatlon of PQ 
e Exa~lr.e and evaluate operatIon 

of X-Y plotter. 

3 Terninate netabolic work test 
a MonItor phySIologIcal paraMeters 

durl~g recovery perIod 
b. ReMove electrodes/sensors fro~ : 

subJect 
c. DIsas5e-bl~ and store experIment 

equlp-;ent 
d. Collect experlme~t records. 

Reduce e~perl~ent data. 
a. Enter data frOM experincnt records 

onto data forms 
b Calculate derIved values and 

correlatIons 
c Evaluate effects of zcro gravIty 

on MetabolIC wor~ 
d. Record conclUSIons and dISCUSS 

..,rot terrestnat P [ 's 

2 Plan slbscQucnt cxpcrlm~nts 

C9 

a Dete~lne If changes warrant 
alteratIons In expo protocol. 

b DetermIne laboratory support 
capab' J !tIes. 

c Plan logIstIcs 
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AppendlX C-2. LIFE SCIENCES RESEARCH PROGRAM (Page 5 of 6j 

III. 

MISSION 

Study Of Vestibular Function 
In Zero Gravity 

McnONNEt.1. nOtJc",CY 

/ 

.>-.-/ 

OPERATIONAL 
SEQUENCES 

A Set Up 
Equi;rnent for 
VestIbular 
Experiment 

B Conduct 
VestIbular 
FunctIon Exp 

OPERATIONAL ',CTlVITIES 

1. Assemble VRF and prerpare for operation 
a. Assemble shaft arms and drive 

systen. 
b. Attach specimen modules. 
c. Test operatIon of VRF systen. 

2 Set uv electro~hysiologlcal me!surement 
systen 

a. Establish appropriate Inter­
connectIons. 

b. Ch:ckout functIons. operations. 
and calibrations. 

Prepare specim~n for test. 
a Transfer ha~ltat from holding 

facility to workbench ~n~losure • 
b. Remove rat forn habitat and 

anesthetize 
c. ExamIne status of im,lanted 

electrodes. 
d. A"ply surface electrodes 
e Check signal characteristICS 
f. Install rat in VRF module 
9 Attach speCImen ~odule to VRF 
h. Recheck electrophysiologlcal 

SIgnals 

Conduct prelln experl~er.t actiVItIes 
a. Collect ba~ellne (non-rotatIonal) 

data 
b Progran operatIonal paraneters 

Into VRF mIcroprocessor 
c Check Module environmental 

parameters 

2. InitIate experlnent. 
a ActIvate VRF rotational ~nd 

graVItational vector pro9ra~s. 
b Check operation of monItorIng 

system 
c. Dls,lay physiological paraneters. 
dEvaluate phYSl010Sical varldbles 

WIth respect to acceleration vectors I 

3. Monitor experl~ent procedure. 
a. ~lonltor envlron~ental displays. 
b Ponltor VPF operatIons 
c MonItor electrophyslologlcal 

dISplays 

4 Ternlnate experIMent 
a Stop VRF rotatIon 
b Continue ~onltorinn c:~'trophv~io­

logIcal dlspla>s • 
c Transfer module to general puroose 

workbe~ch 
d Disconnect electrod~ leads and 

specinen restraInt syste~ 
e Transfer specimen to habItat 

and return to holdln~ fac'llty 

C 10 
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AppendlX C-2. LIFE SCIENCES RESEARCH PROrRAM (Page 6 of 6) 

OPERATIONAL 
ImSIQ'1 SCIENCES 

C Analyze 
Vestibular 
Exp Data 

/ 

MCOONNFLL oouca£ 

1-

QPERATlOtlAL ACTIVITIES 

Reduce experiment data 
a. Enter data on data fcl'1"s. 
b. Calculate derived \al~es and 

corre I a tf ons. 
c. Evaluate effects of rotation on 

phYSIological varIables 
d. Record conclusions and dISCUSS 

with terrestrIal P.I.·s. 

2. Plan subsequent experiments. 

ell 

a Detprmlne if changes warrant 
alteratIon In ex". protocol 

b Dete~lne laboratory support 
capabIlitIes. 

c. Plan logIstIcs. 

l.q 
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ACTIVITY TIHELINE PROFILES AND DATA SHEETS 

FOR 37 GENERIC ACTIVITIES 
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APPEUOIX 0 

Timeline Profiles 
This appendix contains the timeline profiles for each of the 37 Generic Space 
Activities derived in Task 2.1. For each activity, a tirne1ine range bar 
represents the tYPlca1 range of times that can be expected in accomplishing 
the specific task in each man-machine category. For each time range, one or 
mor~ information sources are referenced. The symbology as described in 
Section 3.2 of the report designates the general nature of the source. The 
information sources that are referenced in the timeline profiles correspond to 
the fo 11 owi n9 : 

(1) :1cDonne11 Douglas Astronautics Company, Alternative System Design 
Concept Study (Space PlaHtf""trewl!f' System), Contract tlASB-33955, 
DR Hos. 1-16, July 1982. 

(2) Space Platfo~ Ground System Study - Final Report, 7/21/82, Ford 
Aerospace and Colit11unications Corporation (Subcontract to f4DAC under 
IIAS8-33955). 

(3) Space Statlon Program Description Document - Book #6, Appendix S, 
Operations Studies, Second Level White Pages, 8/83, Space Station 
Operations Working Group, I~ASA-KSC. 

(4) lJatlonal Aeronautics and Space Administration, Sky1ab r1ission 
Seguence Evaluation, mX-64816. J.1arch 1974. 

(5) 

(6) 

Space Station - Vol. III, Oook 3, 48 Hr. Analysis. MDe G0634, 7/70, 
Contract IlAS8-25140. 

Space Station - Crew Operations Definitions, HOC G0645, 8/70, 
Contract lJAS8-25140. 

02 / 
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(7) Space Maintenance and Contingency Operations Simulation Neutral 

Buoyancy Testing (llB-51) - Final Report, HOC H0190, I~DAC-HB, 11ay 1983. 

(8) 11cGol'lnell D<luglas Astronautics Company Engineering Estimate. 

(9) :lational Aeronautics and Space Administration, Johnson spate Center, 
Hission Planning and Analysis Division. The 25-Kilowatt Power System 

- Baseline Reference Hission. JSC 17066, February 1981. 

(10) General Dynamics, Definition of TDHs for Early Space Station - Orbit 

Transfer Vehicle Servicing, Vol. 2 - Technical Report, Contract 

NAS3-35039. June 1983. 

(11) Spacelab liSTS 9 Operations Debriefing and Flight Review. 

(12) Similar task has been demonstrated/observed in some Qther actual 
space flight operation. 

(13) :lational Aeronautics al1d Space Admjnistration, 11arshall Space Flight 

Center, Analysis of Large Space Structures Assembly - Man-Machine 

Assembly Analysis, Contractor Report lJo. 3751, IlAS8-32989, December 

1983. 

(14) El'iald Beer (Editor), ReMotely Hanned Systerls - Exploration and 
Operation in Space, California Institute of Technology, 1973. 

/ 
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ACTIVITY TIMELINE GROUNDRULES 

II Range of Times Derived From Analyses of SpecIfic Tasks 

~ Similar Task With Actual On·Orblt Performance-

(§.] Similar Task Performed In a Space Simulation 

@ Engineering Estimate Based on Design or Operational Expenence 

• ActiVities Requiring Direct Human Involvement for Accomplishment 
Ehminate Supervisedllndependent Options 

~ a Manual Operattons Limited to 50 Minutes Based on Fatigue Levels 
and Attention Span Limits 

\I "Limiting Factors" Establish Rationale for Man·Machine Category 
Allocations 

Mt'n· ..... chlM' 
Cateson~s 

M.nual 

Support.d 

Augmented 

Teleopereted 

Supervl.ed 
Ground 

Supervl.ed 
On-Orbit 

Independent 

ACTIVATEIINITiATE 
SYSTEM OPERATION 

R~ulrem6?nts for 
Time Scale Human Involyem~nt 

~~ I i \ 

I " 0 • 
~@1 

I " 0 " 
~ I 0 ! G • 7a"i<mi14l i I l- ! • 0 0 

~§J I I 
I I I I " ct 0 

~00 I I i 
0 0 

I 
0 

(1X2)1® I 

i I 
C =:l 0 I 0 , 

OC~E:l 10 20 30 40 SO 1 2 4 6 G _Oi 

I 
0 

~2 '0 on l, M .. 
0 

~nd. ""Inutl' Hour, ~l::! t I "," 
"- .r 

04 

VCS98S 

I Limiting Factors In 
Human Involvement 

I I I • ! 

I • 
I 

i 0 
I I 

I 

" : I 
j 

i 
I I 
1 I 

I 
I 

! I 
.. I 

II c 
c 
;; ~ ; .. 
'" g I 

';:1 

- 1 
! . , 

-1 
\ 

. i 
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ADJUST/ALIGN ELEMENTS VGSS87 

M.,..a.cac:hlne Requlremento lor Llmltln~ Faclor. In 
c..'.-gont. nmeScalr Human InvGJvtfM'rt Human Involve.,...n! 

i Mln",,1 • 0 0 0 0 

I 8 
Support..t C) 0 0 0 

8)9 
Augmenl..t 0 • 0 0 

T elfl>pefaled r"4 " • 0 0 • 0 

Su~_ • • 0 • Ground 

~® Su~rY\sed • • 0 • On-Ortlll 
(9::V 

IndepenMnl t::::=l 0 0 

O~ae=l 10 20 30 40 50 1 2 4 & 8 -- .. 0 '" e", c e Oc !!. ~-= " '0 ;0 = .. 
~~ ~ E e E~ u 

0 .. " Second. Mlnules Hour. e .. 
~ OJ ~v .. ~ s:, 00 

"'~ £ u 
~ct ... 

;:, 

ALLOCATE/ASS~GN/DISTRH3UTE 

M.on-,,.Iac:hln.e Requf,pments for Llml1lng Factors In 
C.I~ooe. Time Scale Human In\'o'y.ment Humlln In"olwement 

8 
, 

I U.nual 0 0 

Su~rt"" ~ 0 Q 

AllgMftlI..t ~ • " I 
Te~l.d ~ 

, 
0 I $ 0 

1 2 8 
Supo!!nit~ • 0 " Ground 

CJ@ Su~rY\sed 
0 0 

I 
0 o""'n ...... ' 

CiXV0 
I"""~nclenl l:!:l 0 0 

O~~E:l 10 20 .0 40 SO 1 2 4 6 8 

--
.. <; .. 

CD' 
e 

e g~ ~ ~.~ 

~ '0 -.; 
~g. E :;; e:: 4( 

Second. Mlnutrs Hours cu <; 0 ., 
221 

.. ~ r-
1/)" :E ~ Q. .Ell. ;:, 

MCDONNI<tLL DOUO~ 
05 



1ftIIII!Z:.:: __ - - -:.~--... - ---...... --~-.. - ..... -.----=;:;; 

I .. 

~ !.+:.~~" VGS8S9 
~yr( .. APPLY/REMOVE BIOMEDICAL SENSOR ~ .. ~~~(~ 
.... "?i 

Man ... achln. Requlrement1 tor Llmiling ractoA In 
C.t~ortfl Tlm.Saltt Human In"oJv.m~r •• Human 1.,woJ.,.m.nt 

i (8) (11N2) I 
"'.nu.1 0 0 0 0 • 

I (a) 
Supported • • • 0 

Augmented I 
ill 

I 0 I • • I • ® I I 
Teleopft.ted I ! • I • • • I 

Suponl.ed N/A I Ground 

I Suponlsed N/A 
On-Orb.t I 

I 
tndependent N/A 

I I 
O~~E:' 10 20 30 40 50 1 2 4 6 8 _ e 

;;; " 
.. I C <0 I C c 9. ~.3 " '0 ;; 

00. U E c 

lUI 
u - .. !! 0 .. < 

Second. Mlnut •• HOUA cU ;; .. 
.~ .r:: 
UJ~ :s ~ 

~ - I 
N/A - Not Applicable 

~'-il~'"::,,1 VGS930 
-v'" .( i ~, COMMUNICATE INFORMATION ";::-':':/ , 

M.n·'Jaehlne Requirements lor I Um·t ng Factors In ! 
C.t"l/ort .. Time Scale Human tn'4olv.rT'~t Human l"yoJ~e~e.,t 

.~~~ I 

o I 
I 

Manu.1 I I .. 0 

~ 
I 

Supportod I 
I 

~11~ 
I) 0 0 

I 
Augmented 

0 0 0 a e 

Teleop.Jrlted 

~ I 
G;.(2 2 

0 .. 0 I ! 
SuperYl •• d 

I I 
I Ground 0 0 0 

c;g> 
. 

SupomHd I On·Orbll 0 0 • 
I ~;l , 

Independf'nt .~ 
, 

0_ 0 I 

OC~E:' 10 20 30 40 50 1 2 4 6 5 ;;; to e", I e -~ 0 c Oc 

~ i!'.2 
~ '0 ;;; ~: 00. E ~ I -.. 0 E:! .. 

SKondl Mlnutea Hours cu U '" .. ~ .r:: 00 

"'cl: :s ~ :€Q: I .. 
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SuppOrt.., 

Aug ........ .., 

COMPENSATORY TRACKiNG 

Tim. Sealt 
Requirements for 

Human Involv~menl 

Iw, I I I' 
I N/A 1 I 

! N/A i I I 

I N/A I I! 
o I .. 1 I 

"G5991 

Llmillng F.ctors k.:-J 
Human InvoJwement 

! , 
I 
I 

I 
I 

~~::;-.:-' [[:,~:==::JI • i • I • 

~ I r:(i); I ! 0 ! 0 I. : I 
Independenl ~~1 .. 0~8~:~::~:~. ~I---':L-J,-Ji-!-L-Ll~.~l! ~.JI_J!L ___ i; _jl 

o ~ ~ E : 1 10 20 30 40 50 1 2 4 6 8 - I - I ~ 
Seconds !, Mlnu'es Hours tIl 1 1 

:;i :€ I ... 
I ~ 

N/A - Nol Appilcoble 

~~ VCS9!12 ~ ....... ~ ... ~ 
COMPUTE DATA ~ ~ .. I'~ h 

. ;'(;-~. . 
Man-Machine RINlUlrf'm~,..ts for Llmlhng Factors In 

Categories ".,.,., Seale Human Involwemtnl Hum,n Inyolvem~nl 

~~6X8 <11) . : I , 
U.nu.r I 0 

I 
0 I I • I , 

0~' I . I 
I I Sul!l>Or1ed ! I I 0 ! 0 I I 0 

~0 I Augmented 0 I 0 I • I 0 I 0 

I i I 
! I 

leleoperated I N/A I ! : I 
I I I 

@0 ! I i Supervl.td i Ground f I • I • ! • i 
~C?(!) 

I I I I I I , 
I 

I 
SUP9rvlscd E 0 • I • I On-Orbit 

(8) I , 
I I 

I 
I I 

Ind~pend.nt I: I 0 I • I ! 
0". til V 1 10 20 30 40 SO 1 2 4 6 8 ;; a 

lUI 
c C=l.E:r 

! 
-. 0 

~ !! ~.: i '0 I ~~ E :; ~ 
Socond. I IoInrtts Hours CU 0 .., . ~ 

~ I 
.,.:: li I .= a. 

r a. 
N/A - Nol Applicable 
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CONFIRM/VERIFY PROCEDURES/ 
SCHEDULES/:JPERATIONS 

VQSHl 

"'.n .. M .. chln. 
Cal~on .. 

I R'qullf-'l't 10' I l .... '"n9 helen In 
I tiu.".a., Inyol •• i1Wn1 .. ~" I"~"""nt 
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CONNECT/DISCONNECT 
ELECTRICAL INTERFACE 

I"'an Machi". i I C.I~on .. I 

Manual 

Supporttd 

Aug:m.nt.d 

T ... .op...,.I.d 

SupervIsed 
Cround 

SU~f"fI"ltd 
On-O~(I 

Indf'pe"~nl 
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I ReQut"'f"fn4'ots t-:>r : It-n h'\4 Facto" In 
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Table E-l 
SUPPORT EQUIPHENT LIST FOR COSTING VARIOUS HAN-HACHINE NODES 

A. Facilities 

Al. Space Station Facil1ty 
A2. Ground Control Center, Baseline System 
A3. Payload Control Center', BaseH ne System 
M. Data Handling Facility, Baseline System 
AS. Tracking and Data Relay Satellite System (TOnSS) 
A6. Unmanned Platform Basic Resources 

B. EVA Support Items 

Bl. Extravehicular f.!obility Unit (Ef.1U) 

B2. Nanned Maneuvering Unit (HNU) 

B3. Remote Manipulator System (RHS) _ 

C. Tool Klts and Hechanical Support EquiPfIlent 

C1. Power Tool, Portable 
C2. 
C3. 
C4. 
CS. 
C6. 

Tool Kits, Manual 
Gas Recharge Kit 
F1uld Recharge Klt 
Test Set, Alignment/Callbration, Portable 
Test Set, Electrlcal Checkout 

C7. Surface Coating/Refurbishment Apparatus 
C8. Support Equipment, Experiment Specific - Category A 
C9. 
C10. 

Support Equlpment, Experiment Specific - Category B 

Support Equipment, Experiment Specific - Category C 
Cll. Support EqlJipment, Experiment Speclfic - Category 0 

C12. Cherry Picker with Work Platform (Rl'lS) 

C13. Restraints to Support Hanned Activities 
C14. Life Sciences Experiments Tool Kits 
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Table E-1 

SUPPORT EQUIPMENT LIST FOR COS rING VARIOUS I-tAU-MACHINE VoOOES (Contlnued) 

D. Command, Control, Communicati on, and Data 
Management Egulpment 

U1. Control/Display for Remote Gimbals 
02. Contro1/01sp1ay for Remote Cameras (TV and Photo) 
03. Automatic AdJustment for Control of Remote Equipment 
04. Voice Intercommunicatlon 
05. Control and Display Activation and I-lonitorlng 

Equipment, Keyboard 
06. Hardware for Acceptlng Remote Commands 
07. 01sp1ay and Software for Record Keeping, Procedures, 

Schedules, and Maintenance 
Oti. Computer Programmed for Command and Control of a 

Specific Functl0n/Task by Artificial Intelligence 
09. 

010. 

Dl1. 

Encode/Decode Data Eqlllpment 
Data Computation aoq Reduction Equlpment 
Input/Output Data Buffer Equlpment 

012. Central iimlng Unit 
013. NSSC Interface Management Unit 
014. Remote Unlts 
015. COMS Central Unlt 
D16. Hlgh-Rate Recorder 
017. Low-Rate Recorder 
D18. NSSC-II Computer 
019. Ku-Band Communlcation Equlpment 
U2D. S-Band Communlcatl0n Equlpment 
021. Low-Galn Antennas 
022. RF Transfer SWltch 
023. Support lnstrumentatlon/Sensor Equlpment 
ll24. Telemetry Unit 
025. Payload Command and Data Acqulsltlon Unlt 

----------- -------------------------

MCOOI'tlNIfLL C10UOL~ 
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Table E-l 

SUPPORT EQUIPNENT LIST FOR COSTING VARIOUS MAN-MACHHIE HODES (Continued) 

£. Orbital Mobll ity Systems 

El. Orbital 14aneuvering Vehlcle (OMV) 
E2. Orbltal Transfer Vehicle (OrV) 
£3. Tel epresence Hani pul ator System (TI1S) 

F. Operating Systems Software 

Fl. User Interface 
F2. Facillty Readlness Test (Integration) 
F3. 
F4. 

FS. 
Fb. 
Fl. 

Dynamic Scenari~ Profl1e Generation 
Com~and Generatlon 
Telemetry Data Handling 
Input/Output 
Test Data Generation 

F8. Data, Base Generation/I'1alntenance 
F9. Data Reduction 
FlO. Support Software 
Fll. Software for COMmand and Control Hardware Controlled from a Remote 

Ground or Orbltal-Based Work Statlon 
F12. Software for Computer Programmed for ComrOland and Control of a 

Speclfic Function/Task by Artlficlal Intelligence 
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SUPPORT EQUIP/lENT REQUIREMENTS 

ACTIVITY llUIIDER: 1 CATEGOPIES" OF I~N-ltACHHIE HITERACTIOUS 

E SUPERVISED I 
l N 

S A E 0 
U U 0 u E 
P G P U P 

ACTIVATE/ItUTIATE H P M E G E 
SYSTEfI OPERATIotl A 0 E R R 0 II 

N R N A 0 R 0 
U T T T U B E 
A E E E II I N 
L 0 0 0 0 T T 

HUMAN SUPPORT EQUIPMENT REQUIRED (SEE TABLE E-1) 

A1 A1 A1 A1 
C8 C8 C9 C10 

C13 C13 05 
06 

I V A 

Al A1 Al 
B1 B1 B1 
C8 C8 C9 
C13 C13 C13 

E V A 

EXN1PLE - Actwa:e Canera/T. V. Inage Gatherl ng EqUl pnent 

~1Atl!!~.~ - 35 r.tM Canera 
SUPPORTED - 35nn Canera ~11 th Auto Advance 
AUGr!EIITEO - 35r.tr.1 Canera Wl th Auto T1I:11 ng Sequence 
TElEOPERATEO - Rll$ TV Canera 
SUPERVISED GROUND - TV Camera 
SUPEPVI!;m Oll-OPBIT - TV Canera 
I1lDEPEllDEllT - Satelllte Inage EqU1pnent 

*Consldered as one 1teM of support equ1pment 
08 - Computer Hardware 
F12 - Assoclated Software 

/ 
MCDONN' .... L DOlJOL~ 
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A2 A1 A2 
AS 05 A3 
A6 06 A4 
05 -Fll AS 
06 A5 
Fll 03 
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SUPPORT EQUIPMEIIT REQUIREMHITS 

ACTIV lTY tllJrlBER: 2 CATEGORIES OF t1MI-MACHIliE H1TERACTIO/IS 

I 
E SUPERVISEO L 

S A E 
U U 0 0 
P G P N 

ADJUST/ALIGN M P M E G 
ELH1EtJTS A 0 E R R 0 

IJ R N A 0 R 
'U T T T U B 
A E E E 1'1 I 
L 0 0 0 0 T 

HUI1AN SUPPORT EQUIP~lEI.T REQUIrEi' 

Al Al Al Al A2 
C5 C2 Cl 05 A5 

C5 C5 E3 A6 
C13 C13 05 

D6 

I V A Fll 

Al Al Al 
Bl Bl 81 
C5 C2 814 
C13 C5 Cl 

C13 C5 
E V A C13 

EXJ!J1PLE - AdJust/P.egulate Themal Fluld Flo," P.ate to External Radlator 

I1IUIUAL - Hand Actwated Val ve 
SUPPORTEO - Tool Assisted Valve 
AUGrlENTED - POHer Too 1 ASSl sted Va 1 ve 
TELEOPERAiED - Renote Satell1te Servlcer for Ilanual Valve 
SUPERVISED GROUND - llechan12.ed Valve On Space Platfom 
SUPERVISED Oil-ORBIT - Ilechanlzed Valve On Space PlatfolT.l 
HJDEPEIIDEllT - Self I~onltorlng and AdJustlng Autonatic Valve 

* Considered as one ltem of support equlpment 
08 - Computer Hardware 
F12 - Assoclatcd Sofblare 

MeDON"''''-'' D0L10"~ 
E6 

J_ Al 
05 
06 
Fll 

I 
tl 
0 
E 
P 
E 
II 
0 
E 
tl 
T 

A2 
A5 
A6 
D3 
D6 
D7 

D8,F12* 
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ACTIVITY /JtAI8E~: 3 

ALLOCATE/ASSIGII 
DISTRIBUTE 

, I 
I' 
,I 

/ 

SUPPORT EQUIPI1ENT REQUIRENENTS 

CATEGORIES OF HAN-MACHINE HITERACTIOHS 

~ SUPERVISED L 
-

S A E 
U U 0 u 
P G P 11 

N P M E G 
A 0 E R R 0 
N R N A 0 R 
U T T T U B 
A E E E II I 
L D 0 0 0 T 

fI UI WI SUPPOP.T EQUIPIIEIIT REQUIREO 

Al Al A1 Al A2 Al 
C2 B7 C2 DS AS DS 

C2 C6 £3 A6 06 
C6 C13 05 Fll 
C13 D7 06 

Fll 

I 
1/ 
D 
E 
P 
E 
N 
D 
E 
II 
T 

A2 
AS 
A6 
D3 
06 
07 I V A D8,F12* 

E V A 

EXAtlPLE - PO~/er Di sru~ti on fron Fail ed Solar Array. Requi red to Reass1 gn POller Pout; ng 
and Reallocate and Red1 stn bute POHer 

llAtJUAL - S~" tch by Hand and Circu1 t Breaker Control 
SUPPORTED - Troubleshoot1ng and SW1tch1ng and Clrcult Breaker Control 
AlXiflElITEO - Troub1eshootlng ~l1th Ald of Data File and Olsplays 
TELEOPEP.ATED - Renote Sate11 1 te SerVl ced By Tel epresence Ilanl pul ator Systen 
SUPERVISED GROUIID - Ground Comanded S~l1tch1ng on Rer.1ote Platforr.! 
SUPERVISED Oil-ORBIT - On-Orbit Comanded SWltchlng of Rer.1ote Platforr.1 
IIIDEPEllDENT - Self-heallng Syster.1s 

* Consldered as one ltrm of support equlpment 
08 - Computer Hardware 
F12 - ASsOclated Soft~are 
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SUPPORT EQUIPMENT REQUIREMENTS 

ACTIVITY NLf~BER: 4 CATEGORIES OF MAII-MACHHIE INTERACTIONS 

I 
E SUPERVISED L 

S A E 
U U 0 u 
P G P N 

APPLY /REMOVE M P t~ E G 
BIO~:EDI CAL SENSOR A 0 E R R 0 

N R N A 0 R 
~ T T T U B 
A E E E N I 
L D D D 0 T 

HUMAN SUPPORT EQUIP~iE~IT REQUIRED 

Al Al Al 
C14 C14 Cll 

C13 C13 
C14 

I V A 

-

E V A 

EXANPLE - Attach Picl:up Electrodes to SubJect 

MANUAL - Cleanse Tlssue Area, Apply Sensors 
SUPPORTED - Cleanse Tlssue Area, Apply Sensors 
AUGMENTED - MicroscoP1C Installat10n of Sensor 
TELEOPERATED - tlot Appllcable 
SUPEPVISED GROUND - t/ot Applicable 
SUPERVISED OU-ORBIT - Not Applicable 
INDEPENDENT - Not Applicable 
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SUPPOPT EQUIP~TENT REQUIREMEIITS 

ACTIV ITY tllJ!1BEP.: 5 CATEGORIES OF rWl-I1ACHIIIE INTEPACT! {"IS 

~ SUPERVISED L 
S A E 
U U 0 
P G P 

C0I1I11.111I CA TE M P M E G 
INFORllA TI 011 A 0 E R R 

rl R N A 0 
U T T T U 
A E E E II 
L D D D D 

HUIIAIJ SUPPORT EQUIP/IEUT REQUIRED 

A1 A1 A1 A1 A2. 
C13 D4 B3 AS 
04 05 D5 A6 

05 
D6 

I V A F11 

Al Al . 
Bl B1 
C13 C13 

D4 

E V A 

EXAlIPLE - Transmt Data 

~IAUUAL - Verbal VOlce Conmnlcation 
SUPPORTED - VOlce Actlvated Connunlcatlon Systen 
ALGI1HITED - Intercon VOlce Comunlcatlon 
TELEOPERATED - Comand/Contro1 of Rer:lote Hanlpulator Systen 
SUPEP.VISED GROUIJD - Comanded nata II nk Transm SSlOn 
SUPERVISED Oil-ORBIT - Comanded Data Llnk TranSr:llSS10n 
IIIDEPENDEIlT - Spacecraft Autononous Data llnk Transmlsslon 

*Consldered as one ltem of support equlpment 
OS - Computer Hardware 
F12 - ASSOCl ated Softvlare 
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SUPPORT EQUIPHENT REQUIPEMfNT~ 

ACTIVITY NUHBER: 6 CATEGORIES OF HAil-MACHI/IE IIITERACTIOIIS 

T 
E SUPERVISED L 

S A E 
U U 0 u 
P G P N 

C0I1PENSA TORY M P M [ G 
TR.IICKING A 0 [ R R 0 

tl R N A 0 R 
U T T T U B 
A E [ E /J I 
L D D D D T 

HUHAH SUPPORT [QUIP/1EUT REQUlr.ED 

I V A 

[ V A 

EXM1PlE: Antenna Lock-on and Track TORSS 

MAIJUAL - lJot Appllcable 
SUPPORTED - !Jot Applicable 
AUGr1E/JTED - t'ot Appllcable 
TElEOPERATED - Hot Appl icable 
SUPER'! ISrD GROUIJD - Conmand Auto Track System 
SUPErVISEI) 0I1-0rDIT - Comand Auto Track Systen 
IIJDEPENDEIJT - Pre-programned Auto Track Systen 

*Consldered as one ltem of support equlp'Tlent 
08 - Conputer Hardware 
f12 - Associated Software 

E-l0 

A2 Al 
A5 03 
A6 D5 
D3 06 
05 Fll 
06 
Fll 

, I 

I 
u 
D 
[ 

P 
E 
N 
0 
E 
N 
T 

A2 
A5 
A6 
03 
D6 
07 

D8,F12* 
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SUPPORT EQUIP~lENT REQUIREMENTS 

ACTIVITY tJUllBER: 7 CATEGORI £5 OF IlAt/-llACHINE IIlTERACnOtls 

I 
E SUPEPVISED L 

S A E 
U U 0 0 
P G P N 

CO/1PUTE DATA M P M E G 
A 0 E R R 0 
N R tl A 0 R 
U T T T U B 
A E E E tl I 
L D 0 D " T " 

HUllA1I SUPPORT EQUIPllENT REQUIP.ED 

A1 A1 A1 A2 
C8 C13 A6 
C13 010 A7 

D5 
FlO 

I V A 

-

E V A 

EXM1PLE - Oetermlne Spacecraft Posltion Fron Sensor Data 

IWlUAL - Manual COr.1putatlOn 
SUPPORTED - Use of Hand C0r.1putatl0n Equlpnent 
AUGMENTED - COr.1puter Alded Conputatl0n 
TFLEOPERATED - flot Appl1cable 
SUPERVISED GROUND - COr.1r.1and Sofb/are rrograr.1 ConputatlOn 

_ SUPERVISED OU-ORBIT - Cormand $ofblare Prograr.1 COr.1putat1On 
IIlDEPE1JDDJT - Self-ln1tlated Software Prograr.l For COr.lputatl0n 

* Consldered as one ltem of support equlpment 
08 - Computer Hard\~arc 
F12 - Assoclatcd Software 
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SUPPORT EQUIPI1EHT REQUIPEllENTS 

ACTIVITY tllJl1DER: 8 CATEGOPI ES OF IlAtl-I'ACllltIE IIITERACTI OilS 

I 

E SUPERVISED L 
S A E 
U U 0 
P G P 

COtiFIRI1/VERIFY ~, P M E G 
PROCEDURE/SCHEDULE A 0 E R 

r R 
OPEIlATIOIIS tI R Il A 0 

U T T T U 
A E E E tI 
L 0 0 0 0 

HWIAII SUPPORT EQUIP/lnIT REQUIP.EO 

Al Al Al Al A2 
C13 C13 02 AS 

07 E3 A6 
C9 
02 

I V A 06 
F11 

Al 
B1 
C13 

E V A 

. 

EXN1PLE - Conf1rQ/Ver1fy Solar Array Oepioynent 

llANUAL - V1sual Lool: 
SUPPORTED - V,sual Look Aided Oy Status Ind1cator 
AUGf1EUTED - 01 splay Of Go/tlo-Go H1th Aud10 lIo-Go Slgnal 
TELEOPERATEO - Ver1fy Ihth Per.tote T.V. (T.I1.S.) 
SUPERVISED GROUtID - Cor.tr.tand Venflcat10n tilth Renote T.V • 

. SUPERVISED OU-OPRI T - Comand Ver1 f1 cat1 on III th Rerote T. V. 
HlDEPEIlDEtn - Auto Status )./1 th Self F1X For /:o-Co IndlcatlOn 

* Cons1dered as one ltem of suoport equlpment 
08 - Computer Hardllare 
F12 - Assoclated Software 

/' 
MCDONNELL Doua~ 

E 12 

0 
N 

0 
R 
B 
I 
T 

Al 
C9 
02 
06 
Fll 

I 
tI 
0 
E 

.. 
P 
E 
tI 
0 
E 
/I 
T 

A2 
AS . 
A6 
03 
[17 

DB.H2 .... 

• I 

I 



c 
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J 
J 
-. ACTIVITY NUtlBER: 9 

CONt/ECT /DISCOIJNECT 
ELECTRICAL 

- IUTEPJ"ACE 

SUPPORT EQUIPMENT PEQUIPEMEtJTS 

CATEGORIES OF rIAII-MACHI//E 

~ 
l 

S A E 
U U 0 
P G P 

M P M E 
A 0 E R 
N R N A 
U T T T 
A E E E 
L 0 D 0 

I1JTERACTIOUS 

SUPERVISED 

~ 
G 
R 0 
a R 
U B 
II I 
D T 

HurWI SUPPORT EQUIPrlENT REQUIRED 

J ~ 

I 

...... , 

Al Al Al Al 
C2 C2 Cl 05 

C13 C13 E3 

I V A 

-

Al Al Al 
81 81 81 
C2 C2 Cl 
C13 C13 C13 

[ V A 

I' 
EXMIPLE - Electrlcal Interface Connector Plate 

llAIlUAL - Ilanual Ratchet 
SUPPORTED - Manual Ratchet ~" th Restralnts 
AUGI1ENTEo - Power Tool Appll cat, on 
TELEOPERATED - T.M.S. Actlvated Ratchetlng Operation 
SUPERVISED GROUND - r~chanlzed Drlve Operatl0n 
SUPERVISED OIl-ORfJIT - ~lechanlzed Dnve Operatlon 
INDEPENDENT - ~lechan1Zed OrlVe OperatlOn 

* Consldered uS one ltem of support equlpToent 
08 - Computer Hardware 
F12 - ASSoclated Software 

E·13 

A2 Al 
AS 05 
A6 06 
05 Fll 
06 
Fll 

I 
II 
0 
E 
I> 
E 
Il 
0 
E 
II 
T 

A2 
AS 
A6 
03 
06 
07 

D3,Fl2* 

. 



SUPPOPT EQUIPMEtlT PEQUIPEHENTS 

ACTIVITY timBER: 10 CATEGOPIES OF ~WI-HACHIIIE INTEP.ACnOlIS 

I 
E SUPERVISED L 

S A E 
U U 0 U 
P G P N 

COWl ECT /0 I SCOWl ECT M P M E G 
FLUID IUTEPiACE A 0 E R R 0 

II R tl A a R 
U T T T U B 
A E E E II I 
L D 0 0 D T 

HUIIAIi SUPPORT EQUIP/lENT REQUIPEn 

Al A1 Al Al 
C2 C2 Cl -- os 

C13 C13 E3 

I V A 

A1 Al Al 
151 81 B1 
C2 C2 Cl 
C13 C13 C13 

.. 
E V A 

. 

-
EXN~PLE - Fluld Interface Connector Plate 

P.AIIUAL - 11anual Ratchet 
SUPPORTED - nanua 1 Pa tchet ~Ii th Re:. trill nts 
AUGflEUTED - POller Tool Appllcatlon 
TELEOPE'PATEO - T./'.S. Actwated PatchetlnQ (lperatlon 
5~PEkVISED GROUND - /~chanlzed Drlve Operatlon' 
SUPERVISED Ofl-ORAIT - nechanned Onve Operatl0n 
ItIDEPt:NDEtlT - 11echJnlZed Dnve Operatl0n 

·Consldercd PS one lten of support equlp~ent 
DB - Co~puter Hardware 
F12 - ASSoclatcd Softhare 

Itfcoo .. ,...u. oO"'G~ 
E 14 

P2 111 
AS 05 
A6 06 
05 Fll 
06 
Fll 

-, ! 

I 
tJ 
D 
E 
P 
E 
/I 
0 
E 
II 
T 

P2 
A5 
A6 
03 
£16 
07 

D8.FlZ· 
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SUPPOPT EQUIPMENT REQUIREMENTS 

ACTlV ITY tllflBER: 11 CATEGORI ES OF ~WI-llACHIIIE IIITEP.ACTIOUS 

I 
I E SUPEPVISECl L N 

S A E 0 
U U 0 ~ 

E 
P G P P 

CORRELATE DATA 11 P M:- E G E 
A 0 E R R 0 II 
N R II A 0 R 0 
U T T T U B E 
A E I E E II I tl 
L 0 0 0 D T T 

HUlIAII SUPPOPT EQUIPf\ENT REQUIPED 

A1 Al Al A2. Al A2 
C13 C13 ft3 05 AS 

D5 A6 F'9 A6 
FlO D5 D7 

F9 D8,Fl2* 

I V A 

E V A 

EXUIPLE - Perforn An Evaluation To Correlate Data Obtalned Fron An Orbltal Experlne~t 

IIAlIUAL - Vlsual Or Long Hand Oenved Evaluatlon 
SUPPORTED - Visual Or Long Hand Derived Evaluatlon tilth Restralnts 
AlJGnEIJTED - Evaluatl0n Perfomed WI th Ald Of Computer 
TELEOPERATED - IIot Appl1cable 
SUPERVISED GROUllD - Software Perfomed Evaluatl0n 
SUPERVISED OIl-ORBIT - SoftHare Perfomed Evaluatlon 
HlOEPEriDE/lT - Software Perfor.ed Ev",luatlon 

* Consldered as one lte~ of support equlr~ent 
D8 - Co~puter Hald~are 
F12 - ASSOclated Software 

" 
/MenON"'''L'- DO<JO~ 

E·15 
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SUPPORT EQUIPMEtlT PEQUIPEMENTS 

ACTIVITY 1I111BE~: 12 CATEGORIES OF tlAtI-HACHIIIE INTERACTIOtlS 

I 
E SUPERVISED I 
L N 

S A E 0 
U U 0 u E - P G P t' P 

DEACTIVATE/ M P t1 E G E 
TERm NATE SYSTEM A 0 E R R 0 U 

OPERATIOIl N R Il A 0 R 0 
U T T T U B 

I 
E 

A E E E N I II 
L 0 0 0 0 T T 

HUt-WI SUPPORT EQUIPI~EtIT REQUIRED 

A1 A1 A1 A1 A2 041 .42 
C8 C8 C9 C10 AS D5 A3 

C1J C13 05 A6 D6 A4 
06 05 Fll Ar; 

06 .46 

I V A Fll 03 
[16 

07 
D8.F12* 

-
A1 A1 A1 
B1 Bl B1 
C8 C8 C9 
C13 C13 C13 

E V A 

EXN1PLE - Deactlvate Canera/lnaglng Equlpnent 

MAllUAL - OeactlVate 35"n Canera 
SUPPonTED - Deactlvate 35r~ Canera 
AUGrtEIITED - Deactivate Video Ca,lera Fron Cor,sole 111 th Rotar}' Selector Srtltch 
TELEDPEPATED - DeactlVa te Renote Vl dec Car'era 
SUPERV ISED GROUtlD - Deact 1Vate Renote Vi deo Canera 
SUPERVISED Oll-OPBIT - Oeactlvate Penote Vldeo Canera 
I1WEPENDEIJT - Deact lVate I~agl ng Systen 

* Consldered as one ltem of support equlpment 
08 - COMputer Hardware 
F12 - ASsoclated Software 

.I 

MCDOIWIWlE:LL DOUOL~ 
E 16 
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SUPPORT EQUIPtlENT P.EQUIREllENTS 

ACTIV lTV NUllBER: 13 CATEGOPIES OF MAII-llACHII!E I1JTE RACTI OtiS 

~ SUPEPVISED l 
S A E 
U U 0 

~ P G P 
DECODE/ENCODE H P ~I E G 

DATA A 0 E R R 0 
II R II A 0 R 
U T T T U B 
A E E E U I 
l 0 0 0 0 T 

HlJllAIJ SUPPORT EQUIPI1El!T PEQUIPED 

Al Al Al A2 Al 
C13 A5 05 
05 A6 09 

05 flO 
09 

I V A FlO 

Al Al 
81 B1 
CI3 C13 

E V A 

-

EXAH?L~ - Trans fOl111 Data From One Fonnat to Another 

1~~rlUAl - Decode Sanple Meter Read1ng 
SUPPORTED - Decode Aud1tory Warn1ng S19na1 
AUG:~Elm:D - Decode Co;nplex Data Fornat 
TElEOPEP.ATED - /Jot Appl1cable 
SUPEPVISED GROUlID - Decode Connand From Ground Contrel 
SUPERVISED Oil-ORBIT - DecfJde Comand Fran On-Orblt Control 
IIJDEPEt:OEIJT - Auto Cor.nand From Selfcontrolled and '1onltorl ng Systcn 

*Cons1dered as one 1te~ of support equ1~ent 
03 - Co~puter Hardhare 
Fl2 - ASSOCl ated Softllare 

/ 

... COo'""' ..... DOUO .. 9--
E17 

I 
/I 
0 
E 
P 
E 
II 
D 
E 
II 
T 

1-2 
A5 
"6 
03 
07 
OS 
D3 
F12 
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SUPPORT EQUIPt-lENT REQUIREMENTS 

ACTIVITY NUMBER: 14 CATEGORI ES OF tlAtHlACHII'E IIITEPACTIOUS 

1 

E SUPERVISED L 
S A E 
U U 0 
P G P 

DEFINE PROCEDURES! M P M E G 
SCHEDULES/OPERAT 10115 A 0 E R R 

N R N A 0 
U T T T U 
A E E E /l 
L 0 0 0 0 

HU/lArJ SUPPORT EQUIPtlEr:T REQUIPED 

A1 A1 A1 A2. 
C13 C13 AS 

07 A6 
05 
07 

I V A Fll 

E V A 

I 
EXN1PLE - Deflne Procedures For Troubleshotlng A Faulty Conponent 

rWlUAL - Cre~man Ortemlnation Of Procedures 
SUPPOrTED - Crelman Restralr.ed-Dete~lnatlon Of Procedures 
AUG/1E/JTED - COr.1puter Aldcd Procedure Deterr.11natlon 
TELEOPEPATED - /lot App11cable 
SUPERVISED GROUND - Connanded Software Generatlon Of Procedures 
SUPERVISED OIl-ORBIT - Comanded SoftHare GeneratlOn Of Procedures 
I~DEPE"DE"T - Self-Inltlated Software Generatl0n Of Procedures 

*Con5icered as one lte~ of support equlpment 
08 - Conputer Hardware 
F12 - Assoclated Software 

"'COO"'''' .. LL ooLlaL~ 
E 18 

u 
II 

0 
R 
B 
I 
T 

A1 
05 
07 
Fll 

I 
I 

I 
~I 
!l 
E 
P 
E 
II 
0 
E 
U 
T 

A2 
A5 
A6 
03 
07 

DB.F12* 

., 

. , 
-. , 
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SUPPORT EQUIPI1ENT REQUIREHEtJTS 

ACTIVITY IIUlIBEP.: 15 CATEGORIES OF llAl/-MACHI/IE IIlTERACTIOIiS 

1 
E SUPERVISED l 

S A E 
U U 0 u 
P G P N 

DEPLOY/RETRACT M P H E G 
/>PPE/WAGE A 0 E R R {) 

II R II A 0 R 
U T T T U B 
A E E E II I 
L D D D D T 

HUIAIi SUPPORT EQUIP/IEUT REQUIRED 

Al 
D5 
E3 

I V A 

Al Al Al 
Bl Bl Bl 
C2 C2 Cl 
C13 C13 C13 

E V A 

-

EXAlIPLE - Oeploy Solar Array 

Pv\/WAL - lIanually Hand Cranked 
SUPPOflTED - /lanual1y Hand Cranked Alded Il1th Restralnt 
AUGI1EIITEO - PO~/cr Tool Asslsted 
TELEOPERATED - tlot Appl1cable 
SUPERVISED GROUIJD - I~chanlzed Drlve 
SUPERVISED Oll-OPBIT - l1echanized Drlve 
IIIDEPEIJDENT - l1echanlZed On vc 

*Consldcred as one ltem of support equlpment 
08 - Computer Hardware 
Fl2 - ASSOCl ated Softllare 

" 
MCOONN" .... oouc .. fi».--

E 19 

A2 Al 
A5 D5 
A6 D6 
05 Fll 
D6 
Fll 

-

/ , 

I 
N 
D 
E 
P 
E 
N 
D 
E 
/I 
T 

A2 
A5 
A6 
D3 
06 
07 

D8,Fl2* 
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SUPPORT EQUIPMENT REQUIRH1ENTS 

ACTIVITY tJlIIBER: 16 CATEGOPIES OF ttAlI-MACHItIE INTERACTIONS 

~ SUPERVISED I 
l II 

S A E 0 
U U 0 0 E 
P G P U P 

DETECT CHAUGE IN M P 11 E G E 
STATE OR CotJDITION A 0 E R R 0 IJ 

IJ R IJ A 0 R 0 
U T T T U B E 
A E E E /I I IJ 
L 0 0 0 0 T T 

HUHAlJ SUPPORT EQUIPIIEIJT REQUIPED 

A1 A1 A1 1,1 A2 A1 A2 
C13 05 05 A5 05 1,5 

C13 06 A6 023 A6 
E1 05 Fl1 07 

023 08 

I V A Fll DB,F12* 
023 

A1 1,1 A1 
91 91 91 
C13 C13 C6 

C13 

E V A 

EXN1PlE - Detect Change In Condltl0n Of Solar Array Elenents 

HAIJUAL - Vlsual Detemlnatl0n 
SUPPOflTED - Vlsual Oetemlnatlon Alded lI1th Pestralnt 
AUGMENTED - Electrlcal Test Set Checkout 
TELEOPERATEO - O~~ TV Inspectlon 
SUPERVISED GllOUIJD - Comanded tlonltorl ng Of So~ ar Array POtier Generatl0n 
SUPEPV ISEO Oil-ORBIT - Comanded ~'Onl ton n9 Of Solar Array PO~ler Generat 1 on 
IIIDEPEIJDEIJT - Autonatlc tlonltorlng And Detectlon Of Solar Array Pmler Output 

* Consldered as one lte~ of support equlpment 
08 - Computer Hardware 
F12 - ASSoclated 50ftware 

E 20 

MCOON.VELL DOUGL~ 
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SUPPORT EQUiPMENT REQUIREI~ENTS 

ACTIVITY tltalOER: 17 CATEGORIES OF llAfI-IIACHHlE ItlTEPACTIOflS 
- I 

E SUPERVISED l 
S A E 
U U 0 u 
P G P II 

DISPLAY DATA M P M E G 
A 0 E R R 0 
N R N A 0 R 
U T T T U B 
A E E E U I 
L D D D 0 T 

HUllAlI SUPPORT EQUIPMENT REQUIPED 

A1 A1 A1 Al A2 
[15 C9 D5 AS 
C13 C13 E1 A6 

D5 05 
FlO 

I V A 

E V A 

EXtl1PLE - Display Dally Hlsslon Actlvlty Log 

11AllUAL - Obtaln Pre-prlnted ~llss1on ActlVlty Log 
SUPPOPTED - Obtaln Pre-prlnted Mlsslon ActlVlty Log 
A~ru[!lTED - Obta1n Logs V1a Sl~ple Co~puter Dlsplay 
TELEOPEPATEO - Obtain Logs V1a Data Llnk Fran A Pe~ote Statlon 
SUPERVISED GROutJD - Cor,lputer Dl splayed ActlV1W Logs 
SUPERVISED Oil-ORBIT - Corputer Dlsplayed ActlVlty Logs 
WDEPEIlDEtJT - Conputer D1 splayed Actlv1ty Logs 

* Cons1dered as one ltem of support equlpment 
08 - Computer Hardware 
F12 - ASSoclated Software 

/ 

MCDONNE .... DOUG"~ 
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Al 
05 
FlO 

• ! 

I 
N 
D 
E 
P 
E 
N 
D 
£ 
N 
T 

A2 
A3 
AS 
A6 
D7 

D8,Fl2* 
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SUPPORT EQUIPMEtlT REQUIREMENTS 

ACTIVITY NUMBER: 18 CATEGORIES OF MAN-MACHHIE HlTERACTIOUS 

~ SUPERVISED L 
S A E 
U U 0 u 
P G P N 

GATHER/REPLA.CE M P M E G 
TOOLS/EQUIPMEtlT A 0 E R R 0 

N R N A 0 R 
U T T T U B 
A E E E N I 
L 0 0 0 0 T 

HUMAtI SUPPORT EQUIPI1ENT REQtJIREO 

Al 1\1 Al 05 
C2 C2 Cl Al 

C13 C13 E3 
FlO 

I V A 

B1 Bl Bl 
Al A1 A1 
C2 C2 C1 
C13 C13 C13 

E V A 

EXAMPLE - Gather The Requi red Tool s To Perfom A r~odu1 e Exchange 

~v\NUAL - Gather Slmp1 e Tool s 
SUPPORTED - Gather More COMplex 1001s Requirlng Restraints 
AUGr.:EIHED - Gather Power And Standard Tool s 
TELEOPERATEO - Gather Tools From Remote Area With TMS 
SUPERVISED GROUllD - Not Appllcable 
SUPERVISED OU-ORBIT - Not Appl1cable 
INDEPENDENT - Not Appl1cab1e 

E-22 

I 
N 
0 
E 
P 
E 
N 
0 
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SUPPORT EQUIP~lENT REQUIRHlENTS 

ACTIVITY NUl1BER: 19 CATEGORIES OF IlAli-ltACHIIIE WTEPACTIOIIS 

~ SUPERVISED l 
S A E 
U U 0 ~ P G P 

HAIJDLE/INSPECTI 11 P M E G 
EXAr1INE LIVING A 0 E R R 0 

ORG~IJISIIS N R N A 0 R 
U T T T U B 
A E E E N I 
l 0 0 0 0 T 

HUltAlI SUPPORT EQUIPI!EUT REQUIr.ED 

Al A1 A1 Al 
C14 C13 C9 C9 

C14 C13 02 
06 

I V A 

E V A 

EXM1PLE - Exanlne To Deternlne The Health Status Of A Rat 

IWJUAL - Vlsua1 Exar.nnatlon 
SUPPORTED - Vl sua 1 EXa'11 natl on 111 th Use Of Re 5 "rai nts 
AUGllE1JTEO - Use Of E1ectronlc 11onltOrl ng Equi .. r:1ent 
TELEOPERATED - E>-amlne/lnspect by Use of eeTV Syste.ll 
SUPERVISED GROUlm - Not Appllcable 
SUPERVISED ON-OrBIT - Exanlnc Printout Fron Instrunented Pat 
INDEPEUDEIH - Not Appllcable 

/ 

MCDONNeLl.. DOU"..§;f 

E 23 

A1 
05 
[16 
023 
FlO 

I 
Ii 
D 
E 
P 
E 
N 
0 
E 
/J 
T 
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SUPPORT EQUIPIlENT REQUIREMENTS 

I ACTIVITY UUHBER: 20 CATEGORI ES OF MAN-I1ACHiliE HlTEP.AC TI OilS 

T 
E SUPERVISED L 

S A E 
U U 0 u 
P G P II 

II1PL EIIEIlT M P M E G 
PROCEDURES/SCHEDULES A 0 E R R 0 

II R II A 0 R 
U T T T U B 
A E E E II I 
L D D D D T 

HUI~AIl SUPPORT EQUIPIIDIT P.EQUIREO 

A1 A1 A1 Al A2 A1 
C13 C13 DS AS D5 

07 E3 A6 06 
05 fll 
06 

I V A Fll 

A1 A1 
B1 B1 
C13 C13 

E V A 

EXMIPlE - Inplenent Procedures To Troubleshoot A faulty Conponent 

MAIIUAL - Vocal Cormand To Inp1enent 
SUPPOr-TED - 11anolall y Inp1 enent Procedures fron Pestra 1 nts 
AUGIlEUTED - COIJputer Alded IIJplenentation Of 11alntenance Procedures 
TELEOPEP.ATED - Ir;;pler.1ent Procedures Through Use Of ms 
SUPERVISED GROUIJD - Connand Software Ir.JplelJentatlOn Of Procedures 
SUPERVISED OIl-ORBIT - Comand Software Ir.Jplenentatlon Of Procedures 
ItJDEPEIJDDIT - Self-Imtlatcd Sofb/arc Inplcncr ~atlon Of Pr'occdures 

* Consldered as one ,tem of support equlpment 
D8 - Computer' I -jwa re 
F12 - Assoc,at~~ Software 

MCDONNeLL DOCJGLQ 
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E 24 

I 
II 
D 
E 
P 
E 
II 
D 
E 
II 
T 

A2 
A5 
A6 
03 
06 
07 

DB,Fl2* 
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SUPPORT EQUIPMDJT REQUIREMENTS 

ACTIVITY tHJrlBER: 21 CATEGORIES OF lIAN-t1ACHII1E IIJTEPACTIOIIS 

I 
E SUPERVISED I 
L N 

S A E 0 
U U 0 u E 
P G P N P 

WFOP.lIA TI ON M P N E G E 
PROCESSIIIG A 0 E R R 0 Il 

/J R U A 0 R 0 
U T T T U B E 
A E E E 11 I /I -
L 0 D D D T T 

HU~lAtJ SUPPORT EQUIP/IEllT REQUIrED 

Al Al Al A2 Al A2 
C8 C9 C10 AS [15 AS 

C13 F8 A6 F8 A6 
D5 FlO 07 
Fa D8,Fl2* 

I V A FlO F8 
-

Al 
81 
C8 
C13 

E V A 

EXN~PLE - Extract A Speclflc Malntenance Procedure 

rv,rJUAL - Vlsual Fllp-Through For Speclflc Checkllst 
SUPPOP.TED - Auto Fllp-Through For Speclflc Checkl1st 
AUGMEHTED - Call Up Procedure Fror.! Computer Data !lank 
TELEOPERATEO - /Jot Appllcable 
SUPFPVISEO GROUIID - Connand 11a 1 ntenance Procedure For An I dentified Fall ed Iten 
SUPFRVISED OU-ORBIT - COMmand r~intenance Procedure For An Identlfled Falled Iten 
Wr't..'EtIDHIT - Auto Comand For Detectlon Procedure For A Fall ed I ten 

* Consldered as one ltem of support equlpment 
08 - Computer Hardl'iare 
F12 - ASsOClated Software 

" 
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SUPPORT EQUIPtlENT REQUIREMHITS 

I ACTIVITY UlJIIBER: 22 CATEGORIES OF HAII-MACHII1E IIITEPACTIOIIS 

I 
E SUPERVISED l 

S A E 
U U 0 u 
P G P N 

I IJSPECT /OBSEIlYE M P M E G 
A 0 E R R 0 
N R N A 0 R 
U T T T U B 
A £ E E N I 
l D D D D T 

HUllAll SUPPOPT EQUIPHEtlT' PEQUIRED 

A1 A1 A1 A1 A2 A1 
C13 C1D 83 A3 AS 

C13 Cl0 AS 05 
02 A6 06 

05 Fll 
I V A 06 

Fll 

Al Al Al 
Bl B1 B1 
C13 C13 Cl0 

C13 

E Y A 

EXNlPLE - Hake Observatlon Of Solar ACtlvlty 

llAlIUAL - Vlsual Observatlon 
SUPPORTED - YlSual Observatlon t11th Restralnts 
AUGIlENTED - Ylsual Cbservatlon Alded By Solar Vlewer 
TELEOPERATED - External Yldeo Canera Operatlon On PI1S 
SUPERY ISED GROUND - Conr.1anded IR Yl eWl n9 Syster:t 
SUPErVISED Oil-ORBIT - Comanded IR Ylewlng System 
IliDEPEIWEIJT - Conr.1andec i~ Vl e~1l ng 8r Preprogral'l';1ed Comand Si gna 1 

*Consldered as one ltem of support equlpment 
03 - Conputer Hardware 
F12 - ASSoclatcd Software 

" 
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SUPPORT E~UIPHENT REQUIREI1EtlTS 

ACTIV ITY Nu/1BER: 23 CATEGOP.IES OF tlMI-MACHHfE linE RAC TI Oil S 

~ 
SUPEP.VISED 

I 
L /I 

S A E 0 
U U 0 ~ E 
p G P P 

I1EASURE (SCALE) M p 11 E G E 
PHYSICAL OIMENSIOIlS A 0 E R P. 0 /J 

N R IJ A 0 R 0 
U T T T U B E 
A E E E II I IJ 
L 0 0 0 0 T T 

HUrlAt, SUPPORT EQUIP/1EUT REQUIREO 

A1 Al A1 A1 A2 Al A2 
C8 C8 C13 OS AS 05 AS 

C13 023 023 A6 06 AS 
E3 05 023 06 

06 07 

I V A 08,Fl2* 
023 

Al Al A1 
B1 B1 B1 
C8 C8- C13 
C13 C13 023 <. 

E V A . 

EXA/1PLE - Oeterm ne 01 stance BetHeen Spacecra ft And Oes 1 red Tat get 

rlArJUAL - Vlsua1 Deten:nnatlon 
SUPPORTED - Vlsual Oete~lnatlon Alded By COAS (Crew Optlca1 Al'gnnent Slght) 
AUGtlErJTEO - Oetemlnation By Radar System ' 
TELEOPERATEO - Oeteminat1ol1 By Rer.lOte Sensor/Visual Systen 
SUPERV ISEO GROUtJD - Comanded Tel er.1etry Data 
SUPERVISED OIl-ORBIT - Comanded Telenetry Data 
IIIDEPEIJDENT - Preprograr.ned Slgnal For Comanded Telenetry Data 

* Consld2red as one lte~ of support eqUipment 
08 - Co'nputer Hardllare 
012 - Assoc'ated Software 

/ 
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SUPPORT EQUIPHEIH REQUI RH1ENTS 

ACT:VITY 11L'MBER: 24 CATEGORIES OF 11A1I-11ACHIIlE JtfTE P .ACT! at J S 

I 
E SUPERVISED L 

S A E 
U U 0 u 
P G P Il 

PLOT DATA M P H E G 
A 0 E R R 0 
/I R II A 0 R 
U T T T U B 
A E E E II I 
L 0 n 0 0 T 

HU/tAIJ SUPPORT EQUIPl1E1lT REQUIRED 

Al Al Al A2 Al 
C9 C10 A3 05 
C13 C13 f..4 FlO 

05 A5 
A6 

I V A 05 
FlO 

E '/ A 

EX~!PLE - Plot Experlnent Oerlved Data For Evaluatlon Purposes 

l~tJUftL - ~'anua 1 Plot 
SUPPORTED - Hanual Plot Ihth Hand Calculator And Pestralnt Ald(s) 
AUG1'D~TED - Use Conruter To Plot Data 
TELEO?E~f\ED - I:ot Appllcable 
St:PERVISED GRCUND - Comand Conputer To Plot Routlne 
SUPEPViSEn CI1-OPB~T - Ccmand Conruter To Pl.:>t Poutlne 
IIIDEPElmENT - Preprogrannec. 51 gnul To Comand Con~utcr To Plot Routlnc 

.. 
Cons1 de'- 2d as one 1 te'T' of S uiJport equ1 p'-cnt 

08 - Co-outer Hard~are 
FIZ - ~S50clated Sof~l~r~ 
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SUPPORT EQUIPMEtJT REQUIRE~IEtJTS 

ACTIVITY /lUtmER: 25 CATEGORIES OF IWI-tIACHIHE IIITEPACTIOIIS 

~ SUPERVISED L 
S A E 
U U 0 I 0 
p G P ~I 

POSITION 1100ULE ~, P 11 E G 
A 0 E R R 0 
IJ R tI A 0 R 
U T T T U B . A E [ [ II I 
L 0 0 0 0 T 

Hl!lt.-'IfI SUPPOPT EQUIPIIEUT PEQL'IPEn 
" 

A1 A1 A1 A1 A2 Al 
C13 C8 05 AS 05 

C13 [3 A6 06 
05 Fll 
06 

I V A Fll 

A1 A1 Al 
B1 Sl 81 
C13 C13 C8 

C13 

[ V A 

EXAMPLE - POSltlon Sample Materlal Co~talner In Its Instal1dtlon Posltlon In 
Materlal ProceSSlnq Experlment 

l':MIUAl - ~lanual ly Installed 
SL'PPOPTED - l1anually Irstalled 1:1 th Ald Of R.:strill nts 
ALKll1EllTED - InstallatlOfl Alded By Deployable PosltlOnlng [levlce 
TEL EOPEP.ATEO - Installed Renoteh By TItS 
SUPERVISED Gf:CUllD - Ground Cc-r'3'1ded Carousel Posltlomng Devlce 
SUPEPVISED OII-etl[JIT - Orbltal Cor-mdr>d of Carousel POSltlonlng DeVlce 
WDEPn!DEIJT - /lot Arpl1cable 

/ 
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SUPPORT EQUIPME~T REQUIREMENTS 

ACTIVIT'{ NlP.SER: 26 CATEGORIES OF WUI-MACHIHE INTERACTIONS 

I 

E SUPERVISED L 
S A, E 
U U 0 

~ P G P 
PRECISIOII M P M E G 

WlNIPULATION A, 0 E R R 0 
OF OBJECTS N R N A 0 R 

U T T I·· U B 
A, E E E N I 
L D D [) -;..," B T 

HUMAN SUPPORT EQUIPMEIlT REQUIRED 

Al A,1 Al 
C13 C13 
C8 Cl0 

I V A 

. 

Bl 91 Bl 
Al Al Al 
C13 C13 e13 

C8 C10 

E V A 

I 
EXAI'.PLE - Preclse Alignment Of Optical Vie~llng DeVlce 

HAUUAL - ~Ianual Hand Adjust':1ent 
SUPPORTED - Manual A,dJustnent A,lded By ~echanlcal Screw AdJuster -
AUGMENTED - Fine AdJustrent Aided By Electro-optlcal Allgnment De·/lce 
TELEOPERATED - Not Applicable 
SUPERVISED G!{OUUD - ~lot Appllcable 
SUPERVISED ON-ORBIT - Not Appllcable 
INOEPEI,DENT - Ilot Appl1cable 
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SUPPORT EQUIPNENT REQUIREMENTS 

ACTIVITY 1Il.t18ER: 27 CATEGORIES OF tlMl-/1ACHIIIE IIITEPACTIOIIS 

I 
E SUPEPVISED l 

S A E 
U U 0 0 
P G P N 

PROBlEll SOlVING/ M p M E G 
DECISION I1AKIIIG/ A 0 E R R 0 

DATA A/IAlYSIS II R II A 0 R 
U T T T U 8 
A E E E N I 
L 0 0 0 0 T 

HUllAl1 SUPPORT EQUIP/lEnT REQUIRED 

A1 A1 A1 A1 A2 A1 
C2 C2 C2 83 A5 05 

C13 C6 05 A6 023 
C13 05 no 

023 

I V A 
F,O 

A1 A1 A1 
81 B1 81 
C2 82 C2 
C13 C13 C6 

C13 
E V A 

-

EXA/IPLE - Troubleshoot/fault Isolate 11alfunct10n In Fa11ed Umt 

/WIUAL - Hanually Troubleshoot 
SUPPORTED - tlanually Troubleshoot Hlth A1d Of P.estralnts 
AUGflENTEO - Use Test Set for Faul t Isol at10n 
TELEOPEPATED - Troubleshoot Penote Iten Ut 111 Zl ng RIIS 
SUPERVISED GPOUliD - Comand Fault Isolat10n Progran 
SUPERVISED OIl-Of WIT - eomund Fault IsolatlOn Progran 
!!.&JFPEIIDEIIT - Preprogranrcd 5'9na1 To Connand fault IsolatlOn Progran 

* Cons 1 dered as one 1 tem of 5upr,ort equ1 p;nent 
08 - Co:-;puter Hardllare 
F12 - ASsoc1atcd Soft~are 

/ 
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SUPPORT EQUIPMDlT REQUIREMDHS 
. ) 

ACTIVITY NUMBER: 28 CATEGORI ES OF MAN-MACflIIIE INTERACTIO}lS 

----- ~ SUPERVISED I 
L N 

S A E 0 
U U 0 u E 
P G P N P 

PURSUIT TRACKWG M P M E G E 
A 0 E R R 0 N 
N R N A 0 R 0 
U T T T U B E 
A E E E N I tJ 
L 0 D 0 D T T 

HUMAN SUPPORT EQUIPMENT REQUIRED 

A1 A1 A1 02 
C13 C13 A1 
C8 C10 83 

I V A 

E V A 

EXAMPLE - Dock; ng And Latchl ng Of R!1S After Usage 

MANUAL - Visual Trackl ng 
SUPPORTED - VIsual TracKIng With AId Of RestraInts 
AUGIIENTED - VIsual TracKIng WIth AId Of Zoom TV On RNS 
TELEOPERATED - 8ulkhead Mounted T.V. Cameras Expand VIsual Coverage 
SUPERVISED GROUND - Not ApplIcable 
SUPERVISED Oil-ORBIT - Ilot Appllcable 
INDEPE"DENT - Not Applicable 

rj 
f:'\/ 
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SUPPORT EQUIPf.1ENT REQUIRENENTS 

ACTIV ITY HUrIREp.: 29 CATEGORIES OF MMJ-lIACHItJE I1JTERACTIOtJS 

T 
E SUPERVISED L 

S A E 
U U 0 u 
P G P N 

RELEASE/SECURE M P M E G 
HECHAIJI CAL A 0 E R R 0 
I1JTERFACE N R N A 0 R 

U T T T U B 
A E E E /I I 
L D D D 0 T 

HUllA1l SUPPORT EQlJIPtlElJT REQUIRED 

A1 A1 A1 A1 A2 A1 
C2 C2 C1 Ds AS 05 

C13 C13 E3 A6 [\6 
05 Fll 
06 

I V A 
Fll 

A1 A1 A1 
B1 B1 81 
C2 C2 C1 
C13 C13 C13 

E V A 

EXN1PLE - Release Latchlng llechamsr.T 

f.\AtJUAL - Hanua 1 Act lVat1 on 
SUPPORTED - I·Ianual ActH'at10n III th Pestralnts 
AUGrlENTED - Act lVatlOn ~11 th Use Of Power Tool 
TELEOPEP.ATED - illS OperatlOn To ActlVate Ifechanlsn 
5UPERV I3EO GROU'JD - Connand 51 gna 1 To Act lVate tlechan1 sn 
SUPERVISED OIl-Or-SIT - Comand Sl gnal To ActH'ate !lechan1 Sr.T 
IIIDEPEHDEIIT - Preprogrann.;d To Cornand A S1 gna 1 To Actl vate rlechan 1 sn 

* Consldered as one 1tem of support equlpment 
08 - Computer Hardware 
F12 - ASSoclated Software 

/ 
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SUPPORT EQUIP~lOJT REQUIPEMENTS 

ACTIVITY /lL~1BER: 30 CATEGORIES OF I':MJ-11ArH~IJE I/ITERACTI OilS 

I 
E SUPEPVISED I 
L II 

S A E 0 
U U 0 u E 
P G P U P 

REI10VE IIODULE M P 11 E G E 
A 0 E R R 0 /I 
N R II A 0 R 0 
U T T T U B E 
A E E E tI I /I 
L 0 0 0 0 T T 

HunAN SUPPORT £OUI PI1EIJT REQlII rEO 

I'll I'll I'll A1 A2 Al 
C13 C8 83 A5 05 

C13 05 A6 D6 
D5 Fll 
06 

I V A Fll 

I'll I'll I'll 
B1 B1 R1 
C13 C13 C8 

C13 

E V A 

EXftMPLE - Remove A Sample Materla1 Contalner From Its Mountlng Locatlon, Mechanlca1 
Interface Has Been Released 

HAlIVAL - Manual Hand Actlon 
SLPPO~TED - 11anua1 Hand ActlOn Alded By Restral nt 
ALGI1EtlTED - Penova1 Of f-Iodule 111 th Spec~al Tool 
TEl EOPEPATED - R~lS UtlllZed To Grasp And R~move Ilodule 
SUPEPV ISm GROVIJD - Ground Comnanded Carousel D2V 1 ce 
SUPERVISED OIl-ORBIT - Orblta1 Command of Cat'ousel DeVlce 
INDEPENOEIIT - /lot Appl1cable 

/ 
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SUPPORT EQUIPMENT REQUIPEMEIJTS 

ACTIVITY IWllBER: 31 CATEGORI ES OF HA-tI-/1ACHIt'E I1lTEAACTI OilS 

I 
E 

SUPEPVISEO 
I 

L /I 
S A E 0 
U U 0 u E 
P G P IJ P 

REllOV E/ REPLACE /1 P ~1 E G E 
COVERIIIG A 0 E R R 0 II 

II R II A 0 R 0 
U T T T U B E 
A E E E II I IJ 
L 0 0 0 0 T T 

HU/lAtl SUPPORT EQUIP/'EIIT rEQUIrED 

A1 A1 A1 A1 A2 A1 A2 
C2 C2 C1 D" ~ AS 05 AS 

C13 C13 n A6 06 A6 
05 F11 06 
06 07 

I V A Fll 08.F12* 

I , 

-
A1 A1 A1 
B1 B1 81 
C2 C2 C1 
C13 C13 C13 

E V A 

. 

EXM1PLE - Penove Cover For Dpt1ca1 Telescope Systen 

/1ArJUAL - /Ianua 1 Rer:lOva 1 
SUPPORTED - ~lanua1 Renoval A1d Ry Restralnts 
AUQEtlTED - Renova1 A1ded 8y Power Tool 
TELEOPEPATEO - A1ded By TIIS Penova1 Operatlon 
SUPERV ISED GROUIJD - Comand Opem ng Of Opt1 ca 1 Cover1 ng 
SUPERVISED 0I1-0PBIT - Connand Openl ng Of Optl ca 1 Coven nq 
I1lDEPElIDEIJT - Preprograr.1ned 51gna1 To Connand Openlng Of Optlca1 Covering 

*Consldered as one ltem of support equlpment 
08 - Computer Hardware 
F12 - ASSoclated Software 
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SUPPORT EQUIPMENT REQUIREMENTS 

ACTIVITY NUMBER: 32 CATEGORIES OF MAN-MACHWE ItITERACTIONS -I 
I E SUPERVISED L tJ 

S A E 0 
U U 0 0 E 
P G P N P 

REPLACE/CLEAN M P M E G E 
SURFAC~ A 0 E R R 0 N 
COATINGS N R U A 0 R 0 

U T T T U B E 
A E E E N I -N 
L 0 D D D T T 

HUMAN SUPPORT EQUIPMEtlT REQUIRED 

Al Al C7 05 
C2 C2 Al Al 

C13 C13 E3 
C7 

I V A 

Bl B2 B1 
Al Al C12 
C13 B1 Al 
C2 C13 C13 

C2 C7 
E V A 

-, 

EXAMPLE - Clean Rdolator Surface Coatlng 

MANUAL - Manually Clean With Simple Tool s 
SUPPORTED - Manually Clean Large Areas. Use rl,I,1U For EVA 
AUGMEIHED - Use Power Cleani ng Apparatus On MFR (Manipulator Foot Restral nt) 
TELEOPERATED - Use ms Wlth Power Cleanlng Apparatus 
SUPERVISED GROUND - !lot Appllcable 
SUPERVISED ON-ORBIT - Not Appl1cable 
INDEPENDENT - /lot Applicable 

MCDONNIltLL DOUO~S--
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SUPPORT EQUIPHEHT REQUIREMEllTS 

ACTIVITY IWIIBER: 33 CATEGORI ES OF rlAlI-IIACHHIE lIITERACTIONS 

I 

E SUPERVISED L 
S A E 
U U 0 

~ P G P 
REPLEIIISH IlATERIALS N P M E G 

A 0 E R R 0 
N R N A 0 R 
U T T T U B 
A E E E IJ I 
L 0 0 0 0 T 

HUrtA!! SUPPORT EQlJIPI~EIJT REQUIRED 

Al Al Al Al A2 Al 
C9 C9 C4 C4 A5 05 

C13 C13 05 AS 06 
£3 05 023 

06 Fll 

I V A 023 
Fll 

A1 A1 Al 
81 81 B1 
C9 C9 C4 
C13 C13 C13 

E V A 

I 
£XAlIPLE - Pecharge LOll Fluld Level In Thernal Control Syster' 

rlAtJUAL - Ilanually Hand Punp Fluld Into Systen 
SUPPORTED - Ilanually Hand PUr.1p Flulds Into Systen Alded By Pestralnts 
AUGrtEIJTED - Utl11ze Fluld Recharge Klt 
TELEOPEPATEO - TIIS Operatlon Wlth F1uld Pecharge Klt 
SUPERV ISED GROUIID - Comanti Fl Ul d Trans fer Fror.1 Reserve To Systen 
SUPERVISED 0I1-0PBIT - Comand Fluld Transfer Fran Peserve To Systen 
IIIDEPEllDEtlT - Auto-Comand To Transfer Fluld Fror.1 Peserve To Systen 

* Consldered as one lte~ of support equlpment 
D8 - Co~puter Haruware 
F12 - Associated Software 
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SUPPOPT EQUIPMENT REQUIRnlENTS 

ACTIVITY UlJtlBEP.: 34 CATEGORI ES OF /lAtf-/IACHItiE HJTERACTIOUS 

I 
E 

SUPERVISED l 
S A E 
U U 0 u 
P G P N 

STORE/RECORD H P M E G 
ElEMEtlT A 0 E R R 0 

tl R N A 0 • R 
U T T T U B 
A E E E II I 
l 0 0 0 0 T 

HUIIAIl SUPPORT EGUIP/IEUT REQUIPED 

A1 A1 A1 A1 
C13 05 D5 

C13 E1 

I V A 

--
Al A1 Al 
B1 B1 B1 
C13 C13 C13 

. 

E V A 

EXAlIPLE - Record Observat10na1 Data 

MANUAL - Manual Record 
SUPPOf'lEO - Manual Record A1ded By Restra1nts 
AUGtlENTED - Use Of Conputer To Record Data 
TELEOPERATED - Off{ V1 deo Record1 ng Of Data 
SUPERVISED GROUtJD - Comand Recordl ng Of Data 
SUPERVISED Oll-OPBIT - COIT'(lnd Pecordlng Of Data 
IIJDEPEIJDEtJT - Auto-Comand S1 gna 1 To Record Data 

*Consldered as one Item of support equlp~ent 
DB - Computer Hardware 
F12 - ASSOCIated Software 

/ 
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SUPFJRT EQUIpr~ENT REQUIREMENTS 

ACTIVITY NUMBER: 35 CATEGORI ES OF MAti-MACHINE INTERACTIOHS 

~ SUPERVISED L 
S A E 
U U 0 

~ P G P 
SURGICAL M P M E G 

MANI PULATIONS A 0 E R R 0 
II R N A 0 oR 
U T T T U B 
A E E E N I 
L D D D D T 

HUMAII SUPPORT EQUIPMENT REQUIRED 

A1 A1 A1 
C14 C14 C14 

C8 C9 

I 

I V A I 

E V A 

EXM~PLE - Obtaln Tlssue SaMple From SubJect 

MANUAL - Manual Use Of Simple Surgical Instrunent 
SUPPORTED - Special Surglcal Tool/Instrument 
AUGlltElnED - USc 1>11croscope To Ald Pemoval Of Tlssue 
TELE0?ERATED - Uot Appllcable 
SUPERVISED GROUND - Not Appl icable 
SUPERVISED ON-ORBIT - r:ot Appllcable 
INDEPEtlDEtH - Not Applicable 
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SUPPORT EQUIPMENT IlEQllIPnlDnS 

ACTIVITY IlUIIllER: 36 CATEGORIES OF fIAH-I-IACHINE I NTERACiI OIlS 

I 
E SUPERVISED L 

S A E 
U U 0 
P G P 

TnAlISPORT LOADED M P M E G 
A 0 E R R 
/I R /I A 0 
U T T T U 
A E E E /I 
L 0 D D 0 

HUllA1I SUPPORT EQUIPrlEIlT REQUIPEO 

A1 A1 A1 
C13 B3 

- D5 

I V A 

A1 A1 A1 
81 R1 31 
C13 C13 82 

'" ""C'I'j 
. 

E Y A 

EXM1PLE - Transport Replaceable Unlt To Its Insta11at1on Locat1on 

fWJUAL - flanual Transl at10n 
SUPPORTED - 11anua1 Translat10n 1/1 th Tethers And Handho1ds 
AUGI'E/ITEO - Translat10n W1 th NllU 
TELEOPEP.ATEO - Translat10n 111 th R~lS 
SUPERVISED GROU/lD - /Jot Appllcab1e 
SUPEPVISED Oll-OPBIT - /lot App11cable 
INOEPE/IOEH - Not App11cabl e 

-. 

u 
II 

0 
R 
B 
I 
T 

NOTE: Tr(lnspo~t Loaded operat10ns beyond the non,\al work1ng enVHonr'ent (e g., to 
geo;ynchronous orb1t) could requ1re many hours. In the forespeab1e future 

I 
II 
D 
E 
P 
E 
N 
D 
E 
II 
T 

such act1v1t1es would be performed only 1n the ~\Jperv1sed or Independert 
modes. Ther fore 1n the THURIS study cost1ng analyses. tra~5port operat1ons 
beyond the nc.ma 1 worl1 ng enV1 ronment \~el'e not cons 1 dered. 
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SUPPOPT EQUIPr1ENT REQUIREMENTS 

ACTIVITY UurlBER: 37 CATEGORIES OF rWJ-MACHHlE ItlTEPACTIOflS -I 
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TRANSPORT UrJLOADED H P M E G 
A 0 E R R 
II R Il A 0 
U T T T 
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u 

A E E E II 
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HUllAtI SUPPORT EQlJIP/'EI1T PEQUII1Efl 

Al Al Al 
C13 B3 

D5 

I V A 

Al Al Al 
B~ 01 01 
C13 C13 B2 

cn 
• E V A 

EXAIlPLE - Translate Fron \lork LocatlOn To Obtaln Replacenent Unlt 

!WlUAL - Manua 1 Transl at1 on 
supporTED - /1anual Translatlon Il1th Tethers And Hancrolds 
At.;GI~E/mO - TranslatlOn ',;1 th lUlU 
TELEOPEPATE[l - Translatlon tIl th t:rlS 
SUPERVISED GROUtJD - /Jot Appllcable 
SUPERVISED OIl-OI1[1IT - Hot Appllccble 
IfJDEPEIJDEtJT - /Jot Appllcable 

0 
IJ 

0 
11 
B 
I 
T 

NOTE' Transro'"'t Unloaded operatlO'lS beyond the nonnal I~Qrk1ng env1ronr.ent (e.g •• 

1 
1/ 
D 
E 
P 
E 
tJ 
D 
E 
II 
T 

to geosynchronous orblt) could rpqu1re many hours. In the foreseeable future, 
such act1v1t1es would be ~erfonned only 1n the Superv1sed or Lndependent 
modes. Therefore 1n the THU~IS stuoy crst1ng analyses, transport operdt1ons 
beyond the nonnal work1ng enVlronment I,ere root consldered. 

E 41 

I 

.. 



-... 

./ 

--

--. 

- ........ -
I 

t 

\ 

:] 

- , 

APPENDIX F 

CU~IUlATI 'JE COSTS AS A FU;JCTI ON 

OF NU~BE~ OF TIMES ACTIVITY 

I S PERFORt'~ED FOR SEVEN r·1At'-!-NACHI NE MODES 

/ 

... CDO ..... 6tLL 00"0'-8-- I- 1 

" 



I .. ~ 
. I \ -. . 

/ 

. , 
" , 

\ 

INDEX 

ActlVlty O--General Ca~e A--Teleoperated Codes 

ActlVity O--General Case B--Teieoperated Cooes 

Activlty O--General Case C--Teleoperated Codes 

ActlVlty l--Actlvate/Initlate System Operation 

ActlVlty 2--AdJust/Allgn Elements 

ActlVlty J--Allocate/AsSlqn/Oistrlbute 

Activlty 4--Apply Blo~edlcal Sensor 

A~tlVlty 5--Cor.~unicatp Information 

Activlty 6--Compensatory Tracking 

ActlVlty 7--Comoute Data 

Al , OS, and 

A 1 , 05. and 

fll • 05. and 

Act; vity 8--Confi nn/Ven fy Procedures/Schedul es/Opera tior ... 

hctlVlty 9--Connect/Disconnect Electrical Interface 

Actl~lty lO--Connect/Dlsconnect fluld Interface 

ActlVlty ll_-Correlate Data 

ACtlVlty 12--~eactlvate/Termlnate System Operatlon 

ActlVlty 13--Qecode/Encode Data 

Activlty 14--0efine Procedures/Scnedules/Oreratlons 

ActlVlty 15--CPDloy/~etract Appenaage 

Activlty 16--~etect Change 1n State or Conditlon 

Act1Vlty 17--ulsplay Oatl 

ActlVlty 18--Gat~er/Replace Tools/lQulp~ent 

ActlVlty 19 -Handle/lnspect/Examlne Llvlng Organlsms 

ActlVlty 20--Inrle~ent Procedures/Schedules 

ActlVlty 21--Informatlcn Processing 

ActlVlty 22--Insrecti0bserve 

,\ctlVl ty 23--i'easure "Scale", Phyc;lcal DlriienSlOns 

F2 

El 

E3 

B3 

....... - \ 

F-4 

F-5 

F-6 

F-7 

F-8 

F-9 

F-10 

F-ll 

F-12 

F-13 

F-14 

F-15 

f-16 

F-i7 

F-18 

F-19 

F-20 

F-21 

F-22 

F-23 

F-2·1 

F-25 

F·26 

r -27 

F-28 

f-29 

. , 
! 



'. 

I 

T \ -, 

" 
. " 

, 
\ 
\ 
\ , 
\ I 
" 
\ 

"\1 
\ \ 
\ 

'. 

Attivlty 24--Plot Data 

Activlty 25--Positlon Module 

Activity 26--PrecislOn Manipul.'tlon of OOJects 

ActlVity 2i--Problem Solving/Dechion Making/Data ,inalysis 

Activity 28--Pursuit Tracking 

ALtivlty 2g--Reledse/Secure Mechanlcal Interface 

Activity 30--Remrve Module 

Activlty 31--Remove/Replace Covering 

Activity 32--Replace/Clean Surface Coatings 

ActlVlty 33--Replenisn Materlals 

ActlVlty 34--Store/Record Element 

ActlVity 35--5urglcai t1anlpulations 

Activity 36--Transport loaded 

ACtlVlty 37--Transport Unloadea 

LEGEND 

e 9 a e Manual 

-.-e-.-e-o-a--. Supported 

-.-b-.~lr--. Augmented 

. ____ ~-~-~--_~ __ -. Teleoperated 

.. ---}(-.--)(_ ... w-.. )t. __ ..• Supervlsed - Ground 

~ Supcrvlsed - On Orblt 

~ ~. 9 ?- - Independent 

/ 

M~DONVr'LL oOCJCI.Q' 
~'..:../ 

F 3 

F-30 

F-31 

F-32 

F-33 

F-34 

F-35 

r-35 

F-37 

f-38 

F-39 

F-40 

F-41 

r-42 

F-43 



I 

I _ 

~ --
\ ~. 

\ 
\ 
\ 

1
-· -. / 

If> 
Z 
a 
..I 
.::! 
:c 
z 

lfl 
£>: 
a: 
..I 
..I 
0 
0 

If) 

5 
..I 
-I 

:c 
z 

ttl 
n' 
n: 
-I 
..I 
0 
0 

flCT tlUMBER Q-GENERAl. CASE • TELEOPERATE:D CODES A 1, DS, & E 1 
CUMULATIVE: COST VS. fRE~UENCY 

EXCLUD lNG CfERATI ONS 

100~-----------,------------,-----------~------------~ 

10 

---~ ----
- )( -

.................... 
..................... 

10 100 looa 
NUr.BER or TIME3 RCTIVIT~ IS PERfORMEO 

OCT NUM!:f:R O-GE~'CRP.L. CASE TELECPE~9TEO ceDES A 1, D5, &. E 1 
CUNULAT I \ E COST 1/5 fREOUCNcr 

INCLUDING OPERATlCNS 

\00CXl 

I~~----------~------------~----------~------------~ 

100 

---- ----
)( .. )( -

)( _ _ )of .. 

10 

................ + ....... -
................................. 

o \.+---~~~~~\O--~--~~~~llc-O--~~~~~I~ooa~~~~~~\~OOOO 

~uMB~R Of TINES ACT[VITl IS PERfC~M[D 

F-4 

, . 

.. , 



" 

, ' -rlj. 

I 

I', ' " . . "-
! 

I 
I 
I 

t 
.... 

en 
Z a 
.J 
.J 

r 
z 

1I1 
~ 
II: 
.J 
.J 
a a 

en 
Z a 
.J 
.J 

r 
z 

tr) 
~ 
u: 
.J 
.J 
a 
0 

ACT NUMBER O-GE~ERAL CASE B TELEOPERATEr CODES A1, D5.& E3 
CUMULATIVE COST VS. fREOUENCr 

EXCLUDING OPERATIONS 

IOO~-----------r----------~-----------.r---------~ 

10 

~---9---
- "." )( 

-- --It •• _ • .)(. -

....................... 
••••• + .............. . 

10 100 1 (XX) 

NUMBER Of TIMES ACTIVITY IS PERfORMEO 

ACT NUMeER O-GENeRAL CASE El n:U::OPERA1tD CODES A 1, 05, S, E3 
CUMULATIVE COST VS. rRECUENCr 

JNCLUO JNG OPERAr! eNS 

10000 

I~~-----------r----------~------------r---------~ 

100 

-9----
)( .)(.-

.. -x . .... -)t ...... 

10 

_ ........ + .......... a..+ .... __ .. 
.......... 1""' ................ .. 

....... 

F·5 

MCOONf'I",&'L DOUO~ 



---IT\ 
I 

, . 

/0' 
, 

/ 

ACT NUMBER O-GENERAL CASe C 'TCLeOPCRATCO CODES Al, O~,& B3 
CUMULRTIVE COST V5. fREOUCNcr 

EXCLUDING OPDRRTIONS 

/ 

IOOT-----------~------------~----------__ ~----------~ 

__ -11-

V'I _ _ )(_ _ - -)(.- - -- - ~-- - --~-- --

~ 101===~==~~~~~~==~==9r--~~~--~~~~------~ 
-I 
-' 
1: 

V'I 
cr: 
II: 
-' 
-' o 
o 

VI 
Z 
0 

-I 
-' 
1: 

~ 
VI 
rr 
a: 
-' 
-' 
0 
0 

10 ICO I COl 
NUMBER or TIMES ACTIVITY IS PERfCRMED 

ACT NUMBER O-GENCRAL CASE C TELEOPERATED CODES Al,D5,& 83 
CUMULATI VI: COST VS. fREOUENcr 

INCLUDING OPERf.TIONS 

10000 

I~~------------,------------~----------__ r-----------~ 

I~+-----------~~-----------r----------__ ~~----~~r~ 
-9--- --Q----

-- )(- -- .)(. 
.-)( -

10 

----~ ······ .... ····l-:::---~ ........ ~. -
o I+---T-~~~~~~--~~~~--~-r.~~~~--~~~~~ 

I 10 JOJ 10CXl 10000 
NUMBER or II MES ACTI'n TY IS PERF'ORMEQ 

F6 
/ 

MCOONNIlLL DOUO~~ 

" 



'T' 1 
I 

I 

II 
, 

T 
-, -

T -
" 

-, 

'i' t-
~. 

I. 

... 

I 

ACTIVITY NUMBER 1-~CrIVATC/INITIATE SYSTEM OPCR~TION 
CUMULATIVE COST VS. fRE~UENCY 

EXCLUDING OPERATIONS 

lOOT-----------~------------,_----------~------------~ 

---- ----
U1 _...)( .. _ _ *__ - .... oo-)t- .. _ .... -.w ..... 
5 IO;===~==~===1===+====~==~--+--=~~-1~----~~--i 

:j 
I: 

Z 

Ifl 
~ 
a:: 
...J 
...J 

8 

tn 
Z 
0 

...J 

...J 

I: 

Z 
~ 

Ifl 
a::: 
a:: 
J 

...J 
0 
0 

•.••• + ••••••. + ••••• 
........... 

10 leo ICl:XI 
NUMBER Of rI~ES ACTIVITY IS PERfORMED 

ACTIVITY NUMBE~ I-ACTIVATE/INITIRTE SYSTEM OPERRTIW 
CUMULATIVE COST VS. fRE~UENCY 

H;CLLD I N:J OPERATI OtIS 

10000 

IOOO~----------~------------,------------,r-----------~ 

lCO 

10 

-x--"--

................................... 

---'1---
__ )( __ __)f- -

.. ' 
.......... 

...... 

.' .. ' 
........... 

.<' 

10 leo 1000 
tJU:1BER Of TIt"'iES ACTIVITY IS PERfORMED 

F7 

10000 

MCDo""""eLL DOUOL~ 

, 



. 
I 

7 

RCTIVITl NUH6£R 2-AOJUST/RLIGN ELEMENTS 
CUMULArIVe COST VS. rRe~ 

~XCLUOING OPERATIONS 

IOO·~----------~~----------~------------r-----------~ 

~ 10 - ---)(- -- - )( --- -
. )( - -- --)(-----

a 

:l 
~ 

z -
en 
0:: 
a::: 
:l 
a a 

In 
Z 
a 
...1 
...J 

~ 

Z 

III 
n::: 
a::: 
...J 
...1 
0 
CI 

1000 

100 

10 

0.1 
1 

........................... 

--_ ••••••••• _-+-.-••• 

10 100 1000 
NUMBER Of TIMES RCTIVIT~ IS PERfO?MEn 

ACrrVITY NUMBER 2-ADJUSTIALIGI~ ELEMENTS 
CUMULATIVE COST VS. fREOUO~CY 

INCLUDING OPERATIONS 

-
----./ 

10000 

./ 
tr"'/ 

.~ 

~- / 
1'---'1---

>--.Jr-- _ 
1---9---- ~ --)to--~ "'J"';' 

__ -It -- --)( -----)(- -- -- )( --- ::? .' ...... , ~.?' 
.. -.. ~/ 

••••• -r .................... .-

••••• + •••• , •. + ••••• ~ 
~ 

_-,,-;.t~ ~ 

J-

10 100 1000 IlXloo 
NUMBER Of TIt1[:~ PCTIVITY IS FERfCfU,[Q 

Fa 
/ 

NlCDONNICLL DO&JG~S--

I 
.j 



I 
\ , 

\ -r 
\ . . / 

/ 

\ 

/ 

en z 
0 

J 
...J 

x: 

=: 
en 
0:: a: 
...J 
J 
0 
0 

en 
Z 
0 

...J 

...J 

x: 
Z 

U) 

0:: 
a: 
...J 
..J 
0 
0 

I Y 

ACTIVIIY UUNBta 3-flLOCAT~/ASSIGN/OISTRI6UTe 
. CONULRT11C COST VS. fReQUENCY 

EXCLUDING OPERATIONS 

100~----------~----------~'-----------~~----------~ 

10 

0.1 

-- - - K- .-

..................... 

--­~,--

--4--- ......... --
• - .- )+--- _.~.-. -- -~--- -- -)(- . 

......................... 

10 100 1000 
NUMBER or Tr~ES ACTIVITY IS PERfOflMEO 

ACTIVITY NUM8ER 3-ALLOCATE/ASSIGN/DISTRI6U!E: 
CUMULATIve COST VS. fREQUENCY 

INCLUDING OPERATIONS 

10000 

I~~-----------,------------'-----------~------------~ 

100 ---- ~--
- 0)( 

- )( -- )( 
- )( 

o _)( 0 __ 

10 

...................... .-................. . 

0.1 

10 Ica I~ 10000 
NUMBER Of TIMES P,CTI V I TY I S PERfORMED 

F9 
/ 

MCOONNllrLL DOUQ~S--



,/ 

/T' , 
I' 

i' 
I. 

II 
I I 

r 
I 

I I 
I 

/ 

1 

'" :z: 
8 
..J 
..J 

x: 
:z: .... 
I/) 
a::: 
II: 
..J 
..J 
0 
0 

III z 
0 

..J 

..J 

:c 
::; 
til 
a::: 
a:: 
oJ 
..J 
0 
0 

OCrIVlTr NUHBER i-F.PPL't BIOMEOICfl. SENSOR 
CUNULRrIV~ COST VS. fREOUCNCr 

~XCLUOING OPERRTIONS 

IOCQT-----------~----------~------------r_--------__, 

100 

IQ 

..a---- A 

-~-

0.1 

DDI~~?-~~~~--~~--~~--~~~~~~--~~~~ 
I 10 100 IIXXl 10000 

NUMBER Of rIMES ACTIVITY IS P~RfORMEO 

PCTIVIT'( NUMBER i-APPL't BIOMEOICAL SENSOR 
CUMULATIVE COST VS. fREOUDICr 

INCLUDING OP£HArIONS 

I~~-----------r-----------~-------------r-----------' 

100 

10 

0.1 

10 loe lro:l loo!XI 
NUMBER Of TINES ACTIVITY IS PERfORr.EO 

F·lD 

MCDONN_LL OOfJO~ 

• I 



J 

rr 
ACTIVITY NUMe~R 5-CONMUNICATE INfOrut~TION 

CUMULATIVe COS! VS. fR£OUENCY 
EXCLUDING OPERATIONS 

lOO~----------~------------,-----------~----------~ 

..-.-- ----
.+ 

_____ )(' ______ )(_____ _ __ )f---l<----
~ 10 - ---.0(- --- -- * --- -

:j 
x: 
z -
IfI 
~ 

5 
..J 
a 
CJ 

If) 

z a 
...l 
...l 

r 
z -
en 
~ 
a: 
...l 
.J 
0 
Cl 

•....•..... 

10 ICJ 10CXl 
NUMB£R or TIHES ACrIVITY IS PERfORMEO 

ACTIVITY NU:1BCR 5-CO:1MUNICA~ WfO~HATIOIJ 
CUNLLArIVE COST VS. fREOUENCY 

INCLUDING OPCRATIO."IS 

..... 
.' 

10000 

I~.------------.------------.-----------~----------~ 

100 ---~ ~--
--.--.-

----)( --- - )( --- _ )to -- -- ~- --

Ie 

10 ICO 10CXl 
NUMB£R or TIH£S ACTIVITY IS PERfORMED 

lCOCXl 

F·ll 



.. 
c' 

, 
I , 

/ 

en z 
Cl 

.J 

.J 

1: 

Z -
en 
n:: 
a: 
.J 
..l 
Cl 
0 

tf) 

z 
0 

.J 

.J 

1: 

Z 
~ 

If) 
Ck: 
a: 
..l 
..l 
0 
0 

100 

10 

HDJ 

100 

10 

o I 
I 

RCITlvr NUM8~R 6-COMP~NSR10Rr TRRCKING 
CUMULATIVE COST vs. fR~aU~Ncr 

EXCLUOING OPERRTIONS 

r--~---' ---- -...q----' ~ 
~ --- )(---

~------__ )( -- ------ - -- ---*----

-

-. 

10 100 urn 
NUMBER Of TIMES ACTIVITY IS P~RFORMEO 

ACITIVY NUMBER 6-COMPENSATORY TRRCKING 
cu.'1lJl..firl vr: COST VS. fREQUENCY 

INCLUO lNG OPt:RRrI QNS 

............... 
1000:) 

!I"""/ 

/'l ./' " 

..,..--V 
~----

1------ __ 
io-- J1- _ r,- -' ~ ___ )" ___ - )t-- -'" 
.--)( _ .. )(-" 

10 100 lCXD 
trunBER or TINE5 ACTIVITY IS PERFORMED 

1000:) 

F·12 

MCDON"'.L" DOuaLd 
~'-....../ 

".. -
-. 



I 

/ 
/ 

, /f 

I 

,/ - --

/ 

! 

/ 

(f) 

Z 
0 

-.l 
--l -:s:: 
z 

If) 
0;: 
a: 
--l 
--l 
0 
0 

J 

/ 

ACTIVITY ~~M6~R 7-COMPUTE CRTR 
CUMULATIVe COST VS. fREOUENCY 

EXCLUDING OPERATIONS 

IOCCT---------------T-------------~r_-------------~--------------_, 

100 

10 

0 I 

......._-9--

)(- --__ --x- ---

---
10 100 (000 

NUMBER Of TIMES ACTIVITY IS PERfO~MED 

ACTIVITY NUI1BER 7-CDH'U!E DATA 
CUMULATIVE COST VS. fREOUD~CY 

I~~~UDING OPERATIONS 

10100 

IOCC~----------_.------------._----------_.------------~ 

--~ IOO+-----------~----------_+----------~~~~--~~ 

-'?--~v~.;: ~ .......--- ---- ~;-;_x 

-I!'~ IJ+-------------+-__ -_-_-)(---------~------~~~--~?'~~T------------~ 
- -)(- - --)(-- -- ~ 

---
O.I+----------~~+_----------~~----------~·------------~ 

+---~~~~~+_--~~~~~~--~.~~~.~-T~~~ 
(0 100 (000 (0000 

~~MBER or TIN~3 ACTIVITY IS PERfORr.EO 

F-13 

" 

. ,. 



, \ 
I 

\ I 
/~j' 
I ' / 
r 

r 
J 
/1 

/ 

, -

/ 

" ,", -- -{ , 
I -.J \ J 

I' 
I 

1 

\ 
, -"-

< 1 \ 

V 
I 
II , 

i \ 

/ ' 

\ ,-

RC! NUMBER 8-CONfIRM/VERlf't' PROCEDURES/SCHEDULES/OPERATIONS 
CUMULATIVE COS! VS. fREOU/)lcr 

EXCLUDING OPERATIONJ 

lOOI~----------~r------------r------------r-----------~ 

__ -9--
~--

VI ___ • x ._. - No -- -' --- _·It- ._.- )(.- •• 

5 101===~==~~~==~====~==~--~~~~-4--------~~ 
-' -I 

:c 
z -
VI 
It: 

5 
-I 
a 
o 

V> 
Z 
o 
-' -I 

:c 
z 

VI 
cr 
a:: 
-' -l 
o a 

D.I 
1 

••••• + ••••••• + ••••• 

... ~ ..... 
••••• -t-o

•• 

10 ICO I (XX) 

NUMBER Of TIMES ACTIVITr IS PERfORMED 

ACT NUMBER a-CONfiRM/VERIfY PROCEJURES/SCHEDlJLES/OPE~A7IONS 
CUMUL.9TIVE COS! VS. fREOUE:IlCr 

INCLUD ING OPEHRTI ONS 

10000 

IOCQT------------,------------,-----------~------------~ 

IOO.;----------~ 

___ IJ'--

~--
___ )( __ J(-

.' >'_., _ )f .-

IDt----------~-----------4-------~~~~~L-------~ 
........................... ~ 

......................... 

-~-

10 ICO l.m 10:00 
tJUMBE:R Of TIMES ACTIVln 15 PERFCR:'1EO 

F 14 

,I 

::1 _ t. 



B::TJVITl' N~CR 9-CO"l-:f:cr/OJSCO~CT o..CCTRICfl. [NTaU1'\C!': 
Il.!1t.JLI\TJ VI: COST VS. fRCOUOfCT 

EXCLUDING OPCRRTIONS 

IOOT-----------~------------~------------~----------J 

~~:' 
--:. ... ~ /..--1 -------- .,.-1!--- / 

"---;'"/ ' 
on __ ... _ - .. --.-
~J9t=~====~=i==~==~==*=~~--~~.~ ... ~.~~~~~-i •• -. It --_ ••• _--

:j ...... . .....• 

VI 
z a 
-l 
-l 

~ 

Z 

VI 
n:: 
5 
...J 

8 

1 tal 

100 

10 

...................... 
..... ............ ..... 

flCTlV[i'( NlJ.'1eol 9-COH~CT/OlSCOi\. ... '!:CT El.E:CTnICf't. INTtRrACf: 

1'----0---

. -lC _ .... -- 1." .... -

....... + ............... 

Ct.I1'1LU\TIVC COST vS. r;:;LOt.'DtCr 
INCLLOIt::> OP[i;rl'ICNS 

.v--:::;; -----1'---9--

.w .-- - )t. -'-
_.-)1-- -::.::::::-

..... 

........ 
V"""',., 

~/ 

k& ............ . ... "" 
. .' ~ .... ~ ·····h 

,,? 
............... ~? .................. ...... 

d-
-

.# 

bd:::l a 1 
I 

. 
ltool 

F·15 

c-y 

,~ 

I 



t]\ 

feflVln tlUMam IO-CCI-M:C1/0ISCO"''''£CT fLUID INTERrRct 
Mt.l1ltIV!: COST vs. rmll:JO~Cl' 

£xCtW I Nt; OPERATI ('.tiS 

l~~----------r---------~-----------r----------, 

• =-9-

'" .. ... • .. _ _ w _ - ._ ... M- _-M- ...... a 10 

::i 
r 
z -

II> 
Z 
0 

::i 
r 
z 

V'I 
()! 

~ 
8 

IIXXI 

100 

10 

.. ~-•• + ••••••••••••• 

........ .....•....... 

fen V ITt tlur.:!rn IO-COII!£CT/OI5CONl'ZCT flUID Hln:rJ"nct 
CU1WitI VE: COST VS. rrlf:~Uc."CY 

It.tLtJOWG OPCRATIONS 

.,.,-
V"".,., 

.,.,-

.~~ ..-- . ," ~ 
-'1-- --- .... ~j;1 1------1"---9----- 1"--' . ..' ~ 

,.. - .-- .......... ~ ...... ;;>~ •• , )( •• ____ ,.. _'0 -_.)(._-
..... //' 

t- ............... / ,.V 
........................ 

•.... + •.•.... + ..••. .0 

"-~ 

~~ 
~, o I 

I 
, , 

hI 100 1= 
.,~MBCR cr TIM~5 fiCTIVITY IS PERrC~NEO 

IOCca 

F 16 

\ ' .. 

, 
... 1 

. .. 

o. 



In 
Z 
0 

::f 
J: 

z: .... 
'" cr: 

3 
8 

lJ') 

Z 
0 

-' -' 
J: 

~ 
o.n 
no: 
5 
-' 
8 

l 

RCTIV In t.PJ/'l;f:n Il-CCRRfl.AlC CAm 
Ml.umvr: COST VS. fRf.:OUOlC't 

rXCLtro Ill,; OPERATl eelS 

I~~----------~------------~----------~------------, 

UXI 

10 

0.\ 

10 ICO 1000 
N.)t16CR or TIMts RCnVln IS PE:RfORME:Q 

RCTIVIT'r ttJr.8f:R ll-CC.'~Ro..RTE: CRm 
CUMULA!lVC COST vS. fRE:OUEJIC't 

1"''CLUlWG OPERTIONS 

IIlXXl 

lan·~----------~--------------,----------------~-----------, 

100 

-9---
10 

)( 
.. __ - M - -

0.1 

OCI+---~~'-~~--~~~~~+----~~~~~ ____ ~~~~ 
1 10 ICO • 'XX) 

NUMBER or T!NES ACTIVITY IS PCRfOn~~O 
10000 

F 17 

• A··~- • - . 
mt:"1-~~~~~~·~':~~-:'4~~~ ... ("~d$£-l~~:=U~SU$#1'j.'· ;g.~~-nc~AN...z;;;;:r;-:'fi-_~~ 



en 
li 
..J 
..J 

1: 

Z 

en 
tI! 
a: 
..J 
..J 
a a 

cn 
Z 
0 

..J 

..J 

:c 
z 

cn 
ex: 
a: 
..J 
..J 
0 
CJ 

PCT[VITY NUl'tlrn 12-!l:IICTIVATE/TERt1U::In: Sl'STEH OPeRATION 
CLr1ULATIVC COST VS. rm:OUCNCr 

EXCLUO I ~,'C OPERAT IONS 

IO~----------------r-------------r-----------------~----------~ 

10 

-'1--- ---
,. - -- If -

".. .- It --

.-.......... ...... ~ 
... -..... -..... ........ 

10 100 ICXll 
NUMBER or ~It1CS ACTIVITY 15 p~Rr~MOD 

ACTIVITY NUMBCR 12-c(f1CTIVATE/TERMIN9TE srSW1 OPERATION 
CUNULATlVC COST VS r~COUE~IC'l' 

It-.'CLUOlIlG OPERATlOtIS 

.CXl)T-------------~------------~------------~---

100 

-<1---
_)( __ >C - --

10 

...... ~.- ...... + .......... 

----

........ 

)f --

.' ........ 

1t0a3 

O.I+--... - .................... +-....... ...-.--....... 4--~---....--...+--_-.-....... ~~ 
I '0 lOO IIXXl 10000 

~N~BER or TIMES ACTIVITY IS PERr~qM[O 

F·18 

., 
I 

.. I 

., 

• 
I .. 

.. 

. _. 



'" 7-
0 

::1 
1: 

Z 

tn 
~ 
a: 
::i 
8 

'" z: 
a 
J 
J 

1: 

Z -r tn 
cr:: 
u: 
J 
J 

8 
r -

I 
L 

1 ' a 
L 

r 
(j .. 

1 

f'CTlVITY NUI18E:R IJ-m::ccm:IE:Il:COE ORTA 
CUMULATIVE COST 'IS. rREOUE~Cr 

EXCLUOWG OPERATIONS 

IOOOr-----------r-----·-----.~---------~----------1 

100 

-4-------
10 

IC _ -' __ IC ___ ' Of --- - )( 

O.I,i ---.--.............. ~IJ ICO lem 

NUM8£R or TIMES ACTIVITY IS PCRfOqMEO 

ACTIVITY NUMBER I J-oc:coor 1~'ICOOE: Q9TP 
CUMULATIVE COST '15. rc~CG~IC'~C,( 

INCLUO ItIG ('PERRI: 0'.5 

:oo~ 

1~~----------~-----------'r-----------7-----------1 

100 

.--- ----
10 

- ~ - _ It-

IC • 

10 100 IC;::a 100::0 
~~M6E:R or TINES r.CT[VITY IS PERrCRHCO 

F-19 



If) 

a 
:J 
;: 
Z -
If) 
c= 

~ 
8 

." 

8 
:J 
:s= 
:z -
U1 
e:: 
a: 
:j 
0 
Cl 

r.cn Y lTl' N1J18E:R li-O!:rm: PfiOCEOt..m:S/SCHalt1.LS/OPEMT I ONS 
CU1ll.RrIVe: COST VS. rR!:OUENCI' 

EXCt.lD ItlG OPERATI ONS 

100Q~------------,-------------,-------------,-----------, 

ICXl 

10 

D.l 

.q---
___ .. ___ ,_ -- If- -- - )C---

ACTIV[TY NL~e~ 11-c~rINC fROCCOURe:S/SCHOO~.LS/OPEp.RTlm~s 
M\JL.9TIVf: COST vs. rRE:OU~NC" 

INCLLOING OPfRArONS 

l~iT-----------'-----------'-----------'-----------' 

,.-
~. 

IOO+------------+-----------;--------~~~~--__:~ -;;f --._-
__ ... v_ .... _ __ 'I( .. __ ... _ ... _ ... _w ... - ...... .1'(--" -----1"--- ----

10 

0.1 

to 100 100J 10000 
NU~8ER or TIN~S RCTIVIT1 IS PERr~\MEO 

F·20 

lO, 

. -. 



I. 

v> z 
0 

::l 
1: 

= til 
0:: 
II: 
-1 
-1 
0 
0 

v> 
Z 
0 

-1 
-1 

1: 

= 
til 
0:: 
II: 
-1 
-1 
0 
0 

ACTIVITY NUH6~R IS~OEPLOr/RETRACT RPPENDAGE 
CUMULATIVE COST VS. fREOUCNCY 

EXCLUOltlG OPCRATIONS 

I~~-----------r----------~r-----------~--------·--~ 

100 

10 

.._-9- ----
)( Ie II - )( 

.......................... 
......................... 

10 100 lOCO 
NUMBER or TIMES A~TIvITY IS p~Rrn~MEO 

ACTIVITY MJl19ER IS-CEPLor;PCTRACT flPPE'~OASE 
CU1'1ULATI VE COST VS. fREOUENcr 

INCLUDING OPERnTlONS 

ICXXXl 

IOCO~------------r------------r------------~-----------' 

100 

---- - " -)(oO ... 

)( • -- It 

10 

..................... -
........................ 

10 100 lOCO IOCOO 
tUMBER or TINES ACTIVITY 15 PERrOQNEO 

F·.21 



J:: 

Z -

en 
Z a 
..J 
..J 

:: 

~ 
U) 
CY. 

5 
..J 
a 
0 

ACTIVITr NUM6£R 16-0~TtCT CHANG~ IN STRT~ OR CONDITION 
CUNUlArIV~ COST VS. fRCOUENCr 

EXCLUDING OPERATIONS 

1a»T---------------~----------------~----------------~~----------~ 

lOO~----------~----------~------------~------~~~ 

lol-=-=··~~-=-=··=·=·~~:-:·:-~-:·:-~~:·:-·:-:--:~:·:·: .. ~==::===:::~t:=---------J 

+ 
••••••• + ••••. _ .... 

...................... 

10 loa 1000 
NUMCER or TIMES P.CTIVITY IS P£Rf~~MOO 

RCTIVITr N~~e!R 15-~£TtCT CHANG~ IN STflT£ OR CONDITION 
CUl1LUlTIVE: COST VS. fRf::OUOJcr 

It,'CLUOlt-.3 OPERATIONS 

,ooQl 

I~~----------~----------~------------~--------~ 

1C!l 

IO-

----... -~ _.-. )(-..... 

+ ••••• •••.• +.-••.• 

-.--~-

..... of-
••••••• + ••••• 

Q. \+---...-..,...........,....,..,..,.....fIO-----...... ...,...,,.......jlo-a --............. ....,......,,........ .... ,...1
000
,------..................... I...jooctl 

NUMBER Of TIH~S ACTIVITY IS P(RfO~MEO 

F 22 

'"t 
I 

.f 

; 

· ~ 

• I 

· . 



(~ 

ACTIVITY NUMBER 17-0ISPLRY ORTR 
CUMULATIVe COST VS. rR~aU£NCr 

EXC~UOING OPERATIONS 

loo • .-----------,-----------~----------~--------~ 

IOt-----------r----------+----~~~~~~~~~ 
------.~":. 

~ O.It----------------~r_~~---------~------------------~---------------~ 
j 
8 

en 
Z 

'0 

-.J 
-.J 

::s: 
z -
<f) 

0:: 
«: 
-.J 
-.J 
0 
Cl 

0.01 t-7~-------~r_-----------+----------------1~--------l 

O.OOI+---~~~~~--~~~~~4_---~~~~~---~~~~~~ 
IOOCO I 10 100 1000 

1000 

100 

10 

C.I 

0.01 

0.001 
1 

NUMBER Of TIN~S RCTIVITY IS PERfORMED 

ACTIVITY NUMBeR 17-0I~PLRY DRTA 
CU~ULATIVC COST VS. fREQUeNCr 

INCLUDING OPERA IONS 

-~...-

--------' ~--Q>-_-o--.-]~ <?"'- • .. ' 
:.::.~ •• ::::.JI.~ .... -. 

" ... ~~ .. -", .......... -
~v 

~ 
~ V ..... -=--tF-== / ~ 

...,. 

~ 
~ 

.-/ 

10 100 lOCI.) 
NUMBER or TIMES nCTIVITr IS PERFOR~LD 

F·23 



ACTIVrTr NlR18ER lB-G.IlTHER/RE:PU'lCE: ToaL.~!CQWIP"E:NT 
CUMULATIVe COST VS. rR~OUDNCY 

f:XCl.l.OING OPERATIONS 

100~---------------~------""------""~---------------~---------------~ 

. ' 
~ ~ e IOI+---.... ----.... ~~--------------~ ......... -•• -•• -.~.~.~· .... ~~~--------~ 

:f 

til 

§ 

::l -x: 
Z 

(f) 
ex: 
a: 
.J 
.J 
0 
0 

11m 

100 

IQ 

0.1 
I 

..... ., 
......... - .•... +_ ••. 

••••• -t- .............. . 

10 ICO um 
NU~B~R or TIMES ACTIVITY I~ PERfORM~O 

PoCTrVITY HUl"'3E:R la-r;RiHE:R/RCPLAC~ TOOL5/courPMOlT 
W1Ul.ATlVe COS! VS. fRE:OUOICY 

I NCl.lJJ I N~ OrmA! IONS 

10000 

. 
"r .... ~,£/ 

••••• ,d.",l' 

'/z .-' -
....... ."" ..... ..,-y 

..... .,,;-
., ••• + ••••••• _ ••.• 

~ ..................... 
,.& 

/ 
~~ 

r-~-~··;·~·l 

10 100 1000 10000 
HU~6E:R Of TIMES F.CIIVITY IS PERfORMEC 

F 24 

, . 
• • 

. , 

.. 
-, 

.1 

. ' 



T 

rj 

• 

a 
w 

J 
'T' 

.. 

r 
r -
i 

en 
z a 
.J 
.J 

:r: 

:= 
III 
cr 
a: 
...J 
...J 
o o 

(f'l 

A:Tlvny NUM8E:R 19-HANOLE/INSPECTlEXfUlIlIE: LIVING ORGRNISMS 
CUMULATI VE COST VS. fREOUENCY 

EXCLUDING OPERATIONS 

'OO~----------~r------------r------------r------------, 

IOt-----------~~-----------r--~~--~--~~~~~--_; 

0.1t-----------~~----'"?'..:::::..---r------------t_--------__1 

OOIt-----~~~~r------------r------------t_----------_; 

0001,+ --~--~~~~IDr-----~~~~IC~O----~~~--lan+.-----~~~~IOCOO 
NUMBE~ or TIME:S ACTIVITY 15 PERfORMED 

ACTIVITY r~lr.1ElCR 19-HANDLE/INSPECTlEXAMlIlt: LIVING ORGANISMS 
CUMULArIVE: COST VS. fREOUENC'! 

INCLUOING OPERATIONS 

Im+-----------~r-----------r-----------t_~~----~~ 

e IO+---------,--~--------~~~--------~~~~--~~--_i 

...J 

...J 

:r: 

:= 
III 
cr 
a: 
~ O.I~----------~------~~---r--~-------r_----------_i o 
Cl 

OO,+-----~r&~~-------------r------------~----------_i 

Oool+---~ __ ~~~--~ __ ~~~~--~ __ --~~~----~~~~ 
1 10 100 I'm 10000 

NUMB~R or ~[ME:S ACTIVITY IS PERrD~~O 

F·25 

• A .~~- _,_ _ ..... 
c:.::;:-o;:?z=:.;.'::.!~:' i'~: ~""~\7.G.:?"'::::'=:"::'~~';~~"'1 .. "';;~::;:;:::.::r--," ~ _~,t"~?:''&.;.:T~:;~':;;:~~ .• - . c~~ "P~z.:, ,bJ 

, 



en 
Z 
0 -:l 
l: 

= 
en 
0: 
II: 
-l 
..J 
0 
0 

en 
?: 
0 

..1 

..1 

::: 

= en 
0: a: 
..J 
..1 
0 
0 

ACTIVITY NUMBER 20-IMPLEMENr PROCEDURES/SCHEQULES 
CtJ1ULRTIVE: COST VS. f~COUE:NCr 

EXCLUDING OPERATIONS 

loolr---------------~----------~----------~------~ 

10 

-'1--- -----
_._ ~ _____ It ___ ----It- - --~-- --

_ .................... . 
_ •••• + •••.•• -+._ ..• 

./ ...... ;; .......... / 

?/ 

10 roo 100J 
~UM6ER Of TINES RCTIVITr IS PERfORMED 

flCTIVITr NUt!5E:R 20-IMrLE~NT PROCEDU"ES/SCHEOULES 
CUMLUmVf: COST VS. fRE:OUi:NCr 

INCLUDING OPERATIONS 

10000 

I~r-----------~------------~----------~------~ 

100 

--- ----
__ • )(. --- -- )(- --- 't 

---)<- - --)(. ---

10 

•• - •• + •• __ ......... _ • 
.............. _.-t-••••• 

-~-

o I+-__ ~~~~~~ ___ ~~~~~~~ __ ~~~~ __ ~~~~~J 
I 10 loa lOCO I(XlOO 

hUnSER Of TIMES ACIIvlrr IS PERfORMED 

f·26 
/ 

MCDON"'.u.. OOUQ~S--

.1 

1 
1 
1 

.. 
, .. 



J 

J 

i .. 
r 
I · . 

or' 
i 

; . 
~ 

~ . , 
· ~ 

,-
~ 
~ . 

j 

! 

• t .. -
rJ ,,' 

t 

VI 
Z 
0 

-' -' 
1: 

Z -
Vl a: 
II: 
-' -' 
8 

U') 

z c 

-' oJ 

:E: 

~ 
(/) 
a: 
II: 
oJ 
-' C 
C 

ACtIVIT! NUMBER 21-INfORMftTION PROCESSINB~' 
CUMULATIVE COST VS. fREQUENCr 

EXCLUDING OPERATlalS 

tOOI~-----------r----------~------------r---------~ 

10 

-r--- ---'1---

---~----

.J( ___ - ____ )t- ____ If---

10 100 lOCO 
NUMBER Of TIMES RCTIVITY 15 PCRfaQMEO 

RCTIVIT! Ntr.1Bf:R 21-INfORHRTIurl PROCESSING 
CUMULATIYE: C'JST VS. fREOUDjCl' 

INCLUOI~~ OPERATl~NS 

10000 

I~~-----------.------------~-----------.----------~ 

100 

----
10 

__ ~-_._- --J( ___ • --- - It ---

_-1:--

10 100 I ceo 10000 
NUMBER Of TIMES ACTIVITY IS P(RfC~MED 

F·27 

MCDONNOILL oo(Ja~ 



ACTIVln NU'18E:R 22-(tlSPECT/C3SE:ltvC 
CU1Ul.J1T1v!: COST 'IS. rRCQ1JE:IICY 

(XCLLUING OPERATIONS 

IOO~----------~~-----------r------------~----------~ 

----
>C 0 fCo-' 

Ul >C 0 11-.-n 1!ll===~==*==;=~=+-"::::::~-::7':;L------; 
..J 
..J 

s: 
Z 

Ul 
0:: 

5 
..J 
g 

tI'I a 
..J 
..J 

r 
z 

Ul 
cr 
a: 
j 
CJ o 

10 ICO Itxn 
NUMBER or TIMES RCTIvltY IS PE~r~r.EO 

ncrrv Ii'!' N!J~9ER 22-I"SPE:CT IDeSERVE: 
CtJMUUlTI'iC c:Jsr "'5. fR[O:;!]JCr 

(NC:'UO/lt; OPERRTlC',S 

10000 

I~T------------.r------------r------------.------------' 

loo4-------------~----------~------------~~----~~~ 

-z;--- ----
_)(. 'oC'-

_ J( 

IO+-------------~----------~--------~~~----------~ 

10 IO~ ICJ''') 10000 
NUMbER or 11 HES peT! v I TY IS PERrO::U1EO 

F·28 

MCOONNIZLL OOCJGL~ 

:1 , 
I 

:1 .... 
,I 

.. 1 

I -. 

.. 

-. 
-. 

I 



, ' ,-'"7"'\[ 

flCTIVlTr ti'J1OCR 2J-t1tRSt..~f: 'SCfltf:' PH'(SICflL. DIMeNSIONS 
CUMI.A..RTlVt: COST vs. nU:OUOIC'{ 

£:XCLIJ) lUG OP£RATI ellS 

IOOT------------r----------~------------r_--------~ 

.,.. 
5 IOI+-----------4-._-.-.+-.-.-•• -.• ~.~~~--~~~~~--~~~~ 
::1 •• - •••••• - ........ . 
J: 
Z -

J: 

Z -

L....<t--~-.-/·...--~--·- .~---
It'" .--- --.. __ --_w 

10 IC~ 1000 
NUMBER or TIMCS ACTIVITY IS PERfORMED 

fiCTIVITT N~eER 2J-MCAS~~~ 'SCf,~' p~rSIC~L DIMENSIONS 
CU1Ul.RTIVt: COST VS. fR!:C~IQIC,( 

IM:LlIOlt;:; Oi'E:RATlQ.1"S 

100CIl 

IOCQ~-----------r----------~------------r-----------, 

lro··~----------~-----------+--------~~~~~----~ 

10 ICO 1000 
~UMe~R Of TINES R:TIVITY IS PERfORMED 

10000 

F 29 



<n 

i5 -:i -:c 

~ 
III 
cr 

~ 
8 

tt\ a -::i 
:c -~ 
III 
c.: 
a: 
.J 
.J 
0 
0 

fCTlVln tlJMSER 21-FLOT DATA 
W1l.l..ATIv!: COST VS. fRf:OUENCY 

EXCLLDHiG OPERAtiONS 

100~-----------r----------~------------~--------~ 

.-.-_ ...... __ -'v_---9-

ID+-----------~----------_4------------~~~~~~ 

0.1 

IC----.--M-- -­-.. --~------ --

o.olh~---------I---------~--------~-------~ 

D.OOt+---~~~~~----~~~~--~ ____ ~~~----~--~ 
I 10 leo I COO 

I CD:) 

100 

10 

0.1 

O.CI 

0.001 
I 

NUMBER or TIMCS ACTtvlTY 15 PCRfU~MEO 

ACTIVITY NUMeER 21-PLOT DATA 
W1ULA!IV~ COST VS. fReQUCNCY 

INCLLOlNG OPERATlQ.'1S 

loc.ao 

----'" /" . L ~'/. 
~-----1-- ____ --10------ ~ 

., -""- '-" 
, • )C ".,7 

----l(---- ~---
___ 1(- ____ )t- -- ~' 

~ ____ .. ~,...e 

L----~ 

~ 
v 

.~ ~ __ o--

/ 
lr--' 

y 

10 IC~ 1CX1l IOOQ3 
NUNEER Of TINES A:TIVltT IS PCRfa~MED 

F-30 

.. --e 

] 

1 
"'1' 

I 
•• 

•• 

~. 

I .. 

I 
• 1 

.. 
-( 



, 

<1'1 
7-
0 

oJ 
..J 

I: 

Z 

\fl 
~ 
II: 
oJ 
oJ 
0 
U 

ACTIVITY NUMBER ~S-POS(T[ON NODULE: 
CIJ1ULATI VE: COST "5. f"REQU!JIC'! 

EXCLUD ltJG OPERAT IUNS 

IOO~-----------r-----------,------------~----------~ 

10 " 

•. + ................. . 

)( . " .. 
....... 

................... 

......................... 

10 IO:! lem 
~UM8ER Of TIMES ACIIVl!'! IS PERFORr,ED 

RCTIVITY NUM8ER 2S-PDSlTIOtl t'OO'JLE 
CUNULATl VC COST VS. fR[OU!:tlC'! 

ItICLt.::JING OPEH1'lTlCNS 

IOO.------------r-----------,------------~----------~ 

.l( • .. . -
" 

-l( 

~ IO+_----------~-----------4--------~--+_~~------~ 
o 
J 
oJ 

I: 
Z ••••• ~ •••••••••••• 

(fl 

n::: 
a: 
..J 
.J 
o 
o 

... ~ ...... 
........ + .... 

............. .. , 

10 100 lem 
~U!1BCR Of TIMCS ACiIVI!'! IS PERFORMED 

F 31 

"'COON,,,trL:. DOUG~~ 

1(Xl:)l 



en 
:z: a 

::I 
J: 

% .... 
III 

~ 
8 

en e 
:i 
J: 

= III cr: 
a: 

" -I 
-I 

~ 0 a 

''I 1 

ACTIVITY NUMBER 26-PRECISIOtl !lnNIPULRTION or OBJECTS 
CUMULATIve COST V~. fREQUENCY 

EXCLUDING OPERATIONS 

IOOO~----------~----------~----------~--------~ 

100 

10 

f 
~' /,.?" 

lOla I COl 
NUMBER or TIMES ACTIVITY IS PERfORMED 

RCTIVITY NUt'eCR 26-PP.E:CISIOU I1f1NlPULRTICN Of OBJECTS 
CUI1U1..A!lve: COST VS. mECUO:Cl 

INCLWW:; OPERArIONS 

ICXlCXl 

I~~----------~----------~----------~--------~ 

100 

10 

10 100 I~ 
tUM6ER Of TIMES ACTIVITY IS PERfOKMEO 

100CXl 

F 32 

1 

..,. 
I 

•• 

.r 

-. , 



"f' 
D 

I 
J 
J 
..,.. 
,.. 

, 
.l. 

, .. 
r 
I 

'T r 
r . 
l. 

ro 
I .. 
:. 
I 

:j -l: 

PCT Nli1BtR 21-PRO!3L01 SOLVrt.'G/Dr;CISlmJ HAl( ING/DATR RNflLYSIS 
CUMUlftTIV~ COST VS. fRCOUENCr 

EXCtLO I NG OP£RArI ONS 

I~~-----------r----------~------------~--------~ 

lOOT------------r----------~------------r_--------~~ 

-q-. __ .... - .... 9---- __ -#I--

- -.~ 

10~ __ :-=-X:-:-~-=--:~:-~:-~;;;;~~~~;;~~:;::::~~------~ I ..... +-....... •.... ~ ,/''' _ ..•....... +..... ,,-
,~" 

ACT NU~3ER 27-PRC9L01 SOLVIIJ3/0CCISION MAKING/OATn ANALYSIS 
0l1ULATIVr; COST VS. fREOULNCr 

1~'CtUOIt;.:; OPE:RArIONS 

I~~-----------r----------~------------r---------~ 

100+------------+-----------4------__ --~~~~~~--~~ --...q---
::: 10 ____ ~--- __ 
~ _ .. --.-............. . 
5 
...l 

8 

10 lCO I COl 10000 
NUMBER Of TINES ACTIVITY IS PERfORMED 

F 33 

.. j) 



~ 

., 
-

T 
{ 

.. I 

-. 
( ., 

RCTIVIT'!' 1IUl18E:R 26-PUR5UIT TRflCI(JIl(3 
CUt1U1JlTlVE: COST VS. fRE:OUO~Ct' -. 

EXCLUDING OPERATIONS ... 
ICO ... ' 

... ",., 
I .' , .... 

~ . . ' .. ' 
to .' 

en ~ I 

a -:l 
::t: .. 
:; 
ttl 

O.t 0:: 

5 
-.I 

8 
/' 

0.01 ./ , , 

0.001 
, 

t 10 leo 1000 10000 
-. 

l' 
NUMEER or TIMES ~CTIVITY J5 PERfOR~EO 

RCTIVrTY NtJ:19!':R 26-PURSUlT TRRCKWG 
CU1U'JlrI'vt: COST VS. fR!:ouDlcr , 

INCl.UDING OP£RAl'IONS 

100'J 

i 
.1 

100 

en 
z tD 
0 

-....... , -.I 
-.I 

::t: < -, 
z .... 
ttl 
n:: 

~ 0.1 
8 

0.01 

0.001 \ 

1 10 1"0 \ '\."'0 10000 
_. 

~JMeER or TIMES rCTIVITY IS PERfc.:{i1m 

1~, 
F·34 

McaONNIICu., DOV .. t:.~ , 
...; 

~ 



:J -x: 
z ... 

, ' """'J ' 

E 
,. - -

flCTlvnr NlJ1&R 29-Ro.EAst/SE:CURE: t1ECHRNICfl. INTCRfRCE: 
CUrtULflTIVE: COST VS. fRE:OUE:NCt 

EXCI.UOllli OPCRR!10NS 

tOOI~----------~----------~----------~----------~ 

100 

III 

0.1 
t 

........ -.. -- ........ 
........................... 

10 ICO 10CXl 
NUMstR Of TIMes RCTIVITY IS PE:RfORMED 

RCTIVITY NtX1&R ~-Re:LERS::/SE:CUR£ ItCHRHICRL INTE:RfflCE 
~Ut.f\!IVC COST VS. rm:CUENC't 

mCLl.OItlG OPfRArIOHS 

.".., 
~/ 

...... """ 
..,..,-';;;' 

~ t----- ~, -- .. -:> .... ~ ;-...--_. .-_.,. --.::;:.:.::.:::: _ .. >t*---*- -- .' .,;;?, 
• _ •• -H'-"-' )00' --. . ... W • .+., ._/ V 

................... .' 

.................. ••• -+- -f7' . -... 

~," 
""" 

.-.\-~~ 
~ 

10 I 0 I CO) tOO 
H'JlleER Of TIMES ACTIVIT'! IS PERfOR11EO 

F 3S 

. .. 



--

ACTIVIT! HUMBER 3Q-REMOVe ~OOULC 
CUMULATIVE COST VS. rRCOULNC! 

EXCLUOHlG OPERATIONS 

IOOT-----------~~----------_r------------~----------_, 

on 
Z ID 
0 

J 
J 

:I: 

Z 

III 
c:: 
II: 
J 
J 
0 
0 

)( .0)( II • II 
)(.. )( 

.. -.~ ..... 
........................ 

........................ 

10 100 1000 
NUMBER O~ TIMES ACTlVITY IS PERFCR~ED 

ACTIVIT! NU~5ER 3Q-REMOVE HJOLLC 
Cu:1ULArIVC COST vS rp~OUC:JCt 

INCl.UDING OPERATIONS 

I~ 

IOO~----------~-------------r------------.-----------~ 

o ")( 

x- - .)(-

~ ID+-----------~------------·~------~~--r_~~------~ o .' 
J ........... . 

.J 

:I: 
........................ 

~ ....................... . 
III 
c:: 
5 
J 
o o 

MCOO .... 'U.L OOtJO~ 

10 IGO 1000 
NUMBER or TINES ACTIVITY IS peRfORMED 

F 36 

] 

1 
1 
..., 
• • 

· .. 

\ 
. I 



[ 

r .. 

-, 

i -
! 
1 

L 
0;:' 

~ 
<l ... 
" , 
':> 

,1" .... 

~ 

,'T-" 

RCTIVITY tUl16ER 31-RE:NOVE:lREPLnCE COVERINg 
ClR1t.l..flTIVE: COST VS. fRE:QUEllC't 

EXC~UOING OPERRTIO~S 

I~T-----------------r-------------~---------------r-------------' 

VI .,. * ... __ *___ - --J( _ •• - )(-- •• -

e 1°t=::::i:=~=*==;:==;::=F=F==:':.:'!"· 4""-=-7/r-:;r-j _ .N 

2 ............ . 
x: ...... . 
z ..... + ...... . 
..... • .... -+ ..•• -_ •• - .... 

, 

RCTIVITY NUMBER 31-REMOVE/REPLACE COVERING 
CUHUl.AtlVE: COST VS. fRCQUCNCr 

Ih'C~UDINB OPERflTIOHS 

I~T----------------r--------------~---------------r-----------------' 

IOO~--------------r--------------+---------------~~------------~ 

----
... _ x .. - ....... - )t-_ .. r -- .. )(-0 -- .. -)It ...... 

IO~----------------~--------------+-----~~~---~~--------~ .............. 
+ •• , •• ................ ....................... 

IQ I 0 1000 
NUMBER Of TIMES RCTIVITY IS PERfO~MEO 

F-37 

.. - -

IOOro 

-



1 

V> 
Z 
o 
.J 
.J 

:c 
z -
IF) 
~ 
a: 
::J 
o 
Cl 

flCTIVITY Nlt'03[:R 32-REPLflCE/ct.f:AH SURfACE CORTINGS 
CU1L'LArIVC COST VS. rRI:OUCNC'l' 

EXCLUDING OPCRATIONS 

lam,~----------~----------~~----------~----------~ 

IOOI~-----------+-----------4~----------~~----~~~ 

, 
IOIf------------+--------~~~----~~--+_----------~ 

--_ ......... . + ••••• 

10 100 trol 
NU~EER Of TIMES ACTIVITY IS PERfO~MEO 

ACTIVITY NU~3CR 32-RCPLfiCC/ct.CA~ SU~fACC COATINGS 
CUMULATIVe COST VS. rREOUCNC'l' 

INCLUJING OPCRATIONS 

UXlOO 

I~~-----------r----------~------------r-----------~ 

IOO+------------+-----------4----------~f~--~'---~ 

IOf------------+------~~~~~'-------~--------~ 
.................. 

......... + ....................... .. 

10 100 lOCI:) 10000 
NUMBER or TINES ACTIVITY IS PERfORMED 

F·38 
/ 

IH'CDONNlELL DOUOLA~ 
~ 

] 

1 
1 
1 
1 
1 
1 

--



1 J 

I 
r 
I 
,... 
i 
1 ,-

I 

1 . 
) 

tn 

~ -:l -x: 
z -

ACTIVITY NUMBER 33-REPLENISH MATERIALS 
CUMUWRTIVE COST VS. rnEOUDNCt 

EXCLUDING OPERATIONS 

locnT-----------~------------~----------~------------~ 

IOOf-----------~----------_+----------~~~~~--~~ 

..q---- --._-
IOIj:-='='-~X=-'=':':'~X~':--~-':-~-~:':"='~"~-:-:]~ ____ --~~~~~~~---J 

................ 

·····~······--·.7:// 
, ~ 

••••• + ••••••• + •• -. 

O.I+---~~~~~--~~~~~--~~-r~~~--~~~~ 
I 10 100 Itm 10000 

NUN6~R or TIMES ACTIVITY 15 PERfORMED 

ACTIVITY NUI"'.9ER 33-REPLEtU5H MRTERIALS 
Ct.J:1Lt.ATl VE COST VS. ffiEOUENC't 

INCLUOING OPERATIONS 

I~T--------------~------------~-----------~------------~ 

loof-----------~-------------~------~~~~~------~·~~ 

--q..-
_ •• _ .-Y.--" •• "l!"'" ••• ~' • 

IC~---------f------------+---..,......"....:.::::.:.-~~~- ----I ........... 
lQ ...................... . 
~ ••••. + ••••••• + ••••• 

g 

10 100 lOCO loo:xl 
NUn6~R Of TIH~S P.CTIVITY 15 PERfO~~£D 

F·39 

MCOO""'IIru.. OOCJoif 

-



en 
z 
0 

..J 

..J 

:c 
z -
tTl 
IX: 

5 
..J 

8 

en 
Z o -:l 
:c 
z -
tTl 
c.: 
a: 
:j 
C) 

o 

ACTIVITY ~~MBeR 3i-STORE/RECORO CLt~~T 
CUMULATIVE COST VS. rRE:OUOlC'( 

EXCLLOWG OPERATIONS 

IOCQ~-------------r-----------'------------r-----------, 

lOCI 

10 

_9_--

.-................... . 

10 100 ICXXI 
NUMBER or TIMes ACTIVITY IS PERfORMED 

ACTIVITY NUMSER 3i-5TORE/RECORD ELEMENT 
Ct/.'1ULAT!VE COST VS. fREOUEI~CY 

INCLUDIN3 OPERATIONS 

10000 

I~~-----------r-----------'------------r-----------' 

10+-------------+----------~~~~--~~~~------~ 

............. -......... --_. 
............. --_ .... --_ .. 

10 I ail lOCO 10000 
NUMBER or TlMES RCTIVITY IS PCRfORJ1CO 

F-40 

1 
1 
1 
l' 

I 

-, 

- 1 

• 

- ---' 



rr I 
J 
J 

.' 
, 
I-

r 
r-

,.. 

11m 

100 

tt) 

Z 
0 

::I 10 

r 
:; 
tt) 
~ 

5 
-.J 
0 
0 

0.1 

flCTIVITY NUHB!:R 3S·5URGICAL NflNIPULRTIOHS 
CIJ1lLflrIVE: COST VS. fRE:OUCNC'( 

EXCLL'D II.'G OPERAr! ONS 

10 100 I !XX) 

NUHB~R Of TIMES RCTIVITY IS PE:RfORM~D 

flCTIVIT'I' NUl1!l!:R 35-5U'{GICAL MANIPULATIONS 
CUMUlJlTIVE: COST VS. fRCOUCNC'( 

INCLUOI~G OPERATIONS 

I~~-----------r-----------.------------r---------~ 

10 IOJ 1000 
NUMBER or TINES ACTIVITY IS PERfORMED 

lcx::tl 

F 41 

r"\./ 
MCDONNfi!LL DOUO~II':-~'-

>V 



,,' 
I 

" 

:T 

~ 

'I' 

(I) 

6 
:J 
J: 

% -
If> 
cr! 

~ 
13 

en 
7-
0 

:J 
1::: 

Z -
If) 
cr! 

5 
J 
0 
Cl 

ICOl 

100 

10 

D,l , 

Itnl 

100 

10 

D.I , 

RCtIV[TY NUM9tR ~6-TRRN5PORT LOADED 
CUMULATIYE: COST YS. fR!:OlJDlC'C 

EXCLLOING OP£RATI~iS 

.. ' .. ' 
.' .' ",' 

.' 
.' 

.' .. ' 
.' .. ' .' 

,.' 

" 
•••• f' . " .. ' A··-

.' .' .' .' 

.' 
.. ' 

.' ........ .. ' ............. 

10 lel lOCO 10000 
NUMBER Of TIMC5 R:TIVITY ]s PtRfOOr.::o 

ACTIVITY Nu~eEn j5-TR~~~PORT LOrJ~D 
CUMULATIVe COST VS, fPECUE:NCY 

IN~LUiJWG OpeRATIONS 
, 

" . 
. ' ,. .... 

" . . ' 
.' .. ' 

~ .. ' 
f .' 

fl' .... . .' . 
~' . .. ' 

~ .' .. ' 
,t., .. ' ~ .' ~ tIII··-

V 
;" 

................... 
..... ~ 
~ 

10 WI In")) I~ 
NU~3ER Of TIMES ACTIVITY 15 PCRfCRnCO 

Traf'SPort l03ded {'peratlon$. b"yond the "erma I wor~m9 €nJlronmcnt (e ~h to goosynchronoJs orb,t' could require ~ny hours. 
1"\ thl. foresct.!Jbie future suct-. actiVit •• i v..O;Jld he pufo ...... (.J on:y In t'1l'1 ~r.'!!~~q or I~~;::..:.!t mOOl"S 'n the THUBIS s~ud" 
"u#tlng anJIy'ses for trdn~pcrt O"1l.:'ratlo<"~ b~) cnd the rormJI \\orklf'l;;1 f.n~lrcnml!nt " .... ere not perlCrm(d 

F-42 

-, 
I 

.1 

f 
.1 
-; 

i 
, . 
.. ~ 

,,' 

.. 

~ . 

-. , 
I 

... 
oOf 

i 
J 

I 
1 .. 
"' 

.. 



~-• I 

... - .- ~--........ -
r" 
j 
• oj. 

:j 
r 
z -
II) 

~ 
8 

en 
z 
0 -:j 
l::. 

~ 
11'1 
rr 
5 
.J 

8 

ICIXl 

100 

10 

a.1 
I 

flCTIV (TY tlUt'l9!:R 37-TRfiHSPORT UNLOAOm 
CUMULATIVE COST VS. rREaUE~Cr 

EXCLlIJl/lG OPE;.')fiTICNS 

-
.' 

",.' .' .. ' 
" ;rS' ....... ./ 
,/ .-,. 

.' .' 
" 

.. ' 

./ 

",,'/ 
.' 

~ . " f 

. .'. .,,11' . J .. ' ,/ V .. ' .f.'1" ~.". .... ,/ -.. -
,,/ ~ .' .... 

..... /" /~ ..... ., ..... ../0"" 
... -..... - ~-' ~ ...e-.-

10 leo I Cr.'!) 
NUM2ER or TIMes P~TIVITY IS PERfOKn~ 

ACTIVITY Ntll'l3!:H 37-mFlNSf'C~T w~c~m:o 
ClJ11u..ATlvE COST VS. mcaucNC'C 

I r.'CLtJJ IN'; OPERFIrI 01.5 

ICIXl~----------------~------------~r----------------'-----------------' 

100 

10 
.' .­.' 

.' 
..... . ' 

O,If---T-~~~~---~ __ ~~·~~--~~~~~~-----~--~~ 
I to leo I CO) I~ 

NUMBER Of TI~E5 ACTIVITY IS PERfCR~EO 
Transport Uf)loaded operatl",ns beyond thil normal ~orkln'1 envlronm(mt re <J.. to 9e-Qsynchrof'lO..J' o"blt' cO..Jld r"Qulre ",.my ha.,J~ 
In the fore\c'Cf!ble futurU, luch aCtIVItIf~S \"would be ~trtorM~d only Hl tht ~..d~5~d or tn(1~r~"cenI mJdcs In the THURI:.i ltuJv, 
costing arl31yses for transport operations bevond t"-'e nO,,,...31 wc..-rhng envIronment w~re not vel tormpd 

F 43 

~, 



'~~ "~,:-:;. t;7;~ ~: ,: i~~~?": ,':' :. "".~:: :;:-k~:~_;~('r·:.~~~:;~ "~7?T~iI:.:i 
"' ." I '" 

J, 

, " 

""J' 

'r , 

'" . ; 
, . 

" 

'. 

: 

" ; 'i. ~~--,. -< .t 

1" ~ ,.." .. ~, 

4!, .. ~ 
t~ l 7 ~ ~ ~ 

...... ::'''t;::';~ 
\' £ J't-'; 

, 
""-~' ~.:- ,. 

~ .0:; ,; 

;. ~: .;: ~ 
:"::; t~'" 

.. :: '"-' - ~ 
-' , 

- r:::-

, , - , 

" 

-- ...... ~-
~ • -< ~ ":. r .. .. - .... ;; 

1 r... ::r~. -... ~ 
..... t"1 .... - '> - ~-

I 

~ 1 
1 • I 



End of Document 


